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Zero-bias anomaly of point-contact resistance due to adiabatic electron renormalization
of dynamical defects
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We study the effect of the adiabatic electron renormalization on the parameters of the dynamical defects in
the ballistic metallic point contact. The upper energy states of the ‘‘dressed’’ defect are shown to make a
smaller contribution to a resistance of the contact than the lower-energy ones. This holds both for the ‘‘clas-
sical’’ renormalization related to defect coupling with average local-electron density and for the ‘‘mesoscopic’’
renormalization caused by the mesoscopic fluctuations of electronic density the dynamical defects are coupled
with. In the case of mesoscopic renormalization, one may treat the dynamical defect as coupled with Friedel
oscillations originated by the other defects, both static and mobile. Such coupling lifts the energy degeneracy
of the states of the dynamical defects making a different mesoscopic contribution to resistance, and provides a
model for the fluctuator that pictures it as the object originated by the electronic mesoscopic disorder rather
than by the structural one. The correlation between the defect energy and the defect contribution to the
resistance leads to zero-temperature and zero-bias anomalies of the point-contact resistance. A comparison of
these anomalies with those predicted by the two-channel Kondo model~TCKM! is made. It is shown, that
although the proposed model is based on a completely different from TCKM physical background, it leads to
a zero-bias anomalies of the point-contact resistance, which are qualitatively similar to TCKM predictions.
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I. INTRODUCTION

Recent advances in nanofabrication technology h
made it possible to visualize single defects with internal
grees of freedom - ‘‘fluctuators,’’1,2 which lead to a ‘‘tele-
graph’’ resistance noise of nanometer-scale systems. In
als these defects are believed3–7 to be structural defects
which at low temperatures are seen as the well-known t
level tunneling states~TLS!.8 TLS’s are typical objects for
strongly disordered amorphous solids8 that switch by tun-
neling between their two possible configurations. Althou
the microscopic nature of the fluctuators remains unclear~es-
pecially for ballistic devices made of pure metals!, the ex-
periments allow us to study various phenomenological
rameters of these objects, in particular the interlevel spac

Kondo9 pointed out that in metals the parameters of
dynamical defects are strongly renormalized by electro
One can discriminate between adiabatic electron ‘‘dressin
which is related to a static electron response on the de
potential, and a nonadiabatic one, which affects the tunne
process and leads to a renormalization of the TLS tunne
matrix element~‘‘dissipative tunneling’’!. It is this nonadia-
batic effect that has attracted most attention~see e.g., Ref.
10! due to its evident importance for defect dynamics. As
the adiabatic renormalization of the defect parameters,
customary to include it in the bare values. This procedur
usually justified by the fact that the adiabatic effects are
lated to a response of the whole electron systems, while o
a small strip of electron energies, close to the Fermi surfa
is responsible for transport properties and sensitive to ex
nal factors like temperature or applied fields. However,
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was demonstrated in Refs. 4 and 6, the adiabatic ‘‘dressi
of the fluctuator, in particular, the adiabatic renormalizati
of the fluctuator energy splittingE, can be important, and
depends on the state of the electron system~e.g., on super-
conducting properties!. Furthermore, very recently the su
prising ‘‘magnetic tuning’’ of the TLS interlevel spacin
observed11 for TLS’s in Bi nanoconstrictions was
explained12 as a direct result of the adiabatic renormalizati
of TLS parameters by electrons, whose states are affe
strongly by the magnetic field.

The purpose of the present paper is to show thatthe adia-
batically renormalized energy of the fluctuator state corr
lates with the fluctuator contribution to the resistance. That
is, the conductance islarger for the fluctuator on itsupper
level. This fact causes, in particular, Kondo-like zer
temperature and zero-bias anomalies in differential cond
tance of the metallic point contacts. Indeed, an increase
temperature leads, on average, to an increase of occup
numbers of the fluctuator upper levels. The above-mentio
correlation causes a corresponding conductanceincrease
with temperature, which imitates the Kondo-like behavior
The same holds for an applied bias increase.

II. ADIABATIC RENORMALIZATION
OF THE PARAMETERS OF THE DYNAMICAL DEFECTS

IN METALS

Two mechanisms of the adiabatic renormalization can
considered. The first is due to the possible difference
electron-fluctuator coupling potentialsV for the two of the
259 © 1997 The American Physical Society
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260 55V. I. KOZUB AND A. M. RUDIN
fluctuator states (uV(1)uÞuV(2)u), and was studied in Refs
4,6 and 12. We will show that for this mechanism~which
will be referred to as the ‘‘classical’’ one! the above-
mentioned correlation is due to the fact that expressions
the conductance and for the electron contribution to de
energy include the same strength of the electron-defect
pling.

