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On Some Optimization Problems
that Can Be Solved in O(n) Time

Yanqin Bai and Kees Roos

Abstract Weconsider nine elementaryproblems inoptimization.Wesimply explore
the conditions for optimality as known from the duality theory for convex optimiza-
tion. This yields a quite straightforward solution method for each of these problems.
The main contribution of this paper is that we show that even in the harder cases the
solution needs only O(n) time.

Keywords Optimization problems · Linear time methods · Optimality conditions

1 Introduction

This paper was inspired by a result in [2]. In that paper we needed the optimal
objective value of the minimization problem

min
y,z,β

{‖z‖ : y ≥ 0, 1T y = 1, y = z + βv, zT v = 0
}
,

where v is a given vector and 1 the all-one vector in Rn; the variables are the scalar
β and the vectors y and z in Rn . It is a so-called second-order cone problem [1]. It
turned out that the problem can be solved analytically in O(n log n) time. To obtain
this result the entries of vmust be ordered; this explains the factor log n. The approach
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that led us to this surprising result is quite straightforward. It simply explores the
conditions for optimality as known from the duality theory for convex optimization.

It is a natural question whether there are more nontrivial problems that can be
solved analytically in a similar way. In this paper we show this true for problems of
the following form:

min
x

{‖a − x‖p1 : ‖x‖p2 ≤ 1
}
,

where a denotes a given vector inRn , and p1 and p2 are 1, 2 or ∞. In words, given a
point a ∈ Rn , we look for a point x in the unit sphere—with respect to the p2-norm—
that has minimal distance to a—with respect to the p1-norm. Figure 1 provides a
graphical illustration of the solution of each of the nine problems considered in this
paper when n = 2, and a = [1.3; 0.8].
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Fig. 1 Illustration of the optimal solutions of the nine problems considered in this paper, for n = 2
and a = [1.3; 0.8]. The blue dot represents the origin, the red dot a and the green dot the (or
sometimes ‘an’) optimal solution x . The blue curve surrounds the region where the p2-norm is less
than 1, whereas the red curve depicts the p1-neighborhood of a that just touches the blue region
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Obviously, there are nine different (ordered) pairs (p1, p2). For each of these nine
pairs we show that the above problem can be solved in linear time. In doing so, we
always assume without saying that the vector a is ordered nonincreasingly:

a1 ≥ a2 ≥ · · · ≥ an.

It turns out that in some cases (specifically, if p1 = p2 or p2 = ∞) the solution is
trivial, or almost trivial; in other cases this is certainly not obviously the case. But as
we show, in each case the problem can be solved in linear time. As far as the authors
know, the method leading to this result is new; at least we are not aware of any such
result in the existing literature.

In our analysis duality plays a crucial role. As a consequence we also need the
so-called dual norm of ‖.‖p, for p ∈ {1, 2, ∞}, which is defined by

‖y‖p∗ = max
x

{
xT y : ‖x‖p = 1

}
,

where x and y are vectors in Rn . For future use we also recall an important conse-
quence of this definition, namely the so-called Hölder inequality:

‖x‖p ‖y‖p∗ ≥ xT y, ∀x, y ∈ Rn .

The outline of the paper is as follows.
Section 2 is preliminary. It consists of four subsections. Section 2.1 describes the

fundamental role of duality in our approach. It recalls the so-called vanishing gap
condition for optimality. For the problems that we consider in this paper this condi-
tion implies the primal and dual feasibility conditions, which is quite exceptional.
Section 2.2 contains three lemmas dealing with the question of when the Hölder
inequality holds with equality, for each of the three values of p considered in this
paper. Section 2.3 serves to show that we may restrict our investigations to the case
where the given vector a is nonnegative (cf. Lemma4), and in Sect. 2.4we distinquish
easy types from harder types (p1, p2).

Section 3 contains the analysis of the nine problems, each in a separate subsection.
Finally, Sect. 4 contains some recommendations for further research.

2 Preliminaries

2.1 Duality

As announced in the previous section, we consider problems of the following form:

min
x

{‖a − x‖p1 : ‖x‖p2 ≤ 1
}
, (1)
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where a denotes a given vector inRn , and p1 and p2 are 1, 2 or∞. The dual problem
of (1) is given by

max
y

{
aT y − ‖y‖p∗

2
: ‖y‖p∗

1
≤ 1

}
, (2)

where ‖.‖p∗
1
refers to the dual norm of ‖.‖p1 , and similarly for p2.

In one case the solutions of problem (1) and problem (2) are immediate, namely
if a is feasible for the primal problem, i.e., ‖a‖p2 ≤ 1. Then x = a solves the primal
problem, because then the objective value equals zero, which is minimal. On the
other hand, y = 0 is feasible for the dual problem, yielding zero as dual objective
value. Hence, if we take x = a and y = 0 then the feasibility conditions are satisfied
and the primal and dual objective values are equal. This means that we have solved
the problem in case ‖a‖p2 ≤ 1. We call this the trivial case of the problem.

In the sequel we only consider the nontrivial case, i.e., ‖a‖p2 > 1. In that case any
optimal solution x will satisfy x 	= a. Since then ‖a − x‖p1 > 0, the optimal value
of the primal problem will be positive. As a consequence, y = 0 does not close the
duality gap. Therefore, at optimality we also have y 	= 0.

Now let x and y be primal and dual feasible, respectively. Then the duality gap
can be reduced as follows:

‖a − x‖p1 −
(

aT y − ‖y‖p∗
2

)
= ‖a − x‖p1 − aT y + ‖y‖p∗

2

≥ ‖a − x‖p1 ‖y‖p∗
1
− aT y + ‖y‖p∗

2
‖x‖p2

≥ (a − x)T y − aT y + yT x

= 0.

where the second inequality follows by using the Hölder inequality twice. Thus we
see that the duality gap vanishes if and only if

‖a − x‖p1 = ‖a − x‖p1 ‖y‖p∗
1
= (a − x)T y (3)

and

‖y‖p∗
2
= ‖y‖p∗

2
‖x‖p2 = yT x . (4)

Since x 	= a, (3) implies ‖y‖p∗
1
= 1, whence y 	= 0. The latter implies ‖y‖p∗

2
> 0.

But then (4) implies ‖x‖p2 = 1. We conclude that in the nontrivial case the duality
gap vanishes if and only if

‖x‖p2 = 1 = ‖y‖p∗
1

(5)

‖y‖p∗
2

= yT x (6)

‖a − x‖p1 = yT (a − x) . (7)



On Some Optimization Problems that Can Be Solved in O(n) Time 85

Obviously (5) implies that the feasibility conditions in (1) and (2) are satisfied.
Therefore, it suffices to solve the above system, under the assumption that x 	= a.

As stated before, we assume p1, p2 ∈ {1, 2,∞}. For the sake of convenience we
call the problems (1) and problem (2) of type (p1, p2).

