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We study the effect of the adiabatic electron renormalization on the parameters of the dynamical defects in
the ballistic metallic point contact. The upper energy states of the “dressed” defect are shown to make a
smaller contribution to a resistance of the contact than the lower-energy ones. This holds both for the “clas-
sical” renormalization related to defect coupling with average local-electron density and for the “mesoscopic”
renormalization caused by the mesoscopic fluctuations of electronic density the dynamical defects are coupled
with. In the case of mesoscopic renormalization, one may treat the dynamical defect as coupled with Friedel
oscillations originated by the other defects, both static and mobile. Such coupling lifts the energy degeneracy
of the states of the dynamical defects making a different mesoscopic contribution to resistance, and provides a
model for the fluctuator that pictures it as the object originated by the electronic mesoscopic disorder rather
than by the structural one. The correlation between the defect energy and the defect contribution to the
resistance leads to zero-temperature and zero-bias anomalies of the point-contact resistance. A comparison of
these anomalies with those predicted by the two-channel Kondo nid@&M) is made. It is shown, that
although the proposed model is based on a completely different from TCKM physical background, it leads to
a zero-bias anomalies of the point-contact resistance, which are qualitatively similar to TCKM predictions.
[S0163-18207)06501-9

[. INTRODUCTION was demonstrated in Refs. 4 and 6, the adiabatic “dressing”
of the fluctuator, in particular, the adiabatic renormalization
Recent advances in nanofabrication technology havef the fluctuator energy splittin, can be important, and
made it possible to visualize single defects with internal dedepends on the state of the electron systerg., on super-
grees of freedom - “fluctuators?** which lead to a “tele-  conducting propertigs Furthermore, very recently the sur-
graph” resistance noise of nanometer-scale systems. In megrising “magnetic tuning” of the TLS interlevel spacing
als these defects are believetito be structural defects, gpservedt for TLS's in Bi nanoconstrictions was
which at low temperatures are seen as the well-known twoexplained? as a direct result of the adiabatic renormalization
level tunneling state$TLS).® TLS's are typical objects for of TLS parameters by electrons, whose states are affected
strongly disordered amorphous solifishat switch by tun- strongly by the magnetic field.
neling between their two pOSSible Configurations. Although The purpose of the present paper is to show thatadia-
the microscopic nature of the fluctuators remains undless  patically renormalized energy of the fluctuator state corre-
pecially for ballistic devices made of pure mejalthe ex-  |ates with the fluctuator contribution to the resistandat
periments allow us to study various phenomenological pajs, the conductance igrger for the fluctuator on itaipper
rameters of these objects, in particular the interlevel spacingevel. This fact causes, in particular, Kondo-like zero-
Kondd® pointed out that in metals the parameters of thetemperature and zero-bias anomalies in differential conduc-
dynamical defects are strongly renormalized by electronsance of the metallic point contacts. Indeed, an increase of
One can discriminate between adiabatic electron “dressing,’{emperature leads, on average, to an increase of occupation
which is related to a static electron response on the defe¢iumbers of the fluctuator upper levels. The above-mentioned
potential, and a nonadiabatic one, which affects the tunne"ngorre|ation causes a Corresponding conductaimoeease
process and leads to a renormalization of the TLS tunnelingyith temperature which imitates the Kondo-like behavior.

matrix element“dissipative tunneling’). It is this nonadia- The same holds for an applied bias increase.
batic effect that has attracted most attent{see e.g., Ref.

10) due to its evident importance for defect dynamics. As for

the adiabatic .renormalli.zation of the defect parameters, it _is Il ADIABATIC RENORMALIZATION

customary to include it in the bare values. This procedure iSye THE PARAMETERS OF THE DYNAMICAL DEFECTS
usually justified by the fact that the adiabatic effects are re- IN METALS

lated to a response of the whole electron systems, while only

a small strip of electron energies, close to the Fermi surface, Two mechanisms of the adiabatic renormalization can be
is responsible for transport properties and sensitive to exteiconsidered. The first is due to the possible difference of
nal factors like temperature or applied fields. However, aslectron-fluctuator coupling potentials for the two of the
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fluctuator states|y®]|#|Vv®@)]), and was studied in Refs. presence of the defect in stdténside a ballistic point con-
4,6 and 12. We will show that for this mechanigmhich  tact with a characteristic sizé causes a reduction of the
will be referred to as the “classical” onethe above- contact conductanée

mentioned correlation is due to the fact that expressions for

the conductance and for the electron contribution to defect |V8)|2 A2
energy include the same strength of the electron-defect cou- 6Gj~— —2(?) , 3)
pling. €F

