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Abstract

Renewable energy is becoming more and more important in today’s society. Wind energy
plays an important role in the production of renewable energy. Due to economic advantages,
wind turbines are often sited close together, creating wind farms. As a result, the wind
turbines in the farm become interconnected due to the wakes of the turbines. In conventional
wind farm control, this interconnection is ignored, and wind turbines are operated at their
own local optimum. This control strategy is referred to as greedy control.

In the wake of a turbine, the wind speed is reduced. As a result, the power production of a
wind turbine that is situated in a wake is also significantly lower. The greedy control strategy
may therefore not be optimal for wind farm control, which subsequently has been receiving
an increasing amount of attention recently. Most research on wind farm control focusses
on steady-state optimization, i.e., finding the optimal steady-state given certain constant
conditions. Since wind flow is always subject to change, the potential gain of this procedure
is limited.

In this thesis, a closed-loop dynamic wind farm controller is presented using a Model Predictive
Control (MPC) framework. The control objective is to maximize the power production of the
wind farm, resulting in an economic MPC problem. As the optimal input is time-dependent,
the number of control inputs and states involved increase as the prediction horizon of the MPC
problem increases, resulting in a more complex problem than the steady-state optimization
problem.

As a model, Wind Farm Simulator (WFSim) is used, which is based on 2-dimensional Navier-
Stokes equations. This results in a high-dimensional problem from which the optimum is
unknown. The adjoint method is applied to determine the gradient of the objective function in
a time-efficient manner. The controller developed in this thesis increases the power production
of a wind farm with respect to the conventional greedy control stategy, and is able to adapt
to changes in the atmospheric conditions. The adjoint-based MPC algorithm therefore shows
real potential to perform real-time dynamic control on wind farms.
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Chapter 1

Introduction

In this chapter, the topics concerning this thesis will be introduced. The motivation for
the research done in this thesis will be presented in Section 1-1, followed by an overview of
state-of-the-art in the field of wind farm modeling and control. Section 1-3 will then present
the problem statement, as well as the approach followed in this thesis. Finally, Section 1-4
presents the structure of this report.

1-1 Motivation

Renewable energy is an ever increasing branch in technology, due to concerns about the
environment. Former US President and Nobel Peace Prize winner Barack Obama has stated
that he believes the trend towards clean energy is irrevertible [1]. Obama is not the only
(former) world leader who feels that the transition towards renewable energy is essential. On
the 2015 UN Climate Change Conference, all 195 participating countries agreed to reduce the
carbon dioxide emission in order to keep the global warming below 2 degree Celsius [2]. To
achieve this, a big role is reserved for wind energy. The vast majority of wind energy produced
wordwide is generated in wind farms. A wind farm is a (large) number of wind turbines that
are grouped together. Wind farms have several advantages compared to individual wind
turbines [3]:

• The cost of installation and maintenance is reduced;

• It is easier and cheaper to connect the wind turbines to the grid;

• It reduces the area needed to produce the desired amount of energy, since a large number
of turbines is placed in a relatively small area.

Wind farms also have one major disadvantage compared to individually placed turbines: due
to the wake behind turbines, an interconnection between turbines is established. These wakes
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2 Introduction

Figure 1-1: A depiction of wind turbine wakes in a wind farm. Source: Christian Steiness.

are shown in Figure 1-1 and have a negative effect on the total power production of a wind
farm as well as on the structural loads on the turbines.

Turbines that are located in the wake of an upstream turbine experience, among others, a
wind velocity deficit and higher turbulence intensity. This results in lower power production
and higher dynamical loads, which can cause fatigue damage. In current wind farms, each
turbine is operated at a local optimum. This is referred to as "greedy control". Due to
the interaction between turbines, greedy control might be suboptimal, and therefore a more
cooperative wind farm control strategy, that takes into account this interaction, is desired.
This is why wind farm control has been a popular research topic (for a detailed overview of
literature, see, for example, [4], [5] ). The general goal of wind farm control is to optimize
not the performance of individual wind turbines, but the wind farm as a whole.

1-2 Overview of Wind Farm Modeling and Control

In this section, a brief overview of the state-of-the-art in wind farm modeling and control will
be given. Note that the overview given here is far from complete. A more detailed survey on
wind farm control can be found in [4]. An overview of wind farm models can, for example, be
found in [6], [7], [8], a tutorial on control-oriented modeling and control can be found in [5].

Wind Farm Modeling

A lot of different control strategies can be applied to improve the performance of wind farms
compared to the conventional greedy control. Some of these strategies, such as a Game The-
oretic approach [9] or maximum power-point tracking [10], are model-free. However, these
model-free control strategies have some important drawbacks. They have to deal with prob-
lems such as slow convergence towards the optimum and are difficult to implement on a true
wind farm. Therefore, wind farm controllers are in general based on mathematical models,
hence the controller performance depends highly on the quality of the model. Choosing a

J.A. Frederik Master of Science Thesis



1-2 Overview of Wind Farm Modeling and Control 3

suitable model for the desired control objective is therefore very import, and should be done
deliberately. As a result, many different models have been developed.

Wind farm models exist in a wide range from fast, low-fidelity engineering models to compu-
tationally very expensive Computational Fluid Dynamics (CFD) models. Low-fidelity models
such as the Park model [11] describe only the dominant wind flow characteristics and are in
general relatively simple. Low-fidelity models are static models that use simplifying assump-
tions to limit the computation time necessary. As a result, they can provide an estimation
of the flow quickly, but are less suited for analysis. High-fidelity models such as the Sim-
ulator fOr Wind Farm Applications (SOWFA, [12]), on the other hand, capture as much
as possible of the flow dynamics and contain, in general, more sophisticated turbine mod-
els. These high-fidelity models are generally more accurate than low-fidelity models, but also
require much more computational power (up to weeks using distributed computation). So
while high-fidelity models provide more accurate wind flow calculations, they are usually not
suitable for online model based control purposes where the input must be calculated within
one sample period.

Wind Farm Control

Wind farm control typically aims to maximize the power production or minimize the structural
loadings on the turbines. This can be achieved by individually controlling the turbines in
such a way that the collective objective is optimized. Using the degrees of freedom of a wind
turbine, two important control methodologies can be distinguished:

• Axial Induction Control (AIC) [13]. In AIC, upstream wind turbines are derated, i.e.,
the power production of the upstream turbines is reduced. By derating upstream tur-
bines, the wake effects on downstream turbines will decrease. AIC can be worthwhile if
negative performance at the derated turbines can be compensated by improved perfor-
mance of downstream turbines.

• Wake redirection control [14]. In wake redirection control, the rotors of a turbine are
yawed with respect to the wind direction in order to deflect the wake. This way, the
wake can be steered away from downstream turbines to improve their performance.

In AIC, the Axial Induction Factor (AIF) is used as control variable to derate a turbine. The
AIF is defined as the fractional decrease in wind velocity at the turbine with respect to far
away from the turbine. It is therefore a measure of the rate at which a turbine slows down
the wind. The AIF can be used to determine the power production of a turbine, as well as
the forces of the turbine on the flow, and as such is a useful control parameter in wind farm
control. AIC is typically used in literature to improve the power production of a wind farm,
and is shown to be able to increase the power capture to up to 6% [4].

Wake redirection control can be used to control the centerline of the wake. Hence the per-
formance of downstream turbines can be increased by changing the yaw angle γ of upstream
turbiens with respect to the wind direction. Note that by yawing a turbine, the performance
of this turbine, as in AIC, typically decreases. This loss in performance should again be
compensated for by increased performance of downstream turbines. Wake redirection control
shows some very promising results (e.g. a power increase of up to 7% [4]), but is a relatively
new branch of research. The possibilities of wake redirection control are therefore still actively
being investigated.

Master of Science Thesis J.A. Frederik



4 Introduction

1-3 Problem Statement

Most research on wind farm control focusses on steady-state control, i.e., assuming the at-
mospheric conditions are constant and ignoring dynamic effects such as wake propagation.
Dynamic control, optimizing the control input over time for varying conditions, is a relatively
underdeveloped branch of wind farm control. Dynamic wind farm control is the next step
towards industrialization, since the atmospheric conditions in a wind farm are always sub-
ject to change. Steady-state solutions do not capture the inevitably time-varying conditions
within a wind farm, and therefore their potential gain is limited. Furthermore, if it is possible
to develop a sufficiently fast dynamic controller, real-time control is possible. In real-time
control, the next control input is determined while the previous control input is implemented.
Dynamic control does however lead to a time-dependent problem, which is in general more
complex than the steady-state control problem.

To perform dynamic control on a wind farm, the framework shown in Figure 1-2 will be used.
While this framework is well-known within the control community, it is new in the field of
wind farm control. The feedback paradigm as depicted in Figure 1-2 has a reference signal rk

at time instant k, e.g., a power reference signal. The states qk can, for example, be the wind
flow velocities, while the output zk can be the dynamic power production of the turbines,
but also the forces or stresses on the turbines. The inputs wk of the wind farm can be the
AIFs as well as the yaw angles, as discussed in the previous section. In this thesis, only AIC
will be considered. Note that these inputs change the wake, hence influence not only the
performance of the turbine in question, but also the performance of the downstream turbines.

Wind farm

wk zk

Model + estimator
ẑk −

+

ek

Optimizer
q̂k

rk

Controller

General closed-loop dynamic control framework with measurements and its estimation and state estimationFigure 1-2: General closed-loop dynamic control framework.
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1-3 Problem Statement 5

In Figure 1-2, we can see three important blocks in this framework: the wind farm, the
optimizer and the model, possibly complemented with a Kalman estimator [15]. This thesis
will focus on the optimizer block in Figure 1-2, in combination with a dynamic control-
oriented model: Wind Farm Simulator (WFSim) [16], [17], developed at the Delft University
of Technology (DUT). WFSim is a medium-fidelity model based on 2-dimensional (2D)
Navier-Stokes (NS) equations. The model simplifies the 3-dimensional flow equations by
assuming that, at hub-height, the effect of flow in the z-direction is negligable. By employing
a 2D model, the flow in a wind farm can be approximated in an acceptable computation time,
enabling dynamic wind farm control.

In WFSim, the 2D NS equations are discretized spatially and temporally on a staggered grid.
For each point in this grid, the NS equations are solved to determine the local wind velocities
in x- and y-direction, as well as the local pressure. All these velocities and pressures are
contained in the state qk and fed to the controller for optimization. Note that this results in
a high-dimensional problem: to guarantee reliable results, the density of the grid should be
chosen sufficiently large. This however increases the number of states.

The objective of this thesis is to develop an algorithm according to the framework shown
in Figure 1-2, using WFSim as wind farm model. To achieve this, we need to define the
objective function and develop an algorithm that can find the optimal control for this objective
function. In this thesis, the objective is to maximize the power production of the wind farm
over the prediction horizon Np. The resulting problem is an economic Model Predictive
Control (MPC) problem [18], which is not yet optimally solved for wind farm scenarios. Note
that the prediction horizon needs to be chosen deliberatly: if it is chosen too small, the
interaction between turbines through their wakes will not be taken into account. A larger
Np however results in a longer time window that needs to be simulated, leading to longer
computation times, as well as a more state vectors qk, k = 1, 2, . . . , Np. For the grid of 50 by
25 cells typically used in this thesis, the state vector qk contains 3239 elements per time step
k.

To find the optimum of the objective function, which is unknown and varying over time, an ef-
ficient method is needed to determine the gradient of the objective function. A straightforward
method to determine the gradient of a function is by using finite differencing. However, since
the control input can vary over time, the number of control inputs considered depends on the
chosen prediction horizon Np. To determine the gradient with the finite differencing method
would require one simulation for each control input, thus leading to a very time-consuming
procedure.

An alternative method to determine the gradient is the adjoint method [19], [20]. This method
has already been applied on a wind farm in [21], [22], and provides the gradient in a time-
efficient manner, enabling dynamic control. With the adjoint method, the gradient can be
computed on a standard laptop computer in under a minute. The same calculations would
take several hours with the finite differencing method.

Using the gradient, it is possible to determine the optimal control input over time, and
implement it over the receding horizon Nu. This results in a controller that dynamically
maximizes the power production of a wind farm. This leads to the research objective of this
thesis:

With the proposed model-based framework, can we develop a dynamic closed-
loop control algorithm that optimizes the power production of a wind farm?

Master of Science Thesis J.A. Frederik



6 Introduction

This research objective can be divided into the following subobjectives:

1. Can we increase the power production of a wind farm with respect to greedy control,
using only the AIF of the turbines as input, under constant wind conditions?

2. Can the control algorithm steer the system to an optimal steady-state for constant wind
conditions?

3. Can the control algorithm adapt to changing wind conditions?

4. Can the control input be determined fast enough on a standard laptop computer for
real-time dynamic control to be possible?

The research objectives given above will be discussed and answered in this report.

1-4 Structure of the Report

The structure of the report is as follows: in Chapter 2, the WFSim model will be discussed
in more detail. Next, Chapter 3 will discuss the MPC framework that will be used, as well as
the challenges this framework provides. Chapter 4 will then present the gradient calculations
using the adjoint method. In Chapter 5, the MPC algorithm that has been developed in this
thesis will be presented. The simulation results will then be presented in Chapter 6. Finally,
Chapter 7 will answer the research objectives given in the previous sections, as well as discuss
the future work still to be done in this area.

J.A. Frederik Master of Science Thesis



Chapter 2

Wind farm model WFSim

This chapter will be dedicated to the Wind Farm Simulator (WFSim) model that is being
developed at Delft University of Technology (DUT) [16],f [17]. WFSim is a two-dimensional
(2D) medium-fidelity wind farm model based on the Navier-Stokes (NS) equations that is
developed for control purposes.

To decrease the computational expense, WFSim simplifies the three-dimensional (3D) flow
equations by assuming that, at hub-height, the effect of flow in the z-direction is negligible.
Using this assumption, WFSim solves the NS equations for the flow velocities at hub-height
in the wind farm. From these flow velocities, the power production of turbines within the
wind farm can be deduced.

There are several reasons why the WFSim model is used in this thesis. First of all, it uses the
NS equations to model the flow field, making it a medium-fidelity model. With the simplifying
assumptions made, such as the 2-dimensional (2D) simplification, it enables relatively fast flow
field computation. This is done by exploitation the sparsity of the matrices, which will be
covered in Section 5-1. Furthermore, it is a model that takes into account dynamic effects
in the wind flow, as well as changing atmospheric conditions. Finally, it is control-oriented
model. Hence it has relatively little tuning parameters and can be implemented effectively
for control purposes.

With WFSim, it is possible to implement dynamic control on a wind farm. Most wind
farm controllers focus on steady state control [4], even though in an actual wind farm the
wind conditions and wake dynamics are likely to change regularly. Due to the relatively fast
computations and dynamic flow model of WFSim, it might be possible to design an on-line
dynamic controller to optimize the power production of a wind farm.