Nextwe include a sectionwith some lemmas that enable us to restate the conditions
(6) and (7) in a way that is more tractable.

2.2 Basic Lemmas

For future use we deal in this section with three elementary lemmas; they deal with
the question when Hölder’s inequality holds with equality. The first lemma concerns
the well-known lemma of Cauchy-Schwartz, where p∗ = p = 2.

Lemma 1 The inequality ‖x‖2 ‖y‖2 ≥ xT y holds with equality if and only if x = λy
or y = λx for some λ ≥ 0.

Proof We omit the proof, because the result is well-known. �

Less well-known are the next two lemmas that deal with the cases p = 1 and
p = ∞.

Lemma 2 The inequality ‖x‖1 ‖y‖∞ ≥ xT y holds with equality if and only if xi yi ≥
0 for each i and xi 	= 0 implies |yi | = ‖y‖∞.

Proof We may write

‖x‖1 ‖y‖∞ =
n∑

i=1

|xi | ‖y‖∞ ≥
n∑

i=1

|xi | |yi | ≥
n∑

i=1

xi yi = xT y.

For each i , the i th terms in the three subsequent summations are not increasing.
Hence it follows that ‖x‖1 ‖y‖∞ = xT y holds if and only if these terms are mutually
equal. In other words,

|xi | ‖y‖∞ = |xi | |yi | = xi yi , 1 ≤ i ≤ n.

Thefirst equality holds if andonly if xi 	= 0 implies |yi | = ‖y‖∞. The second equality
holds if and only if |xi yi | = xi yi , which is equivalent to xi yi ≥ 0. �

Lemma 3 The inequality ‖x‖∞ ‖y‖1 ≥ xT y holds with equality if and only if xi yi ≥
0 for each i and yi 	= 0 implies |xi | = ‖x‖∞.

Proof This lemma follows from the previous lemma by interchanging x and y. �
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2.3 Simplifying Observations

In this section we mention some properties of optimal solutions x and y of respec-
tively (1) and (2) that are easy to understand. They lead us to the conclusion that in the
following nine sections we only need to consider the case where a is a nonnegative
vector, and also that we may safely assume that the optimal solutions x and y are
nonnegative.

First we note that the contribution of xi to ‖x‖p2 , with p2 = 1, 2 or ∞, is deter-
mined completely by the absolute value |xi | of xi . As a consequence, if x is feasible
for (1) this will remain so if we change the sign of one or more of the entries in x .

Now consider the expression that we want to minimize: ‖a − x‖p1 . The contri-
bution of xi to this expression depends monotonically on |ai − xi |. If xi ai ≥ 0 then
|ai + xi | ≥ |ai − xi |. Therefore, we may safely assume that each xi has the same
sign as ai . A similar argument makes clear that we may assume that each entry yi has
the same sign as ai , because changing the sign of yi leaves ‖y‖p∗

1
and ‖y‖p∗

2
invariant

in (2). On the other hand, the contribution of the product ai yi to the dual objective
value is maximal if the sign of yi is the same as that of ai . Therefore, if y is optimal
then ai yi ≥ 0.

We use the above observations as a preparation for the following lemma that
makes clear that in the analysis of the system (5)–(7) we may safely assume a ≥ 0.
In this lemma we use a map fS , where S is a subset of the indices 1 to n, which
is defined as follows: for each vector z ∈ Rn , fS(z) is the vector that arises from
z by changing the signs of the entries zi , i ∈ S. Obviously, when S is fixed, fS is
one-to-one, and idempotent, i.e., f 2S = fS .

Lemma 4 Let x and y denote solutions of the system (5)–(7) and S ⊆ {1, 2 . . . , n}.
Then fS(x) and fS(y) solve the system when a is replaced by fS(a).

Proof Let x , y and S be as in the lemma. It is obvious that ‖x‖p2 does not change
if x is replaced by fS(x), because the norm of a vector does only depend on the
absolute values of its entries. So, the same holds for the other norms in the system, in
particularly also for ‖a − x‖p1 , since if i ∈ S then also ai − xi changes sign, because
(−ai ) − (−xi ) = −(ai − xi ). Also the inner products do not change, because, e.g.,
(−xi )(−yi ) = xi yi for each i ∈ S. Hence the lemma follows. �

We apply this lemma as follows. If the vector a has negative entries we define the
index set S = {i : ai < 0}. Then fS(a) ≥ 0. We then solve the system (5)–(7) with
a replaced by fS(a). Let the solution be denoted as x ′ and y′. Then it follows from
Lemma 4 that x = fS(x ′) and y = fS(y′) are the solutions of the original system.
As a consequence, below we may always assume that the vector a is nonnegative.
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Table 1 A specific solutions of (1) for each of the nine cases

p1\p2 1 2 ∞
1

a

‖a‖1 min(a,α1) min(a, 1)

2 (a − α1)+ a

‖a‖2 min(a, 1)

∞ (a − α1)+ (a − α1)+ a

‖a‖∞

2.4 Easy and Harder Cases

In the following sections we deal with each of the nine types separately. It will turn
out that for five of the nine problem-types a specific solution of (1) can be expressed
nicely in a, as shown in Table 1. These are the types with p1 = p2 or p2 = ∞. We
call these types for the moment easy. It maybe worth pointing out that x = min(a, 1)
solves the primal problem in all cases with p2 = ∞, also if p1 = ∞. From Fig. 1 one
easily understands that—at least in some cases—multiple solutions exist. In general,
we are not satisfied with the specific solution in Table 1 alone, but we intend to
describe the whole set of optimal solutions.

For the remaining four cases Table 1 also shows a specific solution of (1), but
their descriptions need besides the vector a also a parameter α. Below we describe
in more detail how α can be obtained, for each of the four hard cases. The notation
x+ is used to denote the vector that arises from a vector x by replacing its negative
entries by zero. In other words, x+ = max(x , 0).

Table 2 shows that in all cases one specific dual optimal solution can be expressed
in a alone or in a and an arbitrary primal optimal solution x ; thiswill become apparent
in the related sections below. In this table x > 0 is used to denote the set of indices
i for which xi is positive. In a similar way a ≥ 1 denotes the index set {i : ai ≥ 1}
and a = max(a) the index set {i : ai = max(a)}. For any index set I , we use aI

to denote the vector that arises from a by putting ai = 0 if i /∈ I . This explains
the meaning of the notations 1a≥1 and 1a=max(a) in Table 2. It may be verified that
if p1 = 2 and p2 = ∞ the dual optimal solution can be expressed in a alone; this
follows by substitution of the primal optimal solution in Table 1 into a − x , which
yields the vector (a − 1)a>1.