The second mechanism of adiabatic renormalization of _ _ 2 21 2y
dynamical defects parameters was suggested by AltshuldfN€ré\r is the Fermi wavelength, ar@~(e/h)(d*/Ag) is
and Spivaks It implies mesoscopic electron-density fluctua- 1€ Shagvm conductance. Making use of £2). one obtains
tions, which lead to a difference, even faf®)|=|V)| | of _§Gi~(e /h)(Egi/eg). Therefore, if the d(_afect asymmetry
electron-fluctuator coupling strengths for different fluctuator’S completely controlled by the conduction electrons, the

states due to their spatial resolution. The same correlatiofonductance, which corresponds to the defect in its lower
occurs for this “mesoscopic” contribution as for the classi- state(larger absolute value of the electron contribution to the

cal one. We will show it for the experimentally important defect energyis smaller than that for the defect in the upper

situation of ballistic point contact, where a description in State-
terms of “local” interference, which involves a finite hum-
ber of scatterers, is possible. B. Interference contribution to the renormalization

Let us now consider the electronic interference. For adia-
batic effects different states of “active” defects, fluctuators,
can be considered as independent realizations. Thus we can

Let us start from the classical effect. TLS energy splitingchoose some configuration of some active defect as a “ref-
E depend5on the TLS tunneling parametédr, and on the erence” scatterer, and consider its properties in the pres-
TLS asymmetryA: ence of “background” scatterers. We will analyze both the

interference contribution to conductance due to the defect
E= AS+ A2, (1) and the “mesoscopic” renormalization of the energy of this
defect, which is equal to a change of the electron system
energy due to a presence of interference pattern involving
defecti.
The ballistic point contact contains a finite number of

A. Renormalization due to difference in defect-electron
coupling potentials

Interaction of TLS’s with conduction electrons leads to the
renormalization of both TLS asymmet§'2and of the tun-
neling parametet. For asymmetrical TLS's with large

enough barriersA> Ao, the renormalization of TLS asym-  gqayierers. Therefore the interference contribution to the con-
metry makes the major contribution & As a result,™™ tact conductance is provided bylacal interference(involv-
the electron-TLS coupling leads to the renormalization ofiq trajectories with small number of scattepersther than
TLS “bare” energy splitting E which has a form "5 giohal one[which leads to well-known Universal Con-
E—E+Eq, whereEeq=Ee 2~ Eei1, ductance FluctuationéRef. 16]. This “local” interference
()2 contribution was to some extent analyzed in Ref. 17. In what
paf (e —flew) Vol follows, for simplicit il restrict oursel inly t
Eeli= 2 V] ~_ _ 2 ollows, for simplicity we will restrict ourselves mainly to
Tk e & EF the interference patterns involving only pairs of scatterers.
However, as is shown in Appendix A 1, our results can be
Ogeneralized for the case of an arbitrary number of scatterers.
As is shown in Appendix A IEq. (A9)], the contribution
to the conductance due to a pair of scatterers, namely the
“reference” scatterei and the “background’m, is

