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Abstract

Numerical methods are investigated for solving large-scale sparse linear systems of equations,
that can be applied to thermo-mechanical models and wafer-slip models. This thesis examines
efficient numerical methods, in terms of memory, number of iterations required for convergence, and
computation time. To be more specific, algebraic multigrid (AMG) methods and deflation methods
are considered as preconditioners for the conjugate gradient method. We investigate if smoothed
aggregation AMG or adaptive smoothing and prolongation based AMG improve upon the classical
Ruge-Stüben AMG. It is shown that Ruge-Stüben AMG needs fewer iterations for the test problems.
However, smoothed aggregation AMG has a smaller data-size, which is of interest for situations with
limited memory or large systems of equations. Moreover, the mechanical problems considered have
a coefficient matrix with a block structure, which can be exploited by preconditioners like block
Jacobi or the incomplete block Cholesky decomposition; but also the smoothed aggregation AMG
can take the block structure into account when creating coarser grids. Further, we examine if the
results of the conjugate gradient method can be improved by adding a deflation preconditioner based
on the proper orthogonal decomposition or rigid body modes. They are combined with a direct or
stationary iterative preconditioner, resulting in two-level preconditioned conjugate gradient methods.
The various implementations of such methods are discussed, and the deflation preconditioner is
shown to generally reduce the number of iterations compared to the single preconditioner.
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Chapter 1

Introduction

This thesis investigates numerical methods for large-scale sparse linear systems of equations, that
can be applied in the context of control and system design for thermo-mechanical systems. These
types of problems are for example relevant to the development of high precision lithography
machines and EUV systems in particular. EUV machines operate under vacuum conditions as
the EUV light has such a small wavelength that it is absorbed by air. In the vacuum it is hard
to get rid of the heat that arises due to exposure to EUV. The thermal disturbances can in turn
cause imaging distortions. The imaging distortions have to be actively suppressed. This encounters
challenges like handling the limited range of a thermal actuator and the many possibilities of
spatially distributed thermal loads [1]. Therefore, high fidelity models are employed, yielding large
dynamical systems which have to be solved quickly. For such situations, we search for efficient
numerical methods, in terms of memory, number of iterations, and computation time.

Likewise, the wafer-slip model is investigated as it also entails solving large-scale sparse
linear systems. The model represents the placing of a wafer on its support, which consists
of a number of springs holding the wafer in place. The wafer-slip model is a combination of
two thermo-mechanical models which are connected by spring elements that can slip. The slip
and stick behaviour make this a challenging problem as the behaviour of the system evolves over time.

The aim is to find efficient methods for large-scale sparse linear systems. Recent studies [2–6]
have come up with ways of combining different solvers, creating even more effective ones. Common
techniques for solving large-scale systems are Krylov subspace methods. In this paper the main
solver is the Krylov subspace method preconditioned conjugate gradient, since the problems
considered are symmetric positive definite. As preconditioners/smoothers we consider multigrid,
deflation, direct and stationary iterative methods. First, among the algebraic multigrid (AMG)
methods not only the classical Ruge-Stüben AMG is used as preconditioner, but also smoothed
aggregation AMG and adaptive smoothing and prolongation based AMG, using a direct method or
a stationary iterative method as smoother. Second, we consider deflation methods based on the
proper orthogonal decomposition or rigid body modes as preconditioners; resulting in a so-called
two-level preconditioned conjugate gradient method, where the other preconditioner is a direct or
stationary iterative method. Various implementation variants of such two-level solvers are examined.
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Third, block preconditioners can be used when the coefficient matrix has a block structure – as
is the case for the mechanical part of the thermo-mechanical model and the wafer-slip model
– to exploit this structure and improve the results. The methods are applied to test problems
representing the thermo-mechanical and wafer-slip models, but a smaller version of the original
models to enable testing.

The paper is organised in the following way: the next chapter presents some well-known basic
techniques for solving linear systems. In Chapter 3 the model problems are introduced, including
current state-of-the-art methods reported in literature. Hereafter, the algebraic multigrid methods,
deflation methods and block preconditioners are discussed in Chapters 4, 5, and 6 respectively.
These are subsequently applied in Chapters 7 and 8 as preconditioners to the conjugate gradient
method for test problems representing the thermo-mechanical and wafer-slip model respectively, to
analyse their performance numerically. The final Chapter 9 gives a conclusion on the found results
and recommendations for future research.
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Chapter 2

Preliminaries

This chapter introduces some well-known methods for solving (large) linear systems of equations,
denoted Ax = b. Throughout this paper it is assumed that A is real. For each algorithm, its
classification with characteristics and abbreviations are given. For more details on the algorithms in
this chapter the following sources can be consulted [7–9].

Methods for solving linear equations can broadly be divided into two categories: direct methods
and iterative methods [7]. Direct methods find the solution in a finite number of operations in
exact arithmetic [10]. Usually, the methods first factorise the coefficient matrix, and then the
factored form is used to solve the linear system via forward and backward substitution. For
instance, in the direct method the LU-decomposition, compute first A = LU where L is unit
lower and U is upper triangular. Then solve Ly = b via forward substitution for y, followed by
solving Ux = y via backward substitution for x [8]. Another well-known example of direct methods
is Cholesky decomposition. The Cholesky decomposition of A exists and is unique when A is
symmetric positive definite (SPD), and is then given by A = LLT , where L is a lower triangular
matrix with real, positive diagonal entries. If instead a sparse approximation of the Cholesky
decomposition is used, this is called the incomplete Cholesky decomposition [10]. Direct methods
are accurate, robust and reliable. While they are the preferred methods for dense systems of
small/medium size, they become expensive in terms of memory and computational demands
for large or sparse systems. Namely, for sparse systems the phenomenon of fill-in occurs. This
means that at the locations where zero entries are in the original matrix, nonzero entries ap-
pear in the decomposition hence sparsity is lost. In such cases, it is better to use iterative methods [8].

The accuracy in iterative methods is less than the theoretical machine precision of direct methods
for well-conditioned problems. But often, this is justified by the fact that the models themselves
also have a certain level of inaccuracy. The iterative methods use a given initial guess to generate a
sequence of improving approximations to the solution. The two main classes of iterative methods are
the stationary iterative methods and the Krylov subspace methods. Stationary iterative methods
find the solution by solving a fixed point equation, via an operator that approximates the coefficient
matrix; they are completely characterised by a single matrix. Examples of stationary iterative
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methods are (damped) Jacobi, Gauss-Seidel and (symmetric) successive over-relaxation ((S)SOR).
For example, the damped Jacobi iteration is given by Equation 2.1, where D is the diagonal of A, and
L and U are respectively the strict lower and the upper triangular part. The standard/non-damped
Jacobi is obtained when ω = 1.

xk+1 = ωD−1(b− (L+ U)xk) + (1− ω)xk (2.1)

The second subclass, the Krylov subspace methods, employ Krylov subspaces, which are defined by
Equation 2.2 given some matrix B and some vector z.

Ki(B, z) := span{z,Bz, . . . , Bi−1z} (2.2)

The Krylov subspace methods search in the kth iteration for an approximate solution in the kth

order Krylov subspace x0 + Kk(A, r0), where x0 denotes the initial guess and r0 := b − Ax0 the
initial residual. Examples of Krylov subspace methods are the induced dimension reduction method
(IDR(s)), generalised minimum residual method (GMRES), (preconditioned) conjugate gradient
((P)CG), biconjugate gradient (BiCG), conjugate gradient squared (CGS) and BiCG stabilised
(BiCGSTAB). CG is only applicable to SPD matrices, and then it has three nice properties: it
generates approximations in x0 + Kk(A, r0), the error has minimal A-norm, and it has short
recurrences (i.e. only results of the previous iteration are needed; work and memory do not increase
when the number of iterations increases). It is impossible to construct a Krylov subspace method
that has all these three nice properties and is applicable to general matrices. The other examples of
Krylov subspace methods given above are not restricted to SPD matrices, at the cost of losing one
of the three nice properties. GMRES has long recurrences; BiCG, CGS, BiCGSTAB, and IDR(s)
do not have the optimality property regarding the error norm [8].

Both the direct methods and the stationary iterative methods are not efficient as standalone
solvers for large-scale systems, but can be used as preconditioner or smoother. A preconditioner
turns the problem into a better conditioned one. Namely, the convergence behaviour of Krylov
subspace methods depends on the distribution of the eigenvalues of the coefficient matrix. The
preconditioner is then a matrix M chosen such that the preconditioned system in Equation 2.3 has
the same solution as original system Ax = b, but has a more favourable eigenvalue distribution [8].

M−1Ax = M−1b (2.3)

Preconditioning is for instance used in PCG. The convergence of CG depends on the condition number
and the amount and distribution of near-zero eigenvalues, since the corresponding eigenvectors do
significantly contribute to the solution but may converge slowly. Preconditioning is then used to
improve the convergence behaviour. The resulting PCG has cheap iterations, is easy to implement
and does not require too much memory; though compared to the CG, the preconditioner does
increase the work per iteration and the memory demand [11].

A smoother removes fast/(spatially) high frequency error-components. The damped Jacobi
method can for instance be used as a smoother, then M := D is the diagonal of A, and the smoothed
solution is given in Equation 2.4.

x = x+M−1(b−Ax) (2.4)
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Applying (multiple) Jacobi iterations reduces high frequency error-components while allowing the
low frequency components to pass without much change, so smoothen the error [8].
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Chapter 3

Problem Description

This thesis determines which solver configurations are suitable in the context of thermo-mechanical
control problems, considering both the transient and steady-state temperature and deformation.
A numerical analysis is performed on a small-size thermo-mechanical model of a mirror, which
originally contains about 75,000 nodes. The dynamics of a finite element model of the thermal
system can be described by a continuous-time model as in Equation 3.1, where T is the thermal
state vector, u the actuation signal, w the disturbance signal, and A, Bu, Bw and E are sparse
system matrices.

EṪ = AT +Buu+Bww (3.1)

Because the continuous model contains a time derivative of the thermal vector (denoted Ṫ ), the
numerical integration scheme implicit Euler is used to construct the discrete-time system in Equation
3.2, where the coefficient matrix E −∆tA is symmetric and ∆t denotes the chosen fixed time-step.

(E −∆tA)Tk+1 = ETk + ∆t(Buuk +Bwwk) (3.2)

The thermally-induced deformation can be computed for a given thermal state vector T . As the
nodes can displace in three different directions, the mechanical model has about 225,000 mechanical
degrees of freedom. The deformation d can be found by solving the mechanical model in Equation
3.3, where KM is the sparse mechanical- and KT the sparse thermal-stiffness matrix, and ε(T ) the –
possibly non-linear – temperature-strain relation.

KMd = KT ε(T ) (3.3)

For the wafer-slip model, an efficient solver is sought as well. It models the process of placing
a wafer on a wafer clamp, which is a device that supports the wafer and keeps it in place. The
corresponding wafer displacements u are computed according to Equation 3.4, where FE denotes
the external forces. Including the slip in the model – done according to Coulomb friction diagrams –
causes the stiffness matrix K to depend on solution u itself.

K(u)u = FE (3.4)

6



The solution of Equation 3.4 can be computed via an explicit or implicit scheme. The explicit
scheme assumes that when solving the equation at time-step n for un, the stiffness matrix K
is determined by the solution of the previous time step un−1. So the explicit scheme requires
solving K(un−1)un = FEn at time step n. Explicit schemes have as advantage that they are easy
to implement and are mathematically and physically less challenging than implicit schemes. The
drawback is that at every time step an error is introduced by the assumption that K is determined
by un−1 instead of un [12]. In order to keep these errors small, the increase in time per step must be
chosen small enough. This can cause large CPU times when many time steps are required, as well
as an increasing error. That is why implicit schemes are preferred. Implicit schemes require solving
K(un)un = FEn at time step n. Since K depends on the unknown solution un, the Newton method
is employed. Newton’s method is an iterative root-finding method; for finding the root of a scalar

function f(x) it iteratively solves xi+1 = xi − f(xi)
f ′(xi)

until the desired accuracy is reached [13]. For

the wafer-slip model, this translates to solving Equation 3.5, where Kt denotes the tangent stiffness
matrix and F I the in-balance force vector.

Kt(u
i−1
n )∆ui = FEn − F I,i−1

n (3.5)

An effective way of solving accurate thermo-mechanical models is using state-of-the-art (multi-
level) iterative methods that can efficiently solve large-scale sparse linear systems of the form
Ax = b. Recall from Chapter 2 that both direct and stationary iterative methods are not efficient
as standalone solvers for such systems. Therefore, the basis solver that is used is a Krylov subspace
method. Furthermore, since Krylov subspace methods are iterative methods, they are given an
initial guess, which can accelerate the computation of transient temperature or deflation simulations
by using the solution of the previous time step as initial guess for the current time step. Since the
problems discussed in this thesis are all SPD, the Krylov subspace method that will be used is
PCG. This method has nice properties – as discussed in Chapter 2 – and moreover, the conjugate
gradient algorithm is “one of the best known iterative techniques for solving sparse symmetric
positive definite linear systems” [7]. As preconditioner many different methods can be used, like
the traditional direct or stationary iterative methods, but also more advanced methods can be
considered.

In this thesis we will focus on certain multigrid and deflation preconditioners. More specifically,
within multigrid we will look into AMG methods, since these are also applicable for unstructured
grids (contrary to GMG). The classical Ruge-Stüben AMG is compared to the more widely
applicable smoothed aggregation AMG – “one of the most promising AMG methods” [14] – and
the adaptive smoothing and prolongation based AMG – designed for usability and efficiency for
structural mechanics problems [4]. Within deflation we will consider methods based on proper
orthogonal decomposition (POD) and rigid body modes (RBM). The POD-based deflation method
was introduced in the article [2] by G. Diaz Cortes and suggested as an alternative to the standard
options for deflation vectors which are expensive to compute or problem dependent. The POD-based
deflation with incomplete Cholesky preconditioner yielded promising results for the test problem in
the article. Moreover, the applicability of the method is not restricted to this specific test problem,
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but it can be used for any time-varying problem [2]. Besides this, deflation based on RBM, as
well as its combination with POD-based deflation, will be treated. Namely, as written in [3], there
exists a correlation between the amount of RBM of sub-bodies of materials and the amount of small
eigenvalues of the stiffness matrix. Using RBM-based deflation removes those small eigenvalues and
hence improves the convergence of PCG [3]. The parallel implementation of RBM-based deflated
PCG has been shown to be quite competitive with smoothed aggregation AMG for a simulation of
asphalt concrete [11]. For the mechanical test problems, the RBM are easily generated, making the
RBM-based deflation a promising preconditioner. The deflation methods will be implemented in a
two-level PCG setting according to a robust and reliable implementation variant.