As far as the authors know, up till now problems that are not ‘easy’ in the above
sense, can be solvedonly algorithmically. Themainmotivation of this paper, however,
is to show that these problems are also easy in the sense that they can be solved
analytically in O(n) time. So, formally, in terms of computational complexity all
nine types belong to the same class. Nevertheless, we will refer to the four types that
are not ‘easy’ in the above sense as the harder-types, just to separate them from the
‘easy’ types.

The O(n) time solution method for each of the four harder-type problems is
achieved by introducing the parameter α that was mentioned before. It divides the
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index set {1, . . . , n} into two classes I and J , according to

I = {i : ai > α} , J = {i : ai ≤ α} .

The numberα is uniquely determined by a linear or quadratic equation f (α) = 0,
with f (α) as in Table 3. We use |I | to denote the cardinality of the index set I . The
number α and hence also I can be computed in linear time. After this the solution
of the problem at hand needs O(n) additional time. For the details we refer to the
related sections below.

3 Analysis of the Nine Problems

3.1 Problems of Type (1, 1)

With ‖a‖1 > 1, the primal problem is given by

min
u

{‖a − x‖1 : ‖x‖1 ≤ 1} , (8)

and the dual problem by

max
y,z

{
aT y − ‖y‖∞ : ‖y‖∞ ≤ 1

}
. (9)

We recall from (5)–(7) the optimality conditions for x and y:

Table 2 Solutions of (2) for the five easy cases

p1\p2 1 2 ∞
1 1

x

‖x‖∞
1a≥1

2
a − x

‖a − x‖2
a

‖a‖2
a − x

‖a − x‖2
∞ 1x>0

‖1x>0‖1
x

‖x‖1
1a=max(a)∥∥1a=max(a)

∥∥
1

Table 3 Definition of the number α

type f (α) α

(1, 2) 1 − ‖aJ ‖22 − |I | α2 ‖x‖∞
(2, 1) 1 − ‖aI ‖1 + |I | α ‖a − x‖∞
(∞, 1) 1 − ‖aI ‖1 + |I | α ‖a − x‖∞
(∞, 2) 1 − ‖aI ‖22 + 2α ‖aI ‖1 − |I | α2 ‖a − x‖∞
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Table 4 Optimal solutions for type (1, 1)

ai xi yi

> 0 ≤ ai 1

0 0 0 ≤ yi ≤ 1

‖x‖1 = 1 = ‖y‖∞ (10)

‖y‖∞ = yT x . (11)

‖a − x‖1 = (a − x)T y (12)

As explained in Sect. 2.3 we may assume that a, and also x and y are nonnegative.
According to Lemma 2, if (10) holds, then (11) is equivalent to

(i) for each i : xi 	= 0 implies yi = ‖y‖∞ = 1.

Similarly, by Lemma 3, if (10) holds, then (12) is equivalent to

(i i) for each i : (ai − xi ) yi ≥ 0 and ai − xi 	= 0 implies yi = ‖y‖∞ = 1,

Next we derive properties from the above conditions. Suppose that ai > 0 for some
i . Then either xi 	= 0 or ai − xi 	= 0. Hence, by (i), (i i) and (10), yi = ‖y‖∞ = 1.
But then (i i) also implies xi ≤ ai . This justifies the first line in Table 4.

The second line deals with the case where ai = 0. If xi > 0, we get from (i)
that yi = 1. As in the previous case, then (i i) gives xi ≤ ai , whence xi = 0. Since
‖y‖∞ = 1, this justifies the second line in Table 4.

This is all the information we can extract from the system (10)–(12). It means that
the two (lower) lines in Table 4 represent all the possibilities for the triples (ai , xi , yi ),
provided that ‖x‖1 = 1. In general multiple optimal solutions for problem (8) exist,
because every vector x satisfying

0 ≤ x ≤ a, ‖x‖1 = 1

is optimal. Since ‖a‖1 > 1, one of these vectors is x = a/‖a‖1, as given in Table 1.
If a has only positive entries then (9) has only one optimal solution, namely y = 1.

If a has zero entries, then also other solutions exist. Then any vector y satisfying

1a>0 ≤ y ≤ 1,

is optimal, where 1a>0 denotes the vector whose entries are 1 where a is positive and
zero elsewhere.

3.2 Problems of Type (1, 2)

In this section the primal problem is
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min
x

{‖a − x‖1 : ‖x‖2 ≤ 1} , (13)

where ‖a‖2 > 1. Its dual problem is

max
y

{
aT y − ‖y‖2 : ‖y‖∞ ≤ 1

}
, (14)

According to (5)–(7), x is optimal for (13) and y for (14) if and only if

‖x‖2 = 1 = ‖y‖∞ (15)

‖y‖2 = yT x (16)

‖a − x‖1 = (a − x)T y. (17)

As established in Sect. 2.3, we may take for granted that a ≥ 0, x ≥ 0 and y ≥ 0.
We have ‖y‖∞ = 1, by (15). So y 	= 0. Also, ‖x‖2 = 1. As a consequence, (16)

holds if and only if ‖x‖2 ‖y‖2 = yT x . This in turn is equivalent with

(i) x = y

‖y‖2
,

by Lemma 1. Moreover, by Lemma 3 (17) holds if and only if

(i i) for each i : (ai − xi )yi ≥ 0 and if ai − xi 	= 0 then yi = ‖y‖∞ = 1.

Since y = ‖y‖2 x , by (i), and y 	= 0, we may conclude that xi and yi have the
same sign, for each i , and they vanish at the same time. Therefore, (i i) implies
xi ≤ ai , for each i . We define

I := {i : xi < ai } , J := {i : xi = ai } , (18)

Now let i ∈ I and j ∈ J . Since ai > xi , (i i) implies yi = ‖y‖∞. Since y = ‖y‖2 x ,
we also have xi = ‖x‖∞. It follows that

ai > xi = ‖x‖∞ ≥ x j = a j , i ∈ I, j ∈ J. (19)

This shows that the entries in aI are strictly larger than those in aJ .
Recall that we always assume that the entries of a are ordered nonincreasingly.

Therefore, (19) implies the existence of an index q such that

I = {i : i ≤ q} , J = {i : i > q} . (20)

Putting α = ‖x‖∞, we see that (19) holds if and only if

aq > α ≥ aq+1, (21)

Moreover, when knowing q and α, x uniquely follows from (18) and (19), according
to
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xi =
{

α, if i ≤ q
ai , if i > q.

(22)

Since x is nonzero and ‖y‖∞ = 1, we deduce from y = ‖y‖2 x that

y = x

‖x‖∞
. (23)

Next we arrive at the main objective of this paper, namely to show that in the current
case q and also α can be found in O(n) time. Because of (22) and (23) we may
therefore conclude that (13) and (14) can be solved in O(n) time.

From (15) we get ‖x‖2 = 1. Also using (22) we may write

1 = ‖x‖22 =
n∑

i=1

x2
i =

∑

i≤q

xi
2 +

∑

i>q

xi
2 = qα2 +

∑

i>q

a2
i .