Here V(()') is the electron-TLS coupling constant for thid
TLS configuration. The electron bandwidth is assume
to be of the order ofer, and the electron distri-
bution f(¢) to have an equilibrium Fermi form
f(e)=fo(e)={exd(s—ep)/T]+1}" 1. Applicability of the
second-order perturbation theory approximation is justified 2
for Eq. (2) whenV{’<e¢ . In contrast to Kondo-like correc- 8Gin=Aciméim:  Acim™ 1
tions, Eq.(2) depends weakly on temperature. The renormal- €F
ization E, is due to the difference in the values of the total
electron energy, renormalized by the presence of TLS's, foHere &,=cos(X:Ry,), and Ri,=R;—R, is the vector,
the TLS's in states 1 and 2, respectively. It is important, thatvhich connects two scatterers. For simplicity we assume that
E. is not, due to adiabaticity, sensitive to the details of thethe scattering potentials for all scatterers, both “active” and
interstate transition mechanism. Thus the problem is reducedpassive” ones, depend only on the coordinde of the
to estimates of energid,; corresponding to different con- scattererV;y. = Voexdi(k—k")R;].
figurations of the defect which for this case can be consid- Let us now find a contribution to the energy of “refer-
ered as its independent realizations. Therefore,(Bdaolds ~ ence” scatterei, which represents one state of some fluc-
both at low temperatures, when the fluctuator transitions aréator, due to its being involved in electron interference
due to tunneling, and at higher temperatures when thermallong with another scatteren. Following the scheme im-
activation dominated.14 plied by Eq.(2), it is given by a renormalization of electron
According to Eq.(2) the energyE is loweredfrom the  System energy due to this pair of scatterers. In the second-
“bare” value. The lowering is larger the stronger is the cou-order perturbation theory approximation, we obtain, collect-
pling of the state with the electrons. On the other hand, théng all terms proportional Mik'k'v:;kk’
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_ f(e)—f(ey) For the ballistic point contact the number of defects in the
Eeim=ReX, |Vo|2exdi(k—k')Rjpl—————. contact is small, so that the dominant contribution is ex-
kK’ FkfK (5  Pected to be from the trajectories, which involve a boundary
of the contact. Assuming the contact to be a short channel
A straightforward calculation for a spherical Fermi surfacewith a length~d, this boundary may be considered as an
and zero temperatures givesee Appendix A 1, EqA9)]: array of scatterers at a distances from the defect with a
total number~(d/\g)2. For this case

o —Ag & A,%w)‘_'% 6) | €2 Ne)?
elim E,imSim» E,im e R;?’m 5G%(§)F, Ee|,iN8F(FF (10)

The obtained renormalization is due to interaction of defect _ . . o
m with the Friedel oscillation of electron density originated Taking values ofd typical of nanofabricated ballistic

by the defeci. point contacts,d~5-10 nm, one obtaing 5G|~ (0.05
Both G, Eq.(4), andEg;m, Eq.(6), are proportional —0.1)¢?/h andEg;~30-100 K.
to thesamephase factok;,,= cos(&:R,,,). Correspondingly, The mesoscopic interference renormalization has some
special features as compared with the “classical” one. First,
[6Gim/(€%/h)] N mesoscopic disorder lifts the energy degeneracy of the defect
mN ﬂ , (7 states, which have different spatial positions. Thus it causes a

formation of fluctuators from otherwise symmetric defect
and thus, in analogy with the “classical” effect, the larger configurations(that is, interstitials which have symmetrical
the energy of a configuration, the larger the contact condudattice position
tance. As it can be showfsee Appendix A }, the propor- In this case one expects the temperature and bias behav-
tionality to the same phase factor and, therefore, &Y. iors of the resistance to depend on an external magnetic field,
holds not only for pairs of scatterers but for an arbitrarywhich affects the electron interferentsee, e.g., Ref. 16
number of scatterers as well. In addition, the interference contribution both to the de-
To estimate a total interference contribution due to thefect energy and to the conductance depends on the electron
defecti, both to the conductancéG; and to the defect en- distribution. The finite applied bias makes this strongly non-
ergy E¢j, one must sum over all “background” scatterers equilibrium, which at high enough biases causes a “direct”
m. Due to a random distribution &, , this results in some effect of bias on both quantities. The physical picture of the
mesoscopic fluctuations for both quantities with respect tanesoscopic renormalization is much richer than that pro-
realizations of the system. However, the fact that both quanvided by the “classical” one, and it is this mechanism that
tities are linearly related to the same set of random factorsve will concentrate on in the rest of the paper.
&m leads to the correlation between them, namely
- lll. ZERO-BIAS AND ZERO-TEMPERATURE
(0GiEeq1)=CdG Eg, t) RESISTANCE ANOMALIES

wherex=/(x?), C~1, and() denotes the ensemble aver-  Let us consider defedt which occupies either of thisvo

age. More detailed argumentation of this is given in Appen-neighboring positions 1 and 2 with close energies. For sim-
dix B. For a given value oE,;=E, one has plicity we will assume that the energy asymmetry of these
defect states is completely determined by the electron renor-

— malization. This object is a sort of two-level fluctuator

(0Gj)g=CoC=. (9)  caused by thelectronicdisorder rather than by the lattice
el one. It is important that, due to the correlation discussed
P : 2 above, the upper state of such a fluctuator, which corre-
Keeping in mind factors Hip, (for the conductangeand sponds to a defect position with higher energy, makes a

