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1. Introduction.

In this thesis the term feedback system is used in two different ways. In the
general theory of stochastic processes, a feedback system, or feedback process,
is a process in which the state of the process at time n will be fed back as
input for the calculation of the state of the process at time n + 1. In queueing
theory, the term feedback system, or feedback queue, stands for a queueing
model where customers, after getting service at a service facility, may be fed
back to the service facility before they depart from the system.

The main part of this thesis consists of four papers about feedback systems.
The first two papers deal with feedback processes. A global description of the
subjects studied in these two papers is given in Section 2 and 3, respectively.
The last two papers deal with feedback queues. In Section 4 and 5 a summary
of the results obtained in these two papers is given. The rest of Section 1 is
devoted to the definition of feedback processes and feedback queues.

1.1 Feedback processes.

DEFINITION: An RP-valued stochastic process X,, is called a feedback process
with input sequence Y;, € RY if there exist functions f, : R? x R? — R? such
that for alln € N

(11) Xn-H. = fn(Xn,Yn)-
Xi Xi+1
Delay Feedback
A
Input Y‘ Function fi Output X fo

Figure 1

EXAMPLE 1: Let W, be the waiting time of the n-th customer in a single server
queueing model. Let S, be the service time of the n-th customer and T,, be
the interarrival time between the n-th and the (n 4 1)-st customer. Then

Waa1 = max(0, W, + (Sn — Tn))



is of the form (1.1) with X, = W,,, Y, = S, —T, and fa(z,y) = max (0,z+y).
EXAMPLE 2: Let (Y3)r>1 be a sequence of i.i.d. random variables and X,, be
the maximum value of the first n of these random variables. Then X,, is of the
form (1.1) with f,(z,y) = max(z,y).
EXAMPLE 3: Let

Xn+1 =An X, + By,

where (A,, B,) are i.i.d. random vectors. This stochastic difference equation
arises in various disciplines, for example economics, physics and biology (see
Kesten [13] and Vervaat {19]). In most applications X, represents a stock of
certain objects at time n, B, the quantity that is added just before time n + 1
(or taken away in case B, < 0) and the factor A, indicates the intrinsic decay
or increase of the stock X,, between time n and n+ 1. In this case X, is of the
form (1.1) with Y,, = (A,, By) and fa(z,(y,2)) = yz + 2.

A question of interest for such feedback processes is under what conditions on
the input sequence Y,, and the functions f,, the process X,, converges in distri-
bution to a non-degenerate random vector X. For instance, in the first example
above it is well-known that convergence occurs if S, and 7T}, are sequences of
i.i.d. random variables, independent of each other, satisfying £S; < ET;.

Another question of interest is the following : If the X,,’s do not converge in
distribution, can we find norming constants a, and b, such that (X, —a,)/b,
does converge in distribution to a non-degenerate random vector X? This
question has been answered for the second example above and leads to the
well-known extreme value theory (see Gnedenko [6]).

In this thesis we shall consider two models in applied probability of the form
(1.1). The first model arises in the analysis of production networks. If the
production network has p nodes, then X,, is an RP-valued random vector. The
input sequence Y, is a sequence of random matrices of order p, so that Y, is
R?-valued with ¢ = p%. The vector X,, represents the times at which the nodes
become active for the n-th time. The matrix Y, represents the transportation
times between the different nodes. This model will be described in more detail
in Section 2.

The second model arises from a model for storage systems and is of the form
(1.1) with f,(z,y) = max (z,a,z + y), where o, is a sequence of parameters
between zero and one. In this case the feedback function f, depends on n.
This model will be described in more detail in Section 3. For both models we
study the asymptotic behaviour of X, when n tends to infinity.

2



1.2 Feedback queues.
DEFINITION: A queueing system in which customers may repeatedly return to
some service facility to obtain several phases of service before they leave the
system is called a feedback queue (see Figure 2).

Feedback

)
-

Y

() .

Y

N/ e
Arrival System of Service Output
stream queues facility
Figure 2

The interest in such feedback queues stems from so-called time-shared com-
puter systems (see Kleinrock [14]). A simple model for a time-sharing computer
system consists of a single resource (CPU) and a system of queues containing
those users of the computer system (customers) awaiting service. In addition
there exists a scheduling algorithm, which is a set of decision rules determin-
ing which customer will be served next and for how long. The newly arriving
customers are placed in the system of queues and, when the scheduling algo-
rithm finally permits, are taken into service. The interval of time during which
a customer is permitted to remain in service (quantum) may or may not be
enough to satisfy the request. If sufficient, then the customer departs from the
system; if not, then he reenters the system of queues as a partially completed
task and waits within the system of queues until the scheduling algorithm de-
cides to give him a second quantum, and so on. Eventually, after a sufficient
number of visits to the service facility, the customer will have gained enough
service and will depart. The third and fourth model in this thesis, which will
be described in more detail in Sections 4 and 5, deal with this kind of feedback
systems. In Section 4 we shall use a sequence of feedback models to approxi-
mate a queueing model with so-called processor sharing service discipline. In
Section 5 we consider the queue length process in feedback models where the
service times of customers depend on the number of services the customer has
already obtained.



2. Discrete event dynamic systems.

A common property of production processes is that machines do not act
independently, i.e. some machines cannot start a new activity until certain
other machines have all completed their current activities. Furthermore some
machines cannot start a new activity until certain outside resources become
available. Finally, endproducts can only be delivered after certain machines
have completed their activities.

A mathematical description of this kind of processes is given by the relations

zi(n+1) = max (a;; +zj(n), bix + ux(n))
(2.1) 1Z42m
vi(n) = max (cij + z;(n)),

3.
k.
r.
c
kp
m.
p.
Resources Machines Endproducts

figure 3

where the interpretation of the used quantities is:
m : Number of resources.
p : Number of machines.
r : Number of endproducts.
zi(n): Time instant at which machine ¢ becomes active for the n-th time.
u;(n): Time instant at which resource i becomes available for the n-th time.
¥i(n): Time instant at which endproduct 7 is delivered for the n-th time.
a;j : Transportation time from machine j to machine ¢, including the du-
ration of the activity of machine j.
b;; : Transportation time between resource j and machine i.
¢ij : Transportation time between machine j and delivery point of endprod-
uct 4.

If we introduce the following notation

z®y= max (z,y)

2.2
23 r®y=z+y,
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then the relations (2.1) can be written as

zi(n+1) = Z [a;; ® zj(n)] ® Z [bs; ® uj(n)]

i=1® i=1&
(2.3) »
vi(n) = ) [ej @ zj(n)),
i=1®
where

P
Z 2, =21D - -D2p.
j=16

In matrix notation this becomes
z(n+1) = [A®z(n)] & [B ® u(n)]

2.4
@4 y(n) = C ® z(n).

A process of the form (2.4) is called a discrete event dynamic system (DEDS).

The algebraic structure (R,®,®), where R denotes the real numbers ex-
tended with minus infinity, and 2 @y and z ® y are defined as in (2.2), is called
maz-algebra. A systematic theory, analogous to conventional linear algebra,
exists for the max-algebra (see Cuninghame-Green [5]). The main reason for
the introduction of the notation @ and ® in (2.2) is to make this analogy more
clear.

In the first paper in this thesis we concentrate on the equation z(n + 1) =
A ® z(n) which for instance can be obtained from (2.4) if all resources are
immediately available at the beginning of the process. Until now the study
of DEDS in the context of max-algebra has been purely deterministic. In
practice, however, processing times and/or transportation times are quite often
stochastic quantities. Such stochastic fluctuations can, for instance, be caused
by machine failure or depreciation. This is our motivation to study a stochastic
extension of z(n 4+ 1) = A @ z(n). In fact, we study the model

(2.5) z(n+1) = A(n) @ z(n)

where A(n), n = 0,1,..., is a sequence of i.i.d. real valued p x p matrices.
Notice that the process is a feedback system of the form (1.1) with X, = z(n),
Y, = A(n) and f,(z, A) = A®z. We are interested in the asymptotic behaviour
of #(n) for n — oo and we shall prove that under suitable conditions on the
input sequence A(n) the process z(n) is asymptotically normal.
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3. A process between maxima and sums.
Consider the following stochastic process

{ Xn+1 = max(ﬂXn’ ofX, + Yn+1)

(3.1) Xo = 0

where 0 < a < 1,0 < 8 < 1 and {Y,,n > 1} a sequence of i.i.d. R*-valued
random variables. Such a process may be used to model a storage system in
which X,, denotes the contents at time n. In the time period from n to n +1
the contents is depleted to 8X,,. The random variable Y, +; is to be regarded
as an offered input, acceptance of which implies a further depletion to af8X,,.
The process arises, for example, in describing a system for the storage of solar
energy (see Haslett [10]), X, measuring the energy contents of the storage
tank. The release of energy is proportional to the content, and the offered
input, being solar radiation equivalent to an energy amount of Y, 4, gives rise
to a further release of energy equivalent to (1 — a)8X,,.

A necessary and sufficient condition for positive recurrence of the Markov
chain X, is Elog(1+ Y}) < oo (see Greenwood and Hooghiemstra [8]). In this
case the limiting stationary distribution of X, is the unique solution X(@h) of
the equation

(32 X@P £ max(BX(@P), afX (P +Y),

where X(*# and Y are independent, Y 4 Y1 and 2 denotes equality in distri-
bution.

In Hooghiemstra and Keane [11] the model is studied when Y is exponen-
tially distributed. They were able to compute EX (@8 numerically with satis-
factory precision for 8 < 0.95. In Greenwood and Hooghiemstra [8] a centering
function ¢(8) is found for which X(#) — ¢(B3) has a limiting distribution for
fixed @ as B — 1 and they found the density function h of the limit law. It
turns out that h satisfies the functional equation

h(z) = /_r e~ (F=o"p(y)du.

The same problem was studied by Hooghiemstra and Scheffer {12] for the
case P[Y; > z] = %, p > 0. They showed that for such input, the laws
(1 - pgex(«h g € (0,1), form a tight family with limiting density h as
B — 1 satisfying

h(z)=z7! /:(:c — au)”Ph(u)du.
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Instead of focussing on X(*#) the limit law of X, defined by (3.1) and
letting 3 — 1, one may proceed by putting 8 =1 in (3.1). This gives

(3.3)

The process X, in (3.3) will not have a proper limit distribution. So questions

of interest are:

(1) How can X,, be normalized to obtain a proper limit distribution?

(2) What are the proper limit distributions for normalized sequences (X, —
an)/bn 7

(3) What classes of Y; form the domains of attraction of these limit distributions
?

In the two boundary cases @ = 0 and a = 1 the answer to these questions
is wellknown. In fact these cases bring us back to extreme value theory (see
Gnedenko [6]) and the theory of sums of i.i.d. random variables (see Gnedenko
and Kolmogorov [7]), respectively.

Indeed, for a = 0 (3.3) becomes

Xn+1 = maXx (Yl, e ,Yn+1).
The possible limit distributions are the three extreme value distributions

®,(z) = exp(—z7") l[o,00)(%), P >0
¥,(2) = exp(—(-2))cooi(®) + Lo cor(), £ <0
A(z) = exp(—e™7).

For @ = 1 on the other hand, (3.3) becomes

n+1
Xn+l = Z Y;.
i=1

In this case the possible limit distributions are the stable distributions.

The intermediate case 0 < a < 1 is studied in Greenwood and Hooghiemstra
[9]. They showed that the limiting behaviour of normed sequences formed
from X, is parallel to the extreme value case & = 0. More specifically, if Y; are
random variables with distribution F and if a,, and b, are norming constants
such that F"(a, + b, ) converges in distribution to a non-degenerate limit law,
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then the sequence b;!(X, — an/(1 — a)) is tight on the interior of the support
of this limit law. For F in the domain of attraction of the first extreme value
distribution ®,(z) they showed that a limit density exists and is the unique
density solution of the functional equation

ho(z) = pz~! /ox(z — au)”?h,(u)du.

For the two remaining extreme value distributions a similar result is obtained
for some specific distributions F in their domain of attraction.

Because of the discontinuity in the norming constants between a € [0,1) and
a =1 it is interesting to replace the fixed a by a sequence («,,) tending upward
to 1. In the second paper of this thesis we investigate what happens when

ap,=1-n"% 0<f<
for the three cases
(1) £=1, /y2dF(y) < 00
(2) 0<et<1, Fy)=Q-y")ly>1], p>2
3) £>1, /yzdF(y) < 00

In fact we prove the existence of norming constants a,, and b,, such that

ﬁ—»l a.s.

an

Xn—an d

In" ™ 4 7
bn

. . d . NI
with Z standard normal (— is convergence in distribution).

4. Feedback and processor sharing queues.

As mentioned in the introduction, the interest in feedback queues stems from
the principle of time sharing in computer systems. The most natural queueing
model for time-shared computer systems is the M/G/1 queue with Round Robin
service. New customers, arriving according to a Poisson process, join the end
of the queue. When a customer has reached the front of the queue he receives
a fixed quantum ¢ of service. At the end of this service quantum the customer
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leaves the system if his total service requirement is met; if not, then he returns
to the end of the queue with his remaining service requirement reduced by an ‘
amount q.

The M/G/1 processor sharing model is described as follows: customers, ar-
riving according to a Poisson process, are taken into service immediately upon
their arrival. They stay into service uninterruptedly until their service demand
is satisfied. When there are n customers in the system each customer receives
service at a rate which is 1/n times the rate of service a solitary customer in
the system would receive.

It is commonly held that, as the length of the quantum size ¢ in the Round
Robin model tends to zero, the processor sharing model and Round Robin

. model become indistinguishable. Hence results for the processor sharing model
may serve as approximations for corresponding Round Robin results. In Schas-
sberger {17] this statement has been made precise.

The processor sharing model was introduced because of the mathematical
difficulties arising in the analysis of the more realistic Round Robin model. The
derivation of the stationary queue length distribution in the M/G/1 processor
sharing model was obtained by Sakata et al. [16]. The much harder problem
of calculating the stationary sojourn time distribution was solved by Yashkov
[20], Ott [15] and Schassberger [17].

Recently van den Berg and Boxma {3] suggested a new approach for analyz-
ing M/G/1 processor sharing models by way of an approximating sequence of
M/M/1 feedback queues. The M/M/1 feedback queue is the following model.
New customers, arriving according to a Poisson process, join the end of the
queue. After completion of a service a customer returns to the end of the queue
with probability p(¢) or departs from the system with probability 1—p(), where
i denotes the number of services the customer has already obtained. All ran-
dom mechanisms, i.e. interarrival times, service times and feedback mechanism
are independent.

‘ p(i)
o —

t=p(i)

Figure 4

Let us briefly sketch the approach of van den Berg and Boxma in the case
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of an M/M/1 processor sharing model. So, assume that the service times
X1, Xa,... of customers in the processor sharing queue are exponential, say
with mean 1. In the feedback queue with parameter n a customer obtains ex-
ponential service slices with mean length n=!. When a customer has completed
a service he departs from the system with probability n~! or joins the end of
the queue with probability 1—n~1. It is easily checked that for each n the total
service time a customer gets in the feedback model is exponential with mean 1.
Furthermore, when n — oo the feedback queue with parameter n looks more
and more like the processor sharing queue. On heuristic grounds van den Berg
and Boxma concluded that performance measures such as the sojourn time in
the feedback model converge to the corresponding performance measure in the
processor sharing model. This is made rigorous in the third paper in this thesis.
In this paper we present a probabilistic coupling between the M/M/1 processor
sharing queue and the approximating sequence of M/M/1 feedback queues, i.e.
we construct a probability space (2,4, P) on which both the processor shar-
ing and the feedback queues are defined. On this probability space the arrival
times of the customers in the processor sharing and feedback models are the
same. Furthermore the construction is done such that, if X  denotes the to-
tal service time of the k-th customer in the feedback model with parameter n,
then Xj, — Xj, P almost surely. These two properties will be used to prove
the almost sure convergence of departure times of customers in the feedback
queue with parameter n to the corresponding quantity in the processor sharing
model as n — oo. In fact, in the proof we introduce and use a sequence of
round robin queues defined on the same probability space (2,4, P). Finally,
the theory of regenerative processes (see Smith [18] and Cohen [4]) is used to
show that if the workload of the system is smaller than one, then the steady
state sojourn time distribution of the feedback model converges as n — oo to
the steady state sojourn time distribution in the processor sharing model.

Van den Berg and Boxma [3] showed how to choose the feedback probabilities
to obtain more general total service times. It is possible to obtain all service
time distributions that are finite mixtures of phase distributions. The random
variable X is said to have a distribution which is a finite mixture of phase
distributions if it has Laplace-Stieltjes transform

m L
(4.1) Ee™X =3 a; [J(1+ pijs) ™,
i=1 i=1
where (ay, -+ ,am) is a probability vector, r; are positive integers and p;; are
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positive real numbers. It is known that the distributions defined by (4.1) are
dense in the space of all probability measures on (0,c0) equipped with the
Prohorov distance or some equivalent metric.

5. Feedback queues and multitype branching processes.

The fourth paper in this thesis is devoted to the analysis of the queue length
process in feedback queues where both the probability that a customer is fed
back after service completion and the distribution of the service time of a
customer depend on the number of times he has already been served.

The basic feedback queueing model is the M/G/1 queue with Bernoulli feed-
back. In this model both the feedback probability p and the service time
distribution B(-) of a customer are independent of the number of times he
has already been served. It is easily seen that the M/G/1 queue with Bernoulli
feedback has a stationary queue length process which has the same distribution
as a corresponding M/G/1 queue without feedback, i.e. an M/G/1 system in
which the service distribution of a customer is equal to the total service time a
customer obtains in the feedback model. That is, if 8(-) is the Laplace-Stieltjes
transform of the service time distribution, then the Laplace-Stieltjes transform
of the total service time distribution is given by

(1-p)B()

1-pB()
Hence the generating function of the number of customers in the system is
well-known from the theory for M/G/1 queues without feedback.

