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Abstract

Physics-Informed Neural Networks (PINNs) are a new class of numerical methods
for solving partial differential equations (PDEs) that have been very promising.
In this paper, four different implementations will be tested and compared. These
include: the original PINN functional with equal weights for the interior and
boundary loss, the same functional with custom weights, and the First Order
Least Squares (FOSLS) functional with equal weights and custom weights. These
custom weights are chosen to be equal to the optimal weights derived by Oosterlee
et al. as well as slightly bigger and smaller. These methods will be applied
to the 1D stationary advection-diffusion equation where we vary the difficulty
by configuring the diffusion parameter ε. Furthermore, for each method we
have done an elaborate parameter study where we varied ε and the number of
collocation points. We have found that the weights derived by Oosterlee et al.
did not provide accurate results in our specific setting. Instead, equal weights
usually performed best. Also, the two functionals turned out to have very similar
performance. For the Python code visit Github.
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CHAPTER 1

Introduction

Conventional numerical methods are old tools in numerical mathematics. The
finite difference method was first used by Leonhard Euler in the 18th century,
while the finite element method has been made robust by several decades of
research. Still, these numerical methods have their shortcomings, which are
exemplified by difficult problems in computational science and engineering.
One such problem is the convection dominated convection-diffusion equation
(or advection-diffusion). In this chapter we will introduce this equation, give
possible pitfalls for conventional numerical methods, and explore reasons why
neural networks may be a better solver. In chapter 2, we will explore the
basic mechanisms of artificial neural networks. In chapter 3, we explore the
implementation of neural networks to PDE’s and in chapter 4 we specifically
apply it to convection-diffusion. We will explore the results in chapter 5.

1.1 Problem formulation
The advection-diffusion equation describes a wide range of physical phenomena,
in which particles, heat, energy or some other physical quantity is moving in
space due to two processes: advection and diffusion. Advection refers to the bulk
motion of the physical quantity, for example, the transport of pollutants in a river
by the flow of the water. Diffusion on the other hand refers to the movement of a
physical quantity where its concentration is high to where its concentration is
low, which happens because of (in some sense) random movement of molecules.

The general 1D advection-diffusion equation (without sources and sinks) is
given by

∂u

∂t
= ∂

∂x

(
ε
∂u

∂x

)
− v∂u

∂x
(1.1)

where ε and can depend on x but will not do so in this paper. It is assumed
that ε > 0. We want to numerically approximate the stationary solution to this
equation on the domain [0,1] with boundary conditions, that is we want to solve
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1.2. Finite Differences

the boundary value problem

− εd
2u

dx2 + v
du

dx
= 0 for x ∈ (0, 1)

u(0) = 0, u(1) = 1
(1.2)

For this problem it is not hard to find the exact solution. One can verify that it
is given by

u(x) = 1− evx/ε
1− ev/ε (1.3)

Using this exact solution, we can test any numerical approximation by comparing
its graph to the graph of (1.3). This benchmark problem can give us insight into
how our numerical methods will perform on problems where the exact solution can
not be derived analytically. Note that (1.3) is a monotonically increasing function.
Any oscillations in a numerical solution are therefore unwanted. Oscillatory
solutions also violate an important theorem called the Maximum Principle, which
states that local minima in the interior cannot exist. We will see that the finite
difference method can encounter this problem.

1.2 Finite Differences
In the Finite Difference Method (FDM) the domain of computation is split using
a mesh grid {x0, x1, ..., xN+1}, which can be an equidistant set of points. Due to
the Dirichlet boundary conditions, the boundary points will be included in this
set, i.e. x0 = 0 and xN+1 = 1.

We will need to numerically approximate the first and second derivatives of u.
This can be done with central difference formulas, which have the nice property
that the order of the truncation error is quadratic. They are given by

u′(xk) = u(xk+1)− u(xk)
2∆x +O(∆x2)

u′′(xk) = u(xk−1)− 2u(xk) + u(xk+1)
∆x2 +O(∆x2).

(1.4)

Substituting these expressions into 1.2 and neglecting the error we obtain a
system of N equations, as the solution on the boundary points are known. This
substitution results in the difference equation

− εwk−1 − 2wk + wk+1

∆x2 + v
wk+1 − wk−1

2∆x = 0 (1.5)

where wk ≈ u(xk) is the numerical approximation. To see why this is problematic,
we can try to solve this difference equation exactly. Assume the solution on
the interior is of the form wk = rk = rk−1r. In this case wk−1 = rk−1 and
wk+1 = rk−1r2. Substituting these into (1.5), dividing by rk−1 (and noting that
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1.2. Finite Differences

r = 0 a trivial solution) and doing some algebraic manipulations (where again we
can find r = 1 to be a trivial solution), we arrive at [9]

r =
1 + v∆x

2ε
1− v∆x

2ε
(1.6)

with v∆x
2ε called the mesh Péclet number Pe. To satisfy the boundaries we can

take wk = A + Brk with appropriate values for A and B. Oscillatory solutions
occur when r < 0, i.e. Pe > 1. Thus we require that Pe < 1. Here we can see
that if ε is small, then the number of gridpoints needed can become very large,
even computationally prohibitive, especially in higher dimensions.

In conventional numerical analysis, there are several remedies to this problem.
These include: using a backward difference scheme for the first derivative (called
upwinding, and assuming that v > 0) and refining the mesh where the solution
varies quickly (called the boundary layer). However, these remedies have several
drawbacks, which invites us to explore neural networks. Firstly, these remedies do
not generalize well into higher dimensions. Secondly, note that upwind differences
adds artificial diffusion to the problem. This can be seen by analyzing the
truncation error when approximating the first derivative and observing a term
involving u′′ which can be effectively added up to the diffusion term. When
training a neural network, the network will add perhaps less artificial diffusion
than necessary.

Furthermore, if one needs to approximate the solution to the boundary value
problem for different values of the parameters ε and v, then every time a large
system of equations needs to be solved. In contrast, when these parameters are
inputs to the neural network along with the spatial coordinate, then the network
needs to be trained only once and the solution can be extracted for as many
values of the parameters as one needs. Another advantage of neural networks is
that the solution is a continuous (and sometimes differentiable) function, unlike
a solution obtained with the FDM, which is only defined at a finite set of points.
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CHAPTER 2

Artificial Neural Networks

In this chapter we discuss the main principles and working mechanisms behind
Artificial Neural Networks (ANNs). This explanation is based on [5], which
we also refer to for a more detailed study. ANNs have been invented a long
time ago but fell out of use due to computational infeasibility at the time.
Recently they made a resurgence, making use of advancements in CPU and
GPU technologies as well as the availability of large datasets in part due to the
Internet, which are needed to train the ANNs. ANNs are somewhat inspired by
the workings and constituents of the human brain. Unlike traditional computer
programs, ANNs are not explicitly programmed to solve specific problems.
Instead, they are programmed to seek patterns in existing solutions to similar
problems and learn from them, in order to figure out the solution to a new problem.

2.1 Main principles
There are many types of sophisticated ANNs but in this paper, only the multilayer
perceptron is being discussed, which is a feedforward ANN, meaning that nodes
are not connected in cycles. From a mathematical point of view, an ANN
is nothing more than a function which is the composition of many functions.
Usually this is a multivariable vector-valued function. It has many parameters
and for a given input, there is some desired output. The goal is to fine-tune these
parameters so that the output of this function is close to the desired output, for
any input in a given domain of computation. How this function is composed can
be best illustrated by a directed graph (Fig. 2.1).

Every node (or neuron) in a layer represents a container that receives a
number from the previous layer (this is feedforward) and every edge represents
a weight that indicates how much influence the previous node has on the next.
There are usually multiple hidden layers and if this is not the case then it is simply
called a perceptron. As mentioned, the entire network represents a composition
of functions, with the first function having input {x1, ..., xn} which is also the
input of the neural network itself, and output {a(1)

1 , ..., a(1)
m }, the values of which
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2.1. Main principles

Figure 2.1: Illustration of a multilayer perceptron

are called activations. This output is the first hidden layer. The second function
has the first hidden layer as its input and has as its output the second hidden
layer, etcetera, until the last function outputs the output layer. The superscript
denotes in which layer of the network the node is (in this case the first hidden
layer) and the subscript denotes the node in that particular layer, with m the
number of nodes in the first hidden layer. The first function’s output, given the
input, are determined as follows.

