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Abstract

Segmentation and Classification of Airborne Laser
Scanner data

George Sithole

Various methods have been developed to measure the physical presence of objects
in a landscape with high positional accuracy. A new method that has been gaining
popularity is Airborne Laser Scanning (ALS). ALS works by scanning a landscape
(the collection of ground, buildings, vegetation, etc.,) in multiple passes. In each
scan pulses of laser light are emitted from an airborne platform and their return
time is measured, thus enabling the range from the point of emission to the land-
scape to be determined. The product of airborne laser scanning is a cloud of points
in 3D space. ALS is capable of delivering very dense and accurate point clouds of
a landscape in a relatively short time. However, in spite of the ability to measure
objects with high positional accuracy, the automatic detection and interpretation
of individual objects in landscapes remains a challenge. An example of just such a
challenge is the classification of point clouds produced by ALS. The classification
of ALS point clouds consists firstly in the labeling of points as either object or
bare earth. The labeled object points are then further labeled as either building
or vegetation. As a measurement technique ALS holds great promise and moti-
vated by the desire to promote it, research has been conducted here to automate
the detection of bare earth, buildings and vegetation in ALS point clouds.

Several algorithms have been developed to automatically detect the bare earth (the
topsoil or any thin layering covering it) in ALS point clouds. They are generally
referred to in the ALS community as filtering algorithms. An experimental study
(conducted as part of this research) of filtering algorithms determined that in flat
and uncomplicated landscapes (i.e., small to medium sized buildings standing well
off a fairly flat ground) algorithms tend to do well. Significant differences in accu-
racies of filtering appear in landscapes containing steep slopes and discontinuities.



These differences are a result of the ability of algorithms to preserve discontinuities
while detecting large objects. A solution for this problem was determined to lie in
the segmentation of ALS point clouds. If segmentation can be achieved in such a
manner that all bare earth points are gathered into the same surface segment and
the points from each object are gathered into their own surface segments, then
filtering can be done on the basis of surfaces rather then points. This should offer
a more reliable classification since topological information can be used in addition
to geometric information to classify surface segments. On the strength of the study
a new segmentation based filtering algorithm was developed.

For the developed filtering algorithm a new segmentation algorithm was devised.
The algorithm works by first slicing a point cloud into contiguous and parallel
vertical profiles. This slicing is done in several directions. After the slicing the
points in the profiles are segmented based on proximity. The segmentation of
profiles yields line segments. Next, the line segments are linked together through
their common points to obtain surface segments. The adjacencies of line segments
in profiles are aggregated to determine the adjacency of surface segments (includ-
ing overlapping surfaces). The adjacency of surface segments provides contextual
information. This contextual information is used to associated particular spatial
arrangement of surfaces with objects or the bare earth.

The new segmentation algorithm also has the advantage that it facilitates the
detection of bridges. The experimental study also identified the ability to detect
bridges as one means to improve the accuracy of filtering. Using the developed
segmentation algorithm a novel bridge detection algorithm was developed. Line
segments are essentially cross sections of surface segments. In the bare earth line
segments that are above adjacent line segments (in the same profile) are potentially
from bridges. Therefore, points that lie at the intersection of such line segments
are also potentially from bridges. In this manner seed bridge points are identified.
These seed points are then used to detect bridges. The algorithm has the advantage
that it is able to readily detect curved bridges, bridges that do not have parallel
sides and bridges that branch into parts.

The classification of buildings and vegetation uses geometric and radiometric char-
acteristics determined for surface segments. A point cloud consisting of object
points is segmented by the proximity of points. The n geometric and radiomet-
ric characteristics of surface segments are mapped into an n-dimensional feature
space. Using a supervised classification the surface segments are classified as either
building or vegetation.

The new algorithms were tested on real data and showed improvement over current
algorithms, particularly in complex urban landscapes. It is envisaged that with the
inclusion of external data, e.g., thematic maps, existing digital elevation models
and infra red imagery, the classification accuracy of ALS point clouds can be
further improved .



Samenvatting

Segmentatie en classificatie van Airborne Laser
Scanner gegevens

George Sithole

Voor het vastleggen van de geometrie van een landschap - een deel van de aarde
en alles wat zich daarop bevindt - is de populariteit van Airborne Laser Scanning
(ALS) de laatste jaren sterk toegenomen. Met ALS wordt een landschap in stro-
ken afgetast, waarbij korte pulsen laserlicht worden uitgezonden vanaf een vliegend
platform. Het gereflecteerde signaal wordt opgevangen en de richting en looptijd
van de puls worden gemeten. Hieruit wordt de afstand naar en de positie van een
punt in het landschap afgeleid. Daarmee resulteert ALS in een 3D puntenwolk van
hoge dichtheid en precisie die in een relatief korte tijd verkregen wordt. Automa-
tische detectie en interpretatie van individuele objecten in het landschap - nodig
vanwege de arbeidsintensieve handmatige verwerking van de grote hoeveelheden
gegevens - vormt een grote uitdaging. Een voorbeeld van een dergelijke uitdaging
is de classificatie van met ALS geproduceerde puntenwolken. Deze classificatie
bestaat uit twee stappen: eerst worden de objecten gedetecteerd die zich op de
aarde bevinden, dan worden deze objecten onderverdeeld in gebouwen en vege-
tatie. Het automatisch onderscheiden van gebouwen, vegetatie en de aarde waar
zich deze objecten op bevinden is het onderwerp van het onderzoek dat in dit
proefschrift beschreven wordt.

Vele algoritmen zijn ontwikkeld om de kale aarde - de aarde zonder gebouwen
of vegetatie - uit een ALS-puntenwolk te extraheren, een taak die in de ALS-
gemeenschap beter bekend staat als filteren. Een studie naar acht filteralgoritmen
is uitgevoerd als onderdeel van het onderzoek met als doel het kwalificeren van
de prestaties van deze algoritmen en het inventariseren van de aanwezige proble-
men bij het onderscheiden van objecten en kale aarde in een landschap. De test
toonde aan dat in vlakke en eenvoudige landschappen (zoals kleine tot middelgrote



gebouwen in een nagenoeg vlak terrein) alle algoritmen voldeden. Significante ver-
schillen deden zich voor bij landschappen met steile hellingen en discontinuteiten
in het terrein. De oorzaak lag in het uiteenlopende vermogen van de algoritmen
om de discontinuteiten in stand te houden bij het detecteren van grote objecten.
Segmentatie van de ALS-puntenwolken is de oplossing voor dit probleem. Fil-
tering kan gedaan worden op basis van vlakken in plaats van punten wanneer
zodanig gesegmenteerd kan worden dat alle kale-aarde-punten verzameld worden
in n vlaksegment en de punten van een bepaald object in een ander vlaksegment.
Deze aanpak maakt een betrouwbaardere classificatie mogelijk omdat naast ge-
ometrische informatie ook topologische informatie gebruikt wordt. Daarom werd
een nieuw filteralgoritme ontworpen gebaseerd op segmentatie om de problemen
die zich voordeden in de genoemde studie te overwinnen.

Een nieuw segmentatiealgoritme vormt de basis voor het ontwikkelde filteralgo-
ritme. Daarbij wordt de puntenwolk eerst in aaneensluitende parallelle profielen
verdeeld en de punten gesegmenteerd op basis van nabijheid zodat lijnsegmenten
ontstaan. Dit wordt herhaald voor verschillende windrichtingen waarna vlakseg-
menten gecreerd worden door verschillend gerichte lijnsegmenten te combineren
op basis van gemeenschappelijke punten. De nabijheid van lijnsegmenten in de
profielen wordt vervolgens gebruikt voor het classificeren van de vorm van de
vlaksegmenten. Deze vorm van de vlaksegmenten wordt dan weer gebruikt voor
het classificeren van de vlaksegmenten als kale aarde of object.

Een voordeel van het nieuwe segmentatiealgoritme is dat het de detectie van
bruggen mogelijk maakt. De eerder genoemde studie toonde aan dat filteral-
goritmen significant verbeteren met de mogelijkheid bruggen te detecteren. Het
ontwikkelde algoritme voor de detectie van bruggen kan als volgt geschetst worden.
Punten in lijnsegmenten die hoger liggen dan naburige lijnsegmenten (in hetzelfde
profiel) behoren mogelijk tot een brug. Behoort een dergelijk punt ook tot een
kruisend lijnsegment met dezelfde eigenschap, dan wordt dit punt gebruikt als
startpunt voor de brugdetectie. Het algoritme is in staat om gekromde bruggen
te detecteren, bruggen zonder parallelle begrenzingen of bruggen die zich splitsen.

Het algoritme voor het onderscheiden van gebouwen en vegetatie maakt gebruik
van een feature-based approach. Daarbij wordt een puntenwolk eerst geseg-
menteerd op basis van de nabijheid van de punten. Vervolgens vormen n ge-
ometrische en radiometrische eigenschappen de n-dimensionale kenmerkenruimte
(de zogenaamde feature space). Deze wordt gebruikt om met behulp van een
supervised classification gebouwen en vegetatie te onderscheiden.

De nieuwe algoritmen zijn getest op echte data en lieten verbeteringen zien ten
opzichte van bestaande algoritmen, met name in complexe stedelijke gebieden. Het
is te verwachten dat met de toevoeging van externe gegevens (zoals thematische
kaarten, bestaande digitale hoogtemodellen of infraroodbeelden) en het gebruik
van ALS-gegevens waarbij de golfvorm van de gereflecteerde straling wordt gereg-



istreerd, de nauwkeurigheid van de classificatie van ALS-puntenwolken verder zal
verbeteren.
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Chapter 1

Introduction

1.1 Digital terrain acquisition

Knowledge of the geometric character of the bare earth is essential to many civil
design and planning applications. This knowledge is acquired by sampling a land-
scape and building digital terrain models from the samples. Samples from a land-
scape are commonly acquired by the techniques of field survey, photogramme-
try, satellite remote sensing, InSAR and in recent years Airborne Laser Scanning
(ALS).

Before the sampled data can be used for modelling it has to be preprocessed.
The above sampling techniques (for the exception of field survey) sample not
only the bare earth, but also the objects (buildings, trees, etc.,) residing on it.
The preprocessing, or filtering as it is commonly known, is meant to distinguish
between samples that have come from objects and those that have come from the
bare earth. Filtering is a non-trivial and important procedure, because the quality
of filtered data has a direct impact on the quality of modelling. Put differently,
errors in the filtered data are carried over into the digital terrain modelling.

The data acquired by ALS is a cloud of points in a three dimensional reference
frame, where each point is a sample from a scanned landscape. When this data is
first acquired, it has to be preprocessed. This preprocessing includes tasks such as
modelling of systematic errors, filtering, feature detection and extraction, quality
control and packaging 1.

The acquired data normally contain millions of points. Because of this the process-
1Packaging involves data reduction and the formatting of the data so that it can be used in

further processes such as volume computations, DEM generation, and object modelling.
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ing and packaging of ALS point clouds has to be highly automated. Therefore,
in the context of this thesis any processing of ALS data will from here on be
understood as being either semi-automatic or fully automatic.

Of the above mentioned tasks, manual classification (including filtering) and qual-
ity control pose the greatest challenges, consuming an estimated 60 to 80% of
processing time (Flood, 1999, 2001b,a), thus underlining the importance and mo-
tivation of research into filtering algorithms.

1.2 Scope of Research

Motivated by the importance of filtering and the importance of bare earth models
for many engineering applications, the work here is focused on devising semi-
automatic and automatic algorithms for filtering ALS point clouds with a high
degree of accuracy and reliability.

Manual filtering

Although impractical, filtering of ALS data could be done manually. Manual fil-
tering employs the human cognitive process to readily distinguish between objects
and the bare earth in the ALS data.

ALS data, usually, do not have associated with them semantic information
(strength of reflectance data excluded). Therefore, the height of points and their
spatial relationship becomes the only means of classifying terrain and non-terrain
points. However, because of our knowledge of the real world, as humans we are
able to associate this spatial relationship between points in laser data point clouds
with features in the real world, even though semantic information may be lacking.
The human cognitive process also permits us to filter different types of landscapes
and identify large and small objects with ease. Furthermore, given auxiliary infor-
mation such as airborne imagery we are able to assimilate that information to aid
our cognitive process and enhance the reliability of filtering. Besides cognition,
humans also rely on intuition, allowing them to make guesses as to the nature of
an object even when evidence to support the identity of an object is minimal.

Once objects have been identified, they can be removed, thus leaving behind the
bare earth. The problem with manual filtering is that because of the large volume
of data being handled, it is very time consuming. To accelerate manual filtering
special tools to aid classification in operator selected regions can be used. However,
such semi-automatic solutions are useful only where the size of the ALS data is
relatively small, and besides they still require operator supervision. To overcome
the problem of filtering large volume data automatic filters are required.



1.2 Scope of Research 3

Automated filtering

A number of automatic filtering algorithms have been developed. Most of them
share a common weakness in that they don’t work for all types of landscape and
because of this, their behaviour is unpredictable. Three reasons can be offered for
this lack of universality and reliability.

The first cause of failure lies in the assumptions employed by filter algorithms. A
filter is designed with the belief that there are certain characteristics that distin-
guish the bare earth from objects. There are many assumptions that can be used
but unfortunately, assumptions are not foolproof and are landscape specific. For
example, one assumption used is that the bare earth does not contain gradients
greater than some predefined minimum value. Naturally, filters designed with this
assumption cannot be used in steeply sloped landscapes.

Secondly, algorithms do not consider the context of point(s) in relation to their
neighborhoods. Current automatic filters classify a set of points based on their
functional relationship to neighboring points, but not on the meaning of the points
in relation to the form of the neighborhood. For example, a point on a building
is compared to neighboring points to determine its classification. However, those
neighboring points may themselves be points on a building, in which case any
classification of the point will be unreliable.

The third reason is that most filters only use the positional information of points
in a point cloud. External information (particularly radiometric and topological)
needs to be used to reinforce the filtering process where the classification of features
is in doubt. Sources of external information include aerial images and existing
maps.

The work described here is aimed at overcoming the weaknesses described above.

General Assumptions about the data

ALS systems do not use the same scanning mechanism. Therefore, the spatial
distribution of points in the data can differ. To ensure that the developed algorithm
is as general as possible the following assumptions have been made about the data:

1. Assumption - All points in the data are free of systematic errors. Some
laser scanner data contain very low and very high points (blunders). There-
fore, blunders will be treated because they can cause filtering and thinning
strategies to critically breakdown.

2. Assumption - The spatial distribution of points is anisotropic (does not have
the same properties in all directions) and the spacing of points is not uniform.
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3. Assumption - GPS, INS and other navigation information for all the scans
are not available. Because of this, the developed algorithm should be blind
to the manner in which the point cloud was formed, and potentially making
it applicable to point clouds acquired by techniques other than ALS.

1.3 Research method and objectives

The objectives of the research can be stated as follows: Develop an automated
or semi-automated classification algorithm that when applied to ALS data, will
discriminate bare earth, bridge, building and vegetation points. Moreover, the
algorithm should work for all landscape types, and should operate on raw ALS
data.

To achieve the objectives, the research was subdivided into three parts, (i) litera-
ture study of current filtering algorithms, (ii) experimental test of current filtering
algorithms (iii) design, development and test of a new algorithm.

Study of current filtering algorithms

This first part of the research involved a literature review of current filtering algo-
rithms. The main aim was to understand the basic concepts of algorithms and the
assumptions upon which they are based. Filters differ because designers choose
to use different mathematical concepts to describe the landscape, and driven by
scientific endeavour, designers are continually challenged to develop more novel
techniques. They also differ on the assumptions made about the characteristics
that distinguish the bare earth from other objects. This part of the research is
covered in chapter 2.

Test of current filtering algorithms

While literature studies provide insights into the concepts of algorithms, true
knowledge of the operations of filters can only be gained by applying them to
real data. For this purpose an experimental study of filter algorithms was carried
out under the auspices of ISPRS Working Group III/3 (Sithole and Vosselman,
2002b) with a desire to, (i) further the knowledge of filtering algorithms, (ii) de-
termine the comparative performance of existing filter algorithms, (iii) determine
the influence of the point density of ALS data on filter performance, and (iv)
determine filtering problems that remain unsolved.

Sample ALS data sets were chosen and offered to the ALS community for filtering.
These sample data sets were also manually filtered to serve as control data. Eight
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developers participated in the test. The participant’s filter results were compared
against the control data and the performance of the algorithms was assessed. The
results of the assessments were later published, (Sithole and Vosselman, 2003b,
2004). The results of the tests are described in chapter 3.

Design and development of a new algorithm

The filter test identified problems in filtering that remained unsolved. It was
deemed that even with modifications current filter algorithms would not be able to
reliably overcome the problems. Therefore, a new filter algorithm was developed.
This algorithm was developed in three steps, (i) design, (ii) segmentation, and (iii)
classification.

Filter design

The question of what constitutes the bare earth was revisited, with the aim of
identifying basic assumptions that should be used, and how they should be used
in combination. This question of assumptions is treated in chapter 4.

Segmentation of ALS data

One problem with current filters is that they are based on point neighborhood
tests, and do not study the context of the neighborhoods. Because of this it
was resolved that the new filter should work on global geometric structures, or
segments, and filtering should be done based on the relationship between these
structures. Therefore, the new filter algorithm first segments the ALS data and
then classifies the segments. Some segmentation strategies have been tried by
Brovelli et al. (2002); Filin (2002); Lohmann (2000) and Roggero (2002) but they
are ill suited to point clouds that contain overlapping surfaces. Because of this a
new segmentation approach based on intersecting profiles has been proposed, and
is discussed in chapter 5.

Classification of ALS segments

In line with the objectives of the research, the primary aim of classification is to
identify bare earth and object segments. However, segmentation of the data offers
the opportunity to identify other features in the data. In this regard, the research
aimed to identify three further types of features in a landscape, i.e., bridges, man
made objects and natural objects.
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Bridges and overpasses are of interest because their classification can be bare earth
or object depending on the application of the data. Current filter algorithms do
not explicitly filter bridges. Therefore, the ability to filter bridges would enhance
the reliability of filtering.

Each point in an ALS data may carry a reflectance, or RGB signature. The
point signatures can be used in the segmentation or they can be aggregated to
yield signatures for the segments. Furthermore, some ALS systems are capable
of recording multiple pulse returns that can be used to assist in differentiating
between vegetation and the bare earth. In the work here, the signatures are
aggregated for the segments and used as additional information to distinguish
between man made and natural objects.