The smoothers for multigrid and the second preconditioners for deflation methods are chosen to
be direct or stationary iterative methods. This choice is a tradeoff between the amount of memory
and the number of iterations needed, and the suitability for parallel computing. For instance, the
stationary iterative method (damped) Jacobi performs well regarding the amount of memory needed
and is well-parallelizable; however, this is at the cost of a higher number of iterations. The direct
method incomplete Cholesky decomposition generally needs few iterations to converge, but has a
higher memory cost and is not as easily parallelised [8]. In addition to their point-wise version, we
will also use a block version for the test problems with block-structured coefficient matrices.

Moreover, not only the choice of smoother or second preconditioner is a trade-off, but this
holds for the choice of preconditioner for PCG as well. Which solver is preferred depends on its
performance for the specific problem it is applied to, whether it is suitable for parallel computing,
the hardware available (the amount of memory and potential of parallelising) and available time. In
this thesis we focus on sequential computing, comparing the solvers based on the amount of memory,
number of iterations and computation time required for two test problems. Before the numerical
analysis is performed, the upcoming chapters first provide a theoretical explanation of the methods
that will be applied.
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Chapter 4

Algebraic Multigrid

Multigrid (MG) methods improve upon the stationary iterative methods by using coarser grids.
While the high frequency error components are solved quickly using stationary iterative methods,
the smooth/low frequency error components can converge very slowly. This drawback is avoided in
MG methods by using two complementary processes: smoothing and coarse-grid correction. Namely,
it first applies a few smoothing steps in the form of applying some iterations of a stationary iterative
method for example. The remaining smooth components can be transferred to a coarser grid without
losing critical information. On this coarser grid the smooth components appear once more as high
frequency components, hence can be solved quickly again. Then the coarse-grid solution is used
to construct the solution on the fine grid. The steps of a two-grid method are given in Algorithm 1 [8].

Algorithm 1: Two-grid method for solving Ax = b, given initial guess x0 [8].

• ν1 pre-smoothing steps

• Fine residual

• Coarse residual

• Coarse error

• Fine error

• Solution correction

• ν2 post-smoothing steps

xs0 = smoothed(x0, ν1)

rf = b−Axs0
rc = Rrf

ec = (Ac)
−1rc

ef = Iec

xf = xs0 + ef

x = smoothed
(
xf , ν2

)
The various MG methods are defined by their choice of smoothing operators, coarsening

strategy, interpolation operators and application strategy [4]. The application strategy en-
tails the order in which the coarser grids are visited. The two-grid cycle described above
simply goes from the fine grid to the next coarsest grid and immediately back to the fine
grid; but more complex cycles are possible as well. By applying the two-grid cycle again at
certain coarser grids, the well-known V-, W- and F-cycles can be constructed as illustrated in
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Figure 4.1 [8]. If a V-cycle is used with ν1 pre- and ν2 post-smoothing steps, this is denoted V(ν1, ν2).

Figure 4.1: Three types of MG cycles for a 4-grid method. \ denotes restriction, / interpola-
tion, • pre-smoothing, ◦◦◦◦ post-smoothing and ◦ the exact solution.
Figure from [8].

The MG class is divided into two subclasses: the geometric and the algebraic multigrid methods.
In GMG methods, the coarser grids and the inter-grid operators between them are based on the
physical properties of the grid [11]. These physical properties mostly determine the choice of coarse
grid correction (i.e. the choice of inter- and coarse grid operators). There is more freedom in the
choice of the smoothing operator, which should be chosen such that it removes the geometrically
high frequency/oscillatory error components, as these are not removed by the coarse grid correction.
Thus, the smoother has to adapt to the coarse grid correction [15].

On the other hand, in AMG methods the operators are constructed based on the matrix-entries,
and are derived in a purely algebraic sense without explicit knowledge of the geometry [16]. This
means that AMG methods can be used on unstructured grids, hence are the MG methods of choice
in this paper. The coarser “grids” in AMG are not actual tangible grids but structures associated
to the coarse grid operators. Contrary to GMG, in AMG the smoother is considered fixed and
the coarse grid correction has to be adapted such that it exhibits complementary behaviour. The
error components not removed by the smoother are the algebraically smooth components, which
should then be removed by the coarse grid correction. Thus, in order to construct the coarse grid
correction, the form of the algebraically smooth error components is needed. For a smoothing step
with smoother M , define S := I −M−1A. Using the notation as in the pre-smoothing step of
Algorithm 1, the smoothed vector is xs0 = Sx0 +M−1b. The error after smoothing, es0, relates to
the error before smoothing, e0, according to the following.

es0 := xs0 − xtrue where xtrue is the true solution of Ax = b

= Sx0 +M−1b− Sxtrue −M−1b since Sxtrue = xtrue −M−1b

= Se0 where e0 := x0 − xsol

Components that are damped by smoothing are such that Se ≈ 0, i.e. e ≈M−1Ae. Algebraically
smooth error components are those that are not damped by smoothing but stay approximately the
same. Hence e is algebraically smooth if Se ≈ e, i.e. if M−1Ae ≈ 0 [15]. In classical AMG, it is
assumed that algebraically smooth error components have very small residuals. In that case, e is
algebraically smooth when r ≈ 0, and since Ae = r this means that for smooth errors e we have
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Ae ≈ 0 [17]. This is why the set of algebraically smooth vectors is also called the near-kernel of
A [18]. This knowledge about smooth vectors can be used in the construction of the coarse grid
correction. The error operator corresponding to the coarse grid correction is Ke := I−I(RAI)−1RA
and is illustrated below based on Algorithm 1.

xf = xs0 + ef

= xs0 + I(Ac)
−1R(b−Axs0) where Ac := RAI

= Kex
s
0 + I(Ac)

−1Rb

e := xf − xtrue where xtrue is the true solution of Ax = b

= Kex
s
0 + I(Ac)

−1Rb−Kextrue − I(Ac)
−1Rb since xtrue = Kextrue + I(Ac)

−1Rb

= Kee
s
0 where es0 := xs0 − xtrue

The error of the solution computed by AMG (in this case the two-grid cycle without post-smoothing)
is Ke multiplied with the error of the pre-smoothed initial guess; so Ke determines which error
components are damped by the coarse grid correction. Since (Ke)

2 = Ke, this is a projection matrix
hence has eigenvalues 0 and/or 1. The corresponding eigenspaces are

EKe
0 := {x | Kex = 0} = {x | ∃y such that x = Iy}

and
EKe

1 := {x | Kex = x} = {x | ∃y such that x = (RA)T y}⊥

where ⊥ denotes the orthogonal complement. So Ke removes the vectors in EKe
0 , which is equal

to the range of I. Ke should remove the algebraically smooth error components, hence the
interpolation matrix I should be constructed such that these are contained in its range [15].

There are various AMG approaches for systems of partial differential equations (PDEs), like
the classical AMG – also known as the Ruge-Stüben AMG (RS-AMG) –, smoothed aggregation
AMG (SA-AMG) or adaptive smoothing and prolongation based AMG (aSP-AMG) [11]. The
classical/RS-AMG method was developed for M -matrices1. The coarse grid nodes are selected
based on the definition of strength of connection (SoC) which is the following: a node i is strongly
connected with the nodes in the set Si := {j | − A(i, j) ≥ θ maxk 6=i − A(i, k)}, given a fixed
parameter 0 < θ < 1. If A is an M -matrix, then A(i, j) ≤ 0, hence the minus sign in Si. The coarse
grid C is then chosen to be a subset of the fine grid F such that each node in F\C is strongly
connected to at least one coarse node, while also trying to avoid strong connections among coarse
nodes themselves [15]. In the upcoming subsections, the SA-AMG and aSP-AMG are considered.
For simplicity, the constructions of the coarse grid and inter-grid operators are given for the two-level
case but can be extended to multiple levels in a recursive manner. Like mentioned in Chapter
3, the MG methods can be used as preconditioner to accelerate Krylov subspace methods. Each
method is explained for solving Ax = b, but in the numerical experiments they will be applied as
preconditioner. The AMG methods work then just as described below, but they are called at every
iteration of PCG to perform the preconditioning step.

1B is an M -matrix if B is nonsingular, B−1 ≥ 0, B(i, i) > 0 ∀i, B(i, j) ≤ 0 ∀i 6= j [7].
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4.1 Smoothed Aggregation Algebraic Multigrid

Contrary to classical/RS-AMG method, where the coarse grid nodes are subsets of the fine grid
nodes, this is not the case for aggregation AMG methods. In these, each coarse grid node originates
from a number of fine grid nodes grouped together [19]. The smoothed aggregation AMG (SA-AMG)
method combines aggregation with a smoother to construct the interpolation operator. Considering
the problem Ax = b where the N ×N coefficient matrix is symmetric, SA-AMG works according to
the following steps [14].

1. Constructing the graph
SA-AMG constructs a graph G corresponding to matrix A. G consists of N vertices and has
edges between all vertices i and j for which A(i, j) 6= 0 and A(i, j) is not “too close to zero” as
such to avoid using weak connections in the construction of the coarse grid [14]. This filtering
of small entries is done by dropping entries that do not satisfy the condition in Equation
4.1 [20] – note that this is a different definition of strength than used in RS-AMG.

A(i, j)2 > θ2|A(i, i)||A(j, j)| (4.1)

2. Constructing the coarse grid via aggregation
In the coarsening step, the nodes of G are grouped together into aggregates, creating
a coarser grid. The aggregates must not be too small as this leads to many aggregates
hence a large coarse grid, resulting in high iteration costs. Nor must aggregates be too
large as this leads to an interpolation operator closely resembling piecewise constant
interpolation, resulting in poor convergence. Considering for example isotropic problems
using a damped Jacobi smoother as interpolation smoother (see next item), the aggre-
gates should preferably be uniformly shaped with a diameter2 of length three. There
exist multiple forms of aggregation; here the Basic Aggregation in Algorithm 2 will
be considered. The more nodes ending up in the second phase of the algorithm, the
less likely that the resulting aggregates will be uniform and have the desired specified
diameter. Therefore, the roots in the first phase should be chosen such that as few nodes as
possible end up in phase two. This means that the nodes in phase one should be “packed
tightly”, which can be done by choosing the next root to be close to the existing aggregates [14].

Algorithm 2: Basic Aggregation Procedure [14]

while there exists an unaggregated node not adjacent to an aggregate do
Pick root node not adjacent to any existing aggregate
Define new aggregate as root node plus all its neighbours

end
Sweep unaggregated nodes into existing aggregates or use them to form new aggregates

3. Constructing the inter-grid operators
Having created a coarse grid, the interpolation I from the coarse to the fine grid has to be
constructed. Then the restriction matrix is set to be the transpose of the interpolation, and

2The diameter of an aggregate is the maximum length of the shortest paths in the aggregate.
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the coarse grid operator Ac := ITAI according to the Galerkin approach. First, a tentative
interpolation matrix Ĩ is created according to Equation 4.2, where each row corresponds to a
node of the fine grid and each column to an aggregate i.e. a node of the coarse grid.

Ĩ(i, j) =

{
1 if ith node is contained in jth aggregate,

0 otherwise.
(4.2)

This tentative interpolator corresponds to piecewise constant interpolation, so each fine node
value is based on a single coarse node value. To get a more robust method, the tentative
interpolator is combined with a smoother to obtain the interpolation matrix via I = S̃Ĩ,
where S̃ denotes the interpolator smoother. Considering a damped Jacobi smoother yields the
following interpolation operator [14].

I =
(
I − ωD−1A

)
Ĩ (4.3)

For multidimensional problems, a modification could be made in the coarsening strategy. Namely,
consider the graph corresponding to a block matrix modification of the coefficient matrix A instead
of simply using A. Instead of treating each degree of freedom (dof) as a separate vertex, group the
dofs per grid point – e.g. in the deformation domain, group the x-, y- and z-deformations of each
node together – and in this way construct a block matrix. Then the coarser grid will contain all
dofs per coarse node, instead of possibly losing a dof corresponding to a node while keeping another
dof of the same node [14].

4.2 Adaptive Smoothing and Prolongation based Algebraic Multi-
grid

Assume we are solving Ax = b, where A ∈ RN×N is a sparse SPD matrix. The adaptive smoothing
and prolongation based AMG (aSP-AMG) uses an affinity-based SoC definition. The “adaptive”
term in the name refers to the adaptive and bootstrap AMG, since like in those methods no prior
information about the near-kernel of A is mandatory, but an approximate near-kernel is constructed
automatically. It is important for AMG methods to be able to accurately describe the near-kernel
of A in order to construct the interpolation operator, as shown above. The steps of aSP-AMG are
the following [21].

1. Construct the smoother.

2. Construct the test space X representing the algebraically smooth vectors.

3. Construct the affinity-based SoC matrix Sc based on X.

4. Construct the coarse grid C as a maximum independent set.

5. Construct the interpolation matrix I and use the Galerkin approach.

13



In the smoothing step x = x+M−1(b−Ax) the M matrix is chosen such that it can be factorised as
M−1 = ωGTG. This is possible for e.g. damped Jacobi or the more advanced smoother aFSAI [21].
Then the smoothing step can be written as x = Sωx+ωGTGb, where Sω := I −ωGTGA and taking
ω < 2

λmax(GTGA)
to ensure convergence. The following steps can exploit this factorisation of the

smoother.
Next, aSP-AMG constructs a test space of limited size representing the algebraically smooth

vectors of the coefficient matrix. In general, the smooth vectors can be estimated by solving the
generalised eigenvalue problem Av = λMv. Usually, a low accuracy solve already gives acceptable
approximations [4]. The construction of the SoC matrix and the inter-grid operators all depend on
the test space, so it is important that a good representation of the algebraically smooth vectors
is obtained. For most preconditioners, the smooth vectors correspond to the small eigenvalues of
M−1A. Hence the eigenvectors of Sω corresponding to the eigenvalues close to 1 are a consistent
approximation. These eigenvectors can be approximated by for example the power method, Lanczos
method or the Simultaneous Rayleigh Quotient minimisation by Conjugate Gradients (SRQCG)
method [21]. However, the power method converges slowly in general. Moreover, if an approximation
of (part of) the near-kernel of A is available a-priori, then this should be taken advantage of since
computing X represents a large part of the set-up costs. For instance, for elasticity problems, the
RBMs are a suitable initial guess. The Lanczos method allows for an initial guess, but only a
single vector. The SRQCG method takes a matrix as initial guess. Also, its initial convergence
is often faster than that of the Lanczos method. Therefore, SRQCG will be used to generate the
basis of the test space (possibly using the power method to generate an initial guess if one is not
available). SRQCG is based on minimising Rayleigh quotients3 and does so over multiple linearly
independent vectors simultaneously. New vectors are generated based on a linear combination of the
current iterates and search directions, via a conjugate gradient technique. Moreover, it accelerates
convergence by employing Ritz projections. Finally, the columns of the N × Nt matrix X are
created, where Nt denotes the dimension of the test space, and these columns represent the basis of
the test space. The SRQCG algorithm is given in Appendix A [4].