In van den Berg [2] a generalization of this feedback model is investigated
under the condition that the service time distribution B(-) is exponential. In
this generalized feedback model the feedback probability p(i) depends on the
number of services i the customer already has obtained (see Figure 4). If we
assume p(N) = 0 for some N and call customers who are visiting the queue
for the i-th time type i customers, then the stationary joint distribution of the
number of type i customers in the system at an arbitrary epoch, ¢ =1,--- | N
is of ” product form” type (see Baskett, Chandy, Muntz and Palacios [1]). More
precisely, if we denote by X; the steady-state number of type ¢ customers at
an arbitrary epoch then

N
PXy = 21, X = o) = (1= ) SN T (g

i=1
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with ¢(i) = I—[;;ll p(J), p = AB E,}\;l q(?), A the arrival rate and # the mean

service time.

A natural generalization of van den Berg’s model is an M/M/1 feedback
model in which, in addition to the probability that a customer is fed back
after service completion, also the service time of a customer depends on the
number of times he has already been served. For this extended model the joint
stationary distribution of the number of type i customers in the system is no
longer of product form type. In fact, no results concerning the distribution of
the queue length were available. The study of this model led to the results
presented in the fourth paper. To illustrate the ideas of this paper we consider
the following feedback model. Customers arrive at the system according to
a Poisson process with intensity A > 0. Each customer requires exactly two
services. The two service times are independent, with distribution function
B;(-), finite mean §; and Laplace-Stieltjes transform §;(-), i = 1,2, respectively.

Define the following embedded sequence of times ¢, called generation times:
(1) to is the arrival time of the first customer.

(2) tn41 is the first instant after ¢, in which all customers present at t,, have
been served exactly once in (t,,2,41). If there are no customers present at
tn, tn41 is the instant of the first arrival after ¢,,.

If we put Z, = (Z;,22) = (X! ,X}) where X} is the number of type i
customers in the system at time ¢, then Z,, is a two-dimensional Markov chain.
It turns out that Z,, is a two type branching process with immigration at state
(0,0). The offspring generating functions are given by

FW(s1,82) = 528, (M1 = 51))
F®(s1,82) = B2(A(1 — 51)).

The immigration generating function is given by g(s;,s2) = s1. For this mul-
titype branching process a stability condition can be given, which turns out
to be A(B1 + B2) < 1. If this condition is satisfied, then an expression is de-
rived for the generating function of the stationary joint distribution of Z,,. If
A(B1 + B2) > 1, then an almost sure convergence result is given for the fraction
of type i customers in the system at generation times.

The same kind of analysis can be performed for a general kind of queueing
models called multitype M/G/1 queues with Markov routing. In these models
customers of different types arrive according to independent Poisson processes
with rates A\;,--- ,An. Type i customers have service times with distribution

12



B;(-) with finite mean §;. After being served, a type i customer returns to
the end of the queue becoming a type j customer with probability p;;, where
P = (pi;) is a substochastic matrix, i.e. (i) pi;; > 0 for all 7 and j and (ii)
> pij < 1 for all i (1 — X5; pij is the probability that a type i customer
leaves the system.) The joint queue length process at generation times is once
again a multitype branching process. If I — P is non-singular and the matrix
M with entries m;; = A;8; + pij is primitive (i.e. there exists an n such that
M™ is strictly positive), then we obtain the same kind of results as mentioned
above. The assumption that I — P is non-singular is equivalent to saying that
customers eventually leave the system with probability one.

A related model is one with so-called permanent customers. In this model
there are, besides the ordinary customers, also a number of customers staying
in the system forever. The joint queue length process at generation times is in
this case a multitype branching process with immigration at each state. For
such processes similar results as mentioned above are obtained.
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Asymptotic Behavior of Random Discrete Event Systems.
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Abstract

In this paper we discuss some aspects of the asymptotic behavior of Dis-
crete Event Dynamic Systems (DEDS) in which the activity times are random
variables. The main result is that a central limit theorem holds for DEDS
and consequently that the cycletime of the system is asymptotically normally
distributed.

1. Introduction

A large class of dynamic systems, such as the material flow in production or
assembly lines, the message flow in communication networks and jobs in com- .
puter systems can be modeled by Discrete Event Dynamic Systems (DEDS).
These are systems where the occurrence of events is determined by the system
itself and not described by time. Examples of such events are the beginning
or completion of a task in an assembly line or the arrival of a message in a
communication network.

Current research on DEDS uses a number of methods. Among these are
the logical approach to automata (see e.g. [11]), the perturbation analysis of
trajectories (see e.g. [6]), simulation, and the temporal approach, which we
shall follow in this article (see e.g. [3]).

In these models activity times at a node of, for instance, a production net-
work, are successively determined by combining the activity times at other
nodes during previous activity cycles with delay and/or transport times. The
aim is then to describe the dynamic temporal behavior of the network, given
the knowledge of the nature of the delay and transport times and the initial
state of the system. An important aspect of the temporal approach is that
it permits a conceptual simplification by use of the so-called max-algebra to
describe the models, yielding an analogy to conventional system theory. The
elements of this max-algebra are the real numbers (together with —co) and the
only admissible operations are maximization and addition.
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In [4] a systematic theory parallel to linear algebra has been developed for
the max-algebra, and in [2] and [3] the use of the max-algebra in the temporal
approach to DEDS has been discussed and illustrated. In §2 the models for
DEDS and the max-algebra will be introduced and some results on DEDS will
be recalled.

At present, only deterministic DEDS have been studied using the temporal
approach via the max-algebra. However, often in practice delay and transport
times are of a stochastic nature, either inherently or because of our lack of
information concerning the precise nature of the system. In this article we
shall concentrate on models which take this random behavior into account.
In particular, we derive for a class of random discrete event systems (see §2
for a definition) the expected cycle time and we show that this cycletime is
asymptotically normal (see §3). Calculations for the expectation and variance
of the cycletime are given in several examples in section 4. Finally, in section 5
we consider reducible random DEDS and we compare the asymptotic behavior
of random DEDS with deterministic DEDS.

2. Discrete Event Dynamic Systems

In this section we shall first introduce the models we use for Discrete Event
Dynamic Systems (DEDS) and show how these models can arise. Then we
introduce the concept of random DEDS. Finally, some known results on the
asymptotic behavior of deterministic DEDS are recalled.

Consider a production network with the following functional description.
There are a fixed number n of nodes in the network. We shall be interested
in the time point at which node i (1 < i < n) becomes active (i.e. starts
production) for the k-th time. This time point will be denoted by z;(k). In
order to start the (k + 1)-st activity at node i, it is necessary to wait until
each node j has finished its k-th activity and “supplied” node i. As soon as
all necessary supplies from the k-th production cycle are available at node i,
it becomes active for the (k + 1)-st time. Let a;;(k) denote the sum of the
production time at node j in the k-th cycle and the transporttime from node
J to node i. Then the above description gives rise to the formula

(2.1) zg(k + l) = l?jaéxn(zj(k) + a,-j(k)).

At this stage it is both intuitive and convenient to introduce the max-algebra
notation. Following [4], we define for real numbers r and s the operations &
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and ® by:
r @ s = max(r, s),

res=r+s.

The reason for using the symbols @& and ® is that a number of results from
convential linear algebra and system theory can be “transferred” to the max-
algebra and DEDS by replacing the + and x signs by @ and ® respectively.
The formula (2.1) for the n-vector z(k + 1) of (k + 1)-st activity times then
becomes, in matrix notation

(2.2) z(k+ 1) = A(k) @ z(k).

For many purposes the above autonomous formulation of a dynamic system is
too restrictive: one must add a vector u(k) of outside resource times and one
should consider a general output vector y(k), obtained from z(k) by adding
production and transport times. In this manner one arrives at the general
form:

z(k + 1) = (A(k) ® z(k)) ® (B(k) @ u(k)),

(2.3)
y(k) = C(k) ® z(k)

of a linear discrete event dynamic system. The reader is referred to [2] and [3]
for a detailed description and discussion.

In this paper we shall be interested in the asymptotic behavior of the time
vector z(k). Therefore we assume that C(k) is the identity matrix in the max-
algebra and that all outside resources are available at the start of the process,
so that the term B(k) ® u(k) disappears. This allows us to concentrate on
the behavior of the system as a function of the matrices A(k), which we shall
assume to be of a stochastic nature.

DEFINITION 1. Let (A(k))x>0 in (2.2) be a sequence of independent, identically
distributed (i.i.d.) real n x n matrices and let an initial random vector z(0) be
given independent of (A(k))r>0. Then the system, which is described by (2.2),
will be called a random discrete event dynamical system. (A similar definition
can be given when the general form (2.3) is used).

We shall assume that the matrices A(k) are real-valued and finite with prob-
ability one. Our goal in this article is to show under suitable conditions that
the sequence z(k) is asymptotically normal and to give examples of explicit
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calculations (for n = 2) of the asymptotic mean and variance, thereby deter-
mining the average cycle time and the nature of the deviation from this average
during long-term operation of the system.

Next, we briefly describe some results of [2] and [3] concerning the behavior of
deterministic DEDS, which can be seen as a special case of the above definition
in which the i.i.d. sequence A(k) is simple a constant matrix A = (a;;) with
real entries.

An eigenvalue of the matrix A (in the max-algebra sense) is a real number
X such that the equation

ARzr=2AQ®z«,

possesses a solution £ € R"™. Then the following results can be formulated.
1) Every (real-valued) matrix A possesses a unique eigenvalue A = A(A).

2) For each sequence ¥ = (iy,...,1j,4j41 = #1) of nodes, the average weight
Bii;, ® - ® aiji,
J
(in this, division by j is the conventional algebraic operation, not a max-

algebra operation) satisfies

w(y) =

)

w(y) <A
3) There is a v = (i1,...,%4,41) with i; # ¢ if § # k, such that w(y) = A
Such a sequence 7 is then called a critical circuit.
4) There exist d and kg such that for all k£ > ko,

z(k + d) = A8 @ z(k).

If the critical circuit v is unique then d equals the number of distinct nodes
of v.

REMARKS:

An interpretation of 1) - 4) is that the asymptotic behavior of the system is
completely determined by the “slowest” circuit (i.e. the circuit with maximal
average weight), other circuits playing no role, after finite time.

If the arc from node j to node i is absent from the system, this can be
modelled mathematically by setting a;; = —oo. This is in a certain sense
convenient, since —oo is the zero element of the max-algebra. An interpretation
in the production network is that node j does not have to supply node i to
start the next activity at node i. If —oo entries are allowed in A, it is necessary
to place an irreducibility assumption on the underlying graph to ensure the
validity of the given results.
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3. Asymptotic normality

For ease of exposition we assume that n = 2, although the results remain in
principle valid for general n. Let a random DEDS be given; our notation is as
in the preceding section. We define

(3.1) z(k) := zo(k) — z,(k), k>0.
PROPOSITION 1. The process {z(k)}, k > 1 is a Markov chain. For fixed z € R,

the jump probability measure P(z,-) of this Markov chain is the distribution
of the random variable

(a1 @ (a22 ® 2)) — (a11 @ (ay2 @ 2))

a a
A= 11 12
a1 Qg2

where

has the distribution of A(k).
Proor: We have

z1(k +1) = an(k) ® z1(k) ® ar2(k) @ z2(k),
1‘2(’6 + 1) = agl(k) Q@ .’El(k) [&>) agg(k) ® 1'2(’(7),

so that
z(k + 1) = a2 (k) ® azn(k) ® 2(k)
—ay1(k) ® a12(k) @ z(k)
and the proposition follows . i
Now define
(3.2) d(k) ;== z1(k) —z1(k—-1), k>1.

Then we have

k
zi(k) = 21(0) + ) _d(j), k21,
k
za(k) = 22(0) + (2(k) — 2(0) + D _d(j), k>1.

i=1
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PROPOSITION 2. For each k > 1, the distribution of (d(k), z(k)) given
2(0),d(1),2(1),...,d(k—1),z(k — 1) depends only on z(k —1). If 2(k—1) =z
this distribution is equal to the distribution of the random vector (a1 ® (212 ®
z),a21 @ (az2 ® z) — a11 ® (@12 @ 7)) where

4= (au ‘112)
azy azz
has the distribution of A(k).
PROOF: We have
(3.3) dk) =an(k—1)@®ai(k-1)@2(k—-1)
which, together with the previous proposition, yields the desired result. I

REMARKS:
1. Proposition 2 says that the joint distribution of (d(k), z(k)), depends only
on the value of z(k — 1) and not on other values of d or z in the past.
2. For similar results when n > 3, see [9].

It should be clear now that z;(k) — 21(0) is equal in distribution to a sum of
random variables with distributions depending only on an underlying Markov
chain, and that we are in the situation studied in [8] for discrete state space
chains, and in [5] for general state space chains. We shall formulate (a special
case of) a theorem of [5] which we shall use. For a definition of uniform -
recurrence and a sketch of the proof of this theorem we refer to the appendix.

THEOREM 1. Suppose that the Markov chain z(k), & > 0, is aperiodic and
uniformly ®-recurrent, and denote by = its unique invariant probability measure
. If the entries of A have finite first moments then

(3.4 Jim (5D = )

exists almost surely for any initial activity time (z1(0), z2(0)), and we have
= Ex(d(1)),

the expectation of d(1), given that the distribution of z(0) equals m. Moreover,
if the entries of A and the initial activity time (z,(0), z2(0)) have finite second
moments, then

0 < o? := Ex((d(1) — p)?)

+23 Ex((d(1) - w)(d()) - p)) < oo

=2
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and if 02 > 0, then the sequence

(21(k), z2(k)) — k- (4, 1)
o VE , k>1,

converges in distribution to the random vector (N, N), where N is a standard

normal random variable. B
4. Examples

We present three examples illustrating the theory of the preceding section.
In all examples the dimension of the system equals two (n = 2), and the entries
of the matrix A(k) are i.i.d..

1) Bernoulli delays

Assume that for each k > 0, A(k) has independent and identically distributed
entries a;j(k), 7,j € {1,2}, which take the values 0 or 1 only, each with prob-
ability 1/2. For any initial vector z(0) there exists an index k¢ such that for
k > ko the Markov chain z(k) takes values in the finite set {—1,0,1}. The
transition probabilities on {—1,0,1} are easily seen from Proposition 1 to be

1/4 1/2 1/4
P= (3/16 5/8 3/16).
1/4 1/2 1/4

given by the matrix

The Markov chain z(k) is aperiodic (all entries of P are positive) and uniformly
®-recurrent (the state space is finite). It follows from 7' P = #* that the discrete
measure 7 on IR defined by

r({=1}) = 3/14, =({0}) = 8/14, =({1})=3/14

will be the unique invariant probability measure.
From Proposition 2 we find

3

1,8
14

p = En(d(1)) = 4

+

DD | =

It is difficult to calculate o2 directly through (3.5), because E,(d(1)—p)(d(l)—
p) involve the evolution of the Markov chain z(k), £ > 0 from time 0 up to time
I. However, it is possible to calculate 02 via a detour. To this end we first note
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that in cases where for each k, a;;(k), i,j € {1,2}, are i.i.d. it is convenient to
work with Z(k) and d(k) where

(4.1) E(k) := |za(k) — z1 (k)]

(4.2) d(k) := 1(k) @ (k) ~ 21(k — 1) @ 2ok ~ 1).
The transition probabilities

P{z(k) =i, d(k) = jlz(k = 1) = 2}
for z € {—1,0,1} are given by the table

> Gl (-1,0) (0,0) (1,0) (-1,1) (0,1) (1,1)

-1 0 174 0 174 174 174
0 0 1716 0 3/16 9/16 3716
1 o 174 0 1/4 174 174

Of course when we add together the entries with z(k) fixed and d(k) = 0 or
d(k) = 1 we obtain the matrix P. We also note from the table that the row
with z = —1 is identical to the row with z = 1. This implies that Z(k) itself is a
Markov chain. The transition probabilities P{3(k) = i,d(k) = j|3(k — 1) = z}
for z € {0,1} are given by the simple table

(19}
z (0,0) (0.1 (1.0 (1.1
0 1716 9716 0 6/16
1 174 174 0 172

Now we shall show how we can use the more simple variables (k) and d(k) to
calculate o2. It follows from Theorem 1, and the continuous mapping theorem
(Theorem 5.1 of [1]) that

max(z(k), zo(k)) — p - k
oc-Vk
converges in distribution to a standard normal random variable N. Conse-
quently

lim var( max(xl(k)i .‘Bz(k)) . k
k—o00 o \/E

22
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Also from (4.2} ,

k
max(z1(k), 22(k)) = max(z1(0), z2(0)) + D _ d(j).

i=1

These two lines together imply that
1 k
2 - lim = - (i
(4.3) o’ = kllm P var(jE_1 d()),

because the result of Theorem 1 is independent of 2(0), which value we therefore
take equal to 0. The right-hand side of (4.3) can be evaluated in this simple
example. To this end define §(k) := (2(k — 1), 2(k)), k¥ > 1. The Markov chain
8(k), k > 1, has state space {(0,0),(0,1),(1,0),(1,1)} and, according to the
simple table above, its transition matrix equals
5/8 3/8 0 0

0 0 1/2 1/2
5/8 3/8 0 0

0 0 1/2 1/2

The invariant probability vector b* of the matrix Ps is : & = £(5,3,3,3).

P =

Furthermore it is not difficult to verify that

fi == P{d(k) = 1|6(k) = (0,0)} = 9/10

f2 = P{d(k) = 1|é(k) = (0, 1)} = 1

fs = P{d(k) = 1|é(k) = (1,0)} = 1/2

Ja:= P{d(k) = 1|6(k) = (1,1)} = 1.
Now introduce the limit matrix B of Ps, defined as the 4 x 4 matrix with all 4
rows equal to the equilibrium vector b, and define the fundamental matrix Z
by

Z:=(I-(Ps—B))™,

which exists according to Theorem 4.3.1 of [7].

It follows from Theorem 4.6.3 of the same reference (reformulated in our nota-
tion) that

1 S
kllrgozvar(z d(e))

=1

4
=2{) fifibi(zij — 6:)} —p(p—1)

i,j=1
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where §;; denotes the Kronecker-delta. Easy but tedious calculations show that

64 9 -12 -12

1 {-20 37 16 16

49 15 9 37 —12 ’
-20 -12 16 65

Z =

and hence o2 = 33/343.