The classification of segments is treated in chapter 6.

Assessment

To gauge the effectiveness of the new filter, the filter is applied to the test data
used in the experimental study of filter algorithms. The results are presented and
discussed in chapter 7. Furthermore, issues related to the quality of filtered data
are discussed.

1.4 Contribution to knowledge

The research done in the development of a new filtering algorithm contributes to
the field of ALS in the following ways:

1. Development of the filtering problem - A more elaborate definition of the
landscape has made it possible to better define the filtering problem.

2. ISPRS Filter test/assessment of current filtering strategies - An experimental
comparison of filter algorithms was not available to the ALS community. The
ISPRS filter test has partly filled this gap. Furthermore, the comparisons
and reference data generated are available to filter developers, thus providing
them with a benchmark to test and improve their algorithms.

3. Segmentation algorithm - The standard approach to filtering is to use tri-
angulated irregular networks (TINs). The approach taken here was to use
a scan line based algorithm. The scan line algorithm was extended in two
ways, (i) most scan line algorithms work on range images, the approach here
works on a point cloud (ii) scan line algorithms only work on parallel scans
running in a single direction and compare adjacent scan lines, the approach
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here has scans running in more than one direction and intersecting scans
are compared. This segmentation algorithm can easily be adapted for use in
modeling data other than ALS data.

4. Classification of bridges - Most of the current filtering algorithms distinguish
between objects and the bare earth. The new filtering algorithm goes beyond
this and also identifies bridges.

1.5 Outline of the thesis

The thesis is organized into eight chapters. The contents of chapters two to seven
have been described above. In chapter 8 the objectives and results of the research
are summarized and aspects of the research that require further work are outlined.
Some of the work presented in this thesis is partly drawn from several papers
published since 2001, Sithole (2001); Sithole and Vosselman (2002a, 2003a,b, 2004).
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Chapter 2

ALS and Filtering
Algorithms

2.1 Introduction

The purpose of this chapter is to lay a foundation for discussing filter design
and development in succeeding chapters. Firstly, ALS and its core principles are
discussed and from there the main filtering algorithms that have been developed
to date are described.

2.2 Airborne Laser Scanning

Photogrammetry and satellite remote sensing, are amongst the disciplines that
have contributed the most to developments in mapping. Together they have made
it possible to map the relief of landscapes at large scales, at sub-meter accuracies
and in relatively short times.

Despite all the advances that have already been made, faster, cheaper, and more
accurate digital terrain techniques are still being sought. In the last ten years,
ALS has emerged as a strong complimentary tool for large scale 3D abstraction of
landscapes. Compared to photogrammetry1 ALS is an active system, capable of
delivering very dense (1 point/m2 or higher) and relatively accurate point clouds

1 Some comparisons between photogrammetry and ALS can be found in Ackermann (1999);
Baltsavias (1999c); Schenk (1999); Kasser and Egels (2002). Some comparisons between remote
sensing and ALS for applications in forestry can be found in Hyyppa and Hyyppa (1999).
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(0.15-0.25m in elevation and 0.3-1m in planimetry for flying heights below 2km)
of the terrain in a relatively short time. It is made more attractive because:

• it can be used at any time of the day,

• it penetrates through forest canopies,

• it readily abstracts digital landscapes in digital format.

Although the first optical laser was developed by Hughes aircraft in the 1960s, the
application of lasers to earth measurement only started in the 1970s when they
were used in Airborne Profile Recorders (APR). These systems obtained profiles of
the landscape by measuring the vertical range from an airplane to the landscape.
The position of the airplane was determined by means of photographs taken dur-
ing the flight and in turn positions of points in the landscape were determined.
More detail on APRs can be found in Lindenberger (1991, 1993). Because the
position of an airplane was determined using photographs, the planimetric preci-
sion of the measured points suffered. This lack of precision made APRs obsolete.
However, with the advent of commercial GPS in the 1980s interest in the use of
lasers for digital landscape acquisition was renewed. This interest has led to the
advancement and promotion of ALS to the extent that current systems provide
point clouds with accuracies measured in centimeters and point spacings measured
in decimeters. Commercial use of ALS has expanded considerably and there are
now currently (year 2004) 88 companies involved in the manufacture and appli-
cation of laser systems, worldwide. Furthermore, there are 16 different scanner
systems available on the market2

Currently ALS is being used for topographic mapping, vegetation mapping
(forests, flatlands, etc.,), corridor mapping (roads, railways, power lines, etc.,),
urban modelling (cityscapes, wireless communications, etc.,), engineering works
(volume computations, etc.,), and coastal engineering and management.

As a discipline, ALS is still evolving and as it is combined with imaging tech-
nologies, the range of applications and products will increase. This is a major
motivating factor for research in this area.

Principle of ALS

The concept behind ALS is to obtain numerous scans of a landscape from single
flight line/s and then aggregate these scans to obtain a discrete model of the

2 More information on developments in ALS, and current state of the art can be found in
Wever and Lindenberger (1999) and further, details on the projected growth of ALS can be found
in Flood (1999, 2001b,a). More information on system developers can be found in Baltsavias
(1999b); Airborne1 (2004).
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landscape, figure 2.1. The scans are usually linear and orthogonal to the line of
flight. The relevant aspects of ALS shall now be briefly outlined 3.

Components of an ALS system

The major components of an ALS system are (Baltsavias, 1999b):

1. LRF (Laser Range Finder) - for laser emission and detection, and range
determination

2. GPS (Global Positioning System) - scan point position determination

3. IMU (Inertial Measurement Unit) - for attitude determination

4. Computer - control of the on-line data acquisition

5. Data Storage Unit - data storage

6. CCD cameras and other sensors for imaging the scanned landscape (these
are optional)

These components are all mounted on an aircraft or helicopter platform. The main
technical parameters of ALS can be found in Baltsavias (1999b).

Point measurement : In an ALS system, the return time of an emitted laser pulse
from surfaces in a landscape are used to measure the range from the point of
emission (on an airborne platform) to the landscape. The round trip time of the
pulse is measured by electronically analyzing the waveform of a returned pulse
4. The range from the point of emission (pulse) to the landscape can now be
obtained by multiplying the speed of light with half the return time. An array of
range measurements, typically linear, is called a scan.

Because the range and the position of pulse emissions and the attitude of the line of
sight are known by lidar, GPS and IMU respectively, the position of points in the
landscape can be determined in a 3D frame. Ranges within a scan are measured
at rates upwards of 5kHz. Current state of the art systems are able measure at
rates of about 100kHz.

Scan characteristics: The spacing between points depends on the measurement
rate, the scan angle, flying height and aircraft speed. The scan angle (the angle
subtended by the two furthest ends of a scan) ranges from 1◦ to 65◦. Flying heights

3More details on the operational specifics of ALS are described by Baltsavias (1999a);
Lohmann and Koch (1999); Wehr and Lohr (1999).

4A more detailed explanation of this analysis can be found in Katzenbeisser (2003).
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Forward Back

Figure 2.1: Airborne laser scanning. The landscape is scanned in strips, and the
scans from the strips are combined to form a point cloud.

normally range from 100m to 1km, although new systems can be used at heights
up to 3km. Therefore, point spacing can range anywhere from 0.1m to 5m.

Point characteristics: Because objects on the ground differ in material composition
and height, the signal strength of the reflected pulse (i.e., the echo of the emitted
pulse) is also recorded. Several reflections of a pulse maybe detected. The first
reflected pulse is assumed to contain more hits off vegetation than the second pulse.
Therefore, first pulse returns are used in orthophoto production and forestry and
vegetation inventory applications, while second pulse returns are used for bare
earth measurement applications.

Just as the return waveform is used to measure the return time of a pulse, most
systems also use it to measure the strength of the returned pulse. The materials
on the landscape have different spectral characteristics and because of this, a low
resolution image of the landscape can be obtained from the strength of the returned
pulse. Typically, the radiation used in lidar is in the IR part of the EM spectrum.
Therefore, materials like vegetation will tend to appear bright, earth and asphalt
will appear dark, and deep-water bodies will absorb radiation. Because of this
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Figure 2.2: Shaded relief made from a point cloud

reflectance can be used to some extent for classification. Some ALS systems also
capture imagery during scanning. Therefore, an RGB triplet can also be associated
with each point.

Point cloud : When all the scans are aggregated a cloud of points in a 3D reference
frame is obtained, e.g. figure 2.2. The most notable characteristic of ALS point
clouds is that they are large and dense, often containing millions of points.

2.3 Filtering algorithms

The rest of this chapter deals entirely with the separation between objects and
the bare earth. The separation between natural and man made objects shall be
treated in chapter 6.

A number of algorithms have been developed for semi automatically/automatically
extracting the bare earth from point clouds obtained by ALS and InSAR. While
the mechanics of some of these algorithms have been published, those of others
are not known because of proprietary restrictions. Some comparison of known
filtering algorithms and difficulties have been cited in Huising and Pereira (1998);
Haugerud and Harding (2001); Tao and Hu (2001).

For the purpose of discussion a point cloud, V , will be treated as a set of attributed
points in three-dimensional space. Where, v, is an attributed point with coordinate
triplet x and attribute a.

V = {v|v(x ∈ R3, a ∈ R)} (2.1)



14 ALS and Filtering Algorithms

Figure 2.3: Morphological algorithm. White circles are classified as bare earth and
gray circles as object.

The attribute of a point can take on two values, 0 or 1, denoting object and bare
earth respectively. Filtering is the removal from V of points with label 0. The
removal of zero labeled points yields the set of bare earth points B. Therefore,
before filtering can be done the ALS points have to be attributed or labeled.

Morphological filter - J. Lindenberger: 1993

Assumption - The lowest points in a neighborhood belong to the bare earth.

This filter is based on the concepts of mathematical morphology, which is a set-
theoretic method of image analysis providing a quantitative description of geomet-
rical structures. The algorithm is applied to ALS scans.

In this algorithm (Lindenberger, 1993; Petzold et al., 1999), first a rough terrain
model is calculated by the lowest points found in a moving window of rather large
size. All the points with height difference exceeding a given threshold are filtered
out, and a more precise DTM is determined. Figure 2.3 shows an example of how
the algorithm works. This step is repeated several times, reducing the window size
every time. The result is influenced by the final window size and the final threshold
below which points are expected to be terrain points. A small window size leads
to points on large buildings remaining in the file of the so-called ground points.
A large window size smoothes the terrain and removes discontinuities. A high
threshold value that is accepted in the final step leads to many vegetation points
classified as ground points, and a small threshold again removes small terrain
discontinuities. The parameters depend on the morphology of the terrain and
have to be different for flat, hilly and mountainous regions.

Another variation on this algorithm is presented by Kilian et al. (1996). In this
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variation, the window size is increased with every iteration. Furthermore, in each
iteration points that fall within the height threshold are assigned a weight directly
proportional to the size of the window (points on flat ground are rewarded). Fi-
nally, points with the largest accumulated weight over all iterations are classed as
bare earth and the remaining points are classed as object.

Hierarchical surface regularization - K. Kraus, N. Pfeifer, C.
Briese: 1998

Assumption - The bare earth is a patchwork of piecewise continuous overlapping
surfaces.

In this algorithm (Kraus and Pfeifer, 1998; Pfeifer et al., 1998, 1999; Pfeifer and
Stadler, 2001; Kraus and Pfeifer, 2001; Briese and Pfeifer, 2001; Briese et al., 2002)
the derivation of the terrain as well as the classification of the original points is
performed in a hierarchic method. In each hierarchy level robust interpolation for
the classification of the points and the surface derivation is done (figure 2.4). A
rough approximation of the terrain, f , is first computed using the points of the
respective hierarchy level. The vertical distance (residual) of the points to this
approximate surface, f , is then used in a weight function (figure 2.5) to assign
weights to all points. Points above the surface are given a small weight and those
below the surface are given a large weight. The surface, f , is then recomputed
using kriging considering the individual weights. In this way the recomputed
surface, f , is attracted to the low points.

The process is iterated until a certain number of iterations have been reached or
the computed surface does not change significantly between iterations, shown in
figure 2.4. On completion of the iterations, a point is labeled based on its height
above (or below) the surface, f . The labeling function is given by:

φN,ε(vi) =
{

0 vi ∈ N |f(vi)− h(vi)| > ε
1 else

}
(2.2)

Where N is a neighborhood over which f is continuous, h(vi) is the height of point
vi, and ε is a predefined threshold.

This robust interpolation has been extended to the hierarchic robust interpolation
(Pfeifer and Stadler, 2001). It works in a coarse to fine approach using data
pyramids (i.e. using coarser and coarser selections of the original points at higher
pyramid levels). Starting with the coarsest/highest level of points the robust
interpolation is applied. To move from one level to the next finer/lower one, the
surface of the coarser level is compared to the points of the finer level. Those within
a predefined threshold are selected and are the input for the robust interpolation
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window 1 window 2

(a)

window 1 window 2

(b)

window 1 window 2

(c)

Figure 2.4: Surface fitting, (a) First fit, (b) First iteration, (c) Second iteration

on the next finer level.

A characteristic of the bare earth is that it contains discontinuities (break-lines).
These cannot be modeled with smooth surfaces. Therefore, Briese and Pfeifer
extended the algorithm to handle break-lines (Briese and Pfeifer, 2001).

A variant on this algorithm has been developed by Schickler and Thorpe (2001).
Their algorithm uses break-lines, curvature constraints and slope constraints to
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control the estimated surface. Additional to this they input a classification map
(vegetation types, water bodies, urban areas, etc.,) into their algorithm and asso-
ciate with each class type a parameters set ideal for that class type.

Progressive TIN densification - P. Axelsson: 1999

Assumption - The bare earth is locally and globally flat.

A sparse TIN, G, is derived from neighborhood minima. This TIN is a first
approximation of the bare earth, figure 2.6(top). In iterative steps this TIN is
progressively densified to the laser point cloud, figure 2.6(bottom). In each iter-
ation a point is added to the TIN if the point meets certain criteria in relation
to the triangle that contains it. The criteria are that a point must be within a
minimum distance to the nearest triangle node and the angle between the triangle
normal and the line joining the point and node must be above a given threshold.
At the end of each iteration the TIN and the data-derived thresholds are recom-
puted. New thresholds are computed based on the median values estimated from
the histograms at each iteration. Histograms are derived from the angle points
make to the TIN facets and the distance to the facet nodes. The iterative process
ends when no more points are below the threshold.

The labeling function for this algorithm is:

φ(vi) =
{

1 vi ∈ TIN
0 else

}
(2.3)

Where TIN is the triangulation obtained after the final densification.

The main strength of this algorithm lies in its ability to explicitly model surfaces
with discontinuities, which is a particularly useful characteristic in urban areas.
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Figure 2.6: Axelsson’s progressive TIN densification algorithm. First approxi-
mation of the bare earth based on neighborhood minima(top), and subsequent
approximations of the bare earth based on angle, θ and distance to nearest node,
r (bottom).

Further details can be found in (Axelsson, 1999, 2000, 2001). A variant on this
algorithm has been developed by Voegtle and Steinle (2003).

Morphological filter/Slope based filter - G. Vosselman: 2000

Assumption - Gradients in the bare earth are bounded.

This filter is also based on the concepts of mathematical morphology. This filter,
designed by Vosselman (Vosselman, 2000; Vosselman and Maas, 2001), approxi-
mates the local geometrical structure of the bare earth using a structuring element
usually in the form of an inverted funnel of radius, r (but also an inverted cone
sometimes). The structuring element is a hypothesis on the maximum height dif-
ference between any two points on the bare earth with respect to the distance
between them.

A structuring element is centered (planimetric) on a point, and then raised un-
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Figure 2.7: Slope based algorithms. The structuring element is an inverted cone.

til it touches the point. After that, if there are no neighboring points beneath
the structuring element then the point is accepted as bare earth, otherwise it is
accepted as object. The neighborhood function is given by:

φN,r(vi) =
{

0 ∀vj ∈ N ∃ ∆h(vi, vj) > ∆hmax(d(vi, vj))
1 else

}
(2.4)

Where ∆h(vi, vj) is the height difference between a point, vi, and another point
vj in its neighborhood, and ∆hmax(d(vi, vj)) is the maximum expected height
difference between two points in the bare earth at planimetric distance d apart.
The structuring element is essentially the neighborhood function for values of d
ranging from 0 to r.

The algorithm works by applying the structuring element at every point in the
point cloud. Furthermore, the structuring element applied at each point is the
same. Figure 2.7 shows an example of how the algorithm works. The structuring
element can be tuned using a training set containing only bare earth points. His-
tograms are generated for points at distance, d, apart. From these histograms, a
maximum height distribution is obtained, and this becomes the structuring ele-
ment.

Adaptive slope based filter - G. Sithole and G. Vosselman:
2001

Assumption - Gradients in the bare earth are locally bounded.

This filter (Sithole, 2001) is a variant on the slope based filter developed by Vos-
selman. In Vosselman’s filter the structuring element applied at every point is
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the same. This limits the filters application in landscapes where the bare earth is
steep. To improve the performance of the algorithm in steep slopes, in this filter,
the shape of the structuring element is altered in tune with the slope of the bare
earth.

The neighborhood function 2.4 now becomes:

φN,r(vi) =
{

0 ∀vj ∈ N ∃ ∆h(vi, vj) > md(vi, vj)|∇uf |
1 else

}
(2.5)

Where f is a functional representation of the bare earth, and |∇uf | is the largest
gradient which is in the direction u in the x-y plane. The multiplier, m, is used to
increase the maximum threshold, to avoid over filtering in flat terrain.

A coarse approximation of the bare earth, f , is obtained by griding the point cloud
and deriving the grid values from the lowest point in each grid. From this grid (or
image) a slope (gradient) map is obtained. The algorithm is run as in the original
slope based filtering, except now the shape of the structuring element at a point
is adjusted in tandem with the slope in the gradient map below it.

Adaptive slope based filter - M. Roggero: 2001

Assumption - Gradients in the bare earth are locally bounded.

Another variant on the slope based filter is that presented by Roggero (2001). In
this filter, the shape of the structuring element is also adapted to the slope of the
bare earth at a point.