3 ; TR
LRRir, (for the energy, one may suggest the main contribu smaller contribution to the contact resistance. A conductance

tion to bOth these quantities to stand from the_ nearest neigrihcrease which accompanies a transition from the lower to
bors. In this case both the energy renormalization and thﬁ1e uppe;r level of such a fluctuata?G ;, = 6G ;) — 3G

contribution to the resistance are related to a few neigborin% . .
X ; , according to Eq(9), scaled with the energy asymmetr
defects, and thus could be estimated by Edsand(6) with E, (i)lg E, (i)qz(' I)-lere dexi now denote%ythe¥luctua-y

Rim of the order of most probable interdefect distanceE(r‘)_
Ni " (Wh_ere N; is the background defect c_oncentrgmo_n A summation over all fluctuators gives their total contri-
Note that if we take an average over all .possmle reallzayonﬁution to the average contact conductance,

of the background scatterers we would find a problem with a
singular behavior of the averaged quantities wiRgp— 0.
This means that the average is mainly controlled(kaye AG=2, 5G<i>n<i):f (6G(i)eP(E)n(E)dE. (11)
realizations corresponding to a very close neighboring back- '

ground defect, and one ha%,m>k;1 which would give Hereng,=n(E) is theith fluctuator upper level occupa-
|6G|~e?h, Eqi~Eg/(kel)Y2 However, in the case of tion number and®(E) a density of states given by statistical
small ballistic contact we deal with some given contact realproperties ofE, ;. For the mesoscopic system it is reason-
ization, so that we deal with the most probable quantityable to take the values d; for the neighboring defect
rather than with an average quantigompare with Ref. 16 positions to be statistically independent. In this cB$E) is
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approximately constant at smaik<E,,. Making use of Eq. Pected to bes1-3 K. ForeV>E* a probability of electron-
(9) and of the eﬁ)ression(E)z[1+exp(E/'D]‘1, at small assisted tunneling to the upper levéV, exceeds the

temperature§ <E,, one has the conductance enhancementProbability of phonon-assisted decay of the querUI,?Nﬁlu
up to some threshold energi=E;=E*(eV/E*)"", at

AGxTA, (12)  which an increase of the electron phase volume with bias
(ceV) is compensated for by a corresponding increase of
whereg=2. o o phonon phase volumexE?®). For the crude estimates let us
For some defects, I!kg light interstitials or some defect s e the occupation numbergE) < 6(E,,— E). Now, mak-
complexes, the probabilities of defect hopping between spgpg se of Eq.(11) and assuming the density of states
tially symmetric positions are relatively higfl.For these P(E) to be constant, one obtains the following interpolation

“delocalized” defects the effect of electronic disorder pro- ¢, i for the interference contribution to the conductance:
vides a many-site “potential relief” instead of two-site fluc-

tuator picture. Assuming that any site can be occupied by

only one defect, one deals with “Fermi-type” statistics, so at AGx
T—0 sites with the lowest energies are occupied by the mo-

bile defects while those with energies higher than the “Fermiwith g=2.

level” are free. At finite temperature E¢L1) can be applied, The same considerations can be applied to the case of
where the site occupation number again has the forntdelocalized” defects. Although the probabilitied/,, and
n(E)=[1+exp@&T)]* if one takes the Fermi level as the W, for this case can differ from ones for the two-level fluc-
origin of the energ)E. In this case the total number of avail- tuators, the Sca|in§fVe|/th~eV/E3 (relation between rel-
able sites is much larger than the number of defddtsand  evant electron and phonon phase volumémlds for

for finite temperatures the “Boltzmann-type” statistics holds (eV>E=T), and thus Eq(15) is valid, but with@=1.

rather than the “Fermi type:”

1/3
+T

B
; (15

e[

IV. DIRECT EFFECT OF THE APPLIED BIAS

Nexp(—E/T) (13 ON THE FLUCTUATOR PARAMETERS

N(E) = BB exd —E/M)dE"

. When a large enough bias is applied to the point con-

In this case a change &F does not affect the number of tact one should take into account the nonequilibrium elec-
rearranged defectbecause any of them can change its en+ron distribution in the course of estimates E(®, (6), and
ergy and leads only to a change of the average defect eng), For the distribution given by Eq14) one obtaingsee
ergy. As a result, in this case we have in B§2) B=1  pppendix A 2 for AE,;, the phase factor
independently of the form of the density of stafeE). ’