2) Ezponential delays
Let for each k > 0, A(k) has independent, identically distributed entries
a;;(k), i,j € {1,2}, with distribution

Plaij(k) <z} = (1 — e ) 10.00)(2), A>0.
As in the previous example we find that for all z > 0 and s € R,
P{z(k) < s]z(k - 1) = —z} = P{z(k) < s|]z(k - 1) = 2}
This follows from Proposition 1, since the i.i.d. assumptions on a;; imply:

a21 ®(a22@2) — 611 P (412 Q 2)
L 051 @ (a22® —2) — a1, ® (012 ® —2),

where 2 denotes equality in distribution. Hence in this example (k) is a
Markov chain with state space [0,00). We first calculate the transition kernel

p(z,[0,8)) == P{i(k) < s|Z(k - 1) = z}.
Let us define random variables u, and v, such that

U,

max(all(k)7 alZ(k) - Z)a
max(az1(k), az2(k) — z).

{ESE

v,

Then
p(z,[0,5)) = P{jz(k)| < s|2(k - 1) = z}

:/ P{v,<y+3}dP{Uz<y}

0

+/ P{y—s<v,<y+8}dp{uz<y}x
s
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and u,,v, have common distribution:
Plu, <y}=01- e Y1 - e"‘(”“)), y>0.
Hence we find

(44) p(Z, [0) s)) =l-e™
_ 2 a4 ge-mm)

Wi

4 Lomacran _ ée-ms“z), 5,22 0.

w

LEMMA 1. The Markov chain #(k),k > 0, is aperiodic and uniformly ®-

recurrent.

PROOF: Aperiodicity is clear. To prove uniform ®-recurrence we use Theorem
A-1 (i) of the appendix. Let ®(A) := fA Ae~**ds. Then it is easily seen, using
the inequalities

2 —Az 1 —-2\z 1
< Zemre oz <=
0_38 3¢ <3 Vz € [0,00),
1—2e"**| <1, Vs € [0, 00),
that
p(z,A) = /:4 —;—sp(z, [0,8))ds

= / /\e"\’(l + (ge—Az _ le—2xz)(1 _ 2€—A’))ds
A 3 3

> g/A/\e"\"ds

2 R
= §<I)(A).
Thus, for 0 < € < 2®(A), we have APW(z, A) = p(z, A) > € uniformly in z. I

It is evident from the definition #(k) = |z(k)|, k¥ > 0, that the conclusion of
Lemma. 1 also holds for z(k). Hence the assumptions of Theorem 1 are satisfied.
To calculate u = E,d(1) observe from the derivation in the previous example
that

n = Ez(d(1)),

25



where # is the invariant probability measure of Z(k) and with d(k) defined
by (4.2). The invariant probability measure of Z(k) is given by the unique
distribution #(-) for which, for all s € [0, 00),

#0)= [ ol 0,0)d(2).
So, defining the Laplace-Stieltjes transform of #(-) by
{e o]
#(p) ::/ e~ dx(s),
0
we get

wo)= [ ([ e 4p(a 0.9)ds)dR(a)
Using (4.4) we find

0 d
—ps &
[ e palo.onds
A2 X o4 x .

=3T3 04 T3 dg,S
_L A e 2 X o
3 X+p 3 2+p
and hence \ 5 \ 4 \
*h) =317 3‘,\+p"()'§'2)\+p"m
1 A
331 (2)+ /\+p1r(2/\).

Substituting p = A and p = 2 gives
() = 53/114, #(2X) = 17/57,

and so

W)= o o o
=19 3+p 19 224p
or equivalently, 03 4
= — 1.2 —/\s L o=2)s
#(s) =1 Th + 19¢ .
Using that, under the condition 2(0) = 2z,
d(1) £ max(a11(0), az1(0), a12(0) — z, a22(0) — 2),
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we find after some calculations
4= Ex(d(1) = / E(d(1)[3(0) = 2)d ()
©13 2 _,, 1

= (5 + e — —e~P)dA(z
o ,\(2 3 12 ) (z)

_L 407

T A 228

3) Uniform delays
Let a;;j(k) be mutually independent random variables uniformly distributed
on the interval [0,1]. Once again we consider the Markov chain Z(k) := |z3(k)—
21 (k)| and calculate the transition kernel
p(2,[0,5)) = P{s(k) < s]Z(k—-1)=2z}, 0<zs<1.
Let us define u,, v, as in the previous example. Then one can easily check that
the joint probability density p, of (u,,v,) is given by
(2u + 2)(2v + 2), 0<u<l-z,0<v<l—2
2u 4+ 2, O<u<l—2,1-2<v<1
pa(u,v) =
v+ z, l-z<u<],0<v<1l—2
1, l-z2<u<],l-2<v<1.
Furthermore we have the following relation between the transition density
£p(2,[0,5)) and p::
d 1-s
d—p(z, [0,8))=2- / po(u,u + s)du.
s 0

For the calculation of this density we have to consider the following cases:
case A;: 0 < s <min(z,1-2)

d
2 p(2,10,9))
4
= g—2z+2z2—§-z3—23+23z—-2szz—2sz+gsa.
case B: 2<s<1~-2
d 2
Ep(z, [0,5)) = g +22%2 - 523 — 45— 2522 + %ss
case C:1—2<s<z

d
Ep(z, [0,5)) =2—2s
case D: max(z,1-2)<s5<1

%P(z, [0,5)) = 2 — 45 4 25% 4 22 — 2zs.
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LEMMA 2. The Markov chain i(k),k > 0, is aperiodic and uniformly ®-
recurrent. '

PRrROOF: Aperiodicity is clear. For the proof of uniform ®-recurrence we will
use the following

CLAIM. Define

2(1 — s), 0<s5—1+-\/§
— 2
fs) =14 g 4 1.1z
5——-4s+§s, —2+§ 3<s<1

Then for all z € [0,1] we have £p(z,[0,5)) > f(s).

The claim follows from easy, but tedious calculations in the four cases A, B,
C and D. ,
At this point we have found a function f(s), continuous on [0,1], and positive
on (0,1), such that f(s) < &p(z,[0,s)) for all z € [0,1], and all 5 € (0,1).
Now define on the Borel subsets of (0, 1),

®(A) :=Af(s)ds.

Using this measure @ it is easily checked that the Markov chain z(k), k > 1, is
uniformly ®-recurrent. i

We now proceed as in example 2 and calculate the invariant probability
measure # of 7(k) and from this the expectation Ez(d(1)). Let us denote the
density of the stationary distribution of Z(k) by g. To obtain a numerical
approximation for ¢ we will subdivide cases A, B, C, D once more. We want
to distinguish between s < i; and s > 4_;, z < % and z > % Hence we get eight
subcases as shown in Figure 1.

Furthermore, for convenience of notation S 13 23
we replace z by 1 - zif 3 <2< 1 ' )
and sby 1-sif$ <s< 1. 1.4 2.4
If we use these replacements, calculations
yield the following eight polynomials for 1.2 2.2

the densities of the transition probabilities :

1.1 2.1

11 §-2:4 222~ 225 — 254 252 — 2522 — 257 + 350
12 8422223 - 45 - 2522 4+ 44°

Figure 1
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1.3 2sz + 22
14 —223 + 2522 + 457 — 36°
21 24+ 223254252 — 2527 - 25* + §5°

222-2s
2.3 25 — 225 + 252
2.4 2s

In order to find the stationary density g of Z(k), i.e. the normalized solution of

1
o) = [ gorl0.0)e)s

we put

go(s) = g(s)’ 0<s<

b

g1(s)  =g(l—s), 0<s

IA
= bS] =

Then, if we denote by Pij(z,s), i = 1,2, j = 1,2,3,4 the polynomial of
subcase i.j, go and g; must, for 0 < s < %, satisfy the equations

go(s) = '/0s Piy(z,8)g0(2)dz + /2 P11(z,8)g0(2)dz

(4.5) ’ .
+ /0 Pyalz, 8)g1(2)dz + / Par(z, 8)g1(2)dz,

gi(s) = a Py4(z,5)g0(2)dz + ’ Py3(z,8)g0(2)dz
(4.6) '/0' [

s 1
+/0 P24(z,s)gl(z)dz+/ P23(2,8)g1(2)dz.

s

Now assume
n
go(s) = E cns”,
n>0

g1(s) = Z d,s".

n>0

(4.7)

From (4.5), (4.6) and (4.7) and the formulas for
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P;j(z,s) we can deduce the following recurrence relations for ¢, and d,:

e = c”'2(n(n__31)) + c"“a((n_-l%ﬁfii)
() + oo L),

dn = C"—s((;:—ﬂ%?:ﬂ) + %4(,17%)
+ d"“"(ﬁ%—_?))’ n> 4.

Using &, := ¢, - n! and d,, := d,, - n! instead of ¢, and d, gives, for n > 4,

Cn =— 26p_2+2né,_3
(4.8) 4+ 2nd,_3—2(n+ 1)(n — 2)d, 4,
dp =208n_3 — 2ndp_3 — 2(n + 1)(n — 2)&,_a.

For the terms ¢é,, and d~n, n=20,1,2,3 we find

fo = S(4= 350 +35  g), dy=0,

(4.9) &= —2+280) - 28, d =260,
€2 = —4 + 2¢y, dy = 4,
€3 = 8 — 2¢; + 66y, d3 = 6¢,

where #(") is the n-th moment of the stationary distribution of %(k), i.e.

(4.10) g = /1 2"g(z)dz.
0

To calculate the mean cycletime p we use that, under the condition #(0) = 2,

d(1) £ max(a11(0), az1(0), a12(0) — 2, az(0) — 2),
with d(1) as defined in (4.2). Hence,

P(d(1) < y|2(0) = 2) = {y2(y+ z)’, 0<y<l-z,
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and so

1
Ed(1)|5(0) = 2) = /0 yd P(d(1) < y| £(0) = 2)

1-2
= / (4y* + 632 + 2%2%)dy

It follows that

4 1 2 1 1
_2_lpmy L fa@ _ 1B 4 2 g0s5)
B=3 2ﬂ + 3ﬂ 3ﬂ + 30‘3

From (4.7) and (4.10) we have
1 1
) = / s Ecns"ds + /7(1 —s) Ed,,s”ds.
0 n>0 0 n20

Using this relation together with the recurrence relations (4.8) and the initial
conditions (4.9) we can calculate B%) numerically for i = 1,2,3,5. This yields .

BN = 284, g® = 124, B = .067, g = .027.
So for the mean cycletime p we obtain
u = .719.

An alternative way of calculating u can be obtained from discrete approxi-
mations of the uniform distribution. Let us assume that for each k, a;;(k) are
mutually independent with distribution

P(aij(k) = ¢/(m = 1)) =1/m,
for£=0,1,....m—1, meN m>2
Then #(k), k > 0, is a Markov chain with state space S = {¢/(m —1),£ =

0,1,...,m—1}. The transition probabilities p;, of this Markov chain are given
by
pje = P(Z(k) = ¢/(m = 1)|Z(k — 1) = j/(m — 1))
m-1
Sk, t=0,
_ h=0
- m—t—1

2. Z bin - bjaye, £F#0,
h=0
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where

m—h-—1
bin := Plzy(k) = 2 + ———]

max(zi(k — 1), za(k — 1)) = z,2(k — 1) = j/(m - 1)).

Easy calculations show that

1/m, j>h,
bjn = j+1+2(m—h-1)

- , J<h.
Further .
fje == B@D)IEO) = §/(m — 1), 5(1) = ¢/(m — 1))
m-—1
= ﬁ(f\; h-bjm_h-1-bjm-nte-1)/
m-—£-1
(D bin-bjean)-
h=0

Now fix m; from the transition probabilities p;, it is possible to calculate nu-

merically the stationary distribution {#; : j = 0,...,m — 1} of #(k) and from
this
m—1m=l
K= Z Z TipjeSie.
i=0 ¢=0

In the next table we show for increasing m the approximate values of 4.

m| 2 | s [ 10 |15 | 2 | 25 | s0 |75
p | .8571 |.7661 |.7414 |.7337 [.7299 [.7276 |.T232 |.7217
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5. Expectation of cycle times

In this section the emphasis will be on mean cycle times. As in the previous
sections we shall consider 2-dimensional systems.

In subsection 5.1 we assume that as;(k) = —co. We show an example where
the state space of the Markov chain 2(k) = z5(k) — z,(k) becomes countably
infinite and where no invariant probability measure exists for z(k).

In subsection 5.2 we show that a main result from the theory of deterministic
DEDS, i.e. the fact that the slowest circuit in the network determines the
asymptotic behavior of the system, does not necessarily remain true for random
DEDS.

5.1 Reducible systems

In this subsection we assume that P(a (k) = —oo) = 1 while the other
entries are real-valued and finite with probability one . The system description
then becomes

:cl(lc + 1) = a“(k) [0 :L‘l(k) &® alg(k) ® Zg(k)
Iz(k + 1) = agz(k) ® Zg(k‘).
Instead of d(k) given by (3.2), we use once again (see (4.2)),
(5.2) d(k) = z,(k) ® zo(k) — z1(k — 1) ® zo(k — 1).

The reason for this is that limg_, o ﬂgﬂ is not necessarily equal to limy_, oo

(5.1)

1’2! k !
)
for systems of the form (5.1), because Theorem 1 is no longer valid.

In example 1 the state space of z2(k) = x2(k) — z1(k) remains finite, so that
it = Ex(d(1)) can be computed as before . In example 2 the state space of z(k)
becomes countable infinite. Depending on a parameter p the Markov chain
z(k) will be positive recurrent, null-recurrent or transient. Only in the first
case it is possible to obtain the mean cycle time from the invariant probability

measure.
Example 1
Consider the following distributions of the transition times.
1
P(ay1(k) =0) = Plan(k)=1) = 2
1
P(a2(k) = 0) = P(ara(k) = 1) = 3
P(agl(k) = —oo) =1
1
P(agg(k) = 1) = P(azz(k) = 2) = 5
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In the stationary situation the state space of z(k) equals {0,1,2} and the
Markov transition matrix is given by:

(3/8 1/2 1/8)
P=|1/4 1/2 1/4 )
1/4 1/2 1/4

which has as invariant probability vector:
n =(4/14,7/14,3/14).

We find in this case: E.(d(1)) = 3/2. Note that this value is equal to E(aas).
This is not surprising, since in equilibrium P(z2(k) > z,(k)) = 1 and hence
from (5.2): d(k) = zo(k) — zo(k — 1) = aga(k — 1).

Ezample 2
Consider the following distributions of the transition times, p € (0,1)

P(a;(k)=0)=1~P(ay(k)=1)=1-p,
P(a12(k) = 0) = P(a12(k) =1)=1/2
P(an(k) = -00)=1

P(aga(k) = 0) = P(ag(k) =1)=1/2.

In the stationary situation the Markov chain z(k), ¥ > 0, has state space
{1,0,—1,-2,...}, and transition matrix given by

é % 1_;1‘:1 0 0 0
a2 e 0000
P= 0 l_;2 % 2 0 0
0 0 B 3 F 0

The Markov chain is positive recurrent for p < %, null recurrent for p = %

and transient (drifts away to —oo) for p > % Only in the first case a unique
invariant probability distribution exists. Some calculations show that this dis-
tribution is given by:

,o= 1-2p
LT B-p)
3
ﬂ'g:l_pﬂl,
o 2+4+p P i1 .
7‘.-.1_(1___’))2(1_1)) 1y 1—1721"'
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Using this distribution we find

5 1
(53) Ed) =5
which value is independent of p.
For p > 1 the chain is transient. The Markov chain z(k) drifts away to —oo

and hence for k large enough d(k) = z;(k) — z1(k — 1). Consequently
(5.4) E(d(k)) = E(z1(k) = z1(k — 1)) = E(ay1(k)) =p

This also holds for p = %, because for a null-recurrent Markov chain we have for
all states limg_, oo P(2(k) = j) = 0 and hence limy_.o, P(z(k) € {1,0,—1}) =0.
The following intuitive explanation of the answer in (5.3) can be given. Since
u can be expected to be increasing in p, we conclude from (5.4) that g < 1/2
for p < 3. However, p can not be smaller than E(z(k) — za(k — 1)) and hence
also p > 1/2.

5.2 The slowest circuit

In section 2 it was pointed out that for deterministic DEDS the asymptotic
behavior of the system is completely determined by the slowest circuit in the
network. For random DEDS this is in general not the case. We shall show
that the mean cycle time of the process is at least equal to the maximum of
the average weights of the circuits. With some examples it will be shown that
equality holds only for very few cases.

Let again A(k) = (a”(k) “”(k)) be a sequence of i.i.d. real-valued random

a2 (k) a22(k)
matrices and let d(k) = z1(k) — z1(k — 1).

PROPOSITION 3. Suppose that the Markov chain z(k), k > 0, is aperiodic and
uniformly ®-recurrent, and that the entries of A(k) have finite first moment.
The mean cycle time p satisfies,

(5.5) p > max{E(ay,), E(az2), E(an ? as )

where a;; denotes a random variable with the same distribution as a;;(k).

ProoF: We have d(k + 1) = a1,(k) @ (a12(k) ® z(k)) (see (3.3)) and hence
pu > E(ay1). According to (3.4), we also have u = Ex(z2(k + 1) — z2(k)), and
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so by symmetry g > E(a22). From the system equations it can be derived that

z1(k+ 1) —z1(k — 1) = (a11(k) ® a1 (k - 1))
® (a11(k) ® a12(k - 1) @ z(k — 1))
® (a12(k) ® az (k- 1))
® (ar2(k) @ az2(k — 1) ® z(k — 1))
This implies that u > E(En%ﬂn) ]

We shall now present some examples. Only in the first example equality

in (5.5) holds. In all examples we assume the entries of A(k) to be mutually
independent.