Because the bare earth is not known, it is estimated using a local linear regression
criterion. In the linear regression, each point is compared to the lowest point
in the neighborhood. The distance and height difference from the lowest points
are weighted and used as observations in the linear regression. The distances
and height differences are weighted in such a way that points furthest from the
lowest point contribute less to the parameters of the line. The assumption is that
the further a point is from the lowest point the less effect it is likely to have on
the local slope. The estimated parameters and their standard deviation are used
to compute the maximum height differences from the regressed line at defined
distances from the lowest point. A curve is obtained from these maximum heights
above the regressed line. This curve represents the initial bare earth. Once an
initial bare earth has been determined points are classified as bare earth, object,
or unclassified, based on their distance from the initial bare earth.
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TIN thinning, de-spiking - R.A. Haugerud and D.J. Harding:
2001

Assumption - Curvature in the bare earth is bounded.

The de-spiking algorithm developed by Haugerud and Harding (Haugerud and
Harding, 2001) classifies points based on their contribution to local surface aber-
rations. The algorithm assumes that the terrain surface is intrinsically smooth,
and it proceeds to remove points that display strong curvature. Curvature is here
defined by a Laplacian of a parametric surface, f .

φN (vi) =
{

0 vi ∈ N |∇2f(vi)| > ε
1 else

}
(2.6)

Where ∇2f(vi) is the Laplacian of the continuous surface, f , defined over a neigh-
borhood N and ε is a predefined threshold.

Firstly, a TIN is generated. Next, the algorithm searches for local strong cur-
vatures; specifically, sharp upward convexities. When such a point is found it is
dropped from the point cloud and not used in further computations. Only a few
points are removed from a locale at a time and therefore the process of search-
ing for local strong curvatures is iterative. The iterations are stopped when the
fraction of newly identified non-ground returns drop below 0.1%.

Active contour models - M. Elmqvist: 2001

Assumption - The bare earth is a patchwork of piecewise continuous surfaces.

This algorithm estimates the ground surface by employing active shape models.
A membrane, f , defined over a neighborhood, N , is floated upwards from beneath
the neighborhood and allowed to cling to the low points (Elmqvist, 2001; Elmqvist
et al., 2001; Elmqvist, 2002). The manner in which the membrane sticks to the
data points is determined by an energy function. For the membrane to stick to
the ground points, it has to be chosen in such a way that its energy function
is minimized. Material characteristics of the membrane (e.g. rigidity, elasticity)
control the form of the membrane and the low points to which it will cling. The
choice of form for the membrane also defines the form of the bare earth. Any point
within a buffer of the membrane is labeled as bare earth and the rest as object.
The labeling function is given by:

φN,ε(vi) =
{

0 vi ∈ N |f(vi)− h(vi)| > ε
1 else

}
(2.7)
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Figure 2.8: Concept of an edge based algorithm.

The membrane used in this instance is an active shape model, and the model is
fitted to the low points by minimization of the model’s energy function (the energy
function defines the material characteristics of the active shape model).

Edge based Clustering - M. Brovelli: 2002

Assumption - Points inside closed edges belong to objects.

Viewed planimetrically (figure 2.8) objects in a landscape standout from the back-
ground (bare earth) by the fact that they have distinct edges that together form a
closed boundary. Therefore, points within the closed boundaries, s, are accepted
as being part of an object. This is the concept of an edge based filtering algo-
rithm, and is used in the filter designed by Brovelli (Brovelli et al., 2002, 2004).
The labeling function is given by:

φN,s(vi) =
{

1 vi ∈ N
0 else

}
(2.8)
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Where N is a closed neighborhood defined by the closed boundary, s. In a pre-
processing step the point cloud is gridded and then tiled. Each tile is set to have
200 x 200 splines. The splines are interpolated on the data. Put very simple (the
actual process is much more detailed), points above a spline are potential objects
and those below are potential bare earth points. Edges exist at the boundary
between bare earth points and object points. Connecting edges (because this part
of the algorithm works on a raster, this step also involves a region growing step)
are linked and if they close, then the points within the closed edges are accepted
as potential objects, provided their height is equal to or greater than the mean
edge height. The method also uses the height difference between corresponding
first pulse and last pulse points to enhance labeling.

Minimum block classification - R. Wack and A. Wimmer:
2002

Assumption - The lowest point in a neighborhood belongs to the bare earth.

This algorithm is a variant on the morphological filter by Kilian et. al. In this
algorithm (Wack and Wimmer, 2002) object raster elements are detected in a
hierarchical approach. A 9m raster DEM is generated from a raw point cloud
(9m is used to overcome large buildings or dense vegetation). The height value of
each raster element is computed from the lowest height from 99% (to overcome the
problem of low outliers) of all points within the raster element. Because of the size
of the raster elements, most buildings and dense vegetation should now not exist
in the DEM. In the next step, all none terrain raster elements are detected and
removed (this assumes that objects are characterized by sharp elevation change in
the landscape). This is achieved by using a Laplacian of Gaussian (LoG) operation
on the 9m DEM. The resulting 9m DEM is used as basis for computing a 3m
DEM. From the point cloud a 3m raster is obtained. The representative height
of each element is computed from those points inside the 3m elements that are
within a given threshold of the corresponding height in the 9m DEM. Remaining
raster elements that do not contain bare earth are again detected by an LoG
operation on the 3m DEM. Where such elements are detected, their heights are
replaced with those from the 9m DEM. At a resolution of 3m and below, a weight
function that considers the standard deviation of the data points within each
raster element and the shape of the terrain is applied to the output of the LoG
operation. This is because at resolutions below 3m break-lines in the bare earth
can appear as elements that don’t contain bare earth points. In a repetition of the
above procedure the 3m DEM is now used to obtain a 1m DEM, and so on. To
achieve good results user intervention is required in setting optimal parameter in
the determination of the initial 9m DEM. After that, no further user intervention
is required.
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Progressive TIN densification/ Regularization Method - G.
Sohn: 2002

Assumption - The bare earth is locally and globally flat.

The algorithm (Sohn and Dowman, 2002) is based on a two-step progressive densi-
fication of a TIN, G. Points in the TIN at the end of the densification are accepted
as a representation of the bare earth, and the rest as object. In the downward
densification, four points closest to the corners of the rectangular bounds of the
point cloud are chosen, and triangulated. The lowest point within each triangle is
added to the triangulation. This process is repeated for the triangles in the new
triangulation. This process of densification and re-triangulation is repeated until
no triangle has a point beneath it. Points in the TIN are accepted as being part
of the bare earth.

The downward densification does not catch all the bare earth points; some points
above the triangles may yet belong to the bare earth. Therefore, an upward
densification has to be done. This step is somewhat similar to Axelsson’s TIN
densification. A buffer is defined above every triangle (from the downward densi-
fication). Those points within a triangle’s buffer are tested using MDL (Minimum
Description Length) to find which gives the flattest tetrahedral. Those points
yielding the flattest tetrahedral are added to the triangulation. This process is
repeated until no triangle has a point in its buffer.

The labeling function is given by:

φ(vi) =
{

1 vi ∈ TIN
0 else

}
(2.9)

Where TIN is the triangulation obtained after the final densification.

Wavelets - T. Thuy Vu and M. Tokunaga: 2002

Assumption

- Points inside closed edges belong to objects.

This algorithm (ThuyVu and Tokunaga, 2002), like Brovelli’s algorithm is edge
based. The algorithm’s labeling function is given by:

φN,s(vi) =
{

1 vi ∈ N
0 else

}
(2.10)
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Where N is a closed neighborhood defined by the closed boundary, s. The ab-
straction of the closed boundary s, is based on on wavelet theory. In the algorithm
a point cloud is first converted into a range image. The range image is then seg-
mented using wavelets. Wavelets are functions that partition data into different
frequency components, and then study each component with a resolution matched
to its scale. It is particularly useful in analyzing physical situations where the
signal contains discontinuities and sharp spikes. Thuy Vu and Tokunaga note that
objects appear in the real world within a range of scales, and it is this scale infor-
mation that they use to segment the data. In the horizontal plane they generate a
multi-scale edge map and use it to distinguish objects of different sizes. They si-
multaneously perform a K-means clustering of the point cloud based on elevation.
The multi-scale edge map and the result of the clustering are then used together
to segment the image, i.e., points that fall within the edge boundary are separated
from others.

Reasoning in horizontal slices - Q. Zhan, M. Molenaar and
K. Tempfli: 2002

Assumption - Objects can be modeled, but the bare earth is too complex to be
modeled,

This algorithm (Zhan et al., 2002) is designed for building detection in ALS, which
is in a sense the converse of bare earth detection. In a preprocessing step the ALS
data is gridded. Horizontal profiles of the landscape are then generated. In each
profile connected component labeling is done. Components are then connected
across profiles, resulting in a tree of components with the ALS point cloud at
the root. Each branch of the tree is then analyzed. If adjacent components do
not exceed a given size, do not differ greatly in size and location (defined by a
component’s center of mass) then the two components and all components above
them in the branch are labeled as building.

Although not done in the algorithm, what is not labeled as building can now be
labeled as bare earth. The labeling function can then be given by:

φ(vi) =
{

0 ∃ vi ∈ sj L(sj) = 0 sj ∈ S
1 else

}
(2.11)

Where S is the set of all components, sj is a component in S, and L(sj) is the
label of component, sj .
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Figure 2.9: Reasoning in horizontal slices. The greyed grids shown in the top
figure, the components in the horizontal slices, are the detected buildings.

Morphological filter - H. Masaharu, and K. Ohtsubo: 2002

Assumption - In a neighborhood points in a given height range are bare earth.

This algorithm (Masaharu and Ohtsubo, 2002) starts by selecting the lowest points
in a neighborhood, as in the algorithm by Kilian et. al.. All non-selected points
are labeled as object. Because the neighborhoods are relatively small, a neigh-
borhood can lie entirely on an object. Therefore, some of these lowest points are
object points. The next step of the algorithm aims to identify these object points.
A neighborhood, N , of radius, r, around a low point, vi, is defined. This neigh-
borhood contains only low points from the first step. The mean, µh, and standard
deviation, σh, of the height of all points in N is determined. The labeling function
for the low points is given by:

φN,r,µh,σh
(vi) =

{
0 |h(vi)− µh)| > σh

1 else

}
(2.12)
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This labeling of the non-object points is repeated until sigmah becomes acceptably
small. Three or four repetitions are indicated to be sufficient.

Segment Filtering - N. Abo Akel, O. Zilberstein and Y. Doyt-
sher: 2003

Assumption - The bare earth is a collection of connected components, occupying
a large area.

In this algorithm (Akel et al., 2003) the point cloud is first gridded. This gridded
data is then Delaunay triangulated. A region growing is done in which triangles
are connected under the constraint that the angle between their normals is below
a given a threshold and the height difference between their center of mass is below
a given threshold (a method similar to that by Gorte (2002).

Segments, whose area is below a given maximum threshold are labeled as object.
This maximum threshold is chosen based on the size of the largest building in the
point cloud.

φ(vi) =
{

0 ∃ vi ∈ sj L(sj) = 0 sj ∈ S
1 else

}
(2.13)

Where S is the set of all segments, sj is a segment in S, and L(sj) is the label of
segment, sj .

Scan Labeling - A. Sampath and J. Shan: 2003

Assumption - Traveling along a scan, point sets that are between discontinuities
and lie above their neighborhoods are object.

Unlike the other algorithms mentioned so far, this algorithm (Sampath and Shan,
2003, 2004; Shan and Sampath, 2004) works on ALS scans 5 and not on whole
point clouds. Every point, vi in a scan has two temporary labels, ai,LR and ai,RL.
In figure 2.10 the ai,LR and ai,RL label are shown next to every point. The labels,
ai,LR and ai,RL, are the top and bottom digits respectively.

In a first step the algorithm works along a scan from left to right, figure 2.10. The
first point in a scan is assumed to be bare earth and hence its temporary label,
ai,LR, is set to 1. The first and second points are compared. If they meet a given
continuity criteria the first point’s LR label is transfered to the second point. If

5a scan being a single sweep of pulses obtained by one oscillation of a mirror in an oscillating
mirror scan system
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Figure 2.10: Scan labeling algorithm. The solid line indicates points that meet
continuity criteria.

they do not meet the given continuity criteria, then the second point’s LR is set
to 0 if the second point is higher than the first point, and 1 if the second point is
lower than the first point. This label transfer is repeated for all adjacent points in
the scan, always working from left to right.

The first step is repeated, but this time starting from the last point and working
from right to left. Furthermore, labels are now put in the RL label. The label
function is now given by:

φ(vi) =
{

0 ai,LR + ai,RL = 0
1 else

}
(2.14)

2.4 Discussion

The above is not meant to be an exhaustive list of all algorithms. Rather it is
intended to show novel ideas used to filter ALS data. What the algorithms also
show is that our conception of objects and the bare earth can differ slightly. This
difference may lead to different filter approaches. From a design perspective, it is
worthwhile to look at the common features amongst the filter algorithms. This
knowledge can be used in the design of an improved algorithm. These algorithms
are built from combinations of different elements. The discussion here will be
focused on identifying the essential characteristics of filters, because they will be
referred to in succeeding chapters.
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Data Structure

The output of an laser scanning survey is a cloud of irregularly spaced 3D points.
Some filter algorithms (Axelsson, Kraus and Pfeifer, Sohn, Roggero, Sithole) work
with the raw point cloud. However, to take advantage of image processing toolkits
some filtering algorithms (Brovelli, Elmqvist, Wack) re-sample the point cloud into
an image grid, before filtering.

Test neighborhood and the number of points filtered at a time

Filters always operate on a local neighborhood. The filtering of a neighborhood
can be done in three possible ways.

1. Point-to-Point (1:1) - In these algorithms two points are compared at a time.
The discriminant function is based on the positions of the two points. If the
output of the discriminant function is above a certain threshold then one of
the points is assumed to belong to an object. Only one point is classified at
a time.

2. Point-to-Points (1:m) - In these algorithms neighboring points (of a point of
interest) are used to solve a discriminant function. Based on the output of
the discriminant function the point of interest can then be classified. One
point is classified at a time.

3. Points-to-Points (n:m) - In these algorithms several points are used to solve
a discriminant function. Based on the discriminant function the points can
then be classified. More than one point is classified in such a formulation.

Measure of Discontinuity

Objects are assumed to generate discontinuities in the bare earth. For example,
a building breaks the continuity in the terrain. Therefore, all algorithms classify
based on some measure of discontinuity. Some of the measures of discontinuity
used are, height difference, slope, shortest distance to TIN facets, and shortest
distance to parameterized surfaces.

Filter concept

Every filter makes an assumption about the structure of bare earth points in a
local neighborhood. For example, bare earth points in a locale must fit a given
parametric surface. Four distinct concepts were observed.
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1. Slope based - In these algorithms the slope or height difference between two
points is measured. If the slope exceeds a certain threshold then the highest
point is assumed to belong to an object.

2. Block-minimum - Here the discriminant function is a horizontal plane with
a corresponding buffer zone above it. The plane locates the buffer zone, and
the buffer zone defines a region in 3D space where bare earth points are
expected to reside.

3. Surface base - In this case the discriminant function is a parametric surface
with a corresponding buffer zone above and below it. The surface locates
the buffer zone, and as before the buffer zone defines a region in 3D space
where ground points are expected to reside.

4. Clustering / Segmentation - The rational behind such algorithms is that
any points that cluster must belong to an object if their cluster is above
its neighborhood. Additionally organizing points into higher-level structures
allows the classification of groups of points based on the spatial organisation
of surfaces in a point cloud.

Single step vs. iterative

Some filter algorithms classify points in a single pass while others iterate, and
classify points in multiple passes. The advantage of a single step algorithm is
computational speed. However, computational speed is traded for accuracy by
iterating the solution, with the rationale that in each pass more information is
gathered about the neighborhood of a point and thus a much more reliable classi-
fication can be obtained.

Replacement vs. Culling

In culling a filtered point is removed from a point cloud. Culling is typically found
in algorithms that operate on irregularly spaced point clouds. In a replacement,
a filtered point is returned to the point cloud with a different height (usually
interpolated from its neighborhood). Replacement is typically found in algorithms
that operate on regularly spaced (rasterized) point clouds.

Using first pulse and reflectance data

Nowadays scanners record multiple pulse returns. This feature is advantageous in
forested areas, where the first pulse is usually on the vegetation and subsequent
pulses are from surfaces below the vegetation canopy. Additional to multiple pulse
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measurements the intensity of the returned pulses is also measured. Different
surfaces in the landscape will absorb/reflect pulses differently and therefore it
may be possible to use this information in classifying points. Only the algorithm
by Brovelli uses the first pulse. None of the described filters made use of the
reflectance intensity.

Using external data

External information, such as orthopotos, line maps, land use maps, existing DEMs
can be used to augment the filtering process; a view already shared by (Kraus and
Pfeifer, 1998; Ackermann, 1999; Axelsson, 1999). While most filters rely solely on
the information contained in the ALS data, other filters, particularly those that
aim to detect buildings attempt to use other information to enhance the filtering
process. Currently not many filters make use of external data.

The brief discussion on the characteristics of filters concludes this chapter. In the
next chapter, the experimental results of some of the filters described above are
presented.
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Chapter 3

ISPRS Filter Test

3.1 Introduction

Some comparison of known filtering algorithms and difficulties have been published
by Huising and Pereira (1998), Haugerud and Harding (2001), and Tao and Hu
(2001). However, an experimental comparison was not available Therefore, in
pursuance of the objectives of this research an experimental study was conducted
by the author1 to compare the performance of various automatic filters developed
to date. This study was done with the aim of:

1. Determining the comparative performance of existing filters. It is accepted
that filters will not be perfect and that most will not be universally appli-
cable. They will work under most scenarios (combination and distribution
of features in a landscape), but there are situations in which they will fail.
Therefore, it is of interest to find what filter strategy will work under what
circumstances.

2. Determining the performance of filtering algorithms under varying point den-
sities. Cost efficiency is a significant factor in the choice of resolution at which
the landscape is scanned. The lower the resolution the lower the flight cost.
However, the choice of resolution also depends on the level fidelity required
in the abstraction. The lower the resolution the lower the fidelity. There-
fore, a balance has to be struck between lowering costs and ensuring fidelity.
Therefore, it is of interest to find out the impact of resolution on the quality
of filtering, in relation to the algorithm used.

1The study was conducted under the auspices of ISPRS Working Group III/3 “3D Recon-
struction from Airborne Laser Scanner and InSAR Data”
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3. Determining problems in the filtering of point clouds that still require further
attention.