Instead of the SoC definition used in classical AMG, which assumes the matrix A to be an
M -matrix, an affinity-based SoC definition is used, hence is wider applicable [4]. The affinity is
based on the matrix X according to Equation 4.4, where xTi denotes the ith row of X, and xj the
transposed jth row of X. Sc(i, j) represents the influence between the nodes i and j.

Sc =

(
xTi xj

)2(
xTi xi

) (
xTj xj

) (4.4)

The Sc matrix is given the same sparsity pattern as A and hereafter is filtered [21]. Filtering is often
done by dropping all entries below a given threshold. However, the affinity-based SoC definition
causes the matrix entries to be close together in a small interval around one, making it hard to
determine the threshold-value. Therefore, instead the average number of connections per node is
required to be equal to a given integer parameter θ [4].

The construction of the coarse grid is then done like in classical AMG, only with a different

3Given a real symmetric square matrix B its Rayleigh quotient is ρ(z) := zTBz
zT z

, where z is a nonzero vector [22].

14



SoC definition underlying Sc. This means that from the original set of fine nodes F , a subset C is
selected which are the nodes of the coarse grid. The coarse nodes are the maximum independent set
(MIS) of nodes on the adjacency graph associated to the filtered Sc [21].

Having constructed the coarse grid, the N ×Nc interpolation matrix I has to be determined,
where Nc is the number of coarse grid nodes. Assuming a C/F ordering (i.e. the nodes are ordered

such that first all the coarse nodes are considered and then the nodes in F\C) we get I :=

[
I
W

]
,

where the Nf×Nc matrix W contains the interpolation weights (Nf denoting the number of nodes in
F\C). W is constructed via the Dynamic Pattern Least Squared (DPLS) method (for its algorithm
see Appendix A). DPLS is an iterative method which constructs the pattern of the interpolation
operator dynamically during setup. The interpolation weights are computed such that the interpo-
lation residual is minimised while preserving sparsity, which is done as follows. Take a fine node
i ∈ F\C and set Ci := {j ∈ C | ∃ a path of strong connections between i and j shorter than dp},
where dp is a given parameter, usually set to 1 or 2. Ci are the coarse nodes that are possibly used
to interpolate the fine node i. From Ci, k distinct nodes are iteratively selected and gathered in C̄i,
such that the linear combination of the corresponding rows in X gives the best approximation of xi
with respect to the Euclidean norm. The interpolation weights wij j = 1, . . . , k corresponding to
node i are computed such that they minimize ||xi −

∑
j∈C̄i wijxj ||2. Using the stopping criterion

relating to the condition number of Xc,i := X(C̄i, :)T , ill-conditioning is avoided which would cause
too large interpolation weights. Namely, stop when cond(Xc,i) > κp, given a fixed parameter κp.
To maintain sparsity – hence to avoid constraining the AMG efficiency – an additional parameter
nmax is introduced, which is the maximum number of interpolation points per fine node. Repeat
the above until each fine node in F\C has been treated and store the resulting weights in W to
obtain the interpolation operator I [4, 21]. Finally, the Galerkin approach is used, so the restric-
tion matrix is set to be the transpose of the interpolation and the coarse-grid matrix Ac := ITAI [21].

15



Chapter 5

Deflation

Deflation methods show similarities with the basis of MG methods, but use for example model order
reduction (MOR) techniques instead of coarser grids. MOR techniques lessen the computational
complexity. Deflation can be used to treat unwanted eigenvalues that deteriorate the convergence.
Instead of solving Ax = b, solve the deflated system in Equation 5.1 for the deflated solution x̂.
Then the solution x is determined via x = Qb+ P T x̂.

PAx̂ = Pb (5.1)

The matrices P and Q used, are defined in the Definition 1 for symmetric positive semi-definite
(SPSD) coefficient matrices but can be generalised to non-SPSD matrices as well [6].

Definition 1. Let the coefficient matrix A ∈ RN×N be SPSD and have d zero eigenvalues, and let
the deflation-subspace matrix Z ∈ RN×k with full rank and k < N − d be given. Then the Galerkin
matrix is defined as E := ZTAZ ∈ Rk×k where Z must be chosen such that E is invertible, the
correction matrix is Q := ZE−1ZT ∈ RN×N and the deflation matrix is P := I −AQ ∈ RN×N [6].

The columns of the deflation-subspace matrix Z are called the deflation/projection vectors and
are such that E is nonsingular (which is the case if N (A) 6⊂ R(Z)). For the deflation method to
yield good results, the deflation subspace should contain most of the system’s variability; this is
usually problem-dependent. Eigenvectors can be used as deflation vectors and can be effective in
reducing the effective condition number and are expected to accelerate the convergence. However,
eigenvectors are often expensive to compute and dense. Meanwhile, the deflation-subspace matrix
is wanted to be sparse yet give good approximations of the eigenvectors [2, 5, 6]. Therefore, we
suggest below to use POD or RBM to construct the deflation-subspace matrix. But first some
general information about the relation between deflation methods and MG is given, as well as the
implementation of deflation methods as preconditioner for PCG.

To clarify the relation between deflation and MG methods, consider a two-grid cycle solving
Ax = b. Take as interpolation operator I the deflation-subspace matrix Z, as restriction its
transpose, and as coarse grid operator Ac := ITAI. If also one preconditioning step is applied
with as preconditioner the deflation matrix P , then the resulting MG is a deflation method.
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So while the two might look quite different at first, deflation is actually a specific type of MG method.

Deflation methods can be used to accelerate iterative methods. Considering the iterative method
PCG, its combination with deflation is a type of two-level PCG (2L-PCG) method. 2L-PCG
methods are CG with a traditional first-level preconditioner – the Jacobi method for example – and
a second-level preconditioner – like the deflation matrix P . There are various implementations of
2L-PCG methods concerning deflation, which can be expressed by defining P and A in Equation
5.2 solving the deflated system. The rest of this section is based on [5], an article in which multiple
2L-PCG implementations are investigated.

PAx̂ = b (5.2)

The straightforward implementation of 2L-PCG is DEF1 (deflation variant 1), where P = M−1,
A = PA and b = M−1Pb. Then Equation 5.2 gives the deflated solution, and x = Qb+ P T x̂. This
results in a well-defined system which can be solved by PCG since PA is SPSD. While theoretically
DEF1 seems like a good implementation, in practice it is sensitive to perturbations in the coarse
grid solutions and the termination criterion being set too small. This is due to the following. DEF1
shifts unwanted eigenvalues (which are the extreme eigenvalues since removing those decreases the
condition number) to zero. However, if roundoff errors occur or approximate coarse solves are used,
the zero eigenvalues of DEF1 may become very small yet nonzero values, causing the condition
number to grow significantly and deteriorating the convergence.

To avoid this sensitivity to perturbations in the coarse solves, DEF1 has been adapted to
A-DEF1 (adapted deflation variant 1) in Equation 5.3, where DEF1 is additively combined with
the correction matrix Q. Recalling the relation between MG methods and deflation, the A-DEF1
deflation implementation corresponds to a V(0, 1)-cycle.

PA−DEF1 = M−1P +Q (5.3)

The additional Q term shifts unwanted eigenvalues to one instead of zero, as shown in Theorem 2
from [5]. Now small perturbations yield only small changes in eigenvalues and condition number,
contrary to DEF1. The drawback is that PA−DEF1 is not symmetric (nor is it symmetric with
respect to the inner product induced by A). For PCG to have guaranteed convergence, P in
Equation 5.2 should be SPD. A-DEF1 does not have an SPD operator, nor can it be transformed or
decomposed into one. Thus, convergence is not guaranteed.

Theorem 2. Let the spectrum of DEF1 be given by

σ(M−1PA) = {0, . . . , 0, λk+1, . . . , λn}

such that λk+1 ≤ . . . ≤ λn. Let the spectrum of A-DEF1 be given by

σ(M−1PA+QA) = {1, . . . , 1, µk+1, . . . , µn}

or the spectrum of A-DEF2 be given by

σ(P TM−1A+QA) = {1, . . . , 1, µk+1, . . . , µn}
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such that µk+1 ≤ . . . ≤ µn. Then λi = µi for all i = k + 1, . . . , n.

This disadvantage of non-SPD of A-DEF1 gives reason to consider A-DEF2 (adapted deflation
variant 2), which is defined in Equation 5.4. As a consequence of the theorem above which also
considers A-DEF2, it is like A-DEF1 not sensitive to perturbations in coarse solves. In MG terms,
A-DEF2 corresponds to a V(1, 0)-cycle. While PA−DEF2 is not symmetric, A-DEF2 can be shown to
be equivalent to a method based on a symmetric operator and that it is an appropriate preconditioner
for CG. Moreover, A-DEF2 can deal with severe termination tolerances. Therefore, the robust
A-DEF2 is a better implementation than DEF1 and A-DEF1 – based on theory, numerical analysis
and computational cost4 [5]. In this paper, 2L-PCG methods are implemented according to A-DEF2.

PA−DEF2 = P TM−1 +Q (5.4)

The 2L-PCG method based on DEF1, A-DEF1 and A-DEF2 is given in Algorithm 3 with the
matrices and vectors specified in Table 5.1.

Algorithm 3: General 2L-PCG algorithm for solving Ax = b.
Algorithm from [5]

Select arbitrary xarbi and set xstart, M1, M2, M3, xend as in Table 5.1.
x0 := xstart, r0 := b−Ax0

z0 :=M1r0, p0 :=M2z0

for j = 0, 1, . . . , until convergence do
wj =M3Apj

αj =
rTj zj

pTj wj

xj+1 = xj + αjpj
rj+1 = rj − αjwj
zj+1 =M1rj+1

βj =
rTj+1zj+1

rTj zj

pj+1 =M2zj+1 + βjpj
xit = xend

Method xstart M1 M2 M3 xend

PCG xarbi M−1 I I xj+1

DEF1 xarbi M−1 I P Qb+ P Txj+1

A-DEF1 xarbi M−1P +Q I I xj+1

A-DEF2 Qb+ P Txarbi P TM−1 +Q I I xj+1

Table 5.1: Choices for in Algorithm 3 for PCG, DEF1, A-DEF1 and A-DEF2 [5].

4 [5] compared PREC, AD, DEF1, DEF2, A-DEF1, A-DEF2, BNN, R-BNN1 and R-BNN2 and found that A-DEF2
is the best and most robust method among them.
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5.1 Proper Orthogonal Decomposition based Deflation

Standard options for deflation vectors are expensive to compute (like eigenvectors) or problem
dependent (like subdomain vectors). Therefore, consider POD basis vectors as deflation vectors for
time-dependent problems. POD is an MOR technique where a basis is constructed via a collection
of snapshots. Snapshots are solutions of the system at certain points in time and should capture the
dynamics of the system to be solved. They can be obtained via tactics like the recycling approach,
moving window approach, and training phase approach. Here, the moving window approach is
used [2].

POD constructs the orthonormal basis Ψ = [ψ1, . . . , ψp] ∈ RN×p based on the snapshots {yi}mi=1

in the following way. The orthonormal basis vectors {ψj}pj=1 are the eigenvectors that correspond

to the p largest eigenvalues of the data correlation matrix R := 1
mY Y

T ∈ RN×N [2]. In Matlab
these can be computed efficiently via the [U,Σ, V ] = svd(Y, 0) command, Y ∈ RN×m with m << N ,
which results in an economy-size decomposition: only the first m columns of U are computed and
Σ is m×m. As Y = UΣV T is the singular value decomposition, the U matrix (the left-singular
vectors of Y ) contains the eigenvectors of Y Y T , hence of R [23]. In MOR methods, the model is
then projected onto the space spanned by the columns of Ψ yielding a reduced order model. But if
the POD method is used for deflation, the deflation-subspace matrix Z is set to consist of the POD
basis vectors [2].

As mentioned, the snapshots are obtained in a moving window approach, where the snapshots
are the m most recent solutions computed at the previous time steps. This means that for the first
few time-step there is no deflation-subspace matrix yet hence the iterative method without deflation
is applied [2]. Thereafter, the deflation-subspace could in theory be updated every subsequent
time step. This can however be expensive. For this reason, also other updating strategies can be
employed such as updating only when the number of iterations at the previous time-step exceeds a
certain threshold τ . Another parameter µ can be added to ensure that the deflation-subspace is
updated at least once every µ time steps.

5.2 Rigid Body Modes based Deflation

For mechanical problems, another option for deflation vectors is RBM. These are the translations and
rotations of an unconstrained object such that there is no internal deformation [24]. In three dimen-
sions, an object has in general six RBM, namely three translations and three rotations. The trans-
lation vectors for a three-dimensional object with m nodes ({x1, y1, z1, x2, y2, z2 . . . , xm, ym, zm}T )
and considering a single domain are uniform displacement in x-, y- and z-directions:

Translation in x-direction: {1, 0, 0, 1, 0, 0, . . . , 1, 0, 0}T

Translation in y-direction: {0, 1, 0, 0, 1, 0, . . . , 0, 1, 0}T

Translation in z-direction: {0, 0, 1, 0, 0, 1, . . . , 0, 0, 1}T

The three rotations are given below, where rj :=
√
x2
j + y2

j + z2
j
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Rotation in the x, y-plane:

θj = tan−1
(
yj
xj

)
, φj = cos−1

(
zj
rj

)
,



−r1 sin(θ1) sin(φ1)

r1 cos(θ1) sin(φ1)

0

...