Ezample 3

Let

P(a;; =2) = P(a;; =3)=1/2

P(alz = 2) = P(alz = 3) = 1/2

P(az1 =0) = P(az; =1)=1/2

P(022 = 0) = P(azz = 1) = 1/2
It can be computed that 4 = E(ay) = % This can be explained as fol-
lows. The Markov chain z(k) has as its state space in the stationary situation
{-1,-2,-3} and thus a11(k) ® ay2(k) ® z(k) is always equal to ay1(k) in sta-
tionary situation. Then, according to (3.3), d(k+1) = a;;(k) for all k and thus
u# = E(ay,). The above property holds in general if
P(ay1 > azz;a1; 2> m%gn) =118

Ezample 4

Let

P(ain=1)=Plan=2)=1/2

P(ai2=1)= P(a12=2) = 1/2

P(021 = 0) = P(agl = 1) = 1/2

P(aze =0) = P(az; = 1) = 1/2
Just as in the previous example we have that E(a1;) > E(a22) and E(a11) >
E(2128921)  Some computations show however that p = 323, which is larger
than E(ay;) = 2. This can be explained by the fact that in this case P(a;; >
2128921 ) < 1. The state space of z(k) is equal to {—2,—1,0} in the stationary
situation and thus P(a;2(k) ® 2(k) > aji(k)) > 0. This implies that 4 >
E(a11). &
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Ezxample 5

Let
P(all = 0) = P(G]l = 1) = 1/2

P(aia=1)=P(a12=2)=1/2

P(az1 =1) = P(any =2)=1/2

P(azp =0) = P(ay; = 1) =1/2.
In this case the circuit with maximal average weight is : 1 — 2 — 1 and this
average weight equals

N | o

1
3 -E(a12® az1) =

Furthermore P(%128821 > g,);8u@dn > gy,) = ] (cf. ex. 3). The Markov
chain z(k) has in the stationary situation as state space {—2,~1,0,1,2}, while
its invariant probability distribution 7 is given by

m(—-2)=m(2)=1/24
(5.6) n(—-1)==(1)=1/4
7(0) = 5/12.

From (5.6) we conclude that with positive probability the term a,,(k)®a;2(k -
1) ® z(k — 1) is larger than the term a;2(k) ® az (k — 1). Hence p will be larger
than E(228%21)  Some calculations show that g = 77/48 which is indeed
larger than 3/2. The crucial point in this example is that the Markov chain
z(k) can, with positive probability, get into states, in which the “faster” circuits
do influence the behavior of the system. i

In the previous examples it was shown that in contrast to the theory on de-
terministic DEDS the asymptotic behavior of random DEDS is not necessarily
determined by the slowest circuit only.

Appendix
1. Uniform ®-recurrence

A Markov chain (Xj)i>o0 with state space R is called uniformly ®- recur-
rent if there exists a o-finite measure ® on the Borel sets B of IR such that for
each A € B with $(4) >0

k
AP™(z,A) —1 (k — 00)
1

m=
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uniformly in z, where for A, B € B, pP™(z,A) is defined as the taboo prob-
ability

BP™(x,A) ;= P{Xm € A, X; ¢ B,1<i<m~—1|X, = z}.

THEOREM A-1.
(i) Suppose a Markov chain with state space IR satisfies the following condi-
tion: for each Borel set A with ®(A) > 0 there exist k > 0,¢ > 0 such

that Zf,,:l aP™(z,A) > € for all z € R. Then the chain is uniformly
®-recurrent.

(ii) A uniformly ®-recurrent chain has an invariant probability measure .
Moreover, there exist a finite constant a and a number p < 1 such that for
each initial probability measure pu,

(= mP* < a o,
if the chain is aperiodic. Here || - || denotes the total variation norm.

PRrOOF: See [10]. B

2. Central limit theorem for stalionary mizing processes

For a stationary sequence £,£5,... of random variables on some basic
space (2, F, P) we define F, ,, as the o-field generated by &,...,£, and F,
as the o-field generated by &n,€n41,.... Let ¢ : IN — [0,00) be a given
function. We call the sequence £;,&2,..., ¢-mixingif n > 1,k > 1, E, € Fi

and Ey € Fp4k,00 together imply

|P(E1 N E2) — P(Ey) - P(E2)| < ¢(k) - P(Ey).

THEOREM A-2. Suppose that {£,} is ¢-mixing with 3 ;> \/¢(k) < oo and
that E¢; = 0, E€? < 0o. Then the series

o = E(€]) +2)_ E(6:&)
=2

converges absolutely; if 0 > 0 then X = Sk/ax/l;, where Sp = €61 4+&;+---+
&k, converges in distribution to a standard normal random variable N.

PRrooOF: See [1], Theorem 20.1.
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Theorem 20.1 actually quotes that Sps/ ov'k, 0 <t < 1, converges in distribu-
tion to standard Brownian motion on [0,1]. Theorem A-2 follows after applying
the continuous mapping theorem (Theorem 5.1 of [1}) to the projection at time
t = 1. Observe that via the continuous mapping theorem many other similar
results can be obtained. I

3. Proof of Theorem 1 of §3
The pair (21(k), z2(k)) can be written as

(z1(k), 12("7)) =
(21(0) + Ed(J) z2(0) + 2(k) — 2(0) + Ed(J))

j=1 i=1

Since the Markov chain z(k) is uniformly ®-recurrent we have k=1(z(k) —
z(0)) — 0, almost surely, and hence (3.4) is a direct consequence of Theo-
rem 1 of [5]. In order to prove the remainder of the theorem we would like to
apply Theorem A.2 to the sequence {d(k) — p}, k =1,2,---. This involves
two difficulties:
(i) The sequence {d(k)}x>; is not stationary, because the initial distribution
of 2(0) is in general not equal to the invariant measure .
(ii) What conditions on z(k) should be imposed to ensure the ¢-miximg con-
dition with a function ¢ that decreases so rapidly that 3 \/¢(k) < 007
The answer to both questions was given in the paper of Grigorescu and Oprigan
[6)- Theorem A-1 (ii) shows that, if z(k) is aperiodic and uniformly ®-recurrent,
it has a unique stationary probability measure «, such that for each bounded
measurable function f on IR and for all y € R, there exist a constant C > 0
and a real number p € (0,1) with

| /m f(z)P*(y, dz) - /m f(z)n(dz)| < (sup f) - C - .

According to the proof of [5] on page 68 this shows that , if the initial distri-
bution of z(lc) equals 7, the stationary sequence {d(k)}r>1 is ¢-mixing with
#(k) = C - p*. This answers question (ii), since obviously 5~ 1/¢(k) < co.

The answer to question (i) is rather technical. Although d(k) is not station-
ary, we have seen above that the distribution of z(k) converges geometrically
fast to its stationary distribution 7. Hence the trick is to introduce a sequence
{pr} of integers going to infinity slowly enough to allow pk/\/ic— — 0. The
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section

(evVE)~1- Y d(d)

I<px

will not influence the asymptotic behaviour of

k
(eVE)=1 S d(),
=1

whereas for I > p; the distribution of z({) is sufficiently close to the stationary
distribution 7 to ensure Theorem A-2 to hold through. Precise mathematical
details are in the proof on page 70 of [5].
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Strong law and central limit theorem for a process between maxima
and sums.

F. den Hollander, G. Hooghiemstra, M. Keane, J. Resing.

Faculty of Technical Mathematics and Informatics
Delft University of Technology
P.O. Box 356, 2600 AJ Delft, The Netherlands.

1. Introduction. Consider the iterative scheme

X1 =0
a.1)
Xn+1 = max (Xn,anxn + Yn)a n>1,

where Y1,Ys, ... are i.i.d. random variables in R with common distribution F
and aj,as,... are real numbers in (0,1) tending upward to 1. In this paper
we prove that for several choices of F and (an) there exist norming constants
a, and b, such that

(1.2) Xn _, 1 as,
Qn
(1.3) Xn—an 4 5
by

with Z standard normal (i denotes convergence in distribution).

Our results extend earlier work on (1.1) by Greenwood and Hooghiemstra
[7] for a, = a € (0,1) constant. The two boundary cases & = 0 and o = 1
correspond to classical situations. Indeed, for a = 0,

Xn41 = max (Yq,...,Y,),

so that (1.3) holds with norming constants satisfying lim,_, ., F™(an +baz) =
G(z) and with limit law P(Z < z) = G(x) where G is one of the three types of
extreme-value distributions (Gnedenko [5), de Haan [8]). On the other hand,
for & = 1 and when F[0,00) =1,

Xop1=Yi4:--+Y,,

so that (1.3) holds with norming constants satisfying limp_.co F"*(an + baz) =
G(z) and with limit law P(Z < z) = G(x) where * is convolution and G is one
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of the stable laws (Gnedenko and Kolmogorov [6]). For intermediate o € (0,1),
Greenwood and Hooghiemstra found that the norming constants are the same
as for maxima (except for a factor 1/(1 — a)) but the limit laws are different.
In fact, G(z) appears as the unique solution of some integral equation.

Because of the discontinuity in the norming constants between o € (0,1)
and a =1 it is interesting to replace the fixed a by a sequence (a,) tending
upward to 1. In this paper we investigate what happens when

(1.4) an=1-n"" (0<!< )

for the three following cases

(i) I1=1, [y’dF(y) < oo,
(i)0<I<1, Fly)=(1-y~¥)1y>1],0< k<,
(iii) I > 1, [y?dF(y) < oo.

In each of these cases we find that the limit law is standard normal. In case
(iii) the process is essentially sums : we find that a, = un + O(n?-!) and
bn = on'/? with p = E max (0,Y1) and 02 = var (max(0,Y;)). In case (ii), on
the other hand, we find that the norming constants interpolate between maxima
and sums and take the form a, = An" and b, = Bn® with r = k4 I(1 — k),
s =r —1/2 and A, B constants. Case (i) is the dividing line : here it turns
out that a, = A'n and b, = B'n!/2 with A’ and B’ depending on F in a more
complicated way than in case (iii). Note the norming in case (ii) by n* instead
of n. Since k < L and 0 < I < 1, we have s = k+ £(1-2k) < 1. Also
note that for I — 0 we have s — k, which is intuitively right because n* is the
norming constant for maxima.

Our method of proof is flexible. Our aim is not so much to solve (1.1)
but rather to present a general approach to the study of limiting behavior for
iterative schemes with an i.i.d. feedback. Section 2 contains the skeleton of
the proof. Here we formulate the basic ingredients, collect what technical facts
need to be verified in order to get (1.2) and (1.3), and show how a,,b, and Z
come out. This uses several standard tools, among which recursive inequalities,
central limit theorem for martingale difference arrays, invariance principle and
continuous mapping theorem. In sections 3, 4 and 5 we then apply the general
skeleton to the three cases (i),(ii) and (iii), and do explicit computations.

The interest in iterative schemes of the type (1.1) stems from a storage prob-
lem for solar energy described by Haslett [9]. For earlier studies we refer to
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Daley and Haslett [4], Haslett [10], Hooghiemstra and Keane [11), Hooghiem-
stra and Scheffer [12], Greenwood and Hooghiemstra [7].

The initial condition in (1.1) plays no role, because if (X;) is the process
with X/ = z € IR and the same input (Y,), then it is clear that |X; — X|
decreases a.s. and the limiting behavior is the same.

There is an interesting link between our result for case (ii) and a recent result
for sums of order statistics by Csorgd and Mason [3]. Let

YO S <<V
be the order statistics of ¥1,Y5,...,Y, and let

Cn
X-n+1 e Z Y,f'_').
i =0

where ¢, is any sequence of positive integers such that ¢, — oo and ¢, /n— 0
asn — oco. If F(y) = (1—y*)1{y > 1),0 < k < 1, then X, satisfies (1.3)
with Z standard normal and with

—n 1 (cn)l—k
I =" "k \ ’

b =n1/2< 242 v (C_")‘“"‘
" (1—2k)(1 — k) n '

To see the link with our situation, iterate (1.1) and write

n n
(1.5) Xn41 = max Ze,-Y; H ar;"
i=1 j=i+l
where the maximum runs over e = (e1,...,e,) € {0,1}" and the empty product

equals 1. If a, is given by (1.4), then af,"' — e~¢ for every ¢ > 0. Hence the
maximum in (1.5) is attained roughly at e given by

e; = 1[Y; = Y™ for some 0 < m < en'],

i.e. place I’s at the positions of the cn' largest order statistics and 0’s elsewhere.
Indeed, then these order statistics have a coefficient in (1.5) of order 1 (namely
somewhere between e=¢ and 1, the precise value depending on their position),
while allowing more 1’s in e cannot increase the sum in (1.5) very much because
the product over the a’s decreases rapidly. This indicates that X, is of the
same order in n as X, when ¢, = cn'. But for this choice of ¢, the norming
constants of X,, are a,, = An" and b, = Bn® with exactly the same exponents
r=1+k(1-1)and s = r — 1/2 as we find in case (ii) (though with different
constants A and B). Hence our conclusion is that in (1.1) the process (Xn)
roughly only makes a jump when Y, is one of the cn' largest order statistics.
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2. General skeleton of proof. This section consists of two parts. In part
I we prove an almost sure result for the iteration scheme (1.1) for the case
where (ay) is arbitrary and (Y,) is an arbitrary i.id. sequence with finite
expectation. This result will be used in sections 3, 4 and 5 to prove (1.2)
when an = 1~n~"and (i) I =1, (ii) 0 < I < 1, (iii) [ > 1. In part II we
formulate a functional central limit theorem (FCLT) for martingale difference
arrays, proved by McLeish [13]. This theorem will be the basis for the proof of
(1.3) given in sections 3, 4 and 5. A rough sketch of how this FCLT is applied
m order to obtain (1.3) concludes this section.

Part I: Consider the iteration scheme (1.1) with E|Y; | < co. Denote by Y
the function

(2.1) ¥(z) := E max (0,Y; - z), z€IR.

Define furthermore

(2.2) {“‘ =0

An41 = an+¢((l_an)an)v n> 1,
and
(2.3) Zn = max (0,Y, — (1 — an)a,) — (apy; — a,), n>1.

Observe that both (a,) and (Z,) are defined in terms of the input quantities
F and (o).

Theorem 2.1. Let a),ay,... be real numbers in [0,1]. If (i) a, — oo and (i)
a;! E:;ll Zr — 0 as., then X, /a, — 1 as.

ProoF: Define for n > 1,
(2.4) Zp = max (0,Y, — (1 = an) Xp) = (ant1 — an),

and note that according to (1.1)

n-1
Y 7 = Xa -~ a,.
k=1
Define
1 n-1 1 n-1
Wo=—3 "2, Wi=—) 2
? k=1 L



In order to show that W/ — 0 a.s. we note that

1

an41

In (W - W,) +
n+1

Wr’1+1 = Wni1 = a (Zn — Z4),
and also that Z/, — Z, lies between 0 and —(1—a,)(Xpn —an) = ~(1—an)a, Wy,

Hence W, ;; — Wy, lies between a—::-l-(W,’, —W,) and

a_aL(W:l —Wa)—-(1-ay) o Wp = _ [aﬂ(Wr,t ~Wa) ~ (1 —an)Wy].
n+1 An41 An 41

Therefore

ayn

(2.5) |W,l|+1 - Wonl < max (,W,{. -Wal,|Wal).

Gn41

Now (2.5) together with a,, — co and W,, — 0 implies W, — 0. &

In sections 3, 4 and 5 we shall use Theorem 2.1 to prove (1.2).

Part II: Definition: Let {£nj : n > 1,1 < j < n} be a triangular array of
random variables and let {F,; : n > 1,0 < j < n} be a triangular array of
o-fields with F,, 0 C Fny C --- C Fn,a for each n. Then {,;} is called a
martingale difference array with respect to {F,;} if E(én,j |Fn,j—1) = 0 for
each n and j.

Theorem 2.2. (McLeish [13], Corollary (3.8)) Let {£,;} be a martingale
difference array with respect to {F, ;} and let k,(t) be a sequence of integer-
valued, non-decreasing, right-continuous functions defined on t € [0,1] such
that k,(0) = 0 and kn(1) = n for all n. If there exists a constant a® > 0 such
that for all t € [0,1],

{) SO Be2 | F o) — 021 in probability,
=1 n,J W
(i) 52 E(€2 ;1[lén 51 > €] | Fa j—1) — O in probability, for all & > 0,

then the random function Wy (t) := o~! z;f;(l')fn,j, t € [0,1], converges weakly
to standard Brownian motion W on D|0,1]. Here D[0, 1] denotes the space of
cadlag functions on [0, 1] endowed with the Skorohod J,-topology.

In sections 3, 4 and 5 we shall use Theorem 2.2 to prove (1.3). For each of
the three cases indicated in the introduction the proof consists of the following
steps.
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1. The triangular array
1
bni = — (Xjr1 = X; =9 ((1 - aj)X;))

is a martingale difference array with respect to the o-fields {Fnj:n>10<
j £ n}, where Fp ;1 = Fj_y = o(X1,...,X;) is the o-field generated by
X1,...,X;. The norming constants c, and the functions k,(t) are chosen such
that for some o the assumptions (i) and (ii) of Theorem 2.2 are satisfied. Hence
the process W,(¢t) = 0! Z;;(lt)fn_j converges to standard Brownian motion.

2. A process W,(t) is constructed such that p(Wyn,W,) — 0 in probability,
where p denotes the supremum metric on D[0, 1]. The process W, () turns out
to be more convenient than W,(t) and converges to standard Brownian motion
as well. This is a direct consequence of Theorem 4.1 of Billingsley [1] and the
fact that convergence in supremum metric implies convergence in Skorohods
Ji-topology.

3. A continuous functional @ is constructed such that |[®(W, (1))— L‘s:—“l] —
0 in probability, with a, as defined in (2.2) and b,, some multiple of ¢,. The
continuous mapping theorem (Theorem 5.1 of Billingsley [1]) then implies that

L‘b——“& converges in distribution to a standard normal random variable.