Let us focus on one node in particular, say a(1)
j . What flows into this neuron

is a weighted sum of all neurons in the input layer plus some bias b(1)
j (a scalar),

i.e. ∑n
i=1W

(1)
ji xi + b

(1)
j with W

(1)
ji the weight of the connection from xi to a(1)

j .
Next, some activation function is applied to this sum to obtain the value of the
activation. There are various possibilities, for example the hyperbolic tangent or
the sigmoid function defined by

σ(x) = 1
1 + e−x

x ∈ (−∞,∞).

This is a function that is monotonically increasing from 0 to 1. We finally obtain
that a(1)

j = σ(∑n
i=1W

(1)
ji xi + b

(1)
j ). Intuitively, the bias of a neuron indicates how

easy it for that neuron to get a high activation. For an arbitrary layer, the
activation of the j-th neuron is given by

a
(`)
j = σ

(n`−1∑
i=1

W
(`)
ji a

(`−1)
i + b

(`)
j

)
(2.1)

with the zeroth layer corresponding to the input layer, the output layer denoted
by L, and n`−1 denoting the number of neurons in the layer before the `-th layer.
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2.2. Training the network

The notation becomes easier when all the neurons in some layer are represented
by a column vector and all the weights from one layer to the next represented by
a matrix. In this case the activations a(`) of all neurons in layer l can be denoted
by

a(`) = σ
(
W (`)a(`−1) + b(`)

)
. (2.2)

2.2 Training the network
We have now presented the mathematical formulation for how particular values
for the input neurons flow through the network to create values for the output
neurons. Next, we would like to finetune the parameters of this function so that
the output is close to the desired output for a given input. This is done using
a so called training set, which is a set of inputs T for which the desired output
is available. Using this training set we can measure how well the network is
performing by defining a loss function. In many applications the following loss
function is used:

L(θ) = 1
2|T |

∑
x∈T
||a(`) − y(x)||2 (2.3)

which is a mean square error. Here θ is the set of all parameters in the network,
which is the set of all weights along with the set of all biases and y is the desired
output given some input x. The parameters are initialized in some random
manner. Let Θ be the parameter space, which is in fact R|θ|. The problem at hand
is simply to find the values for θ such that the loss function is minimal, that is, to
approximate arg minθ∈Θ L(θ). This is no easy task due to the high dimensionality
of the problem and due to the possibility of L having numerous local minima.
However, for sufficiently large neural networks, this does not seem to be a prob-
lem, as most local minima are roughly the same quality as the global minimum [3].

One way to approximate this minimum is called gradient descent. The gradient

∇L =
(
∂L

∂θ1
, ...,

∂L

∂θn

)T
(2.4)

is the direction in which the loss grows fastest. Conversely, −∇L is the direction
in which the loss diminishes most. A gradient descent iteration is simply moving
the solution in this direction as follows. First, pick an initial guess θ0, which is a
vector containing all parameters in the ANN. The update formula is given by

θt+1 = θt − γt∇L(θt) (2.5)

where γt is some step size that can also depend on the iteration step. Note that
this algorithm tries to find local minima of a function instead of global minima.
This is not a problem, as previously mentioned.
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2.2. Training the network

Gradient descent is a very elementary optimization algorithm that is not used
in this paper. Instead, more sophisticated methods are used that are based on
gradient descent, in particular L-BFGS-B. These are not further elaborated upon.
However, these methods still need the gradient of the loss function. To compute
this gradient, an advanced technique is needed called backpropagation, which is
beyond the scope of this text.

7



CHAPTER 3

Physics Informed Neural Networks

3.1 General Framework
The idea of solving PDE’s using artificial intelligence techniques is quite new. For
most applications of neural networks, one needs a large training set to achieve an
acceptable level of accuracy, because this is needed for the optimization algorithm
to converge to the minimum of the loss function. The challenge is to make
neural networks effective for solving PDE’s while there is not much data. In
previous efforts of solving PDE’s using neural networks, the PDE itself was not
being used when the neural networks learns the solution, which means that a
lot of information about the problem is being neglected. Now the key insight
is to embed the underlying physics (i.e. the PDE) into the design of the neural
network using the loss function. In this way, physically infeasible solutions would
be penalized and the neural network will be trained to prevent the output of
such solutions. This gives rise to the Physics Informed Neural Networks, or PINNs.

Earlier attempts[6], where Gaussian Process Regression was being used, had
certain limitations. Non-linear terms in time had to be linearized and non-linear
PDE’s were in general hard to solve accurately. In contrast, Raissi et. al have
proposed a very general method[7] that can be used to approximate the solution
to virtually any PDE. To explain their methods, let us introduce the following.
Let a general PDE be given by

∂u

∂t
+N (u) = 0, x ∈ Ω, t ∈ [0, T ]

B(t,x, u) = 0
(3.1)

with N a differential operator (potentially nonlinear), u = u(t,x) a scalar function
of d + 1 variables, Ω some subset of Rd and B denoting boundary conditions
as well as initial conditions. Raissi et al. only considered Dirichlet boundary
conditions, but we can generalize this.

To deal numerically with the time derivative, two techniques have been pro-
posed, the continuous time models and the discrete time models. Note that this
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3.1. General Framework

distinction is not relevant for our research since the problem we are investigating
has no time derivative at all. However, the methods we will experiment with can
be most easily generalized to continuous time models, if one wishes to investigate
problems with time derivatives. The difference between these two techniques is
the following. In the discrete time models, the time derivative is discretized using
a Runge-Kutta scheme, whereas in the continuous time models, no discretization
is being used. Instead, the neural network handles the spatial derivates as well as
the time derivatives. We will not further elaborate on the discrete time models.

To employ a neural network to solve (3.1), construct it such that the input is
(t,x) and the output is u(t,x). That is, if x ∈ Rd then the neural network has d
inputs and one output. This network can be used to query the value of u given
some point x in the domain. Furthermore, define f(t, x) as the right hand side of
3.1, that is, f(t, x) = ut +N (u). Remarkably, f can be derived from the same
network. This is because automatic differentiation can be used to compute the
derivative of the output of a neural network with respect to any input. Thus
we can compute ∂u/∂t and ∂u/∂xi ∀i = 1, .., d but also higher order derivates,
which allows us to compute f . One way to program this is to use Tensorflow,
which is a software library for machine learning applications mainly used in
Python. More on implementation chapter 4. To compute for example ∂u/∂x1,
one can use tf.gradients(u,x1)[0], where tf.gradients(u,x1) returns a
list of tensors for the derivatives of u with respect to the tensors in x1

Now the key distinction of PINNs in contrast with neural networks in other
applications, is how the loss function is chosen. This loss function can be seen as
a sum of two mean squared errors and is defined by

L(u) = 1
NI

NI∑
i=1

f(tIi ,xIi )2 + 1
NB

NB∑
i=1
B(tBi ,xBi , u)2 (3.2)

Here, the first term is evaluated at certain points in the interior of the domain
Ω and certain points in time (not the initial time), represented by {tIi ,xIi } for
i = 1, ..., NI . The second term is evaluated on certain points on the boundary
of the domain for all the discrete points in time and for the initial time at all
discrete points in the domain. All these points are called collocation points. The
neural network will be trained to reduce the loss function on these collocation
points. But after training is finished, the solution u can be queried on any point
in the domain, so not only these collocation points. Therefore these colloca-
tion points should not be confused with a mesh grid in the finite difference method.

Note that when the first term of (3.2) is very small and not the second term,
it means that the laws of physics (i.e. the PDE) are more or less obeyed but
the initial and boundary conditions are not, and vice versa if it is the other way
around. Both terms ought to be small to obtain accurate solutions, but neural
networks might find one of the two much harder to minimize then the other,
depending on the particular problem. Therefore, it may be a good idea to give
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3.2. Mathematical motivation for the custom loss function

weights to each of the two contributions, where a high weight to the first term
may be appropriate when the first term is hard to minimize, for example. This
has been thoroughly investigated[8] by Oosterlee et al. First, they investigated
whether the loss function given by eq. (3.2) is mathematically justified. Second,
they theoretically derived an optimal weight for each of the two terms.