In line with the objectives of the research, a web site was set up
(http://www.geo.tudelft.nl/frs/isprs/filtertest/) where data sets were provided for
to the ALS community for testing. Individuals and groups were approached and
invited to participate in the study by processing all data sets if possible. Results
were received from eight participants. The algorithms used by the participants
came from a cross-section of the most common strategies (or variants) for extract-
ing the bare earth from airborne laser scanner point clouds and thus provide a
good view on the state of the art.

This chapter is drawn in great part from the following publications, (Sithole and
Vosselman, 2003b, 2004), and the final report of the ISPRS filter comparison
(Sithole and Vosselman, 2003c).

The ALS data used in the test is described in section 3.2. Sections 3.3 and 3.4
describe the evaluated filter algorithms and the results of the experiments. In
section 3.5 the results are discussed with respect to the objectives of the test.

3.2 Test Data

Within the framework of the OEEPE2 project on laser scanning (Petzold and
Axelsson, 2001), FOTONOR AS acquired data with an Optech ALTM scanner over
the Vaihingen/Enz test field and the Stuttgart city centre. With kind permission
of the OEEPE subsets of this dataset were selected for the comparison of filtering
algorithms. Reference data was produced by interactively filtering the datasets.

Data provided to the participants

Eight test sites (four urban and four rural) were chosen because they contained
a variety of characteristics that were expected to be difficult for automatic fil-
tering. The datasets included landscapes with steep slopes, dense vegetation,
densely packed buildings with vegetation in between, large buildings (a railway
station), multi-level buildings with courtyards, ramps, underpasses, tunnel en-
trances, bridges, a quarry (with break-lines), and data gaps. The urban sites were
recorded with a point spacing of 1-1.5m. The rural sites had a point spacing of
2-3.5 m. Both first and last pulse data were available.

2The European Organization for Experimental Photogrammetric Research (OEEPE) is an
organisation founded in 1953 to further photogrammetric research. In 2002 it was renamed
European Spatial Data Research (EuroSDR).
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Site 1 Site 8

Figure 3.1: Two sites used in the ISPRS test

Sites 1 and 8 (figure 3.1) were also provided at two reduced resolutions to test
the filter performance at three different point cloud resolutions. Thus, twelve data
sets were provided to the participants. The reduced resolution data sets had 2-3.5
m and 4-6 m point spacing for the urban dataset and 4-5.5 m and 7-10 m point
spacing for the rural dataset. To obtain the first reduced resolution the scan lines
in the original point clouds were detected. Every second point was selected from
every second scan line. Similarly, the second reduced point cloud was produced
from the first reduced point cloud.

Reference data sets

The reference data was generated by manually filtering the data sets. Use was
made of several interactive tools for removing points on vegetation and buildings.
Only after careful inspection, the classifications were accepted. Aerial photographs
were available to assist in the interpretation of the point clouds. All points in the
datasets were labelled bare earth or object. The definition of what should be
considered bare earth is, however, a subjective one. For the purpose of this test,
bare earth was defined as the topsoil or any thin layering (asphalt, pavement, etc.)
covering it. According to this definition bridges, gangways, etc., were treated as
objects. Ramps leading toward bridges, however, were classified as bare earth.
Furthermore, the bare earth was treated as being a piecewise continuous surface.
Therefore, courtyards were also accepted as being part of the bare earth if they
were near the surface interpolated between the points on surrounding streets. From
the eight (non-reduced) data sets fifteen samples were abstracted. These fifteen
samples were representative of different environments. They were more focused
in respect to the expected difficulties as identified in the qualitative comparison.
The fifteen samples were used in the quantitative analysis.
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3.3 Evaluated filter algorithms

Eight individuals/groups submitted results for the test. The algorithms have al-
ready been described in chapter 2. The algorithms tested were those submitted
by:

1. Magnus Elmqvist : FOI (Swedish Defence Research Institute)

2. Gunho Sohn: University College London

3. Marco Roggero: Politecnico di Torino

4. Maria Brovelli : Politecnico di Milano

5. Roland Wack, Andreas Wimmer : Joanneum Research, Institute of Digital
Image Processing

6. Peter Axelsson: DIGPRO

7. George Sithole, George Vosselman: TU Delft

8. Norbert Pfeifer, Christian Briese: TU Vienna

3.4 Result of Comparisons

The filter results of the participants were analysed in various ways. The data
of all eight test sites were used to visually assess the performance of the algo-
rithms in several difficult landscape types. Qualitative analysis was followed by a
quantitative analysis using the fifteen sub-samples that dealt with specific cases.
Furthermore, the effect of the point density on the performance of the filter algo-
rithms was assessed quantitatively.

Qualitative assessment

Based on previous experience and the results from the participants, a list was
made of circumstances under which the filter algorithms are likely to fail. These
situations relate to outliers in the data, object complexity, objects that are at-
tached to the bare earth, vegetation, and discontinuities in the bare earth. Several
examples of difficult to filter landscapes are shown in figure 3.2.

The performance assessment of all filter algorithms was based on a visual exam-
ination and comparison of the filtered data sets. The qualitative assessment of
filters is summarized in Tables 3.1 and 3.2. The main problems faced by the filter
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Figure 3.2: Examples of difficult scenarios for filtering

algorithms were found in the reliable filtering of complex scenes, filtering of build-
ings on slopes, filtering of disconnected bare earth (courtyards), and discontinuity
preservation. The examined cases are described below in more detail.

Outliers

Many datasets contain points that are far above or below the bare earth surface.

Low outliers - These are points that normally do not belong to the landscape.
They originate from multi-path errors and errors in the laser range finder. Most
filters work on the assumption that the lowest points in a point cloud must belong
to the bare earth. These points are naturally an exception to the rule. Many
algorithms also work on the assumption that points neighbouring a lower point
must belong to an object. In practice, this assumption usually holds. However, in
cases where the lowest point is an outlier, the assumption fails completely, resulting
in an erosion of points in the neighborhood of the low outlier, figure 3.2.

High outliers - These are points that also normally do not belong to the landscape.
They originate from hits off objects like birds, low flying aircraft, or errors in the
laser range finder. Most filters handle such features easily, because they are so far
elevated above neighbouring points. It is included here for completeness only.
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Object complexity

For various reasons objects may be difficult to detect:

Very large objects - Because many of the filtering algorithms are localized, large
objects may not be filtered completely if the size of objects exceeds that of the
test neighborhood.

Very small objects (elongated objects, low point count) - Examples of such objects
are vehicles.

Very low objects (walls, cars, etc.) - The closer an object is to the bare earth, the
more difficult it becomes for algorithms to differentiate between it and the bare
earth. This problem is complicated even further by the need not to incorrectly
filter off small but sharp variations in the bare earth.

Complex Shape/Configuration - A major difficulty posed by urban environments
is the variety and complexity of objects found in them. This complexity manifests
itself in the shape, configuration, and lay of objects.

Disconnected bare earth (courtyards, etc.) - In urban environments, it is common
to find patches of bare earth enclosed by objects. The decision of whether an
enclosed patch is bare earth is not always clear-cut.

Attached objects

Objects in this category have surfaces that on one side are seamlessly connected
to the bare earth, but show clear height differences with the bare earth on other
sides. Examples are:

Building on slopes - Such objects have roofs that are elevated above the bare earth
on some sides and minimally or not at all on other sides.

Bridges - Artificial structures spanning the gap (road, river, etc.,) between bare
earth surfaces.

Ramps - Natural/Artificial structures spanning the gaps between bare earth sur-
faces; where one is lower than the other.

Vegetation

Vegetation on slopes - Vegetation points can be filtered based on the premise that
they are significantly higher than their neighborhoods. This assumption naturally
falls away in steeply sloped bare earth where points may lie at the same height
as vegetation points. The classification problem becomes harder with increasing
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Rating Item filter rating Influence rating
Good Item filtered most of the time (>

90%)
No influence

Fair Item not filtered a few times Small influence on filtering of
neighboring points

Poor Item not filtered most of the time
(< 50%)

Large influence on filtering of
neighbouring points

Table 3.1: Meaning of Good, Fair and Poor (used in Table 3.2)

surface roughness in the bare earth.

Low vegetation - Similar to the problem of low objects, except this time compli-
cated by steep slopes.

Very dense vegetation - Dense vegetation canopies prevent hits from the bare earth.

Discontinuity

Preservation (Steep slopes) - Generally objects are filtered because they are dis-
continuous from the bare earth. Occasionally it also happens that the bare earth
contains discontinuities. At discontinuities in the bare earth some filters will op-
erate as they would on objects. Therefore, discontinuities in the bare earth are
lost.

Quantitative assessment

The quantitative assessment was done by generating cross-matrices (for the 15
subsets of the dataset) and generating visual representations of the cross-matrices
in order to view the distribution of the errors and understand their causes. An
example is shown in figure 3.3. The cross-matrices were then used to evaluate
Type I (rejection of bare earth points) and Type II (acceptance of object points
as bare earth) errors, and visual representations were then used to determine the
relationship of Type I and Type II errors to features in the landscape. It must be
stressed that what is presented here covers the difficulties in filtering as observed
in the data and in general all the filters worked quite well for most landscapes.

Figure 3.4 shows an actual comparison, accompanied by a visual representation
of the errors. The scene is taken from an urban environment (break-lines, large
buildings, vegetation, bridges, etc.). It is fairly complex and difficult for filters.
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Correct bare earth Type I error
Type II error Correct object

Unused 121

Filtered
BE Obj

R
ef

er
. BE 21880 602 22482 68.99%

Obj 588 9515 10103 31.01%
22468 10117 32585
68.95% 31.05%

ratio BE-Obj/ Obj-BE 1.02

Figure 3.3: Sample data for quantitative comparison and assessment

From the numbers and the visuals it can be seen that each filter responds differently
to the features in the landscape (some doing better than others). After some
remarks on the computation of errors and a global analysis, filter problems related
to several difficult object and landscape features are discussed in more detail.

Type I vs Type II errors

The output from some participant’s filters is gridded or altered in position from
the original. Because of this, DEMs were generated for the participant’s filtered
data and the height of the points in the reference data were compared against
these DEMs. Using a predefined threshold (20 cm) to account for interpolation
errors and based on height comparison, all points were labelled as correct bare
earth, Type I error, Type II error or correct object. Therefore, the Type I and II
errors have to be understood in the context of height comparison of the reference
against the filtered DEMs.
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Figure 3.4: Quantitative comparison of site 22

All the filtering algorithms examined make a separation between object and bare
earth based on the assumption that certain structures are associated with the for-
mer and others with the latter. This assumption while often valid, fails sometimes.
This failure is caused by the fact that filters are blind to the context of structures
in relation to their neighbourhoods. Because of this a trade off is involved between
making Type I (reject bare earth points) and Type II errors (accept object points).

The computed errors (over all the data sets) ranged from 0-64%, 0-19%, 2-58% for
Type I, Type II and the Total errors respectively. Most filters focus on minimizing
Type II errors (as shown in figure 3.4), except the filters by Axelsson and Sohn.
In other words filter parameters are chosen to remove as many object points as
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possible, even objects that are small and close to the ground. The downside of
this is that many valid bare earth points could be removed. This tendency to
minimizing Type II errors, partly suggests that participants consider the cost of
Type II errors to be much higher than that of Type I errors.

While Type I and Type II errors show the tendency of the choice of filter param-
eters, the influence of the filter algorithm can be gauged from the total error. For
example in figure 3.4 it can be seen that a filter may have a high Type I or Type II
error and yet have a relatively small total error. This depends on the proportions
of bare earth and object points in the scene.

Analysis of the results

Steep Slopes

Height differences (discontinuities) are a key to separating the bare earth and
objects. Therefore, points significantly above their neighbours are assumed to be
off objects. This assumption easily holds in flat bare earth, but becomes more
difficult as the slope of the bare earth increases. Therefore, as expected most
filters had difficulties on steep slope (e.g., figure 3.2), but some filters (those that
minimized Type I errors) also generated small total errors on steep slopes. The
explanation for this could lie in the fact that for most filters, if Type I errors are
minimized then more object points are classified as bare earth (increasing Type
II errors). However, in general, there are fewer object points then there are bare
earth points, and hence a Type II error has a smaller influence on the total error
than a Type I error. Nonetheless, filtering in steep bare earth still remains a
problem especially at reduced resolutions.

Discontinuities (preservation)

As already mentioned the bare earth and objects are assumed to be separated by
discontinuities. However, break-lines (figure 3.2) in the bare earth are an exception
to this assumption, hence the need to retain discontinuities in these exceptions.
The two slope based filters (Roggero and Sithole) have the most difficulty with
discontinuities in the bare earth as can be seen in figure 3.4. This is borne by the
large number of Type I errors. However, when the height difference at discontinu-
ities increases the performance of the slope-based filters remains the same. This
is not the case with some of the other filters, where a discontinuity can also influ-
ence filtering in the neighborhood of the discontinuity. Another interesting aspect
of filtering at discontinuities is where the Type I errors occur. Some filters only
cause Type I errors at the top edge of discontinuities, whereas others cause errors
at both the top and bottom edges. The potential for the latter case happening is
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relatively higher for surface based filters.

Bridges

Filters do not make a reasoned distinction between objects that stand clear of the
bare earth and those that are attached to the bare earth, e.g., bridges (figure 3.2).
From the results in figure 3.4, it can be seen that the removal of bridges can be
complete, partial or not at all. All the algorithms for the exception of Axelsson’s
seem to remove bridges consistently. A possible reason for this could be the method
of point seeding used in the algorithm. Another problem with the filtering of
bridges relates to the decision made about where a bridge begins and ends. This
problem is detected by Type II errors at the beginning and end of bridges (bridges
in the test were treated as objects). This error though is generally not large.
Similar to bridges are ramps. Ramps bear similarity to bridges in that they span
gaps in the bare earth. However, they differ in that they do not allow movement
below them. As such, ramps were treated as bare earth in the reference data. All
the tested algorithms filtered off the ramps.

Complex scenes

Shown in the scene (figure 3.2) is a plaza surrounded on three sides by a block of
buildings. From the plaza, it is possible to walk onto the road to the east and also
descend via stairs to the road below (west). Further, complicating matters there
is a sunken arcade in the centre of the plaza. Defining what is and what is not
bare earth in such a scenario is difficult. In this example, the plaza and arcade
were assumed to be bare earth based on the rationale that it is possible to walk
without obstruction from the plaza to the roads on the west and east. However,
this assumption is very subjective. For this scene, the filters that make use of local
surface assumptions (Pfeifer, Sohn, and in particular Axelsson) performed best.
However, if the arcade, the stairs and the plaza had been accepted as being object,
then the morphological filters would have done better.

Outliers

The number of outliers (both high and low) was relatively small and therefore their
contribution to Type I and Type II errors was small. However, their influence on
filtering in their neighbourhoods can be considerable. The filters by Axelsson and
Sithole produce such Type I errors. While single outliers cause problems for a
few filters, numerous closely spaced outliers will cause problems for many filters.
Even more, the influence of numerous outliers on their neighbourhoods can be
significant depending on the concept base of the filter.
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Figure 3.5: The effect of landscape on filter performance

Outlier detection prior to filtering would negate the influence problem on filters
that are susceptible to outliers.

Vegetation on slopes

Most of the filters do well in identifying vegetation on slopes and even better on
flat landscapes. However, on steep slopes filtering is sometimes done at the cost of
increased Type I errors, and in the case of the Elmqvist and Brovelli filters quite
significantly.

Low bare earth point count

Because filters depend on detecting structures, especially those that detect bare
earth it is essential that there be enough sample bare earth points. Low bare earth
counts can be found in areas where there are high densities of objects or vegetation
(such as railway stations, e.g., figure 3.2). However, most of the filters did well in
identifying bare earth points despite the low count of bare earth points. Part of
the reason for this could be that they all assume that the lowest points are bare
earth.
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Overview

Although the fifteen sub sites used for the quantitative analysis, all contained one
or more difficult features to filter, the performance of filters differed substantially
from subset to subset. The result from one of the eight filter algorithms, across the
fifteen sub sites is shown in figure 3.5 . It can be seen that two steep slopes generate
the largest total error. In the first case (sub site 1, 17% total error), the slope is
heavily covered by buildings and vegetation. The second case (sub site 11, 20%
total error) is covered by low vegetation. Mixed buildings and vegetation and low
vegetation on steep slopes are difficult cases, hence the large errors are expected.
For both sites, there is a clear emphasis on reducing Type II errors (stacked chart
to the right). A balancing of Type I and II errors will most probably reduce the
total error. Sub site 10 also has a steep slope with vegetation. But the vegetation
on these slopes is elevated (strong discontinuity), thus making them easier to filter.
The next site to generate large errors is sub site 12, which contains break-lines (it
is in fact a quarry). The balanced Type I and Type II errors show that effort was
placed in keeping the total error small. The data gap also generates a large total
error. This appears to be because a lot of effort is put in reducing Type II errors.

Because of space constraints all the landscapes cannot be described here. However,
it is instructive to see that while some landscapes will generate more filtering errors
than others, the choice of parameters and balancing of Type I and II errors also
plays a significant part in the performance of a filter algorithm.

Effect of resolution

As the resolution of the data is lowered, it is harder to separate the bare earth
from the objects. To determine how filters cope with reduced point densities,
the data of two sites, site 1 and 8 (figure 3.1 were provided at three different
resolutions. The results of the participants were compared to the reference data of
the corresponding resolution. A cross-matrix was generated for each comparison.
The results for the urban site are shown in the charts in figure 3.6 (again the same
presentation as in figure 3.5). For some of the participants there was no data at
some of the resolutions (Elmqvist, Brovelli and Sithole).

The results do not allow firm conclusions to be drawn on the effect of the resolu-
tion on the filter performance. In general, it can be seen that the Type I errors are
quite large for site 1. The effects of the reduced resolution are most likely minor
compared to the errors that are already made due to the complexity of the scene
(buildings and vegetation on a steep slope). The different filters show quite dif-
ferent responses to the reduction in resolution. This may in part be explained by
the fact that some participants tweaked their filter parameters to obtain optimal
results at different resolutions, whereas others did not.
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Figure 3.6: Type I and Type II errors of Site 1 vs. resolution.

The results for site 8 (not shown in figure 3.6) in general showed a slight increase in
both Type I and Type II errors for reduced resolution levels. The strong increase
in Type I errors was observed for the filter of Wack. This is most likely due to a
large number of interpolation errors when comparing the gridded filtered data to
the reference point cloud.