−rm sin(θm) sin(φm)

rm cos(θm) sin(φm)

0


Rotation in the x, z-plane:

θj = tan−1
(
zj
xj

)
, φj = cos−1

(
yj
rj

)
,



−r1 sin(θ1) sin(φ1)

0

r1 cos(θ1) sin(φ1)

...

−rm sin(θm) sin(φm)

0

rm cos(θm) sin(φm)


Rotation in the y, z-plane:

θj = tan−1
(
yj
zj

)
, φj = cos−1

(
xj
rj

)
,



0

r1 cos(θ1) sin(φ1)

−r1 sin(θ1) sin(φ1)

...

0

rm cos(θm) sin(φm)

−rm sin(θm) sin(φm)


These vectors make up the columns of the deflation-subspace matrix Z. Instead of using a

single domain, multiple domains can be used as well. In the case of using k subdomains, then each
domain has six RBM, constructed for each domain by only assigning the appropriate values for
translation/rotation to the nodes corresponding to that specific domain. The size of the resulting Z
is then N × 6k [3].
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Chapter 6

Block Preconditioners

If the coefficient matrix A has a block structure, block preconditioners can be useful. This is the
case for the mechanical part of the thermo-mechanical model and for the wafer-slip model. For
these cases, each node has a dof associated to the x-, y- and z-direction, corresponding to 3 × 3
blocks. A simple block preconditioner is the block Jacobi method. Instead of using the diagonal of
A, use the block diagonal consisting of all the blocks on the diagonal of A.

Another option is the incomplete block Cholesky decomposition, which exploits the block
structure of A when constructing the decomposition. The block algorithm used in this paper is
based on the algorithms from [25,26]. First, the matrix A is reduced to a smaller matrix Ap where
the nb × nb blocks regarding the dofs of a single node are reduced to a single point – for the models
considered here nb = 3. The fill-in nonzero pattern P ′ is determined via Algorithm 4 for Ap (see
Figure 6.1 where nb = 4)5. Then, incomplete block Cholesky is performed for A with fill-in nonzero
pattern P ′, according to Algorithm 5 (where X(i, j) denotes the (i, j)th entry of matrix X, and Xi,j

the (i, j)th block of X).

Figure 6.1: Figure from [25] illustrating the block matrix A, its abstraction Ap and its fill-in
nonzero pattern P ′.

5Note that this fill-in is different from Matlab’s ichol function, where a drop-tolerance is used.
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Algorithm 4: Computation of fill-in nonzero pattern [25].
Input: matrix Ap, n = length of Ap, k = level of fill-in.
Output: nonzero pattern P ′ with fill-in level k.

P = nonzero pattern of Ap

L(i, j) =

{
∞ if P (i, j) = 0

0 otherwise

P ′ = ones(n, n)
for i = 2 : n do

for p = 1 : i− 1 do
if L(i, p) ≤ k then

for j = p+ 1 : n do
L(i, j) = min{L(i, j), L(i, p) + L(p, j) + 1}

for j = 1 : n do
if L(i, j) > k then

P ′(i, j) = 0

Algorithm 5: Incomplete block Cholesky [26].
Input: matrix A, fill-in nonzero pattern P ′, block size nb.
Output: upper triangular incomplete block Cholesky factor R of A.

n = length(A)
nb

for k = 1 : n− 1 do
for j = k : n do

if P ′(k, j) 6= 0 then

T = Ak,j −
∑k−1

s=1 R
T
s,kRs,j

if k = j then
RT

k,k = ichol(T )

else

Rk,j = R−Tk,kT

Rn,n = ichol(An,n −
∑n−1

s=1 R
T
s,nRs,n)

The determination of the blocks in the construction of block preconditioners has to be done care-
fully. In both the thermo-mechanical and wafer-slip model, a number of dofs have been constrained.
In the system equations this is translated by removing the rows and columns corresponding to those
dofs from the coefficient matrix A. Then simply taking 3× 3 blocks is not guaranteed to group the
dofs of a single node together, since for some nodes one or multiple dofs may have been removed.
In order to avoid this, at the location of the removed rows and columns the corresponding rows
and columns of the identity matrix are placed. For the corresponding entries of the right-hand side
vector, zeros can be added. Then using 3 × 3 blocks does group the dofs per node. Moreover, if
the matrix is to be reordered to reduce the amount of fill-in, this reordering is done based on its
abstraction Ap to ensure that the dofs corresponding to the same node stay together.

22



Chapter 7

Analysis of Iterative Methods for the
Thermo-Mechanical Problem

In the upcoming chapters, the methods discussed are applied to the test problems, where sequential
computing is practiced. The LDL decomposition (a variant of the Cholesky decomposition where
A = LDLT , with L lower unit triangular and D diagonal) is used to perform the coarse grid solves
for AMG methods and to compute the inverse of the Galerkin matrix E for deflation methods. The
PCG method is considered converged when the relative residual norm reaches a predetermined
accuracy. In this chapter a small-size test problem representing the thermo-mechanical model is
considered, first its thermal and then its mechanical part. The AMG and RBM-based deflation
methods are compared based on the steady-state computation. Since the POD-based deflation
method is suggested for time-dependent problems, this preconditioner is applied for the transient
computation. In the next chapter, the waver-slip model is treated. The number of iterations required
for convergence, the time to solve the problem and the data-size of the methods are given. The
data-size is the amount of memory needed to store all the required pre-computed data in Matlab,
which contains the inter-grid operators, coarse grid operators, deflation subspaces, smoothers and
preconditioners, but excluding the original coefficient matrix A (since this matrix has to be stored
for the problem definition, and is used by every method and has the same amount of memory for
each method). For efficiently storing the matrices, the incomplete Cholesky decomposition matrix L
is stored by taking the transpose of LT since Matlab then requires fewer bytes to store the matrix.

7.1 Thermal Part

The test model represents a thermo-mechanical box. A surface heat is applied to the top surface of
the box, and a convection boundary condition is set at the bottom surface. The box is made of iron
and has density = 7874 kg/m3, Youngs modulus = 211 · 109 Pa, Poisson ratio = 0.29, heat capacity
= 450 J/kg/K, thermal conductivity = 80.4 W/m/K and thermal strain ε(T ) = (T − 22) · 10−6.
The box consists of 3077 nodes. The thermal part of the model is described by Equation 7.1, where
T ∈ R3077 is the temperature, ET , AT , BT are sparse system matrices in R3077×3077, and w the input
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signal in R3077.
ET Ṫ = ATT +BTw (7.1)

From this model the steady-state temperature can be found by solving

−ATT∞ = BTw (7.2)

In order to solve the continuous-time model in Equation 7.1 for times other than the steady-state,
it is discretised. This is done via the implicit Euler method, resulting in the discrete-time system in
Equation 7.3, where ∆t is the specified size of the time steps.

(ET −∆tAT )Tk+1 = ETTk + ∆tBTwk (7.3)

The AMG methods are used to solve the steady-state temperature. The RS-, SA- and aSP-AMG
methods are compared based on the required number of iterations, time, and data-size. After this,
the POD-based deflation method is applied – via the A-DEF2 implementation – to determine the
transient temperature.

7.1.1 Algebraic Multigrid

The three AMG methods considered in Chapter 4 are applied for the steady-state temperature
of the thermo-mechanical test model, denoted Ax = b where A := −AT , x denotes the unknown
steady-state temperature T∞ and b := BTw according to Equation 7.2. The parameter settings for
RS-AM are θ = 0.8, for SA-AMG θ = 10−8 and ω = 2/3 for the interpolation smoother, and for
aSP-AMG θ = 100, Nit = 5, Nt = 100, dp = 2, κp = 108, nmax = 10. All three methods use one
pre- and one post-smoothing step. Using multiple smoothing steps would in general reduce the
number of iterations but increase the computation time for this thermo-mechanical problem. In
Table 7.1 the methods are applied as preconditioners for PCG with as smoothers damped Jacobi,
SSOR and incomplete Cholesky. iChol1 denotes incomplete Cholesky with zero-fill, i.e. incomplete
Cholesky with the same nonzero pattern as A. iChol2 denotes incomplete Cholesky with threshold
dropping using a threshold of 10−4 and with diagonal shift 0.001. The threshold dropping entails
that non-diagonal elements with magnitude smaller than the local drop tolerance (at step k of the
factorisation this is 10−4||A(k : end, k)||1) are dropped from the factorisation. The diagonal shift
means that instead of factorising A, the incomplete Cholesky is computed for A+ 0.001D (where
D denotes the diagonal of A) to avoid encountering nonpositive pivots [27]. iChol3 is the same as
iChol2 except that reordering is performed according to Matlab’s dissect, which reorders the matrix
to reduce the amount of fill-in [28]. The methods are applied for 2 and 4 levels (also counting the
original fine grid), visited according to a V-cycle.

In the table we see that RS-AMG requires the least iterations, but SA-AMG has significantly
smaller coarse grid sizes and and smaller data-sizes. The time needed to construct the operators is
generally smallest for SA-AMG. The time required for preparing the solver is smallest for SA-AMG
as well, though the difference with RS-AMG is very small. The solve time of SA-AMG is mostly
larger than for RS-AMG, but again the difference is small. The total time is for most cases smaller
for SA-AMG than for RS-AMG. aSP-AMG is considered with a test space constructed via SRQCG
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and via eigenvectors. In both cases it requires more iterations, takes longer and has a larger data-size
than the other two methods.

Comparing the smoothers used in Table 7.1, damped Jacobi has the smallest data-size, but
needs the most iterations. On the other hand, incomplete Cholesky preconditioners need fewer
iterations but have larger data-sizes. iChol3 needs the least iterations, and its data-size is smaller
than that of iChol2 thanks to the reordering. The SSOR smoother has the third largest data-size
and second most number of iterations. Thus, when memory is very limited, the damped Jacobi
smoother can be used; otherwise iChol3 is preferred.

Precon-
ditioner

Smoother Levels Size coarse #
it.s

top tprep tsolve ttot Data-
size
(MB)

RS-AMG damped Jacobi 2 867 30 1.57 0.03 0.10 1.69 3.96
RS-AMG damped Jacobi 4 867, 803, 663 33 3.70 0.02 0.11 3.83 4.96
RS-AMG iChol1 2 867 5 1.58 0.01 0.06 1.65 6.07
RS-AMG iChol1 4 867, 803, 663 5 3.76 0.01 0.08 3.85 7.59
RS-AMG iChol2 2 867 3 1.76 0.08 0.04 1.88 12.1
RS-AMG iChol2 4 867, 803, 663 3 4.91 0.12 0.04 5.08 18
RS-AMG iChol3 2 867 3 1.42 0.09 0.02 1.54 10.8
RS-AMG iChol3 4 867, 803, 663 3 3.28 0.10 0.02 3.40 13.7
RS-AMG SSOR 2 867 23 1.57 0.04 0.11 1.71 6.19
RS-AMG SSOR 4 867, 803, 663 25 3.74 0.05 0.11 3.90 7.77
SA-AMG damped Jacobi 2 50 79 1.38 0.01 0.11 1.50 2.84
SA-AMG damped Jacobi 4 50, 4, 1 113 1.52 0.01 0.17 1.70 2.84
SA-AMG iChol1 2 50 13 1.46 0.01 0.05 1.51 4.95
SA-AMG iChol1 4 50, 4, 1 13 1.66 0.02 0.06 1.74 4.96
SA-AMG iChol2 2 50 5 1.71 0.04 0.04 1.79 10.9
SA-AMG iChol2 4 50, 4, 1 5 1.53 0.04 0.04 1.61 11
SA-AMG iChol3 2 50 3 1.34 0.06 0.02 1.42 9.64
SA-AMG iChol3 4 50, 4, 1 3 1.39 0.06 0.02 1.46 9.66
SA-AMG SSOR 2 50 63 1.81 0.04 0.16 2.02 5.06
SA-AMG SSOR 4 50, 4, 1 85 1.54 0.02 0.22 1.78 5.08
aSP-AMG
(SRQCG)

damped Jacobi 2 515 129 30.01 –6 0.22 30.23 4.19

aSP-AMG
(eigenvec-
tors)

damped Jacobi 2 592 111 12.84 –6 0.31 13.15 4.86

Table 7.1: Computation of steady-state temperature with accuracy 10−8, via RS-AMG, SA-
AMG and aSP-AMG as preconditioner for PCG. The coefficient matrix has size 3077× 3077.
For damped Jacobi and SSOR smoothers ω = 0.1. # it.s denotes the number of iterations,
top the time required to construct the operators, tprep the time to prepare the solver, tsolve
the solve time, and ttot the total time. The times are all given in seconds.

6For aSP-AMG, time tprep is contained in top.
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In Table 7.2, we take a closer look at aSP-AMG. For each choice of test space, the ideal interpo-
lation via Wideal := −A−1

FFAFC gives the lowest number of iterations, as expected. Unexpectedly, a
random W needs fewer or equal iterations as when W is computed by DPLS. Moreover, if using
Wideal, the random test space yields a smaller coarse grid and needs fewer iterations than the
test space constructed via SRQCG. This seems to indicate that there might be a problem in the
construction of the test space X via SRQCG. Therefore, aSP-AMG based on eigenvectors was also
included in the table above.

X (test space) W (interpolation) # iterations Size coarse
SRQCG (X0 via power method) DPLS 129 515
SRQCG (X0 via power method) Wideal 55 515
SRQCG (X0 via power method) random 114 515
Eigenvectors of smallest eigenvalues DPLS 111 592
Eigenvectors of smallest eigenvalues Wideal 47 592
Eigenvectors of smallest eigenvalues random 111 592
Random DPLS 130 482
Random Wideal 50 482
Random random 114 482

Table 7.2: Computation of steady-state temperature with accuracy 10−8 via aSP-AMG
preconditioner with damped Jacobi smoother with ω = 0.1. The coefficient matrix has size
3077× 3077.