The second mechanism of adiabatic renormalization
dynamical defects parameters was suggested by Altsh
and Spivak.13 It implies mesoscopic electron-density fluctu
tions, which lead to a difference, even foruV(1)u5uV(2)u , of
electron-fluctuator coupling strengths for different fluctua
states due to their spatial resolution. The same correla
occurs for this ‘‘mesoscopic’’ contribution as for the clas
cal one. We will show it for the experimentally importa
situation of ballistic point contact, where a description
terms of ‘‘local’’ interference, which involves a finite num
ber of scatterers, is possible.

A. Renormalization due to difference in defect-electron
coupling potentials

Let us start from the classical effect. TLS energy splitti
E depends7 on the TLS tunneling parameterD0 and on the
TLS asymmetryD:

E5AD0
21D2. ~1!

Interaction of TLS’s with conduction electrons leads to t
renormalization of both TLS asymmetry4,6,12and of the tun-
neling parameter.9 For asymmetrical TLS’s with large
enough barriers,D@D0, the renormalization of TLS asym
metry makes the major contribution toE. As a result,4,6,12

the electron-TLS coupling leads to the renormalization
TLS ‘‘bare’’ energy splitting E which has a form
E→E1Eel , whereEel5Eel,22Eel,1,

Eel,i5(
k,k8

uV0
~ i !u2

f ~«k!2 f ~«k8!

«k2«k8
'2

uV0
~ i !u2

«F
. ~2!

HereV0
( i ) is the electron-TLS coupling constant for thei th

TLS configuration. The electron bandwidth is assum
to be of the order of «F , and the electron distri-
bution f («) to have an equilibrium Fermi form
f («)5 f 0(«)5$exp@(«2«F)/T#11%21. Applicability of the
second-order perturbation theory approximation is justifi
for Eq. ~2! whenV0

( i )!«F . In contrast to Kondo-like correc
tions, Eq.~2! depends weakly on temperature. The renorm
izationEel is due to the difference in the values of the to
electron energy, renormalized by the presence of TLS’s,
the TLS’s in states 1 and 2, respectively. It is important, t
Eel is not, due to adiabaticity, sensitive to the details of
interstate transition mechanism. Thus the problem is redu
to estimates of energiesEel,i corresponding to different con
figurations of the defect which for this case can be cons
ered as its independent realizations. Therefore, Eq.~2! holds
both at low temperatures, when the fluctuator transitions
due to tunneling, and at higher temperatures when ther
activation dominates.7,14

According to Eq.~2! the energyE is lowered from the
‘‘bare’’ value. The lowering is larger the stronger is the co
pling of the state with the electrons. On the other hand,
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presence of the defect in statei inside a ballistic point con-
tact with a characteristic sized causes a reduction of th
contact conductance5

dGi'2
uV0

~ i !u2

«F
2 S lF

2

d2 DG, ~3!

wherelF is the Fermi wavelength, andG'(e2/h)(d2/lF
2) is

the Sharvin conductance. Making use of Eq.~2! one obtains
dGi'(e2/h)(Eel,i /«F). Therefore, if the defect asymmetr
is completely controlled by the conduction electrons, t
conductance, which corresponds to the defect in its low
state~larger absolute value of the electron contribution to t
defect energy! is smaller than that for the defect in the upp
state.

B. Interference contribution to the renormalization

Let us now consider the electronic interference. For ad
batic effects different states of ‘‘active’’ defects, fluctuato
can be considered as independent realizations. Thus we
choose some configuration of some active defect as a ‘‘
erence’’ scattereri , and consider its properties in the pre
ence of ‘‘background’’ scatterers. We will analyze both t
interference contribution to conductance due to the defei
and the ‘‘mesoscopic’’ renormalization of the energy of th
defect, which is equal to a change of the electron sys
energy due to a presence of interference pattern involv
defecti .

The ballistic point contact contains a finite number
scatterers. Therefore the interference contribution to the c
tact conductance is provided by alocal interference~involv-
ing trajectories with small number of scatterers! rather than
by aglobal one@which leads to well-known Universal Con
ductance Fluctuations~Ref. 16!#. This ‘‘local’’ interference
contribution was to some extent analyzed in Ref. 17. In w
follows, for simplicity we will restrict ourselves mainly to
the interference patterns involving only pairs of scattere
However, as is shown in Appendix A 1, our results can
generalized for the case of an arbitrary number of scatter

As is shown in Appendix A 1@Eq. ~A9!#, the contribution
to the conductance due to a pair of scatterers, namely
‘‘reference’’ scattereri and the ‘‘background’’m, is

dGim5AG,imj im , AG,im'
e2

h

uV0u2

«F
2 S lF

Rim
D 2. ~4!