3. The case 1 = 1. In this section we consider the process (1.1) with
an = 1 —n~1 Recall the definition of ¥(-), (as) and (Z,) in (2.1), (2.2)
and (2.3) respectively. (Throughout sections 3, 4 and 5 we repeatedly use
these definitions without further reference.) We shall prove the following two
theorems.

Theorem 3.1. If E|Y; | < oo then
X

n

— A as.
where A is the unique solution of the equation
3.1) A = ¢(A) = Emax(0,Y; — A).

Theorem 3.2. Suppose that the distribution function F of the sequence
Y1, Ys, ... satisfies
(i) F(0) < 1, (ii) [y*dF(y) < oo, (iii) F is continuous in a neighbourhood of
A. Then
(2c+1)3

4
2

(Xn —nA) S 2z,

aoan
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with Z standard normal and

3.2) c:= P(Y1 > A) =1- F(A),

(3.3) o? := var (max (0, Y; — A)).

Note that the function 9(-) is continuous and non-increasing on R with
¥(—o00) = co and y(oo) = 0. Hence the existence and unicity of A is guaran-
teed. Furthermore A = 0 iff F(0) = 1 in which case Theorem 3.1 is trivial.
Thus from now on we assume A > 0. The proof of Theorem 3.1 will be given
by two lemmas (Lemma 3.3 and 3.4). After the proof of Theorem 3.1, we give
the proof of Theorem 3.2.

Lemma 3.3. lim,_, o a,/n = A.

Proor: Define
ay

d, ;= — — A.
n
Then () )
an o n
dn =—72"" A= dn n
+ n+1 n+1 +n+1"s(d)
where

¢(d) :=¢¥(d+ A)— A= F max (0,Y7 — A —d) — E max (0,Y, — A).

It is easily seen that d and ¢(d) have opposite signs and that |¢(d)| < |d|. Tt
follows that
n
dﬂ < — dn »
ldnsal < ——ldn]

and hence d, — 0.

Lemma 3.4. a;! Y321 2, — 0 as.
ProOF: Define
Z}l :=max(0,Y, — A) — A.

The random variables (Z]/) are i.i.d. and have zero expectation (see(3.1)). By
the law of large numbers and since a, ~ An,

1 n-1
— Z Zy —0 as.
Gn k=1

The recursion a,41 = a, + ¥(a,/n), together with Lemma 3.3 and the conti-
nuity of 9, gives that a,4, — a, tends to A. Hence Z]! — Z, — 0 a.s. and the
lemma follows. 1
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PROOF OF THEOREM 3.1: Lemma 3.3 implies a,, — oo. Together with Lemma
3.4 this proves the assumptions in Theorem 2.1 and hence we conclude that

Xn/an —1 as.

Via Lemma 3.3 this proves the claim.

To prove Theorem 3.2 we shall follow the three main steps as indicated at
the end of Section 2. So let F;_; denote the o-field generated by X;,..., X 3

d let
and le 1

ni = i3 (Xj+1 -X; - '/)()—(-i)) .

Lemma 3.5. The random function Wy(t) := ¢~ EL"'J &n,j, t€1[0,1), con-
verges weakly to standard Brownian motion W on D|0, 1]. Here o2 is as defined
in (3.3).

PROOF: We check the assumptions of Theorem 2.2.
() B(€2;1F5-1) = & var (Xj411X;) = L var (max (0, Y; — Zi|x;).

Using continuity in z of the function var(max(0,Y; — z)) and Theorem 3.1,
we have

{n1
Z E({;‘:J | Fj—1) — tvar(max(0,Y; — A)) = o?t as.
j=1

(ii) From the iteration scheme (1.1) we obtain

Y B (&5 1lnsl > 1 F5m) = - S w3 1) > ev)
j=1 j=1

+Z/

X;li

y— 2 p(E0) 1y - K- (K| > eymldr(y).

The first term goes to zero a.s. as a direct consequence of Theorem 3.1. To
prove the same for the second term we use that

y— Ej-"-— !/)(A;-'-) —y—24 as.
The assumption [ y?dF(y) < oo implies
Jim / (v — 24)° 1|y — 24| > ev/n] dF(y) — 0,

and this finishes the proof of Lemma 3.5. §i
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The random function W, (t) can be rewritten as

Lnt)
Wa(t) = 1 ( [nt|+1 — Alnt| - E(‘/’(‘L) - A))

The continuity of F' in a neighbourhood of A implies that v(:) is differentiable
in a neighbourhood of A and hence by the mean value theorem

V() - A=(F-A¥(9) as.
where 6; lies between A and X;/j. From Theorem 3.1 and (3.2) we have
(3.4) ¥'(0;) = —(1— F(8;)) = —(1 = F(A)) = —¢ as.

Now introduce

ji=1

Ln1
Wn () := nl (Xlntj+1 — Alnt] +c2(—1- A)) te[o,1].

Lemma 3.6. Let p denotes the supremum metric on D[0,1], then p(W,,, W)
— 0 in probability. Consequently W, converges weakly to standard Brownian
motion W on D[0, 1].

ProOF: By definition

Lnt)
- ~ 1 X;
Wn,W,) = W) -Wa(t)| = ——— i _AYQ-F(8;)=c)|.
p( ) nggll ® ] pyr OSSI:EIIJE:I:(, Y(A—F(6;)—c)|

Abbreviate §; := 1 — F(6;) — c. According to (3.4), §; — O as. Fix e > 0
arbitrary and let n(w) be such that |6;| < ¢ for j > n(w). Here w is a realization
of our experiment and we throw away the null set of w’s for which §; - 0. Next
define

n

Sp = Z(max(O,Y} —A)—A),
j=1

Sp:= " (max(0,%; ~ £1) - A) = Xn1 ~ nA.

i=1

In analogy with the proof of (2.5) the following recursive inequality holds
|S,,,,+1 - n+l| S maX(|S:; - Sni, ISnl)
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Hence

Lnt) L] ]
IS E - -F@;) -l =) %X~ (G-1)4)— A 4
i=1 j=1 i=1

Int] Int)

< ZHS’ i+ ALY
J:

For the first term we have (by induction on the recursive inequality)

Int] n(w) n
D1FS S Y IFSial+ € X HIS+ 18] = S50}
j=2 j=2 j=1

n(w)

n
$i gt 1 .
< ,Z; 15255 41+ 2c§j max |Sil.

We conclude

3 n(w) n [nt]
p(WnaWn)< 1[2 El'l 1I+2€ i 1‘2?‘< aﬂl2 1/2|Z—L|

j=1

The first term tends to zero. The last term is at most

o7 ( s 18] loglnt] = of1).

As to the middle term, the random walk S, has zero expectation and finite
variance o and therefore by the invariance principle (see Billingsley [1]).

n 1
1 J_}_S-' d dt
Z i 1 J ont/2 - 0 Orélt?%(t IW(U)I t

i=1

with W standard Brownian motion. The integral is a finite random variable
by the law of the iterated logarithm. This completes the proof. I

Next we define the map @ : D[0,1] — D[0, 1] by
t
B(X)(t) := X(t) - tlc/ cu"1 X (u)du.
0

This map is continuous with respect to the Skorohod J;-topology. The function
® has been chosen such that ®(W,)(1) is close to ;ﬁ;(X,, —nA). This is made
precise in the following lemma.
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Lemma 3.7.

(i) V() := ®(W)(t) is a Gaussian process,

(i) EV(1) =0, varV(1) = 5,

(i) |#(W,)(1) = A7 (Xn —nA)| -0 as.

PROOF:

(i) Every linear functional of a Gaussian process is Gaussian.
(ii)) Compute

1
EV(Q)=EW(@) - / cu* 'E W(u)du =0
0
1 2
varV (1) = (W(l) ——/ cu® "W (u) du)
= 2/ / (W(1) — cu®™'W(u)) (W(1) — et~ W(2)) dtdu

2c+1

In the last equality we use that for standard Brownian motion EW (s)W(t) =
min(s, ).

(iii) For a piecewise constant function z,(t) with values z,(X) on the intervals
1), k=0,...,n—1, and with z,(0) = 0, we have

(5, B
®(za)(E) = 2n(}) - 3= Z((J' +1)° = j)za(L)
Assume that the function :c,,(f—,) is of the form

k-1
(3.5) zn(E) = sa(E)+¢ ) Lsa(d).
j=1

Then

@(sn)(%) - sn(ﬁ) =
k—1 ) k-1 ) j-1 ‘
=cd_ton(D) = & 2 (G+1)° =57 (sn(ﬁ) + CZ%Sn(#))
j=1 ji=1 i=1
’ k-1 e )
=&Y (S G417+ ) sa(d)
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where the last equality follows from interchanging summations. The func-
tion W,(.) is a piecewise constant function of the form (3.5) with sn(f) =
—L-(Xy — Ak). Hence

onl/?

|®(Wa)(1) - —m(xn — An)| =

= —l. Z (S - G+ 1" +5°) (X; - 4))

K

- -~ A
- O'nC+1/2|Z c 1(—1_1)|_’0 a.8.

where K is some constant depending on ¢ and where the limit zero follows with
the fact that Theorem 3.1 implies L';—A"- —0as. i

PrOOF OoF THEOREM 3.2: Combining Lemmas 3.5, 3.6 and 3.7 with the con-
tinuous mapping theorem (see Billingsley [1], Theorem 5.1) we conclude that

1

——(Xn — An) 5 V(1) £ N(0, .

1/2 o) 1

4. The case 0 < 1 < 1. In this section we consider the recursion (1.1) with
an = 1—n""and 0 < 1 < 1. We consider only the special case where the
sequence Y7, Y3, - - - has distribution function

Fly)=(1-y ) ey 0<k<}
We shall prove the following two theorems.

Theorem 4.1. Let r := k + (1 — k). Then

Xn
nr = (r(l ))Ic as.
Theorem 4.2. Let r and A be as defined in Theorem 4.1. Then
c+s.1, Xp—An" 4
(=) 4,
with Z standard normal and
s:=r—1/2,
c:= A7VE = r(1 - k)/E,
= (25)"'Emax?(0,Y; — A) = (2s)'1——£—A'(1'2k)/k.
(1 — k)1 —2k)

To prove Theorem 4.1 we need the following technical lemma.
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Lemma 4.3. Let the sequence (¢,) satisfy the recurrence relation

ST
Cn+1 = (n+l)r(cn —C" ).

Then, independent of the initial value ¢y > 0, limpocn = 1.
Proor: Put
_ 1=k
fa(2) = (GFR) (+ 527 7%).

Then ¢, 41 = fn(cn). Denote by p, the unique positive fixed point of f,. One
easily shows that the sequence (p,) is monotone decreasing with limy,_.co pn =
1. Now we distinguish two cases.

Case 1: There exists ng such that ¢, > pp,-

From the fact that (p,) is monotone decreasing and that f,(z) is monotone
increasing in x on [p,, 00), it follows that ¢, > p, for all n > ny. Furthermore,
fa(z) < z on (pn,00), hence (c,) is decreasing for n > no and has limit greater
or equal to 1. Put g := ¢ — 1, dn:=(;57)"- Then

Int1 = falen) = 1= fa(en) — falpn) +pn—1
< dn(cn -Pn) +pan—1
= dn‘ln + (1 - dn)(pn - 1)

Iteration gives
n n n
got1 < (I ddane + D C [T di)(1 - di)(wi - 1).
i=no f=ng j=i+l

Clearly []i=,, di — 0. Moreover, one easily checks that 3, (1—d;)(pi—1) < o0
(both 1 — d; and p; — 1 are O(}) as i — c0) and hence also the second term
tends to zero. This completes the proof of the lemma in case 1.

Case 2: ¢, < pn for all n.

In this case

Pnt+1 = Cnt1 < Pn — Cng1 = fu(pn) — fn(cn) < (Fr.:._l)r(Pn —¢n)

and iteration gives pp41 — Cpy1 < (nil)'(pl —-c)—0.1
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PRrROOF OF THEOREM 4.1: For ¢(-) we have

1

(4.1) W) = { wF et

e U-BE itz > 1.

From the definition of (a,) one easily shows that a,/n' > 1 for n sufficiently
large. Hence (a,) satisfy

1k

1=k a==

* a, * .

Gny1 = ap + I—;L,,ﬂ

If we put ¢, = a,/An", then ¢, satisfies the recurrence relation in Lemma 4.3
and hence a,/An" — 1. Theorem 4.1 follows from Theorem 2.1 if we can prove

1 n-1

(42) ; ; Zr —0 as.

However, by direct computation

B(Z7) = O(n™ ¥ 00y = O(n?~171)

hence B(z2)
n’ _ -1-1
a2 O(n ).
This implies
— E(22)
5B o
n=1 @n

which is a sufficient condition for the a.s.-convergence in (4.2) (see Breiman(2],
Theorem 3.27). 1

The proof of Theorem 4.2 will be given through a series of lemmas, similarly
as in section 3. Again we denote by F;_, the o-field generated by X1, ---, Xj.
This time we define

- X;
€nji=n"* (Xm - X; - 'I’(?L)) :
Lemma 4.4. The random function W,,, defined by
kn(t)
(4.3) Wat) =071 ) £,
=1
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where k,(t) = |nt3: |, t € [0,1], converges weakly to standard Brownian motion
W on D|0, 1].Here o is as defined in Theorem 4.2.

Proor: We check the assumptions of Theorem 2.2.
(i) For almost all w,

E(&2 ;|Fj-1) = n™% var (X 1]X;)

1 X;
= g var (max(O,Yj - —J-%)lX,) .

Using the explicit form of F and the almost sure behaviour of X; given in The-
orem 4.1 it is readily seen that the main contribution to E(f?,,j‘fj-l) behaves

as
1

n2r-l
Via the identity (r — I)(#51) = 2r — I = 1 = 2s — 1 we hence obtain

j=-DOSE Emax(0,Y; - A).

kn(t) 9

Emax?(0,Y; — A
E E(€2 ;1Fi-1) — t (25 ! ) =0o’t as.
i=1

(ii) From (1.1)
_ZE (€25 1(6n ] > €] Fi-1)
EF( G ING) > e
=2 X X; 2 X, X r—
" Z/ﬁ y—#-fl’(#)) 1(ly — % — w(%)| > e $)dF (y)
j=1v7
n—2sz¢2(§$)+n—2sz]?°- y"’dF(y) as.
j=1 j=1 ej” 5

The first term goes to 0 almost surely because 2(r — I)(¥L) < 2s — 1 (see (i)
and (4.1)). The second term is equal to

_2,(1 Qk) -1, iy £ :k Z]_’(l"”

which goes to 0 almost surely because s(2:71) < 25— 1. §
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The definition of W, (¢) in (4.3) can be rewritten as

(4.4)
ka() ka(t)
Walt) = — [Z (X401 = X; = (A7) + Y (w45 - ¢(;’-‘.i))] :
ji=1 j=1

By the mean value theorem
(4.5) W(3) ~ w(Aj ") = KAy (e),

where 8; lies between %,1- and Aj™!. Now introduce

. T R A Ea() o _Aj"
(4.6) Wa(t) = — | 3 (Xju1 = X; (A7) + 474 3 =20

i=1 ij=1 J

REMARK: The righthand side of (4.6) is what we obtain if we replace ¥/(6;) =
~(1 = F(6;)) by ¢'(Aj"""), use (4.1) and substitute (4.5) into definition (4.4).

Lemma 4.5. p(W,,W,) — 0 in probability.

ProoF: The proof runs parallel to that of Lemma 3.6 and can be easily recon-
structed by the reader. i

The above lemma implies that

ka(t)
1 , - ~4j" ) d
@n  — (Xk,m“ = Alka(t)" + ATE Y7 2L ) =W,

ji=1

because Y5, ¥(Aj""') = An" + o(n*).

The same continuous functional ® as in section 3, but with ¢ = A‘%, can
be applied to finish the proof of Theorem 4.2 (see above Lemmas 3.6 and 3.7).
However, note that (4.7) contains one small additional complication, namely
instead of k,(t) = |nt] we now have

ka(t) = [nt%], tel0,1].
An obvious way out is to define the Gaussian process W by
W(t) := W(t*), telo,1).
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Then (4.7) implies that

{nt]
1 - L AsT d .3
on (X[mj+1—A|_ntJ'+A 3 _;_ -‘571) - W.
=1

Hence by the continuous mapping theorem

1

— (X{ng41 = Alnt)") 2 e(W)(1)).

Finally, a straightforward calculation shows that

s
s+c

var (@(W)(l)) =F (W(l) — /01 cu“”’i’(u)du)2 = 1

5. The case 1 > 1. In this section we consider the recursion (1.1) with
an, =1 —n~"and I > 1. We shall prove the following two theorems.
Theorem 5.1. If E|Y}| < oo then

Xa

n

(5.1) — #(0) = Emax(0,Y;) as.

Theorem 5.2. Suppose that the distribution function F of the sequence

Y1, Y,, - - - satisfies
(1) F(0) < 1,(i%) fy*dF(y) < oo, (iii) F is continuous in a neighbourhood of

0. Then
1 2 a; d
;]
onl/2 Xn — 21/’( Jl) z
i=1

with Z standard normal and

(5.2) o? := var(max(0,Y7)).

Furthermore,

(5.3) 3 0(%) = $(0)n + LU 4 o(n?T),
ji=1

The proof of Theorem 5.1 follows from Lemmas 5.3 and 5.4, the proof of
Theorem 5.2 from Lemmas 5.5 and 5.6. Note that the second term in (5.3) is
only important when 1 < I < 3/2.
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Lemma 5.3. lim,_. %* = 9(0).
PROOF: Because % is non-increasing,
a
0 < @n41 =6y + d)("_::-) <an+ dl(O)

From this inequality and the initial value a; = 0 it is easy to show that 0 <
S+ < 9(0). Since ! > 1 we obtain that 2+ — 0, and so by continuity of ¢ we
have ¥(31) > ¥(0) — ¢ for n sufficiently large. Hence from the above inequality
2a > ¥(0) — € for n sufficiently large. B

Lemma 54. a;' Y121 Z, -0 as.
ProOF: Recall that
ag
Zk = max (0, Yk - F) - (ak+1 - ak).
Lemma 5.3 implies that 3+ — 0 and that ax41 — ar — ¥(0). If we define
Zy = max (0, Y:) — ¥(0)

then by the law of large numbers

-1
Z Zy -0 as.

ln
k=1

n

The lemma follows since a, ~ n¥(0) with ¥(0) > 0 and since Z; — Z}' —
0 as. B

PROOF oF THEOREM 5.1: The assumptions of Theorem 2.1 are fulfilled be-
cause of the preceeding two lemmas. §

Again we define F;_; = ¢(Xy,...,X;) but this time
1 X;
bni = =3 (Xj+1 - Xj - '/)(?L)) :

Lemma 5.5. The random function W,(t) := o~ Z}':IJ énj, t € [0,1], con-
verges weakly to standard Brownian motion W on D|0, 1]. Here o2 is as defined
in (5.2).