3.2 Mathematical motivation for the custom loss
function

To simplify the analysis, Oosterlee et. al considered only time independent PDE’s.
To this end, we can rewrite (3.1) to

N (x, u) = 0 in Ω ⊂ Rd

B(x, u) = 0 on ∂Ω
(3.3)

where again N is a (nonlinear) differential operator but now B only denotes
boundary conditions. In particular we are interested in Ω = [0, 1], N (x, u) =
−εu′′ + vu′, B(1, u) = u(1)− 1 and B(0, u) = u(0)− 0 but we will continue the
analysis for the general case, eq. (3.3). Now the loss function simplifies to

L(u) = 1
NI

NI∑
i=1
N (xIi , u)2 + 1

NB

NB∑
i=1
B(xBi , u)2 (3.4)

with {xBi } now only being points on the boundary of the domain for i = 1, ..., NB

instead of points in time also. An important observation is that the more points
we sample from the domain (i.e. taking NI and NB larger), the more the two
terms of (3.4) tend to the average of N 2 over Ω and B2 over ∂Ω respectively.
More specifically, we obtain the loss functional

L̂(u) = 1
|Ω|

∫
Ω
N (x, u)2dΩ + 1

|∂Ω|

∫
∂Ω
B(x, u)2dΓ (3.5)

which is denoted by a hat. Therefore note that (3.4) is actually an approximation
of (3.5). Another observation is that if L(u) = 0, then u is not necessarily a
solution of the PDE, while if L̂(u) = 0, then it certainly is. This can be seen by
the integrands of (3.5), which are non-negative and only zero when N = B = 0,
while if L(u) = 0 then this only ensures that the PDE is satisfied on a finite
number of points. This makes L̂ more related to the PDE than L, which is useful
for mathematical analysis.

Since we’ve seen that the minimizer of L̂(u) coincides with the solution of the
PDE, ideally, we would use it as the loss of the neural network. But since the
integrals need to be approximated, we have to settle for (3.4). This raises the
question whether it is a good idea at all to minimize (3.4. Oosterlee et al. have
argued that it is, as follows.
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3.3. Interior and boundary loss weights

It has been shown (Theorem 1 in [8]) that if boundary value problem (3.3) is
well-posed (meaning that a solution exists, is unique and depends continuously
on boundary conditions), and if the exact solution is given by û, then for any
ε > 0 there exists a δ > 0 such that

L̂(u) < δ =⇒ ||u− û|| < ε (3.6)

where the authors used the L1 norm for ||.||. This means that if some accuracy
ε is desired for the computed solution u, one can always find a bound on the
loss functional. Therefore, it is likely that if the value of L̂(u) is small, that the
computed solution is accurate. Furthermore, it is reasonable to assume that (3.4)
is a good approximation for (3.5), given a sufficiently high number of collocation
points. Thus, it is also likely that if L(u) is small, that the solution is also accurate.

But eq. (3.6) tells us more. It also justifies using a neural network for the
purpose of minimizing the loss L(u). Although neural networks can approximate
functions arbitrarily well, they cannot represent all functions exactly. Thus it is
unlikely that it finds the exact minimizer of L(u). However, (3.6) tells us that this
is not a problem: approximating the minimzer can still result in accurate solutions.

Due to the current discrepancy between the theory of machine learning and
the performance of neural networks, it is not clear whether neural networks can
indeed reach a sufficiently low value for the loss. This needs to be investigated
by doing experiments. One thing that could complicate this, is that the loss
functional L̂(u) has local minima. This would translate into local minima in the
parameter space Θ of the neural network, which do not need to be of similar
quality. It turns out however, that if (3.3) represents a linear PDE (which is
the case for the convection-diffusion equation), that not only are there no local
minima in the loss functional, but it is even convex[8]. That is, for any two
functions u1(x) and u2(x) represented by a neural network, and for any t ∈ [0, 1]
the inequality

L̂(tu1 + (1− t)u2) ≤ tL̂(u1) + (1− t)L̂(u2)
holds. This does not mean that the parameter space Θ has no local minima
for the loss function L. In fact, local minima in this parameter space is very
common in any application of neural networks, but in many applications this is
not problematic. This somewhat justifies the use of local optimization algorithms
like L-BFGS-B instead of global ones.

3.3 Interior and boundary loss weights
By building further on the mathematical analysis of the methods by Raissi et al.
we can modify those methods. Recall that the two components of the loss function
(3.4) may be of different levels of difficulty to minimze. This difference could span
orders of magnitude. Thus it makes sense to introduce a weight λ ∈ (0, 1) for the
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3.3. Interior and boundary loss weights

interior component of the loss function and 1−λ for the boundary component. To
get an idea of what this weight might be, we again need to resort to mathematical
analysis of loss functional (3.5). But now we modify this functional te be

L̂(u) = λ
∫

Ω
N (x, u)2dΩ + (1− λ)

∫
∂Ω
B(x, u)2dΓ (3.7)

where we absorb the constants in front of the integrals in (3.5) into the new loss
weight λ.

It is not immediately clear how we should choose the optimal value for λ, or
how we even should go about analyzing this. One way to do this, is to choose
λ such that there is a strong relation between the value of the loss functional
and the accuracy of the computing solution. That is to say, if we have a low loss
then this corresponds to a computed solution that is close, in some sense, to the
exact solution, and vice versa. In this way, we can be more certain that spending
computational resources to obtain lower losses result in more accurate solutions.

One helpful assumption is that if we put more weight on the interior, lets say,
then it improves the loss on the interior approximately as much as the loss on
the boundary deteriorates. That is, changing the loss weight changes the relative
contributions of the losses, but the total loss stays the same.

Probing this relation between the value of the loss functional and the accuracy
is possible by using the absolute error as a measure for accuracy, so the L1 norm.
However, this is probably not a good idea. From experimental studies, it has
been observed that where the exact solution has large derivatives, the absolute
error on these derivatives is large as well. Therefore, if derivatives of the exact
solution are very small on most of the domain Ω, then this would be easy for a
neural network to approximate without the loss needing to be small. This would
result in a weak relation between the loss and this measure of accuracy. Thus
we could take into account the derivatives as well to measure accuracy, and in
particular some form of relative error. More precisely, we will use the following
definition:

Definition 3.3.1. A candidate solution u is called ε-close to the true solution û
if it satisfies

|Du(x)−Dû(x)| ≤ ε|Dû(x)| (3.8)

where D can be any mixed partial derivative operator of any order, including the
identity. It needs to hold for all D and for all x ∈ Ω.

For example,
Du(x) = ∂10u(x)

∂x2
1∂x

5
2∂x

3
d
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is one such possible D. Now let a general, linear PDE be given by (3.3). For
some computed solution, we would ideally like to find a certain bound on the
left hand side of (3.8), given a bound on the loss functional. That is, we want to
guarantee ε-closeness. Unfortunately, this is currently not proven. However, the
reverse is shown to be true[8]. To be precise, it is shown that if u is ε-close to û,
then it holds that

L̂I(u) :=
∫

Ω
N (x, u)2dΩ ≤ ε2

∫
Ω
N(x, û)2dΩ (3.9)

and
L̂B(u) :=

∫
∂Ω
B(x, u)2dΓ ≤ ε2

∫
∂Ω
B(x, û)2dΓ (3.10)

where N(x, u) is N (x, u) but without the source terms (terms that don’t depend
on u) and each term involving u is taken in absolute value. B(x, u) is similarly
defined. If we now label

MI(û) =
∫

Ω
N(x, û)2dΩ, (3.11)

MB(û) =
∫
∂Ω
B(x, û)2dΓ (3.12)

then we obtain that

L̂(u) = λL̂I(u) + (1− λ)L̂B(u) ≤ ε2 [λMI(û) + (1− λ)MB(û)] (3.13)

Note that the inequalites given by (3.9), (3.10) and (3.13) give necessary conditions
for u to be ε-close to û, but not sufficient ones. This means that if these inequalities
are satisfied, then ε-closeness is possible, for ε given in the above equations, but
not guaranteed. Conversely, if one of these is violated, then ε-closeness is being
ruled out.