Here j im5cos(2kFRim), and Rim[Ri2Rm is the vector,
which connects two scatterers. For simplicity we assume
the scattering potentials for all scatterers, both ‘‘active’’ a
‘‘passive’’ ones, depend only on the coordinateRi of the
scatterer:Vik•k85V0exp@i„k2k8…Ri #.

Let us now find a contribution to the energy of ‘‘refe
ence’’ scattereri , which represents one state of some flu
tuator, due to its being involved in electron interferen
along with another scattererm. Following the scheme im-
plied by Eq.~2!, it is given by a renormalization of electro
system energy due to this pair of scatterers. In the seco
order perturbation theory approximation, we obtain, colle
ing all terms proportional toVik•k8Vmk•k8

*
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Eel,im5Re(
k,k8

uV0u2exp@ i ~k2k8!Rim#
f ~«k!2 f ~«k8!

«k2«k8
.

~5!

A straightforward calculation for a spherical Fermi surfa
and zero temperatures gives@see Appendix A 1, Eq.~A9!#:

Eel,im5AE,imj im , AE,im'
uV0u2

«F

lF
3

Rim
3 . ~6!

The obtained renormalization is due to interaction of def
m with the Friedel oscillation of electron density originate
by the defecti .

Both dGim , Eq. ~4!, andEel,im , Eq. ~6!, are proportional
to thesamephase factorj im5cos(2kFRim). Correspondingly,

@dGim /~e
2/h!#

~dEel,im /«F!
;

lF

Rim
.0, ~7!

and thus, in analogy with the ‘‘classical’’ effect, the larg
the energy of a configuration, the larger the contact cond
tance. As it can be shown~see Appendix A 1!, the propor-
tionality to the same phase factor and, therefore, Eq.~7!,
holds not only for pairs of scatterers but for an arbitra
number of scatterers as well.

To estimate a total interference contribution due to
defect i , both to the conductancedGi and to the defect en
ergy Eel,i , one must sum over all ‘‘background’’ scattere
m. Due to a random distribution ofRim , this results in some
mesoscopic fluctuations for both quantities with respec
realizations of the system. However, the fact that both qu
tities are linearly related to the same set of random fac
j im leads to the correlation between them, namely

^dGiEel,i&5CdG Eel, ~8!

wherex[A^x2&, C'1, and^& denotes the ensemble ave
age. More detailed argumentation of this is given in Appe
dix B. For a given value ofEel,i5E, one has

^dGi&E5CdG
E

Eel

. ~9!

Keeping in mind factors 1/Rim
2 ~for the conductance! and

1/Rim
3 ~for the energy!, one may suggest the main contrib

tion to both these quantities to stand from the nearest ne
bors. In this case both the energy renormalization and
contribution to the resistance are related to a few neigbo
defects, and thus could be estimated by Eqs.~4! and~6! with
Rim of the order of most probable interdefect distan
Ni

21/3 ~whereNi is the background defect concentration!.
Note that if we take an average over all possible realizati
of the background scatterers we would find a problem wit
singular behavior of the averaged quantities whenRim→0.
This means that the average is mainly controlled by~rare!
realizations corresponding to a very close neighboring ba
ground defect, and one hasRim.kF

21 which would give
udGu;e2/h, Eel,i;EF /(kFl )

1/2. However, in the case o
small ballistic contact we deal with some given contact re
ization, so that we deal with the most probable quan
rather than with an average quantity~compare with Ref. 15!.
t
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For the ballistic point contact the number of defects in t
contact is small, so that the dominant contribution is e
pected to be from the trajectories, which involve a bound
of the contact. Assuming the contact to be a short chan
with a length'd, this boundary may be considered as
array of scatterers at a distances'd from the defecti with a
total number'(d/lF)

2. For this case

dG'S lF

d D e2h , Eel,i'«FS lF

d D 2. ~10!

Taking values ofd typical of nanofabricated ballistic
point contacts,d'5–10 nm, one obtainsudGu'(0.05
20.1)e2/h andEel,i'30–100 K.

The mesoscopic interference renormalization has so
special features as compared with the ‘‘classical’’ one. Fi
mesoscopic disorder lifts the energy degeneracy of the de
states, which have different spatial positions. Thus it caus
formation of fluctuators from otherwise symmetric defe
configurations~that is, interstitials which have symmetrica
lattice positions!.

In this case one expects the temperature and bias be
iors of the resistance to depend on an external magnetic fi
which affects the electron interference~see, e.g., Ref. 16!.