PROOF: The proof of Lemma 5.5 is completely similar to that of Lemma 3.5
and therefore is omitted. Jj
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The random function Wy (t) can be rewritten as

[nt] o Lnt) )_(L a;
Walt) = —7 XWHI—Zw(] )—JZ:('A( -uh)|-

In Lemma 5.6 we shall prove that

1 Int] X, .
— Xiv_ w4y =0 -
,"1,2021;21; (¢( -G )) 0 in probability,

so that according to Theorem 4.2 of Billingsley [1],

Lnt]
1
onilz (X Lntj+1 — Z 1b(‘L))

converges to standard Brownian motion. Theorem 5.2 will then follow by taking
the projection at ¢ = 1.

Lemma 5.6. ks sup | T2 ¢(5#) = ¥(5)| — 0 in probability.

PRoOOF: By continuity of F in a neighbourhood of 0 the mean value theorem

yields
X a: X: — a:
Y(ZH) -v(F) = —Zj,—L'/)’(f’j),
where 6; lies between %- and %f- Recall the definition of Z; and Z] in (2.3)
and (2.4), respectively, and put

ji-1

Sj = E Zk,
k=1
ji-1

=ZZ;’:Xj —aj.
k=1

Since |¢/(f)| = |1 - F(t)| <1, we have

Int} int]
X;
S, |Z¢(—L)—¢(4)l— sup |Z—Li¢<o )|
J =1 0sts
<ZJ 1X; — a5 = ZJ_I|SI

j=1
< ZJ'"ISJ'I + ZJ'"IS} - Sl
i=1 i=1
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From the recursive inequality |S},; — Sj+1| < max(|S] — S;],|S;|) we obtain
by induction (see the proof of Lemma 3.6)

Lnt)
sup. le(—L) v(Ghi< ZJ"IS |+ Z] ' max IS
(5.3) MRt

Z max |S;].
j 1<i<j

From the Lindeberg condition (compare Theorem 2.2) we easily obtain that the
random function S|y /(en'/?) converges to Brownian motion W. Now take ¢
arbitrary and write

1 .y
ont/2 ;] 1r2a<xJ|S|
(5.4) Lne] .
_ -1 =1 X
= 7t (EJ LSl 2 f?aé‘,'&')‘
j=|ne

The first term on the right hand side of (5.4) goes to zero in probability as
n — oo and afterwards ¢ | 0, because for j < |ne],

oz xSl < I<nla.xJ|S|——> Joax [W(0)]-

Note that we use { > 1 to ensure that EJL"EIJ j~! < 00. The second term on the

right hand side of (5.4) can be rewritten as

o, maxISil/(en'?)
(G/n) n’

nl—l

J=|ne¢J+1

which also converges to zero in probability since [ > 1 and since

n 1/2

max, |Sil/(en'/?) | 1 orgagtIW(u)I
5 SR Y- = L
j=imep 1 (i/n) noJ, u

This finishes the proof of Lemma 5.6. i
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ProoF oF THEOREM 5.2: The weak convergence to Z follows immediately
from Lemmas 5.5 and 5.6. To prove the last statement of Theorem 5.2 we use
the mean value theorem. Indeed

Zw( )—w(0n+}: Ly'(6;)

where 0; lies between 0 and %’- Using continuity of ¢’ in a neighbourhood of

0 and the expansion a; = ¥(0)j + o(j), we conclude that

¢’(0)¢(0) 21

(5.5) Zw(J)- Y(0)n + ———n>" +o(n*7"). 1

j=1
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The M/G/1 processor sharing queue as the almost sure limit of
feedback queues.

J.A.C. Resing, G. Hooghiemstra and M.S. Keane.

Faculty of Technical Mathematics and Informatics
Delft University of Technology
P.O. Box 356, 2600 AJ Delft, The Netherlands.

Abstract. In the paper a probabilistic coupling between the M/G/1 pro-
cessor sharing queue and the M/M/1 feedback queue, with general feedback
probabilities, is established. This coupling is then used to prove the almost
sure convergence of sojourn times in the feedback model to sojourn times in
the M/G/1 processor sharing queue. Using the theory of regenerative processes
it follows that for stable queues the stationary distribution of the sojourn time
in the feedback model converges in law to the corresponding distribution in the
processor sharing model. The results do not depend on Poisson arrival times,
but are also valid for general arrival processes.

1. Introduction. Recently Van den Berg and Boxma [1] suggested a new
approach for analyzing M/G/1 processor sharing models. They considered an
approximating sequence of feedback queues, and concluded on heuristic grounds
that performance measures such as the sojourn time in the feedback model con-
verge to the corresponding performance measure in the processor sharing queue.
In this paper we present a probabilistic coupling between the M/G/1 processor
sharing queue and the approximating M /M /1 feedback queues, which shows
that the sojourn time of the k-th customer in the feedback model converges
almost surely to the corresponding quantity in the processor sharing model.
From this result we conclude the distributional convergence of the steady state
sojourn times.

The feedback model is a single server queue, having Poisson arrivals with
intensity A. Customers receive exponential service slices with mean length n—1,
When a customer has completed his k-th service he departs from the system
with probability 1 — p; or joins the end of the queue with probability p. All
random mechanisms i.e., the arrival process, the service slices and feedback
probabilities are independent of each other. Also the sequence of service slices
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is assumed to be an independent sequence. We denote by gi the probability
that a customer pays exactly k,(k > 1) visits to the queue,

k-1
(1.1) g :=(1-p) [[ i
i=1

and by G(z) := Y ;o qxz® its generating function. The total service X ob-
tained by an arbitrary customer has Laplace transform

oo
Bt = 3 g )
k=1 n+s

where Y7,Y>,... is a sequence of independent, exponential random variables
with mean 1.

The M/G/1 processor sharing queue (see Kleinrock [2], Yashkov [7], Ott (3]
or Schassberger [5]) needs no introduction. To fix notation we assume that the
service times in the processor sharing queue are given by the i.i.d. sequence
X1, X2,... with finite mean EX,;. To keep the exposition as clear as possible
we start with the case of exponential service times X, Xs,..., with mean 1;
this corresponds in the feedback queue to the case where p =1 —n"1! for all k.
The total service time X in the feedback queue is also exponentially distributed
with mean 1, since G(z) = 2/(z + n(1 — 2)) and so

n

Ee—*X = G(
n+s

)=(1+s)".

In §2 we introduce a probability space (Q2,.4,P) on which the arrival and
service times of both the M /M /1 processor sharing and the M /M /1 feedback
queues are defined. Theorem 1 shows the connection between the above men-
tioned queues and a third queue in which the exponential slices of mean length
n~! are replaced by deterministic slices of length n~! (actually this queue is a
so-called Round Robin queue and the connection with the feedback model is
a special version of the strong law of large numbers). After the formal intro-
duction of the Round Robin queue, in §3, the proof that sojourn times in the
feedback model have the corresponding quantity in the processor sharing queue
as almost sure limit is given. The Round Robin queue is used as an interme-
diate stage in the proof. The step to convergence of stationary sojourn times
is made with the use of regenerative processes, similar to Schassberger [5]. In
contrast to his paper we obtain convergence of means during a busy period by
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using Fatou’s lemma twice, instead of dominated convergence (which does not
work here).

Finally we extend our results to more general service time distributions in §4.
The most general service time distribution that we can obtain is a finite mixture
of phase distributions given in (4.1). The proof for the general service times is
completely parallel to the one for exponential distributions. We also note that
neither the coupling nor the proofs in §3 depend on the arrival process, so that
the construction and the theorems carry over to general independent or even
dependent arrival processes.

2. The almost sure construction. In this section a probability space
(22, A,P) is constructed on which the arrival and service times of both the
M /M /1 processor sharing queue and the M/M/1 feedback queues are defined.

Let us introduce for each k > 1 a probability space (£, Ax, Px), on which
are defined a random variable Ay, exponentially distributed with parameter A,
0 < A< 1, and asequence Yi 1, Y% 2, -+, of independent random variables with
common exponential distribution with parameter 1. The sequence {Y} ;}52,
is independent of A;. The random variables A;, A,,.-. will denote the inter-
arrival times; n=1Y} ;,7 = 1,2,---, will denote the successive service slices of
the k-th customer in the feedback queue.

Next, we define for each k > 1 a probability space (i, Bk, Qx) on which X
is defined as an exponential random variable with parameter 1, and where Ny ,,
n = 1,2,---, is defined as a sequence of geometric variables with parameter
n-1 ie.,

Qr(Ngn=3d)=n"1(1=n"1y"1 =12

The space (X, Bi, Q) and the variables Xi, N , are constructed to satisfy
n~!Np, — Xg, Qp almost surely. This is possible according to the represen-
tation theorem (cf. Skorohod [6], or Pollard [4], p. 58), since n™! Ny, — X
in distribution. The random variable X denotes the service time of the k-th
customer in the processor sharing model; N, denotes the number of slices
assigned to the k-th customer in the feedback queue.

The probability space (€2, A4, P) is defined as the product space

o0 (o o]
(Q,A)P) = (H(QI&HAIMPI:)) X (H(Ek,BIMQk)) .
k=1 k=1
The random variables introduced above are considered as random variables on
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(22, A,P) by taking the composition with the correct projection map of Q on
Q. or Xi.

Define
Nk,n
(21) Xk,n - n_l Z Yk.ja
j=1

i.e., Xj , denotes the total service time of customer k in the feedback model.

Theorem 1.
(i) Foreachk >1 and eachn>1,

(2.2) P{Xin>2z}=e¢", >0,

hence the distribution of X n is for each n identical to that of X.
(ii) For each k > 1,

(2.3) lm Xgn=Xi, P as.
n—+00

(iii) For each k > 1,

[!N],‘..]
2.4 lim su n1(Yy; -~ 1)|=0, P as.
@ Jim sy |5, 070 - )

ProOF:
(1) This has been shown in the introduction by means of generating functions.
(ii) In the proof of (ii) and (iii) we drop the subscript k. We first show that
for fixed t € [0, 1],

[tNa)
(2.5) lim n~! Z (Y;-1)=0, P as,
i=1

11—+ 00
if Y; is a sequence of independent exponentially distributed random vari-
ables with parameter 1, and N,, independent of {Y;}, has a geometric
distribution with parameter p = n~!.
Let € > 0 be arbitrary and define

[tNa]

A(n,e):={| Y_ n7}(Y; - 1)| > €}

i=1
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Using the Markov inequality

[tNa]
P(A(n,)) = P{(Y_ (¥ - 1)* 2 n'e*}
i=1
[tNa]
< (ne)™E{)_(¥; - D}
i=1
Write Z; := Y; — 1; it is easy to check that
EZ; =0, EZ!=1, EZ}=9.

Hence

AT
4, ([ENa] (4 272
E Z; | = Ex {[tN.JEZ} + EZ?
(]21 ,) wewezt+ (V) (D) ez
= OE[LN,] + 3E(ENA([tN.] - 1) < Kn?,

for some constant K, since EN,, = n and EN? = 2n%2 — n. Apply Borel-
Cantelli’s lemma to obtain (2.5). Relation (2.3) and hence (ii) follows
from (2.5) with ¢ = 1 and the identity

-1N"Y 3 -1(y; — 1) 4 2

n Jzzl i —J}_;,:" (Y;-1)+ et
since by construction n™!N,, — X, P a.s.

(iii) For t € [0,1] we define

[tNa]

gn(t) :==n"" E Y,
i=t
g(t) :=tX.
We showed that for fixed t and w ¢ N with P(N) =0
Jim gn(t) = 9(2).

The null set N may depend on t. Nevertheless, the statement implies g,(¢) —
g(t) for P almost all w € Q and all rational ¢t € [0,1], since the countable
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union of null sets is a null set. Both g, and g are non-decreasing functions
of t on [0,1], therefore continuity of ¢ and convergence on the rationals entails
pointwise convergence of g, — ¢, for P almost all w € Q. It is well known that
with the mentioned two properties (monotonicity of g, and g and continuity of
the limit) pointwise convergence on a closed, bounded interval implies uniform
convergence. We hence conclude that A contains a P null set N so that for
wéN,

n—oo

lim  sup|ga() — g(t)| = 0.
[0,1]
Observe that n= 1N, — X, P a.s. implies

[tN,]

sup | —tX|—0, Pa.s.

[0,1]

Relation (2.4) follows from the above two limit statements and the triangle
inequality. [

3. Convergence of sojourn times. Denote by D; the departure time of
the k-th customer in the processor sharing queue and by Dy ,, the departure
time of the k-th customer in the feedback queue. In this section we shall prove
the almost sure convergence of Dy, to Dy for all k. The method we use is to
introduce a Round Robin queue on the same probability space (£2,.4, P). If we
denote by f)k,,. the departure time of the k-th customer in the Round Robin
queue we will successively prove: ﬁk,,, — D¢ and Dy, — Dk’,, — 0, P as.
The almost sure convergence of D, to Dy is an immediate consequence of
these two results.

First we introduce the Round Robin queue with time slices n~!. Each cus-
tomer present in the system receives successively a deterministic time slice n—!
of service time, and then goes back to the end of the queue until he has ob-
tained his entire service time. Assume that the Round Robin queue has the
same arrival process Aj, Ay + Aj,--- as both the processor sharing and the
feedback queue. Furthermore, assume that the k-th customer demands Nin
(the number of cycles in the feedback queue) time slices of service. This fixes
the desired coupling between the Round Robin queue and the other models.
Since n"lN,,,,, — Xk, P a.s., the total amount of service demanded by each
customer in the Round Robin queue approaches the amount in the processor
sharing model. The proof of the following theorem is reminiscent of the proof
of Theorem 4.1 of Schassberger [5].
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Theorem 2.
For each k > 1 we have P almost surely
(i) Dy — Dy,
(“) Dk,n - Dk,n -0,
(iii) Di,n — Dy.

Proor:

(i) Customers arrive at Ay, Ay + Az, --. The first customer cannot remain
in the processor sharing queue for ever, since he then would receive a
service of A, in the period [A;, A; + A;), at least A3/2 in the period
[A1 + A2, A; + Az + A3), and so forth, and we have

o0
Z AJI = 00,
=77
P almost surely. Therefore
(3.1) Al+-+An 1 SDy <A+ - -+ A,

for some m = m(w) > 2. Let E,, be the set of all w satisfying (3.1).
For P almost every w € Ey, n™1Ng ,(w) — Xi(w), for k = 1,2,--- ,m.
Let w € Ey, with this property. Denote by z1(t) the amount of service
obtained by customer 1 in the processor sharing queue up to time ¢t and
by #1,n(t) the corresponding amount in the Round Robin queue. Since
customer 1 is delayed by at most (m — 1) other customers we have for
t = min(Dy, Dy ),

-1 m-1
Je1n(t) = 21(8)] € Tom + 3 1Xe(@) = 17 Ne n(@)] = 0.
k=2
Hence
m-—1
~ m-—1
|D17n — Dil <m (T + Z |Xk(w) - n—lNk'n(w)|) — 0.

k=2

We conclude that Dl,n — Dy for P almost all w € E,,,. Since the count-
able union of null sets is a null set we have l~)1_,, — D), P a.s. Repetition
of the argument yields for each £ > 1: Dk,n — D, P as.
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(ii) According to (i),
Dl.n <A1+"'+Am,

for P almost all w € E,; and n sufficiently large. From Theorem 1 we

have
[th.',.]

-1 . -

B R, |2 kD=0 P
This implies that (131,,. — Dy ) — 0, P as. The same argument leads to
the statement: for each £ > 1, (l~)k,,1 — D¢ ) —0,Pas.

(iii) Follows from (i) and (ii). B.

Next we use the theory of regenerative processes to show that for p = A < 1
the steady state sojourn time distribution of the feedback model converges as
n — oo to the steady state sojourn time distribution of the processor sharing
model. We follow the same line of thought as Schassberger [5], Theorem 4.2.
Let Cy, (y) be the number of customers served during the first busy period in the
feedback model having sojourn time less than or equal to y. The corresponding
number in the processor sharing queue is denoted by C(y). Similarly C,, and
C denote the total number of customers served in the first busy period in the
feedback and the processor sharing queue, respectively.

Lemma 1.
(i) Co, = C,P as.
(ii) For eachy > 0, Cp(y) — C(y), P a.s.
(iii) EC, = EC < o0,
(iv) For each y > 0, EC(y) — EC(y).

PROOF:

(1) and (ii). For those w for which a finite number of customers are served
during the first busy period in the processor sharing model (a set of probability
one), Cp(w) — C(w) and Cyn(y,w) — C(y,w), by part (iii) of Theorem 2.

(iii) Both the processor sharing queue and the feedback queue are examples
of M/M/1 queues with different service disciplines. Statement (iii) follows
since for these systems the number of customers served during a busy period
does not depend on the service discipline.

(iv) Clearly 0 € Ca(y) < Cn. By Fatou’s lemma and (i) ... (iii), we have

liminf EC,(y) 2 E(liminf Ca(4)) = EC(»).
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On the other hand (apply Fatou’s lemma on Cy, — Cn(y) > 0),
liminf E(Cn — Ca(y)) 2 E(iminf(Ca — Ca(y))
= EC - EC(y),

and hence

limsup EC,,(y) < EC(y).