7.1.2 Deflation

The POD-based deflation method from Chapter 5 is applied via 2L-PCG (implemented as A-DEF2)
for the transient temperature, with the incomplete Cholesky with zero-fill (iChol1) as preconditioner.
The transient temperature is computed for time tstart = 0 until time tend = 1800 seconds, with steps
of 2 seconds. The size of the deflation-subspace matrix Z is set to 14, and is computed in a moving
horizon fashion. Z is updated when the number of iterations exceeds τ := 9, and is updated at least
once every µ := 10 time-steps. The result is given in Figure 7.1a. The figure shows that the number
of iterations for POD-based deflation needs, after a few initial time steps, only a single iteration to
solve the system. To compare with PCG with incomplete Cholesky preconditioner but without any
deflation, see Figure 7.1b. As was done with POD-based deflation, the result of the previous time
step is used as initial guess for the following time step. Now the number of iterations is at least 6,
so using POD-based deflation lowers the number of iterations compared to PCG. Moreover, the
total simulation time decreases by approximately 43% when adding POD-based deflation.
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(a) (b)

Figure 7.1: Number of iterations required for convergence with accuracy 10−10 per time step,
where the transient temperature is computed by POD-based deflation in 2L-PCG (7.1a) or
by PCG (7.1b), both with incomplete Cholesky preconditioner.

7.2 Mechanical Part

The mechanical part of the test model is described by Equation 7.4, where the thermal forces vector
fT := L0 + L1T links the thermal part to the mechanical part of the model. Each of the 3077
nodes can be deformed in the x-, y- and z-direction, resulting in a system of size 3 · 3077 = 9231.
However, the box is mechanically constrained in its center at six dofs, hence the unconstrained
deformation df ∈ R9225, and the corresponding stiffness matrix Kff ∈ R9225×9225 and right-hand
side fT,f ∈ R9225.

Kffdf = fT,f (7.4)

7.2.1 Algebraic Multigrid

The AMG methods are used to compute the steady-state deformation, Ax = b, where A := Kff , x
denotes the unknown deformation df and b := fT∞,f according to Equation 7.4. The parameter
settings are the same as for the steady-state temperature, except that for aSP-AMG now Nt = 10.
In Table 7.3 the results are shown. As was the case for the thermal model, the RS-AMG method
requires the least iterations, while SA-AMG yields the smallest coarse grids. The total computation
time for aSP-AMG is much larger than for the other two methods. Moreover, SA-AMG and
aSP-AMG are close in number of iterations for the damped Jacobi smoother and using 2 levels,
but the coarse grid of aSP-AMG is much larger than for SA-AMG. So SA-AMG is preferred over
aSP-AMG. The time constructing the operators and the solve time are larger for SA-AMG than
for RS-AMG, while the time preparing the solver is smaller for SA-AMG. The total time is larger
for SA-AMG, but its data-size is smaller than for RS-AMG. If wanting to solve the problem for
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multiple right-hand sides, then the operators have to be computed only once, hence then the most
important time factor is the solve time, which is generally smallest for RS-AMG. So in these cases
RS-AMG is preferred over SA-AMG, but only if enough memory is available. If the amount of
memory is limited, then SA-AMG should be used instead.

Comparing the smoothers used in the table, damped Jacobi has again the smallest data-size,
but does not yield the largest number of iterations. Instead, iChol1 requires the most iterations and
also has a larger data-size. SSOR requires similar amounts of data, but fewer iterations. iChol2
significantly reduces the number of iterations compared to iChol1, but at the cost of approximately
doubling the data-size. The reordering in iChol3 reduces the number of iterations even further and
decreases the data-size compared to iChol2.

Precon-
ditioner

Smoother Levels Size coarse #
it.s

top tprep tsolve ttot Data-
size
(MB)

RS-AMG damped Jacobi 2 3916 83 2.54 0.32 0.67 3.53 49.5
RS-AMG damped Jacobi 4 3916, 1705, 790 218 5.77 0.29 2.18 8.24 43.3
RS-AMG iChol1 2 3916 627 2.66 0.37 7.85 10.88 64.4
RS-AMG iChol1 4 3916, 1705, 790 733 5.67 0.17 12.03 17.87 68.6
RS-AMG iChol2 2 3916 18 2.48 0.78 0.45 3.72 112
RS-AMG iChol2 4 3916, 1705, 790 19 5.20 1.18 0.68 7.06 155
RS-AMG iChol3 2 3916 14 2.57 0.97 0.32 3.86 101
RS-AMG iChol3 4 3916, 1705, 790 14 5.32 1.08 0.42 6.82 119
RS-AMG SSOR 2 3916 66 2.7 0.42 1.10 4.24 64.8
RS-AMG SSOR 4 3916, 1705, 790 169 5.14 0.22 3.06 8.42 69.3
SA-AMG damped Jacobi 2 50 833 19.32 0.08 4.80 24.20 16.5
SA-AMG damped Jacobi 4 50, 4, 1 900 18.38 0.05 6.43 24.86 16.5
SA-AMG iChol1 2 50 2454 25.55 0.11 25.55 51.21 31.5
SA-AMG iChol1 4 50, 4, 1 2459 21.96 0.12 30.51 52.59 31.5
SA-AMG iChol2 2 50 24 23.62 0.72 0.67 25.01 79.2
SA-AMG iChol2 4 50, 4, 1 24 25.55 0.67 0.69 26.91 79.2
SA-AMG iChol3 2 50 17 19.74 0.78 0.34 20.86 67.7
SA-AMG iChol3 4 50, 4, 1 17 21.71 0.79 0.39 22.89 67.7
SA-AMG SSOR 2 50 624 25.00 0.11 7.42 32.53 31.8
SA-AMG SSOR 4 50, 4, 1 666 21.95 0.15 8.11 30.21 31.8
aSP-AMG
(SRQCG)

damped Jacobi 2 855 883 72.11 – 7 5.67 77.79 20.5

aSP-AMG
(eigenvec-
tors)

damped Jacobi 2 759 880 65.16 – 7 5.29 70.45 19.6

Table 7.3: Computation of steady-state deformation with accuracy 10−8, via RS-AMG, SA-
AMG and aSP-AMG as preconditioner for PCG. The coefficient matrix has size 9225× 9225.
For damped Jacobi and SSOR ω = 0.1. # it.s denotes the number of iterations, top the time
required to construct the operators, tprep the time to prepare the solver, tsolve the solve time,
and ttot the total time. The times are all given in seconds.

7For aSP-AMG, time tprep is contained in top.

28



Due to the rapid coarsening of SA-AMG, it has a larger total computation time. A modification
of SA-AMG for multidimensional systems was suggested in Section 4.1, by grouping the dofs of
each node together. So the deformation in the x-, y- and z-directions are grouped together for the
construction of the aggregates, to avoid losing a deformation in a certain direction of a coarse node.
The results are shown in Table 7.4. The sizes of the coarser grids are the same for the grouped and
non-grouped SA-AMG. For the grouped version, the time to generate the operators, to prepare
the solver and the total time are in most cases smaller than for the non-grouped version. But
the solve time is mostly smaller for the non-grouped SA-AMG. Moreover, the grouped SA-AMG
requires a lower or equal number iterations for all smoothers and levels considered – except the
iChol1 smoother on two levels – and has a smaller data-size.

Grouped Smoother Levels Size
coarse

# it.s top tprep tsolve ttot Data-size
(MB)

yes damped Jacobi 2 50 827 17.17 0.06 5.77 23.00 16.5
yes damped Jacobi 3 50, 4 888 18.31 0.09 6.91 25.30 16.5
yes iChol1 2 50 2557 18.06 0.11 25.48 43.66 31.4
yes iChol1 3 50, 4 2375 17.57 0.10 25.55 43.22 31.5
yes iChol2 2 50 24 18.04 0.65 0.91 19.61 79.1
yes iChol2 3 50, 4 24 17.40 0.63 0.91 18.93 79.1
no damped Jacobi 2 50 833 19.32 0.08 4.80 24.20 16.5
no damped Jacobi 3 50, 4 899 18.41 0.05 5.23 23.69 16.5
no iChol1 2 50 2454 25.33 0.13 25.56 51.02 31.5
no iChol1 3 50, 4 2794 22.29 0.14 31.72 54.16 31.5
no iChol2 2 50 24 22.65 0.67 0.70 24.01 79.2
no iChol2 3 50, 4 24 23.72 0.68 0.70 25.10 79.2

Table 7.4: Computation of steady-state deformation with accuracy 10−8 via SA-AMG as
preconditioner for PCG. The coefficient matrix has size 9225× 9225. For damped Jacobi
ω = 0.1. # it.s denotes the number of iterations, top the time required to construct the
operators, tprep the time to prepare the solver, tsolve the solve time, and ttot the total time.
The times are all given in seconds.

7.2.2 Deflation

Deflation methods based on RBM are used to compute the transient deformation as well as the
steady state deformation. First, the transient deformation is treated, by considering both POD- and
RBM-based deflation (where the RBM are based on a single domain). Then a nonlinear version of
the transient deformation problem is solved. Thereafter, the steady-state deformation is computed
via RBM-based deflation with various preconditioners and multiple domains.

Transient Deformation

To compute the transient deformation, take the same time-interval as for the computation of the
transient temperature T above and use this T for the right-hand side in Equation 7.4. The POD-
and RBM-based deflation using a single domain, as well as their combination are considered, using
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incomplete Cholesky with zero-fill (iChol1) as preconditioner in 2L-PCG.
In Figure 7.2a, PCG with incomplete Cholesky preconditioner is applied to compute the transient

deformation. The number of iterations decreases as time increases, but stays above 140 iterations.
If using RBM-based deflation, Figure 7.2b shows that the number of iterations compared to PCG
decreases, and over time becomes even less than 80. Moreover, the total simulation time is decreases
by approximately 36%. For POD-based deflation, again the size of the deflation-subspace matrix
Z is set to 14, τ := 9, and µ := 10. The POD-based deflation decreases the number of iterations
per time step significantly, compared to both PCG and RBM-based deflation, as seen in Figure
7.2c. Compared to PCG, the total simulation time decreases by approximately 91% when adding
POD-based deflation.

(a)

(b) (c)

Figure 7.2: Number of iterations required for convergence with accuracy 10−8 per time
step where the transient deformation is computed by PCG with incomplete Cholesky
preconditioner (7.2a), and by 2L-PCG using incomplete Cholesky preconditioner and RBM-
based deflation (7.2b) or POD-based deflation (7.2c).
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Taking a closer look at the POD-based deflation, Figure 7.3a shows also when the deflation
subspace is updated. Sometimes, e.g. at time 1566 seconds (Figure 7.3b), it happens that the
subspace is updated due to the number of time steps exceeding µ and the number of iterations
increases after this update. Then the next number of iterations exceeds threshold τ , the subspace is
updated once more and the number of iterations decreases again. So it can happen that µ causes an
increase in the number of iterations. However, not having this parameter would allow the number
of iterations to increase as long as it stays below τ . If changing the value for µ such that it does not
cause any updates in our simulation, while keeping the other parameters the same, the total number
of iterations increases from 5127 to 5373; showing that µ is indeed useful to lower the number of
iterations.

(a) Full time interval (b) Zoomed in at time interval [1540, 1580].

Figure 7.3: Number of iterations required for convergence with accuracy 10−8 per time
step where the transient deformation is computed by 2L-PCG using incomplete Cholesky
preconditioner and POD-based deflation. The red dots indicate that the deflation subspace
is updated.

Another option is combining POD- and RBM-based deflation, by computing the POD deflation-
subspace matrix as usual and adding the six RBM to it. Then the number of iterations decreases
even further. Where the total number of iterations over all time steps for POD-based deflation was
5127, the combination with RBM needs only 2439 iterations. Thus, by only adding the six RBM
the total number of iterations is more than halved. Moreover, the total simulation time decreases
by approximately 94% compared to PCG, which is about 3% more than when using only POD.
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Figure 7.4: Number of iterations required for convergence with accuracy 10−8 per time
step where the transient deformation is computed by 2L-PCG using incomplete Cholesky
preconditioner and the combination of POD- and RBM-based deflation.

Nonlinear Problem

The temperature-strain fT,f can also be taken nonlinear, resulting in the nonlinear mechanical test
problem. In order to make sure that the nonlinearity is clearly expressed, the right-hand side BTw of
the thermal model is also changed. BTw := 2BTw such that the difference in temperature is larger in
the simulations (the difference was only 0.5, now it is almost 20). The nonlinear temperature-strain
is set to fT,f := L0 + L1T + α1L1T

2 + α2L1T
4 and its coefficients α1 and α2 are chosen such that

its derivative with respect to T is zero at some given temperature T ∗.

fT,f := L0 + L1T + α1L1T
2 + α2L1T

4

= L1

(
v + T + α1T

2 + α2T
4
)

Since L0 = L1v where v := −22 · ones(3077, 1)

f ′T,f = 0 at T = T ∗ ⇔ 0 = L1

(
I + 2α1T

∗ + 4α2T
∗3
)

0 = 1 + 2α1T
∗ + 4α2T

∗3

Set α2 = 1 ⇒ α1 =
1 + 4T ∗

3

−2T ∗

The thermal model has Tmin = 21.8 and Tmax = 40.4. Taking T ∗ = 30, the scalar form of the
nonlinearity in fT,f excluding L1 is shown in Figure 7.5.

32



Figure 7.5: f(T ) := −22 +T +α1T
2 +α2T

4, where α2 = 1, α1 = −1+4α2(T ∗)2

2T ∗ , and T ∗ = 30.

This test problem is constructed to see if POD-based deflation can deal with nonlinear problems
as well. The transient deformation is again computed for time 0 to 1800 with time steps of 2 seconds,
and the same parameter settings for POD are used as above. Figure 7.6a shows the number of
iterations required by POD-based deflation with incomplete Cholesky preconditioner for the linear
problem with renewed BTw; it requires in total 3445 iterations. Figure 7.6b shows this for the
nonlinear problem, which requires a total of 3301 iterations. So POD-based deflation can handle
such nonlinear problems as well as the linear problems.

(a) Linear problem (b) Nonlinear problem

Figure 7.6: Number of iterations required for convergence with accuracy 10−8 per time
step where the transient deformation is computed by 2L-PCG using incomplete Cholesky
preconditioner and POD-based deflation.
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Steady-State Deformation

The steady-state deformation Ax = b, where A := Kff , x is the unknown deformation df and
b := fT∞f as was solved before by AMG methods, is now solved by RBM-based deflation as
preconditioner in 2L-PCG. We use either the incomplete Cholesky (iChol1), Jacobi or the less
conventional damped Jacobi with ω = 0.1 as preconditioner. Various numbers of domains are used
for the construction of the RBM. The resulting numbers of iterations are shown in Table 7.5. For
comparison, PCG with (damped) Jacobi preconditioner requires 280 iterations to reach the desired
accuracy, and PCG with iChol1 preconditioner 201 iterations.