Since q = |I | and ∑
i>q a2

i = ‖aJ ‖22, we recognize at this stage that α satisfies
f (α) = 0, with f (α) as defined in Table 3 for type (1, 2). Since α is nonnegative, α
uniquely follows from q, because f (α) = 0 holds if and only if

α2 = 1 − ∑
i>q a2

i

q
.

As the next lemma reveals, q uniquely follows from (21). In order to prove this we
define the vector τ as follows:

τk = 1 − ∑
i>k a2

i

k
, 1 ≤ k ≤ n. (24)

We then must find q such that α2 = τq , with τq satisfying

a2
q > τq ≥ a2

q+1. (25)

Lemma 5 q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} . (26)

Proof For k < n the definitions of τk and τk+1 imply

(k + 1)τk+1 = 1 −
∑

i>k+1

a2
i = a2

k+1 + 1 −
∑

i>k

a2
i = a2

k+1 + kτk . (27)

This can be rewritten in the following two ways:
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(k + 1) (τk+1 − τk) = a2
k+1 − τk

k (τk+1 − τk) = a2
k+1 − τk+1.

From this we deduce

τk+1 > τk ⇔ a2
k+1 > τk ⇔ a2

k+1 > τk+1. (28)

So, τ is (strictly!) increasing at k if and only if a2
k+1 > τk and this holds if and only if

a2
k+1 > τk+1, for each k < n. From this we draw two conclusions. First that (25) holds
if and only if τ is increasing at k = q − 1 and nonincreasing at k = q. Second, if τ
is nonincreasing at some k < n it remains nonincreasing if k increases. This can be
understood as follows. Suppose that τ is nonincreasing at some k < n, i.e., τk+1 ≤ τk .
Then a2

k+1 ≤ τk+1. Since 0 ≤ ak+2 ≤ ak+1, it follows that also a2
k+2 ≤ τk+1. This in

turn implies τk+2 ≤ τk+1, which proves the claim. The above two properties imply
the statement in the lemma. �

The vector τ can be computed in O(n) time by first computing τ1 and then using
(27), which gives1:

τ1 = 1 + a2
1 − ‖a‖2 , τk+1 = a2

k+1 + kτk

k + 1
, 1 ≤ k < n. (29)

Then (26) yields the value of q, still in O(n) time. As mentioned before, this means
that the current approach solves problem (13) and problem (14) in O(n) time. Obvi-
ously, both solutions are unique.

Example 1 Table 5 shows the outcome of our analysis for a randomly generated
vector a. It shows that τ is maximal at k = 5. So I = {1, . . . , 5}, and α = √

τ5 =
0.3554. So xi = 0.3554 for i ∈ I and xi = ai for i > 5.

3.3 Problems of Type (1,∞)

With ‖a‖∞ > 1, we consider the problem

min
x

{‖a − x‖1 : ‖x‖∞ ≤ 1} . (30)

The dual of this problem is

max
y

{
aT y − ‖y‖1 : ‖y‖∞ ≤ 1

}
. (31)

The conditions for optimality are

1 It may be worth mentioning that (29) reveals that τi+1 is a convex combination of a2
i+1 and τi .
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Table 5 Numerical illustration type (1, 2)

i ai τi xi a − x yi

1 0.9293 −1.0048 0.3554 0.5739 1.0000

2 0.8308 −0.1573 0.3554 0.4754 1.0000

3 0.6160 0.0216 0.3554 0.2606 1.0000

4 0.5853 0.1019 0.3554 0.2299 1.0000

5 = q 0.4733 0.1263 0.3554 0.1179 1.0000

6 0.3517 0.1259 0.3517 0.0000 0.9897

7 0.3500 0.1254 0.3500 0.0000 0.9849

8 0.2511 0.1176 0.2511 0.0000 0.7066

9 0.2435 0.1111 0.2435 0.0000 0.6852

10 0.0000 0.1000 0.0000 0.0000 0.0000

Table 6 Optimal solutions for type (1,∞)

ai xi yi

> 1 1 1

= 1 1 ∈ [0, 1]
< 1 ai 0

‖x‖∞ = 1 = ‖y‖∞ (32)

‖y‖1 = yT x (33)

‖a − x‖1 = (a − x)T y. (34)

As always we assume that a ≥ 0, x ≥ 0 and y ≥ 0. According to Lemma 3, if (32)
holds, then (33) holds if and only if

(i) for each i : yi 	= 0 implies xi = ‖x‖∞;

and, by the same lemma, if (32) holds, then (34) holds if and only if

(i i) for each i : (ai − xi ) yi ≥ 0 and ai − xi 	= 0 implies yi = ‖y‖∞.

We consider three cases, according to the value of ai .
Let ai > 1. Since xi ≤ ‖x‖∞ = 1, we then have ai − xi > 0. Then (i i) implies

yi = ‖y‖∞ = 1, and because of this (i) implies xi = ‖x‖∞ = 1, where we also used
(32). So, if ai > 1, then xi = 1 and yi = 1.

If ai < 1,wemust have yi = 0. Because otherwise yi > 0, and then (i)would give
xi = 1 again. But then ai − xi < 0. This would imply (ai − xi ) yi < 0, contradicting
(i i). So yi = 0. But then we have yi < ‖y‖∞, which implies xi = ai , by (i i).

Finally, let ai = 1. Suppose xi 	= ai . Then (i i) implies yi = 1. Then, as before,
(i) implies xi = 1, whence xi = ai . Note that in that case (i) and (i i) are satisfied.

We conclude that at optimality x and y are as given in Table 6.
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The primal solution is unique, and as given in Table 1, namely x = min(a, 1). On
the other hand, if all entries of a differ from 1, y is also unique. More precisely, then
y = 1a>1. Otherwise there are multiple optimal solution. Every vector y such that

1a>1 ≤ y ≤ 1a≥1

is dual optimal.

3.4 Problems of Type (2, 1)

The problem that we consider in this section is

min
x

{‖a − x‖2 : ‖x‖1 ≤ 1} , (35)

where ‖a‖1 > 1. Its dual problem is

max
y,z

{
aT y − ‖y‖∞ : ‖y‖2 ≤ 1

}
. (36)

According to (5)–(7), x is optimal for (35) and y for (36) if and only if

‖x‖1 = 1 = ‖y‖2 (37)

‖y‖∞ = yT x (38)

‖a − x‖2 = (a − x)T y. (39)

As before, under reference to Sect. 2.3, we assume that a, x and y are nonnegative.
Then Lemma 2, (37) and (38) imply

(i) for each i : xi 	= 0 implies yi = ‖y‖∞,

whereas, by Lemma 1, (37) and (39) imply

(i i) y = a − x

‖a − x‖2 .
We define

I := {i : xi > 0} , J := {i : xi = 0} . (40)

Let i ∈ I . Then (i) implies yi = ‖y‖∞. Due to (37), y 	= 0. Hence yi > 0. Because
of (i i) we thus obtain ai > xi . From yi = ‖y‖∞ and (i i) we deduce that ai − xi =
‖a − x‖∞. Now defining

α = ‖a − x‖∞ , (41)

we get ai − xi = α > 0, whence
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xi = ai − α, i ∈ I. (42)

Hence
‖x‖1 =

∑

i∈I

(ai − α) = ‖aI ‖1 − |I | α.

