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Summary 
 
Marchenko redatuming retrieves Green’s functions inside an unknown medium, by solving a set of 

coupled Marchenko equations, which are derived from an under-determined system of 

equation and two temporal truncations. To constrain the problem, two assumptions are made, which 

hold reasonably well for acoustic, but not for elastodynamic waves. First, an early part of the inverse 

transmission field is needed which can be estimated for sufficiently-simple acoustic cases, but remains 

hard to predict for elastic media without detailed overburden knowledge. Secondly, the scheme assumes 

temporal separability of up-going focusing and Green’s functions, which holds for many acoustic media 

but easily fails in presence of elastic effects. The impact of the failure to meet these assumptions is a 

somewhat controllable problem in 1.5D media. Independently, in acoustic media one can use a time-

only focusing to retrieve focusing functions which collapse to a single plane wave below the overburden. 

We apply this approach to elastic data from a very complex almost 1.5D medium. The numerical 

example shows that the plane-wave approach can also be combined with mitigation of failure to satisfy 

the aforementioned assumptions and the result could lead to a high-fidelity internal multiple-free image. 
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Acoustic plane-wave Marchenko multiple elimination applied on complex marine data 
 
Introduction 
Marchenko redatuming is a powerful technique that allows retrieving responses to virtual sources in the 
subsurface by calculating so-called focusing functions from reflection data (for a recent review see 
Wapenaar et al., 2021). Using focusing functions associated with point-source responses to directly 
retrieve a multiple-free image (Zhang and Staring, 2018) can be computationally expensive, because it 
requires repeating the process for numerous redatuming levels. Multiple-free images can also be 
retrieved by employing plane-wave focusing functions which is expected to reduce computational cost, 
but at the price of less illumination compared to Marchenko point-source methods (Meles et al., 2018). 
In general, Marchenko equations can be solved if virtual source responses and focusing functions are 
separable in the time domain, except for an overlap that must be predicted. For acoustic waves, this 
overlap is often as simple as a direct wave, assuming sufficiently widely-spaced and mildly-curved 
reflectors. Elastic media, however, support wave propagation via coupled modes that travel with 
significantly different velocities. Compared to the acoustic case, elastodynamic virtual responses and 
the corresponding focusing functions are much more likely to share a non-trivial temporal overlap 
(Wapenaar, 2014; Reinicke et al., 2020). For predominantly horizontally-layered media, this overlap 
grows with increasing (horizontal) ray-parameters. In addition, elastodynamic mode conversions are 
weak in the vicinity of, and vanish in the limit of zero-incidence. Hence, the resemblance between 
acoustic and elastodynamic reflection data tends to increase with decreasing ray-parameters. As a result, 
the impact of ignoring elastodynamic effects and the associated challenges are less severe for small ray-
parameters. Plane-wave focusing offers the flexibility to initialize the focusing functions for a limited 
illumination where the assumptions of the Marchenko method are better met. Further enhancements can 
be achieved by dip-filtering the reflection data, i.e. reducing the maximum angle of incidence not only 
for the focusing condition but also for the reflection operator. 
Plane-wave focusing can be of great value for seismic processing in regions where (1) the geology can 
be approximated with a 1.5-D assumption, (2) the data is plagued by strong internal multiples and (3) 
the data quality allows for pre-processing with high amplitude fidelity (typically marine data). Staring 
et al. (2021) applied the acoustic Marchenko method on marine data from a region that satisfies points 
(1) - (3).  Next, Reinicke et al. (2021) used a synthetic model, representative for the regional geology, 
to demonstrate that, in this case, neglecting elastic effects only has minor impact on the final migration 
result. We continue this synthetic study to investigate the reliability of applying the acoustic plane-wave 
Marchenko method on elastodynamic reflection data. 
 
Theory 
In the following, we provide a brief overview of elastodynamic single-sided representation theorems 
using plane waves (for more details see Wapenaar, 2014; Meles et al., 2018). Consider a 3D lossless 

elastic medium bounded by a reflection-free surface ∂D0 at the top (vertical spatial coordinate 𝑥3 = 0). 
Single-sided plane-wave representations can be written for acoustic and elastodynamic waves as, 
 

𝐆−,+(𝐱′, 𝐩𝐻 , 𝑥3,𝑓 , 𝜔) = ∫ 𝐑(𝐱′, 𝐱, 𝜔)�̃�+(𝐱, 𝐩𝐻 , 𝑥3,𝑓 , 𝜔)d2𝐱
∂𝐷0

− �̃�−(𝐱′, 𝐩𝐻 , 𝑥3,𝑓 , 𝜔),        (1) 

(𝐆−,−(𝐱′, −𝐩𝐻 , 𝑥3,𝑓 , 𝜔))
∗

= ∫ 𝐑∗(𝐱′, 𝐱, 𝜔)�̃�−(𝐱, 𝐩𝐻 , 𝑥3,𝑓 , 𝜔)d2𝐱
∂𝐷0

 − �̃�+(𝐱′, 𝐩𝐻 , 𝑥3,𝑓 , 𝜔).    (2) 