7~ 00

Therefore
limsup EC,(y) < EC(y) < lxmmf EC.(y). 1

71— 00

Theorem 3.

For p = X < 1, the steady state sojourn time of the M/M/1 processor sharing
queue with mean service time 1, is the distributional limit of the steady state
sojourn time of the M/M/1 feedback queue, with feedback mechanism given
by G(z) = z/(z — n(z — 1)) and exponential slices with mean length n™!

ProoOF: This follows directly from EC,,(y)/EC, — EC(y)/EC and the general
theory of regenerative processes. I

4. General service and or interarrival times. Van den Berg and Boxma
[1] showed how to choose the feedback mechanism G(z) to obtain more general
total service times. It is possible to obtain all service time distributions that are
finite mixtures of phase distributions. The random variable X is said to have
a distribution which is finite mixture of phase distributions if it has Laplace
transform

(4.1) X = Z%HUWMY

where (i, ...,a.) is a probability vector, ry,...,ry, are positive integers and
pij positive real numbers. (It is known that the subclass of distributions defined
in (4.1) is dense in the space of all probability measures on (0, o) equipped with
the Prohorov distance, or some other equivalent metric.) Further we define for
each n > 1 the integer valued random variable N, by its generating function

(4.2, Gn(2) = E2M~ = i Z*P{N, =k} = Z,,J H _1_"'1_)3_
k=1 i=1 i=1 — Vijz

where vi; := 1 — (npi;)~1.
The following two lemmas originate from [1].
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Lemma 2.

IfY,,Ys,... is an i.i.d. sequence of exponential random variables with mean
1, and X, ;= n~! T°N* V; then
m ry
Ee=*X» = Zaj H(l + p;js)”l,
ji=1 i=1

i.e., for each n > 1 the distribution of X,, is identical to that of X in (4.1).

Lemma 3.
For the random variables X and N, defined in (4.1) and (4.2) we have

n~IN, — X,
in distribution.

Consider the M/G/1 processor sharing queue with service time distribution
given in (4.1). It is clear from Lemma 2 and 3 that the M/M/1 feedback queue
with feedback mechanism G,(z) given in (4.2) and exponential service slices
of mean length n~! converges in the sense of Theorem 2 and 3 to the above
defined M/G/1 processor sharing queue. Indeed Lemma 2 and 3 show that we
can repeat the almost sure construction of §2 for the more general service time
distribution (4.1). The only other thing we needed for the proof of Theorem 1
was the first and second moment (especially the polynomial behaviour of these
moments as functions of n) of N,,. However it is easy to check from (4.1) and
(4.2) that

EN, = nEX,
EN? =n?EX? - nEX.
Hence we have proved the following theorem.

Theorem 4.

For p = EX,/EA; < 1, the steady-state sojourn time of the M/G/1 pro-
cessor sharing queue with service time distribution given in (4.1) is the distri-
butional limit as n — oo of the corresponding random variable in the M/M/1
feedback queue with exponential slices of mean length n=! and with the number
of feedbacks governed by N, given in (4.2).

Finally we note that the special (exponential) distribution of the interarrival
times Aj, j > 1, is irrelevant. Theorem 4 is valid for general independent
interarrival times, and even for dependent arrival processes.
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Multitype branching processes in M/G/1-queueing theory.
J.A.C. Resing

Faculty of Technical Mathematics and Informatics
Delft University of Technology
P.O. Box 356, 2600 AJ Delft, The Netherlands.

1. Introduction. Consider a single server queueing system with infinite wait-
ing room. Customers arrive at the system according to a Poisson process with
intensity A > 0. Each customer requires two services: a customer who enters
the queue will return to the queue (feedback) after his first service for a second
one. Fed back customers return instantaneously, joining the end of the queue.
The service discipline is First Come First Served. The two service times of a
customer are mutually independent random variables having distribution func-
tions B;(t) = 1—e~#i*, i = 1,2. These service times are also independent of the
service times of other customers and of the arrival process. We are interested
in the stationary joint distribution of type i customers in the system, where
type i customers are those customers who visit the queue for the i-th time,
i=1,2.

The state of the model at time ¢ is given by y(t) = (y1(t), - - ,yk(,)(t)), where
k(t) is the number of customers in the system at timet and y; (), j = 1,..., k(1)
is the type of the customer who is in j-th position in FCFS order in the queue
at time ¢ . So the state space S consists of all finite sequences of 1’s and 2’s. It
is easily checked that y(t) is a continuous-time Markov chain and the stability
condition for the system turns out to be #ll + ﬁ < 1. To find the equilibrium
state probabilities we must solve the global balance equations, i.e. we must
find the non-negative vector (7(y) : y € S) with }° ¢ 7(y) = 1 such that

(1.1)
An(0) = pam(2)

A+ py )7y, -+ v yn) = 22,91, ,9a) +AT(Y1, -, Ya-1)1[yn = 1]
+;411r(1,y1,~~ ’yft—l)l[yﬂ = 2], n>1.

For general values of A, uy and p3 these equations seem to be difficult to solve.
Only in the case 1 = p2 a solution of (1.1) is easily found. In that case

(1.2) ) =e ()

[
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is a solution of (1.1). The constant ¢ equals the probability of an empty system,
ie.c=1- 2‘%‘.

The problem that arises in this simple model is typical for M/M/1 queues
with different services for different types of customers. To describe the state of
the system it is necessary not only to take into account the number of customers
of different types in the system but also their order in the queue. This leads to
a Markov chain with an intractable state space for which the balance equations
are difficult to solve. :

To avoid these difficulties we will introduce an imbedded sequence of times,
called generation times, such that the number of customers of different types
at these times only depends on the number of customers of different types at
the previous generation time and not on the order of the customers in the
queue at that time. In fact we will prove that the number of customers of
different types at successive generation times is a multitype branching process
with immigration. Consequently the theory of multitype branching processes
can be used for the analysis of these models.

In Section 2 we will recall some of the terminology and theory of multitype
branching processes. Furthermore a proof is given of a multitype version of
a theorem of Pakes for singletype branching processes with state dependent
immigration. In Section 3 we will introduce the notion of generation times. For
various multitype M/G/1 queues these generation times are used to analyse the
models. In Section 4 we do moment calculations, both for branching processes
with immigration in each state and for branching processes with immigration
only in state zero. In Section 5 we try to extend the results to M/G/1 queues
with a countable number of customer types. Finally in Section 6 conclusions
are given and some open questions are posed.

2. Multitype branching processes.

2.1. MTBP without immigration. We start this section with recalling
some terminology and stating some theorems about multitype branching pro-
cesses (see Athreya and Ney [1]).

Assume we have a finite number N of particle types. To define the particle
production we need N generating functions, each in N variables,

fO(sy,- - ,8n) = Z PG, L in)sit - s,
(2.1) j1ein20
0<s<1l, k=1,---,N.
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where p()(ji,---,jn) is the probability that a type i particle produces j;
particles of type 1, j; of type 2, ---, jn of type N, respectively. Let m;;
be the expected number of type j offspring of a single type 7 particle, i.e.
m;; = —f(—'(l -,1). An essential role is played by the mean matrix M =
(m,_,,z,]_l, -, N).

Throughout this section we assume that the matrix M is primitive, i.e. there
is an n such that all entries of the matrix M™ are strictly positive. As a con-
sequence of the Perron-Frobenius theorem for non-negative, primitive matrices
(see Seneta [9]), there exists a positive real eigenvalue Aypqz of M for which :
(1) |A] € Amaz, for all other eigenvalues A of M,
(2) the associated left eigenvector v = (vy, -+ ,vn) with 3 v; = 1 is unique
and strictly positive.

Denote with Z,(,i) the number of type 7 particles at generation n and with Z;;

the number of type-j offspring of a type-i particle.

Theorem 2.1. Assume we start the branching process with a single type j
particle and let q; be the probability of eventual extinction of the process.
Furthermore assume that EZ;j log Z;j < co for all i, j. If Az > 1, then

D, Z)

(2.2) = (nyW,.--- ,onW) a.s.

n
n—)OO Amat

where W is a nonnegative random variable with P(W = 0) = gq;.

Corollary 2.2. If the assumptions of Theorem 2.1 are satisfied, then condi-
tioned on non-extinction of the branching process, i.e. conditioned on W # 0,

()
n

a.s.

(2.3) lim =v
n—oo Z'(‘1)+ ...+Z'(1N)

2.2. MTBP with state dependent immigration. Consider the multi-
type branching process with an independent immigration component at state
zero. So in addition to the generating functions f()(sq,--- ,sn),i=1,--- N,
representing the offspring distributions , an additional generating function
g(s1,- -+ ,sN) is given, representing the immigration distribution whenever the
branching process reaches state (0,---,0), i.e.

(2.4) g(s1,-+- ,8N) = Z q(Gr, - ,]'N)SJI-’---S%V

Juin20
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where q(j1,---,jn) is the probability that the group of immigrants consists
of ji particles of type 1, j, of type 2,---, jn of type N, respectively. In this
subsection we will prove the following multitype version of a theorem of Pakes
(see Pakes [7]):

Theorem 2.3. Let Z,, = (Z,(,l),n- ,Z,(.N)) be a multitype branching process
with immigration at state zero with offspring generating functions

f(i)(sl)"'ysN)) 1=1))N

and immigration generating function g(sy,--- ,sn). Assume the Markov chain
Zn to be aperiodic and irreducible. Let the mean matrix M corresponding
to the branching process be primitive and its maximal eigenvalue Apqr < 1.
Finally assume Zy = (0,---,0). Then a necessary and sufficient condition for
positive recurrence of Z, is

(25) S G- i) loglis + -+ i) < oo,

J1,,in20

Ji+HIiND>0
When this condition is satisfied, the generating function P(sy,---,sN) of the
stationary distribution {n(j;,--- ,jn)} of Z, satisfies

(26)  P(s1,---,sn) =1=m(0,--,0) Y (1= g(fals1,--- , 5n)))

n=0

where f,(s1,---,sn) is defined inductively by
2.7)
{fo(sl,--- y8N) = (81, ,8N)

fa(s1,-- ,88) = (f(l)(fn-1(81,-~- VSN)), - ,f(N)(fn_l(sl,--' ,8N)))-
and
(2.8) x(0,...,0)=[14+ > (1 - g(fa(0,---,0))]" L.
n=0

PROOF: Because of the assumption that Z, is aperiodic and irreducible all
states of the Markov chain are equivalent. Hence we restrict our attention to
the state (0,---,0). Let T be the recurrence time of state zero.
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Lemma 2.4. Forn > 1 we have P(T > n) = 1 — ¢g(fn_1), where f,_ =
fn—l(O)"' ’0)

ProoOF: Let Y, be the multitype branching process with the same offspring
generating functions as Z,. Furthermore Yy = (0,...,0) and only at time
zero there is an immigration with generating function g(sy,... ,sn). Then the
process Y, has the same recurrence time of state zero as the process Z,, and
the generating function of Y, equals g(fn-1(s1, - ,s~)). Hence P(T > n) =
P(Yp#0)=1-g(fn-1)- 8

From the fact that for multitype branching processes with A4z < 1 we have
fa(s1,---,sn) — (1,---,1) (see Athreya and Ney [1]) and hence P(T > n) — 0
we conclude that the Markov chain Z,, is recurrent.

The expected recurrence time of state zero equals

ZnP(T =n)= ZP(T >n)=1+ Z(l = 9(fa-1)),

n=0

and hence Z, is positive recurrent with #(0, .-+ ,0) = [1+ 3 o> o (1—g(fa))] 1 iff
> (1-g(fn)) < co. See Kaplan [4] for the proof that this condition is equivalent
with condition (2.5). In fact Kaplan concludes that if (2.5) is satisfied J oo ,(1—
g(fa(s1, -+ ,8N))) < oo for all (sy,---,sny) with0<s; <1,i=1,---,N.

The only thing that remains to prove is equation (2.6). Let P be the transi-
tion matrix of the Markov chain Z,, i.e.

Diy,oiniiay i = P(Z"'H = (jlv T ajN)lzn = (il, te )iN))
and define

P,'l,‘..’.'N(S],- e ,SN) = Z pily"‘,iN;jly"',st{l . sf,\?’
jl:"'yjNZO
Then
Piy o in(s1,0 y8N) = g(s1,- - 13N)1[(il"" vin) = (0, ;0)]
+ [f(l)(sl,... ,sN)]" --‘[f(N)(sl,--- ,sN)]‘”l[(il,-~~ JiN)# (0, ,0))
Now we use

T, jN = §: iy, inPi, - iniine I
i1, 0N
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to conclude

P(sl,“.’sN)z Z Wih"'yiNs{""sJ).vN

jly'“yjN
= Z D T inPisinida in 8L SN
(2.9) Judndyye i
= Z Miy, - in 'h ,iN(slv ysN)
f1, 0N
= P(fl(sl:"' ,SN))'*' 7"(0,"' ,0)[9(51,“' ,SN)- 1]-
Iteration of this equation, together with f,(s1,---,sny) — 1 and

S (9(fal51,- -+ ,8N)) — 1) < 0o yields (2.6). B

2.3. MTBP with immigration at each state. In this subsection we con-
sider the same process as in the previous subsection except that there is immi-
gration in every state and not only in state zero.

Theorem 2.5. Let (Z,(,l),--- ,Z,(.N)) be a multitype branching process with
immigration at each state with offspring generating functions f0)(sy,--- ,sn),
i=1,..-, N and immigration generating function g(s,,--- ,sn). Let the mean
matrix M corresponding to the branching process be primitive and its maximal
eigenvalue Aoy < 1. Assume the Markov chain Z,, is irreducible and aperiodic.
Then a necessary and sufficient condition for the existence of a stationary
distribution {n(j1,---,jn)} for the process (Z,(.l), e (N)) is

Y q(r,---,Jn)log(ir + -+ in) < oo.
jlr"'iszo
Ji++Iin>0

When this condition is satisfied, the generating function P(sy,--- ,sn) of the
distribution

{7(j1, - ,in)} satisfies
(210) P(Sl,-..,sN)z Hy(fn(sl’... ’SN))

where f,(s1,--- ,sn) is defined inductively by

{fo(sly"' ysN)_—— (811"' ysN)
Falsr,- son) = (FO(fazr(s1,- 1 88)), -+, SN (faza(s1, -+, 88))).
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PROOF: See Quine [8].

The formula (2.10) is derived by iteration of

(2.11) P(s1, -+ ,sN)=g(s1, - ,sn)P(fi(51, - ,sN)).

We will use (2.11) in Section 4 for moment calculations.

3. M/G/1 queueing models. In this section we will apply the theory of
multitype branching processes to various M/G/1 queueing models. First we
introduce the notion of generation times.

DEFINITION: The random times t,,, called generation times, are defined recur-
sively :

(i) to is the arrival time of the first customer,

(i1) tn41 1s the instant in which all customers, if any, present at ¢, have obtained
exactly one service in (t,,t,41). If there are no customers present at ¢,,, then
t,+1 is the instant of the first arrival after ¢,,.

3.1. The ordinary M/G/1 queue. Consider an ordinary single server queue
in which customers arrive according to a Poisson process with rate A and in
which the service times are i.i.d. with distribution B(:), finite mean # and
Laplace-Stieltjes transform S(-). Let X; be the number of customers in the
system at time t and Z, = X, ,n=0,1,2,---.

Theorem 3.1. The process Z, is a single type branching process with immi-
gration at state zero with offspring generating function f(s) = B(A(1 —s)) and
immigration generating function g(s) = s. If A < 1 the generating function
P(s) of the stationary distribution (n;) of Z, satisfies

P(sy=1-m0 Y (1 - fu(s))

and

m=[1+Y (1-fa(O)"

ProoF: Follows directly from the fact that the arrival process is Poisson, the
definition of generation times and (the singletype version of) Theorem 2.3. §
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REMARK: In Neuts [6] the M/G/1 queue is analyzed at random times t/,, where
the only difference between ¢, and t/, is that if the system is empty at time
t,, then ¢, ., is defined as the instant of the first departure after ¢/,. Hence in
Neuts [6] the immigration generating function is given by g(s) = B(A(1 — s))
instead of g(s) = s.

3.2. The M/G/1 queue with permanent customers. Consider a single
server queue with two types of customers:

(i) ordinary customers who arrive according to a Poisson process with rate
A

(i) permanent customers who immediately return to the end of the queue
after having received a service.

The service times of the customers are independent, those of the ordinary
customers with distribution function B;(-), finite mean 8; and Laplace-Stieltjes
transform £ (-), and those of the permanent customers with distribution func-
tion By(-), finite mean G, and Laplace-Stieltjes transform f,(-).

Assume that there is only one permanent customer. Let Z, denote the
number of ordinary customers at the n-th service completion epoch of the
permanent customer.

Theorem 3.2. The process Z,, is a singletype branching process with immi-
gration at each state. The offspring generating function is given by f(s) =
P1(A(1 = s)), the immigration generating function by g(s) = B2(A(1 ~ 5)). A
stationary distribution of Z, exists iff \B; < 1. In that case the generating
function P(s) of this stationary distribution satisfies

P(s) = [[ o1 = fal9))), Isl < 1.

PRrROOF: Follows directly from the fact that the arrival process of ordinary
customers is Poisson and Theorem 2.5.

REMARK:
(i) The result of Theorem 3.2 was obtained earlier by Boxma and Cohen [3]
without remarking that Z, is a branching process with immigration.

(i) A similar argument yields P(s) = [I7_, 8% (A(1 = fa(s))) in the case
that there are K permanent customers.
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(iii) In van den Berg {2] the extension of an M/G/1 queue with Bernoulli
feedback and additional permanent customers is considered. If there is only
one permanent custormner and the feedback parameter is given by p the offspring
generating function is given by f(s) = (1 — p + ps)Bi(A(1 — s)).The stationary
distribution of Z,, exists iff Af; < 1 —p.