A schematic representation of WFSim is given in Figure 2-1. In this figure, qatm are the
atmospheric conditions, q the states (the velocities and pressures) and w the control inputs
of the turbines. P is the power produced by the turbines and f the forces acting between the
turbines and the flow field. Note that the force on the flow is related to the amount of power
produced by a turbine.
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8 Wind farm model WFSim

Flow

model

Rotor

model

Figure 2-1: A schematic representation of the WFSim model.

In the following sections, the WFSim model will be explained. Section 2-1 will cover the
wind flow model, and in Section 2-2 the rotor model will be discussed. In Section 2-3, these
equations will then be spatially and temporally discretized to give the discrete time wind
farm model that will be used for control.

2-1 Flow Model

The dynamical behaviour of the flow through a wind farm is described by the NS equations.
These equations will be explained in this section. The flow model needs the forces of the
turbines exerted on the wind and the inflow wind velocity and direction to compute how the
wind flow through the entire field. A schematic representation of the flow model is given in
Figure 2-2.

Flow

model

Figure 2-2: A schematic representation of the flow model inputs and outputs.

The NS equations comprise of two momentum equations (in x- and in y-direction) and the
mass conservation equation. These are given in Equations (2-1) to (2-3).

ρ






∂u

∂t
︸︷︷︸

variation

+
∂u2

∂x
+

∂uv

∂y
︸ ︷︷ ︸

convection




 = −

∂p

∂x
︸︷︷︸

pressure gradient

+µ






∂2u

∂x2
+

∂2u

∂y2
︸ ︷︷ ︸

diffusion




+ fx

︸︷︷︸

external forces

(2-1)

ρ






∂v

∂t
︸︷︷︸

variation

+
∂v2

∂y
+

∂vu

∂x
︸ ︷︷ ︸

convection




 = −

∂p

∂y
︸︷︷︸

pressure gradient

+µ






∂2v

∂y2
+

∂2v

∂x2
︸ ︷︷ ︸

diffusion




+ fy

︸︷︷︸

external forces

(2-2)

ρ

(
∂u

∂x
+

∂v

∂y

)

= 0 (2-3)
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2-2 Rotor Model 9

In these equations, u and v [m/s] are the velocities in x- and y-direction, respectively, and

the variable p [Pa] the air pressure. Vectorized, these are the state variables q =
[

u v p
]T

of the system. The air density ρ is kept constant at 1.2 kg/m3.

For simplicity, the dynamic terms are not included in Equations (2-1) to (2-3). These dynamic
terms induce wake recovery, i.e., they ensure that velocity in a wake slowly recovers back to
the inflow velocity. To include wake recovery nonetheless, the variable µ is used as a tuning
variable. For normal atmospheric conditions, the dynamic viscosity µ << 1. However, by
setting µ at 10 [kg/ms], wake recovery can be induced, allowing the ommission of a turbulence
model in the NS equations.

Please note that dynamic terms are missing in these equations. Instead we use the dynamic
viscosity µ, which is a tuning variable, to induce wake recovery. At room temperature,
µ << 1. However, by setting µ at 10 [kg/ms], wake recovery can be induced, which allows

us not to include a turbulence model in the NS equations. The external forces f =
[

fx fy

]T

are the forces applied on the flow by the turbines in the farm. These forces will be discussed
in Section 2-2.

2-2 Rotor Model

In this section, the rotor and turbine model will be discussed. The rotor model determines
the thrust forces between rotor and the flow field, which is related to the power produced by
this turbine. Figure 2-3 gives the input-output block scheme of the rotor model.

Rotor

model

Figure 2-3: A schematic representation of the rotor model.

The power produced by a wind turbine is then defined as:

P =
1
2

ρAr(U∞)3CP (a) (2-4)

where CP is the power coefficient, defined by Betz’ law as:

CP = 4a(1− a)2 (2-5)

where a is the Axial Induction Factor (AIF), defined as:

a =
U∞ − U r,⊥

U∞
(2-6)
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10 Wind farm model WFSim

Let us now define a new input, β, which is the scaled AIF:

β =
a

1− a
(2-7)

Since it is often impossible to determine U∞, we want to replace it by the perpendicular
velocity at the rotor, U r,⊥ in Equation (2-4). U r,⊥ is defined as:

U r,⊥ =
√

u2
r + v2

r cos(γ − φ) (2-8)

where φ is the local wind direction with respect to the x-axis and ur and vr are the x-
and y-component of the wind velocity respectively. If we now replace U∞ by U r,⊥ using
Equation (2-6), and CP with β using Equations (2-5) and (2-7), we get an equation that
gives the power of a turbine as a function of a few (constant) parameters ρ and Ar, as well
as the rotor velocity U r,⊥ and input β:

P = 2ρAr(U r,⊥)3β (2-9)

Equation (2-9) shows why we work with β as an input instead of a: the power P depends
linearly on β. This will be useful when the gradient needs to be calculated. This will be
discussed in Chapter 4.

As Figure 2-3 shows, the rotor model also provides the forces of the turbines on the flow.

The force f =
[

fx fy

]T
is determined, among others, by the thrust coefficient CT . There are

many different types of rotor models known in literature. In WFSim, the rotor of the turbine
is modelled using a modified Actuator Disk Model (ADM). Figure 2-4 shows a schematic
representation of the wind velocity at the rotor U r for a given yaw angle γ and inflow angle
φ. This figure is taken and adapted from [14].

Figure 2-4: Schematic representation of the rotor velocity Ur for a given yaw angle γ and inflow
angle φ, taken and adapted from [14].

In the ADM, the force on a rotor is defined as:

fx =
1
2

ρArCT U2
∞

where Ar is the rotor swept area, which in WFSim equals the rotor diameter since we are
dealing with a 2D model. Note that the ADM is originally a 3D model, so this is a 2D
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2-2 Rotor Model 11

approximation of the ADM. Furthermore, the force term above does not include a yaw angle,
but in WFSim, this feature is added nonetheless. Depending on the yaw angle γ of a turbine
with respect to the wind, the vector f can be expressed as:

f =
1
2

ρArCT U2
∞

[

cos(γ)
sin(γ)

]

(2-10)

In Equation (2-2), we again notice the presense of the variable U∞. Using Equations (2-6)
and (2-8), U∞ can be substituted by U r,⊥. This results in the following expression for the
force f :

f =
1
2

ρArCT (a)

(

U r,⊥(γ)
1− a

)2 [

cos(γ)
sin(γ)

]

(2-11)

Equation (2-11) gives the force on the flow as a functions of both inputs a (for Axial Induction
Control (AIC)) and γ (for wake redirection control). As this thesis focusses on AIC, for now
the assumption is made that a turbine is always aligned with the wind direction (so γ = 0).
In this case, fy = 0 and cos(γ) = 1.

Note that in Equation (2-11), CT is a function of the AIF a. The thrust coefficient CT plays
an important role in determining the forces of turbines on the wind flow. In the ADM, the
thrust coefficient is the measure of the force of a wind turbine on the flow as given in equation
(2-12).

CT =
fx

1
2ρArU2

∞

= 4a(1− a) (2-12)

where a is the AIF, as defined in Equation 2-6. However, when Equation (2-12) is implemented
in WFSim, the power curve, which shows the power production as a function a, does not
exhibit the desired behavior. From the Betz’ law, it is known that the optimal AIF for a
single turbine to produce maximal power is a = 1

3 [23]. Using the definition of P given in
Equation (2-4), a power curve as depicted in Figure 2-5 is obtained.

Figure 2-5 shows that the maximal power production is not at a = 1
3 , but rather at a ≈ 0.4.

This is a well-known problem in wind farm modelling when using ADM, and can be resolved
by applying the Glauert correction [24]. This correction results in a new definition of the
thrust coefficient CT given in Equation (2-13):

CT (a) =







4aF (1− a), if 0 < a ≤ 0.4
(

8/9 + (4F − 40/9)a + (50/9− 4F )a2
)

if 0.4 < a < 1,
(2-13)

where F is a tuning variable, set in this case at 1.38. Using the Glauert correction, the
maximal power is now at a = 1

3 , as can be seen in Figure 2-6b.
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Figure 2-5: The power curve in WFSim for a single turbine as a function of a.
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(b) Power curve with correction.

Figure 2-6: The CT curve as function of a with and without the Glauert correction (left) and
the power curve with the correction, which shows an optimum of a = 1

3
.

2-3 Discretization of WFSim

Now that the flow and rotor model are introduced, the combined system will be discretized.
This method will not be fully elaborated here as it was no part of the thesis work, but the
basic steps will be shown shortly in this section.

The area of the wind farm will first be divided into a distributed grid of cells. Figure 2-7
shows an example of a cell in such a staggered grid, with the states u, v and p shown for this
cell.

Next, the NS equations will be discretized for all cells. The spatial discretization is done by
using the finite volume method and the temporal discretization by using the implicit method,
as explained in [25]. Then, Equations (2-1) to (2-3) are applied on each cell in the grid:
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2-3 Discretization of WFSim 13

ρ

∫

△t

∫

△V

(
∂u
∂t

+ (∂u2

∂x
+ ∂uv

∂y
)
)

dV dt = −
∫

△t

∫

△V

(
∂p
∂x

+ µ
(

∂2u
∂x2 + ∂2u

∂y2

)

+ fx

)

dV dt

ρ

∫

△t

∫

△V

(
∂v
∂t

+ (∂v2

∂y
+ ∂vu

∂x
)
)

dV dt = −
∫

△t

∫

△V

(
∂p
∂y

+ µ
(

∂2v
∂x2 + ∂2v

∂y2

)

+ fy

)

dV dt

(
∂u
∂x

+ ∂v
∂y

)

dV dt = 0

where △V is the volume of one cell in the grid and △t the sampling time. Note that these
equations are nonlinear Partial Differential Equations (PDE’s).

Figure 2-7: Example of a cell in WFSim for the x-momentum equation (grey, around ui,J), the
y-momentum equation (yellow, around vI,j and the continuity equation (pink, around pI,J ).

Since the grid is linear, each cell in the staggered grid is equivalent. Therefore the volume
integral can be taken over the x and y-momentum equations and the continuity equation.
This results in the following fully discretized NS equations for each cell:
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14 Wind farm model WFSim

− x-momentum equation for the (i, J)th cell (blue in Figure 2-7):

apx
i,Jui,J =

(

anx
i,J asx

i,J awx
i,J aex

i,J

)








ui,J+1

ui,J−1

ui−1,J

ui+1,J







− (pI,J − pI−1,J) δyj,j+1 + fx

i,J (2-14)

− y-momentum equation for the (I, j)th cell (red in Figure 2-7):

apy
I,jvI,j =

(

any
I,j asy

I,j awy
I,j aey

I,j

)








vI,j+1

vI,j−1

vI−1,j

vI+1,j







− (pI,J − pI,J−1) δxi,i+1 + fy

I,j , (2-15)

− continuity equation for the (I, J)th cell (black in Figure 2-7):

0 = δyj,j+1 (ui+1,J − ui,J) + δxi,i+1 (vI,j+1 − vI,j) , (2-16)

Please note that the states u•,•, v•,• and p•,• are defined for time instant k, while the coeffi-
cients a•

•,• and the force terms f•
•,• depend on the states at the previous time instant k − 1.

For a detailed definition of these coefficients, see Appendix A.

Next, the states uk, vk and pk and the control variables βk and γk are defined at time step
k. This results in the following vectors, with Nx the number of grid points in x-direction, Ny

the number of grid points in y-direction and N the number of turbines:

uk =

























u3,2
...

u3,Ny−1

u4,2
...

u4,Ny−1
...

uNx−1,2
...

uNx−1,Ny−1

























, vk =

























v2,3
...

v2,Ny−1

v3,3
...

v3,Ny−1
...

vNx−1,3
...

vNx−1,Ny−1

























, pk =

























p2,2
...

p2,Ny−1

p3,2
...

p3,Ny−1
...

pNx−1,3
...

pNx−1,Ny−2

























, βk =









β1

β2
...

βN









, γk =









γ1

γ2
...

γN









,

(2-17)

Notice that not all velocities and pressures are present in the state vector. The missing
velocities and pressures are the boundary conditions and will be discussed in Section 2-4.
Each component in uk, vk and pk represents a velocity or pressure at a specific point in the
grid defined by the subscript. If we form a grid of the cells from Figure 2-7, a staggered grid
as shown in Figure 2-8 is obtained.
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Figure 2-8: Example of a staggered grid as used in WFSim, with each cell having volume ∆V .

So finally, the NS equations of Equations (2-1) to (2-3) can be transformed into a discrete
nonlinear descriptor model:






Ax(uk−1, vk−1) 0 B1

0 Ay(uk−1, vk−1) B2

BT
1 BT

2 0






︸ ︷︷ ︸

E(qk−1)






uk

vk

pk






︸ ︷︷ ︸

qk

=






A11 0 0
0 A22 0
0 0 0






︸ ︷︷ ︸

A






uk−1

vk−1

pk−1






︸ ︷︷ ︸

qk−1

+






bx(uk−1, vk−1)
by(uk−1, vk−1)

bc






︸ ︷︷ ︸

Bc(qk−1)

+






fx(uk−1, vk−1, wk)
fy(uk−1, vk−1, wk)

0






︸ ︷︷ ︸

Sm(qk−1,wk)

(2-18)

with Bc the vector with the boundary conditions (see Section 2-4) and Sm the vector with
the external forces caused by the turbines as discussed in Section 2-2. In Equation (2-18), E
is the nonlinear descriptor matrix, which depends on state qk−1, while matrix A is constant.
Equation (2-18) also is a function of state qk and input wk:
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16 Wind farm model WFSim

qk =






uk

vk

pk




 , wk =









β1

β2
...

βN









(2-19)

Since in this thesis yaw control will not be covered, the input vector only contains the scaled
AIF β of all N turbines. From equation (2-18), it should be clear that this system can already
become high-dimensional for simple systems. For a relatively small grid of 50 by 25 cells, the
system has 3239 states. However, a lot of the elements in Equation (2-18) are zero, making
the matrices sparse and therefore the state updates can be calculated relatively fast. This
sparsity is shown in Figure 2-9.

[b]
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(a) Matrix E

[b]
0 500 1000 1500 2000 2500 3000

nz = 2137

0
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1000

1500

2000

2500

3000

(b) Matrix A

Figure 2-9: Nonzero elements in matrices E and A of Equation (2-18)

Figure 2-9 shows all nonzero elements in a typical E- and A-matrix of Equation (2-18). In
this example, the system has 3239 states, resulting in matrices with over 107 elements. In E,
only 16388 of the 107 elements (0.16%) are nonzero. A has even less nonzero elements, all of
which can be found on the diagonal. By exploiting this sparsity, the computation time can
be reduced significantly.