3.5 Discussion

What has been presented are some of the striking difficulties in filtering as ob-
served in the data. In general all the filters worked quite well in landscape of low
complexity (characterized by gently sloped bare earth, small buildings, sparse veg-
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etation, and a high proportion of bare earth points). As seen in section 3.4. The
performance of a filter can differ depending on the feature content of a landscape.
The quantitative evaluations of the data provided by the participants resulted in
numerous tables with error counts and standard deviations. The complete analy-
sis can not be presented here (because of space restrictions) but it is available in
the full report (Sithole and Vosselman, 2003c) of the study3. The problems that
pose the greatest challenges appear to be complex cityscapes (multi-tier buildings,
courtyards, stairways, plazas, etc.,) and discontinuities in the bare earth. It is
expected that tailoring algorithms specifically for these areas may improve results,
albeit by a small amount.

Concerning the filter strategy, it was noted that overall the surface based filters
appear to yield better results. Generally, they use more context than other filter
strategies and are therefore better able to separate points on a (ground) surface
from other points.

A decision always has to be made between minimizing Type I and Type II errors.
The question of which error to minimize depends on the cost of the error for the
application that will use the filtered data. From a practical point of view, it will
often depend very much on the time and cost of repairing the errors manually,
which is done during quality control. Experience with manual filtering of the data
showed that it is far easier to fix Type II errors than Type I errors. Generally,
Type II errors are conspicuous. In contrast, Type I errors result in gaps in the
landscape, and deciding whether a gap has been caused by a Type I error or from
the removal of objects is usually not possible. While the costs of Type II errors
are thus considered to be lower, it is striking to see that most algorithms produced
much more Type I errors than Type II errors. This raises the question whether
the filter algorithms can be more tuned toward the reduction to Type I errors,
even if this is at the expense of an increased number of Type II errors.

Point density

More tests on decreasing resolution will need to be done, as the test sites chosen
have proved inadequate to obtain a conclusive picture of the effects of resolution on
filtering. The complexity of the sites has meant that even at the highest resolutions
the filters have difficulties, which then masks the performance of the filters at lower
resolutions. Nonetheless, in choosing the scan resolution the filter concept used
becomes critical, especially in landscapes with steep slopes. Additionally a large
Type I error does not necessarily mean the resulting digital elevation model will
be poor. Importantly it depends on where Type I and Type II errors occur in the
landscape.

3The report can also be obtained from the web site setup for the study, http://www.geo.

tudelft.nl/frs/isprs/filtertest/
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The next chapter will look at the conceptual development of a new filtering algo-
rithm, with the objective to solve the problems identified in this chapter.
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Chapter 4

Filter Design

4.1 Introduction

The algorithms presented in chapter 2 were shown to separate between objects
and the bare earth using different assumptions. The use of all these assumptions
arise from (i) the designers conception of the bare earth, (ii) the desire for a simple
algorithm, and (iii) resource limitations.

The first two reasons are the most significant because they relate to the design of a
filter algorithm. Chapter 3 tested the strengths and weakness of the assumptions
on real data. Because the intention is to design a filter applicable to as many
landscape types as possible the strengths of the assumptions are used to formulate
new assumptions. From these new assumptions, a filter framework is designed.
This chapter details the development of new assumptions and proposes a frame-
work based on these assumptions. For the purpose of succeeding discussions the
common assumptions in chapter 2 are re-listed here in the order given below. The
assumptions are ordered according to their perceived complexity.

A1 The lowest points in a neighborhood belong to the bare earth.

A2 In a neighborhood points within a given height range are bare earth.

A3 Gradients in the bare earth are globally bounded, i.e., for the entire bare
earth slopes are never greater than a certain threshold

A4 Gradients in the bare earth are locally bounded. i.e., for a bare earth neigh-
borhood slopes are never greater than a certain threshold, and this threshold
can differ between neighborhoods.
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A5 Curvature in the bare earth is bounded.

A6 The bare earth is locally and globally flat.

A7 The bare earth is a patchwork of piecewise continuous surfaces.

A8 Objects can be modeled, but the bare earth is too complex to be modeled.

A9 Points inside closed edges belong to objects.

A10 The bare earth is a collection of connected components, occupying a large
area.

These different assumptions give rise to three questions that need to be answered
before new assumptions are formulated.

1. Are the assumptions used correct? - Every assumption is correct in respect
to the type of landscape for which it was designed. Because of this, there is
no such thing as a bad filter, but rather a filter that is incorrectly applied.

2. Which is the best assumption? - Stated differently which assumption ac-
commodates the greatest number of bare earth and object types. This is a
difficult question because it requires us to objectively define the bare earth
and object. However, an objective definition of bare earth and object is im-
possible. Firstly, because we lack the capacity to mathematically describe
the bare earth or objects exactly (at all scales and in all its forms). The best
we can do is to describe it in approximate terms (slope, curvature, roughness,
etc.,). Secondly, the definition of bare earth is subjective. No two people will
share the same definition of the bare earth. What maybe bare earth to one
person may not be bare earth to another. The filter test in chapter 3 showed
that filters based on assumption A7 performed the best. But this is in itself
not conclusive because not all filters and landscape types were tested. What
it indicates is that given any landscape assumption A7 has a better chance
of working.

3. Are there better assumptions that could be formulated? - The filter test in
chapter 3 showed that the assumptions used are inadequate, especially for
urban landscapes and landscapes that contain steep slopes. This hints at an
insufficiency in the modelling and hence an inadequacy in the assumptions.
This suggests that better assumptions can be formulated.

4.2 The weakness of current assumptions

A cursory examination of a point cloud gives the impression that filtering is a
relatively simple task. This is because human cognitive skills and intuition are ap-
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bare earth bare earth
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Figure 4.1: Neighborhoods that contain objects and bare earth, and neighborhoods
that contain only bare earth are homeomorphic

plied to the task. However, duplicating human cognitive skills and intuition is not
simple. The best that can be done is to define and apply simple rules on the ra-
diometry, geometry, and topology of sample points abstracted from the landscape.
Defining these rules is difficult because of the characteristics of a landscape, and
the characteristics of ALS data.

Characteristics of Landscape

The difficulty here arises from the nature and arrangement of objects and the bare
earth in the landscape. Furthermore, these difficulties will appear in every ALS
point cloud without exception.

1. Complexity of the Landscape - Here complexity is in reference to the form of
the terrain (not to be mistaken with roughness), in particular discontinuities
(e.g., embankments, raised platforms, terraces, etc.,). Conventional filters,
because they operate on small neighborhoods will suffer because locally bare
earth-to-bare earth relations and bare earth-to-object relations are homeo-
morphic as shown in figure 4.1. This complexity invalidates assumptions A1
through A5.

2. Complexity of objects - While most buildings in urban areas are regular in
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Figure 4.2: Neighborhoods that contain objects and bare earth, and neighborhoods
that contain only objects are homeomorphic

shape (blocks, prisms, etc.,) there are others that are more complex (layered
roofs, platforms, etc.,). Again conventional filters, because they operate on
small neighborhoods will suffer because locally object-to-object relations and
bare earth-to-object relations are homeomorphic as shown in figure 4.2. This
complexity invalidates assumptions A1 through A5.

3. Proximity of objects to the bare earth - The relation between bare earth and
objects is in direct proportion to the vertical and lateral separation between
them. Therefore, the closer an object is to the bare earth the more difficult
it becomes to distinguish it from the bare earth, this is demonstrated in
figure 4.3. As objects and the bare earth near each other all the stated
assumptions become invalid.

4. Object size - Objects are generally differentiable from the bare earth in that
globally there is more bare earth than any single object. However, locally this
is not the case. In a neighborhood it is possible that there maybe more object
points than bare earth points. This presents problems for assumptions A1
through A5. More generally, any filter that operates on a local neighborhood
will face problems if there are more object points than there are bare earth
points.
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(a) (b) (c)

Figure 4.3: Vertical and lateral separation of points, (a) desirable vertical and
lateral separation, (b) poor vertical separation, (c) poor lateral separation.

Characteristics of the data

Unlike the difficulties presented by landscape characteristics for formulating rules,
the difficulties in filtering due to data characteristics can be controlled to a certain
extent. Furthermore, the difficulties will not be present in every data set.

1. Resolution of the point cloud - The resolution of a point cloud has a direct
influence on the spatial definition of objects. The less defined an object
the more it starts to resemble the bare earth. In a low resolution point
cloud assumptions A3 through A10 become invalid for the simple reason
that discontinuities become difficult to discern. In a high resolution point
cloud assumptions A3 through A7, A9 and A10 can also start to break down
because of the noise present in such point clouds.

2. Data gaps - Objects that lie along or near the edge of a point cloud are
usually only partially abstracted (truncated). This invalidates assumption
A9 and possibly A8.

3. Variation in point density and strip overlaps - Variations in planimetric point
density depend on the ALS scan system used, the scan angle, the scan swath
and the flying speed of the aircraft. Scanning is done so that the variations
are kept as small as possible. Typically, a point cloud is built by combining
strips of scans. Because of this, point clouds have higher densities in areas
where strips overlap. Figure 4.4 shows two strips that are combined to yield a
point cloud. As can be seen in the overlap region the point spacing has been
reduced. Because proximity measures in filters depend on point density,
in a point cloud formed by combining strips, discriminating points based
on proximity becomes problematic. A proximity threshold that works in
overlapping regions may lead to type I errors in the non-overlapping regions.
Similarly, proximity thresholds that work in the non-overlapping regions may
lead to type II errors in the overlapping regions. This characteristic of the
data can cause problems for assumptions A1, A2, A5, A8 and A10. Naturally,
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Strip 1

Strip 2

Strip 1 + Strip 2

Overlap

Figure 4.4: Reduction of point spacing in strip overlaps

filtering individual strips at a time would avoid this problem. However, strips
usually have to be combined to avoid the problem of truncated objects.

4. Ambiguity - Objects like bridges and overpasses are man made extensions
to the bare earth. The decision to keep or remove such objects requires
that bridges be explicitly identified. Assumptions A1 through A10 cannot
account for objects like bridges.

5. Zero ground returns (lack of bare earth information) - Typically the pene-
tration rate of ALS in vegetated areas is around 25% (Lindenberger, 1991),
especially when scanning is done in winter when foliage on trees is in decline.
However, this penetration rate can sometimes be very low to the extent that
there are very few bare earth samples, as shown in figure 4.5. In the absence
of bare earth samples meaningful filtering is not possible. This invalidates
assumptions A1 through A10.
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4.3 Formulating new assumptions

As we move down the list of assumptions, A1 through A10, the neighborhoods
examined in the point cloud become larger and the emphasis is placed increasingly
on working on connected-point-structures (surfaces, clusters, and segments) rather
than individual points. Larger neighborhoods provide a greater view on the data
and permit a contextual analysis of of points. For example, we can now better
deal with the homeomorphy shown in figures 4.1 and 4.2.

Furthermore, the characteristics of the landscape start to have a lesser effect on
filtering, and the characteristic of the data become the dominant problem. In
a sense, this is welcome because the characteristics of the landscape cannot be
altered, whilst we can control the characteristics of the data.

For this reason from here on emphasis shall be placed on working with connected-
point-structures, overcoming the problems that result from characteristics of the
landscape, and detecting bridges. Furthermore, connected-point-structures will be
referred to as segments. Before new assumptions can be formulated, a model of
the landscape has to be devised.

Modelling the landscape

Any landscape is composed of three distinct classes of features, the bare earth,
natural objects, and man made objects. These form a minimum description of the
topography. Others are more elaborate in their classification of landscapes. For ex-
ample Lohmann (2000) lists eight classes. However, many filter designers already
view the topography in respect to these three classes (although they will use alter-
native words like terrain/vegetation/buildings or ground/vegetation/buildings).
This description of the topography is deliberately very general with a view that
each class can later be broken into sub classes. To formulate new assumptions a

Figure 4.5: Zero ground returns. In the area covered by vegetation there are no
hits off the bare earth
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Man made
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Bare earth (B)

Natural
object (ON)

Figure 4.6: A conceptual and logical representation of the real world

more elaborate description of the classes is required. This elaboration has to be
on two levels, (conceptual 1 and logical 2).

Figure 4.6 shows one possible conceptualization of the real world, in which there
is the bare earth, on top of which resides natural and man made objects. The
elements of this models are defined below:

1. Landscape, L - A scene consisting of the bare earth and other objects.

2. Objects, O - A collection of natural, ON , and man made, OM , features in a
landscape.

3. Bare Earth, B - The topsoil or any thin layering (asphalt, pavement, etc.)
covering the topsoil. In any landscape the bare earth is broken where it is
covered by a man made object.

1Conceptual - a description suitable for language.
2Logical - a description suitable for programming.
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Bare earth and Objects

The conceptual model is setup to describe the real world in very general terms, with
the idea of identifying the elements to be modeled and establish, the relationships
between the elements. A landscape acquired by ALS is necessarily discrete. The
logical model is setup to relate the points (or point clusters) in a point cloud to the
elements in the conceptual model in a manner consistent with the real world. In
the logical model the landscape, L, is replaced by the point cloud, V and elements
of the bare earth, B, and object, O, are replaced by points or surfaces. In the
real world, a person can readily distinguish between the bare earth and objects.
For example, no person would confuse a car for bare earth. Because of this in
the conceptual model the membership of the sets B and O are crisp. In a point
cloud distinguishing between the bare earth and objects is much more difficult and
situations can arise in which points (or point clusters) cannot be classified or are
misclassified. Because of this uncertainty, a set X is introduced to accommodate
points whose classification is in doubt. The membership of X is subjective because
each person will interpret points better or worse than others. This inability to
classify arises from either an insufficiency of evidence or a conflict of evidence.

Natural objects, man made objects, and bridges

The logical model is not yet complete, because it does not account for natural
objects, ON , it does not account for man made objects, (OM ), and it does not
account for bridges OMA. Figure 4.7 shows an extension of the logical model in
figure 4.6 that accommodates natural objects, man made objects and bridges.

Natural objects mostly refer to vegetation. However, motor vehicles, lampposts
and other small objects are treated as natural object3. This anomaly is entertained
because it is desired that the set, OM , only contain buildings. This is because for
most urban applications the most sought after feature are buildings. The boundary
of the sets OM and ON lie on that of X to indicate that the memberships of
OM ∩B and ON ∩B are uncertain. A further set XO is defined for uncertainty in
the membership of OM ∩ON .

As shown in chapters 3 and 2, current filtering strategies only make the distinction
between two types of features in a landscape: bare earth and object. From the
results of the ISPRS study it is evident that this distinction is inadequate because
objects like bridges and flyovers that are attached to the bare earth surface, are
not dealt with appropriately. Some applications may require objects like bridges
to be filtered, whereas other applications would prefer to have them preserved in
the point cloud. Therefore, it is necessary to explicitly detect such objects in the
landscape, thus allowing the user to specify whether such objects should be kept

3Outliers are also treated as natural object
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Figure 4.7: Extended logical representation with natural and man made objects.

or removed (Sithole and Vosselman, 2003a).

The logical model can now be summarized as:

1. B ∪O = V

2. B ∩O = X

3. ON ⊂ O, points that are certainly natural objects

4. OM ⊂ O, points that are certainly man made objects

5. OM ∪ON ∪XO ∪X = O

6. B+ ⊂ B, points that are certainly bare earth

7. OMA ⊂ B, bridge is part of the bare earth

8. B+ ∪OMA ∪XB ∪X = B

Excluding X the set B is comprised of two sets, B+ and OMA. These are the
sets of points that are definitely bare earth and bridge respectively. A further
two sets B+ and OMA are defined to represent points that are know to be bare
earth (certain) and bridges respectively. The set B+ shares a boundary with X
to indicate that there is uncertainty in the membership of B ∩ O. A set, XB , is
introduced to accommodate the uncertainty in the membership of B+∩OMA. This
uncertainty arises from a difficulty in defining where a bridge begins and ends.

Based on this logical model:

1. Firstly, bare earth and objects are separated.

2. Secondly, objects are separated into natural objects and man made objects.

3. Thirdly, bridges are separated from the bare earth.
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The next section looks at the new assumptions that are used to effect the above
listed separations.

The new assumptions

The elements of all sets except V shall be treated as being point clusters/segments
instead of points. This is in line with the reasoning at the beginning of section 4.3.
For the new filtering strategy the following assumptions are adopted:

B1 A point cloud is free of systematic errors: Systematic errors in a point cloud
would distort the geometry and topology of objects, and thus invalidate all
other assumptions.

B2 In a point cloud objects are separated by discontinuities and the point spac-
ing varies in direct proportion to the gradient of slopes in the landscape.

B3 All points in a segment are part of the same class.

B4 The surface of each object is encompassed in one segment: The topologi-
cal relation between objects is established by the relationship between their
boundaries, and segments provide a means to obtain object boundaries.
Therefore, to establish correct relationships between objects, objects have
to be contained entirely within one segment.

B5 The perimeter of each object segment is mostly raised above its neighbor-
hood: In general, objects are raised above their neighborhoods. Therefore,
any segment that has its perimeter higher than neighboring segments is in
likelihood an object.

B6 The surface of the bare earth is a collection of segments - but there is only
one bare earth: Because of data gaps (e.g., absorption of pulses by water
bodies, gaps between strips, etc.,) or enclosures (e.g., courtyards, etc.,) the
bare earth maybe broken up into several segments. However as an entity
there is only one bare earth.

B7 In any landscape the bare earth in its entirety occupies more space than any
single object (provided that the landscape sampled is large).

B8 Man made objects and natural objects are distinguishable by their roughness:
Man made objects by design tend to have smooth surfaces, whereas natural
objects tend to be rough.

B9 Man made objects and natural objects are distinguishable by their radiom-
etry (if every point in a point cloud is associated with a reflectance or RGB
value).
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Figure 4.8: A simple bridge. It is connected to the bare earth at A left and A
right. It is also disconnected from the bare earth across its length, B left and B
right.

B10 If corresponding first and last returns are spaced far apart, then the first
return is object.

B11 Bridges are connected to the bare earth along their width: In figure 6.8 the
bare earth is connected to the bare earth at A(left) and A(right).

B12 Bridges are connected to the bare earth on at least two sides. See figure 6.8.

B13 Bridges are greater in length than in width. See figure 6.8.

B14 Along the length of a bridge, diametrically opposite points on the perimeter
are raised above the bare earth: In figure 6.8 the points at B(left) and
B(right) are above the bare earth.