In addition, the interference contribution both to the d
fect energy and to the conductance depends on the elec
distribution. The finite applied bias makes this strongly no
equilibrium, which at high enough biases causes a ‘‘direc
effect of bias on both quantities. The physical picture of t
mesoscopic renormalization is much richer than that p
vided by the ‘‘classical’’ one, and it is this mechanism th
we will concentrate on in the rest of the paper.

III. ZERO-BIAS AND ZERO-TEMPERATURE
RESISTANCE ANOMALIES

Let us consider defecti , which occupies either of thetwo
neighboring positions 1 and 2 with close energies. For s
plicity we will assume that the energy asymmetry of the
defect states is completely determined by the electron re
malization. This object is a sort of two-level fluctuato
caused by theelectronicdisorder rather than by the lattic
one. It is important that, due to the correlation discuss
above, the upper state of such a fluctuator, which co
sponds to a defect position with higher energy, make
smaller contribution to the contact resistance. A conducta
increase, which accompanies a transition from the lowe
the upper level of such a fluctuator,dG( i )5dG( i )12dG( i )2,
is, according to Eq.~9!, scaled with the energy asymmetr
E( i )5Eel,(i )12Eel,(i )2. Here indexi now denotes the fluctua
tor.

A summation over all fluctuators gives their total cont
bution to the average contact conductance,

DG5(
i

dG~ i !n~ i !5E ^dG~ i !&EP~E!n~E!dE. ~11!

Here n( i )5n(E( i )) is the i th fluctuator upper level occupa
tion number andP(E) a density of states given by statistic
properties ofEel,i . For the mesoscopic system it is reaso
able to take the values ofEel,i for the neighboring defec
positions to be statistically independent. In this caseP(E) is



n

c
p

o-
-
b
a
o

rm

r
e
l-

ds

f
n
e

w
it-
,
tro
ui
a

pe

r-
fo
e
ne

s

as
of
s

es
on
ce:

e of

c-

ec-

tor

s
of
a
for
a-

ng

sis-
ged
is

262 55V. I. KOZUB AND A. M. RUDIN
approximately constant at smallE!Eel. Making use of Eq.
~9! and of the expressionn(E)5@11exp(E/T)#21, at small
temperaturesT!Eel one has the conductance enhanceme

DG}Tb, ~12!

whereb52.
For some defects, like light interstitials or some defe

complexes, the probabilities of defect hopping between s
tially symmetric positions are relatively high.18 For these
‘‘delocalized’’ defects the effect of electronic disorder pr
vides a many-site ‘‘potential relief’’ instead of two-site fluc
tuator picture. Assuming that any site can be occupied
only one defect, one deals with ‘‘Fermi-type’’ statistics, so
T→0 sites with the lowest energies are occupied by the m
bile defects while those with energies higher than the ‘‘Fe
level’’ are free. At finite temperature Eq.~11! can be applied,
where the site occupation number again has the fo
n(E)5@11exp(E/T)#21 if one takes the Fermi level as th
origin of the energyE. In this case the total number of avai
able sites is much larger than the number of defects,N, and
for finite temperatures the ‘‘Boltzmann-type’’ statistics hol
rather than the ‘‘Fermi type:’’

n~E!5
Nexp~2E/T!

*P~E!exp~2E/T!dE
. ~13!

In this case a change ofT does not affect the number o
rearranged defects~because any of them can change its e
ergy! and leads only to a change of the average defect
ergy. As a result, in this case we have in Eq.~12! b51
independently of the form of the density of statesP(E).

Let us turn now to the effect of finite biaseV@T. For
TLS’s it was first considered in Refs. 5 and 19. It was sho
that for low-energy TLS’s with small enough energy spl
ting E, for which the coupling with electrons dominates20

the TLS occupation numbers are sensitive to the elec
distribution. For the contact region this is strongly noneq
librium and for a central point of symmetric contact has
form

f ~k!5u~kx! f 0~«k1eV/2!1u~2kx! f 0~«k2eV/2!, ~14!

whereOX is the main axis of the contact andu(x) the theta
function. The ‘‘energy width’’ of this distribution,eV, plays
a role of the effective temperature. In particular, the up
levels of the TLS are empty ifeV,E, while for eV@E the
occupation numbers of TLS levels are almost equal5,19 and
n(E)' 1

2@12(E/eV)#.
For largerE the coupling with phonons becomes impo

tant,20,14due to the rapid increase of the density of states
actual phonons with an increase ofE. For the two-state cas
the fluctuator relaxation rate due to electron-assisted tun
ing is5,20 Wel(E,V)'(uV0

2u/«F)2@(eV2E)/\#T, where
V0

25(V0
(2)2V0

(1))/2. For the phonon-assisted proces7

Wph(E,T)'(L2E2/EQD
3 )(E/\)coth(E/2T)T. HereL is the

fluctuator deformational potential, andE and QD are the
atomic and Debye energies, respectively.T5exp(2l), where
l is the tunneling constant.