2-4 Boundary Conditions

As discussed in the previous section, some of the pressure and velocity components in the
grid of Figure 2-8 are not included in the state qk. These elements are the elements along the
boundaries of the farm, and are therefore determined by the boundary conditions. These are
determined by the inflow and outflow. This inflow has a component in x-direction (ub) and a
component in the y-direction (vb) and is active on the west side of the grid (see Figure 2-8).
Zero stress boundary conditions are prescribed on the other boundaries. This results in the
following conditions:
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2-5 The WFSim Algorithm 17

u2,J = ub for J = 1, 2, . . . , Ny, v1,j = vb for j = 2, 2, . . . , Ny,
ui,Ny

= ui,Ny−1 for i = 3, 4, . . . , Nx, vI,Ny
= vI,Ny−1 for I = 2, 3, . . . , Nx,

ui,1 = ui,2 for i = 3, 4, . . . , Nx, vI,2 = vI,3 for I = 2, 3, . . . , Nx,
uNx,J = uNx−1,J for J = 2, 3, . . . , Ny − 1, vNx,j = vNx−1,j for j = 3, 4, . . . , Ny − 1,

where Nx and Ny are the number of grid points in x and y-direction respectively. The initial
conditions are a uniform flow field, i.e., all velocity components u and v are equal to the
ambient flow ub, vb. The initial pressure field is set to zero.

Now that the boundary conditions are defined, the system given in Equation (2-18) is now
fully defined and can be solved.

2-5 The WFSim Algorithm

In the previous sections, the mathematical derivations of the WFSim model have been ex-
plained. In this section, a pseudo code is presented to illustrate how the solver computes flow
field qk given qk−1 and wk.

First, the user is able to determine the topology of the wind farm by defining the size (Lx,
Ly), the number of grid points (Nx, Ny), the ambient flow (ub, vb) and the positions of the
turbines. If this is done, Equation (2-18) is fully defined and can be solved.

To run the WFSim algorithm, a few other parameters need to be defined. First of all, the
step size ∆t should be defined, the number of time steps k = Ns, the convergence parameter
ǫ and the maximum number of iterations imax. When the WFSim algorithm is initiated, it
will enter a while-loop until the flow field converges or the maximum number of iterations
is reached. Note that choosing imax = 1 results in bypassing the convergence of the wind
flow. Then, the algorithm will calculate the propagation of the flow field through time until
k = Ns ·∆t.

Algorithm 1: Pseudocode for WFSim

1 i← 1;
2 q0 ← Meshing (qatm, Nx, Ny, Lx, Ly); % Initial flow given the chosen grid

3 for k = 1 : Ns % Time for-loop until final time Ns ·∆t

4 while δ > ε & i < imax

5 [E(qk−1), A, Bc(qk−1), Sm(xq−1, wk)]← UpdateSetofEquations (qk−1, wk, ∆t)
6 % See Equation (2-18)

7 qk ← FindSolution (E(qk−1), A, Bc(qk−1), Sm(qk−1, wk))

8 δ ← ||qk − qk−1||2
9 i← i + 1

10 end
11 imax ← 1
12 end

Master of Science Thesis J.A. Frederik



18 Wind farm model WFSim

2-6 Linearization of WFSim

Using the system defined in Equation (2-18), it is possible to linearize the system using
standard linearization methods. This linear model could then be used to do (local) stability
and performance analysis, as well as control design. Although the linear model will not be
used for control purposes in this thesis, the derivatives used to form this linearized model
are very useful. These partial derivatives are used in the adjoint method to determine the
gradient of the cost function. The adjoint method will be discussed thoroughly in Chapter 4.

Equation (2-18) will be linearized around a certain linearization point
(

q0
k,w0

k

)

. This results
in the following linearization:

E(q0
k−1)

︸ ︷︷ ︸

Ē

δqk =




A +

∂Bc(qk−1)
∂qk−1

∣
∣
∣
∣
∣
q0

k−1

+
∂Sm(qk−1, wk)

∂xk−1

∣
∣
∣
∣
∣
x0

k−1
,w0

k

−
∂E(qk−1)

∂qk−1
qk






︸ ︷︷ ︸

Ā(qk,qk−1,wk)

δqk−1+

∂Sm(qk−1, wk)
∂wk

∣
∣
∣
∣
∣
q0

k−1
,w0

k
︸ ︷︷ ︸

B̄(qk−1,wk)

δwk (2-20)

where δqk =
[

δuT
k δvT

k δpT
k

]T
is the change of state qk, with δuk = uk − u0

k, δvk = vk − v0
k

and δpk = pk − p0
k.

2-7 Power Expression in WFSim

In Section 2-2, the power production of a turbine in WFSim has been discussed shortly. The
power expression that was given there holds if the turbine coincides with exactly one cell. In
this section, the power will be expressed as a function of state qk, as defined in Section 2-3,
independent of the size of the turbine. Equation 2-9 in this section gave the power definition
Pn,k of a turbine as a function of βn,k and rotor flow velocity U r,⊥

n :

Pn,k = 2ρAr(U r,⊥
n )3βn,k (2-21)

To express this power as a function of state qk, we have to define U r,⊥ as a function of qk.
Typically, the rotor of a turbine in WFSim will pass through more than one cell. Figure 2-10
shows an example of a small grid with a turbine embedded in it.

In the example of Figure 2-10, the rotor passes through cells (3, 2), (3, 3) and (3, 4). As a
result, there is not one state qk that can equals U r,⊥. Instead, we define U r,⊥ as the average
perpendicular velocity of concerning cells. Assuming no yaw is applied (so γ = 0), Equation
(2-8) becomes:
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Figure 2-10: A small WFSim grid with a turbine embedded in it. The wind flows from west to
east here

U r,⊥
n =

m∑

r=1

√

u2
n,r + v2

n,r

m
(2-22)

where m is the number of cells coinciding with the turbine. So in the example of Figure 2-10,
m = 3, un,r=1 = ui=3,J=2, un,r=2 = ui=3,J=3 and un,r=3 = ui=3,J=4. These velocities are, as
we can see using the definition of the state qk defined in Equations (2-19), part of the state
vector. So now it is also possible to write the power of turbine n as a function of qk and wk:

Pn,k = 2ρAr








∑

r=1

m
√

u2
n,r + v2

n,r

m








3

βn,k (2-23)

Notice that only a very limited amount of states are actually in the expression of the power
Pn,k. For the example of Figure 2-10, only 3 of the 25 cells coincide with the rotor. Usually,
a wind farm is significantly larger than this example, so an even smaller ratio of states would
appear in the expression for Pn,k.

To summarize, we have seen in this chapter how the 2D NS equations are used to obtain a
wind farm model. This model is discretized spatially and temporally and the expressions for
the forces on the turbines and the power produced by the turbines are given. In the following
chapters, this model will be used to perform Model Predictive Control (MPC).
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Chapter 3

Model Predictive Control for Wind
Farm Applications

In this chapter, we will discuss Model Predictive Control (MPC). If we look back at Figure 1-2,
we see two important blocks in the dynamic control framework: the wind farm model (plus
estimator) and the optimizer. The model is discussed thoroughly in Chapter 2. Since we
do not have access to a wind farm, the model discussed here will also be considered as the
wind farm under study. An estimator is ommitted in this thesis. Instead we assume full state
knowledge.

This leaves the optimizer. In this thesis, nonlinear Model Predictive Control will be used to
develop a control that can dynamically optimize the power production of a wind farm using
the Wind Farm Simulator (WFSim) model. Section 3-1 will give a short introduction into
economic MPC, followed by an overview of the MPC framework that will be used in this
thesis.

3-1 Economic MPC

In MPC a cost function J is defined, and the MPC algorithm will then optimize the control
inputs w over a given finite control horizon. For now, it is assumed that the control horizon
Nc is equal to prediction horizon Np. The algorithm will thus search for the input w that
minimizes this cost function. In classic MPC, the (quadratic) cost function is usually defined
as:

J =
Np∑

k=1

(qk − q∗
k)T Q (qk − q∗

k) +
Np∑

k=1

(wk)T R (wk) (3-1)

This cost function has two terms: one involving the state q, and the other penalizing input
w. So in this case, the cost function J would be minimal if qk = q∗ and wk = 0. Q ∈ R

nq×nq
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and R ∈ R
nw×nw are then weighing matrices that determine the importance of certain states

q and inputs w respectively. The assumption here is that there is some reference signal or
optimal steady-state q∗ that is known a-priori. The MPC algorithm will then steer the system
to the steady-state that minimizes Equation (3-1).

As discussed in Chapter 1, the goal of this thesis is to maximize the power production of wind
farms dynamically. This means that the optimizer should be able to maximize the power
production over time for varying wind conditions. It is virtually impossible to determine
the optimal power production for a wind farm under all possible wind conditions. Hence
we assume no a-priori knowledge of the maximal power production for given atmospheric
conditions. This implies that it is not possible to define the cost function as defined in
equation (3-1). Instead, the cost function will look as shown in Equation (3-2).

J = −
Np∑

k=1

Pk (3-2)

with Pk the power production of the wind farm at time instant k. Note that Equation (3-2)
does not include a penalty on the input. This term is ommitted since the main focus in this
thesis is to maximize the power production. If a penalty on the input were included, this
could result in a lower power production in favor of the control signal. It can however be
included when desired.

The cost function defined in Equation (3-2) is not quadratric and subsequently the optimum
of J does not go towards 0, i.e., Equation (3-2) may not take its optimal value at steady state.
This makes the problem considered in this thesis fundamentally different from standard MPC
problems, see also [18].

These types of problems belong to the class of Economic MPC, a relatively new research
area. Many papers can be found that cover economic MPC, usually for chemical plants [26],
[18], but also for power management [27]. However, in most of them, a steady-state terminal
constraint is known [18], which in this application is not the case. It is therefore a scientific
field in which further research needs to be done.

One of the problems that occurs with economic MPC will be discussed more extensively in
Section 4-5. To find the optimum of the objective function, the gradient of J can be used.
This gradient gives the direction in which the input has to move to decrease J . More on the
gradient can be found in Chapter 4.

Figure 3-1 shows a typical gradient for a 3-turbine wind farm over one prediction horizon
Np = 400 s for a 3-turbine wind farm in WFSim. It clearly exhibits a steep drop at the end
of the prediction horizon, meaning the MPC algorithm steers the inputs to the maximum
allowed value. This has two causes, both having more or less the same underlying reason: the
objective function tries to maximize the power production within the prediction horizon. As
a result, it completely ignores the power production just after the prediction horizon. These
are the causes:

1. Both the power Pk and the state qk are functions of state qk−1;

2. A non-quadratic objective function results in a controller that does not tend to steer
towards steady state.
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Figure 3-1: A typical gradient ▽J of Equation (3-2).

As a result of the first cause, there is a lag on the power production. For an Np of 1, the
optimal input would always be to increase the control signal as much as possible, since the
power is determined by state q0 and input w1 (see Equation (2-4)). It therefore doesn’t
matter how much the wind is slowed down at time q1, since this doesn’t influence the power
production within the horizon. The same thing happens at the end of a larger prediction
horizon, as noticable in Figure 3-1.

Since the objective function is non-quadratic, the algorithm wants to increase the power
production at the end of the prediction horizon by increasing the input. Therefore, as soon
as the wind will not reach downwind turbines anymore within the prediction horizon, there
is no more interaction between different turbines. Hence the gradient will steer its input to
its local optimum. More on this can be found in Section 4-5.

Possible solutions to this problem are infinite horizon MPC [28] or an end-point constraint
[29]. In infinite horizon MPC, a term is added to the objective function that represents the
power beyond the prediction horizon. This is difficult to implement since it would mean that
the final value would become even more important. This could then amplify the problem of
increasing input at the end of the prediction horizon. Furthermore, an end-point constraint
is difficult to implement since it is not straightforward what the end-point constraint should
be since the optimal power is unknown to us.
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Figure 3-2: The MPC framework used in this thesis, taken from [22].

3-2 The MPC Framework

In this section, the concept of the MPC framework that is used in this thesis will be presented.
It is closely related to the work done in [21] and [22], but does differ in some significant
details. This will be discussed in more detail in Chapter 5. The framework used in this thesis
is presented in Figure 3-2.

On the top, we see the flow field in the wind farm. As we assume full state knowledge, we
have a-priori knowledge of this flow field. This field interacts with the turbines within the
field, shown in the middle of Figure 3-2. The turbines get input from the MPC algorithm
and give feedback by means of the power production.

The bottom block represents the optimization algorithm that uses MPC. First, the flow of
the wind is simulated for the next Np seconds using an initial input sequence. This also gives
a first calculation of the power production over Np, so the cost function J from Equation
(3-2) can be calculated. The algorithm then needs to find an input sequence w̃ that decreases
J , i.e., increases the total power production over the prediction horizon Np. Note once more
that the control horizon is set at Nc = Np. This leads to the following objective function:

min
w̃

J(q̃, w̃) = min
w̃

Np∑

k=1

−Pk(qk−1, wk) (3-3)

Notice that Equation (3-3) contains states and inputs at each time instant k = 1, 2, · · · , Np.
We therefore introduce the concatenated state vector q̃ and input vector w̃:
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q̃ =









q1

q2
...

qNp









, w̃ =









w1

w2
...

wNp









(3-4)

A commonly used method to determine what input w̃k would decrease the function J is by
determining the derivative dJ

dw̃
. This gradient will give the direction in which w̃ should move

to improve J . This is very important if we want to optimize the input w̃, since without
the gradient it would be unknown how the input would need to change to improve the cost
function. Note that the number of inputs for this problem is Np ·N , with N the number of
turbines, all of which need to be optimized. So for a 3-turbine wind farm with a prediction
horizon of 300 time steps, this would already result in a gradient with 900 elements.

This introduces a challenge, as it is not straightforward to calculate this derivative. As we
have seen in Chapter 2, the power of a turbine in WFSim depends on the rotor velocity U r,⊥

and input w = β, but U r,⊥ also depends on input β in a nonlinear fashion. Furthermore,
changing input wk at time instant k might not only change the power Pk at time instant k,
but also at later time instants.

It is therefore important to find a reliable and time efficient way to determine this derivative
dJ
dw̃

. The most straightforward way to determine the gradient is by applying finite differencing.
In this method, the inputs are excited individually with a small value δ to determine change
of power this induces. Then the derivative can be determined by using Equation (3-5):

dJ

dwk,n
=

J(wk,n + δ)− J(wk,n)
δ

(3-5)

where wk,n is the input of turbine n at time instant k. To obtain the gradient▽w̃J , J(wk,n+δ)
needs to be determined for each element in w̃. For the example mentioned above, with 3
turbines and Np = 300 time steps, this would mean 900 extra forward simulations are needed
to determine the gradient. This would of course take a lot of computation time. This will be
further elaborated in Section 4-5.