If considering a single domain, using the damped Jacobi preconditioner exceeds 280 iterations,
while deflation should reduce the number of iterations. This is due to the additional Q term used in
A-DEF2. Namely, the eigenvalues of A lie in some interval [a, b]. The preconditioner M−1 should
centre the eigenvalues around 1 to decrease the condition number compared to the condition number
of A, so that M−1A has eigenvalues in interval [1− ε1, 1 + ε2] for some ε1, ε2 ≥ 0. Then P TM−1A
shifts some extreme eigenvalues of M−1A to 0, yielding eigenvalues in {0} ∪ [1 − ε3, 1 + ε4] with
ε3 ≤ ε1, ε4 ≤ ε2. Finally, M−1PA + QA shifts those eigenvalues to 1 instead of 0, so the final
eigenvalues lie in the interval [1− ε3, 1 + ε4]; this shift to 1 prevents sensitivity to perturbations as
mentioned in Chapter 5 [5]. If using a Cholesky or Jacobi preconditioner, this works as described.
However, for the damped Jacobi the preconditioned eigenvalues are not necessarily centered around
1 (though they do decrease the condition number), hence shifting extreme eigenvalues to 1 can
worsen the condition number again, which explains the poor convergence behaviour. To solve this
problem, a scalar γ can be placed in front of Q (namely P TM−1A+ γQA) such that the extreme
eigenvalues are not shifted to 1 but to γ which should be set to a value within the interval of
eigenvalues. To test the strategy of using a shift γ for the damped Jacobi preconditioner set the
parameter γ = 0.01. Using RBM (still considering a single domain) then requires only 233 iterations,
which is now as expected below the 280 iterations required by PCG with the same damped Jacobi
preconditioner. Instead of shifting the eigenvalues via a scaler in front of Q, we could use a shift
in the preconditioner via e.g. M−1 = ωD−1 + 10−11. Then 301 iterations are needed, which is
lower than when no correction is used, but still exceeds 280. So the initial approach of shifting Q is
better. Note that the incomplete Cholesky preconditioner requires significantly fewer iterations than
(shifted damped) Jacobi preconditioners; this is due to the fact that the Cholesky preconditioner
clusters the eigenvalues closer to 1.

hhhhhhhhhhhhhhhhPreconditioner

# domains
1 2 3 4 5 . . . 10 30

iChol1 105 104 97 91 91 85 75
Jacobi 233 228 479 411 406 402 389
damped Jacobi, ω = 0.1 384 382 601 553 577 557 473
damped Jacobi, ω = 0.1, 233 228 479 411 408 401 389

γ = 0.01

Table 7.5: Number of iterations required for convergence with accuracy 10−8 of the steady-
state deformation computed by 2L-PCG using RBM-based deflation with multiple precondi-
tioners and various numbers of domains.
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Now look at the table entries for multiple domains. In theory, more domains means a larger
deflation subspace, hence is expected to decrease the required number of iterations. This is the case
for the incomplete Cholesky preconditioner, but not for (damped) Jacobi. Note that for the damped
Jacobi with shift, if considering multiple domains, the number of iterations is less than without
the shift, but still does not decrease for an increasing number of domains. We take a closer look
at the Jacobi preconditioner with RBM on one and on three domains in Table 7.6. It shows that
the deflation improves the distribution of the eigenvalues for both cases. On a single domain, the
condition number of P TM−1A+QA is larger than that of M−1A, but still the number of iterations
decreases compared to PCG. For three domains, the condition number of P TM−1A+QA is smaller,
but unexpectedly this does not result in fewer iterations than for the single domain.

Matrix Min. eigenvalue Max. eigenvalue Condition number
A 5.528 · 105 3.2165 · 1011 5.8190 · 105

M−1A 1.839 · 10−5 5.4628 3.5704 · 105

PTM−1A+QA, 1 domain 4.3430 · 10−4 5.4595 8.2033 · 105

PTM−1A+QA, 3 domains 0.0010 5.4453 5.0407 · 105

Table 7.6: Steady-state deformation. 2L-PCG using RBM-based deflation and Jacobi
preconditioner for one and three domains.

To ensure that no mistake is made in the construction of the RBM, each RBM is considered
separately and the number of iterations for Jacobi is given in Table 7.7. This table shows that all
RBM perform well on a single domain, as none of them exceeds the 280 iterations required by PCG
(deflation should always be at least as good as the non-deflated method). For multiple domains,
every RBM requires more iterations; it is not the case that a single RBM is to blame for the overall
increase of iterations. Moreover, the fact that RBM-based deflation with incomplete Cholesky does
perform well supports the assumption that the deflation-subspace construction is correct.

XXXXXXXXXXZ
# domains

1 2 3 4 5 . . . 10 30

x-translation 280 280 908 280 1017 919 901
y-translation 280 280 970 785 939 937 944
z-translation 233 229 938 938 927 902 898
rotation in x, y-plane 280 280 786 281 896 895 898
rotation in x, z-plane 280 280 1010 280 991 975 973
rotation in y, z-plane 280 281 989 731 993 988 983

Table 7.7: Number of iterations required for convergence with accuracy 10−8 of steady-state
deformation computed by 2L-PCG using RBM-based deflation and Jacobi preconditioner,
for various numbers of domains.

Next, the deflation-subspace matrix Z is modified to a matrix Z̃ which is conjugate to A, i.e.
Z̃ = [Z̃1, . . . , Z̃k] is such that Z̃Ti AZ̃j = 0 for i 6= j. This is done via the eigendecomposition of
Ac := ZTAZ in the following way. Construct the deflation subspace Z consisting of the RBM as
usual, then factorise Ac = UΛUT (which is possible since Ac is a diagonalisable and real symmetric
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matrix), set Z̃ := ZU and Ac := Z̃TAZ̃. Then the new coarse grid operator Ac is the diagonal
matrix containing the eigenvalues of the original coarse matrix ZTAZ, which we place in descending
order. The deflation step can now be viewed as a series of deflations, each having a rank one. Then
the individual contribution of each column of Z̃ can be studied as is done in Table 7.8 for Jacobi
and incomplete Cholesky preconditioners for deflation using RBM based on a single domain. Note
that the first column of Z̃ corresponds to the largest eigenvalue, the second column to the second
largest eigenvalue, etc. When considering a single column of Z̃ and using the incomplete Cholesky
preconditioner, the number of iterations decreases as the column number increases, and so the
eigenvalue to which the column corresponds decreases. Thus, if a smaller size deflation-subspace
matrix Z̃ is to be used, then the columns corresponding to the smallest eigenvalues should be
used as they decrease the number of iterations most, as also seen when comparing the number of
iterations if using columns 1-3 compared to columns 4-6 in the last two rows of the table. For the
Jacobi preconditioner, using a single column of Z̃ does not have this nice (and expected) behaviour.
Every column yields 280 iterations, except the third column which yields fewer iterations. This
shows that also on a single domain, when given the choice between incomplete Cholesky and Jacobi
preconditioners, the incomplete Cholesky is preferred, as its behaviour is more predictable.

Columns of Z̃
used for deflation

iChol1
preconditioner

Jacobi
preconditioner

All 6 105 233
1 192 280
2 190 280
3 186 233
4 186 280
5 186 280
6 183 280
1-3 163 233
4-6 151 280

Table 7.8: Number of iterations required for solving the steady-state deformation by 2L-PCG
using RBM-based deflation with incomplete Cholesky or Jacobi preconditioner, on a single
domain, for convergence with accuracy 10−8 when using certain columns of Z̃ for deflation.

Another option of modifying the deflation-subspace matrix Z is by scaling the RBM such that
each column of Z has 2-norm one. This does not result in great changes in the number of iterations,
as seen in Table 7.9. This approach also does not solve the issue of the number of iterations
increasing for the Jacobi preconditioner when more RBM domains are used.

36



hhhhhhhhhhhhhhhhPreconditioner

# domains
1 2 3 4 5 . . . 10 30

iChol1 105 104 97 91 91 85 75
iChol1, scaled RBM 105 105 97 91 91 85 75
Jacobi 233 228 479 411 406 402 389
Jacobi, scaled RBM 233 228 479 411 408 401 389

Table 7.9: Number of iterations required for convergence with accuracy 10−8 of steady-state
deformation solved by 2L-PCG with RBM-based deflation and Jacobi or incomplete Cholesky
preconditioners for various numbers of domains.

Finally, the tolerance is increased from 10−8 to 10−3, to see if this causes the increasing number
of iterations for 2L-PCG with Jacobi preconditioner and RBM-based deflation for an increasing
number of domains. For this new tolerance on a single domain 118 iterations are required, on two
domains 119, and on three domains 173; so the tolerance also is not the cause.

To conclude, incomplete Cholesky is preferred as preconditioner for 2L-PCG using RBM-based
deflation. This is because (damped) Jacobi preconditioners require more iterations for RBM
based on multiple domains, and do not have the nice behaviour observed for the diagonalised
deflation-subspace matrix on a single domain. The (damped) Jacobi preconditioners do not
behave as expected for RBM based on multiple domains, since the number of iterations increases;
investigating it showed the following. First a shift in Q for the damped Jacobi preconditioner
did improve the convergence behaviour but only for a single domain. For multiple domains, the
condition number, separate RBM, scaled RBM, and a lower tolerance were investigated. No clear
reason has been found as to why Jacobi does not improve if multiple domains are used for deflation.

If using 2L-PCG with RBM-based deflation and incomplete Cholesky preconditioner, Table 7.10
shows for various numbers of domains the required number of iterations, time and data-size. For
comparison, PCG with incomplete Cholesky preconditioner requires 201 iterations, has data-size
30.1 MB and computation time ttot = 1.12 s. Thus, when adding deflation based on RBM from a
single domain the number of iterations almost halves, at the cost of a comparatively small data
increase. If more domains are used, the number of iterations decreases further, but the time to
compute the operators increases, as does the memory.
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# domains # it.s top tprep tsolve ttot Data-size
(MB)

1 105 0.02 0.27 0.89 1.18 31.4
2 104 0.03 0.27 0.90 1.12 32.2
3 97 0.04 0.29 0.83 1.16 33.9
4 91 0.04 0.26 0.78 1.08 33.9
5 91 0.06 0.25 0.79 1.10 35.6
10 85 0.10 0.26 0.76 1.11 40
30 75 0.36 0.29 0.68 1.33 58

Table 7.10: Number of iterations required for convergence with accuracy 10−8 of steady-state
deformation computed by 2L-PCG using RBM-based deflation with incomplete Cholesky
preconditioner for various numbers of domains. # it.s denotes the number of iterations, top
the time required to construct the operators, tprep the time to prepare the solver, tsolve the
solve time, and ttot the total time. The times are all given in seconds.

7.2.3 Block Preconditioners

The coefficient matrix of this test problem has a block structure of 3× 3 blocks. To exploit this
structure, block preconditioners can be used. Again, we consider the steady-state deformation,
and compare the standard point-wise with the block version of Jacobi and incomplete Cholesky
preconditioners for PCG. The point-wise Jacobi preconditioner needs 280 iterations and costs 15.1
MB. The block Jacobi does slightly better, namely only 278 iterations and 15.1 MB. The point-wise
incomplete Cholesky with zero fill-in and no diagonal shift takes 201 iterations and 15.3 MB. The
incomplete block Cholesky preconditioner takes only 132 iterations but 33.9 MB. Due to the fill-in
being computed based on the blocks instead of single entries, the incomplete block Cholesky factor
has more nonzeros than the point-wise version. So the block versions reduce the number of iterations,
but at the cost of a higher data demand.

Conclusions on Numerical Results

For the steady-state temperature and deformation computation of the thermo-mechanical test
problem, RS-AMG is preferred among the three AMG preconditioners if enough memory is available
as it requires fewer iterations and generally has a smaller solve-time. Otherwise SA-AMG should be
used as it has smaller coarse grid and data-sizes. For the steady-state deformation, also an SA-AMG
version based on grouping the dofs per node together has been used, which in most cases reduces
the number of iterations needed, the total computation time and the data-size compared to the
non-grouped version. aSP-AMG performs worst out of the three multigrid preconditioners.

2L-PCG using POD-based deflation greatly reduces the number of iterations and total simulation
time required to compute the transient temperature, compared to PCG without deflation. For
the transient deformation, the combination of POD- and RBM-based deflation gives the greatest
reduction in iterations and time. Moreover, POD-based deflation can also deal with nonlinear test
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problems.
For the steady-state deformation, 2L-PCG using RBM-based deflation worked well – in the

sense that using more domains reduces the number of iterations – if incomplete Cholesky is used as
preconditioner, but not when using Jacobi. Block preconditioners reduce the number of iterations
for the steady-state deformation compared to their point-wise versions, but at the cost of larger
data-sizes.

Comparing AMG with deflation for the steady-state deformation, both have been considered with
as smoother respectively second preconditioner the incomplete Cholesky decomposition with zero
fill-in. In this case, the RBM-based deflation preconditioner has a smaller data-size, computation
times, and number of iterations than the AMG preconditioners, hence is the preferred method.
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Chapter 8

Analysis of Iterative Methods for the
Wafer-Slip Problem

The next test problem represents a small-size wafer-slip model as described in Chapter 3. The
displacements u have to be computed from K(u)u = FE , where the stiffness matrix K depends
on the solution u itself. The solution is computed via an implicit scheme which is solved using
the Newton method, requiring solving at each iteration i of time step n the system Ax = b, where
A := Kt(u

i−1
n ) (so A changes as it depends on the solution of the previous Newton step i− 1 of the

current time step n), x := ∆ui, and b := FEn −F
I,i−1
n , with Kt denoting the tangent stiffness matrix

and F I the in-balance force vector. The test model consists of the multiple phases. The springs
supporting the wafer are slowly removed and replaced by (clamp) forces; then backfill gas-pressure
is added. Each phase requires solving the displacements u for certain time-steps via the Newton
method.