(iv) It 1s also possible to give a multitype variant of Theorem 3.2. Assume or-
dinary customers arrive according to independent Poisson processes with rates
A1, -+, AN. Service times of type i customers have distribution function B;(-),
finite mean B; and Laplace-Stieltjes transform f;(-), 1 = 1,--- ,N. Service
times of the permanent customer have distribution function B, finite mean
and Laplace-Stieltjes transform §(:). Then the offspring generating functions
are given by B,-(E?;l Aj(1 —s;)) and the immigration generating function is
given by ,B(Zf’:I Aj(1-s;)). The stability condition is given by Zf\;l Aifi < 1.

3.3. The multitype M/G/1 queue with Markov routing. Consider the
following multitype M/G/1 queue. Customers of different types arrive accord-
ing to independent Poisson processes with rates Ay,--- ,An. Type ¢ customers
have service times with distribution B;(-), finite mean §; and Laplace-Stieltjes
transform F;(-). After being served a type ¢ customer returns to the end of the
queue becoming a type j customer with probability p;;, where P = (pi;) is a
substochastic matrix, i.e. (i) p;j > 0 for all i and j and (ii) Z;\;l pi; <1 for all
i. With probability 1 — Zj pij atype i customer leaves the system after being
served. Throughout this section it is assumed that all §;’s and at least one of
the A;’s are greater than zero.

Assumption 1: The matrix I — P is non-singular

REMARK: Assumption 1 is equivalent to saying that all customers eventually
leave the system with probability one.

Let (X1,---,X}N) denote the number of customers of different types at time
t and Z, = (Z,(.l),--- ,Z,(,N)) = (X} ,---,X{) the number of customers of
different types at generation times.

Theorem 3.3. The process Z,, is a multitype branching process with immi-
gration at state zero where the immigration generating function is given by

N i
s’...’s f— —’S',
9(or v) ;A1+---+AN’
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and the offspring generating functions are given by

N N N
FO(s1,-,sw) = (1= pii + 3 piis)Bi(D_ A (1 —55)).
i=1 j=1 i=1
PRrooF: Follows directly from the fact that the arrival processes are indepen-
dent Poisson processes and the definition of generation times. The form of the
immigration generating function follows from the fact that the probability that

an arbitrary arrival is of type i equals A; /(A1 + -+ An). 1

The entry m;; of the mean matrix M of the branching process is given by
mi; = A;Bi + pij.
Assumption 2: The matrix M is primitive.

Lemma 3.4. Let A4, be the maximal eigenvalue of the matrix M and b =
(I-P)18,8=($1,...,0n). Then

(1) Apaz > VIS Nibi > 1,

( 2) Apaz = 1Lif 0 Abi =1,

( 3) Amaz < 1iF N, Aibi < 1.

ProOF: In the proof relations between vectors have to be read coordinatewise,

i.e. for example for two vectors z and y, * < y means z; < y; for all i =
1,...,N.
For an arbitrary vector ¢ we have

N
Mz =Pz + (Z Aizi)B

i=1
and hence
N
(I-Mp=(I-Ph—- (Y \b)B
=1
or
N
Mb=b— (1= \b:)B.
i=1
We conclude
(1) Mb>biff 30, Aiby > 1,
((2) Mb=biff N, Aibi =1,
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( 3) Mb< biff 5L, Mibi < 1.

From the fact that I — P is non-singular and P is a substochastic matrix it
follows that P* — 0 and hence b = ) 7., P*B. This implies b > § > 0. Let
v’ be the strict positive left eigenvector of M corresponding to the eigenvalue
Amaz then it is easily seen that
(1) Amaz > 1iff ' Mb > v'b iff Mb > b,

( 2) Amar = 1iff Y Mb = v'b if Mb =,

( 3) Amaz < 1iff ¥ Mb < v'b iff Mb < b, and the lemma follows.

REMARK: The component b; of the vector b represents the mean total service
time of an arriving type i customer.

We are now ready to prove the following theorem

Theorem 3.5. Let Z, = (Z(l) Z(N)) be the joint queue length process at
generation times in a multitype M/G/1 queue with Markov routmg satisfying
assumptions 1 and 2. Let b be as in Lemma 3.4 and assume E‘ 1 Ahi > 1.

Then
(i)
lim =v; a.s.,
n—00 Z(1)+ -I-Z,(,N)

with v the positive left eigenvector with z::vz L vi = 1 corresponding to the
greatest eigenvalue Apgx.

PROOF: The theorem is a direct consequence of Corollary 2.2 because it is
easily verified that the assumptions of Theorem 2.1 are satisfied (see Lemma
3.4). Note that we do not have to worry about extinction of the branching
process because Amqz > 1 implies that with probability 1 we have an infinite
busy period after finite time and hence a ”non-extincting” branching process.

Theorem 3.6. Let Z, be the joint queue length process at generation times
in a multitype M/G/1 queue with Markov routing satxsfymg assumptions 1
and 2. Let b be as in Lemma 3.4 and assume Y1, Mibi < 1. Then the
generating function P(sy,- - ,sn) of the stationary distribution (j1,- - JIN)
of Z, satisfies

P(s1, - ,sn)=1—=m(0,-++,0) > (1= g(fals1,--~ ,5N)))
n=0
with

#(0,---,0)=1+ Z(l - g(fa(0,---,0))).
n=0

PROOF: Follows directly from Theorem 3.3, Lemma 3.4 and Theorem 2.3 . i
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EXAMPLE 1: Feedback queue

Customers arrive at the system according to a Poisson process with intensity
A. When a newly arriving customer, called a type 1 customer, has received his
service, he departs from the system with probability 1 — p1 and is fed back to
the end of the queue with probability p;; in the latter case he becomes a type
2 customer. Similarly, when a customer has received its i-th service, he leaves
with probability 1 — p; and cycles back with probability p;, becoming a type
i+ 1 customer. To avoid the problems that occur in dealing with an infinite
number of customer types, we assume py = 0 for some N > 1.

This feedback queue is a special case of a multitype M/G/1 queue with

Markov routing where Ay = A, A3 = --- = Ay = 0 and Piit1 = pi,i =
1,---,N —1, pij = 0 otherwise. It is easily checked that b, = Zf_’__l Bi H;;ll P

and hence the stability condition for the system equals ) Zil Bi H;_:ll p; <1

EXAMPLE 2: Multitype M/G/1 queue

Customers of different types arrive according to independent Poisson processes

with rates A;, i = 1,--- , N and leave the system after getting service. Thisis a
special case of a multitype M/G/1 queue with Markov routing where p;; = 0,
for all 7 and j. In this case b; = f; and hence the stability condition for

the system is p := Z.’il AiBi < 1. The eigenvector v equals v; = ,\!T*TN
and hence the fraction of type i customers in the system at generation times
converges almost surely to A;TA'W when p > 1.

4. Moment calculations. In this section we will calculate first and second
moments of the stationary distribution of multitype branching processes with
immigration at state zero and immigration at each state. For the calculation of
the first moment we assume the existence of offspring and immigration means.
For the calculation of the second moments we assume the existence of offspring
and immigration covariances.

4.1. MTBP with immigration at state zero. From formula (2.9) we
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obtain

5
6’?( 1) = m(0, - ) 1)+Z af"(l-..,l).
&P 3 &g
5;;5;;(1,...,1) _'”(0""’0)63‘6 _(1,...,1)
+Zas 7 )afk(l >gg< o),

Of course we have

E(X)) = Z—P(l,--- $)

9%P P
E(XiX;) = 5—=— 05, a,---, 1)+ a_s,-(l”"’l)é""

where § denotes Kronecker delta.

ExAMPLE: Consider the feedback queue of Example 1 in the previous section.
For the vector of means we have

EX, Bs: | h
: =,,.(0,...,0)(1_.M)‘1 . =7r(0,---,0)(I—M)_1 .
EXy 9y 0
aSN
with
A3 n 0 ... 0
’\ﬂ2 0 P2 ... 0
M= : P
ABN -1 0 0 ... pn-1
ABN 0o 0 ... 0
The number #(0, - - - ,0) has to be calculated numerically. Fortunately we have
geometrical convergence of f,(sy,---,sn) to (1,---,1) hence a finite sum in

(2.8) provides a good approximation of x(0,--- ,0).
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4.2. MTBP with immigration at each state. From formula (2.11) we
obtain

op _d9 . OP | ey
2, LD =g, ’1)+Xk:ask(1’ DG (Lo 1),

o’p _ 9% oP 3fk
33‘,351_(1,-.-,1)—asiasj(l,-..,l)'f';‘a—s;(l, 1)[ ( oo, 1)

+ e 3k, ,1)+6—j(1, )‘”"(1 5
o2p ofr ofi
+Zaskas R e CRREN) ~ul (R}

EXAMPLE: Consider the multitype M/G/1 model with one permanent cus-
tomer of remark (iv) in Section 3.2. In this case we have

K2
EXl asl
) =u-7H
EXN 99
asN
with 5
99 _
Os] AiB
and
mij = A5

5. Branching processes with countably many types. Consider once
more the feedback system of Example 1 in Section 3. For convenience we
assumed the existence of an N such that py = 0. In this section we investigate
what happens if we drop this assumption. This brings us to the theory of
branching processes with countably many types.

So we now have an infinite sequence B;(-) of service time distributions with
means 0 < §; < oo and Laplace-Stieltjes transforms ;(-) and an infinite se-
quence of probabilities p; > 0, representing the probability that a type i cus-
tomer, after receiving his service, cycles back, becoming a type (i+1) customer.
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A main role in the analysis is played once again by the mean matrix M =

(my;) , where m;; is the expected number of type j offspring of a type ¢ particle.

We have
mi1 = AG;

miis1 = Pi
m;j =0, otherwise.

The following lemma is easily checked to be true.

Lemma 5.1. All entries m{™ of the matrix M™ are finite. Furthermore the

1]

matrix M is irreducible, i.e. for all i and j there exists an n such that m{™ is

strictly positive.

ij

It is well-known (see Seneta [9]) that for non-negative matrices M, satisfying

the properties mentioned in Lemma 5.1 there exists a unique non-negative

number R which is the common radius of convergence of the power series

3o e m( ™" for each pair i, j.

Lemma 5.2. If

o0 -1
(5.1) 1<A> B [[pi <o,
i=1 j=1

then there exist strictly positive vectors u' = (u1,ua,..

and a number r > 1 such that
(1) M =rv,

(2) Mu =ru,

(3) Zu.—v,— < O0.

ProOF: If r is a solution of the equation

) ﬂ i—1
(5.2) =3 |

i=1 j=1
then it is easily checked that
v = 1,

vigr = ([ )/,
j=1
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and
u; =1,

Uipy = "Zﬂ] g J/(I-[Plc)
(I-I] 1P J) j=1
satisfy (1) and (2). Furthermore condition (5.1) is sufficient for the existence
of an r > 1 satisfying (5.2) and for the finiteness of 3" u;v;.

From the existence of u, v and r satisfying (1), (2) and (3) in Lemma 5.2 we
conclude that R = r~! (see Seneta [9], Theorem 6.4). The number r will take
the place of A4, in the case of branching processes with countably many types
(see Moy [5]). In Moy [5] a theorem similar to Theorem 2.1 is proven in the
case that R < 1 and that there exist u, v and r satisfying (1), (2) and (3). The
only difference is mean square convergence instead of almost sure convergence.
Furthermore an extra condition is imposed so that all Z,(. ),z =1,2,... have
finite second moments, where Z( ) is once again the number of type i partlcles
at time n, see Moy [5].

We do not know analogous results to Theorem 2.3 and Theorem 2.5 in the
case of countably many customer types.

6. Conclusions and open questions. A general approach is given for the
analysis of the joint queue length process in M/G/1 queues with multiple cus-
tomer types and different service times for different types of customers. The
used method is to define an imbedded sequence of times, called generation
times. The joint queue length process at these generation times behaves as a
multitype branching process with immigration at state zero. Also in the case
that some customers stay in the system for ever, so called permanent customers,
the introduction of generation times is useful. In this case the process behaves
as a multitype branching process with immigration at each state.

The main question that remains unanswered in this paper is how to use
knowledge about the joint queue length process at generation times to analyze
the joint queue length process at arbitrary times. For example we expect that
for multitype M/G/1 queues with Markov routing satisfying the assumptions
in section 3.3 and satisfying Y A;b; > 1 a result similar to Theorem 3.5 holds
at arbitrary times, i.e. we expect

lim Xi
t—o0 X‘1+...+X‘N

— v;, a.s.
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A second open problem is how to relate in the same model, if 3~ A;b; < 1 the
joint stationary queue length distribution at generation times to the joint sta-
tionary queue length distribution at arbitrary times. In the queueing model of
Section 3.2 with one permanent customer for example this relation is known,
see v.d Berg [2). If R(s) denotes the generating function of the distribution of
the number of ordinary customers at an arbitrary epoch and Q(s) denotes the
generating function of the distribution of the number of customers at an arbi-
trary epoch in the corresponding M/G/1 queue (i.e. the same model without
a permanent customer), then

P(s) 1-p((1-35))
Bo(M1=5))  B2A(1-5)

R(s) = Q(s),

with P(s) given by Theorem 3.2. For the multitype M/G/1 queue such a
relation is unknown. The last open question, already mentioned in the previous
section, is how to extend the results of Section 2 to branching processes with
countably many types.
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ASYMPTOTISCHE RESULTATEN IN
SYSTEMEN MET TERUGKOPPELING

SAMENVATTING

In dit proefschrift bekijken we twee soorten systemen met terugkoppeling, te
weten processen met terugkoppeling en wachtrijmodellen met terugkoppeling.
Stochastische processen van de vorm

Xn+1 = fn(XnyYn);

met fi, fo,... een rij functies en Y;,Y5, ... een rij van stochastische variabelen
worden processen met terugkoppeling genoemd. Wachtrijmodellen waarin klan-
ten, na bediend te zijn, terug kunnen keren naar de bedieningsfaciliteit voor ze
het systeem verlaten, worden wachtrijmodellen met terugkoppeling genoemd.

In het eerste gedeelte van dit proefschrift worden twee processen met terug-
koppeling bestudeerd. Het eerste proces is een model voor productieprocessen.
Een gemeenschappelijke eigenschap van productieprocessen is dat machines
niet onafhankelijk van elkaar werken. Dit impliceert dat sommige machines
geen nieuwe activiteit kunnen starten totdat sommige andere machines hun
huidige activiteit beéindigd hebben. Dit leidt tot de volgende wiskundige be-
schrijving van het proces:

zi(n+1) = lr?Ja(xp(a,-j(n) +z;(n)), i=1,...,p.

Hierin is p het aantal machines, z;(n) het tijdstip waarop machine 7 voor de
n-de keer actief wordt en a;j(n) de som van de n-de procestijd van machine j
en de n-de transporttijd van machine j naar machine i. In het eerste artikel in
dit proefschrift bestuderen we het asymptotisch gedrag van z;(n) voor n — oo
in het geval de tijden a;;(n) stochastisch zijn.

Het tweede proces dat bestudeerd wordt is van de vorm

Xnt+1 = max(X,, anXn + Yy)

met oy, s, ... een rij parameters tussen 0 en 1, en Y},Y5,... een rij van onaf-
hankelijke, gelijkverdeelde, niet-negatieve stochastische variabelen. Twee rand-
gevallen voor de rij van parameters, namelijk a, = 0 voor alle n en o, = 1
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voor alle n, leiden tot de extreme waarden theorie respectievelijk de theorie van
sommen van onafhankelijke stochasten. Gezien het totaal verschillende asymp-
totische gedrag van X,, voor n — oo in deze twee gevallen is het interessant
naar rijen oy, as, ... tussen 0 en 1 te kijken. In het tweede artikel in dit proef-
schrift bestuderen we het asymptotisch gedrag van X,, voor rijen ay, as, ... die
naar 1 stijgen voor n — oo.

In het tweede deel van dit proefschrift worden wachtrijmodellen met terug-
koppeling bestudeerd. Het basismodel dat bestudeerd wordt, is een model
bestaande uit één bediende en een wachtrij waarbij klanten arriveren volgens
een Poisson proces. Nadat een klant een negatief exponentiéel verdeelde be-
dieningstijd met gemiddelde 3 heeft ontvangen keert hij terug naar het einde
van de wachtrij met kans p(i) en verlaat hij het systeem met kans 1 — p(7),
waarbij ¢ het aantal bedieningen is dat de klant reeds gehad heeft. Door op
geschikte wijze de gemiddelde bedieningsduur 3 en de terugkeerkansen p(i) te
variéren blijkt een rij van modellen gevonden te kunnen worden die steeds meer
op het M/G/1-"processor sharing” model gaan lijken. Dit is een één-bediende
model met een willekeurige verdeling van de bedieningsduur waarin alle klan-
ten tegelijk en met dezelfde snelheid bediend worden zodanig dat de totale
bedieningssnelheid van de bediende constant blijft. In het derde artikel in dit
proefschrift wordt een bewijs gegeven van de convergentie in verdeling van de
stationaire verdeling van de verblijftijd in de modellen met terugkoppeling naar
de stationaire verdeling van de verblijftijd in het ”processor sharing” model.

In het vierde artikel in dit proefschrift worden modellen met terugkoppeling
bestudeerd waarin behalve de terugkeerkans p(i) ook de verdeling B;(-) van de
bedieningsduur van een klant afhangt van het aantal keren ¢ dat de klant reeds
bediend is. We zijn voor dit soort modellen geinteresseerd in de gemeenschap-
pelijke stationaire verdeling van het aantal klanten van type 7 in het systeem.
Een klant is van type 7 als hij voor de i-de keer in de wachtrij staat. Het vinden
van deze verdeling op een willekeurig tijdstip blijkt moeilijk te zijn. Daarom
definiéren we een ingebedde rij tijdstippen, die we generatietijdstippen noemen.
Het aantal klanten in de wachtrij van verschillende types op generatietijdstip-
pen blijkt namelijk een vertakkingsproces met meerdere type deeltjes te zijn.
De algemene theorie van dit soort vertakkingsprocessen stelt ons in staat een
uitdrukking te vinden voor de genererende functie van de gemeenschappelijke
stationaire verdeling van het aantal klanten in de wachtrij van verschillende
types op generatietijdstippen.
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