Let us turn now to the effect of finite biasV>T. For  AE.,%cog 2keRim+ &(V,Rim . Ke)]cOS2AKR,,),  (16)
TLS'’s it was first considered in Refs. 5 and 19. It was shown ’
that for low-energy TLS’s with small enough energy %p”t- and for 6G;, a factor
ting E, for which the coupling with electrons dominates,
the TLS occupation numbers are sensitive to the electron 9Gim>CO$ 2KeRim + ¢(V, Rim ,Kr) JCOL 2AKRim)
distribution. For the contact region this is strongly nonequi-
librium and for a central point of symmetric contact has a n o iT2koR
form N 2R(3AKIav)> L 2KeRin

(k)= 0(K,) To(e+eVI2) + 0(— k) fole—eVI2), (14) 4 (VR k) JSIN(2AKR: ) a7
yNimH RE im/»

whereOX is the main axis of the contact arifx) the theta B o . . .
function. The “energy width” of this distributioneV, plays ~ WhereAk=kgeV/eg . This is the "direct” effect of bias on

a role of the effective temperature. In particular, the uppetthe quctuator; parameters in addition to tuning a of fluctuator
levels of the TLS are empty BV<E, while for eV>E the €€l occupation numbers.

occupation numbers of TLS levels are almost eytfaand As seen, the first term in Eq17) is correlated with the
n(E)~i1—(E/eV)]. phase factor of Eq(16), while the second is not, and thus

For largerE the coupling with phonons becomes impor- will sum out. As for the correlated cosine terms, the effect of

tant,2>24due to the rapid increase of the density of states foPias initially ( at AkR<1) leads to their decrease due to a
actual phonons with an increase®f For the two-state case decrease of the corresponding cosine factors, while for

the fluctuator relaxation rate due to electron-assisted tunneftkKR>1 (when the factors are random with respect to pa-
ing 20 We(E,V)~(|Vs|/er)q (eV—E)/4]T, where rameterR;,,) they are suppressed due to additiofaith

Vo =(V@-VD)2. For the phonon-assisted prodess "€SPECt 0 the casé=0) averaging oveRin:

Wor(E, T)~(A2E? @) (E/A)cOth(E/2T)T. Here A is the
fluctuator deformational potential, anfl and ® are the
atomic and Debye energies, respectiva@i.exp(—\), where  Actually we deal here with the well-known energy averaging
\ is the tunneling constant. effect, suppressing any mesoscopic phenomena.

Let us define the characteristic energy for which It is important to note that these effects can lead to resis-
W(E*,(eV—E*)~E*)=W_,(E*, T=0),; for the reason- tance anomalies even if the defect structure is not rearranged
able values of the parameteisee e.g., Ref. 20E* is ex-  in the course of the bias application; the only condition is

(AEg, AG)o(AKR) 12,
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that the defects occupy the positions with the lowest energiesagnetic field implies a contribution of configurations which
available and thus with the largest mesoscopic contributioinvolve more than two scatterers, this contribution is rela-
to resistancedG; . For these defect configurations, on aver-tively large due to the rather high probability of the boundary
age on obtain$G< 0. The total interference contribution to scattering, and leads to a decreaseA@ with the field in-

the conductance due té defects is crease.
o Another important feature is related to a coupling between
AG~NFH(V) G, (18 different “active” defectsi andj, due to a dependence of

1 the defecti energy on a position of defegt This depen-
where 7~cos@kR) for AkR<1, and /~(AkR)""* for  gyance js given by Eq6). For a large enough concentration
AKkR>1. The result we obtained is that the bias increaseys «ontive” defects one may expect the formation of self-

leads to a systematic conductance increase. It is interestir@ . ; -
; S : . . anized aggregates in the defect syst@h spin-glass
that in combination with the effects discussed for relatlvelytyge) Indeedggdelgect positions correspo)rqding top mgxima of

small V—occupation of states with higher energles—th|sthe Friedel oscillations caused by the other defects become

“direct” effect can form configurations wittsmaller resis- nergetically preferrable. which introduces some “ordering”
tances than those available for a simple temperature increasg, 'Y yp ' . . 9
into the defect system. Thus a formation of “coherently scat-