Optimal loss weight
Next, we can use the previous discussion to devise a strategy to obtain an
expression for λ that is optimal in some sense. The plan is the following: we
can choose λ such that it is possible for u to be ε-close to û, for as small an
ε as possible. That is, given a fixed total loss L̂(u), we can tweak λ such the
inequalities given above are satisfied for the smallest possible ε. This ties in
with a previous assumption that L̂(u) stays approximately constant as we vary λ.
Note that with this strategy we cannot guarantee ε-closeness. We can merely
make sure that it is not ruled out, for small ε ideally.

To this end, let u be a candidate solution of a linear PDE so that the loss
value L̂(u) is fixed. We want to derive a new necessary condition for ε-closeness
in just one equation, involving L̂(u), λ and ε. We will see later that (3.13) is not
suitable. Then we want to isolate ε on one side of the inequality, to see which
values of ε satisfy this condition, of which the smallest one is of interest (i.e.
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3.3. Interior and boundary loss weights

using equality). Finally, we can vary λ such that ε is smallest.

To do this, note that

L̂I(u) = 1
λ

[
L̂(u)− (1− λ)L̂B(u)

]
≤ 1
λ
L̂(u) (3.14)

since the boundary loss L̂B(u) is non-negative. Similarly, we find

L̂B(u) ≤ 1
1− λL̂(u) (3.15)

which gives rise to new necessary conditions

L̂I(u) ≤ 1
λ
L̂(u) ≤ ε2MI(û) =⇒ L̂(u) ≤ ε2λMI(û) (3.16)

L̂B(u) ≤ 1
1− λL̂(u) ≤ ε2MB(û) =⇒ L̂(u) ≤ ε2(1− λ)MB(û) (3.17)

and they can be combined into

L̂(u) ≤ ε2min{λMI(û), (1− λ)MB(û)}. (3.18)

Next, we can isolate ε:

ε ≥

√√√√ L̂(u)
min{λMI(û), (1− λ)MB(û)} (3.19)

which represents all ε for which u may possibly be ε-close to û. As stated, we are
interested in the smallest such ε, so we can use equality. Finally, we can minimize
ε under this constraint, by varying λ. But minimizing√√√√ L̂(u)

min{λMI(û), (1− λ)MB(û)}

is equivalent to minimizing

1
min{λMI(û), (1− λ)MB(û)} = max

{
1

λMI(û) ,
1

(1− λ)MB(u)

}
.

The smallest maximum occurs when both arguments are equal, since the
arguments change continuously with λ. Thus we finally obtain

λMI(û) = (1− λ)MB(û) (3.20)

which implies that
λ = MB(û)

MB(û) +MI(û) . (3.21)

which is the optimal loss weight in a sense that we just described. It should be
noted that information about the exact solution is needed to compute this λ, which
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is often not available. However, we can also estimate this λ by replacing û with
the approximated solution u in the right hand side of (3.21). This approximated
value for (3.21) can be iteratively updated after each iteration of training the
neural network. Depending on the boundary conditions of the particular problem
though, it may be possible to compute MB(û) in advance.
However, using this heuristic for λ can present problems for certain PDEs, in
particular, those that admit a trivial solution on the interior of the domain. That
is, a trivial solution u = 0 that solves the PDE but does not necessarily obey the
boundary conditions. This is because MI(u = 0) = 0 and L̂I(u = 0) = 0 which
implicates that

L̂(u = 0) = λL̂I(u = 0) + (1− λ)L̂B(u = 0) = 0. (3.22)

Thus, using this heuristic for λ, the loss can be completely minimized with the
trivial solution. To remedy this, the authors used a scaling factor[8] for the
modified loss functional which they called magnitude normalization. In this paper
this heuristic will not be investigated, as we know the exact solution for our toy
problem.

3.4 Deep Least Squares
The idea of translating a PDE into a minimization problem, namely finding
the minimum of some loss functional, is certainly not new. A method that
is more advanced than the finite difference method, called the least squares
finite element method (FEM), extensively makes use of such a functional. The
functional given by (3.5) can be seen as a least squares (LS) formulation, since the
problem is formulated as minimizing the integral or sum of some squared function.

Lazarov et al. (1994) have studied[1] a different functional though, that is
somewhat related to (3.5), in the context of FEM. There they studied second
order (elliptic) PDEs and decomposed it into a system of first order PDEs. Then,
they assembled a least square functional similar to (3.5), which they called
the First Order System Least Squares (FOSLS) functional. However, (3.5) is
the square of an L2 norm which they did not use. Instead, they used more
advanced norms related to Sobolev spaces, which is beyond the scope of this text.
Moreover, they did not include a term to enforce the boundary conditions into
the functional. This was not problematic back then, as finite element methods
are not as challenged with the boundary conditions as artificial neural networks.

While Lazarov et al. have extensively analysed this FOSLS functional theor-
etically, Chen et al. have proposed to apply these ideas to PINNs[2]. Also, in
[2] they summarized the most relevant theoretical results from ([1]). First, we
will introduce this theoretical FOSLS functional. Then, we can modify it into a
loss function that an artificial neural network is able to work with. Now let us
introduce the problem that these methods have been applied to.
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Problem formulation
Let Ω again be a bounded domain in Rd with boundary ∂Ω = ΓD ∪ ΓN with ΓD
the part of the boundary where a Dirichlet boundary condition will be imposed
and ΓN the part with a Neumann boundary condition. Let a second order partial
differential equation be given by

−∇ · (A∇u) +Xu = f in Ω (3.23)

and with boundary conditions

u = gD on ΓD (3.24)
−n · A∇u = gN on ΓN (3.25)

where f, gD and gN are given functions, A(x) is a symmetric matrix of func-
tions and X is a linear differential operator of order at most one (for example,
Xu = 4 ∗ ∂u/∂x1). Now if f, gD and gN are sufficiently well behaved functions,
then it is known that this problem is well-posed. One of those regularity con-
ditions is that f needs to be in L2(Ω), the space of square integrable functions
over domain Ω. The other two (gD and gN ) need to be in certain spaces that are
more generalized Sobolev spaces.

Next, we can transform the second order PDE into a system of first order PDEs
by introducing the variable σ = −A∇u. Hence we obtain the new formulation:

∇ · σ +Xu = f in Ω (3.26)
σ + A∇u = 0 in Ω (3.27)

with boundary conditions

u = gD on ΓD (3.28)
n · σ = gN on ΓN (3.29)

FOSLS formulation
For this problem, the FOSLS functional, as obtained from [1], is given by

G̃(u,σ, f) = ||∇ · σ +Xu− f ||2 + ||A−1/2σ + A1/2∇u||2 (3.30)

with f = (f, gD, gN) representing the data and ||.|| represents the L2 norm. The
second term enforces (3.27) by multiplying that equation by A−1/2 and taking
the norm of the residual. The power of matrix A should be interpreted as follows.
If A is a symmetric positive definite matrix, then there exists a matrix B such
that A = BBT . This is the Cholesky decomposition. In this case, A1/2 is defined
as this matrix B and A−1/2 = B−1.

The FOSLS formulation of the original second order PDE is now to find the
minimum of this functional for sufficiently well behaved u and σ. Note that this
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functional does not explicitly enforce the boundary conditions. From theoretical
results in [1] (coercivity and boundedness of (3.30)) it can be concluded that this
minimization problem is well-posed.

As stated before, (3.30) is not as suitable for PINNs as for the FEM, since
the boundary conditions are not explicitly enforced. These boundary terms are
added to the loss functional G̃ to obtain G. Due to the regularity constraints of
the solution and of the data, for these extra terms a different norm is used. The
modified functional becomes

G(u,σ, f) = ||∇ · σ +Xu− f ||2 + ||A−1/2σ + A1/2∇u||2

+ αD||u− gD||21/2 + αN ||n · σ − gN ||2−1/2
(3.31)

where ||.||1/2 and ||.||−1/2 are norms on Sobolev spaces. Again it follows from
functional analysis that minimizing this funtional is a well-posed problem. Here,
αD and αN are scaling factors. These might be needed, because the norms are
not of the same scale, meaning, they could differ orders of magnitude. This is
because the functions inside those norms are constrained by different levels of
regularity.