It is therefore essential to find an alternative method to determine the gradient in a more
time-efficient manner. One way to do this is by applying the adjoint method [19], [20]. In
[21], [22], the adjoint method is also used for power optimization in a wind farm. This method
will be discussed thorougly in Chapter 4.

If the gradient ▽w̃J = dJ
dw̃

is determined, the optimal step size α needs to be found, resulting
in a new input w̃∗:

w̃∗ = w̃ − α · ▽w̃J (3-6)

The optimal value for α can be found by doing a line-search. By doing a forward simulation
using WFSim for each step size α, and subsequently evaluating the cost function J , the
optimal step size is determined. Note that it might be necessary to limit the number of line
searches to prevent endless simulations. This implies that the optimal step size α might not
be found in one line search.
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When the step size is optimized, the found input w̃∗ is implemented on the turbines in the wind
farm for Nu time steps. Meanwhile, the MPC algorithm will again do a forward simulation
and corresponding gradient calculation to optimize the input for the next prediction horizon.
This is called the receding horizon principle and is shown in Figure 3-2.

3-3 Problem Statement

As mentioned above, the goal is to maximize the power production of a wind farm using
WFSim. Converted to a mathematical expression and using Equation (2-4), this gives an
objective function J as given in Equation (3-3). The goal of the algorithm is to find a control
input that maximizes the power production P of a wind farm.

It is often difficult to determine the gradient of the cost function. A method to determine
the full derivative dJ

dw̃
of cost function J with respect to input w̃ is by using the adjoint

method. This method exploits the fact that the relationship between w̃ and q̃ is known.
In our case, it is given in Equation (2-18). We can rewrite this equation into an equality
constraint Ck(qk, wk) = 0:

Ck(qk, qk−1, wk) = E(qk−1, qk)−Aqk−1 −Bc(qk−1)− Sm(qk−1, wk) ∈ R
nq×1 (3-7)

where nq is the number of states. Equation (3-7) has to be fulfilled over the entire prediction
horizon Np. This yields the following concatenated constraint matrix:

C(q̃, w̃) =









C1(q0, wo, q1, w1)
C2(q1, w1, q2, w2)

...
CNp

(qNp−1, wNp−1, qNp
, wNp

)









∈ R
Np·nq×1 (3-8)

resulting in the following Partial Differential Equation (PDE) constraint optimization prob-
lem:

min
w̃

J(q̃, w̃) = min
w̃

Np∑

k=1

−Pk(qk−1, wk)

s.t. C(q̃, w̃) = 0

(3-9)

The adjoint method uses the partial derivatives of both J and C in Equation (3-9) with respect
to q̃ and w̃ to compute the gradient dJ

dw̃
. The following chapter will cover the adjoint method

and how it is used to determine the gradient of Equation (3-2). Subsequently, Chapter 5 will
cover the algorithm based on the framework discussed in this chapter.
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Chapter 4

Gradient Calculation using the Adjoint
Method

As explained in Chapter 3, the goal of this thesis is to develop an algorithm that can optimize
the power production of a wind farm using Wind Farm Simulator (WFSim). As discussed
there, a method needs to be found to determine the gradient of the cost function J . In this
chapter, detailed explanations will be given of the underlying mathematics that concern the
adjoint method, and how it is used to determine the gradient of our cost function J .

4-1 General Derivation of the Adjoint Method

In this section, the general derivation of the adjoint method for finding the gradient of function
J is explained. For clarity, the time index dependency is dropped here. The formulation given
here holds for both continuous and discrete time.

For now, we assume that we have some cost function J that is a function of both state q
and input w. Furthermore, we have a constraint equation C(q, w) = 0 defined by Partial
Differential Equations (PDEs) that describe the system we want to control. We then have
the following PDE-constrained optimization problem:

min
w

J(q, w)

s.t. C(q, w) = 0
(4-1)

Note that the problem defined above is a more general form of Equation (3-9). To find the
optimum of this cost function, the gradient of J with respect to control input w can be
used. We can then use the constraint equation C to simplify this. The total derivative of the
constraint will also be zero for any (q, w), as C is zero for all q and w. So:

dC

dw
=

∂C

∂w

dw

dw
+

∂C

∂q

dq

dw
= ∂wC + ∂qC∂wq = 0 (4-2)
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where ∂• is short for the partial derivative ∂
∂•

. The total derivative of the cost function J(q, w)
is:

dJ

dw
= ▽w̃J =

∂J

∂w

dw

dw
+

∂J

∂q

dq

dw
(4-3)

Looking at Equation (4-3), we notice that not all terms are straightforward to calculate. More
specifically, the derivative dq

dw
is very hard to determine, since the relationship between q and

w is described by a PDE. This is where the adjoint method can help generate a solution.

Since our constraint equation should always equal zero, we can merge it into our cost function
without this affecting its outcome. To do this, we use the Lagrange multiplier λ to get the
Lagrangian L :

L (q, w, λ) = J(q, w) + λT C(q, w) (4-4)

Since constraint C is always zero, the Langrangian equals our original cost function J . As
a result, we can say that the derivative of J is also equal to the derivative of L , with the
added benefit that we can choose λ freely since C = 0. The derivative of the Lagrangian then
becomes:

dJ

dw
=

dL

dw

=
∂J

∂w
+

∂J

∂q

dq

dw
+

d

dw
(λT )C

︸ ︷︷ ︸

=0

+λT (
∂C

∂w
+

∂C

∂q

dq

dw
)

We can see immediately that the third term drops out since C = 0. This gives us, after
rearranging, the following equation:

dJ

dw
=

∂J

∂w
+
(

∂J

∂q
+ λT ∂C

∂q

)
dq

dw
+ λT ∂C

∂w

= ∂wJ +
(

∂qJ + λT ∂qC
)

∂wq + λT ∂wC

(4-5)

Then, we can exploit the freedom in λ by defining the following adjoint equation:

(∂qC)T λ = − (∂qJ)T (4-6)

If we use Equation (4-6) on Equation (4-5), the terms between the brackets become zero,
resulting in the following total derivative of J :

dJ

dw
= ∂wJ + λT ∂wC (4-7)

So now, it is possible to calculate the gradient of J with respect to input w by using the
partial derivatives of J and C with respect to both input w and state q respectively. In
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comparison to Equation (4-3), it is no longer necessary to calculate the dq
dw

-term, which in
general is difficult to obtain. The following sections will show how this method can be used
to determine the gradient of J for a simple single turbine example, as well as for a high-
dimensional time-dependent wind farm problem.

4-2 Illustrative Single Turbine Example

To show that the adjoint method produces a correct derivative, we will present an illustrative
single wind turbine example. The objective is to maximize the total power production of this
turbine, so, using Equation (2-9) the objective function becomes:

J(β, U r,⊥) = −2ρAr(U r,⊥)3β (4-8)

If we now want to find the total derivative of Equation (4-8) with respect to the control input
β, we can do this in three different ways:

1. Express U r,⊥ as a function of β, and substitute this into Equation (4-8). We now have
a function that only depends on β, so we can use the direct derivative dJ

dβ
to determine

the optimum;

2. Take the total derivative of Equation (4-8) to find the optimum;

3. Use the adjoint method to find the optimum.

This section will show that all three methods yield the same result.

Gradient using substitution of non-input-related terms

We can express equation (4-8) as a function of only β by substituting U r = U∞

1+β
. This yields:

J(β) = −2ρArU3
∞

β

(1 + β)3

Now we can determine the derivative:

dJ

dβ
= −2ρArU3

∞

1− 2β

(1 + β)4

= −2ρAr(U r)3 1− 2β

1 + β
(4-9)

Gradient using the total derivative

If we use the total derivative, as shown in Equation (4-10), we should get the same result as
in Equation (4-9). The total derivative for a function with 2 variables is, by definition, given
as:
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df(x, t)
dt

=
∂f(x, t)

∂x

dx

dt
+

∂f(x, t)
∂t

(4-10)

If we now apply Equation (4-10) on the cost function, we get:

dJ(U r, β)
dβ

=
∂J(U r, β)

∂U r

dU r

dβ
+

∂J(U r, β)
∂β

=
(

−6ρAr(U r)2β
)

·

(

−
U∞

(1 + β)2

)

− 2ρAr(U r)3

= 6ρAr(U r)3 β

1 + β
− 2ρAr(U r)3

= −2ρAr(U r)3 1− 2β

1 + β

Which corresponds to the answer found in Equation (4-9).

Gradient using the adjoint method

Finally, we are going to use the adjoint method to determine the derivative of J . To use this
method, we need to write the expression of U r as an equality constraint.

C(U r, β) = U r −
U∞

1 + β
= 0 (4-11)

If we now calculate the partial derivatives of Equations (4-1) and (4-11) with respect to state
U r, we get:

∂Ur J = −6ρAr(U r)2β

and

∂Ur C = 1

which results, using Equation (4-6), in a λ of:

λ = −C−T
Ur JUr = 6ρA(U r)2β

Next, we need the derivatives of C and J with respect to input β:

∂βJ = −2ρA(U r)3

and

∂βC =
U∞

(1 + β)2
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which, using Equations (2-8) and (4-7), leads to the following total derivative:

dJ(U r, β)
dβ

= λT Cβ + Jβ

= (6ρA(U r)2β) ·
(

U∞

(1 + β)2

)

− 2ρA(U r)3

= −2ρA(U r)3 1− 2β

1 + β

which again is the same expression as found in the previous subsection, thus showing that
the adjoint method indeed gives the same derivative of the cost function for this example.

4-3 Time-dependent Problems

In the example of the previous section, the objective function was not time-dependent. As
explained in Chapter 1, the goal of this thesis is to design a dynamic controller that tries
to find the optimal control over a receding horizon using a Model Predictive Control (MPC)
approach. This results in a time-dependent problem where the goal is to optimize the power
production over the entire prediction horizon Np.

Since we now simulate over time, we also get different states q and inputs w at different time
instants k. We define qk as the state at time instant k, and similarly wk is the input at time
instant k. This results in a concatenated state and input vector as shown in Equation (3-4).
The optimization problem is then defined in Equation (3-9).

We have seen in Section 4-1 that we need the partial derivatives of C to determine the gradient
▽w̃J . Looking at Equation 3-8, we see that ∂w̃C and ∂q̃C become more complicated. These
partial derivatives now also become stacked matrices:

∂q̃C =









(C1)q1
0

(C2)q1
(C2)q2

0

0
. . . . . . . . .
0 (CNp

)qNp−1
(CNp

)qNp









∈ R
Np·nq×Np·nq (4-12)

where (C1)q1
is the partial derivative of C1, the constraint at time instant k = 1, with respect

to state q1, etc. Notice that this can become a very large matrix: Ck has size (nq × 1), with
nq the size of vector q at time instant k.

Similarly:

∂w̃C =









(C1)w1

(C2)w1
(C2)w2

. . . . . .
(CNp

)wNp−1
(CNp

)wNp









∈ R
Np·nq×Np·nw (4-13)
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with nw the size of input vector w at any given time instant k. The partial derivative of J is
then defined as:

dJ

dq̃
=
[

(J)q1
(J)q2

· · · (J)qNp

]

∈ R
1×Np·nq (4-14)

dJ

dw̃
=
[

(J)w1
(J)w2

· · · (J)wNp

]

∈ R
1×Np·nw (4-15)

Subsequently, also the Lagranian Λ will be a stacked matrix: Λ =
[

λ1 λ2 . . . λNp

]T
∈ R

Np·nq×1,

creating the adjoint equation (∂qC)T Λ = (∂qJ)T , which comes down to:












(C1)T
q1

(C2)T
q1

(C2)T
q2

(C3)T
q2

. . . . . .
(CNp−1)T

qN1
(CN )T

qNp−1

(CN )T
qNp






















λ1

λ2
...

λNp−1

λNp











= −












JT
q1

JT
q2

...
JT

qNp−1

JT
qNp












(4-16)

By using the adjoint equation shown above, the Lagrangian as defined in Equation (4-4), can
be defined. Then the gradient can be calculated using Equation (3-9). Notice that on all but
the last line, we get multiple λ’s, i.e., λk depends on λk+1. As a result, the Λ stacked matrix
should be determined backwards: first, λNp

, which is independent of other λ’s, is calculated,
and then used to determine λNp−1, etc:

(CNp
)T
qNp

λNp
=− JT

qNp

(CNp−1)T
qNp−1

λNp−1 =− JT
qNp−1

− (CN )T
qNp−1

λNp

...

(C1)T
q1

λ1 =− JT
q1
− (C2)T

q1
λ2

(4-17)

For this reason, this method is sometimes called the backwards adjoint method. Once the
Lagrangian is determined, the gradient of J can be calculated in the same way as done in
Equation (4-7): ▽w̃J = Jw̃ + ΛT Cw̃. This results in the following individual derivatives:

dJ

dwNp

=
∂J

∂wNp

+ λT
Np

∂CNp

∂wNp

dJ

dwNp−1
=

∂J

∂wNp−1
+ λT

Np−1

∂CNp−1

∂wNp−1
+ λT

Np

∂CNp

∂wNp−1

...
dJ

dw1
=

∂J

∂w1
+ λT

1

∂C1

∂w1
+ λT

2

∂C2

∂w1

(4-18)

As we can see here, the derivative of J with respect to a certain wk, k 6= Np depends on λk

and λk+1, again requiring the backwards calculations. Of course, these equations can also be
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solved as matrix equations, but because the matrix Ck is usually already high-dimensional,
the total matrix C would become enormous. This would therefore make these calculations
computationally too expensive. We therefore solve them seperately in a backwards fashion
as shown in Equations (4-17) and (4-18).

4-4 Gradient of J for Time-dependent Problems using WFSim

In the previous section, the adjoint method for time-dependent problems was presented. In
this section, we will shortly discuss the mathematic expressions of the partial derivatives of
J and C that are necessary for the calculations of the gradient ▽w̃J in WFSim. As we have
seen in the previous section, we need four partial derivatives to determine the gradient:

1. The partial derivative of cost function J with respect to state q̃, dJ
dq̃

;

2. The partial derivative of cost function J with respect to state w̃, dJ
dw̃

;

3. The partial derivative of constraint C with respect to state q̃, dC
dq̃

;

4. The partial derivative of constraint C with respect to state w̃, dC
dw̃

;

The exact expressions of these partial derivatives can be found in Appendix B. Let the ob-
jective be to maximize the power production of a wind farm with N turbines over a given
prediction horizon Np. This gives the following objective function J using Equation (2-9):

J =
Np∑

k=1

Jk = −
Np∑

k=1

N∑

n=1

Pn,k = −cJ

Np∑

k=1

N∑

n=1

(

U r,⊥
n,k

)3
βn,k (4-19)

where cJ is a constant that is independent of input w, states q or turbine n. Note that cJ

contains the rotor area Ar (which we assume is the same for all turbines) and the air density
ρ as shown in Equation (2-9). Finally, βn,k is the input of turbine n at time instant k, as
defined in Equation (2-7).