Indeed, it can suppregsegative in averagea mesoscopic - b ible. leadi anif
contribution to the conductance due to configurations with ering” aggregates can be possible, leading to a signiticant

large enough energy gap between the available realizatior%qha‘_nceme”t of 'Fhe _interference _contribution to re_sistance_z.
which cannot be rearranged at relatively small temperature5n€ increase of bias is expected first to suppress this contri-
when the phonon contribution to the resistariobviously bution to the resistance in a way similar to discussed above.
masking the effects in questipis still small. Note that, as  OnN the other hand, at higher biases the direct bias-induced
we saw above, bias values allowing the same occupatioflecrease of “coupling potentialsE;; [see Eq.(16)] can
states of the defects and at the same time the same efficienggstroy such aggregates, which can lead to sharp resistance
of electron-phonon processes as in the equilibrium state witbhange$?
a temperaturd, are scaled witil aseV~T(T/E*)3. Thus Finally, it is instructive to compare results of our model
the energy averaging effects can become pronounced favith the two-channel Kondo modérCKM), ?>Zwhich also
large-gap configurations when the filling of the upper level ispredicts zero-bias resistance anomalies of a nonmagnetic na-
still negligible. Certainly, the temperature increase can alsqure. Despite the fact that these two models are based on
lead to an energy averaging, but the necessary temperature@smpletely different physical backgrounds, they predict
are too large and correspond to a significant phonon contriqyalitatively similar resistance behaviors at IavandV: the
bution to resistance. negative temperature and bias resistance coefficients affected
by a magnetic field. However, quantitative predictions of the
V. DISCUSSION two models differ. Our model does not predict a singdiar

. . . behavior atT—0—in contrast to the TCKM. As for bias
In this section we would like to make several remarks

about the limitations and possible complications of Ourdfependence, our model predicts a singular pehe\ﬁb"rfor
model. First, until now, we considered the defect energy denb!asesVE;—S mv [s'ee Eq.(l'5)]' and satuxatlon at' smaller
sity of states to be constant. The limitation of the defectb'ase_s'_ Tr_ns saturation can imitate the “restoration of the
energy band leads to a saturation ®6(T) and AG(V) Fermi-liquid behavior” pred_lcted by the TCKM. On_ the_
dependencies af>T,, and V>V, respectively. These other hand, the TCKM, being related to the ponad_|abat|c
QU scale 3L Tl TulE°)° ndaGuuc G, oS Ll Toctiaers of o atershoc
¥vhe_|[ethISk§1 totaljlllgtiigfgu‘:tgag;f- ,AEngr thedestlrlr(l_ateour predictions hold for any sort of mobile defect. Our model
.or sat (AKING &~ i and [@/x¢)~50, and ma also predicts special features at higher temperatures and bi-
1[?12 Hzgtz‘;;%%?)\;;’:’feztéa'”zg?i Esg:di_tgoaliéwgé?nﬂlggl ases; in particular, the saturation of the zero bias anomaly at
sat -

o . ) ) 7 large V and T, and a principal possibility to reach larger
ization of d.|fferent interference patterns involving the fluc- 51 es of conductance in the course of a bias increase with
tuators, while the values afG at lower temperatures corre- regpact to the ones available for a temperature increase.
spond to a preferable occupation of larger resistance states,

and thus are systematically smaller than typical for mesos-
copic disorder.

Second, it is important that the picture discussed is sensi-
tive to the external magnetic field. In particular, it is known  To conclude, we predict a mechanism of zero-bias resis-
that in homogeneous diffusive conductors the interferencéance anomalies in metallic point contacts based on a corre-
particle-particle channel is suppressed in a strong enoudlation found between energies of defects with an internal
magnetic fieldH>® /L2 where®, is the quantum of the degree of freedom and their contributions to resistance. The
magnetic flux and_; is the coherence length, while in our correlation lifts to some extent the “random” character of
case we use a contact side This suppression reduces the mesoscopic disorder, and breaks the symmetry of the defect
magnitude of mesoscopic fluctuations nearly twit®. The  states with respect to the signs of the mesoscopic contribu-
point contact is a strongly inhomogeneous system, and th&on to resistance. We suggest a model of a fluctuator related
main contribution to the mesoscopic fluctuations is due tdo a purely electronic disorder, which provides insight into
local interference. However, despite the fact that the effect othe nature of fluctuators in the perfect point contacts.