Due to the regularity constraints on the solutions u and σ, not every activation
function can be used inside the neural network. In particular, for regular PINNs
the activation function is not allowed to be piecewise linear. This excludes the use
of the so called ReLU function, which is defined as max{0, x} for x ∈ (−∞,∞),
which is a very popular choice in state-of-the-art deep learning methods. For
FOSLS, this restriction is not present, but we still will not consider the ReLU
function.

Deep FOSLS
Now we have set the theoretical foundation to apply deep learning to this problem.
An artificial neural network can be used to approximate the functional given by
(3.31) and use this approximation as its loss function. In [2], this approximation
is done differently than in previous sections. Here, the approximation looks more
like a Riemann sum. To this end, the domain of computation Ω is split into a
partition of open sets T , meaning that the union of the closure of its elements is
Ω. Similarly, let ED and EN be a partition of ΓD and ΓN respectively. Let xT be
an interior point of T ∈ T and let xE be an interior point on a boundary part
E ∈ ED or E ∈ EN . Let |.| denote the volume or measure of such an interior or
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boundary part. The loss function is now given by

L(u,σ, f) =
∑
T∈T

[∇ · σ(xT ) +Xu(xT )− f ]2 |T |

+
∑
T∈T

[
A−1/2σ(xT ) + A1/2∇u(xT )

]2
|T |

+ αD
∑
E∈ED

[u(xT )− gD]2|E|

+ αN
∑
E∈EN

[n · σ(xT )− gN ]2|E|3

(3.32)

Note that the third and fourth term might need local scaling factors when the
norms of (3.31) are approximated by weighted L2 norms.

The first two terms correspond to the PDE, while the last two terms enforce
the boundary conditions. As such, we can experiment with different weights.
We can give the first two some weight λ and the last two the weight 1 − λ. It
is not clear whether the optimal weights derived in [8] will provide good results
for this FOSLS formulation. This is because in [8] they analyzed a different loss
functional, and that analysis does not directly translate over to this formulation.
Thus, to rigorously analyze optimal weights for the FOSLS functional, we would
have to start from scratch. Still, it is interesting to see if (3.21) happens to work
out for this FOSLS functional.

In addition, it is possible to give all four terms separate weights, but that is a
suggestion for further research. As guidance, we will only state that from some
limited experimentation, we have found that if a Dirichlet boundary condition on
σ is imposed at x = 1 instead of the Dirichlet condition for u, then sometimes
σ does not seem to be the derivative of u. This suggests that a higher weight
should be given to the fourth term of eq. (3.32), which enforces the relationship
between σ and u. We will not elaborate on these experiments.
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CHAPTER 4

Implementation

In this chapter we discuss how the theory in the previous chapter should be
applied to the convection diffusion equation, in particular boundary value problem
(1.2). In addition, we will discuss how to implement this application in Python
code. This discussion will take place along all the methods previously discussed.
There will be two classes of Python implementations. For general PINNs as
described by Raissi et al. we have used DeepXDE, which is a Python library
developed by Lu et al.[4] This library is also used to implement custom weights
for the interior and boundary losses for the general PINN. To implement the
FOSLS functional along with capabilities for custom weights, we have written
our own code, which is loosely based on code written by Raissi et al. Since we
are interested in convection-dominated convection-diffusion, we can take v = 1
for simplicity and gradually decrease ε to increase the difficulty of the problem,
in eq. (1.2).

4.1 General PINNs and custom weights for
convection-diffusion

In section 3.2, after eq. (3.4), we have formulated what the operators N and B
are for our particular problem. It then follows that the general loss function for
1D convection-diffusion is given by

L(u) = λ
( 1
N

N∑
i=1

[−εu′′(xi) + u′(xi)]2
)

+ (1− λ)
(

[u(1)− 1]2 + u(0)2
)

(4.1)

with N the number of collocation points on the interior of [0, 1] and
{xi : i = 1, .., N} the set of all these points. These points can be chosen
to be equidistant, but in the DeepXDE library they are randomly sampled. Eq.
(4.1) represents the unweighted loss function (or equivalently, with λ = 1/2). We
will now derive the theoretically optimal weight according to eq. (3.21).
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Note that for the exact solution u of boundary value problem (1.2) the
following expressions hold:

u(x) = ex/ε − 1
e1/ε − 1 (4.2)

u′(x) = 1
ε

ex/ε

e1/ε − 1 (4.3)

u′′(x) = 1
ε2

ex/ε

e1/ε − 1 (4.4)

Note that, as explained after eq (3.10), for our problem N (x, u) = −εu′′(x)+u′(x)
so that

N(x, u) = εu′′(x) + u′(x) = 2
ε

ex/ε

e1/ε − 1 := ξex/ε (4.5)

with ξ defined as (2/ε)/(e1/ε − 1). Next, it follows from eq (3.11) that

MI(u) = ξ2
∫ 1

0
e2x/εdx = ξ2 ε

2
[
e2x/ε

]1
0

= ξ2 ε

2
(
e2/ε − 1

)
(4.6)

Similarly, for our problem, B(1, u) = u(1) − 1 and B(0, u) = u(0) − 0 so that
B(1, u) = u(1) and B(0, u) = u(0) = 0. Note that boundary integrals on one
dimensial domains simply become evaluations at the boundary, so that eq. (3.12)
becomes

MB(u) =
∫
∂Ω
B(x, u)2dΓ = (u(1))2 + (u(0))2 = 1 (4.7)

For a given value of ε, we are now ready to evaluate λ using eq. (3.21). Note
that for very small ε, the interior weight λ is also very small, which may result
in the underlying physics being ignored. On the other hand, for thin boundary
layers, the solution looks like a trivial solution for most of the domain. By doing
algebraic manipulations it is easy to see that for small ε, λ ≈ ε/2. Fortunately, the
weighted and unweighted loss function can easily be implemented in DeepXDE.

4.2 DeepXDE
DeepXDE is a Python library that makes it easy for researchers and students, who
are not so skilled in either Python programming or machine learning, to implement
artificial neural networks for solving time-dependent and time-independent PDEs.
This is accomplished by encoding the neural network, the loss function and the
training process in different files, that the user does not need to modify. The user
simply needs to write one Python script where the user states the problem to be
solved and what parameters should be used, such as the number of collocation
points, the desired neural network architecture, the activation function and the
loss weighs for the interior and boundary losses. To accommodate students, the
author has written several example files where various PDEs are being solved.
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There it can be seen that the PDE should be formulated in the general
form N (x, u) = 0 and that the Python function pde(x,u) returns N (x, u).
Furthermore, the func function can be used to specify the boundary conditions
by stating the exact solution, but it also suffices to return an arbitrary function
that coincides at the boundary. But the exact solution is needed if you want to
use this function to plot the exact solution. However we do not recommend this.
It is easier to seperately code the exact solution for plotting purposes to take
care of OverFlow errors. In particular, while the exact solution u(x) ∈ [0, 1] for
any x ∈ [0, 1], it is the fraction of two very large numbers (for small ε), as in
eq. (4.2). Python has trouble doing arithmetic with large numbers. To remedy
this, the decimal library can be used. It is cumbersome to implement this in
the func function as this function is being used multiple times by the algorithm,
with arrays of different lengths for the input x each time.

Furthermore, one needs to create a deepxde.Model object, that represents
the problem to be solved and the neural network architecture used. Then,
model.compile needs to be called, which has an optional argument called
loss_weights. Here the custom loss weights for the interior and boundary loss
can be implemented, by passing to this argument a 1× 2 Numpy array containing
[interior weight, boundary weight].

After training is done, one can call model.predict(x,operator=pde) to
obtain an array of residuals, for the array of interior points x. To obtain the
computed derivative of u, a new Python function can be implemented that
returns this derivative, and this can be called by the operator argument of
model.predict.