The aim is to improve the computation of a single Newton step. The specifications for the
test model are the following. There are 3304 nodes, each with 3 dofs. This gives a total of
9912 dofs, but 16 dofs have been constrained and the corresponding rows and columns have
been removed from the matrix. Thus the coefficient matrix A has size 9896 × 9896. A is SPD
(up to machine precision) hence the PCG method can be used. The condition number of A is

κ2(A) = λmax
λmin

= 3.4934·1010

1.5212 ≈ 2.2964 · 1010. The coefficient matrix is badly conditioned hence it is
important that an effective preconditioner is found for PCG. When looking at the sparsity pattern
of A in Figure 8.1, we see that the matrix has a block structure with blocks of size 3, and that each
quarter of the matrix has approximately the same sparsity pattern.
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Figure 8.1: Sparsity pattern of the coefficient matrix (full and zoomed in) of a Newton step
of the wafer-slip test model.

Below, various preconditioners for PCG are discussed to solve the first computation of displace-
ments u in the model. We focus on solving only the first Newton step, since the total number of
Newton steps required depends on the solver used. First, the convergence plots of each preconditioner
are given. At the end they are all compared based on the number of iterations and data-size in Table
8.1. The methods are not compared based on computation time since preconditioners/smoothers
that are implemented as scripts are compared to build-in Matlab functions which are optimised
with respect to time.

Note that the coefficient matrix changes per Newton step, so the preconditioner might have to
be recomputed or modified when computing further Newton steps. That is not the focus of this
chapter, but some suggestions for updating the preconditioners are given in Appendix B.

8.1 Deflation

We start with the Jacobi method. In Figure 8.2 the standard Jacobi preconditioner is used for PCG
and the convergence behaviour of the relative residual and error norm are shown for the first 105

iterations. Even with this large number of iterations, the desired tolerance – the relative residual
norm below 10−11 – is not yet reached.

The results of the block Jacobi preconditioner with 3 × 3 diagonal blocks are very similar to
those of the standard Jacobi; there is no visible difference between the plots of the standard and the
block Jacobi convergence. The final relative residual after 105 iterations is 4.4170 · 10−4 for Jacobi
and 6.4273 · 10−4 for block Jacobi, so slightly worse. This shows that for the Jacobi preconditioner,
exploiting the block structure of A in this case does not visibly improve the convergence.
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(a) Norm of the relative residual. (b) Norm of the relative error.

Figure 8.2: Convergence behaviour of PCG with Jacobi preconditioner for the first Newton
step of the wafer-slip test model.

The Jacobi preconditioner is also combined with RBM-based deflation in 2L-PCG, shown in
Figure 8.3. Due to the physical properties of the wafer-slip model and the fact that certain nodes
have been constrained, there are three (instead of six) RBM per ring in the wafer: the radial
and vertical translation, and rotation around the circumference. Here a single ring is used. The
convergence behaviour improves compared to not using deflation and the final relative residual
decreases to 7.7257 · 10−5, but still does not reach the desired tolerance. In each of the Jacobi error
plots so far, the relative error norm stagnates for a number of iterations, and then suddenly drops.
For the standard and block Jacobi these drops are at the same locations, but when using RBM-based
deflation they change. This is because some eigenvalues are removed by the deflation and this
improves the convergence by shortening/removing some stagnation intervals. However, there are
still many such intervals left, possibly due to the distribution of the eigenvalues as plotted in Figure
8.4, which shows that there are multiple smaller eigenvalues. Namely, the RBM-based deflation has
removed two eigenvalues within the ten smallest eigenvalues of M−1A, and one eigenvalue within
the ten largest. But they did not remove the smallest or largest eigenvalue; the condition number
does not decrease, but it even increases from 2.5427 · 1010 for M−1A to 3.383 · 1014. However, the
observed convergence behaviour is better when using RBM-based deflation than without.
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(a) Norm of the relative residual. (b) Norm of the relative error.

Figure 8.3: Convergence behaviour of 2L-PCG with Jacobi preconditioner combined with
RBM-based deflation for the first Newton step of the wafer-slip test model.

Figure 8.4: Eigenvalues of M−1A, where M is the Jacobi preconditioner, for the first Newton
step of the wafer-slip test model.

The RBM-based deflation does not remove the smallest eigenvalues for Jacobi preconditioners.
Therefore, we consider 2L-PCG using deflation via eigenvectors instead of RBM to investigate the
influence of the eigenvalues. In Figure 8.5b the absolute error of Jacobi preconditioned PCG is
shown for the first stagnation interval as indicated in Figure 8.5a. This error resembles the absolute
eigenvector corresponding to the third smallest eigenvalue of M−1A. Using the corresponding
eigenvector for deflation shortens the first stagnation interval, as shown in Figure 8.5c. In the second
stagnation interval, the absolute error resembles the absolute value of a linear combination of the
eigenvectors corresponding first and second smallest eigenvalues. Considering the eigenvectors of
the three smallest eigenvalues as deflation vectors then also reduces the second stagnation interval,
as shown in Figure 8.5d. Using say the 20 smallest eigenvectors reduces the required number of
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iterations to below 105 and removes some more stagnation intervals, but still the large stagnation
interval at the end remains, see Figure 8.5e. Going even further and using the 100 smallest
eigenvectors, this still shows the stagnation interval at the end, but it is shorter and moreover the
number of iterations is significantly decreased (Figure 8.5f). If looking again at the plot of the
eigenvalues of M−1A in Figure 8.4, it shows large gaps between the smaller eigenvalues, causing a
stagnation interval when it is not yet converged for such an eigenvalue and then the sudden drop
when it is. The larger eigenvalues are closer together. The relatively large stagnation interval at the
end of the convergence plots may be caused by rounding errors and the small PCG-tolerance used,
and is not caused by a single eigenvalue that is slow to converge. Based on the relative error norm
one could say that nothing much happens in the final stagnation interval and that the method could
just be stopped upon entering this interval. However, usually the true solution is not known, so that
interval cannot be determined from the error. Instead, the relative residual is used to determine
when the method has converged. Contrary to the error, the residual still significantly decreases over
this interval, as seen in Figure 8.5g.

(a) Norm of the relative error of PCG with Jacobi
preconditioner.

(b) Absolute error of PCG with Jacobi precondi-
tioner at stagnation interval 1 as indicated in Figure
8.5a.

(c) Norm of the relative error of
2L-PCG with Jacobi precondi-
tioner combined with deflation
based on the third smallest eigen-
vector.

(d) Norm of the relative error of
2L-PCG with Jacobi precondi-
tioner combined with deflation
based on the three smallest eigen-
vectors.

(e) Norm of the relative error of
2L-PCG with Jacobi precondi-
tioner combined with deflation
based on the 20 smallest eigen-
vectors.
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(f) Norm of the relative error of 2L-PCG with Jacobi
preconditioner combined with deflation based on
the 100 smallest eigenvectors.

(g) Norm of the relative residual of 2L-PCG with Ja-
cobi preconditioner combined with deflation based
on the 100 smallest eigenvectors.

Figure 8.5: Convergence behaviour of (2L-)PCG with Jacobi preconditioner for the first
Newton step of the wafer-slip test model.

Next, consider the incomplete Cholesky decomposition as preconditioner. Because of the matrix
properties, a small drop tolerance of 10−7 and diagonal shift of 10−7 are used to ensure that the
method does not encounter a nonpositive pivot and that the number of iterations required is below
the default maximum number of iterations 100. Also, the matrix is reordered according to Matlab’s
dissect. This results in 1,557,858 nonzeros in the incomplete Cholesky factor. For comparison, the
Cholesky factor has 1,578,624 nonzeros, so the decrease in the number of nonzeros is small. As
shown in Figure 8.6, the method converges in 69 iterations. If using 2L-PCG with incomplete
Cholesky and RBM-based deflation using a single ring, only 57 iterations are required. The drop
tolerance in the incomplete Cholesky decomposition can be increased if the diagonal shift is chosen
such that no nonpositive pivots are encountered. This can be done by increasing the shift. Then
the number of nonzeros in the incomplete Cholesky factor decreases but the number of iterations
increases.
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(a) Norm of the relative residual. (b) Norm of the relative error.

Figure 8.6: Convergence behaviour of PCG with incomplete Cholesky preconditioner for the
first Newton step of the wafer-slip test model.

For this preconditioner a block version is employed as well. The incomplete block Cholesky
decomposition with 3× 3 blocks is used with a diagonal shift of 10−4, and a fill-in level of 4. The
resulting number of nonzeros is 936,916 and the number of iterations is 1654. The convergence
is shown in Figure 8.7. Note that the implementation of the incomplete block Cholesky is not
optimised with respect to time like the ichol function in Matlab, so it requires significantly more
time to compute the block form at the moment. Again, adding RBM-based deflation based on a
single ring improves the convergence; it reduces the number of iterations. Note that here – contrary
to Jacobi – the condition number of P TM−1A+QA is 1.8551 · 108 and does decrease compared to
M−1A which has a condition number of 1.0284 · 109.

(a) Norm of the relative residual. (b) Norm of the relative error.

Figure 8.7: Convergence behaviour of PCG with incomplete block Cholesky preconditioner
for the first Newton step of the wafer-slip test model.
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8.2 Algebraic Multigrid

Grouped SA-AMG can also be used as a preconditioner. This way we can exploit the matrix structure
by grouping the dofs per node together, i.e. grouping a 3 × 3 block together and considering it
as a single dof when constructing the coarse grid. Note that for the thermo-mechanical model we
have already seen that the grouped SA-AMG generally uses less iterations, data and total time
than the non-grouped version, so only the grouped SA-AMG will be applied. The figure below
shows the convergence of PCG using as preconditioner grouped SA-AMG with θ = 0.01, two levels
and incomplete Cholesky smoother with dissect reordering, drop tolerance 10−4 and diagonal shift
10−3. The coarse grid operator is only 126× 126, so much smaller than the original fine grid. The
number of iterations required to reach the desired tolerance is 2713. Note that similarly to the
Jacobi preconditioner, again a relatively large stagnation interval occurs at the end for the error
plot; this also happened for the incomplete Cholesky preconditioners.

When comparing to RS-AMG with the same preconditioner and θ = 0.8, it requires the same
number of iterations and the convergence plots are very similar to grouped SA-AMG. However,
the coarse grid of RS-AMG has size 5012× 5012 and the data-size increases from 35.1 to 51.7 MB.
aSP-AMG has for the thermo-mechanical model already been shown to perform worst among the
three AMG methods, hence is not applied for the wafer-slip model. So the best AMG method to
use as preconditioner is the grouped SA-AMG method.

(a) Norm of the relative residual. (b) Norm of the relative error.

Figure 8.8: Convergence behaviour of PCG with as preconditioner grouped SA-AMG with
incomplete Cholesky smoother for the first Newton step of the wafer-slip test model.

8.3 Comparison

In Table 8.1 the number of iterations and data-size of the various preconditioners are given. The
Jacobi method uses the least data, but also takes so many iterations that it is not usable in this
case. It might seem counter-intuitive that block Jacobi has a smaller data-size than point-wise
Jacobi, but this is caused by the following. For block Jacobi, storing D−1, the inverse of the block
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diagonal matrix of A, requires more bytes than for point-wise Jacobi (554,488 compared to 79,344),
but storing A−D requires fewer bytes (8,050,680 compared to 8,683,640); hence the block Jacobi
has a smaller data-size.

The incomplete Cholesky preconditioner with drop tolerance 10−7, diagonal shift 10−7 and
dissect reordering (denoted iChol(10−7, 10−7) in the table) needs few iterations to converge, but
uses almost as much data as the Cholesky decomposition which needs only 2 iterations to converge.
This shows that the incomplete Cholesky with such high levels of fill in are no improvement upon
simply using the Cholesky decomposition, which is generally considered expensive. The incomplete
Cholesky preconditioner combined with RBM-based deflation shows that using a single ring reduces
the number of iterations. But using more rings does not necessarily decrease this number further
and can even increase it compared to a single ring. Moreover, it increases the data-size even further.

The incomplete block Cholesky preconditioner is used with fill-in level 4, diagonal shift 10−4 and
dissect reordering (denoted block iChol(4, 10−4)) and corresponds to a lower triangular matrix with
936,916 nonzeros. For comparison, iChol(2.5 · 10−5, 10−4) is also considered and results in 1,127,730
nonzeros. Note that the block version has fewer nonzeros, (hence) a lower data-size and also fewer
iterations. Thus, exploiting the block structure of the coefficient matrix is beneficial. While the
number of iterations is much higher than iChol(10−7, 10−7), it uses significantly less data than the
Cholesky decomposition. Again, using RBM-based deflation on a single ring reduces the number of
iterations at the cost of a slightly larger data-size.

Using as preconditioner grouped SA-AMG with incomplete Cholesky smoother, we see that
compared to solely using iChol as preconditioner, it reduces the number of iterations and increases
the data-size. Compared to preconditioner block iChol(4, 10−4), the data-sizes are in the same
neighbourhood when grouped SA-AMG with iChol(10−4, 10−3) or iChol(5 · 10−3, 3 · 10−4) smoother
is used, but in both cases more iterations are needed by SA-AMG. If grouped SA-AMG uses
iChol(10−7, 10−7) as smoother, then the number of iterations is lower than using iChol(10−7, 10−7)
as preconditioner combined with RBM-based deflation. While the data-size of grouped SA-AMG is
larger than iChol(10−7, 10−7) with RBM-based deflation using a single ring, it is lower if more rings
are used and moreover the number of iterations remains lower for grouped SA-AMG. If grouped
SA-AMG uses block iChol as smoother, the number of iterations is almost equal to when using
block iChol preconditioner combined with RBM-based deflation, but the data-size is larger.
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Preconditioner Settings # iterations Data-size (MB)
Jacobi > 105 8.51
Block Jacobi > 105 8.36
Jacobi & RBM #rings = 1 > 105 8.97
Cholesky decomposition 2 56.7
iChol(10−7, 10−7) 69 56.1
iChol(10−7, 10−7) & RBM #rings = 1 57 56.5
iChol(10−7, 10−7) & RBM #rings = 2 53 57
iChol(10−7, 10−7) & RBM #rings = 3 59 57.4
iChol(10−7, 10−7) & RBM #rings = 10 59 60.6
Block iChol(4, 10−4) 1654 37.1
Block iChol(4, 10−4) & RBM #rings = 1 1363 37.6
iChol(2.5 · 10−5, 10−4) 1940 42.9
SA-AMG with iChol(2.5 · 10−5, 10−4) #levels = 2, θ = 0.01 1920 44.1
SA-AMG with iChol(10−4, 10−3) #levels = 2, θ = 0.01 2713 35.1
SA-AMG with iChol(5 · 10−5, 3 · 10−4) #levels = 2, θ = 0.01 1684 39.9
SA-AMG with iChol(10−7, 10−7) #levels = 2, θ = 0.01 48 57.2
SA-AMG with block iChol(4, 10−4) #levels = 2, θ = 0.01 1362 38.3

Table 8.1: Results of (2L-)PCG with various preconditioners for the first Newton step of the
wafer-slip test model.