 
Here, variables in bold capital letters represent wavefields which are scalars for acoustic, and 3x3 
matrices for elastodynamic waves. In the latter case, columns and rows are associated with sources and 
receivers for compressional and shear waves (for details see e.g. Reinicke et al., 2021). The superscripts 

denote down-(+) and an up-(-) going components of the Green's (𝐆−,±) and focusing (�̃�±) functions. 
For the Green's functions, the first and second superscripts are associated with the wavefield direction 
on the receiver- and source-side, respectively.  Complex conjugation (time reversal) is denoted with a 

*. The reflection response 𝐑 is a Green’s function due to a source of the temporal frequency 𝜔 at 𝐱 =
(𝑥1, 𝑥2, 𝑥3)𝑇 and a receiver at 𝐱′ with 𝑥3 = 𝑥3

′ = 0. The focusing function is source-free and has a 

focusing location at 𝑥3 = 𝑥3,𝑓. For the Green's and focusing functions, the source/focusing coordinate 

is separated in horizontal and vertical components with 𝐱𝐻 = (𝑥1, 𝑥2)𝑇 and 𝑥3,𝑓 on ∂𝐷𝑓 (below ∂𝐷0). 

Moreover, a plane-wave decomposition is applied along the horizontal source/focusing locations,  
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𝐆−,±(𝐱, 𝐩𝐻 , 𝑥3,𝑓 , 𝜔) = ∫ 𝐆−,±(𝐱, 𝐱𝐻,𝑓 , 𝑥3,𝑓 , 𝜔)
∂𝐷𝑓

ejωpH⋅xH,fd2𝐱𝐻,𝑓 ,                        (3) 

�̃�±(𝐱, 𝐩𝐻 , 𝑥3,𝑓 , 𝜔) = ∫ 𝐅±(𝐱, 𝐱𝐻,𝑓 , 𝑥3,𝑓 , 𝜔)
∂𝐷𝑓

ejωpH⋅xH,fd2𝐱𝐻,𝑓 ,                           (4) 

 

where 𝐩𝐻 = (𝑝1, 𝑝2)𝑇 is the horizontal ray-parameter. The plane-wave representations in Eqs. 1-2 form 
an underdetermined system of equations that can be solved if a separation operator exists that can 
remove the Green’s functions from Eqs. 1-2. For the acoustic case, Meles et al. (2018) postulate that 
such an operator exists, and demonstrate its performance numerically. The (acoustic) separation 
operator is a point-symmetric time window based on the kinematics of a direct transmission response 

to a plane-wave source at ∂𝐷𝑓  recorded at ∂𝐷0. The existence of an equivalent separation operator 𝚯�̃� 

for the elastodynamic case cannot be guaranteed due to mode conversions resulting in non-trivial 

temporal overlaps of the Green’s (𝐆−,±) and focusing (�̃�±) functions (see Reinicke et al., 2020). 
However, for nearly 1.5-D media, elastic mode conversions exhibit relatively small amplitudes in the 

vicinity of zero-incidence (small ray-parameters 𝐩𝐻). To increase the similarity with the acoustic case 

and reduce the impact of converted waves, dip-filtering can be applied to the reflection data 𝐑 (da Costa 
Filho et al., 2017; Reinicke et al., 2021). 

The focusing function �̃�+can then be expressed in a compact form as follows (van der Neut et al., 2015), 
 

�̃�+ = ∑ ((𝚯�̃�𝐑∗𝚯�̃�𝐑)𝑘�̃�𝑑
+)∞

𝑘=0 .                                                         (5) 

 

The wavefield �̃�𝑑
+ is an initial estimate of the focusing function, which, for simple acoustic cases, 

simplifies to an inverse of a directly transmitted wave and is often approximated by a time reversal of 
the direct transmission modeled in a smooth background model. For more realistic acoustic scenarios, 
the scheme can be augmented to also handle short-period multiples without additional prior knowledge 
(Dukalski et al., 2019). Elastic cases, however, still require a significant amount of additional prior 
knowledge to retrieve the focusing and Green’s functions (Reinicke et al., 2020). Hence, in the 
following, we consider the acoustic, i.e. scalar, form of Eq. 5. After evaluating Eq. 5, we retrieve the 

upgoing focusing (�̃�− = 𝚯�̃�𝐑�̃�+) and the Green’s (𝐆−,±) functions using Eqs. 1-2. A local reflectivity 
and an imaging condition can then be estimated via the (scalar) equations (Meles et al., 2018), 
 

𝐫𝑖𝑚(𝐱𝐻,𝑓 , 𝑥3,𝑓 , 𝐩𝐻 , 𝑥3,𝑓 , 𝜔) = ∫ (𝐆𝑑
−,−)

∗
(𝐱𝐻,𝑓 , 𝑥3,𝑓 , 𝐱′, 𝜔)𝐆−,+(𝐱′, 𝐩𝐻 , 𝑥3,𝑓 , 𝜔)d2𝐱′

𝐷0
,         (6) 

�̃�(𝐱𝐻,𝑓 , 𝑥3,𝑓 , 𝐩𝐻 , 𝑥3,𝑓) = ∫ 𝐫𝑖𝑚(𝐱𝐻,𝑓 , 𝑥3,𝑓 , 𝐩𝐻 , 𝑥3,𝑓 , 𝜔)𝑒𝑖𝜔𝐱𝐻,𝑓∙𝐩𝐻  d 𝜔,                                (7) 

 

where 𝐆𝑑
−,−

 is a propagator in a smooth background (P-wave) velocity model.  