Furthermore we have the constraint equation Ck describing the wind flow at time instant k:

Ck(qk, qk−1, wk) = E(qk−1)qk −Aqk−1 −Bc(qk−1)− Sm(qk−1, wk) (4-20)

As shown in Equation (3-8), the total constraint C will be a concatenation of C1, C2, · · ·CNp
.

To use the adjoint method, we now have to find the partial derivatives of J and C with respect
to state q̃ and input w̃. First, we recall that the input wk is restricted to the scaled axial
induction factors β of all turbines at time k. The partial derivative of the objective function

J with respect to input wk =
[

β1,k β2,k . . . βN,k

]T
, where N is the number of turbines in

the farm, can then be found easily:
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∂wk
Jk =

∂Jk

∂wk
= −cJ









(U r,⊥
n=1)3

(U r,⊥
n=2)3

...
(U r

n=N )3









(4-21)

with U r,⊥ defined in Equation (2-22). Concatenating ∂w1
J1, · · · , ∂wNp

JNp
as shown in Equa-

tion (4-15) then results in the complete partial derivative ∂w̃J .

The partial derivative with respect to the state q is more difficult, since q resides in Equa-
tion 4-19 in a nonlinear fashion. Using Equations (2-23) and (4-19), the objective function at
time instant k, Jk, can be written as:

Jk = −cJ

N∑

n=1









m∑

r=1

√

u2
n,r + v2

n,r

m









3

βn,k (4-22)

Now, taking the derivative with respect to the state qk, we get a vector that contains mostly
zeros. Only the derivative with respect to velocities un,r and vn,r, which are contained in
vector qk, will be nonzero. One instance of such a nonzero entry is given in Equation (4-23):

∂Jk

∂un=1,r=1
= −

6cJ

m
·

un=1,r=1 ·
(
∑m

r=1

√

u2
n,r + v2

n,r

)

√

u2
n=1,r=1 + v2

n=1,r=1

(4-23)

So ∂qk
J will be an 1 by nq matrix with mostly zeros and an expression as given in (4-23) on all

locations of un,r and vn,r in qk. The complete partial derivative ∂q̃J is then a concatenation
of J1, · · · , JNp

. Note that ∂qNp
J = 0 since the state Np influences only the power at time

instant Np + 1. This results in the following expression of the complete derivative:

∂J

∂q̃
=











∂q1
(J2)

∂q2
(J3)
...

∂qNp−1
(JNp

)
0











∈ R
1×nq ·Np (4-24)

Next, we need to determine the derivatives of the constraint given in Equation (4-20). The
derivatives of C have already been determined in Section 2-6. ∂qC = −Ā, and ∂wC = −B̄,
with Ā and B̄ defined in Equation (2-20). Note that, as mentioned, all derivatives and how
they are obtained in WFSim can be found in Appendix B.

We therefore now have expressions for all the partial derivatives needed to implement the
adjoint method. A typical gradient of J found with the adjoint method for a 3-turbine wind
farm is shown in Figure 4-1. In this figure, the input w̃ was kept constant at β = 0.5 for all
turbines over the entire prediction horizon, i.e., greedy control was applied.
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Figure 4-1: A typical gradient calculated with the adjoint method.

Note immediately that the gradient is not equal, or even close, to zero for all turbines. Clearly,
the greedy control strategy is not optimal. If it were, all gradients would have to be zero as a
change in input w would always result in a decrease of power production. Figure 4-1 therefore
shows that it is actually useful to do optimization to determine the inputs of the turbines
in a 3-turbine wind farm. In the following section, this gradient and its correctness will be
discussed.

4-5 Gradient Validation using the Numerical Gradient

To check whether the gradient that was obtained using the adjoint method is reliable, the
gradient of the cost function J (Equation (4-19)) will be calculated using numerical differen-
tiation.

As seen in Section 4-3, the gradient for time-dependent problems is different than the static
gradient. As a result, a gradient that is correct for steady-state calculations, doesn’t neces-
sarily has to be correct for the dynamic case as well. Therefore, this case is studied seperately
to validate the dynamic gradient. This gradient is obtained by using the adjoint method as
described in Section 4-4.

To determine the numerical gradient, the wind flow is first brought to a steady state for a

given w̃ =
[

βk=1,n=1 . . . βk=Np,n=N

]T
, where Np is the prediction horizon. The numerical

gradient can than be computed as:
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(
dJ

dβk,n

)

=
▽J

▽βk,n
=

J(βk,n + δ)− J(βk,n)
δ

(4-25)

By repeating this calculation for different inputs, the numerical gradient over time can be
calculated. This gradient can then be compared with the gradient obtained using the adjoint
method. Note that calculating the numerical gradient can be a very time-consuming action:
to determine the total power production over the prediction horizon for a single excited input,
the entire horizon needs to be simulated. If we use the WFSim with a grid of 50 × 25 cells
and a prediction horizon of 400s with a step size of ∆t = 2s, one forward simulation takes
around 30s on a standard laptop computer. So if we want to calculate every single individual
derivative in dJ

dw̃
, this would take approximately 5 hours. This shows why it is interesting to

employ the adjoint method to calculate the gradient.

To mitigate this problem, only one in 10 inputs is excited. This reduces the calculation time
of the numerical gradient to approximately 30 minutes, while still providing a gradient that
can effectively be compared with the adjoint gradient. Note that this is significantly longer
than calculating the adjoint using the adjoint method. This takes approximately 13 seconds
for the given prediction horizon.

The adjoint-based gradient and the numerical gradient will be compared using a 3-turbine
wind farm. This set-up is particarly interesting since it will be the main set-up used to test
the Model Predictive Controller in Chapter 6. The set-up contains three turbines that are
placed in line, with a bilateral distance of 7D, where D is the diameter of the rotors. The
dimensions of the wind farm and the turbines can be found in Table 4-1. The grid is given in
Figure 4-2(a).

Table 4-1: Size of the grid for the 3-turbine wind farm.

Number of turbines N 3
Rotor diameter [m] D 90
Length in x-direction [m] Lx 3000
Length in y-direction [m] Ly 1250

Locations of rotor center (x) [m] Rx

(

500 500 + 7D 500 + 14D
)

m

Locations of rotor center (y) [m] Ry

(

0.5Ly 0.5Ly 0.5Ly

)

Number of grid points (x) Nx 50
Number of grid points (y) Ny 25

For the inflow velocity, 8 m/s is selected. Initially, input β = 0.5 over the entire prediction
horizon Np = 400 s. This results in the gradients shown in Figure 4-2(b).

If we look purely to the adjoint-based gradients and their numerical counterparts, we no-
tice immediately that these are identical. This indicates that the adjoint method is indeed
implemented correctly.

The positive initial values for the gradient of turbines 1 and 2 indicate that for optimal power
production, the induction of these turbines should be reduced. Furthermore, reducing the
input βk of turbine 1 has the most influence on the power production, since this gradient is
much larger. This makes sense intuitively, because derating turbine 1 benefits both downwind
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(a) Grid in WFSim
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Figure 4-2: Verification of the gradient for a 3-turbine case, with β = 0.5, and the grid used for
this simulation.

turbines, whereas derating turbine 2 only benefits turbine 3. Notice that the gradient of the
hindmost turbine is again almost zero, indicating that this turbine is close to its optimum.

The shape of the gradient can be explained by studying the set-up of the wind farm. Notice
that initially, the gradient of turbine 1 is larger than 0. This implies that the optimal β is
lower than 0.5 for the first turbine. This makes sense, as a lower βn=1 would leave more
energy in the wind for the second turbine.

The gradient of the third turbine is initially very close to 0, implying that the optimum lies
near 0.5. The third turbine has no other turbine in its wake, so its optimum should be the
the same as the optimum of a single turbine, which is β = 0.5 (see Chapter 2).
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38 Gradient Calculation using the Adjoint Method

Between time steps 100 and 150, we notice that the gradient of turbine 1 starts to drop,
indicating that the optimal βk should increase. This can be explained by looking at the
set-up: the distance between turbines 1 and 2 is 7D = 630m. With an inflow velocity of
8 m/s and an input of βk = 0.5, it takes approximately 200 seconds for the wind to reach
turbine 2 after it has passed the first turbine. This means that as soon as we reach the last
200 seconds of the prediction horizon, the wind that passes through the first turbine does
not reach the second turbine within the prediction horizon. As a result, in order to achieve
maximal power production within the given prediction horizon, the induction of the first
turbine can be increased without effecting the power production of the second turbine within
said horizon.
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Figure 4-3: Verification of the gradient for β = 0.2 (a) and β = 0.8 (b), respectively.

To further verify these results, the adjoint-based gradient is also compared with the numerical
version for other values βk. These results are shown in Figure 4-3. Here we can see that the
numerical gradient again matches the adjoint-based gradient. Also, all gradients are negative
for the low value of βk = 0.2, indicating an increase of βk, whereas the gradients are positive
for the high value βk = 0.8.

All these results together, over different wind farm configurations and with different input
variables, make it reasonable to assume that the adjoint-based gradients are in fact correct.
The gradients can therefore be used in an MPC-based control algorithm, which will be dis-
cussed in Chapter 6.
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Chapter 5

The Adjoint-based MPC
Implementation

In Chapter 3, a Model Predictive Control (MPC) framework was presented to optimize the
power production of a wind farm. Chapter 4 then showed how the gradient of J was deter-
mined. In this chapter, the algorithm developed in this thesis will be presented. Section 5-1
will cover the steps taken in the algorithm in order to achieve optimization, while Section 5-2
will elaborate on the line search procedure.

5-1 The MPC Algorithm

The implementation of framework given in Figure 3-2 results in Algorithm 2. A few param-
eters should be defined before the optimization shown in Algorithm 2 can be run: the time
step size h, the atmospheric conditions qatm, the prediction horizon Np, the receding horizon
Nu and the number of receding horizons Nr,max. Furthermore, starting values for w̃ should
be defined.

Note that it is important to choose Nu sufficiently small compared to Np, to prevent the
descending gradient near time Np, as explained in Chapter 3, to have an effect on the outcome.
If Nu is chosen too big, the control inputs will go up near the end of the receding horizon,
leading to oscillatory behavior. As mentioned in Chapter 3, a control horizon is not considered,
i.e., Nc = Np.

For practical purposes, the control input β is bounded. In reality, β should always have a
value between 0 (i.e., the turbine is inoperative) and 1 (i.e., the turbine completely blocks
the wind). To prevent these boundary cases, β ∈ [0.1 0.9] is chosen. As a starting point,
greedy control is applied, i.e., βk,n = 0.5 for all k = 1 . . . Np, n = 1 . . . N .

First, the field is initialized (q0) and the initial cost and gradient is determined. The largest
value of this gradient is used as a limit on the step size α, i.e., the largest step size allowed
is 1 (see Equation (3-6)). Algorithm 2 then takes the following steps in order to optimize the
control input w̃:
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40 The Adjoint-based MPC Implementation

Algorithm 2: Pseudocode for the MPC algorithm

1 q0 ← InitialField (qatm); % Compute initial flow fields
2 w̃ ← InitialControl; % Compute initial control sequence
3 △t← h; % Define sample period

4

[

P (1) q̃
]

← WFSim (q0, w̃, qatm,△t, Np) % Forward prediction, Equations (2-18) and (2-23)

5 Jp ← GetCost (P (1)); % Determine J based on P (Equation (3-9))
6 ▽J ← GetAdjoint (q̃, w̃, P (1)); % Gradient using adjoint, Equation (4-18)
7 α0 ←

1
max(▽J) ; % Define initial line-search step size

8 α← α0;
9 for i = 1 : Nu,max % Time for-loop until final time Nu = Nu ·Nu,max

10 (P (1), q̃)← WFSim (q0(i), w̃, qatm,△t, Np);
11 J(1)← GetCost (P (1));
12 ▽J ← GetAdjoint (q̃, w̃, P (1));

13 △J ←| J(1)
Jp
| −1;

14 Jp ← J(1);
15 n← 1;
16 (w̃, q̃, J)← LineSearch (w̃, Jp, ǫp); % Line search, see Algorithm 3
17 (Pu(i), q0(i + 1))← WFSim (q0(i), w̃,△t, Nu); % Implementation of first Nu control inputs
18 end

1. A forward simulation is done using Wind Farm Simulator (WFSim) to determine the
power production for a pre-defined prediction horizon Np with initial input w̃ (line 10);

2. The gradient ▽w̃J is calculated using the backwards adjoint method (line 12, see Chap-
ter 4);

3. The new input w̃∗ is determined by doing a line search in the search direction ▽w̃J
(line 16). For each line search, the algorithm executes a forward simulation of the flow
to determine the power production, this will be further elaborated in Section 5-2;

4. A new input w∗ is accepted when it results in an increase in power production over Np

(see Section 5-2;

5. Input w∗ is implemented over the receding horizon Nu (line 17). We then go back to
point 1.

This procedure is followed until the algorithm is no longer able to increase the objective with
more than a certain threshold ǫp. When this threshold is met, the algorithm will keep the
input constant to prevent oscillations around the optimum.

This convergence threshold not only prevents oscillatory behavior when the inputs are close
to optimal. It also reduces the computational expense of the algorithm: when the threshold is
met, the optimization is terminated. As a result, only one forward simulation still needs to be
done. This simulation is done to check that the power production is indeed still close to the
previous power production. If this is not the case, the algorithm will again start optimizing
the input. This way, the algorithm can deal with significant changes in the atmospheric
conditions and adapt to these changes.
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5-2 The Line-search Algorithm

As mentioned in the previous section, a line-search is done to determine the appropriate step
size α. The influence of α on the new input w̃∗ is shown in Equation (5-1):

w̃∗ = w̃ − α · ▽w̃J (5-1)

As mentioned above, the initial value is set at α = 1
max(▽w̃J) , so the initial step size is 1.

This is always an overestimation of the optimal step size, as β ∈ [0.1, 0.9]. The line-search
procedure is shown in Algorithm 3. At each iteration of the line-search, the same horizon is
again simulated with the new input w̃ to determine the new power production.

Algorithm 3: Pseudocode for the line-search algorithm used in Algorithm 2.