Let us define the characteristic energyE* for which
Wel„E* ,(eV2E* )'E* …5Wph(E* ,T50); for the reason-
able values of the parameters~see e.g., Ref. 20!, E* is ex-
t
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pected to be'1–3 K. ForeV@E* a probability of electron-
assisted tunneling to the upper levelWel exceeds the
probability of phonon-assisted decay of the upper levelWph
up to some threshold energyE5Eth5E* (eV/E* )1/3, at
which an increase of the electron phase volume with bi
(}eV) is compensated for by a corresponding increase
phonon phase volume (}E3). For the crude estimates let u
take the occupation numbersn(E)}u(Eth2E). Now, mak-
ing use of Eq.~11! and assuming the density of stat
P(E) to be constant, one obtains the following interpolati
formula for the interference contribution to the conductan

DG}FE* S eVE* D
1/3

1TGb

, ~15!

with b52.
The same considerations can be applied to the cas

‘‘delocalized’’ defects. Although the probabilitiesWel and
Wph for this case can differ from ones for the two-level flu
tuators, the scalingWel /Wph;eV/E3 ~relation between rel-
evant electron and phonon phase volumes! holds for
(eV@E>T), and thus Eq.~15! is valid, but withb51.

IV. DIRECT EFFECT OF THE APPLIED BIAS
ON THE FLUCTUATOR PARAMETERS

When a large enough biasV is applied to the point con-
tact, one should take into account the nonequilibrium el
tron distribution in the course of estimates Eqs.~4!, ~6!, and
~9!. For the distribution given by Eq.~14! one obtains~see
Appendix A 2! for DEel,im the phase factor

DEel,im}cos@2kFRim1f~V,Rim ,kF!#cos~2DkRim!, ~16!

and fordGim a factor

dGim}cos@2kFRim1f~V,Rim ,kF!#cos~2DkRim!

1
]f

]V

1

2R~]Dk/]V!
sin@2kFRim

1f~V,Rim ,kF!#sin~2DkRim!, ~17!

whereDk[kFeV/«F . This is the ‘‘direct’’ effect of bias on
the fluctuators parameters in addition to tuning a of fluctua
level occupation numbers.

As seen, the first term in Eq.~17! is correlated with the
phase factor of Eq.~16!, while the second is not, and thu
will sum out. As for the correlated cosine terms, the effect
bias initially ~ at DkR!1) leads to their decrease due to
decrease of the corresponding cosine factors, while
DkR@1 ~when the factors are random with respect to p
rameterRim) they are suppressed due to additional~with
respect to the caseV50) averaging overRim :

~DEel,DG!}~DkR!21/2.

Actually we deal here with the well-known energy averagi
effect, suppressing any mesoscopic phenomena.

It is important to note that these effects can lead to re
tance anomalies even if the defect structure is not rearran
in the course of the bias application; the only condition
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that the defects occupy the positions with the lowest ener
available and thus with the largest mesoscopic contribu
to resistancedGi . For these defect configurations, on ave
age on obtainsdG,0. The total interference contribution t
the conductance due toN defects is

DG;NF~V!dG, ~18!

where F;cos(DkR) for DkR,1, and F;(DkR)21/2 for
DkR@1. The result we obtained is that the bias increa
leads to a systematic conductance increase. It is interes
that in combination with the effects discussed for relativ
small V—occupation of states with higher energies—th
‘‘direct’’ effect can form configurations withsmaller resis-
tances than those available for a simple temperature incre
Indeed, it can suppress~negative in average! a mesoscopic
contribution to the conductance due to configurations wit
large enough energy gap between the available realizat
which cannot be rearranged at relatively small temperatu
when the phonon contribution to the resistance~obviously
masking the effects in question! is still small. Note that, as
we saw above, bias values allowing the same occupa
states of the defects and at the same time the same effici
of electron-phonon processes as in the equilibrium state
a temperatureT, are scaled withT aseV'T(T/E* )3. Thus
the energy averaging effects can become pronounced
large-gap configurations when the filling of the upper leve
still negligible. Certainly, the temperature increase can a
lead to an energy averaging, but the necessary tempera
are too large and correspond to a significant phonon co
bution to resistance.

