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Abstract— Deterministic blind beamforming algo-
rithms try to separate superpositions of source sig-
nals impinging on a phased antenna array, by using
deterministic properties of the signals or the chan-
nels such as their constant modulus or directions-
of-arrival. Unlike optimal or adaptive methods, the
algebraic methods discussed in this review act on a
fixed block of data and give closed-form expressions
for beamformers by focusing on algebraic struc-
tures. This typically leads to subspace estimation
and generalized eigenvalue problems.

I. INTRODUCTION

In the context of array signal processing, beamform-
ing is concerned with the reconstruction of source sig-
nals from the outputs of an sensor array. This can be
done either by coherently adding the contributions of
the desired source, or by nulling out the interfering
sources. The latter is an instance of the more general
problem of source separation.

Classically, beamforming requires knowledge of a
look direction, which is the direction of the desired
source. Blind beamforming tries to copy sources with-
out this information, relying instead on various struc-
tural properties of the problem.

The first blind beamforming techniques proposed
were based on direction finding. The direction of each
incoming wavefront is estimated, at the same time
producing a beamformer to recover the signal from
that direction. This requires at least that the antenna
array is calibrated. If a source comes in via several
directions (coherent multipath), then direction find-
ing is more complicated. Depending on the situation,
we also need to consider delay spread. Thus, the ap-
plicability of these techniques is much dependent on
the channel conditions and in general requires a small
number of well defined propagation paths per source.

More recently, new types of blind beamformers have
been proposed that are not based on specific channel
models, but instead exploit properties of the signals.
A striking example is the constant modulus algorithm
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(CMA), which separates sources on the fact that their
baseband representation has a constant amplitude,
such as is the case for FM or phase modulated sig-
nals. A prime advantage is that these beamformers
are not dependent on channel properties or array cal-
ibration. For man-made signals, such as encountered
in wireless communications, signal properties are of-
ten well known and accurate, leading to robust al-
gorithms. Several other properties are available, for
example cyclostationarity caused by the bauded na-
ture of digital communication signals or introduced
by small differences in carrier frequencies. Ultimately,
sources can be separated based on their statistical in-
dependence alone.

The paper is a summary of a review centered around
algebraic techniques for deterministic blind beam-
forming [1]. We consider two classes of algorithms:
those that are based on channel properties, and oth-
ers based on signal properties. Despite the fact that
these properties are widely differing, the resulting al-
gorithms show a remarkable homogeneity. All are
subspace-based techniques, and end with a general-
ized eigenvalue problem: the beamformers are found
as the eigenvectors of a simultaneous diagonalization
problem in which several matrices can be diagonalized
by the same (eigenvector) matrix. The message of the
paper is that joint diagonalization is the fundamental
problem for source separation.

II. DATA MODELS

A. Instantaneous miztures

Assume that d source signals s1(t),---,sq4(t) are
transmitted from d independent sources at different
locations. If the delay spread is small, then we will
receive a simple linear combination of these signals:

X(t) = alsl(t) + e+ adsd(t)

where x(t) is a stack of the output of the M antennas.

Suppose we collect a batch of N samples, then
XZAS, A:[al---ad],

where X = [x(0)---x(N —1)] and S = [s(0) -+ - s(N —
1)]. The resulting [X = AS] model is called an instan-
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taneous multi-input multi-output model, or I-MIMO
for short. It is a generic linear model for source sep-
aration, valid when the delay spread of the dominant
rays is much smaller than the inverse bandwidth of
the signals.

The objective of beamforming for source separa-
tion is to construct a left-inverse W of A, such that
WA =T and hence WX = S: see figure 1(a). This
will recover the source signals from the observed mix-
ture. It immediately follows that in this scenario it
is necessary to have d < M to ensure interference-
free reception, i.e., not more sources than sensors. If
we know already (part of) S, e.g., because of training,
then W = SXT, where XT denotes the Moore-Penrose
pseudo-inverse of X. Blind beamforming is to find W
with knowledge only of X.

If each source is received from only a single direc-
tion (no multipath), then the columns of A can be
described by the array response vector a(6). E.g., for
a uniform linear array and a single source,

_ ej27rA sin(a)
0M—1

where « is the direction of the source and A is the
spacing between the elements of the array (in wave-
lengths). Without multipath, the columns of A lie on
the array manifold {a(f) : 0| = 1}.

B. Convolutive miztures

An often-used parametric channel model that is
valid for wideband sources is

T

- [Z a(0;)Big(t — Ti)] * 5(t)

1

x(t) h(t) x s(t) .