Given the remaining challenges of solving Eq. 5 for elastodynamic data, we propose applying the 
acoustic version of Eq. 5, together with the imaging condition in Eqs. 6-7, on marine data (a pressure-
only component of a full elastic response). For comparison, we repeat the experiment using a fully 
acoustic version of the marine model. 
 
Numerical experiment using complex elastodynamic data 
We investigate the impact of Marchenko multiple elimination ignoring elastic effects using the synthetic 
elastic model shown in Fig. 1a (further details on the model can be found in Reinicke et al., 2021). This 
well-log based model is representative for the geology associated with the field data example by Staring 
et al. (2021) where internal multiples are an outstanding challenge. Due to the predominantly 
horizontally-layered geology, primaries and multiples cannot be easily distinguished based on their 
moveout in pre-stack gathers or their shape after migration. Moreover, multiples create complex 
interference patterns that can disguise low relief structures and stratigraphic traps, which are often of 
high interest.  

By controlling the S-wave velocity (𝑉𝑠) model, we compute acoustic (𝑉𝑠 = 0 below the water bottom) 

and marine (𝑉𝑠 ≠ 0 below the water bottom) reflection data (see Figs. 2a and 2c).  Due to the large ratio 

between P- and S-wave velocities (≈ 2), the acoustic and marine reflection data show significant 
differences towards the edges of the wavenumber-frequency cone. Hence, we apply a wavenumber- 



 

 

83rd EAGE Annual Conference & Exhibition 

Public 

 
Figure 1 (a) The model is parameterized by well-log based P- and S-wave velocities as well as density, 
all of which have identical geometries (only the P-wave model is shown). Migrated images of the plane-
wave Marchenko demultiple results using (b) marine and (c) acoustic reflection data. (d) For 
comparison, we show the migrated image of the acoustic reflection data (i.e. without multiple 
elimination). Colored boxes highlight areas where both Marchenko results (marine & acoustic) improve 
the image quality (compared to the P-wave model). The Marchenko results derived from elastically 
modeled marine and acoustic data are nearly identical. 
 

 
Figure 2 Shot-gathers of the acoustic (a,b) and marine (c,d) reflection data before and after 

wavenumber-frequency filtering. Panels (e-f) respectively show the Green’s function �̃�−,± and the 
wavefield extrapolation result (i.e. without multiple elimination), both derived from acoustic reflection 

data for the focal depth 𝑥3,𝑓 = 1500𝑚. Panels (g-h) are analogous to (e-f) but derived from marine 

data. As in Fig.1, colored boxes highlight improvements due to multiple elimination and the low impact 
of ignoring elastic effects. 
 
frequency filter to reduce the elastic effects in the marine dataset (see Figs. 2b and 2d). Next, we use 
the acoustic and marine reflection data to evaluate 40 iterations of Eq. 5 using an initial focusing 
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function associated with a zero-incidence plane-wave (𝐩𝐻 = 0). This algorithm is evaluated repeatedly 
for focusing depths associated with travel times ranging from 0s to 2s. The results are used to retrieve 

the Green’s functions 𝐆−,± shown in Figs. 2e and 2g. To analyze the impact of the demultiple step, we 

apply wavefield extrapolation with (𝐆𝑑
−,−)

∗
on the source-side of the reflection data (see Figs. 2f and 

2h). Figs. 2e-h show significant differences between the wavefield extrapolation and the Marchenko 
results (see colored boxes). However, the impact of ignoring elastic effects in the marine data appears 
to be negligible for both the wavefield extrapolation as well as the Marchenko result. Subsequently, we 
evaluate Eqs. 6-7 using the acoustic and marine Marchenko results as well as the acoustic data after 
wavefield extrapolation (see Figs. 1b-d). A comparison to the P-wave velocity model demonstrates that 
the Marchenko results reveal structures that are otherwise hidden beneath multiple-borne artifacts. 
Moreover, migration seems to further reduce the impact of ignored elastic effects. 
 
Conclusion 
We investigated the reliability of acoustic plane-wave Marchenko imaging using marine instead of 
acoustic reflection data as input. For this study, we used an almost 1.5-D model that represents a region 
of interest. To minimize the impact of ignored elastic effects, we (1) applied a wavenumber-frequency 
filter and (2) initialized the Marchenko scheme with a zero-incidence plane wave. Our results show that 
the plane-wave Marchenko results provide images that are significantly closer to the velocity model 
than images derived from conventionally redatumed data (i.e. without multiple elimination). The 
Marchenko results derived from marine and acoustic reflection data are nearly identical, which increases 
our confidence of applying the acoustic plane-wave Marchenko method on properly filtered marine field 
data in the future. Follow-up work on the plane-wave Marchenko method will quantify the actual 
reduction of (a) computational costs and (b) quality due to the reduced illumination.  
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