Since ‖x‖1 = 1, we obtain f (α) = 0, where f (α) = 1 − ‖aI ‖1 + |I | α, as
announced in Table 3 for type (2, 1). This gives

α = ‖aI ‖1 − 1

|I | . (43)

Thus we find that if the index set I is known, then we can compute x and y: first one
computes α from (43), and then xI from (42). Since xJ = 0, we then know x , and y
follows from (i i).

The question remains how we can find I . For that purpose we first observe that if
i ∈ I and j ∈ J then

ai = xi + α > α = ‖a − x‖∞ ≥ a j − x j = a j . (44)

This shows that the entries in aI are strictly larger than those in aJ . Since the entries
of a are ordered nonincreasingly, there must exist an index q such that

I = {i : i ≤ q} , J = {i : i > q} .

Then (44) holds if and only if
aq > α ≥ aq+1, (45)

with α as in (43). We define the vector τ according to

τk =
∑

i≤k ai − 1

k
, 1 ≤ k ≤ n. (46)

Then (45) holds if and only if

aq > τq ≥ aq+1, (47)

and thenwe necessarily haveα = τq .We are now in a similar situation as in Sect. 3.2,
and we proceed accordingly with the next lemma.

Lemma 6 q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} . (48)

Proof For k < n the definition of τk implies
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(k + 1)τk+1 =
∑

j≤k+1

a j − 1 = ak+1 +
∑

j≤k

a j − 1 = ak+1 + kτk . (49)

This can be rewritten in the following two ways:

(k + 1) (τk+1 − τk) = ak+1 − τk

k (τk+1 − τk) = ak+1 − τk+1.

From this we deduce

τk+1 > τk ⇔ ak+1 > τk ⇔ ak+1 > τk+1, (50)

which proves that τ is increasing at k if and only if ak+1 > τk and this holds if and
only if ak+1 > τk+1, for each k < n. From here on we can use the same arguments
as in the proof of Lemma 5. From (47) we conclude that τ is increasing at k =
q − 1 and nonincreasing at k = q. Next, if τ is nonincreasing at some k < n it
remains nonincreasing if k increases, because if τk+1 ≤ τk then ak+1 ≤ τk+1. Since
0 ≤ ak+2 ≤ ak+1, it follows that also ak+2 ≤ τk+1. This in turn implies τk+2 ≤ τk+1,
proving the claim. From this the lemma follows. �

As in Sect. 3.4, the vector τ can be computed in O(n) recursively from2

τ1 = a1 − 1, τk+1 = ak+1 + kτk

k + 1
, 1 ≤ k < n. (51)

Then (48) yields the value of q, still in O(n) time.Due to (42) thismeans that problem
(35) and it dual problem can be solved in O(n) time. Obviously, the solutions of (35)
and (36) are unique.

Example 2 Table 7 demonstrates our analysis for a randomly generated vector a. It
shows that τ is maximal at q = 5. So I = {1, . . . , 5}, and τ = 1.2799.

3.5 Problems of Type (2, 2)

The primal problem is
min

x
{‖a − x‖2 : ‖x‖2 ≤ 1} , (52)

with ‖a‖2 > 1, and its dual problem

max
y

{
aT y − ‖y‖2 : ‖y‖2 ≤ 1

}
. (53)

2 It may be worth mentioning that (51) reveals that τk+1 is a convex combination of ak+1 and τk .
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Table 7 Numerical illustration type (2, 1)

i ai τi xi ai − xi yi

1 1.6363 0.6363 0.3564 1.2799 0.4181

2 1.6351 1.1357 0.3552 1.2799 0.4181

3 1.4449 1.2388 0.1650 1.2799 0.4181

4 1.3639 1.2701 0.0841 1.2799 0.4181

5 = q 1.3192 1.2799 0.0393 1.2799 0.4181

6 1.0433 1.2405 0.0000 1.0433 0.3409

7 0.2997 1.1061 0.0000 0.2997 0.0979

8 0.0000 0.9678 0.0000 0.0000 0.0000

9 0.0000 0.8603 0.0000 0.0000 0.0000

10 0.0000 0.7742 0.0000 0.0000 0.0000

According to (5)–(7) the optimality conditions are

‖x‖2 = 1 = ‖y‖2 (54)

‖y‖2 = yT x (55)

‖a − x‖2 = (a − x)T y. (56)

According to Lemma 1, (54) and (55) hold if and only if

(i) x = y
‖y‖2 ,

and by the same lemma, (54) and (56) hold if and only if

(i i) y = a−x
‖a−x‖2 .

From (i) we derive that x and y have the same direction. Since x and y are both
unit vectors, we must have y = x . By (i i), the vectors y and a − x have the same
direction. Since y 	= 0 this implies a − x = αy for some α > 0. Thus we obtain
(1 + α)x = a. This proves that x has the same direction as a. Since x is a unit
vector, it follows that x = a

‖a‖2 , as in Table 1. Since y = x , we have solved (52) and
(53). In this case both the primal and the dual solution are unique.

3.6 Problems of Type (2,∞)

The problem can then be stated as

min
u

{‖a − x‖2 : ‖x‖∞ ≤ 1} . (57)

The dual problem is
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Table 8 Optimal solutions for type (2,∞)

ai xi yi

> 1 1 (ai − xi )/ ‖a − x‖2
≤ 1 ai 0

max
y,z

{
aT y − ‖y‖1 : ‖y‖2 ≤ 1

}
. (58)

As in previous sections, we assume ‖a‖∞ > 1 and that x , y and a are nonnegative.
According to (5)–(7), x is optimal for (57) and y for (58) if and only if

‖x‖∞ = 1 = ‖y‖2 (59)

‖y‖1 = yT x (60)

‖a − x‖2 = (a − x)T y. (61)

Let us assume (59). Then Lemma 3 states that (60) holds if and only if

(i) for each i : yi 	= 0 implies xi = ‖x‖∞ = 1,

whereas Lemma 1 states that (61) holds if and only if

(i i) y = a − x

‖a − x‖2 .
At optimality ‖a − x‖2 > 0, whence x 	= a. Let i be such that yi > 0. Then (i)
implies xi = 1. Since yi and ai − xi have the same sign, we get ai > xi = 1.

We just showed that yi > 0 implies ai > 1. As a consequence we have yi = 0 if
ai ≤ 1. By (i i) we then have xi = ai . We conclude that at optimality x and y are
as given in Table 8. It follows that both x and y are unique, with x as in Table 1:
x = min(a, 1).