Comparing the new assumptions against assumptions A1 through A10, it can be
seen that the analysis of a point cloud has been shifted from the study of the
geometric and radiometric characteristics of points and placed on the geometric
and radiometric characteristics of segments. What should stand out is that the
final filter will be based on a series of assumptions rather than a single assumption.
The reasoning behind each assumption will be explained in chapter 6. In the next
section, an algorithm framework that encapsulates the new assumptions shall be
outlined.

4.4 Algorithm framework

Figure 4.9 shows the overall filtering process. This flow is constructed of a se-
ries of segmentation-classification steps. The rationale behind the segmentation-
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Figure 4.9: Overall filtering flow

classification steps shall now be explained.

1. Detecting macro objects

In the logical model separation is in the first instance made between the bare
earth and object. With respect to assumption B3 the emphasis is placed
on detecting object points. The points that remain after the detection of
objects are treated as being potentially bare earth. Potentially, because
these remaining points may still contain bridges.

The filter test in chapter 3 showed that Type I and II errors have to balanced.
This balancing is necessitated by the fact that it is difficult to detect macro
(large) and micro (small) objects simultaneously. To avoid the balancing of
Type I and II errors the object detection process is split so that macro and
micro objects are detected separately. This first step detects macro objects,
primarily because they are the most prevalent objects in a landscape.

The point cloud is segmented using assumption B1 and objects are detected
based on assumption B4, B5, B6 and B7.

2. Detecting bridges

The remaining points are segmented again and bridges detected. Bridges
are detected based on assumptions B11, B12, B13 and B14. The remain-
ing points are treated as being potentially bare earth. Potentially, because
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these remaining points may still contain micro objects and points whose
classification may never be certain.

3. Detecting micro objects

This is the second part of the object detection. In this step, there is no
segmentation because objects are of a size that would not yield meaningful
segments. Micro object detection may result in the removal of bridge edges
that are essential for bridge detection. For this reason, micro object detection
is done after the bridge detection.

4. Detecting man made and natural objects

Points classified as object are segmented and then classified as man made
object or natural object based on assumptions B8 and B9.

Different segmentation procedures are used at each step (except step 3). The
reasons for their use and their mechanics shall be explained in chapter 5. The
classification of the segments is then explained in chapter 6



Chapter 5

Segmentation

5.1 Introduction

The purpose of segmentation is to obtain higher level information from the points
in a point cloud. This information is usually knowledge of the extent of homoge-
neous regions in a landscape. These homogeneous regions can later be classified
with respect to the contents of a landscape, e.g., buildings, vegetation, and bridges.

In the algorithm framework set out in section 4.4, a point cloud is segmented
and classified in five steps. The segmentation approach employed in each step is
different and suited to the features being sought. For some of the steps the exist-
ing segmentation procedures were deemed inadequate. Therefore, in this respect
a novel segmentation approach is proposed here specifically for the detection of
objects and bridges.

The purpose of this chapter is to discuss the segmentation strategies employed.
Firstly, possible segmentation algorithms are discussed. Next, the choice of seg-
mentation algorithms is explained. Finally. the new algorithm is rationalized and
detailed. The classification of these segments is later explained in chapter 6.

The limitations of segmentation

With respect to the conceptual model one of the assumptions made was that the
surface of each object should be encompassed by one segment (assumption B4).
For example, all points belonging to a building segment should be delimited by its
roof outline. This presents a problem because if a building is covered by a multi-
tiered roof, each roof outline will be considered a different object. Because of this
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the assumption cannot be satisfied. On the other hand trees are distinguishable
by clustering points based on the proximity between points. Because of this,
trees with interlocking branches will be merged into the same segment. Again
the assumption cannot be satisfied. The objectives of this research do not require
that buildings or whole trees in their entirety be identified. Therefore, the above
limitations should pose little ill effects on the classification of points.

However, because of the above limitations buildings and trees standing close to
each other may also be merged into the same segment. This mixing of different
features is difficult to overcome and will affect the classification of such segments.

The homogeneity of segments

A segment is characterised as being homogeneous. This homogeneity of segments
is mainly determined by the geometric constraints placed on point neighborhoods.
The choices of constraints are themselves determined by the application and pur-
pose of the segments 1. Typically, these geometric constraints are based on varia-
tions in gradient, and curvature in the neighborhood of a point.

This neighborhood can be broadened so that it includes a mass of points (as op-
posed to a few points). The homogeneity of a segment can then be defined in
terms of this mass of points conforming to a mathematical surface. This is an
attractive means of expressing homogeneity because it emphasizes on the form of
a surface rather than local variations as are defined by gradient and curvature.
However, expressing discontinuity in this fashion is not without its problems. Sur-
faces in the real world contain discontinuities within themselves and therefore the
mathematical surfaces have to accommodate discontinuities.

This difficulty can be overcome to some extent by expressing homogeneity in terms
of proximity. The rationale being that on a discrete surface points are closest to
their immediate neighbors. As such, points that are within a certain distance of
each other must belong to the same surface. This lends to the idea of surface
reconstruction based on proximity graphs (Klein and Zachmann, 2004).

To conclude this section the influence of ALS data on homogeneity (and as such
segmentation) is briefly discussed. The characteristics of ALS data influence seg-
mentation in two ways:

1. the resolution of the data - In low resolution ALS data objects lose definition
and therefore homogeneity constraints have to be relaxed. High resolution
ALS data suffer from low amplitude and high frequency noise, which offers
problems for homogeneity constraints based on measures like curvature.

1This application dependency of segments means that no segment is good or bad, but rather
fit for a particular use
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2. overlapping surfaces - In the real world objects sometimes overlap each other
or the bare earth. For example, bridges overlap the bare earth and the
branches of trees hang over roofs. Because of this neighborhood systems
that are based on planimetric proximity will show great variety (gradient,
curvature, etc.,) in the overlap regions. Therefore, neighborhood systems
should ideally be based on proximity in 3D and hence allow for segments
that overlap in planimetry.

5.2 Previous work

Considerable work has been done in segmentation as shown by the following com-
parison studies and reviews (Fu and Mui, 1981; Haralick, 1983, 1985; Hoover et al.,
1996; Sahoo et al., 1988; Zhang, 1997) . While these algorithms are mostly applied
to range images, they are adaptable to irregular point clouds. A study of published
segmentation algorithms shows that the algorithms fall into broadly four groups:

1. Pattern based techniques - Cluster analysis2

2. Edge detection techniques

3. Graph based techniques

4. Region growing techniques

Segmentation will be explained as:

ΘV = {θv | ∀v ∈ V } (5.1)

Where ΘV is the segmentation operation on a point cloud, V , and θv is the seg-
ment/cluster assignment for a single point, v, in V . The result of the segmentation
are segments, s, with the following properties:

1. S = {s|s ⊂ V }

2. ΘV ⇒ S

3.
⋃
si = V where |si| > 0

4. si ∩ sj = ∅ where i 6= j

That is, each segment is a closed subset of the point cloud, V , the segmentation
operation, Θ, will determine the character and number of segments, every point
in the cloud belongs to a segment, and no two segments have points in common.

2Grouping of points based on their relationships in an n dimensional feature space.
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Pattern based techniques

In these algorithms, n number of geometric or radiometric measures (features) are
determined for each point, v. These n features are represented in an n-dimensional
feature space. Thereafter, points that occupy compact and disjoint regions (called
clusters) in the feature space are treated as distinct segments. Typical features
used include the position of an ALS point (this is necessary), the surface normal
at an ALS point, the coefficients of a best fitting surface, and the reflectance of an
ALS point. The surface normal is estimated by the best-fitting plane (using least
squares adjustment) in a small neighborhood of an ALS point.

Common techniques used for demarcating the feature space include K-Nearest
Neighbour (KNN), and Maximum Likelihood methods. For more on feature space
demarcation techniques the reader can refer to (Jain and Dubes, 1988; Jain et al.,
1999, 2000). The performance of the algorithms is dictated by the choice of features
and feature space partitioning technique.

Some examples of pattern based segmentation are presented below to demonstrate
possible approaches.

1. Jain and Hoffman (Hoffman and Jain, 1987; Jain and Dubes, 1988) describe
the segmentation of range images using the position, depth, and normals at
pixels to obtain six dimensional pattern vectors. The planimetric position
(x,y) of the pixels serve to provide connected segments in planimetry. The
depth (z) provides connected segments in height and the normals serve as a
means for detecting ”crease” edges (where two surfaces meet sharply). To
avoid bias each of the features is normalized so that they have unit variance.

Many clustering techniques were tried and a form of K-means algorithm was
found to perform best. The authors indicate that to obtain a good segmen-
tation result, the clustering algorithm should be directed to over segment the
point cloud, and then merge the segments in a post processing step. This
is done to avoid under segmentation in the event that feature space is too
complex.

2. Filin (2002) applies a clustering algorithm to ALS data using the position, the
parameters of a best fitting plane at a point (plane fitted to the neighbors
of a point), and the average height difference of a point to its neighbors
to form seven-dimensional pattern vectors. The feature space is clustered
using a mode seeking algorithm. In a post clustering step, clusters, in the
feature space, with a cardinality below a given value are rejected because of
insufficiency. The clusters that remain are then further tested to determine
if they contain outliers or whether they need to be split. Finally clusters
that share similarities are merged.

3. Roggero (2002) applies a hierarchical clustering algorithm to ALS data using
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the second order symmetric 3D tensor for ALS points to form n dimensional
pattern vectors. Using principal component analysis (PCA) on the n fea-
tures a five-dimensional feature space is generated. Some of the features
used include, the total static moment, curvature and the reflectance of the
ALS points. The algorithm is rather involved and will not be further de-
tailed here. Unlike the algorithms by Jain and Filin, this method includes a
region growing scheme alongside the clustering scheme that avoids the need
to merge and split clusters in a post processing step.

4. Other pattern based algorithms exist but they have only been applied to
range images of close range objects. Therefore, their efficacy for segment-
ing ALS data has not been tested. Some other examples of pattern based
segmentation algorithms are provided in an experimental comparison of seg-
mentation algorithms by Hoover et al. (1996).

Edge based segmentation

Some examples of edge based segmentation have already been discussed in sec-
tion 2.3. Essentially the algorithms search for planimetric edges in ALS data. If
edges forming closed boundaries are found, then all points within a closed edge
are deemed to belong to the same region. Therefore, the performance of the seg-
mentation is determined by the edge detector.

Typically, in such segmentation algorithms the data is first converted to a raster.
This makes possible the application of classical image edge detection schemes
(Abdou and Pratt, 1979; Davis, 1975; Fram and Deutsch, 1975; Heath et al., 1996;
Peli and Malah, 1982; Schachter and Rosenfeld, 1978).

Proximity graph based segmentation

Proximity graph based algorithms are based on the simple notion that points
within segments are closer to each other than they are to points in other segments.
The algorithms begin by imposing an attribute graph G(V,EA) on the point cloud,
V . The attributes of the edges, EA, are based on a predefined proximity measure.
Edges in G that do not meet a defined proximity criterion are identified and
removed to yield a reduced graph in which the connected components are treated
as segments.

Zahn (1971) uses a minimum spanning tree (MST) graph and defines inconsistent
edges (edges that fail to meet the proximity criterion) as those edges whose weight
is significantly greater than the average of nearby edge weights. In this case, the
edge weight is given by the Euclidean length of the edge. If weights are stored in
the edge attributes A, then the algorithm can be represented as follows:
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(a) (b)

Figure 5.1: Region growing. Region growing in TINs (a), region growing by scan
lines (b)

1. Impose minimum spanning tree on the point cloud, V , GMST (V,EA).

2. Weed edges whose weight (A) is greater than a give threshold, α,
GMST (V,EA≤α) = GMST (V,EA)−GMST (EA>α).

3. Segments are given by si = (V |V ∈ Gi(V,EA≤α)) where Gi(V,EA≤α) is a
connected graph in GMST (V,EA≤α).

Additional to MST, other useful graphs are Delaunay triangulations, relative
neighborhood graphs (RNG) and Gabriel graphs (Bose et al., 1993).

The algorithms by Axelsson and Sohn (section 2.3) are a variant of the graph based
algorithms in that they search for only one segment. This segment is formed by
triplets of points that have the property that they are close to each other. However,
they differ in that unlike the conventional method described above, they are formed
by repeatedly adding rather than removing edges.

Segmentation by region growing

In these algorithms typically planar or non-planar surface patches, seeds, are first
selected in the point cloud and then these patches are connected or grouped based
on adjacency measures (difference in normals, slope difference, curvature differ-
ence, etc.,), figure 5.1(a). A typical example region growing algorithm is presented
by Gorte (2002).
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Another implementation of a region growing algorithm on ALS data is presented
by Lee and Schenk (2001, 2002). They impose a Delaunay triangulation on a point
cloud and connect the triangles in the TIN based on Gestalt principles.

Other forms of region growing take advantage of the fact that point clouds are
usually built from sequences of scans. In these approaches, points are first joined
along scans, using polynomials or splines. The scan lines are then joined by prox-
imity functions. In effect there is a region growing along the scans and then
another across the scans. This is shown in figure 5.1(b). Such an algorithm was
proposed by Jiang and Bunke (1994) and although simple in concept it has been
found to perform favourably when compared to other algorithms (Hoover et al.,
1996). An example and extension of the algorithm has been presented by Patane
and Spagnuolo (2002).

5.3 New segmentation strategy for object and
bridge detection

The filter test demonstrated that many of the current filter algorithms do not do
well at discontinuities in the landscape. Including a segmentation step in the filter
algorithm is designed to overcome this problem. Points are gathered together in
one segment and the segment is then classified. This is in opposition to classifying
points one at a time.

Segments are classified based on their geometric, radiometric and topological char-
acteristics. However, the segments obtained by the four different approaches are
not always ideal for the application here. Before explaining the necessity of a
new segmentation approach, the usefulness of the segments yielded by the current
approaches is briefly discussed below.

Pattern based techniques - A problem with this algorithm is choosing the
right features and normalizing them to avoid bias. Feature based clustering
in ALS avoids geometric modelling on the presumption that geometric mod-
els describing the data are not readily discernible. The problem with this
is that it is difficult to establish the relationship between the segmentation
criterion and the properties of the desired segments. For this reason pattern
based segmentation algorithms were deemed unsuitable for the segmentation
here.

Edge based segmentation - While essentially a sound concept, edge based
algorithms suffer when the data is noisy (e.g., low vegetation), which can lead
to open boundaries, multiple edges, and disconnected edges. Additionally,
to obtain appropriate closing boundaries, the data also has to be processed
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at appropriate scales. Automating the determination of this scale can be
problematic. However, there are other aspects of edge based algorithms that
make them unsuitable. Edge based algorithms cannot cope with overlapping
surfaces in ALS data. This means that the edges of bridges and buildings
can be under segmented.

Proximity graph based segmentation - Proximity based algorithms assume
that a point in an object is closer to its neighbours than it is to points
in other objects. This is a valid assumption considering that ALS scans
are done from high altitudes using small opening angles and therefore the
density of points at discontinuities (e.g., walls) is very small. Unlike edge
based segmentation, proximity segmentation can work in the presence of
surface overlaps. Because of this, proximity segmentation was considered
suitable. In the event that other variables like reflectance are used to deter-
mine edge weights, the consistency measure becomes especially critical and
prior knowledge of the relation between geometric, radiometric and semantic
characteristics has to be available.

Segmentation by region growing - If the components in the region growing
are triangles in a 2D TIN, then the algorithm will have problems in noisy
data and data in which points from different surfaces overlap. However, the
component connectivity inherent in region growing algorithms introduces
topology, which is important in the classification stage. Because, of this,
region growing algorithms were also deemed suitable.

While segmentation by proximity and region growing have desirable strengths
they share a weakness in that the segments they yield do not carry topological
information that allows handles in genus 1 (or higher) surfaces to be detected.
Bridges are examples of handles in genus 1 (or higher) surfaces. The challenge was
to devise a segmentation approach that explicitly derived the above topological
information and combined the strengths of region growing and proximity based
segmentation. This was achieved by modifying the scan line based segmentation
algorithm. The sections to follow explain how this was achieved.

Concept

A surface can be thought of as a field with an infinite number of points, defined
by an implicit equation f(x, y, z) = 0. If the surface contains discontinuities, it
can be approximated using multiple parametric surface patches. Alternatively,
the surface can be approximated by a web of planar curves all passing through
the points. The greater the number of curves the better the representation of
the surface. In scan line algorithms the planar curves are all parallel, i.e. they
all run in the same direction. Here however, the planar curves are allowed to
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Figure 5.2: Surface representation using planar curves

run in all directions. Figure 5.2 shows an example of four planar curves passing
through a single point on the surface. The curves (profiles) become approximations
of the surface, and interpolation of points on the surface is most accurate at the
intersection of the curves. To approximate the surface a set of planar curves would
have to be defined at a suitable number of points on the surface.

Figure 5.3(a) demonstrates how a surface is reconstructed using profiles. Shown
in the figure is a piecewise continuous surface. A number of profiles are defined.
Because the surface is piecewise continuous the profiles will terminate at the dis-
continuities. If two profiles intersect then that is an indication that the points on
those profiles belong to the same surface. In this way by testing the intersection
of profiles, points belonging to the same surface are identified.

The preceding discussion assumed a continuous domain. However, the domain of
an ALS point cloud is discrete. The effect of this is that:

1. The extent of profiles has to be restricted to a given radius about a point,
on the reasoning that the surface representation becomes poor the farther
we travel from the intersection point.

2. The number of profiles passing through a point has to be kept finite for
practical reasons (e.g., resource limitations).

3. Profiles cannot be thin, but rather have to be thick in order to capture
a sufficient number of points to sample surface characteristics. The point
spacing will determine the adequate profile thickness.

This segmentation approach has some distinct advantages:



74 Segmentation

Figure 5.3: Segmentation by profile intersection.

1. Profiles simplify structure detection in a point cloud. This is an important
aspect of the segmentation strategy and is the basis of the novel bare earth-
object and bare earth-bridge classification.

2. It allows segmentation of overlapping surfaces.

3. It is fast.

The main disadvantages of the approach are that it is memory intensive and the
concept can breakdown if insufficient profiles are used.

Segmentation by profile intersection - the algorithm

Figure 5.4 shows a simple example of the segmentation approach. The point cloud
contains two surfaces, the top of the plate represented by white circles and the
top of the cube represented by black circles. The point cloud is partitioned in
three directions (top). In every profile, points are connected if they are on the
same surface. When the three partitions are overlaid, points on the same surface
interconnect (bottom). Figure 5.5 shows how the algorithm works for overlapping
surfaces.