Here, it is assumed that the source is digital (more
precisely, a dirac-pulse sequence), linearly modulated
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by a pulse shape function g(¢). The channel is sup-
posed to be a simple multipath propagation channel,
consisting of r distinct paths, each parametrized by a
direction 6;, a relative path delay 7;, and a complex
amplitude (fading) G;.

Suppose that the pulse-shape function g(t) has sup-
port (length) L and that we sample at a rate P. We
can then define the temporal signature vector

9(0 =)
gr)= | 777
g(L—%—)
It is thus seen that h(t) = > 7 a(0;)Fig(t — 7;) has
structure: let g; = g(7;), a; = a(6;), then
h(0
h (1) /81
(%) .
hie | 7 | —gioan g eal|:
h(L— 1) b

The combined vector g(7) ® a(f) is the space-time
response vector. (® denotes a Kronecker product.)

After collecting data samples during N symbol pe-
riods, the convolutive model x(¢) = h(¢) * s(t) can be
written in matrix form as X = HSy, where

_x(Ol) x(1) X x(N —1)
X - X.(ﬁ) x(1+5)
ECOR
h(0) h(L -1)
h(3) :
H = : :
(%) - B(L - 3)
[ so S1 '. SN—2 SN-1
S. = S—1 S0 - SN—2
S_r4+1 SN—L




III. PRINCIPLES OF BLIND BEAMFORMING

A summary of the data model developed so far is

I-MIMO: X =AS, A=]la(61), --,a(6y)]
FIR: X =HS, h=vec(H)

:[g1®ala"'ag1‘®ar]B-

The first part of these model equations is generally
valid for LTI channels, whereas the second part is a
consequence of the adopted multiray model.

Based on this model, the received data matrix X
has several structural properties. In several combina-
tions, these are often strong enough to allow to find
the factors A (or H) and S (or §), from knowledge of
X alone. A number of properties are discussed below.

A. Toeplitz structure

The fixed baud rate of communication signals, along
with time invariance, result in the fact that X has a
factorization in which § is block Toeplitz. This is a
strong property, and allows e.g., the blind equalization
of unknown channels carrying unknown digital signals
with equal baud rates [2-5]. It cannot be used for

source separation, but it is useful for reducing X =
HS to X = AS.

B. Signal modulation structure

The signal modulation structure relates to the in-
stantaneous amplitude of the modulated signal and
includes the symbol constellation. Some typical mod-
ulation structures are listed below.

Constant modulus. In many wireless applications, the
transmitted waveform has a constant modulus (CM).
This occurs e.g., in FM modulation, or in phase mod-
ulation as in GSM. So-called constant modulus algo-
rithms can separate arbitrary linear superpositions of
such signals, by finding out which linear combinations
of the antenna outputs give back signal that have the
CM property. This property is robust and can be used
for blind equalization as well [6-8].

Finite alphabet. Another important structure in dig-
ital communication signals is their finite alphabet
(FA). The modulated signal is a linear or nonlinear
map of an underlying finite alphabet, e.g., {+1,—1}
for signals with a BPSK constellation. As with the
constant-modulus property, it is possible to separate
arbitrary linear combinations of FA signals in a more
or less unique way [9-11].

Distributional properties and independence. More in
general, if the source distribution is known and not

Gaussian, separation is possible by restoring the dis-
tribution functions at the output of the beamformer,
e.g., using maximum-likelihood techniques. Even if
the distributions are not known, we can restore dis-
tributional properties expressing the independence of
sources. This is a vast area of research with many
directions. Algebraic methods are possible by us-
ing higher-order stochastic moments and functions
thereof, such as cumulants; see e.g., [12,13].

C. Temporal and spectral structure

The temporal structure relates to s(t) as well, but
now with regard to its temporal properties. These
can include knowledge of its pulse shape function
and, in the case of CDMA signals, knowledge of the
source codes, but also certain statistical properties for
sources that are temporally non-white.

Temporally non-white and independence. If the sources
are independent and temporally non-white, separa-
tion is possible by using the fact that the cross-
covariance and cross-cumulants of the signals at the
output of the beamformer should be zero for all time
lags. This allows to separate sources, but in this
form cannot be used to equalize them. Often, already
the second-order conditions are sufficient to find the
beamformer; an example of an algebraic technique is
[14].