V. DISCUSSION

In this section we would like to make several remar
about the limitations and possible complications of o
model. First, until now, we considered the defect energy d
sity of states to be constant. The limitation of the def
energy band leads to a saturation ofDG(T) and DG(V)
dependencies atT.Tsat and V.Vsat, respectively. These
quantities scale aseVsat'Tsat(Tsat/E* )

3 andDGsat'NfdG,
whereNf is a total number of fluctuators. As for the estima
for Tsat, taking «F'104–105 K and (d/lF)'50, and mak-
ing use of Eq.~10!, we obtainTsat'Eel,i'4–40 K. Note that
the ‘‘saturation’’ valueDGsat corresponds to a random rea
ization of different interference patterns involving the flu
tuators, while the values ofDG at lower temperatures corre
spond to a preferable occupation of larger resistance st
and thus are systematically smaller than typical for mes
copic disorder.

Second, it is important that the picture discussed is se
tive to the external magnetic field. In particular, it is know
that in homogeneous diffusive conductors the interfere
particle-particle channel is suppressed in a strong eno
magnetic fieldH.F0 /Lc

2 whereF0 is the quantum of the
magnetic flux andLc is the coherence length, while in ou
case we use a contact sized. This suppression reduces th
magnitude of mesoscopic fluctuations nearly twice.13,16 The
point contact is a strongly inhomogeneous system, and
main contribution to the mesoscopic fluctuations is due
local interference. However, despite the fact that the effec
es
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magnetic field implies a contribution of configurations whi
involve more than two scatterers, this contribution is re
tively large due to the rather high probability of the bounda
scattering, and leads to a decrease ofDG with the field in-
crease.

Another important feature is related to a coupling betwe
different ‘‘active’’ defectsi and j , due to a dependence o
the defecti energy on a position of defectj . This depen-
dence is given by Eq.~6!. For a large enough concentratio
of ‘‘active’’ defects one may expect the formation of se
organized aggregates in the defect system~of spin-glass
type!. Indeed, defect positions corresponding to maxima
the Friedel oscillations caused by the other defects bec
energetically preferrable, which introduces some ‘‘orderin
into the defect system. Thus a formation of ‘‘coherently sc
tering’’ aggregates can be possible, leading to a signific
enhancement of the interference contribution to resistan
The increase of bias is expected first to suppress this co
bution to the resistance in a way similar to discussed abo
On the other hand, at higher biases the direct bias-indu
decrease of ‘‘coupling potentials’’Eel,i j @see Eq.~16!# can
destroy such aggregates, which can lead to sharp resist
changes.21

Finally, it is instructive to compare results of our mod
with the two-channel Kondo model~TCKM!, 22,23which also
predicts zero-bias resistance anomalies of a nonmagnetic
ture. Despite the fact that these two models are based
completely different physical backgrounds, they pred
qualitatively similar resistance behaviors at lowT andV: the
negative temperature and bias resistance coefficients affe
by a magnetic field. However, quantitative predictions of t
two models differ. Our model does not predict a singularT
behavior atT→0—in contrast to the TCKM. As for bias
dependence, our model predicts a singular behaviorV2/3 for
biasesV*1–3 mV @see Eq.~15!# and saturation at smalle
biases. This saturation can imitate the ‘‘restoration of
Fermi-liquid behavior’’ predicted by the TCKM. On th
other hand, the TCKM, being related to the nonadiaba
effect, is relevant to fluctuators of a rather special type~with
a small asymmetry and large tunneling probability!, while
our predictions hold for any sort of mobile defect. Our mod
also predicts special features at higher temperatures an
ases; in particular, the saturation of the zero bias anoma
large V and T, and a principal possibility to reach large
values of conductance in the course of a bias increase
respect to the ones available for a temperature increase

VI. CONCLUSIONS

To conclude, we predict a mechanism of zero-bias re
tance anomalies in metallic point contacts based on a co
lation found between energies of defects with an inter
degree of freedom and their contributions to resistance.
correlation lifts to some extent the ‘‘random’’ character
mesoscopic disorder, and breaks the symmetry of the de
states with respect to the signs of the mesoscopic contr
tion to resistance. We suggest a model of a fluctuator rela
to a purely electronic disorder, which provides insight in
the nature of fluctuators in the perfect point contacts.
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APPENDIX A:

1. Calculation of the mesoscopic contribution to the
conductance and to the defect energy at small applied biases

To calculate mesoscopic contributions both to the cond
tance and energy of the electron system due to the pres
of some finite number of scatterers, we will make use of
‘‘wave-optics’’ approach.24 The approach is based on pertu
bation theory in real space. Let us consider an electron,
wave function of which initially is a plane wave with th
wave vectork. After n successive scattering events involvin
scatterers 1, . . . ,n the electron wave function becomes

u1, . . . ,n&[c1, . . . ,n~r !