1 c1 ← 0;
2 c2 ← 0;
3 while n ≤ nmax & (c1 & c2) 6= 1 & △ J < ǫp % While-loop for line-search

4 α← α
2 ;

5 w̃ls(n)← UpdateBeta (w̃,▽J); % Equation (5-1)
6 q0 ← LoadState (Nu, q̃);
7 P (n + 1)← WFSim (q0, w̃ls(n), qatm,△t, Np); % Forward prediction, Equations (2-18) and

(2-23)
8 J(n + 1)← GetCost (P (n + 1)); % Determine J based on P (Equation (3-9))
9 nc ← n + 1;

10 (c1, c2, nc)← StopCriteria (J, n); % See Equations (5-3) and (??)
11 end
12 % Reset α if threshold is met
13 if △J < ǫp then
14 α← α0;
15 end

16 w̃ ← w̃ls(nc);

In the line-search, we deliberately start with an overestimation of the step size. The step
size is then decreased until a satisfying solution is found. A solution is labeled satisfying if it
results in a decrease of the cost function J compared to the initial simulation, and a further
decrease of the step size does not further decrease J .

Notice that the while-algorithm requires the objective J to change more than a certain thresh-
old ǫp, as discussed earlier in this chapter. When the objective function no longer increases
with more than this threshold, the optimization is stopped and the input w̃ is kept constant.

The stop criteria mentioned on line 10 of Algorithm 3 guarantee that the line-search only
terminates when the step size can no longer be improved. Notice in line 3 that both criteria
need to be fulfilled to terminate the line-search. Criterion c1 guarantees that the line-search
only terminates when the power production exceeds the initial power production:
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c1 =

{

1 if J(n + 1) > J(1) ∨ J(n) > J(1)

0 otherwise
(5-2)

The second criterion prevents that the line-search terminates when a smaller step could further
improve the cost function:

c2 =

{

1 if J(n + 1) < J(n)

0 otherwise
(5-3)

The algorithm is similar to the one presented in [21] in the sense that it also uses the adjoint
method to determine the gradient of a cost function combined with a receding-horizon ap-
proach. The focus of [21] however is to control turbulent boundary layers using large-eddy
simulations. Turbulence therefore plays a large role in this research, whereas in this the-
sis, turbulence is simplified by tuning the dynamic viscosity µ (see Chapter 2). In [21], a
penalty is included on energy dissipation in the cost function, whereas this thesis focusses on
maximizing the power production.

Furthermore, the algorithm of [21] is not intended for real-time control. Consequently, does
up to 40 forward simulations for each control window. This is a significant difference with
the algorithm presented here, that uses up to 11 (and often only 2 or 3) forward simulations
per control window. This results in a significant advantage in computational expense. The
shorter computation time of the algorithm presented in this thesis is much more qualified to
do on-line dynamic control of a wind farm.

The algorithm developed in this thesis is more closely related to the work done in [22]. The
same MPC framework is used and [22] also uses WFSim. It is therefore also interesting to
compare the results, as will be done in Chapter 6. The difference between both algorithms
lies mostly in the line-search method. [22] uses conjugate gradient methods combined with
Armijo backtracking, where it was found here that a simple backtracking algorithm leads to
similar results with less computational expense.

Apart from that, [22] also uses projections to set the gradient to zero if the input is at the
boundaries that have been set. This is also ommitted here, as it was found to have very
little to no effect on the overall control signal implemented. Further comparisons between the
results will be discussed in Chapter 6.

The most significant difference however, is the use of the convergence threshold ǫp. This
threshold stimulates a smooth power production nearby the optimum and prevents redun-
dant or futile simulations. In [22], such a mechanism is not present, resulting in continued
simulations even when the power production is no longer improved, as well as a more disturbed
power production.
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Chapter 6

Simulation Results

In this chapter, the results of the nonlinear Model Predictive Control (MPC) discussed in
Chapter 5 will be presented. The controller will be tested using three different cases:

1. The atmospheric conditions are constant;

2. The wind velocity is time-varying: midway through the simulations, the wind velocity
will increase;

3. The wind direction is time-varying: midway through the simulations, the main flow
direction will change.

The objective is the same for each of these three cases: we want to maximize the power
production of the wind farms. By changing the atmospheric conditions, we hope to prove
that the MPC approach can be used to dynamically optimize a wind farm. The first case is
used to answer the first two research subquestions given in Chapter 1: can we increase the
power production of a wind farm with respect to greedy control? and can the control algorithm
steer the system to an optimal steady-state for constant wind conditions? The other cases are
used to verify the third research subquestion: can the control algorithm adapt to changing
wind conditions? During each of these three simulation cases, different wind farm lay-outs
will be evaluated:

• a 3-turbine wind farm with the turbines aligned with the main flow;

• a 4-turbine wind farm with the turbines aligned with the main flow;

• a 6-turbine wind farm with a 2-by-3 topology.

The layout of these wind farms will be presented in this chapter. Having 3 cases and 3 wind
farm topologies, a total of 9 simulation cases has been studied. Sections 6-1 to 6-3 will show
one simulation for each of the 3 cases. The other results can be found in Appendix C. This
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chapter will show that the controller is able to adapt to changing atmospheric conditions,
and is still able to perform better than a greedy controller. In Section 6-4 all the simulation
results will be summarized.

Note that the performance of the controller is evaluated using the instantanious power pro-
duction, i.e., the power produced by the wind farm when the optimized control input is
implemented. The increase in instantanious power production will be lower than the increase
of the objective function J , which is typically > 10%. However, the power increase at the
end of the prediction horizon, when the wake effects are no longer relevant (see Section 4-5),
account for a significant section of this increase. These inputs will not be implemented on
the wind farm, and are therefore not considered here.

For these simulations, a couple of variables need to be chosen with care. The prediction
horizon Np, receding horizon Nu, and the number of cells in x-direction (Nx) and y-direction
(Ny) have significant influence on the performance and computation time of the algorithm.
The effect of the number of cells on the computation time is shown in Table 6-1. Here we
see the computation time of the forward simulation (with Np = 400 s, and ∆t = 2 s) and the
backwards adjoint for different grid densities.

Table 6-1: The computation times needed on a standard laptop computer for the forward
simulation and backwards adjoint for different grid sizes

Grid size Number of cells Forward simulation Backwards adjoint

20× 10 200 5 s 1 s
50× 25 1250 28 s 12 s
100× 50 5000 135 s 54 s

Table 6-1 shows that the computation time of the forward simulation depents more or less
linearly on the number of cells in the grid. The adjoint calculation shows similar behavior,
although it increases more than the forward simulation when the number of cells is increased.
It is clear that we should look for a grid density that is as low as possible whilst still providing
a reliable flow simulation.

Note that, to prevent interference of the boundary conditions on the flow at the turbines,
the flow field has to be chosen sufficiently large. To guarantee this, the size of the field
is set at 3000 by 1250 m. For the 20 × 10 grid given in Table 6-1, this would mean that
each cell represents 150 by 125 m, while the rotor diameter is only 90 m. The 20 × 10 grid
is consequently not considered to be dense enough to give a reliable representation of the
interaction between the flow and the turbines . Simulations with the 50×25 and the 100×50
grid show very similar results. Therefore, the 50× 25 grid will be used.

To minimize the effect of the decline of the gradient at the end of the prediction horizon on the
implemented inputs, the prediction horizon is set at Np = 400 s. The sample time is chosen
at ∆t = 2 s, as this provides similar results as ∆t = 1 s while reducing the computation
time. As we can see in Table 6-1, one forward simulation takes 28 seconds for these setting.
Since each optimization loop requires at least 3 forward simulations to determine the step
size α, this would require the receding horizon to be at least 3 · 28 + 12 = 96 seconds in order
for the algorithm to be used real-time. This is however too close to the value of Np. It is
therefore not feasible to do real-time control using this algorithm on a laptop computer. To
achieve real-time control, more computational power is required for the optimization to be
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done sufficiently fast. As a trade-off between computation time and simulation results, we
thus set the receding horizon at Nu = 20 s.

6-1 Case 1: Constant Atmospheric Conditions

In the first case, the atmospheric conditions are assumed to be constant. As a result, the
wind velocity at the boundaries will be constant over the entire simulation. The flow and
control settings used for these simulations are given in Table 6-2.

Table 6-2: The flow and control settings used in case 1.

Inflow velocity (x-direction) ub 8m/s
Inflow velocity (y-direction) vb 0m/s
Initial pressure p0 0Pa
Time step size ∆t 2s
Prediction horizon Np 400s
Receding horizon Nu 20s
Number of receding horizons Nu,max 30
Maximum number of line searches imax 10
Threshold of the cost function ǫp 0.002

Note that the total simulation time for this case will be 600 seconds, since 30 windows of 20
seconds are implemented. Since u is the velocity aligned with the x-axis and vb = 0, the flow
is aligned with the rows of wind turbines (see Figure 6-1). For this situation, we would ideally
want the system to go to an optimal steady-state. However, theoretically, this will only be
the case if Nc <∞ and Np →∞.

Figure 6-1: Representation of the grid with 3 turbines in WFSim.

For this simulation case, we will evaluate the response of the system for the 3-turbine layout.
Table 6-3 shows the dimensions of this wind farm layout while Figure 6-1 depicts the resulting
grid including the wind turbine locations.

By doing an extensive grid search, the optimum of the 3-turbine wind farm for constant
atmospheric conditions can be found. This was done by letting the model go to steady-state
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Table 6-3: Size of the grid for the 3-turbine wind farm.

Number of turbines N 3
Rotor diameter [m] D 90
Length in x-direction [m] Lx 3000
Length in y-direction [m] Ly 1250

Locations of rotor center (x) [m] Rx

(

500 500 + 7D 500 + 14D
)

Locations of rotor center (y) [m] Ry

(

0.5Ly 0.5Ly 0.5Ly

)

Number of grid points (x) Nx 50
Number of grid points (y) Ny 25

for all different input values within the given boundaries. The input that results in the highest
power output over the prediction horizon Np = 400s is considered the optimum. For these
conditions, the optimal input in steady-state equals β =

[

0.25 0.10 0.54
]

.

This optimum makes sense if we look at the layout in Figure 6-1: the first and second
turbine are derated so the third turbine can produce more power. As discussed in Chapter 3,
the dynamic controller will not necessarily steer the inputs towards the optimal steady-state.
Instead, we would expect the input to increase as we approach the end of a prediction horizon.
The steady-state result can however be used to evaluate the performance of the controller.

0 100 200 300 400 500 600

Time [s]

0

1

2

3

4

5

6

7

8

P
o
w

e
r 

[W
]

105

Turbine 1

Turbine 2

Turbine 3

Total power

Greedy control power

(a) Power

0 100 200 300 400 500 600

Time [s]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

 [
-]

Turbine 1

Turbine 2

Turbine 3

Optimum T
1

Optimum T
2

Optimum T
3

(b) Input

Figure 6-2: The power production (a) and corresponding inputs (b) of a 3-turbine WF with
ǫp = 0.002.

For this case, ǫp = 0.002, i.e., the optimization will be terminated when the objective function
increases with less than 0.2%. It was found that for this value of ǫp, the optimization termi-
nates when further optimization is no longer useful. The effect of including this parameter in
the MPC algorithm will be shown for the 3-turbine layout.

Using Algorithm 2, the power over Np will be optimized and the control inputs found will
be implemented over receding horizon Nu. This results in the response shown in Figure 6-2.
We can see in Figure 6-2(a) that the power production of the optimized controller quickly
exceeds the power production of the greedy controller. After approximately 280 seconds (so
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14 implementations of calculated inputs), the instantanious power of the turbines exceeds the
greedy control. As we can see in Figure 6-2(b), which gives the implemented control inputs
over time, the terminal constraint ǫp is met after 320 seconds, resulting in a constant input
from then on. The final power production is 5.8% better than the greedy control strategy.

Notice that even though it is derated at β = 0.24, turbine 1 still produces by far the most
power of the three turbines. Here we can clearly see the effect that the wake of a turbine
has on the power production of downwind turbines. Observe that the final control inputs in
Figure 6-2 are very close to the steady-state optimum β =

[

0.25 0.10 0.54
]

found by doing
a grid search.
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Figure 6-3: The gradient belonging to the results of Figure 6-2.

If we look at Figure 6-3, we can see that the gradient still gives the correct direction for
the input to go towards the steady-state optimum. The values of the gradients are however
relatively small, and further optimization is therefore useless (as can be seen in Figure 6-4).
This is why the optimization is terminated by using the convergence threshold ǫp.

Once the power production increases with less than ǫp, the optimization is stopped and the
current input is kept constant. Note that it is important to chose ǫp with deliberation.
Choosing it too large will mean that the algorithm terminates the optimization prematurely,
while choosing it too small will result in an algorithm that never converges.

To demonstrate the effect that this convergence threshold ǫp has on the response, we repeat
the experiment of the previous section. The only difference with the previous simulation is
that this threshold is not used now, i.e., ǫp = 0. Figure 6-4 shows the result of this simulation.

We can see here that the power production increases in the first 300s of the simulation, but
when it comes close to its optimum, the power keeps fluctuating. This can be explained if we
look at the input in Figure 6-4(b): the input increases over each receding horizon, but then
drops at the beginning of the next horizon. As a result, the power production continues to
exhibit this oscillatory behavior.
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Figure 6-4: The power production (a) and corresponding inputs (b) of a 3-turbine WF without
threshold ǫp.

Figure 6-2 shows the results of the with ǫp = 0.002. The results are equivalent for the first
300s of the simulation, but now the inputs become constant when the oscillations used to
start. As a result, also the power production exhibits much smoother behavior.

6-2 Case 2: Changing Inflow Wind Velocity

In this section, we will discuss the case where the inflow velocity is no longer constant. The
conditions as well as the control parameters are shown in Table 6-4. We will only evaluate the
4-turbine wind farm layout. The other wind farms produce similar results and these results
can be found in Appendix C.

Table 6-4: The flow and control settings used in case 2.

Inflow velocity (x-direction) ub

{

8m/s if i ≤ 0.5Nu,max

10m/s if i > 0.5Nu,max

Inflow velocity (y-direction) vb 0m/s
Initial pressure p0 0Pa
Time step size ∆t 2s
Prediction horizon Np 400s
Receding horizon Nu 20s
Number of receding horizons Nu,max 60
Maximum number of line searches imax 10
Threshold of the cost function ǫp 0.002

Note that the simulation time is now 1200 seconds, as opposed to 600 seconds in case 1.
Note furthermore that although we have full state knowledge, we do not assume knowledge
of changes in the atmospheric conditions. Consequently, the algorithm keeps these conditions
constant over its prediction horizon. In other words, the controller does not know whether the
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6-3 Case 3: Changing Wind Direction 49

conditions will change within its prediction horizon, and consequently assumes they remain
constant. It therefore does not anticipate on, e.g., a changing inflow velocity.

As mentioned, this case will be evaluated for a 4-turbine WF layout. The dimensions of this
wind farm are given in Table 6-5.