3.7 Problems of Type (∞, 1)

With ‖a‖1 > 1, we consider the problem

min
x

{‖a − x‖∞ : ‖x‖1 ≤ 1} . (62)

The dual of this problem is

max
y

{
aT y − ‖y‖∞ : ‖y‖1 ≤ 1

}
. (63)

As before,we only consider the casewhere a, x and y are nonnegative. The optimality
conditions are
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‖x‖1 = 1 = ‖y‖1 (64)

‖y‖∞ = yT x (65)

‖a − x‖∞ = (a − x)T y. (66)

According to Lemma 2, if (64) holds, then (65) is equivalent to

(i) for each i : xi 	= 0 implies yi = ‖y‖∞;

and, for the same reason, then (66) is equivalent to

(i i) for each i : yi 	= 0 implies ai − xi = ‖a − x‖∞.

We partition the index set in the same way as in Sect. 3.4. So

I = {i : xi > 0} , J = {i : xi = 0} .

Then (i) implies
yi = ‖y‖∞ , i ∈ I. (67)

Since y 	= 0, by (64), we get yi > 0. So (i i) applies, which implies ai − xi =
‖a − x‖∞. Defining

α = ‖a − x‖∞ , (68)

it follows that
xi = ai − α, i ∈ I, (69)

and hence we may write

‖x‖1 =
∑

i∈I

(ai − α) = ‖aI ‖1 − |I | α.

Since ‖x‖1 = 1 we obtain

α = ‖aI ‖1 − 1

|I | . (70)

So, when we know I we can compute α from (70), and then the nonzero entries of
x follows from (68). An interesting observation is that the formula for α is the same
as (43) in Sect. 3.4. Like there, we also may write

ai = xi + α > α = ‖a − x‖∞ ≥ a j − x j = a j , i ∈ I, j ∈ J, (71)

Hence we have, for some index q,

I = {i : i ≤ q} , J = {i : i > q} .

Then (71) holds if and only if
aq > α ≥ aq+1, (72)
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withα as in (69). Thus the problem of finding q is the exactly the same as in Sect. 3.4.
So we may state without further proof the following lemma.

Lemma 7 One has α = τq , where q is the first index such that

τq = max
k

{τk : 1 ≤ k ≤ n} , (73)

and where the vector τ is defined recursively by

τ1 = a1 − 1, τk+1 = ak+1 + kτk

k + 1
, 1 ≤ k < n. (74)

This means that problem (62) can be solved in O(n) time, and the solution is unique.
In Sect. 3.4 the dual vector y was uniquely determined by x . This is now different,

as becomes clear below.Wederived from (i) that for indices i ∈ I , where x is positive,
the entries yi are positive and equal to ‖y‖∞. If i ∈ J , where x is zero, (i i) requires
that if ai 	= ‖a − x‖∞ then yi = 0. So, if ai = α then condition (i i) is void, and
hence the only condition on yi becomes 0 ≤ yi ≤ ‖y‖∞. This can happen only if
aq+1 = α. Since α = τq this is equivalent to τq+1 = τq , by (74). Stated otherwise,
we can have 0 ≤ yq+1 ≤ ‖y‖∞ if and only if τ is not decreasing at q. More generally,
if q ′ is the highest index at which τ is maximal, with q ′ ≥ q, i.e., if

τq = τq+1 = · · · = τq ′ = α,

which happens if and only if

aq = aq+1 = · · · = aq ′ = α. (75)

then for any i such that q ≤ i ≤ q ′ we can have 0 ≤ yi ≤ ‖y‖∞. Any such vector y
is obtained by first defining a vector z as follows:

zi =
⎧
⎨

⎩

1 if i ≤ q,
∈ [0, 1] if q < i ≤ q ′,
0 if i > q ′,

(76)

and then taking

y = z

‖z‖ 1
. (77)

We then have ‖y‖1 = 1 and, because of (69) and (75), for each positive yi that
ai − xi = α = ‖a − x‖∞. This implies that y is dual feasible and also optimal.

Example 3 Table 9 demonstrates our analysis for a given vector a. It shows that τ
is maximal at q = 5. So I = {1, . . . , 5}, and α = τ5 = τ6 = 0.5362.
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Table 9 Numerical illustration type (∞, 1)

i ai τi xi ai − xi yi

1 0.9174 −0.0826 0.3812 0.5362 0.1772

2 0.7655 0.3415 0.2293 0.5362 0.1772

3 0.7384 0.4738 0.2022 0.5362 0.1772

4 0.6834 0.5262 0.1472 0.5362 0.1772

5 = q 0.5762 0.5362 0.0400 0.5362 0.1772

6 = q ′ 0.5362 0.5362 0.0000 0.5362 0.1142

7 0.2691 0.4980 0.0000 0.2691 0.0000

8 0.2428 0.4661 0.0000 0.2428 0.0000

9 0.1526 0.4313 0.0000 0.1526 0.0000

10 0.0000 0.3882 0.0000 0.0000 0.0000

3.8 Problems of Type (∞, 2)

With ‖a‖2 > 1, we consider the problem

min
x

{‖a − x‖∞ : ‖x‖2 ≤ 1} . (78)

The dual of this problem is

max
y

{
aT y − ‖y‖2 : ‖y‖1 ≤ 1

}
. (79)

As always, a ≥ 0, x ≥ 0 and y ≥ 0. The conditions for optimality are

‖x‖2 = 1 = ‖y‖1 (80)

‖y‖2 = yT x (81)

‖a − x‖∞ = (a − x)T y (82)

According to Lemma 1, if (80) holds, then (81) is equivalent to

(i) x = y

‖y‖2
;

and, by Lemma 2, (82) is equivalent to

(i i) for each i : yi 	= 0 implies ai − xi = ‖a − x‖∞.

With
I = {i : xi > 0} , J = {i : xi = 0} ,
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the pair (I, J ) is a partition of the index set. Let i ∈ I . So, xi > 0. Now (i) implies
yi > 0. Therefore, (i i) implies ai − xi = ‖a − x‖∞. Since ‖a − x‖∞ > 0, we get
xi < ai . To simplify the presentation we define

α = ‖a − x‖∞ . (83)

Then we have
xi = ai − α, i ∈ I. (84)

Now let j ∈ J . Then using x j = 0, we may write

ai = xi + α > α = ‖a − x‖∞ ≥ a j − x j = a j . (85)

This proves that the entries in aI are strictly larger than those in aJ . Since the entries
of a are ordered nonincreasingly, we get, for some q,

I = {1, 2, . . . , q} , J = {q + 1, . . . , n} .