5
f n

ur2Rnu•••••uR22R1u
eik•R1exp~ ik@ ur2Rnu

1•••1uR22R1u# ! ~A1!

whereR1 , . . . ,Rn are the positions of the scatterers. For t
short-range scatterers the scattering amplitudef in the Born
approximation takes the form

f52
m

2p\2E d3rV~r !, ~A2!

and is assumed the same for all scatterers. The contribu
of the scatterers to the conductance is determined by t
backscattering efficiency. The interference contribution
the backscattering current due to trajectories involving s
terers 1, . . . ,n and 18, . . . ,n8 is
r
s,

r
l
ch

c-
ce
e

e

on
ir
o
t-

d j5
ie\

2m
~^18, . . . ,n8u¹u1, . . . ,n&1c.c.!. ~A3!

To obtain a contribution to the conductance, one should
tegrate this equation overr within some reference plane re
mote from the scatterers system. It is important that o
position of last scatterersn andn8 are relevant for this inte-
gration, and one deals with a factor

E d2rexp@ ik~ ur2Rnu2ur2Rn8u!#.

Herer is a projection ofr on the plane in question. Takin
the plane to be normal toRn2Rn8, and expanding the expo
nent as@ . . . #;uRn2Rn8u1r2uRn2Rn8u/r

2 one obtains the
result of the integration in the form:

1

ikuRn2Rn8u
exp~ ikuRn2Rn8u!.

The next step is the integration overk directions. In its turn,
this integration is relevant only to coordinates of the ‘‘firs
scatterers in the chains; that is toR1 andR18, which enter the
exponential factor exp@k(R12R18)#. Correspondingly, the
integration over cosu, whereu5/(k,R12R18), gives the
factor

1

ikuR12R18u
exp~ ikuR12R18u!.

Finally one arrives at the following estimate for the meso
copic contribution to the conductance:

dG

G
;

f n1n8

k2a2Rn1n8

3cos@w~n,n8,n821, . . . ,18,1;n8,n,n21, . . . ,1!#

~A4!

where the phasew is
w~n,n8,n821, . . . ,18,1;n,n21, . . . ,1!

5k~ uR182R1u1uRn82Rnu1uRn82Rn821u1•••1uR282R18u2uRn2Rn21u2•••2uR22R1u!. ~A5!
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HereR is a typical interscatterer distance within the chai
while d is the contact size appearing as a result of norm
ization of the backscattering efficiency on the incident el
tron flow.

The picture discussed can be interpreted as a contribu
to scattering due to the presence of the scatterern affecting
the superposition of states formed by successive scatte
by chains 1, . . . ,n21 and 18, . . . ,n8. The phasew, after
the integration overk directions, is the phase difference fo
the pathsn,n8,n821, . . . ,18,1 and n,n21, . . . ,1, corre-
spondingly. One should also note that in course of deriva
of Eq. A4 we have taken into account that only those el
trons with energies close to the Fermi energy contribute
the conductance, and usedk5kF in Eq. ~A4!.

Now let us estimate the mesoscopic contribution to
electron energy due to the presence of the same syste
scatterers finally affecting the electron state in the position
scatterern. In the lowest approximation, one has
th
e

,
l-
-

on

ng

n
-
o

e
of
f

dEel5^18, . . . ,n8uV~r2Rn!u1, . . . ,n21&, ~A6!

whereV is a scattering potential assumed to be short rang
V5V0d(r ). As a result of averaging over the direction
k, we obtain

dEel'2V0

f n1n821

kRn1n811

3sin@kw~n,n8,n821, . . . ,18,1;n,n21, . . . 1!#.

~A7!

This is important, since the structure of the expression
dEel and that fordG, the phase difference for the interfe
ence patternw, are exactly the same.

In order to obtain the interference correction to the ene
of the whole electron system we should sum Eq.~A7! over
all occupied electronic states. ForT50, one has
dEel;2
V0

p2

f n1n821

Rn1n811E0
kF
kdksin@kw~n,n8,n821, . . . ,18,1;n,n21, . . . 1!#

52
V0

p2

f n1n821kF

Rn1n812~n1n8!
cos@w~n,n8,n821, . . . ,18,1;n,n21, . . . 1!#. ~A8!
f
on
im-
Thus we conclude that the mesoscopic contributions of
same system of scatterers to the conductance and to the
tron energy renormalization depend on thesamephase factor
and, therefore,are correlated.

For the simplest case of two scatterers~positioned inR1
andR18), siteR1 plays the same a role as siteRn . The phase
factor in this case is

cos~kuR182R1u1kuR182R1u!5cos~2kuR182R1u!,

and, correspondingly,
e
lec-
dG

G
;

f 2

a2kF
2R2cos~2kR!, dEel;2

fV0kF
R3 cos~2kR!, ~A9!

which gives Eqs.~4! and ~6!.