Table 6-5: Size of the grid for the 4-turbine wind farm.

Number of turbines N 4
Rotor diameter [m] D 90
Length in x-direction [m] Lx 3000
Length in y-direction [m] Ly 1250

Locations of rotor center (x) [m] Rx

(

500 500 + 7D 500 + 14D 500 + 21D
)

Locations of rotor center (y) [m] Ry

(

0.5Ly 0.5Ly 0.5Ly 0.5Ly

)

Number of grid points (x) Nx 50
Number of grid points (y) Ny 25

Notice that this wind farm contains 4 turbines aligned with the dominant wind direction.
Figure 6-5 gives a schematic representation of this wind farm topology in WFSim.

Figure 6-5: Representation of the grid with 4 turbines in WFSim.

Figure 6-6 shows the results for these changing conditions on a 4-turbine wind farm. Notice
that the algorithm does not anticipate on the changing atmospheric conditions: the input β
remains constant until t = 600s, when the change in wind velocity occurs. Notice that after
the velocity changes to u = 10m/s, the greedy control strategy is immediately outperformed
by the controller after one receding horizon of 20 seconds. After 120 seconds, the threshold
ǫp is met and steady-state is reached. This can be explained by looking at Figure 6-6(b): the
steady-state values of input β do not differ much for both inflow velocities.

With the increased wind velocity, the relative power gain compared to greedy control is
slightly decreased: the controller now yiels an instantanious power increase of 6.4%.

6-3 Case 3: Changing Wind Direction

In this section, we will investigate a different change in the atmospheric conditions: a change
in longitudinal and lateral flow velocities at the boundaries. The initial conditions and control
parameters can be found in Table 6-6. In this section, only the 6-turbine wind farm will be
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Figure 6-6: The power production (a) and corresponding inputs (b) of a 4-turbine WF with
changing inflow velocity.

discussed. Like in the previous cases, the other wind farms exhibit similar behavior and can
be found in Appendix C.

Table 6-6: The flow and control settings used in case 3.

Inflow velocity (x-direction) ub

{

8m/s if i ≤ 0.5Nu,max

8 · cos(30◦)m/s if i > 0.5Nu,max

Inflow velocity (y-direction) vb

{

0m/s if i ≤ 0.5Nu,max

8 · sin(30◦)m/s if i > 0.5Nu,max

Initial pressure p0 0Pa
Time step size ∆t 2s
Prediction horizon Np 400s
Receding horizon Nu 20s
Number of receding horizons Nu,max 60
Maximum number of line searches imax 10
Threshold of the cost function ǫp 0.002

Note that although the inflow angle φ changes, the only input variable is still β: the yaw
angle is out of the scope of this thesis. As a result, the wind turbines do not align with the
wind direction as it changes. We therefore expect that the power production will decrease
after the wind direction changes, since the perpendicular wind velocity U r,⊥ will decrease.

Furthermore, we would expect that the controller will yield a smaller increase in power pro-
duction compared to the greedy strategy, since the turbines will now only have partial wake
interaction. Note that without wake interaction, greedy control is already the optimal con-
trol strategy and optimization is therefore unnecessary. With an inflow angle of 30◦, wake
interaction will however still play a role.

The 6-turbine wind farm layout evaluated in this section has a 2 by 3 topology, as shown in
Figure 6-7. The dimensions of this wind farm are given in Table 6-7. Figure 6-8 shows the
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Figure 6-7: Representation of the grid with 6 turbines in WFSim.

Table 6-7: Size of the grid for the 4-turbine wind farm.

Number of turbines N 6
Rotor diameter [m] D 90
Length in x-direction [m] Lx 3000
Length in y-direction [m] Ly 1250

Locations of rotor center (x) [m] Rx

(

500 500 500 + 7D 500 + 7D 500 + 14D 500 + 14D
)

Locations of rotor center (y) [m] Ry 3 ×
(

0.5Ly − 3.5D 0.5Ly + 3.5D
)

Number of grid points (x) Nx 50
Number of grid points (y) Ny 25

results obtained for this wind farm.
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Figure 6-8: The power production (a) and corresponding inputs (b) of a 6-turbine WF.

As expected, the power production decreases after the longitudinal and lateral wind velocities
change. The MPC algorithm quickly adapts to the new conditions, and already in the first
receding horizon, the power production is higher than for the greedy control strategy.

Threshold ǫp is met after only 9 receding horizons, i.e., 180 seconds. From this moment on,
the power production is again constant. In this steady-state, the controller yields 5.5% more
power than the greedy control stategy.

Master of Science Thesis J.A. Frederik



52 Simulation Results

6-4 Summary

In this section, we will shortly summarize the results obtained for the three cases using
the three wind farm layouts. As mentioned before, the results that are not shown in this
chapter, can be found in Appendix C. The performance of the controller with respect to the
greedy control is shown in Table 6-8. Notice that in all cases, the controller outperforms the
conventionally used greedy control strategy.

Table 6-8: Performance of the optimization algorithm with respect to the greedy control stategy.

Cases 3T 4T 6T

1: Constant conditions +5.8% +7.0% +5.5%
2: Changing velocity +6.4% +5.3% +5.3%
3: Changing direction +5.4% +6.4% +5.5%

Clearly, the algorithm succeeds in its goal to increase the power production of a wind farm
in WFSim. Regardless of the different cases, the controller performs between 5.3% and 7%
better than greedy control. It is able to adapt to changing wind conditions and will reach an
equilibrium in a matter of minutes.
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Chapter 7

Conclusions

In this thesis, a nonlinear Model Predictive Control (MPC) framework has been discussed
that optimizes the power production of a wind farm. The wind farm model used was the
Wind Farm Simulator (WFSim), a 2-dimensional medium-fidelity wind farm model that was
developed for control purposes. To determine the optimal control inputs of each individual
over time, the adjoint method was used to provide the derivative of the objective function
J with respect to the control inputs. In this thesis, the control inputs are the (scaled) axial
induction factors of the turbines over the prediction horizon Np.

The algorithm that has been presented in this thesis is unique in a few ways. First of
all, by using the WFSim model and an efficient line-search algorithm, it is computationally
inexpensive compared to other similar algorithms developed, such as [21]. Secondly, it is
a dynamic controller that has been proven to be able to cope with changing atmospheric
conditions. As such, combined with the relatively fast computation time, this controller
could possibly be implemented on-line to maximize the power production of existing wind
farms.

Furthermore, a convergence threshold ǫp has been introduced in this thesis that significantly
improves the behavior of the controller when it is close to the optimum. With this convergence
threshold, redundant forward simulations that provide no or very little improvement of the
cost function are prevented. More importantly, this threshold prevents oscillatory behavior
of the input variables in the close-to-optimal region and ensures a smooth power production
in said region.

This thesis has subsequently presented a solution to the complicated nonlinear economic MPC
problem defined as the maximization of the power production of a wind farm. For different
wind farm layouts and in different, changing, atmospheric condition, the controller developed
in this thesis has consistently outperformed the conventional greedy control strategy. For all
cases, the power production was increased by at least 5.3%, and even a increase of 7.0% has
been observed.
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7-1 Answers to the Research Questions

In Chapter 1, a research objective has been presented, as well as 4 subquestions. In this
section, these research objectives will be answered. These subobjectives will first be answered:

1. Can we increase the power production of a wind farm with respect to greedy
control, using only the Axial Induction Factor (AIF) of the turbines as input,
under constant wind conditions? We have seen in Section 6-1 that the power
production of a 3-turbine wind farm is increased with respect to greedy control using
Axial Induction Control (AIC). Appendix C furthermore shows that the same is the
case for a 4-turbine and a 6-turbine wind farm. We therefore conclude that we can
in fact increase the power production of a wind farm with respect to greedy control.
Answer: yes.

2. Can the control algorithm steer the system to an optimal steady-state for
constant wind conditions? In Section 6-1, the convergence threshold ǫp has been
discussed. With this threshold, we are able to obtain steady-state power production for
constant wind conditions. Answer: yes.

3. Can the control algorithm adapt to changing wind conditions? As we have seen
in Sections 6-2 and 6-3, the algorithm adapts very quickly to changing wind conditions.
For both cases, the power production of the wind farms still exceeds the power produced
using greedy control. We thus conclude that the algorithm is in fact able to adapt to
changing wind conditions. Answer: yes

4. Can the control input be determined fast enough on a standard laptop com-
puter for real-time dynamic control to be possible? In Chapter 6, we discussed
the computation time needed to obtain a reliable forward simulation for a sufficiently
large prediction horizon Np. The computation time needed to provide this simulation on
a laptop computer was 28 seconds. Since the algorithm requires at least 3 forward simu-
lations per optimization, we concluded that a receding horizon of at least 96 seconds was
required, which is too close to the prediction horizon of Np = 400 s. We consequently
conclude that the control input can not be calculated fast enough to enable real-time
control. Answer: no.

Note that this thesis provides a solution for 3 of the 4 formulated research subobjectives.
Although the fourth subobjective is not fulfilled, it does not mean that real-time control is
not possible with the algorithm developed in this thesis. The computational power used for
these simulations was very limited. Given more computational power, this objective might
still be feasible. This leaves us the main research objective, which was defined as:

With the proposed model-based framework, can we develop a dynamic closed-
loop control algorithm that optimizes the power production of a wind farm?

As we have seen in Chapter 6, the closed-loop control algorithm that has been developed
dynamically maximizes the power production for different wind farm layouts. It is also able to
adapt to different atmospheric conditions. Although the steady-state optimum is not reached
exactly, a dynamic optimum is reached using the convergence threshold introduced in Chapter
5. Accordingly, we can conclude that the main research objective was accomplished.
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7-2 Future Work

Although this thesis presents solutions to currently existing dynamic wind farm control prob-
lems, there is still research to be done in the field of nonlinear MPC for wind farms. In
this section, we will shortly discuss the research that could be done in the future to further
improve the results that were presented here. The future work can be summarized by these
three points:

• Include the yaw angle as a control variable;

• Apply MPC for different objective functions, e.g. minimizing the forces on turbines or
following a reference power signal;

• Implement the MPC algorithm on a real wind farm or, alternatively, a high-fidelity
model, augmented with a Kalman filter to estimate the states;

• Study the feasibility to use the algorithm on-line.

First of all, yaw control was not considered in this thesis. As a result, wake redirection control,
where the wake is steered away from downwind turbines, is not possible. WFSim does allow
the yaw angle as a control variable. It is therefore possible to include this in the algorithm
presented in this thesis. This would of course mean an extension of the control variable w̃.
Subsequently, new calculations would need to be made to determine the partial derivatives
needed for the adjoint method. The mathematical expressions needed to implement this have
been provided in this thesis.

Secondly, different objective functions could be implemented in this MPC framework: the
functionality is not limited to power maximization. It could also be used to minimize the
forces or fatigue stresses on the turbines. The forces on the turbines are also provided in
WFSim, so all requirements to implement this are available. Another objective that could
be implemented, is Active Power Control (APC). In APC, the goal is to follow a reference
power signal over time. For such an objective, the cost function can be written as a quadratic
function. As a result, classical MPC can be implemented as opposed to economic MPC.

Furthermore, we have used WFSim as both the model and the actual wind farm. If the
framework were to be implemented on a real wind farm (or, alternatively, a high-fidelity wind
farm model), it is possible that the controller performance would decrease. However, since
this has not been studied in this thesis, it is hard to make any predictions about this. It
would therefore be very useful to implement the work done in this thesis on a real wind farm
or high-fidelity wind farm model. This would of course present some new problems, since we
now assumed full state knowledge. However, in a real wind farm, is it not feasible to measure
the wind velocity at every point in the total farm. As a result, a Kalman filter might be
necessary to make an estimation of the states that can be used by the optimizer to determine
the optimal input.

Finally, the implementability of this thesis to do on-line control on a real wind farm has not
been investigated. It would be interesting to investigate the computational power necessary
to optimize the control inputs within the time of one receding horizon. If it were possible to
do this, the algorithm could determine the control input for the next receding horizon while
the current input is implemented.
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Appendix A

Coefficients of the fully discretized
Navier-Stokes equations

Fully discretizing the Navier-Stokes equations resulted in the following equations:

apx
i,Jui,J =

(

anx
i,J asx

i,J awx
i,J aex

i,J

)








ui,J+1

ui,J−1

ui−1,J

ui+1,J







− (pI,J − pI−1,J) δyj,j+1 + fx

i,J (x-momentum)

∀i = I ∈ {3, Nx − 1} , j = J ∈ {2, Ny − 1} ,

apy
I,jvI,j =

(

any
I,j asy

I,j awy
I,j aey

I,j

)








vI,j+1

vI,j−1

vI−1,j

vI+1,j







− (pI,J − pI,J−1) δxi,i+1 + fy

I,j (y-momentum)

∀i = I ∈ {2, Nx − 1} , j = J ∈ {3, Ny − 1} ,

0 = δyj,j+1 (ui+1,J − ui,J) + δxi,i+1 (vI,j+1 − vI,j) (continuity)

∀i = I ∈ {2, Nx − 1} , j = J ∈ {2, Ny − 1} .