Cyclostationarity. Many signals exhibit cyclo-stationary
properties, i.e., their cyclic autocorrelation function
RY(1) = E(z(t)z(t — 7)*e 727) is wide-sense sta-
tionary and has spectral lines at selective lags 7 and
frequencies . This is typically caused by periodici-
ties such as the symbol rate in bauded communication
signals, or residual carrier frequencies. If two sources
have spectral peaks for different (o, 7), then they can
be separated based on this [15]. It is usually required
that these parameters are known, although they can
be estimated in specific cases.

For digital communication signals, a straightfor-
ward way in which the cyclostationarity property can
be expressed is by oversampling the antenna outputs.
The samples obtained during one symbol period pre-
sumably give independent linear combinations of the
same transmitted bits, just as antennas give indepen-
dent linear combinations from sampling in space. This
fact was noted first in [2] and has stirred a lot of in-
terest since; see e.g. [3-5]. Although initially called
a second-order technique, the Toeplitz structure is a
deterministic rather than a stochastic property.



D. Parametric properties

Parametric properties relate to the multipath model
that we have derived, and extensions of this. It makes
sense to use such models if the number of parameters
is much smaller than, e.g., the number of coefficients
in an unstructured FIR model.

The spatial manifold. In the I-MIMO model, each col-
umn of A is a linear combination of array response
vectors {a(6;) }, each of which is on the array manifold.
If the array manifold is known, e.g., by calibration or
from structural considerations, then we can try to fit
the column span of X (hence A) to the appropriate
linear combinations. This will work if the number of
rays is not large and if the calibration data is reliable.
For this purpose, various direction finding techniques
have been proposed, notably ESPRIT [16].

The temporal manifold. Similarly, h is a linear com-
bination of vectors of the form {g(7;) ® a(6;)}, where
g(7) is the temporal manifold function, the sampled
response to an incoming pulse g(t —7). If the specular
multipath model holds true and the number of rays
is not large, the received signal is constructed from
several delays of g(t), hence can be viewed as super-
positions of a number of vectors g(7). The temporal
manifold is usually known to a good accuracy. With
knowledge of both the spatial and temporal manifold,
we can also attempt to do a joint estimation of all
angles and delays [17-19].

Residual carriers. Independent narrow band sources
modulated at high frequencies rarely have exactly the
same carrier frequency. Consequently, after demodu-
lation, the co-channel sources have unequal residual
carriers, with only partially overlapping spectra. If
the spectral properties of the sources are known or if
we sample sufficiently fast so that we can use station-
arity properties of the sources, the residual carriers
can be estimated and the sources can be separated,
even if the array manifold is unknown. This can be
regarded as a special case of cyclostationarity.

IV. APPLICATIONS
A. Separation of FM radio signals

As an application of blind source separation, con-
sider an area in which two radio towers are present.
Conventionally, the two towers have to broadcast at
different frequency bands, or else they will interfere
with each other. Since the amount of spectrum is lim-
ited but there is a pressure to increase the number of
programs and their bandwidths (c.f. HDTV), it would
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Fig. 2. Signal-to-interference suppression for d sources,
attained on real data.

be very interesting to reuse the same frequency alloca-
tions within the same region. This is very well possble
using blind source separation techniques, which essen-
tially make use of the spatial dimension: the fact that
the towers are at physically distinct locations. For
FM-modulated signals, a suitable property for sepa-
ration is their constant modulus. Typical interference
suppression numbers that can be attained are shown
in figure 2, where up to 6 sources are separated by
a 6-element antenna array using a constant-modulus
algorithm [8]. Some of the sources were separated by
as little as 1.5°.

B. Separation of airplane transponder signals

Aircraft transponder signals (secondary surveillance
radar (SSR) mode-S reply signals [20]) are in essence
binary PAM signals with alphabet {0,1}. All air-
craft use nominally the same carrier frequency (1090
MHz). A transponder is triggered by a pencil beam of
an interrogating ground station. In today’s crowded

airspace, it frequently occurs that two (or more) transpon-

ders start to broadcast simultaneously, leading to a
fatal superposition of the messages when they par-
tially overlap in frequency and time. Since no train-
ing is available, this is a good application for blind
source separation techniques. This can be done based
on their directions (since not much multipath is ex-
pected), or based on their modulation format: a
“zero/constant modulus” signal [21].