Assuming that J is not empty, (85) implies

aq > α ≥ aq+1. (86)

Otherwise, i.e., when q = n, we define an+1 = 0; so we can always work as if (86)
holds. Because of (80) we may write

1 = ‖x‖22 =
∑

i∈I

x2
i =

∑

i∈I

(ai − α)2 = ‖aI ‖22 − 2α ‖aI ‖1 + |I | α2.

Thus we obtain that α is one of the two roots of the equation f (α) = 0, where

f (α) := 1 − ‖aI ‖22 + 2α ‖aI ‖1 − |I | α2.

Before proceeding, it will be convenient to introduce the notation

σ jk :=
k∑

i=1

ai
j , j ∈ {1, 2} , k ∈ {1, . . . , n} . (87)

Then ‖aI ‖1 = σ1q and ‖aI ‖22 = σ2q , and hence f (α) can be rewritten as

f (α) = 1 − σ2q + 2ασ1q − qα2. (88)

Now the sum of the two roots equals 2σ1q/q. So their average value is σ1q/q. By
(86) we have aq > α. Combining this with a1 ≥ a2 ≥ · · · ≥ aq , we conclude that
σ1q > qα, whence σ1q/q > α. It thus follows that the root α is smaller than the
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other root. This means that the discriminant of the equation f (α) = 0 is positive. In
other words

σ2
1q − q

(
σ2q − 1

)
> 0. (89)

Motivated by the solution technique developed in some of the preceding sections,
we define

fk(ξ) = 1 − σ2k + 2ξσ1k − kξ2, 1 ≤ k ≤ n. (90)

and

ωk := σ2
1k − k (σ2k − 1) , τk := 1

k

(
σ1k − √

ωk
)
, 1 ≤ k ≤ n. (91)

Obviously, ωk is just the discriminant of the equation fk(ξ) = 0 and if ωk ≥ 0 then
τk is its smallest root. In particular, τq = α. Hence, according to (86) we need to find
q such that

aq > τq ≥ aq+1. (92)

When knowing q, α follows from α = τq , and then x follows from (84).
The question remains how much time it takes to solve q from (92) and similarly

for x and y. We claim that all this can be done in O(n) time. This can be understood
as follows.

Clearly, ω1 = 1 and τ1 = a1 − 1. For j = 1, 2, the recursive computation of
σ j1, . . . ,σ jq requires O(q) time, and so does the computation of ωq and τq . If
we have found q such that τq satisfies (92), then we also know α, because α = τq .
Then x follows from xi = ai − α if i ≤ q and xi = 0 otherwise. Finally, from (i)
we derive that

y = x

‖x‖1 .

Thus we have shown that problem (78) and its dual problem can be solved in O(n)
time.

Example 4 Table 10 shows the outcome of our analysis for a randomly generated
vector a. Because of (92) the optimal value of q is 6 in this example. Note that the
sequence τk is increasing, until it becomes undefined due to ωk < 0.

In Table 10 one may observe that the vector ω shows behaviour that we recognize
from the vector τ in preceding sections: (i) when ωk is nonincreasing at some k
it remains nonincreasing when k grows, and (i i) the optimal index q occurs at the
moment whenω attains its maximal value. It turns out that this surprising observation
can be turned into the next lemma. A consequence of this lemma is that the index
q can be obtained without computing τ . One only needs to compute the first q + 1
entries of the vector ω.
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Table 10 Numerical illustration for a problem of type (∞, 2)

k ak fk(ak) ωk τk xk ak − xk yk

1 2.9667 1.0000 1.0000 1.9667 0.6736 2.2932 0.3023

2 2.7888 0.9683 1.9683 2.1763 0.4957 2.2932 0.2224

3 2.6370 0.8683 2.8366 2.2361 0.3439 2.2932 0.1543

4 2.5963 0.8241 3.6607 2.2689 0.3031 2.2932 0.1360

5 2.5521 0.7629 4.4236 2.2876 0.2590 2.2932 0.1162

6 = q 2.4462 0.5415 4.9651 2.2932 0.1530 2.2932 0.0687

7 2.0900 −1.1531 3.8120 2.3035 0.0000 2.0900 0.0000

8 1.7484 −4.3254 −0.5134 – 0.0000 1.7484 0.0000

9 1.6817 −5.1398 −5.6532 – 0.0000 1.6817 0.0000

10 0.0000 −52.0241 −57.6773 – 0.0000 0.0000 0.0000

Lemma 8 q is the first index such that

ωq = max
k

{ωk : 1 ≤ k ≤ n} . (93)

Proof We first derive from (92) that the index q satisfies

fq(aq) > 0 ≥ fq(aq+1). (94)

Recall that τq is the smallest roots of the quadratic equation fq(ξ) = 0. For the
moment, let τ ′

q denote the second (i.e., largest) root. By its definition (90), fq(ξ) is
concave. We therefore have

fq(ξ) > 0 ⇔ τq < ξ < τ ′
q , (95)

where τq and τ ′
q are such that

qτq = σ1q − √
ωq

qτ ′
q = σ1q + √

ωq .

By (92), aq+1 ≤ τq < aq . The first inequalitymakes clear that aq+1 does not belong to
(τq , τ

′
q). Therefore, we immediately get the second inequality in (94): fq(aq+1) ≤ 0.

According to (95), the first inequality in (94) holds if and only if τq < aq < τ ′
q . We

already have aq > τq . So it remains to prove aq < τ ′
q . Since the entries of a are

ordered nonincreasingly, we have qaq ≤ σ1q . Since σ1q < σ1q + √
ωq = qτ ′

q , we
obtain aq < τ ′

q , as desired. Thus (94) has now been proven.
We proceed by showing that the sequence fk(ak) is nonincreasing for 1 ≤ k ≤ n.

By the definition (90) of fk(ξ) we may write
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fk(ξ) = 1 −
∑

i≤k

a2
i + 2ξ

∑

i≤k

ai − kξ2 = 1 −
∑

i≤k

(ai − ξ)2. (96)

Since ak ≥ ak+1, we get ai − ak+1 ≥ ai − ak for each i . So one also has

∑

i≤k+1

(ai − ak+1)
2 =

∑

i≤k

(ai − ak+1)
2 ≥

∑

i≤k

(ai − ak)
2 .

Thus it follows from (96) that, for any k < n,

fk+1(ak+1) = fk(ak+1) ≤ fk(ak). (97)

This proves that the sequence fk(ak) is nonincreasing when k increases. Because
of this, (94) implies that fk(ak) is positive if and only if k ≤ q. This has important
consequences for the sequence ωk , 1 ≤ k ≤ n. This becomes clear by considering
ωk+1 − ωk . This expression can be reduced as follows.