The coefficients a•
•,• are defined in Table A-1.
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Table A-1: Coefficients in the fully discretized Navier-Stokes equations.

awx
i,J = max

[

F wx
i,J ,

(

Dwx
i,J +

F wx
i,J

2

)

, 0
]

asx
i,J = max

[

F sx
i,J ,

(

Dsx
i,J +

F sx
i,J

2

)

, 0
]

+ T sx
i,J

aex
i,J = max

[

−F ex
i,J ,

(

Dex
i,J −

F ex
i,J

2

)

, 0
]

anx
i,J = max

[

−F nx
i,J ,

(

Dnx
i,J −

F nx
i,J

2

)

, 0
]

+ T nx
i,J

apx
i,J = anx

i,J + aex
i,J + asx

i,J + awx
i,J + F nx

i,J + F ex
i,J − F sx

i,J − F wx
i,J + T px

i,J + apx
0

awy
I,j = max

[

F wy
I,j ,

(

Dwy
I,j +

F
wy

I,j

2

)

, 0
]

asy
I,j = max

[

F sy
I,j ,

(

Dsy
I,j +

F
sy

I,j

2

)

, 0
]

aey
I,j = max

[

−F ey
I,j ,

(

Dey
I,j −

F
ey

I,j

2

)

, 0
]

any
I,j = max

[

−F ny
I,j ,

(

Dny
I,j −

F
ny

I,j

2

)

, 0
]

apy
I,j = any

I,j + aey
I,j + asy

I,j + awy
I,j + F ny

I,j + F ey
I,j − F sy

I,j − F wy
I,j + apy

0

in which:
F wx

i,J = 1
2ρ (ui,J + ui−1,J) δyj,j+1 Dwx

i,J = µ
δyj,j+1

∆xI−1,I
apx

0 = ∆xI−1,Iδyj,j+1

∆t

F ex
i,J = 1

2ρ (ui+1,J + ui,J) δyj,j+1 Dex
i,J = µ

δyj,j+1

∆xI−1,I
∆xI−1,I = xI − xI−1

F sx
i,J = 1

2ρ (vI,j + vI−1,j) ∆xI−1,I Dsx
i,J = µ

∆xI−1,I

δyj,j+1
δyj,j+1 = yj+1 − yj

F nx
i,J = 1

2ρ (vI,j+1 + vI−1,j+1) ∆xI−1,I Dnx
i,J = µ

∆xI−1,I

δyj,j+1

F wy
I,j = 1

2ρ (ui,J + ui,J−1) ∆yJ−1,J Dwy
I,j = µ

∆yJ−1,J

δxi,i+1
apy

0 = ∆yJ−1,J δxi,i+1

∆t

F ey
I,j = 1

2ρ (ui+1,J + ui+1,J−1) ∆yJ−1,J Dey
I,j = µ

∆yJ−1,J

δxi,i+1
∆yJ−1,J = yJ − yJ−1

F sy
I,j = 1

2ρ (vI,j−1 + vI,j) δxi,i+1 Dsy
I,j = µ

δxi,i+1

∆yJ−1,J
δxi,i+1 = xi+1 − xi

F ny
I,j = 1

2ρ (vI,j + vI,j+1) δxi,i+1 Dny
I,j = µ

δxi,i+1

∆yJ−1,J

T nx
i,J = ρl2u∆xI−1,I

(∆yJ,J+1)2 |ui,J+1 − ui,J | , T sx
i,J = ρl2u∆xI−1,I

(∆yJ−1,J )2 |ui,J − ui,J−1| , T px
i,J = T sx

i,J + T nx
i,J

awx(ui−1,J , ui,J), aex(ui,J , ui+1,J),
anx(vI−1,j+1, vI,j+1, ui,J , ui,J+1), asx(vI−1,j , vI,j , ui,J−1, ui,J),
apx(ui−1,J , ui,J−1, ui,J , ui,J+1, ui+1,J , vI−1,j , vI−1,j+1, vI,j , vI,j+1),
awy(ui,J−1, ui,J), aey(ui+1,J−1, ui+1,J), any(vI,j+1, vI,j), asy(vI,j , vI,j−1),
apy(ui,J−1, ui,J , ui+1,J−1, ui+1,J , vI,j−1, vI,j , vI,j+1)

and:

fx
i,J = 1

2δyj,j+1ρCT (ak)
[

u
r,⊥

k
(γ)

1−ak

]2

cos(γk), fy
I,j = 1

2δyJ−1,JρCT (ak)
[

U
r,⊥

k
(γ)

1−ak

]2

sin(γk),

ur
k =

√

u2
i,J + v2

I,j cos(γk − φk)
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Appendix B

Partial derivatives in Wind Farm
Simulator (WFSim)

• ∂J
∂q̃

, with J defined in Equation (2-9)

∂J

∂q̃
=
[

(J2)q1
(J3)q2

· · · (JNp
)qNp−1

0
]

∈ R
1×Np·nq (B-1)

where Jk is defined in Equation (4-22). This leads to:

(Jk+1)qk
=

∂Jk+1

∂qk
=
[

0 · · · 0 ∂Jk+1

∂un=1,r=1
· · ·

∂Jk+1

∂un=1,r=m
0 · · ·

0 ∂Jk+1

∂un=N,r=m
· · ·

∂Jk+1

∂un=N,r=m
0 · · · 0

]

in R
1×nq (B-2)

with:

∂Jk+1

∂un=ni,r=ri

= −
6cJ

m
·

un=ni,r=ri
·
(
∑m

r=1

√

u2
n,r + v2

n,r

)

√

u2
n=ni,r=ri

+ v2
n=ni,r=ri

(B-3)

• ∂C
∂q̃

, with C as:

C(q̃, w̃) =









C1(q0, q1, w1)
C2(q1, q2, w2)

...
CNp

(qNp−1, qNp
, wNp

)









= ∈ R
Np·nq×1 (B-4)

with Ck defined in Equation (4-20). This results in:
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∂C

∂q̃
=











(C1)q1

(C2)q1
(C2)q2

. . . . . .
(CNp−1)qNp−2

(CNp−1)qNp−1

(CNp
)qNp−1

(CNp
)qNp











∈ R
Np·nq×Np·nq

(B-5)

with:

(Ck)qk
= A ∈ R

Np×Np , (Ck)qk−1
= −Ā(qk, qk−1, wk) ∈ R

Np×Np (B-6)

with A defined in Equation (2-18) and Ā(qk, qk−1, wk) in Equation (2-20).

• Using Equations (B-1) and (B-4) we can obtain Λ ∈ R
Np·nq×1:

(
∂C

∂q̃

)T

Λ = −
(

∂J

∂q̃

)T

(B-7)















((C1)q1
)T ((C2)q1

)T

((C2)q2
)T . . .

. . .
(

(CNp−1)qNp−2

)T

(

(CNp−1)qNp−1

)T (

(CNp
)qNp−1

)T

(

(CNp
)qNp

)T

























λ1

λ2
...

λNp−1

λNp











= −











(J2)q1

(J3)q2

...
(JNp

)qNp−1

0











(B-8)

• ∂J
∂w̃

:

∂J

∂w̃
=
[

(J1)w1
(J2)w2

· · · (JNp
)wNp

]

∈ R
1×Np·N (B-9)

with:

(Jk)wk
=

∂J

∂w1
=
[

−cJ

(

U r,⊥
n=1,k

)3
−cJ

(

U r,⊥
n=2,k

)3
· · · −cJ

(

U r,⊥
n=Np,k

)3
]

∈ R
1×N

(B-10)

• ∂C
∂w̃

:

∂C

∂w̃
=









(C1)w1

(C2)w2

. . .
(CNp

)qNp









∈ R
Np·nq×Np·N (B-11)
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with:

(Ck)wk
=

∂Ck

∂wk
= −B̄(qk−1, wk) ∈ R

nq×nw (B-12)

where B̄(qk−1, wk) is defined in Equation (2-20).

• Using Equations (B-8), (B-9) and (B-11), we obtain the gradient ▽w̃J :

▽w̃ J =
∂J

∂w̃
+ ΛT ∂C

∂w̃
∈ R

1×Np·N (B-13)
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Appendix C

Additional Simulation Results

In this appendix, the simulation results that were mentioned but not shown in Chapter 6 will
be given.

As mentioned in Chapter 6, three different wind farms will be evaluated in this thesis. In this
section, the three different wind farms will be discussed shortly. The size of the grid an of
the cells in the grid are shown in Table 6-3.

C-1 Wind Farm Topologies

In this section, the wind farm topologies for the 3-, 4- and 6-turbine wind farms will be given.
Table C-1 shows the dimensions of the 3-turbine wind farm.

Table C-1: Size of the grid for the 3-turbine wind farm.

Number of turbines N 3
Rotor diameter [m] D 90
Length in x-direction [m] Lx 3000
Length in y-direction [m] Ly 1250

Locations of rotor center (x) [m] Rx

(

500 500 + 7D 500 + 14D
)

Locations of rotor center (y) [m] Ry

(

0.5Ly 0.5Ly 0.5Ly

)

Number of grid points (x) Nx 50
Number of grid points (y) Ny 25

Figure C-1 shows the resulting grid including the wind turbine locations.

The second wind farm is the 4-turbine wind farm. The dimensions of this wind farm are given
in Table C-2 and a schematic representation is given in Figure C-2.

The final wind farm considered is a 6-turbine wind farm consisting of two rows of 3 turbines.
Table C-3 gives the dimenions of this wind farm. Figure C-3 gives a schematic representation
of this wind farm.
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Figure C-1: Representation of the grid with 3 turbines in WFSim.

Table C-2: Size of the grid for the 4-turbine wind farm.

Number of turbines N 4
Rotor diameter [m] D 90
Length in x-direction [m] Lx 3000
Length in y-direction [m] Ly 1250

Locations of rotor center (x) [m] Rx

(

500 500 + 7D 500 + 14D 500 + 21D
)

Locations of rotor center (y) [m] Ry

(

0.5Ly 0.5Ly 0.5Ly 0.5Ly

)

Number of grid points (x) Nx 50
Number of grid points (y) Ny 25

Figure C-2: Representation of the grid with 4 turbines in WFSim.

Table C-3: Size of the grid for the 4-turbine wind farm.

Number of turbines N 6
Rotor diameter [m] D 90
Length in x-direction [m] Lx 3000
Length in y-direction [m] Ly 1250

Locations of rotor center (x) [m] Rx

(

500 500 500 + 7D 500 + 7D 500 + 14D 500 + 14D
)

Locations of rotor center (y) [m] Ry 3 ×
(

0.5Ly − 3.5D 0.5Ly + 3.5D
)

Number of grid points (x) Nx 50
Number of grid points (y) Ny 25
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Figure C-3: Representation of the grid with 6 turbines in WFSim.

C-1-1 Case 1: Constant Atmospheric Conditions

First of all, the results for case 1 will be presented. The atmospheric conditions and control
settings are given in Table C-4.

Table C-4: The flow and control settings used in case 1.

Inflow velocity (x-direction) ub 8m/s
Inflow velocity (y-direction) vb 0m/s
Initial pressure p0 0Pa
Time step size ∆t 2s
Prediction horizon Np 400s
Receding horizon Nu 20s
Number of receding horizons Nu,max 30
Maximum number of line searches imax 10
Threshold of the cost function ǫp 0.002

The simulation results of the 4-turbine wind farm for this case - both power production and
control input - are given in Figure C-4. The power production is 7% higher compared to
greedy control.
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Figure C-4: The power production (a) and corresponding input (b) of a 4-turbine WF.
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The same simulation has been done for the 6-turbine wind farm. These results are given in
Figure C-5. For this layout, the increase in power production compared to greedy control is
5.5%.
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Figure C-5: The power production (a) and corresponding input (b) of a 6-turbine WF.

C-1-2 Case 2: Changing Inflow Wind Velocity

Secondly, the results for case 2 will be presented. The atmospheric conditions and control
settings are given in Table C-5.

Table C-5: The flow and control settings used in case 2.

Inflow velocity (x-direction) ub

{

8m/s if i ≤ 0.5Nu,max

10m/s if i > 0.5Nu,max

Inflow velocity (y-direction) vb 0m/s
Initial pressure p0 0Pa
Time step size ∆t 2s
Prediction horizon Np 400s
Receding horizon Nu 20s
number of receding horizons Nu,max 60
Maximum number of line searches imax 10
Threshold of the cost function ǫp 0.002

The simulation results of the 3-turbine wind farm for this case - both power production and
control input - are given in Figure C-6. The power production is 6.4% higher compared to
greedy control.

The same simulation has again been done for the 6-turbine wind farm. These results are
given in Figure C-7. For this layout, the increase in power production compared to greedy
control is 5.3%.

J.A. Frederik Master of Science Thesis



C-1 Wind Farm Topologies 67

0 200 400 600 800 1000 1200

Time [s]

0

5

10

15

P
o

w
e

r 
[W

]

105

Turbine 1

Turbine 2

Turbine 3

Total power

Greedy control power

(a) Power

0 200 400 600 800 1000 1200

Time [s]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

 [
-]

Turbine 1

Turbine 2

Turbine 3

(b) Input

Figure C-6: The power production (a) and corresponding input (b) of a 3-turbine WF.
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Figure C-7: The power production (a) and corresponding input (b) of a 6-turbine WF.

C-1-3 Case 2: Changing Inflow Angle

Finally, the results for case 3 will be presented. The atmospheric conditions and control
settings are given in Table C-6.

The simulation results of the 3-turbine wind farm for this case - both power production and
control input - are given in Figure C-6. The power production is 5.4% higher compared to
greedy control.

The same simulation has again been done for the 4-turbine wind farm. These results are
given in Figure 6-6. For this layout, the increase in power production compared to greedy
control is 6.4%.
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Table C-6: The flow and control settings used in case 3.

Inflow velocity (x-direction) ub

{

8m/s if i ≤ 0.5Nu,max

8 · cos(30◦)m/s if i > 0.5Nu,max

Inflow velocity (y-direction) vb

{

0m/s if i ≤ 0.5Nu,max

8 · sin(30◦)m/s if i > 0.5Nu,max

Initial pressure p0 0Pa
Time step size ∆t 2s
Prediction horizon Np 400s
Receding horizon Nu 20s
Number of receding horizons Nu,max 60
Maximum number of line searches imax 10
Threshold of the cost function ǫp 0.002
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Figure C-8: The power production (a) and corresponding input (b) of a 3-turbine WF.
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Figure C-9: The power production (a) and corresponding input (b) of a 4-turbine WF.
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Glossary

List of Acronyms

2D 2-dimensional

ADM Actuator Disk Model

AIC Axial Induction Control

AIF Axial Induction Factor

CFD Computational Fluid Dynamics

DUT Delft University of Technology

NS Navier-Stokes

MPC Model Predictive Control

PDE Partial Differential Equation

WF Wind Farm

WFSim Wind Farm Simulator

List of Symbols

α Step size in the direction of gradient ▽w̃J

ǫ Convergence threshold
ǫp Convergence threshold for increasing objective J .
µ Dynamic viscosity
φ Wind direction
ρ Air density

Master of Science Thesis J.A. Frederik



74 Glossary

β Scaled Axial Induction Factor (AIF), used as control input
γ Yaw angle
f Thrust force between wind and turbine
∂• The partial derivative w.r.t. •
a AIF
a•

•,• Coefficient in the momentum equations
Ar Rotor area
Bc Boundary condition vector
cJ Product of constants in J

CP Power coefficient
D Rotor diameter
J Objective function
Lx Length of the wind farm in x-direction
Ly Length of the wind farm in y-direction
m Number of cells coinciding with a rotor
N Number of turbines
Nc Control horizon
nq Size of state vector q

nw Size of input vector w

Nx Number of grid points in x-direction
Ny Number of grid points in y-direction
P Power production
p Pressure
q States of the system
qatm The atmospheric conditions
r Reference signal
Sm External forces vector
U r Wind velocity at turbine rotor
U∞ Wind velocity far upstream
w Input signal
x Horizontal axis of the farm as seen from above
y Vertical axis of the farm as seen from above
z Output signal
△t Sampling time
△V Volume of one cell
Ns Number of time steps
u Wind velocity in x-direction
v Wind velocity in y-direction

i Cell index in x-direction

j Cell index in y-direction
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k Discrete time instant

n Turbine index

r Index of a cell coinciding with a rotor blade

r Index of a cell coinciding with a rotor
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