V. EXAMPLES OF ALGORITHMS
A. Angle estimation using ESPRIT

Consider the I-MIMO model X = AS. Without
multipath, A = [a(6;) - --a(f;)]. For a uniform linear
array, the array manifold vector has the form

9M -1
Note the shift-invariance property of this vector:

a1 1 as 0
a(l) — . = , a(2) = =

an—1 HM_Z ay eM—l

so that a? = a(l)g. The well-known ESPRIT algo-
rithm to factor X = AS is based on this property:

1. Find a d-dimensional basis U for column span of
X. Then A =UT, for some d x d invertible T

2. Use the shift invariance:

A® = AWe = @71 =yliT-10, je.

vp® — rler, @ = [ o, ] |
d

This is an eigenvalue equation: 7' contains the eigen-
vectors of UMNTUP), and © the eigenvalues. The
beamformer for constructing S = WX is W = TU*,
and the directions can be recovered from the eigenval-
ues.

B. Joint angle-delay estimation

In certain cases with low delay spread (e.g., CDMA
systems), a data model X = HS holds where each
column of H has the form h; = g(r;) ® a(6;). It is
desidered to estimate all delays and directions.

A Fourier transform maps delays into phase rolls:

1

g =80 0O =go O f(9), p=eIPT.

¢F;—1
Since g is known, it can be divided out, which is
a form of deconvolution. After this transformation,
h; = f(¢;) ®a(6;). Note that this vector has a double
shift-invariance structure: both in f and in a.
An ESPRIT-like algorithm is now as follows [19]:

1. Find a basis U for the column span of X. Then
H = UT, for some invertible T.

2. Fourier transform each column of U, divide out gg.
3. Use the double shift invariance to form two pairs
of submatrices. This leads to a problem of the form

E, =
Ey, =
4. Find T as the generalized eigenvectors of this joint
eigenvalue problem, e.g., by simultaneous diagonaliza-
tion. ® and © contain the eigenvalues, and provide
estimates of the delays and directions.
Applications of this algorithm are source localization

(since we recover both range and direction), and e.g.,
initialization of CDMA Rake receivers.

71T
T-10T.

C. Separation based on constant modulus

A source sequence [s1, - - -, SN represents a constant
modulus signal if |sg|? =1, k=1,---, N.

Consider again the instantaneous model X = AS.
We wish to construct all beamforming vectors w such
that the rows of S are recovered. For a candidate w,
it must hold that sy = w*xy. Substitution gives

wixpxpw =1 (k=1,---,N).

This is an overdetermined system of quadratic equa-
tions. A solution can be obtained as follows. Use Kro-
necker products to write w*x,x;w = [Xj ® x5 (W Q@
w). Thus we can form a matrix P with N rows
[Xx ® xi]*, and obtain the conditions

This is a linear system of equations, subject to a
quadratic constraint. Any solution of the linear sys-
tem can be written as

(1)

It remains to find coefficients {c;} such that y satisfies
y = w ® w. For this, we use a connection to rank-1
matrices: W @ w < ww”. In the same way, we can
map all vectors in (1) to matrices, and obtain

y=oa1y1 +tay2 + - +a4qyq-

ww' = Y]+ @Yo+ + gy
Further massaging allows to map this problem to [8]
Y. = T*MT

all A; diagonal

Yy, = T*A,T.

This is again a simultaneous diagonalization problem!



The constant modulus property is quite robust in
practice, and can be used without knowledge of the
antenna array. An actual experiment on two mo-
bile communication signals and a uniform linear array
with 8 elements in suburban terrain indicated that the
constant modulus algorithm can obtain 10 dB more
interference suppression than ESPRIT [22].

VI. CONCLUSION

This paper has described algebraic methods to de-
terministic blind beamforming. Even within this lim-
ited framework, many properties are available and can
be used to blindly separate sources and equalize chan-
nels. Column span methods are mostly parametric
and try to fit a multiray channel model to the observed
data. These methods are applicable if this model is
valid to a reasonable accuracy, with a small number of
specular rays. The requirement of a model order es-
timation and the sensitivity to model order mismatch
can be considered their Achilles heel. On the other
hand, potentially useful side information is obtained,
such as delays and angles of multipath rays, which
enables source localization. Uncalibrated antenna ar-
rays can be employed if there is sufficient resolution
in the delays or residual carrier frequencies.

Row span methods use properties of the signals such
as a constant modulus. If these properties are present,
they are very powerful and robust, and not dependent
on the validity of the channel model or array calibra-
tion. The strength and at the same time limitation of
deterministic row span methods is that they almost al-
ways require the signals to be man-made. More gener-
ally applicable signal separation methods are based on
stochastic properties, and e.g., force the independence
of the outputs of the beamformer, or reconstruct their
distributions. Depending on the signal distributions,
this typically requires many more samples.
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