As configurable as DeepXDE is, it also has its limitations. It cannot be used
to implement the FOSLS functional because we need a special kind of neural
network structure, as we will see. We can only increase the size of the network,
but not modify its sparsity structure. It is also not easy to modify the loss
function more than just scaling it, which is another reason why it is hard to
implement FOSLS. Finally, it is not possible to modify the interior and boundary
weights during training. This would be needed to implement approximations for
λ in eq. (3.21) or to use magnitude normalization (see section 3.3), but this is
not relevant for this paper.

4.3 Implementing the FOSLS functional
For our boundary value problem we need to find an appropriate expression for
the loss function given by eq. (3.32). To this end, lets translate eq. (3.23) for 1D
convection-diffusion. In this case A = ε and the nabla operators are simply first
derivatives, ∂/∂x. Next, Xu = ∂u/∂x and f = 0. It follows that in 1D, σ is a
scalar and is given by σ(x) = −εu′(x). Furthermore, ΓD = {0, 1} and ΓN = ∅ so
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that the fourth term of (3.32) vanishes. The powers of matrix A can be replaced
by ordinary scalar powers of ε. If the interval [0, 1] is split by an equidistant grid
of points, with distances ∆x (including the endpoints), then |T | can be replaced
by ∆x in the loss function. As for |E|, this factor is not needed since the third
term of (3.32) will represent an approximation of the zero-th dimensional integral
embedded in the norm of the third term of (3.31). Instead, we can for this term
just use evaluations at the boundary. In conclusion, the weighted loss function
becomes

L(u, σ) = λ

 N∑
i=1

[
σ′(xi) + u′(xi)

]2
∆x+

N∑
i=1

[ 1√
ε
σ(xi) +

√
εu′(xi)

]2
∆x


+ (1− λ)

[u(1)− 1
]2

+ u(0)2

 (4.8)

To test the equally weighted boundary and interior loss, we can take λ = 1/2.

Neural network for FOSLS
The authors of [2] argued that since u and σ are independent, an efficient strategy
is to implement a branched neural network, so that training the two outputs can
occur independently. The branched network can have the following form.

Figure 4.1: A branched neural network to implement the FOSLS functional.

The number of hidden layers and the number of neurons per hidden layer can
be adjusted. The authors used four hidden layers. In our implementation, we
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always use a neural network that is symmetric in the upper and lower branch.
Note that the network is dense to the first hidden layer, meaning that every
neuron from the input layer is connected to every neuron in the second layer.
This is also the case if we choose two inputs: one for x and one for ε. There are
no connections between the branches to keep the training separate. Within each
branch, the layers are again densely connected.

Recall from chapter 2 that a network diagram merely represents a composition
of matrix multiplications and activation functions. Normally, neural networks are
densely connected which result in dense weight matrices. For branched networks,
the weight matrix from one hidden layer to the next is a block diagonal matrix
with four blocks. Each of the four blocks has the same number of rows and
columns and can be non-square. This also holds for the matrix corresponding to
the last hidden layer to the output layer. This obviously doesn’t hold for the first
weight matrix (from input to first hidden layer) which is a dense matrix.

These weight matrices, along with the bias vectors, are normally passed over
to the optimizer as the variables to be optimized. We cannot do this with block
diagonal matrices however, since there is no guarantee that after optimization, the
matrices stay sparsely structured. Instead, the variables passed to the optimizer
should be the upper left and lower right blocks of the weight matrices. After each
iteration of training, these blocks should be reassembled into a block diagonal
matrix to do the matrix multiplications and compute u and σ, as well as the
loss function. In Tensorflow, this can be done by horizontally concatenating
the upper left block with a matrix consisting of zeros of the same dimension.
To do this use tf.concat([W1,O],1). The same should be done for the lower
right block. Finally, we can vertically concatenate these wide matrices with
tf.concat([A,B],0).

4.4 General remarks
As stated before, it is problematic to compute e1/ε if ε is small. This can be fixed
by using the Decimal library. Not only should this be done when computing the
exact solution, but also when computing λ using eq. (3.21).

From experiments it has become clear that the parameter space Θ is difficult
for the optimizer L-BFGS-B to navigate through. It seems like the loss function
is relatively flat for a large portion of the landscape, while there might be a
metaphorical sink somewhere that is difficult to find. One way to observe this is
to run the same code a few times but not obtaining the same results. Another
way it became clear was when sometimes the value of the loss barely changes
for thousands of iterations, when suddenly it does find the sink and it descends
rapidly. Therefore, the hyperparameters of the optimizer should be configured
such that the training process does not stop too early.
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4.4. General remarks

We have observed that it is good practice to not limit the maximum number
of iterations below 15000. Furthermore, the algorithm can stop when the norm
of the projected gradient of the loss function gets below a certain threshold,
called the gtol parameter. This should be avoided though, as it turns out that
better solutions can be obtained if we continue the training process. This can be
done by setting the gtol parameter of L-BFGS-B, which is the threshold for the
gradient under which training stops, to 1e-8. Setting this too low might not be a
good idea, as rounding errors from decimal expansions to binary expansions can
start to play a role. This helped to greatly reduce the unpredictability of the
outcome. In DeepXDE this is done by modifying the train.py file.

Another aspect that can cause L-BFGS-B to terminate early, is using single-
precision floating point data. Instead, double-precision should be used. This is
easily done in the DeepXDE library by modifying the config.py file. Without
DeepXDE, one needs to initialize all variables with datatype tf.float64. With
single precision, none of the methods presented in this paper managed to create
a good solution for ε as high as 0.01. However with double-precision, we were
able to take ε orders of magnitude lower and still get good results.
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CHAPTER 5

Experiments

In this chapter we will compare all the methods described in chapter 3. For
notational convenience, the general loss function given by (4.1) we will label LG
and the FOSLS loss function given by (4.8) we will label LF . Let us denote the
optimal weight given by (3.21) by λ̂. Since this value for λ is optimal in a vague
sense, we will also use the weight λ = 50λ̂ and λ = λ̂/50 for both LG and LF . We
will also call this the supra-optimal and infra-optimal weight, respectively. Recall
that it is even less clear if λ̂ is optimal for LF since the optimality was derived
under different settings. For all experiments we will investigate the computed
solution u as well as the computed du/dx.

To measure the quality of a solution, we can compare the plot to the plot
of the exact solution. But we can also compute the relative L2 error, which is
computed as

Relative L2-error = ||u− û||
||û||

(5.1)

where a thousand equidistant points are used on [0,1] to approximate these norms.

5.1 Performance of the general loss function
From preliminary testing it became clear that the hyperbolic tangent function
outperformed the sigmoid function, thus only tanh is used in this paper. This
may explain why the next results are better than the ones in [8]. There, the
unweighted loss LG caused an L2 error in the order of 1e0 for ε < 10−2 while here
the error is one order of magnitude smaller for ε = 10−4 (Table 5.1). For LG, we
take a neural network with 4 hidden layers and 20 neurons per layer. For LF , we
also take 4 hidden layers but 14 neurons per layer per branch. This amounts to
approximately an equal number of parameters for both networks (1321 for LG
and 1346 for LF ).

The following tests are conducted by varying magnitude of ε and the number
of collocation points N in the interior of [0,1] (Table 5.1 and A.1). In Fig. 5.1
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5.1. Performance of the general loss function

we see that the error of 0.89 corresponds to a thin boundary layer like the exact
solution. But if we look close (Fig. 5.2) we see that this boundary layer is not
as thin as desired. The derivative has not been approximated well. This can
also be seen in Table A.1. An error of 1 for σ usually means that σ is close to
the zero function. It is remarkable that taking too many collocation points can
negatively impact the solution (Fig. 5.3). There it can be seen that neither the
boundary conditions are being obeyed nor the PDE. A partial solution is to give
more weight to the boundary conditions, as in Fig. 5.4 to satisfy those. However
this does not solve the fact that the PDE is neglected. From Table 5.1 it seems
that N = 128 is ideal.

Unweighted, LG, error u
ε 64 128 256 512 1024

1e-5 3.15e+01 8.92e-01 1.59e+01 1.59e+01 1.59e+01
1e-4 1.82e+00 3.83e-01 1.59e+01 1.59e+01 1.59e+01
1e-3 1.72e+00 1.90e+00 1.48e+01 1.48e+01 1.48e+01
1e-2 6.66e+00 3.24e-05 9.45e-06 1.04e-05 2.24e-05
1e-1 2.39e-05 2.47e-05 2.17e-05 3.59e-05 5.59e-05

Table 5.1: Relative L2 error for u using loss LG with λ = 1/2 for various numbers
of collocation points.