ωk+1 − ωk = σ2
1,k+1 − (k + 1)

(
σ2,k+1 − 1

) − (
σ2
1k − k (σ2k − 1)

)

= σ2
1,k+1 − (k + 1)σ2,k+1 + (k + 1) − σ2

1k + kσ2k − k

= 1 + σ2
1,k+1 − σ2

1k − k
(
σ2,k+1 − σ2k

) − σ2,k+1

= 1 + (
σ1,k+1 − σ1k

) (
σ1,k+1 + σ1k

) − k a2
k+1 − σ2,k+1

= 1 + ak+1 (ak+1 + 2σ1k) − k a2
k+1 − σ2,k+1

= 1 − σ2k + 2ak+1σ1k − ka2
k+1

= fk(ak+1) = fk+1(ak+1).

Wemay conclude that ωk+1 > ωk holds if and only if fk+1(ak+1) > 0. Since we have
fk(ak) ≥ fk+1(ak+1) for each k and because of (94) it follows that fk+1(ak+1) > 0
holds if and only if k + 1 ≤ q. So, when k runs from 1 to n then ω increases at k
if and only if k ≤ q − 1, and from k = q on ω is nonincreasing. Hence the lemma
follows. �

3.9 Problems of Type (∞,∞)

While assuming ‖a‖∞ > 1 we consider the problem

min
x

{‖a − x‖∞ : ‖x‖∞ ≤ 1} . (98)

The dual of this problem is

max
y

{
aT y − ‖y‖1 : ‖y‖1 ≤ 1

}
. (99)
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As in the previous eight sections, we assume a ≥ 0, x ≥ 0 and y ≥ 0. The conditions
for optimality are given by

‖x‖∞ = 1 = ‖y‖1 (100)

‖y‖1 = yT x (101)

‖a − x‖∞ = (a − x)T y. (102)

According to Lemma 3, (100) and (101) imply

(i) for each i : yi 	= 0 implies xi = ‖x‖∞;

and, by Lemma 2, (100) and (102) imply

(i i) for each i : yi 	= 0 implies ai − xi = ‖a − x‖∞.

Let yi > 0. Then (i) and (i i) imply xi = ‖x‖∞ and ai − xi = ‖a − x‖∞. By adding
these two equalities we obtain

ai = ‖x‖∞ + ‖a − x‖∞ .

Hence, for any other j 	= i , since x j ≤ ‖x‖∞ and a j − x j ≤ ‖a − x‖∞, we get

ai ≥ x j + (a j − x j ) = a j .

Hence, since the entries in a are ordered nonincreasingly, ai = a1. So, yi is zero for
each i with ai < a1 andmaybe also for one ormore indices i with ai = a1. Therefore,
if I denotes the set of indices with yi > 0 and J its complement, then

I ⊆ {i : ai = a1} , J = {i : i /∈ I } ⊇ {i : ai < a1} ,

with I nonempty, whereas yI > 0 with ‖yI ‖1 = 1 and yJ = 0. The dual objective
value at y equals aT y − ‖y‖1 = a1 − 1. Since the optimal primal objective value
has the same value, this implies ‖a − x‖∞ = a1 − 1. This value is positive, because
‖a‖∞ = a1 > 1.

For x we are left with the following conditions. By (i), xi = 1 for i ∈ I ; then
(i i) also holds because ai − xi = a1 − 1 = ‖a − x‖∞. For the remaining indices i
(i ∈ J ) there is a lot of freedom. The only condition for each i ∈ J is that the value
of xi does not change the given values of ‖x‖∞ (= 1) and ‖a − x‖∞ (= a1 − 1). So,
with α = a1 − 1, we must have

0 ≤ xJ ≤ 1J

−α1J ≤ aJ − xJ ≤ α1J .

Summarizing, a vector x is optimal for problem (98) if and only if

xI = 1I , max(0, aJ − α1J ) ≤ xJ ≤ min(1J , aJ + α1J ). (103)
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Table 11 Two numerical solutions for a problem of type (∞,∞)

i ai x (1)i ai − x (1)i x (2)i ai − x (2)i yi

1 1.9154 1.0000 0.9154 1.0000 0.9154 0.5354

2 1.9154 1.0000 0.9154 1.0000 0.9154 0.0000

3 1.9154 1.0000 0.9154 1.0000 0.9154 0.4646

4 1.2754 0.3600 0.9154 1.0000 0.2754 0

5 1.0543 0.1389 0.9154 1.0000 0.0543 0

6 1.0361 0.1207 0.9154 1.0000 0.0361 0

7 0.9148 0 0.9148 1.0000 −0.0852 0

8 0.8802 0 0.8802 1.0000 −0.1198 0

9 0.5620 0 0.5620 1.0000 −0.4380 0

10 0 0 0 0.9154 −0.9154 0

Example 5 For a randomly generated vector a, Table 11 shows two solutions, x (1)

and x (2). In x (1) we took for each entry the smallest possible value, and in x (2) the
largest possible value, according to (103). All other optimal vectors x are obtained by
taking for each xi a value between these two extreme values. One of these solutions
is x = a/‖a‖∞, as mentioned in Table 1, and as easily can be verified. Another ‘nice’
solution is x = min(1, a).

4 Concluding Remarks

This paper was inspired by a result in [2], where a nontrivial second-order cone
optimization problem was solved analytically in linear time. This raised the question
whether there exist other (classes of) problems that can be solved in linear time, by
a variant of the same method. In this paper we consider a class of nine potentially
important, easily stated and fundamental problems that form such a class. It is worth
noting that in the four harder cases an important characteristic of the new method is
that it first yields an ‘optimal partition’ of the variables in the problem. After this the
values of the variables can be easily found. Though the problems considered in this
paper are quite basic, hopefully it will inspire further research in this direction.

Figure 1 and Tables 5, 7, 9, 10, 11 were generated by using Matlab. The related
Matlab files can be used to solve each of the problems that we considered in this
paper for any vector a; they can be provided by writing to the second author.

Acknowledgements The authors want to express their thanks to an anonymous referee who care-
fully read the first draft of this paper. His critical remarks and questions were very stimulating and
helpful during the preparation of the final version.



108 Y. Bai and K. Roos

References

1. A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization. MPS/SIAM Series on
Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

2. Zhang Wei and Kees Roos. Using Nemirovski’s Mirror-Prox method as Basic Procedure in
Chubanov’s method for solving homogeneous feasibility problems, 2019. Optimization Online.


	 On Some Optimization Problems  that Can Be Solved in O(n) Time
	1 Introduction
	2 Preliminaries
	2.1 Duality
	2.2 Basic Lemmas
	2.3 Simplifying Observations
	2.4 Easy and Harder Cases

	3 Analysis of the Nine Problems
	3.1 Problems of Type (1,1)
	3.2 Problems of Type (1,2)
	3.3 Problems of Type (1,infty)
	3.4 Problems of Type (2,1)
	3.5 Problems of Type (2,2)
	3.6 Problems of Type (2,infty)
	3.7 Problems of Type (infty,1)
	3.8 Problems of Type (infty,2)
	3.9 Problems of Type (infty,infty)

	4 Concluding Remarks
	References