In a point cloud the surfaces are not known. Therefore, points are connected
if they meet predefined criteria. Different criteria for connecting points shall be
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+

Figure 5.4: Segmenting a point cloud. Two surfaces (the top of the plate and the
top of the cube) are segmented using three different profile directions.

Figure 5.5: Overlapping surfaces segmented

discussed in section 5.3. The profile segmentation algorithm consists of three steps
(also described in (Sithole and Vosselman, 2002a, 2003a)).

1. A point cloud is partitioned to yield a series of profiles lying at different
orientations, ϕ.

2. Points in the profiles are connected to yield line segments. Points on the
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same line segment are deemed to be off the same surface.

3. Profiles passing through the same point are assigned to the same segment.

Each step is explained in the sub sections below.

Partitioning the point cloud

A point cloud is partitioned by slicing it into contiguous planar profiles. Each
profile has a thickness w and is oriented in the direction ϕ in the xy plane. Because
all profiles in a given direction are contiguous, points within a profile are not shared
with other profiles in the same direction. Because profiles are run in different
directions, a family of orientations is defined.

D = {ϕ|ϕ ∈ R} (5.2)

The family of profiles running in the same direction are

P(w,ϕ) = {p(w,ϕ)|p ⊂ V } (5.3)

Where p is a single profile in the family P . The profiles, P , have the following
properties:

1.
⋃
pi = V

2. pi ∩ pj = ∅, i 6= j

That is, the point cloud is the union of all profiles with the same orientation,
and that no two profiles with the same orientation share common points and that
points in the profiles are sequentially ordered.

Segmenting the profiles

After partitioning the point cloud, each profile is in turn itself further segmented
to yield line segments l.

Θp(w,ϕ) = {θv|∀v ∈ p(w,ϕ)} (5.4)

Each profile, p, has the following properties:

1. Θp(w,ϕ) ⇒ L where L is a set of line segments
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2. Li = {l|l ⊂ V }

3. lj ∩ lk = ∅, where j 6= k

That is, the segmentation operation Θ on a profile, p, will determine the character
and number of line segments, no two line segments share common points and
points in the line segments are sequentially ordered. It should be noted that the
line segments are only defined in a 2D plane.

Surface Segmentation

The overlaying of the line segments yields a disconnected graph3, G, in which the
connected sub-graphs, Gi, are the desired surface segments.

Because G is a disconnected graph no two segments share points in common. From
the above it can be seen that the segmentation depends on:

1. The thickness, w, of the profiles.

2. The number of directions, ϕ, in which the profiles are run.

3. The profile segmentation operation Θp(w,ϕ).

Of the three, the profile segmentation operation has the greatest impact on the final
segmentation. The next section will therefore look at possible profile segmentation
operations.

Profile segmenting operation

To simplify the segmentation of the profiles, each profile is first transformed from
a 3D frame to a 2D frame, sorted and indexed along the profile. Sorting and
indexing of the points ensures that correspondence between points in both frames
is preserved.

The profile segmenting operation is achieved in a two step process. The first step
involves labeling points that belong together, and in the second step points that
have the same label are connected based on their order. There are several methods
by which labeling can be done, and these are detailed in the sections below:

3Except in the event that one surface segment is obtained, in which case the graph G is
connected.
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Labeling by curve fitting

This approach works on the premise that a set of points that fit a parametric curve
must be off the same surface. The algorithm works as follows:

1. Select a curve function.

2. Place a window of width δ at the beginning of the profile.

3. Select all points inside this window.

4. Fit a curve to the selected points, figure 5.6(a) (in the figure the window is not
at the beginning of the profile, and the figure is simply used to demonstrate
the curve fitting).

5. In the window select those points that are within a given distance εh to the
curve.

6. If of the selected points in step 5:

(a) none have a label, then obtain a unique label and assign it to them all.
(b) one of the points has a label but the others not, then transfer this label

to them all.
(c) many of the points have a label then find the mode label and assign it

to them all.

7. Move the window, but ensure that it still overlaps the previous window
position.

8. Repeat steps 3 to 6.

9. When the window has reached the end of the profile and the points in it
are labeled, then repeat steps 2 to 8 for all unlabeled points (recalling that
only one curve is detected in a window at a time), until no unlabeled points
remain.

The curve function chosen is typically a quadratic or cubic polynomial, and fitting
is done by least squares. However, noise in the profile leads to a poor fit. One
means of overcoming this problem is to use an iterative least squares fitting scheme
as used by Pfeifer et al. (1999), 2.3.

The success of labeling depends on the curve fitting method, the noise in the
points, and the width of the window.

Noise - A curve will attract to a meaningful surface if there are an adequate
number of representative points from that surface. However, noise (points
that belong to other surfaces) will attract a curve away from the surface.



5.3 New segmentation strategy for object and bridge detection 79

Trend line Trend line

(a) (b)

Figure 5.6: Labeling by curve fitting

Width of the window - A successful fit depends on there being only one
surface in the window. In figure 5.6(b) there are two surfaces (the roof of
the building and the bare earth). The fit has traced a single curve between
the surfaces, as a result the labeling algorithm fails.

A major drawback with labeling by curve fitting is that it assumes that there is a
continuous curve within the window, figure 5.6(a). However, particularly in urban
areas this is not the case, figure 5.6(b). This means that the curve fitting has
to be coupled with a discontinuity detection. This is an inconvenience and even
then labeling is not always predictable. The methods described below proved to
be more predictable.

Consecutive Labeling

In this approach, two points are tested at a time. A continuity criterion enforced on
a geometric relationship between two points hypothesizes whether the two points
are off the same surface. Because points in the profiles are sequentially ordered
according to the distance from the ends of the profile, a test of adjacent points
simulates a simple random walk through the profile.

1. Assign a label to point v1; figure 5.7(a).

2. Test points, vi and vi+1; figure 5.7(b). If vi and vi+1,

(a) satisfy the continuity criterion, then assign the label of vi to vi+1, ad-
vance i by 1 and repeat step 2; figure 5.7(c).

(b) do not satisfy the continuity criterion, then search for the next nearest
forward point in the neighborhood, δ, of vi that satisfies the continuity
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(a) (b)

(c) (d)

Figure 5.7: Consecutive point labeling. Move to beginning of label (a), label ad-
jacent points (b), extend the label to other points (c), continue labeling unlabeled
points (d)

criterion. Next, assign it the label of vi, and continue the labeling from
this new point; figure 5.7(c).
If a satisfactory point in δ cannot be found, then move to the first un-
labeled point in the profile. Assign this point a new label, and continue
the labeling procedure from this point; figure 5.7(d).

3. Stop the procedure when all points have been labeled.

Two different continuity criteria were tried:

1. Slope
|∆x(vi, vj)/∆h(vi, vj)| < εslope in the neighborhood δ of vi.

2. Epsilon-Delta
|∆h(vi, vj)| < εh in the neighborhood δ of vi.
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Figure 5.8: Medial axis between curves

Where ∆x(vi, vj) and ∆h(vi, vj) are the planimetric distance and height difference
between points vi and vj respectively. The limits on the criterion are given by the
threshold ε.

Labeling with the slope criterion is used in the bridge detection algorithm (sec-
tion 6.3), and labeling with the epsilon-delta criterion is used in the object detec-
tion algorithm for relatively flat landscapes. (section 6.2).

The advantage of the approach is that it is both simple and fast, which is desirable
considering that typically thousands of profiles have to be processed. The weakness
of the approach is that it does not do well in steep slopes.

Labeling by Crust curve

Amenta, Bern and Eppstein (Amenta et al., 1998), propose a novel approach of
searching for a curve in a planar set of points.

The concept of their approach is that there exists a medial axis between two or
more curves, figure 5.8. If in a point set medial axes can be found, then all points
on the same side of the medial axes must belong to the same curve.

The algorithm works as follows:

1. Generate a Voronoi diagram from the points in a profile, figure 5.9(a). The
medial axis can be discerned by connecting the Voronoi nodes.

2. Delaunay triangulate the original points and Voronoi nodes combined, fig-
ure 5.9(b).

3. Obtain polygonized curves by connecting all the original points that are
linked by an edge in the Delaunay triangulation, figure 5.9(c).
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(a) (b)

(c)

Figure 5.9: Labeling by crust. Voronoi diagram of original points (a), Delaunay
triangulation of original and Voronoi points (b), connecting all original points
joined by an edge (c).

4. Assign to each polygonised curve a unique label and later transfer these
labels to the points that make up the curves.

A characteristic of the approach is that the required sampling density varies with
the local feature size on the curve so that areas of low detail can be sampled less
densely.

Tested on high density data sets the algorithm was found to perform poorly. High
density ALS data usually contains low amplitude high frequency noise. Because
the crust curve algorithm adapts to point spacing crust curves are found even
within the noise. The result of this is that many thinly spaced curves are detected
in the bare earth. For this reason the crust curve algorithm was found unsuitable
for curve detection in profiles.
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(a) (b)

Figure 5.10: Labeling by proximity. Delaunay triangulation (a), removal of edges
that that are greater than a given weight (b).

Labeling by proximity

This approach works on the assumption that points on the same curve are closer
to each other than they are to points in other curves. The algorithm works as
follows:

1. Delaunay triangulate a profile p, GProx(p,EA), figure 5.10(a).

2. Compute a weight, A, for each edge.

3. Remove edges whose weight is greater than a given threshold, α,
GProx(p,EA≤α) = GProx(p,EA)−GProx(EA>α), figure 5.10(b).

4. Assign to each line segment a unique label and later transfer these labels to
the points that make up the line segments.

The weight A is given by:

A = (xj − xi)2 + k(yj − yi)2 (5.5)

Where the weight A is a proximity measure between edge end points vi and vj , and
(xi, yi) and (xj , yj) are the coordinate tuples of points vi and vj respectively. The
closer two points are to each other the smaller the weight A. The proximity field
is scaled differently along the x and y axes so that points along the horizontal are
closer to each other than points along the vertical. This variable scaling is done
on the assumption that in an ALS point cloud, “close points on the horizontal are
much more likely to belong to the same surface than points close on the vertical”.

The variable scaling is achieved using the parameter k (> 1). The proximity
field defined by equation 5.5 represents an ellipse. The shape of this ellipse is
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(a) (b)

(c) (d)

Figure 5.11: Minimum spanning tree. Delaunay triangulation (a), minimum span-
ning tree (b), removal of edges that that are greater than a given weight (c),
removal of dangling edges (d).

determined by the parameter k. If the closest point allowable in planimetry is set
equal to δ and the closest point allowable in the vertical is set equal to εh then
k = (δ/εh)2. Necessarily the threshold α (on A) is equal to δ2.

This labeling approach is more robust to noisy data and works fairly well in steeper
slopes. However, where there is low and dense vegetation (particularly shrubs and
hedges) it has a tendency to merge them with the bare earth. This effect can be
seen in figure 5.10(b). The next approach is designed to alleviate this problem.

Labeling using minimum spanning trees

This approach works on the principle that for a point in the neighborhood of n-
points the two closest to it must be on the same curve that it is on. The curves
that are obtained are determined by the distance measure chosen. The algorithm
works as follows:

1. Delaunay triangulate a profile , figure 5.11(a).
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2. Compute a weight, A, for each edge (the same as in the proximity labeling).

3. Determine a minimum spanning tree, GMST (p,EA), based on the weights of
the edges, figure 5.11(b).

4. Remove edges whose weight is greater than a given threshold, α,
GMST (p,EA≤α) = GMST (p,EA)−GMST (EA>α), figure 5.11(c).

5. Remove dangling edges, figure 5.11(d).

6. Assign to each line segment a unique label and later transfer these labels to
the points that make up the line segments.

The minimum spanning tree4 is a sub graph of the graph obtained in the proximity
labeling. However, the minimum spanning tree has the advantage that it does not
contain any cycles. Cycles are problematic because they strongly connect points
to line segments. Hence, if a point in a cycle does not belong to a line segment
it becomes difficult to identify and remove it (because deciding which point in a
cycle should be removed is non trivial).

For the bare earth-object separation, this labeling approach was found to yield
the most desirable segments, i.e., better separation between bare earth and object
points in the segments. For this reason labeling by minimum spanning tree was
used in all bare earth-object classifications (section 6.2).

The labeling by slope is used in the bridge detection and the labeling by proximity
is used in the man made and natural object detection. The reason for these choices
shall be explained in chapter 6.

5.4 Examples

To conclude this chapter the application of the algorithm is discussed using simu-
lated data. Three examples are presented to show the mechanics of the algorithm
and prepare the reader for the discussion on the classification procedures in the
next chapter.

Examples of segmentation

The segmentation operations are performed on three simulated data sets. The
composition of the data is designed to imitate difficult landscapes or show inter-
esting scenarios.

4There are various algorithms for creating minimum weight spanning trees, but the one used
in the implementation is Kruskal’s algorithm as described by Hartsfield and Ringel (1994).
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Data characteristics:
Slope of the bare earth 45◦

Slope of the roof 60◦

Segmentation characteristics:
Minimum span tree labeling
Profile thickness = 2.0m
Num. profile directions = 3
δ = 2.0m
εh = 0.40m

Figure 5.12: Segmentation example 1: Building on slope (point spacing 1-1.4m).

Example 1

This example, figure 5.12 presents a steep landscape on which there is a building
with steeply slanted roofs. The segmentation yields two segments. The roof points
are merged into one segment and the bare earth points into another. This is the
desirable result.

The profile thickness is chosen a little greater than the point spacing. This ensures
that the profile is thin and adequately samples the landscape along the profile. Too
thick a profile results in a high point density across the profile, which causes the
concept of the algorithm to break down, because the concept is based on the idea
that profiles are thin. Too thin a profile results in a sparse profile that causes
the concept to also breakdown, because the point cloud is discrete and too thin
a profile results in a poor sampling of the landscape along the profile. Profiles
are run in three directions. For object detection, a minimum of three orientation
directions has been found to work well.

Typically the range δ is chosen to be greater than the point spacing. About twice
the point spacing has proved to work well. However, in the presence of steep slopes
the lateral separation between the bare earth and objects is reduced. In this case
too large a δ causes objects to merge into the bare earth. For this reason in the
example the neighborhood range δ is chosen a little greater than the point spacing.

The labeling of points is done using a minimum spanning tree, which does better
in steeper slopes. For this reason in the filtering, the segmentations for (i) bare
earth - object classification, (ii) natural object - man made object classification,
all use a minimum spanning tree labeling procedure.
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Consecutive labeling by slope
Profile thickness = 2.0m
Num. profile directions = 3
δ = 2.0m

εslope = 45◦ εslope = 75◦

Figure 5.13: Segmentation example 2: Bridge connected to the bare earth (point
spacing 1-1.4m).

Example 2

This example, figure 5.13 presents two bare earth segments connected by a curved
ramp. The ramp allows a shallow descent from the highest bare earth segment
to the lowest. The segmentation yields only one segment because the bridge is
connect to the bare earth. As in the previous example the profile thicknesses is
chosen a little greater than the point spacing. Consecutive labeling by slopes is
used to label the profiles. The choice of this labeling algorithm is explained in
figure 5.14. The threshold on the slopes is set at 45◦. This threshold may appear
to be very large. In this case the purpose of the segmentation is to determine
discontinuities along the ramp, which slope can exceed 45◦. Furthermore, the
benefit of the large threshold is that it allows points on steep bare earth slopes to
be merged into the same segment.

Too large a threshold can result in the ends of a bridge to be under determined.
This can be see in figure 5.13. An angle of 75◦ causes the lower ends of the bridge
to blend into the bare earth.
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Figure 5.14: The slope of a bridge edge to adjacent bare earth. The slope is small-
est at the lower end of the bridge. In a segmentation the chosen slope threshold
determines where the bridge tears from the bare earth. The smaller the threshold
the greater the tear and hence the better the determination of the bridge ends.

Consecutive labeling by slope
Profile thickness = 2.0m
Num. profile directions = 3
δ = 2.0m
εslope = 45◦

Figure 5.15: Segmentation example 3: Flyovers (point spacing 1-1.4m).

Example 3

This example, figure 5.13, is a variation on example 2. Three bare earth segments
are connected by two ramps. Furthermore, the segments fly over each other.
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The segmentation yields five segments. This is the desirable result. Parts of the
ramp are merged with the higher bare earth segments and the remaining parts
with the lower bare earth segments. The flyovers break each others continuity. By
extending the range, δ, it is possible to bridge these breaks, but the danger is that
the flyovers could also be merged into the same segment, which is undesirable.
Therefore, the range is kept small and the flyovers allowed to break into parts. As
shall be shown later this does not have a negative effect on the classification of
bridges.

5.5 Discussion

Line segment shapes

In section 5.3 it was stated that the new segmentation algorithm simplified struc-
ture detection. This simplification is made possible by the topological property of
adjacent line segments in the profiles. From the topological properties of line seg-
ments additional topological properties can be obtained for the surface segments.
Figure 5.16 shows nine possible relationships for a line segment (shown by a thick
line) to neighboring line segments (shown by thin lines). These relationships are
referred to here as the shape, ψ(l), of a line segment. The nine shapes are:

1. No shape - the line segment is not neighbored on either side.

2. Raised - the line segment is neighbored on both sides by line segments lower
than itself.

3. Lowered - the line segment is neighbored on both sides by line segments
higher than itself.

4. Raised left - the line segment is only neighbored on its left side, and by a
line segment lower than itself.

5. Raised right - the line segment is only neighbored on its right side, and by a
line segment lower than itself.

6. Lowered left - the line segment is only neighbored on its left side, and by a
line segment higher than itself.

7. Lowered right - the line segment is only neighbored on its right side, and by
a line segment higher than itself.

8. Terraced left - the line segment is neighbored on both sides, the line segment
on the left being higher and that on the right being lower.
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No shape Raised Lowered

Raised left Lowered left Terraced left

Raised right Lowered right Terraced right

Figure 5.16: Line shapes. Relationships of a line segment (shown by the checkered
surface) to neighboring line segments (shown by the gray surfaces)

9. Terraced right - the line segment is neighbored on both sides, the line segment
on the left being lower and that on the right being higher.