VI. CONCLUSIONS
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APPENDIX A:

1. Calculation of the mesoscopic contribution tq the _ f dzpexp:ik(|r— Ro|—|r=Ry|)].
conductance and to the defect energy at small applied biases

To calculate mesoscopic contributions both to the conduc-
tance and energy of the electron system due to the Presentlyre , is a projection ofr on the plane in question. Taking

of some finite number of scatterers, we will make use of thg;,o plane to be normal 8, — R/, and expanding the expo-
“wave-optics” approactf* The approach is based on pertur- nent ag . ..J~|R,—Ruy/|+ p?Ry—Ry|/r? one obtains the
bation theory in real space. Let us consider an electron, the,q it of the integration in the form:

wave function of which initially is a plane wave with the
wave vectok. After n successive scattering events involving
scatterers 1 .. ,n the electron wave function becomes

1 ,
mEXF{IHRn—Rn/l).

The next step is the integration ovedirections. In its turn,
this integration is relevant only to coordinates of the “first”

fn R ) scatterers in the chains; that isRg andR;., which enter the
NEAEE R,—Ry] e' Mexp(ik[|r —Ry| exponential factor exi(R,—Ry/)]. Correspondingly, the
integration over co$ where 6= 2 (k,R;—R;/), gives the
factor
++[Ry=Ry[]) (A1)
! ik|lRi—R
. IR, =R, | AR R
whereRy, ... R, are the positions of the scatterers. For the
short-range scatterers the scattering amplitiidte the Born
approximation takes the form Finally one arrives at the following estimate for the mesos-

copic contribution to the conductance:

m . 5G~ fn+n'
f=— 2wﬁ2f dsrv(r), (A2) & W2aZR

xXcog§e(n,n',n"—=1,...,2,1;n" n,n=1,...,1]
and is assumed the same for all scatterers. The contribution
of the scatterers to the conductance is determined by their (A4)
backscattering efficiency. The interference contribution to
the backscattering current due to trajectories involving scat-
terers]...nand?,...,n"is where the phase is

e(n,n',n'=1,...,,;n,n=-1,...,)

=k(|Ry/—Ry|+|Ry —Rp| +|Ry =Ry 4|+ - - - + Ry —Ry/| = [Ry—Rp_q| = - - - = [Ry— Ry)). (A5)
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HereR is a typical interscatterer distance within the chains, SEe=(1', ... n'|[V(r—=Ry|1,...n—1), (A6)

while d is the contact size appearing as a result of normalwherev is a scattering potential assumed to be short ranged:

ization of the backscattering efficiency on the incident eIecV:VO(S(r). As a result of averaging over the direction of

tron flow. k, we obtain
The picture discussed can be interpreted as a contribution

to scattering due to the presence of the scatteraffecting fren’ -1
the superposition of states formed by successive scatterin&Eel%_
by chains 1...,n—1 and 1, ... ,n'. The phasep, after

the integration ovek directions, is the phase difference for

the pathsn,n’,n'—1,...,7,1 andn,n—1,...,1, corre- XsiMke(n,n’,n"=1,...,1,L;n,n—1,...D].
spondingly. One should also note that in course of derivation

of Eq. A4 we have taken into account that only those elec- (A7)

trons with energies close to the Fermi energy contribute tQI'h' L ant. si the struct f th ion 1
- is is important, since the structure of the expression for
the conductance, and usketkg in Eq. (Ad). S6E, and that foréG, the phase difference for the interfer-

Now let us estimate the mesoscopic contribution to theence patternp, are exactly the same.

electron energy due to the presence of the same system of | order to obtain the interference correction to the energy
scatterers finally affecting the electron state in the position obf the whole electron system we should sum E&j7) over

OkRn+n’+l

scatterem. In the lowest approximation, one has all occupied electronic states. Foe=0, one has
Vo gn+n’-1 ke _
SEg~— ?Wfo kdksiMmke(n,n’,n"—1,...,7,1;n,n—=1,...1)]

_ Vo MK =110 n0-1,...1 A8
= ?mCOi(p(n,n ,n , ... ,4,Nn,N A )] ( )

Thus we conclude that the mesoscopic contributions of thgg 2 fVoke
same system of scatterers to the conductance and to the eleg ~ WCOS(ZKR), SEe~ — —gz Co42kR), (A9)
ot F

tron energy renormalization depend on Hanephase factor
and, thereforeare correlated

For the simplest case of two scatter@ossitioned inR;
andR;/), siteR, plays the same a role as siRg. The phase
factor in this case is

which gives Eqs(4) and (6).