Figure 5.1: The unweighted loss LG for ε = 10−5 and N = 128

For the optimally weighted loss LG, it seems the method is very fragile for
small diffusion (Table A.2 and A.3). However for ε = 10−1 the solution can
be up to two orders of magnitude more accurate (using N = 512) than using
the unweighted loss. The supra-optimal weight seems to be much more stable,
if the number of collocation points is chosen correctly (Table A.4 and A.5).
Again, N = 128 performs best. Note that for ε = 0.1, this method violates the
assumption that λ ∈ (0, 1). Still, it is remarkable how unstable this method
becomes for this ε, because λ > 1 is equivalent to some λ > 1/2 and scaling the
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5.2. Deep least squares performance

Figure 5.2: Zoomed in on Fig. 5.1

loss function (the ratio between interior and boundary loss matters).

Using LG with λ = λ̂/50 is even a more fragile method than using λ = λ̂

(Table A.6 and A.7). It seems that the weight λ̂ was already too small and λ̂/50
makes it worse. Approximating the derivative du/dx using LG remains difficult
for all loss weights tested.

Figure 5.3: The unweighted loss LG for ε = 10−4 and N = 1024

5.2 Deep least squares performance
Next, we will investigate the performance of LF for various loss weights. For
the unweighted loss, the performance is comparable to to the unweighted loss
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5.3. Modifying the neural network architecture

Figure 5.4: The loss LG with λ = λ̂, ε = 10−4 and N=1024

function LG (Table A.8). For ε = 10−5, this time the best result is obtained for 64
collocation points, where the graph is similar to Fig. 5.1 but with slightly thicker
boundary layer. For other values of ε, the lower three values forN are good choices.

The choice λ = λ̂ again results in poor accuracy for ε ≤ 10−3 (Table A.10).
The infra-optimal weight gives very similar results (Table A.13). Comparing
λ = 50λ̂ to λ = 1/2, we see that the accuracy slightly deteriorates (Table 5.2).
For 64 collocation points and ε = 10−5, u has a relative L2 error of 6.04 which
is illustrated in Fig. 5.5. We see that there is some instability around both
boundary points.

Supra-optimal weight, LF error u
ε 64 128 256 512 1024

1e-5 6.04 18.2 18.2 18.2 18.2
1e-4 18 4.97 17.9 18.2 18.1
1e-3 1.1 9.03 0.421 0.694 15.5
1e-2 7.86e-03 1.85e-03 3.45e-04 1.11e-03 1.33e-03
1e-1 5.92e+151 inf 8.67e+151 1.04e+145 8.44e+151

Table 5.2: Relative L2 error for u using loss LF with λ = 50λ̂ for various numbers
of collocation points.

5.3 Modifying the neural network architecture
Neural networks are in essence black box algorithms. To make the inner workings
more interpretable, we can modify the shape as follows. We can use five hidden
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5.3. Modifying the neural network architecture

Figure 5.5: Output using LF , λ = 50λ̂, N = 64 and ε = 10−5

layers, with the first layer having sufficiently many neurons. Then, we can take the
next layer having less neurons while the third layer has a very limited number of
neurons. The fourth and fifth layer increase in size the same way it was decreased.
If the third layer has M neurons and we can obtain good results, then this means
that the solution space can somehow be parametrized using M parameters. This
approach also gives insight into the possibilities of decreasing computation time
by decreasing the size of the neural network. Using the non-branched neural
network, we have obtained the following result.

M 1 2 3 4 5 6 7 8
error u 6.96 4.32 2.9e-04 4.2e-05 1.1e-04 6.5e-05 3.7e-05 2.4e-04
error σ 0.99 0.60 2.9e-05 1.8e-05 1.6e-05 2.7e-05 2.3e-05 2.4e-05

Table 5.3: Using the unweighted loss LG with 5 hidden layers having number of
neurons per layer (20,10,M,10,20). Here ε = 10−2 and N = 128.

These results suggest we need at least three neurons in the middle layer, which
in turn indicates that the solution space is three dimensional. For the branched
neural network we have done a similar experiment, where the number of neurons
in the middle layer is equal to M in each branch (Table 5.4).

M 1 2 3 4 5 6 7
error u 0.03 0.11 0.05 0.01 0.03 0.03 0.10
error σ 0.03 0.20 0.04 0.02 0.04 0.06 0.19

Table 5.4: Using the unweighted loss LF with 5 hidden layers having number of
neurons per layer (15,7,M,7,15) in both branches. Here ε = 10−2 and N = 64.

Note that M = 1 seems enough, although the solutions are not as accurate as
the previous experiment.

29



5.4. Training with ε as input

5.4 Training with ε as input
Additionally, we’ve implemented a neural network for the FOSLS functional
having inputs x as well as ε. In this way, a solution can be quickly computed
for any value of ε (within a certain range) by a pre-trained network. As seen in
Table 5.5, this resulted in relatively inaccurate approximations. This makes sense
because training a network for a very specific task should logically provide better
results than training a network for a range of tasks. Here the interval for ε is
[10−3, 10−5]. Using this method, usually the boundary layer is too wide and this
width stays approximately constant for different values of ε.

# col. points 16 32 64 128
error u, ε = 10−3 0.93 29.2 29.0 1.03
error σ, ε = 10−3 3.54 2.92 3.61 0.86
error u, ε = 10−5 1.34 31.4 31.2 1.36
error σ, ε = 10−5 3.16 2.31 3.80 1.07

Table 5.5: Using a branched neural network with inputs x and ε for various
number of collocation points within the ε-domain. The number of points for x is
always 64.
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CHAPTER 6

Conclusion and outlook

In this paper we have compared four methods involving PINNs to compute
solutions to the 1D advection-diffusion equation. These methods involve: the or-
dinary PINN functional LG, weighted and unweighted and the FOSLS functional
LF , weighted and unweighted.

We have seen that the loss weight λ̂ that is optimal according to [8] did in
fact not produce accurate results when we’ve applied this to LG, which was
surprising because it was derived for this loss function. It also did not perform
well when it is applied to LF , which is less surprising. We did find that, using
LG, a slightly amplified loss weight (50λ̂) produced much better results than
λ̂ for high diffusion, but for low diffusion, λ̂ with LG performed the best of all
methods tested. Using LG with no weights as well as 50λ̂, we obtained stable
solutions for very large diffusion (ε = 10−5), although the boundary layer of the
computed solution was still too thick. The same holds for the method with LF
with no weights (λ = 1/2). Any other weights applied to LF further destabilized
the method.

A lower weight than λ̂ proved to be not useful at all, for both LG and LF .
Furthermore, it seemed disadvantageous to include too many collocation points,
due to convergence problems of the optimizer. Intuitively, more collocation points
should provide more accurate results. This is probably true if the algorithm
converges to a stable solution, but what we obtained is that often the output is
a straight line. Thus, more research could be done on how the algorithm can
be made to converge with a large number of collocation points. This may be
possible with better loss weights than the ones suggested in [8]. Both LG and LF
have performed equally well overall. Moreover, both functionals had problems
approximating the derivative of the solution. The computed derivative was often
the zero function, even though the solution was non-constant. Only when the
solution was very accurate, was the derivative nonzero. This immediately made
the derivative also accurate. To solve this problem in the future, the FOSLS
functional is useful because we can specifically give a weight to the relation
between the solution and its derivative.
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6.1. Further Research

6.1 Further Research
In this paper a very limited setting is used to test various PINN methods. Thus
our implementation of the neural network is not reusable for different problems.
For example, the Python code must be substantially modified to implement the
convection diffusion equation in higher dimensions. It is interesting to see if we
can obtain a similar performance in this new setting. In two dimensions, one
would need to implement a grid of collocation points in the (x, y) plane instead of
an interval, as well as many more points on the boundary of the domain instead
of just two.