Conclusions on Numerical Results

The above analysis shows that for the wafer-slip test model, the Jacobi preconditioner requires
too many iterations to be of use. The incomplete Cholesky preconditioner can be combined
with RBM-based deflation using a single ring to reduce the number of iterations. Also, an AMG
preconditioner with incomplete Cholesky as smoother could be used to lower the number of
iterations; where the best to use is grouped SA-AMG. Of course, adding RBM-based deflation
or using grouped SA-AMG increases the data-size. The incomplete Cholesky should be given
a drop tolerance (and corresponding diagonal shift) such that it is cheaper to store than the
Cholesky decomposition, otherwise that could be used as well and converges faster – but is
usually too expensive in practice. The incomplete block Cholesky preconditioner resulted in
fewer iterations and a smaller data-size than its point-wise version, hence is better to use.
However, this is with the side-note that the computation of the block version is at the moment
much slower than Matlab’s built-in ichol function. To reduce the number of iterations fur-
ther, incomplete block Cholesky should be combined with RBM-based deflation based on a single ring.
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Chapter 9

Conclusion

The goal of this thesis was to find an efficient way of solving large-scale sparse linear systems of
equations arising in large thermo-mechanical models where both the thermal and mechanical part of
the model have to be solved, as well as in wafer-slip models. For this reason, we have examined the
efficiency of certain iterative methods, in terms of the number of iterations, the computation time
and the amount of memory needed. The main solver used is the state-of-the-art Krylov subspace
method PCG, which generates iterates in the Krylov subspace x0 +Kk(A, r0) with minimal A-norm
and has short recurrences. We have considered AMG methods, deflation methods and block
preconditioners as preconditioner for PCG; combined with direct and stationary iterative methods
as smoother for AMG or as second preconditioner for deflated PCG. The resulting solvers have
been applied to test problems representing small-size thermo-mechanical and wafer-slip models.

The AMG methods considered are the classical/RS-AMG, SA-AMG and aSP-AMG. The
numerical results have shown that the SA-AMG preconditioner requires the least amount of memory
and quickly reduces the size of the coarser grids. Moreover, if the coefficient matrix has a block
structure, the grouped SA-AMG exploits this structure resulting in less memory and in most cases
smaller total computation times and fewer iterations as well. However, for the thermo-mechanical
model RS-AMG needs the least iterations, and has smaller solve-times. aSP-AMG performs worst
among the AMG methods. Thus, the preferred AMG preconditioner is either (grouped) SA-AMG
or RS-AMG for the thermo-mechanical model, depending on the amount of memory available. The
preferred AMG preconditioner for the wafer-slip model is grouped SA-AMG.

Thereafter, the deflation methods based on RBM and/or POD have been discussed. They are
used as second-level preconditioner, besides a direct or stationary iterative method as first-level
preconditioner; the resulting solver is a 2L-PCG method. The implementation of 2L-PCG methods
is in this paper done according to A-DEF2. This avoids sensitivity to perturbations in coarse solves,
is able to deal with severe termination tolerances and guarantees convergence. The POD-based
deflation has been used for the transient thermo-mechanical test problem and greatly reduces the
number of iterations and total simulation time. The RBM-based deflation has been applied for
the mechanical part of the thermo-mechanical model and for the wafer-slip model. Moreover, for
the transient mechanical part of the thermo-mechanical test problem, the combination of RBM-
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and POD-based deflation has been used and this gives the largest reduction in iterations and time.
For its steady-state case, RBM-based deflation considered not only RBM computed based on a
single domain, but on multiple domains as well. In that case, if the incomplete Cholesky is the
single-level preconditioner, then it reduces the number of iterations when the number of domains for
the RBM increases, as expected. But on the other hand, with a Jacobi preconditioner the number
of iterations increases, which is undesirable. This shows the importance of choosing the single-level
preconditioner of the 2L-PCG method with care. Finally, for the wafer-slip model, using RBM
based on a single ring reduces the number of iterations required to converge, at the cost of a small
increase in the required amount of memory.

If the coefficient matrix has a block structure, it can also be taken advantage of by the direct and
stationary iterative preconditioners. For both the Jacobi and incomplete Cholesky decomposition,
block versions have been constructed. The mechanical part of the thermo-mechanical model
and the wafer-slip model exhibit a 3× 3 block structure, since each node has degrees of freedom
regarding the x-, y- and z-direction. The block preconditioners then reduce the number of
iterations compared to their point-wise versions (possibly increasing the required amount of memory).

To summarise, (grouped) SA-AMG is preferred over RS-AMG if memory is limited. For transient
problems, POD-based deflation greatly reduces the number of iterations and simulation time, even
more so when combined with RBM. For the mechanical problems, RBM-based deflation reduces
the required number of iterations at a low memory cost – lower than for AMG – if using a single
domain/ring. For block-structured matrices, the block direct or stationary iterative preconditioners
decrease the number of iterations compared to their point-wise versions.

So from the solver combinations investigated, the best is using 2L-PCG methods when possible,
where deflation is used as the second preconditioner, implemented according to A-DEF2. Only
the steady-state temperature does neither have RBM nor is transient, hence none of the deflation
methods were applied. In this case RS-AMG is preferred, unless the available memory is limited,
then SA-AMG is best to use.

Future Research

There are several possibilities for future research, which due to the time span fell outside the scope
of this thesis and have not yet been addressed. One could look further into the increasing number
of iterations when employing 2L-PCG with RBM-based deflation preconditioner using multiple
domains to construct the RBM, combined with the Jacobi preconditioner. In Section 7.2.2 this
phenomenon has been investigated from several angles, but the cause was not found. In the category
of block preconditioners, the incomplete block Cholesky implementation of Algorithm 5 could be
optimised with respect to time. Similarly, the SA-AMG algorithm could be made more time-efficient
by parallelising it, as discussed in [14]. This thesis focused on the sequential implementation of
the solvers. The parallel setting could be investigated as well. A class of preconditioners that
exploits parallel computing is the domain decomposition methods. They use a divide-and-conquer
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strategy, where the problem is solved by splitting the domain into multiple subdomains. The
paper [29] investigates efficient parallel preconditioners based on domain decomposition techniques
for problems on unstructured grids. It considers one- and two-level Schwarz, and (approximate)
Schur complement domain decomposition methods.

For multidimensional systems like the mechanical part of the thermo-mechanical model and the
wafer-slip model, tensors could be investigated as a way of preserving the multidimensional structure
of the model. Article [30] introduces a MOR technique for systems with multiple independent
variables, by combining the techniques for tensor decomposition and POD. The difficulty lies in
generalising tensors to unstructured grids.

For the wafer-slip model, the preconditioning of the first Newton step has been investigated in
Chapter 8. In the following Newton steps, the coefficient matrix changes due to its dependence on
the solution itself. However, only the computation of the initial preconditioner has been discussed,
not yet a way to update the preconditioner for changing coefficient matrices. Namely, recomputing
the entire preconditioner is wasteful since the coefficient matrix does not change “too much” per
step (which translates in low-rank updates). In Appendix B, a start is made with investigating
possible ways to update the preconditioner.
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Appendix A

aSP-AMG

Algorithm 6: Interpolation weights generation via DPLS [4,31].
Input: dp, κp, nmax, Nt, X, Sc, C, F
Output: W

for node i ∈ F\C do
X̄ = X, xi = X(i, :)T , r = xi
k = 0, C̄i = ∅, R = ∅
Ci = {j ∈ C | ∃ path from i to j in the Sc graph shorter than dp}
while cond(R) ≤ κp & k < nmax do

k = k + 1
Select j̄ ∈ Ci\C̄i for which x̄j has maximal affinity with r
C̄i = C̄i ∪ {j̄}
β = minβ||xi −

∑
j∈C̄i βj x̄j ||

r = xi −
∑

j∈C̄i βj x̄j
R(:, end+ 1) = x̄j̄
Compute Householder reflection Q nullifying last Nt − k rows of last column of R
R = QR, r = Qr
for all j ∈ Ci\C̄i do

x̄j = Qx̄j

wi = R−1r
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Algorithm 7: Test space generation via SRQCG [4,31].
Input: Nit, Nt, A,N,G,X0

Output: X

Z0 = (I −GAGT )X0

Orthonormalize Z0

SZ0 = GAGTZ0

β1 = 0;P1 = zeros(N,Nt)
for k = 2 : Nit + 1 do

for i = 1 : Nt do
qk−1(i) = (SZk−1(:, i))TZk−1(:, i) Compute Rayleigh quotient
Rk−1(:, i) = SZk−1(:, i)− qk−1(i)Zk−1(:, i) Compute residual
if k > 2 then

βk−1(i) = 2(SPk−1(:, i))TRk−1(:, i)/nk−1(i)

Pk(:, i) = 2Rk−1(:, i)− βk−1(i)Pk−1(:, i)
SPk(:, i) = GAGTPk(:, i)
mk(i) = (SZk−1(:, i))TPk(:, i)
nk(i) = (SPk(:, i))

TPk(:, i)
pk(i) = (Zk−1(:, i))TPk(:, i)
qk(i) = (Pk(:, i))

TPk(:, i)
rk(i) = (SZk−1(:, i))TZk−1(:, i)
a0 = mk(i)− pk(i)rk(i)
a1 = qk(i)rk(i)− nk(i)
a2 = nk(i)pk(i)−mk(i)qk(i)

αk(i) =
a1+
√
a21−4a0a2
2a2

Zk(:, i) = Zk−1(:, i) + αk(i)Pk(:, i)
SZk(:, i) = SZk−1(:, i) + αk(i)SPk(:, i)

Dk = ZTk SZk
Ek = ZTk Zk
Solve generalized eigenproblem DkUk = EkUkΛk
Zk = ZkUk
SZk = SZkUk

X = GTZnit
Orthonormalize X
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Appendix B

Updating Preconditioner

Chapter 8 discusses a test problem representing a small-size wafer-slip model, where the
displacements are computed via an implicit scheme which is solved using the Newton method.
This requires solving at each iteration i of time step n the system Ax = b, where A depends on
the solution of the previous Newton step i − 1 of the current time step n, hence changes per
step. Chapter 8 focusses on improving the first Newton step, where the preconditioner has to be
computed from scratch. This can be done prior to the computation so is allowed to take more time
than the computation of preconditioners in later steps that have to be done during the simulation.
In the following Newton steps, the coefficient matrix changes slowly and it is wasteful to recompute
the entire preconditioner. The same preconditioner could be used for all the steps if the matrix
does not change too much over the whole computation. When this is not the case (i.e. when the
small matrix changes per step accumulate to a significant change) the initial preconditioner will not
give good results for later steps. Therefore, we look at ways of updating the preconditioner for
slowly varying coefficient matrices. If the Jacobi preconditioner is used, it can easily be updated.
Namely, just modify the diagonal entries that have changed in the corresponding entries of the
coefficient matrix. However, it was shown that Jacobi requires too large a number of iterations
to be usable. Thus, updating methods for more different preconditioners – like the incomplete
Cholesky factorisation – must be considered.

The Sherman–Morrison–Woodbury formula in B.1 can be used to update the preconditioner for
low-rank changes in the coefficient matrix.

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 (B.1)

Assume that the known preconditioner from the previous step approximates the coefficient matrix
adequately, i.e. M−1 ≈ A−1, and that the change in A given by ∆A = UCV (the singular value
decomposition of the matrix update) is of low rank k. In this wafer-slip test model each coefficient
matrix is SPD, so V = UT and the Sherman–Morrison–Woodbury formula simplifies to the Equation
B.2, where A is previous coefficient matrix and ∆A = UCUT the singular value decomposition of
the matrix update [32].

(A+ UCUT )−1 ≈M−1 −M−1U(C−1 + UTM−1U)−1UTM−1 (B.2)
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If the initial preconditioner approximates A−1 well, then this method is expected to yield good
results. If this is not the case, for instance if a shift is used in the incomplete Cholesky computation,
it might not guarantee improvement. Moreover, M−1 is not computed explicitly for incomplete
Cholesky, but inverse multiplication is done via triangular solves (via L and LT ). Thus, the updated
inverse is only computed when multiplying with a vector, and cannot be efficiently stored. This
causes problems after a number of steps as the accumulated matrix update with respect to the
initial matrix must be used and hence increases in rank.

Another option is using the algorithms suggested in [33]. This article examines ways of updating
preconditioners for slowly varying matrices. It investigates methods for computing incremental
incomplete LU factorisations, based on approximate inverses and alternating techniques. The
minimal energy residual descent for LU (MERLU) algorithm uses techniques based on sparse
approximate inverses. Its advantage is that it guarantees that the Frobenius norm of the residual is
non-increasing. However, the disadvantage is the cost of executing the algorithm. In this thesis not
incomplete LU but incomplete Cholesky preconditioners have been used, hence the modification of
the MERLU algorithm for updating incomplete Cholesky factorisations is given in Algorithm 8.
Another approach is to exploit alternating procedures, as done in the iterative threshold alternating
lower-upper correction (ITALU) algorithm. The ITALU method performed quite well in the
experiments conducted in [33]. The drawback of the method is that breaks down when a singular
factor U is encountered. Note, similar problems occur in computing incomplete LU factorisations
with dropping. Moreover, this breakdown happens rarely in practice. The incomplete Cholesky
modification of ITALU is given in Algorithm 9.

Algorithm 8: Minimal Energy Residual descent for Cholesky (Cholesky modification of
MERLU [33]).
Input: coefficient matrix A, initial (upper triangular) Cholesky factor U

for k = 1, . . . do
R = A− UTU
XU = triu(UR)
Apply numerical dropping to XU

C = UTG
α = Tr(CTR)

||C||2F
U = U + αXU

end
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Algorithm 9: Cholesky modification of ITALU (Iterative Thershold Alternating Lower-
Upper correction [33]).
Input: coefficient matrix A, initial (upper triangular) Cholesky factor U

for k = 1, . . . do
R = A− UTU
XU = triu(U−TR)
Apply numerical dropping to XU

U = U +XU

if det(U) = 0 then
Abort “singular U”

end

end
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