2. Direct effect of bias on the interference contributions

In this subsection we will study the “direct” effect of
bias on the renormalization of the fluctuator energy and on
cogk|Ry =Ry +k|Ry —Ry[) = cog 2k|R;: —Ry|), the interference contribution to the conductance for the sim-
plest case of two scatterers. We start by deriifag For the
steplike electron distribution given by E(L4) for the inte-
and, correspondingly, gral overk [instead of Eq(A8)] one obtains

1 (ke+Ak kg— Ak
Ef dksin(2kR+ ¢(V,R,kF))+f dksin(2kR+ ¢(V,R ke))
kg — Ak 0

ke+ Ak 1 (Ke+Ak
=f dkksin(2kR+¢(V,R,kF))—§f dkksin@kR+ $(V,R ke)) (A10)

0 A



266 V. l. KOZUB AND A. M. RUDIN 55

HereAk=eV/fvg. An additionalV-dependent phasé is related to a dependence lobn a coordinate due to the presence
of an electric field (Ak)%/2m+ ¢(r)=¢e=consi. Calculation of the integral gives the phase factor

cog 2(kg+ AK)R+ ¢ (V,R,ke) ]+ sin(2ke R+ ¢)sin( 2AkR) = cog 2ke R+ ¢(V, R, kg) ]cog 2AKR) (A11)

instead of the factor cogfgR) obtained forvV—0.
In the same way we estimate the contribution to the conductante- at

ke+ Ak
sl ocf co2kR+ ¢(V,R,kp)), 5G
kg— Ak

dl gdAk

= U % v LC02(ke+ AR+ (V. R ke))+ cos2(ke — AR+ (V. R ke)]
A [ke+Ak
v sin(2kR+ ¢(V,R,kg))

dAK ip 1
~ — 2€042keR+ (VR ke))cOS 2AKR) + ﬁ—fj SR2SIN2KeR+ G(V, R ke))sin(2AKR) (A12)

Taking into account thap~AkRRa, one sees that the sec- where we have introduced the “norms” of the vectdts
ond and the first terms on the right-hand side of Bl2)  andG;. The correlator &,,&,)= ¥dmn (Where for the co-
are of the same order provided tHata~1. However, the sine phase factorg=3), and we obtain

first term completely correlates with the corresponding phase

factor for the energy renormalization, EGA11), while the

second term does not. —E G
(6G; ,Eqi)=((Gi,&)(E;,&))=YEG; =l
APPENDIX B v (B4)

For each "active” defecti the interference contribution The scalar product of the normalized positively defined vec-
to the conductances;, as well as to the energf; con-  tors in the brackets is of the order of unity, and one comes to
tains a summation over “background” scatterers The  the estimate for the average, ), ( )=CSGE, [accord-

contribution of each scatteren gives some phase factor ing to definitions given in front of Eq(7), E=E, and
E(Rim) = &im= &mi Which depends on the distance of the scat-G:%].

tererm from the defect. Hence one can rewrite the expres- Representing vectdB as a sum of components “paral-

sions fordG; andEe, in a form lel” and “normal” to the vectorE: G=Gg+G, , one has
(Gg,E)=(G,E), (G, ,E)=0, and, finally,

5GiE% Gimé&im=(Gi &), (B1) (G.E) G
GE: E2 E:C=E
_ _ Z Decomposing in the same way the random veé,i;oon
Eei=2, Eim&im=(Ei,&). B2
el Em: méim=(Ei.&) B2) the components “parallel” and “normal” toE (& and

_ &) and taking into account that
Here we have introduced some “vector space,” where vec-

tor £ contains the set of the corresponding phase factors, and (6G)e={((Geg+G, ,&c+&,))e,
vectorsE; andG; contain the sets of the prefactdgiven by
Egs.(3) and(5), correspondingly For the ensemble of de- (Ge,&,)=(G, ,&)=0,

fectsi, the vectoréi should be considered random, while all
components ofE; and G; are positive. We may rewrite the
vectorsE; andG; as — —

- oG o oG
<5G>E:<(GE 1§E)>:CE_(E!§):CEE1

and((G, ,£,))=0, we finally have

E=—E;, G,=—G; (B3)  which corresponds to E9). This means thatG has a

Ei G linear regression with respect K.
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