Secondly, when using a neural network with inputs x and ε for the 1D problem,
implementing the FOSLS functional, the following extension can be made. We
have seen that the optimal loss weight derived in [8] is not conducive to accurate
solutions, but changing the loss weight does play a role in the accuracy. Perhaps a
neural network can compute the value for λ that is optimal for the given problem.
To this end, we cannot use the same network to do this, as the loss function itself
would be changing every iteration of training and this becomes too complicated
for the optimizer. Instead, an additional neural network could be employed to
first compute λ. Then this value is passed to a second network that computes u
and σ and uses the weighted loss function. This loss is then used to optimize the
parameters of this second network. Finally, the parameters of the first network
are readjusted using the accuracy of u and σ.
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APPENDIX A

Detailed Results

Unweighted, LG, error σ
ε 64 128 256 512 1024

1e-5 1 1 1 1 1
1e-4 1 1.04 1 1 1
1e-3 1.7 1.32 1 1 1
1e-2 0.996 9.07e-05 2.75e-06 5.12e-06 2.16e-06
1e-1 5.32e-05 1.98e-05 5.13e-05 5.77e-05 1.14e-04

Table A.1: Relative L2 error for σ using loss LG with λ = 1/2 for various numbers
of collocation points.

Optimal weight, LG, error u
ε 64 128 256 512 1024

1e-5 18.2 18.2 18.2 18.2 18.2
1e-4 1.92 18.2 18.2 18.2 18.2
1e-3 1.69e+01 1.69e+01 1.69e+01 1.69e+01 1.69e+01
1e-2 2.70e-03 7.02e+00 5.98e-04 7.97e-04 8.30e-05
1e-1 3.07e-06 6.85e-06 2.04e-06 6.94e-07 1.19e-05

Table A.2: Relative L2 error for u using loss LG with λ = λ̂ for various numbers
of collocation points.
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Optimal weight, LG, error σ
ε 64 128 256 512 1024

1e-5 1 1 1 1 1
1e-4 1 1 1 1 1
1e-3 1 1 1 1 1
1e-2 1.48e-03 9.16e-01 2.21e-04 2.29e-04 1.99e-05
1e-1 5.13e-06 8.90e-06 4.12e-06 1.25e-06 1.08e-05

Table A.3: Relative L2 error for σ using loss LG with λ = λ̂ for various numbers
of collocation points.

Supra-optimal weight, LG, error u
ε 64 128 256 512 1024

1e-5 2.04 0.958 18.2 18.2 18.2
1e-4 1.95 18.2 0.645 18.2 18.2
1e-3 2.93e+01 2.93e+01 1.65e+01 1.65e+01 1.65e+01
1e-2 7.10e+00 2.57e-05 2.64e-05 3.40e-05 1.42e-05
1e-1 2.30e+152 2.13e+152 2.93e+148 9.17e+146 3.04e+144

Table A.4: Relative L2 error for u using loss LG with λ = 50λ̂ for various numbers
of collocation points.

Supra-optimal weight, LG, error σ
ε 64 128 256 512 1024

1e-5 1 1 1 1 1
1e-4 1 1 1.02 1 1
1e-3 1.08 1.25 0.999 0.999 0.999
1e-2 0.797 4.03e-05 1.09e-05 1.37e-05 6.17e-06
1e-1 1 1 1 1 1

Table A.5: Relative L2 error for σ using loss LG with λ = 50λ̂ for various numbers
of collocation points.
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Infra-optimal weight, LG, error u
ε 64 128 256 512 1024

1e-5 18.7 20.1 19.7 20 20.7
1e-4 18.2 18.2 18.2 18.2 18.2
1e-3 16.9 16.9 16.9 16.9 16.9
1e-2 13.4 7.51 7.45 5.92 1.96e-02
1e-1 2.13e-05 2.50e-05 1.13e-04 1.53e-05 1.83e-05

Table A.6: Relative L2 error for u using loss LG with λ = λ̂/50 for various
numbers of collocation points.

Infra-optimal weight, LG, error σ
ε 64 128 256 512 1024

1e-5 1 1 1 1 1
1e-4 1 1 1 1 1
1e-3 0.999 0.999 0.999 0.999 0.999
1e-2 3.05 0.986 0.977 0.77 4.18e-03
1e-1 2.21e-05 3.92e-05 1.23e-04 2.76e-05 2.36e-05

Table A.7: Relative L2 error for σ using loss LG with λ = λ̂/50 for various
numbers of collocation points.

Unweighted, LF , error u
ε 64 128 256 512 1024

1e-5 1.26 16.1 16.1 16.1 16.1
1e-4 2.57 16 0.829 16.1 16.1
1e-3 1.26 0.379 13.5 15 14.7
1e-2 1.98e-03 6.60e-03 6.92e-04 2.05e-03 6.76e-03
1e-1 1.39e-05 1.14e-05 2.41e-05 1.04e-05 4.95e-06

Table A.8: Relative L2 error for u using loss LF with λ = 1/2 for various numbers
of collocation points.

Unweighted, LF , error σ
ε 64 128 256 512 1024

1e-5 1 1 1 1 1
1e-4 0.997 0.987 1.08 0.997 0.998
1e-3 1.31 1 0.863 0.974 0.959
1e-2 2.66e-02 7.73e-03 7.01e-04 1.78e-03 5.62e-03
1e-1 1.39e-05 9.28e-06 2.19e-05 1.07e-05 5.65e-06

Table A.9: Relative L2 error for σ using loss LF with λ = 1/2 for various numbers
of collocation points.
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Optimal weight, LF , error u
ε 64 128 256 512 1024

1e-5 18.2 18.2 18.2 18.2 18.2
1e-4 18.2 18.1 18.2 18.2 18.2
1e-3 17.4 16 16.4 10 16.6
1e-2 1.01e-02 1.20e-02 1.49e-03 2.87e-03 1.11e-02
1e-1 8.01e-05 5.59e-05 1.10e-04 2.69e-05 4.08e-05

Table A.10: Relative L2 error for u using loss LF with λ = λ̂ for various numbers
of collocation points.

Optimal weight, LF , error σ
ε 64 128 256 512 1024

1e-5 1 1 1 1 1
1e-4 0.996 0.994 0.996 0.996 0.996
1e-3 1.12 0.955 0.956 0.662 0.977
1e-2 1.30e-02 1.38e-02 1.46e-03 1.61e-03 1.58e-03
1e-1 6.11e-05 4.15e-05 8.88e-05 2.95e-05 4.32e-05

Table A.11: Relative L2 error for σ using loss LF with λ = λ̂ for various numbers
of collocation points.

Supra-optimal weight, LF , error σ
ε 64 128 256 512 1024

1e-5 1 0.999 0.999 0.999 0.999
1e-4 0.991 0.787 0.983 0.992 0.994
1e-3 0.718 0.813 0.414 0.203 0.918
1e-2 1.35e-02 2.00e-03 3.82e-04 5.99e-04 7.94e-04
1e-1 1.42e+151 inf 1.08e+151 3.24e+143 1.31e+151

Table A.12: Relative L2 error for σ using loss LF with λ = 50λ̂ for various
numbers of collocation points.
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Infra-optimal weight, LF , error u
ε 64 128 256 512 1024

1e-5 19.4 18.5 19.2 19.4 18.8
1e-4 18.2 18.2 18.2 18.2 18.2
1e-3 16.7 16.8 16.6 16.8 16.5
1e-2 1.89e-02 9.80e-02 7.09e-03 3.13e-02 1.78e-02
1e-1 2.75e-04 4.46e-04 3.93e-04 1.52e-04 1.14e-04

Table A.13: Relative L2 error for u using loss LF with λ = λ̂/50 for various
numbers of collocation points.

Infra-optimal weight, LF , error σ
ε 64 128 256 512 1024

1e-5 1 1 1 1 1
1e-4 0.998 0.998 0.998 0.998 0.998
1e-3 0.997 0.989 0.979 0.99 0.966
1e-2 2.42e-02 5.73e-02 6.27e-03 2.32e-02 1.30e-02
1e-1 2.84e-04 2.76e-04 3.07e-04 1.45e-04 1.73e-04

Table A.14: Relative L2 error for σ using loss LF with λ = λ̂/50 for various
numbers of collocation points.
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