2. Direct effect of bias on the interference contributions

In this subsection we will study the ‘‘direct’’ effect o
bias on the renormalization of the fluctuator energy and
the interference contribution to the conductance for the s
plest case of two scatterers. We start by derivingEel . For the
steplike electron distribution given by Eq.~14! for the inte-
gral overk @instead of Eq.~A8!# one obtains
1

2EkF2Dk

kF1Dk

dksin„2kR1f~V,R,kF!…1E
0

kF2Dk

dksin„2kR1f~V,R,kF!…

5E
0

kF1Dk

dkksin„2kR1f~V,R,kF!…2
1

2EkF2Dk

kF1Dk

dkksin„2kR1f~V,R,kF!… ~A10!
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HereDk5eV/\vF . An additionalV-dependent phasef is related to a dependence ofk on a coordinate due to the presen
of an electric field@(\k)2/2m1w(r )5«5const#. Calculation of the integral gives the phase factor

cos@2~kF1Dk!R1f~V,R,kF!#1sin~2kFR1f!sin~2DkR!5cos@2kFR1f~V,R,kF!#cos~2DkR! ~A11!

instead of the factor cos(2kFR) obtained forV→0.
In the same way we estimate the contribution to the conductance atT50:

dI}E
kF2Dk

kF1Dk

cos„2kR1f~V,R,kF!…,dG

5
dI

dV
}

]Dk

]V
@cos„2~kF1Dk!R1f~V,R,kF!…1cos„2~kF2Dk!R1f~V,R,kF!…#

2
]f

]VEkF2Dk

kF1Dk

sin„2kR1f~V,R,kF!…

;
]Dk

]V
2cos„2kFR1f~V,R,kF!…cos~2DkR!1

]f

]V

1

2R
2sin„2kFR1f~V,R,kF!…sin~2DkR! ~A12!
-
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Taking into account thatf;DkRR/a, one sees that the sec
ond and the first terms on the right-hand side of Eq.~A12!
are of the same order provided thatR/a'1. However, the
first term completely correlates with the corresponding ph
factor for the energy renormalization, Eq.~A11!, while the
second term does not.

APPENDIX B

For each ‘‘active’’ defecti the interference contribution
to the conductance,Gi , as well as to the energy,Eel,i con-
tains a summation over ‘‘background’’ scatterersm. The
contribution of each scattererm gives some phase facto
j(Rim)[j im5jmi which depends on the distance of the sc
tererm from the defect. Hence one can rewrite the expr
sions fordGi andEel,i in a form

dGi[(
m

Gimj im[~Gi ,jW i !, ~B1!

Eel,i[(
m

Eimj im[~Ei ,jW i !. ~B2!

Here we have introduced some ‘‘vector space,’’ where v
tor jW i contains the set of the corresponding phase factors,
vectorsEi andGi contain the sets of the prefactors@given by
Eqs. ~3! and ~5!, correspondingly#. For the ensemble of de
fects i , the vectorjW i should be considered random, while a
components ofEi andGi are positive. We may rewrite th
vectorsEi andGi as

Ei5
Ei

Ēi

Ēi , Gi5
Gi

Ḡi

Ḡi ~B3!
e

-
-

-
nd

where we have introduced the ‘‘norms’’ of the vectorsEi
andGi . The correlator̂ jm ,jn&5gdm,n ~where for the co-
sine phase factorsg5 1

2!, and we obtain

^dGi ,Eel,i&5^~Gi ,ji !~Ei ,ji !&5gĒi ḠiS Ei

Ēi

,
Gi

Ḡi
D .

~B4!

The scalar product of the normalized positively defined v
tors in the brackets is of the order of unity, and one come
the estimate for the average, Eq.~8!, ^ &5Cd̄GĒel @accord-
ing to definitions given in front of Eq.~7!, Ē5Ēel and
Ḡ5 d̄G].

Representing vectorG as a sum of components ‘‘para
lel’’ and ‘‘normal’’ to the vectorE: G5GE1G' , one has
(GE ,E)5(G,E), (G',E)50, and, finally,

GE5
~G,E!

Ē2 E5C
d̄G

Ē
E

Decomposing in the same way the random vectorjW i on
the components ‘‘parallel’’ and ‘‘normal’’ toE (jE and
j') and taking into account that

^dG&E5^~GE1G' ,jWE1jW'!&E ,

~GE ,jW'!5~G' ,jWE!50,

and ^(G' ,jW')&50, we finally have

^dG&E5^~GE ,jWE!&5C
d̄G

Ē
~E,jW !5C

d̄G

Ē
E,

which corresponds to Eq.~9!. This means thatdG has a
linear regression with respect toEel .
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