Just as the shape of a line segment describes its relationship to neighboring line
segments, then similarly the line segments in a surface segment, together, describe
the relationship of a surface segment to neighboring surface segments, figure 5.17.
Therefore, similarly a surface segment is made from a combination of the following
surface shapes, No shape, Raised, Lowered, High, Low and Terraced. The deter-
mination of the composition of the shape of a surface segment is explained in
section 6.2. Based on the shape composition of a surface contextual classification
can be done (as shall be explained in the next chapter).

Suitability of reflectance for controlling labeling

Typically, every point in an ALS point cloud comes with a value that represents
the strength of the returned laser pulse. This fourth variable offers the possibility
of extending the control of the labeling algorithms. The strength of the returned
pulse depends on the spectral characteristic of the laser used and the properties of
the reflecting surface. Therefore, in addition to labeling points based on proximity,
points can also be labeled based on material composition. In other words if two
adjacent points in a profile have similar reflectance values then they most likely
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No shape High Low

Raised Lowered Terraced

Figure 5.17: Surface shapes. Relationships of a surface segment (shown by a thick
line) to neighboring surface segments (shown by thin lines)

are off the same surface and therefore belong to the same line segment.

The use of reflectance data was considered and found to be unusable for three
reasons. Firstly, reflectance data tends to be very noisy, as evidenced by the
fact that two adjacent points on the same surface can have considerably differing
reflectance values.

Secondly, surfaces are covered by many different types of materials and again
reflectance values within a surface can differ considerably. For example labeling
by reflectance would lead to an over segmentation of the bare earth.

Thirdly, the material covering buildings and vegetation is also found in the bare
earth. Because of this in any segmentation based on reflectance, buildings will
merge with pavements and trees with the ground (if covered by vegetation). This
is undesirable.

Because of the above reasons, reflectance (as well as RGB triplets obtained from
imagery) was not used to control labeling.
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Suitability of first pulse data for controlling labeling

Some ALS point clouds are delivered as first pulse and last pulse returns. This
also offers another means to control the labeling process. If the first and last
pulses are far apart in height then the first pulse is assumed to be off an object.
This assumption was thought to have potential for improving the labeling process.
However, the use of first pulse data was found to fail in logic.

Firstly, the difference between the first and last pulse only provides evidence for the
class (i.e., object) of the first pulse. The class of the last pulse remains unknown.
Yet, segmentation is done on the last pulse (because in vegetated areas it contains
more bare earth points than the first pulse).

Secondly, a discrimination based on the distance between the first and last pulse
is essentially a classification of points as either object or unclassified. The purpose
of segmentation is to organise points in such a way that higher level reasoning
becomes possible. Therefore, the classification by testing the proximity between
the first and last pulse negates the need for segmentation.

For the above reasons information based on first pulse data is not used to control
the segmentation. However, as shall be explained in the next chapter it can be
used in the man made - natural object classification.

Computational issues

It has already been mentioned that the algorithm is fast but memory intensive.
On an AMD 800 MHz machine with 256MB of memory, using consecutive labeling
500000 points were processed in about 2 minutes. Using more elaborate labeling
algorithms (minimum spanning tree or proximity) increases the processing time
to about 3 minutes. This is a direct result of the Delaunay triangulations.

However, the rest of the algorithm, i.e., the profile generation and the intersection
of the profiles are near linear operations. Therefore, provided memory is available
the consecutive labeling of 1 million points can be expected to take about 4 min-
utes. The same though does not apply to the more elaborate labeling schemes.
Therefore, the labeling of 1 million points using minimum spanning tree could last
more than 6 minutes.

In terms of memory, most of the storage requirements are for keeping track of
the line segments. Furthermore, each line segment and its parts are accompanied
by internal variables that further increase storage requirements. These internal
variables are kept in order to reduce the running time. Therefore, storage space is
sacrificed for performance. This choice has been made on the expectation that ad-
vances in electronics will improve computer performance, and thus the algorithm’s
high memory usage will with time become less significant.



Chapter 6

Classification

6.1 Introduction

In chapter 4 a filter framework was proposed. This framework was developed
based on new assumptions derived from a conceptual and logical modelling. In
the framework the classification of a point cloud was divided into four steps:

1. Detecting macro objects,

2. Detecting bridges,

3. Detecting micro objects, and

4. Detecting man made and natural objects

This chapter details the algorithm designed for the detection of the features in
each step.

6.2 Detecting macro objects

In the filtering framework, it was stated that segmentation should precede the
classification of points. Using the characteristics of the segments points can then
be classified. Each segment is described by a set of radiometric, geometric and
topological characteristics. Conventional algorithms have depended on geometric
and radiometric characteristics of point clusters for classification. Topological
characteristics have been less used but as shall be explained are potentially more
practical than the other two characteristics.
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Figure 6.1: Topological ordering of a landscape

Using geometric characteristics

Typical geometric characteristics of a segment include position/location, orienta-
tion, roughness/texture, perimeter length, area, elongation/eccentricity and com-
pactness. For detecting objects, of the above only the roughness/texture, perimeter
length, area, elongation and compactness are of practical worth because it can be
argued that for many objects the value of these characteristics is bounded. For
example if the maximum expected building area is know then all segments with an
area greater than this maximum cannot be a building. However, choosing an ex-
pected maximum value for a characteristic is subjective and can lead to problems
in the event of under or over segmentation.

Using radiometric characteristics

Every point in a point cloud is associated with at least one radiometric charac-
teristic, i.e., the reflectance strength of the returned pulse. Some ALS systems
also capture an image simultaneous with the pulse measurement, thus allowing
an RGB triplet to be associated with each point. Radiometric characteristics for
a segment can then be obtained by aggregating the radiometric characteristics of
the points in the segments. Typically these are based on statistical measures such
as the median, mode, or nth percentiles. Therefore, many radiometric character-
istics could be derived for a segment. However, for detecting objects, radiometric
characteristics are problematic in that the material coverage of the bare earth is
not homogeneous. Objects are limited in extent and are therefore usually covered
by one type of material (mineral or vegetable). The bare earth on the other hand
occupies a large space and is usually covered by different types of materials. This
combined with the fact that the radiometry of objects can differ from landscape
to landscape makes this characteristic problematic for object detection. This is
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essentially a problem of image understanding and requires knowledge modelling
that is still a problem far from being solved.

Using topological characteristics

The topology, i.e., the spatial relationship between segments, can be described by
the adjacency and connectivity of segments. Topology introduces the notion that
there is an order in the construction of a landscape, in both planimetry and height.
Objects are objects because they exist above other objects or the bare earth, and
the bare earth has nothing beneath it. In figure 6.1 the segments O1, O2, and O3
belong to objects because they are raised. Segment B1 belongs to the bare earth
because it is lowered. Therefore, the shape of the surface segments (as obtained by
the profile intersection technique) implicitly contains the topological relationships
between segments.

Algorithm for macro object detection

The algorithm for detecting macro objects is based on the shape of surface seg-
ments, as explained in section 5.5. To explain how the algorithm works the tiered
object in Figure 6.2 shall be used. Before proceeding the reader is encouraged
to have a look at the example in appendix D. It will help in understanding the
algorithm.

Figure 6.2: Tiered object
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Algorithm 6.1: Detecting macro objects
Data: Point cloud, V
Result: Point cloud, V , classified as object or bare earth

begin
while raised object found do

Segment V . ΘPI,MSTV ⇒ S6.1.1

foreach line segment l in the profiles P do
Get the shape of l. ψ(l) ⇒ µl6.1.2

end

foreach s in S do
Get the shape of s. ψ(s) ⇒ µs6.1.3

if µs = Raised then
foreach point v in s do

Label v as object6.1.4

end
end

end

Remove from V all v labeled as object.6.1.5

V = V − {v|v ∈ V, φ(v) = object}
end

foreach point v in V do
if µv 6= Raised then

Label v as bare earth6.1.6

end
end

end

Step 6.1.1: The preferred segmentation procedure is the profile intersection with
minimum spanning tree (section 5.3), because it is better able to handle steep
slopes in the bare earth; see example 1 in section 5.4. In landscapes where the
bare earth is relatively flat the consecutive labeling algorithm will work equally
well, section 5.3.

Step 6.1.2: Once segmentation has been achieved, the shape of each line segment
is determined as explained in section 5.5. Figure 6.3(a) shows the example point
cloud segmented in four directions. The shape of every line segment in the top
right surface segment is raised. This can be appreciated by looking at the line
segments passing through point 2.

Step 6.1.3: Because every line segment is raised, the shape of the surface seg-
ment can also be said to be raised. Therefore, based on the assumption that the
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perimeter of an object is mainly raised above its neighborhood it is argued that
this surface belongs to an object, figure 6.3(a). The determination of the shape of
a segment is explained in section 6.2.

Step 6.1.4: Once a segment is identified as belonging to an object then every point
in the segment is classified as object, figure 6.3(b).

Step 6.1.5: Next, detected object points are removed from the point cloud. This
can be thought of as a stripping away of objects from the landscape.

The top left, bottom left and bottom right surface segments contain mostly terraced
line segments. This can be appreciated by looking at the line segments passing
through point 1 in figure 6.3(a). Because most line segments are terraced, the
shape of the surface can also be said to be terraced. These surface segments
cannot belong to an object because their perimeters are not raised above their
neighborhoods. Therefore, the surface segments are kept indeterminate. This is a
safe assumption because terraces are found in both objects and the bare earth.

To classify the indeterminate segments, steps 6.1.1 through to 6.1.5 have to be
repeated. Again this can be thought of as a gradual stripping away of objects in
order to get at the bare earth.

Therefore, in the first repetition the top left and bottom right surface segments are

(a) (b)

Figure 6.3: Macro object detection.
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(a) (b)

Figure 6.4: Macro object extraction. Iteration 1

predominantly composed of raised and high line segments. This can be appreciated
by looking at the line segments passing through points 3 and 4, figure 6.4(a).
The top left and bottom right surface segments are shaped as raised and high
respectively. Raised and high segments belong to objects on the assumption that
the perimeter of objects are raised above their neighborhoods. Therefore, the
surface segments and the points within surface segments are classified as object,
figure 6.4(b).

The shape of the bottom left segment remains unchanged as can be seen by com-
paring the line segments passing through point 1 in figure 6.3(a) with those in
figure 6.4(a).

In the second repetition the bottom left surface segment is classified as object
because the line segments passing through it are predominantly high; figure 6.5(a)
and (b). Usually three or four repetitions are sufficient.

Step 6.1.6: In a final step all points that have not been labeled as object are labeled
as bare earth. This labeling is done to indicate that the points are potentially bare
earth.
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(a) (b)

Figure 6.5: Macro object extraction. Iteration 2

Determining the shape of a surface segment

As stated in section 5.5 a surface can assume six different shapes, No shape, Raised,
Lowered, High, Low and Terraced. In the discussions above the shape of a surface
segment has been decided by finding the line segment shape that is dominant
within the segment. In other words the shape of a surface segment is determined by
the line segment shape, µ, with the highest frequency. The shape grade, f(ψ(s) =
µ) (value between 0 and 1), or the indicator that a surface segment is of shape µ,
is given by:

f(ψ(s) = µ) = |Ms,µ|
|Ms| (6.1)

Where ψ(s) is the shape of surface segment s, |Ms| is the cardinality of the set of
line segment shapes in surface segment s, and |Ms,µ| is the cardinality of the set
of line segments with shape µ in surface segment s. A necessary property of the
shape grade is:
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In this direction the surface is partly
terraced and partly lowered

In this direction the surface is
wholly no shape

Figure 6.6: A surface as a combination of different shapes. The checkered surface
is lowered, terraced and no shape to varying degrees.

∑
µ=

raised,
lowered,
high,
low,
terraced,
noshape

f(ψ(s) = µ) = 1 (6.2)

Equation 6.2 can be understood to mean that each shape grade serves as evidence
of a surface segments’ affinity for a particular shape. Because of this, a surface
segment is treated as having not one, but six shapes to varying extents. Figure 6.6
shows a surface that is a combination of different shapes.

Equation 6.1 assumes that all line segments share the same orientation. Fig-
ure 6.7(a) and (b) show a terraced surface segment that has been profiled in two
and three directions respectively. The shape grade for the surface segment be-
ing raised is 1/6 and 1/11 for (a) and (b) respectively. This shape grade rapidly
diminishes as more profiles are added. Looking at figure 6.7(b), in spite of the
dominance of the terraced line segments the surface still appears to be moderately
raised. This is because the single raised line segment carries all the shape infor-
mation along its orientation. It is therefore argued that f(ψ(s) = µ) is biased by
the number of profile orientations. To compensate for this bias the shape grade in
equation 6.1 is redefined so that the frequency along each orientation is weighted
by the reciprocal of the number of profile orientations, |D| (equation 5.2). In other
words, the shape of a surface segment is determined by aggregating the surface
shape along each orientation. The shape grade is now given by:
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(a) (b)

Figure 6.7: Shape from orientation. Two profile directions (a), three profile direc-
tions (b)

f(ψ(s) = µ) =
|D|∑
i=1

|Ms,µ,ϕi |
|Ms,ϕi

|
1
|D|

(6.3)

where |Ms,ϕi | is the cardinality of the set of line segment shapes with orientation
ϕi in surface segment s, and |Ms,µ,ϕi

| is the cardinality of the set of line segments
with shape µ and orientation ϕi in surface segment s.

In figure 6.7 the surface segment’s raised grade is now 1
2

1
1 + 1

2
0
5 = 1

2 and 1
3

1
1 +

1
3

0
5 + 1

3
0
5 = 1

3 for (a) and (b) respectively. The shape grades obtained from this
expression do not diminish as rapidly as those from equation 6.1. More importantly
by aggregating the shape grades along each orientation the bias of the segmentation
procedure is largely removed from the shape determination.

Having determined the shape grade for a surface segment the next step is to
classify the surface segment as object or bare earth based on the shape grade, i.e.,
the shape of the surface segment. The concept behind the classification proceeds
as follows. Each shape is associated with the class (φ) bare earth, object or both.
The degree of association, βφ,µ (value between 0 and 1), is chosen by a visual
examination of the character of objects and the bare earth in a landscape. For
example raised surfaces are mainly found in objects and as such βobject,raised is
set equal to 1 and βbareearth,raised is set equal to 0. Similarly lowered surfaces are
mainly found in the bare earth and as such βobject,lowered is set equal to 0 and
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µ βobject,µ βbareearth,µ Reason
raised 1 0 objects are typically raised

lowered 0 1 the bare earth is lowered

high 1 0 objects have high edges

low 0 1 the bare earth has low edges

terrace 0.5 0.5 terraces are found in both the bare
earth and objects

no shape 0 1 objects are typically surrounded by
bare earth or other objects so objects
cannot be no shape

Table 6.1: Example of a set of associations.

βbareearth,lowered is set equal to 1. A sample of associations is given in table 6.1.
The collection of associations βφ,µ over all the classes and shapes can be thought
as an individual’s topological characterization of a landscape.

Using the shape grades and the associations a class grade, g(φ(s) = object) (value
between 0 and 1), is determined for each surface segment, given the class φ (object
or bare earth). The class grade g is given by:

g(φ(s) = φ) =
∑

µ=

raised,
lowered,
high,
low,
terraced,
noshape

βφ,µf(ψ(s) = µ) (6.4)

This is essentially a weighted mean of the associations where the weights are given
by the corresponding shape grades. During classification a surface segment is
deemed to be an object if its class grade, exceeds the threshold, εobject, set equal
to or greater than 0.5.
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(a) (b)

Figure 6.8: Conventional bridges, interchanges and flyovers, (a) a conventional
bridge with interchange (b) an interchange and flyover

6.3 Detecting bridges

By definition, a bridge is a structure that spans the gap between two land masses.
This definition will be understood here to include structures like conventional
bridges, interchanges, flyovers and ramps. Literature on the detection of bridges
is thin, and the work done is based on data obtained by satellite imagery and
radar. Some approaches to bridge detection are now briefly discussed.

Wang and Zheng (1998) propose a technique for detecting bridges in Synthetic
Aperture Radar (SAR) imagery. Based on the principle of SAR (Rodriguez and
Martin, 1992) a range image is obtained for a landscape. The authors argue that
because of the speckle in SAR images they avoid edge detection and object recog-
nition based on contours. Instead, they favour an approach based on segmentation
and Hough transformations to detect the bridges. The approach is heavily based
on the measurement characteristics of SAR, and shall not be elaborated further
because it is beyond the scope of the discussion. However, the principle on which
bridges are detected is noteworthy in that it assumes that every bridge is covered
by the same material as roads and every bridge has a parapet. The segmentation
step identifies all roads and by association all bridges. The authors note that be-
cause the backscattering from parapets is strong, this allows them to isolate these
features. Once the parapet points are identified, a Hough transformation is used to
identify parallel parapets. The points between parallel parapets are then treated
as being part of a bridge. Houzelle and Giraudon (1992) also detect bridges in
SAR data but first reduce their search space by identifying water bodies using
SPOT imagery.



104 Classification

(a) (b)

Figure 6.9: Bridges (a) and tunnels (b).

Trias-Sanz and Lomenie (2003) propose an approach for detecting bridges in high
resolution satellite imagery. The procedure starts by segmenting an image and
then classifying the generated segments using a neural network. Next, rules are
defined to classify segments as bridge. Some example rules are:

1. large regions of water or railway yard are separated by a narrow and long
strip. This strip is a bridge.

2. a small gap between two regions that have been identified as road and are
aligned is a bridge. The definition of small is user defined.

3. a small gap between two regions that have been identified as canal and are
aligned is a bridge. The definition of small is user defined.

Lomenie et al. (2003) augment the above approach with a geometric technique
based on edge detection. The method makes use of high resolution imagery. First,
an edge detector is applied to an image. Next, edges smaller than a user set value
are removed. The remaining edges are tested to find aligned and parallel edges
separated by a given maximum distance. Once these parallel edges are found the
region between them is treated as being potentially bare earth. Using the rules
employed by Trias-Sanz and Lomenie (2003) these bare earth regions are tested to
determine if they are indeed bridges. Another example of bridge detection using
classified regions in satellite imagery is provided by Ritter et al. (1986).

Although novel, all these algorithms are designed to detect simple bridges and
flyovers (i.e., straight parallel sided tracks). They would have problems with the
bridges shown in figure 6.8. Figure 6.8(a) shows a bridge that branches into three
and figure 6.8(b) shows a flyover running under another flyover. A geometric
method is proposed here that detects both simple and complex bridges.

It is argued that the means to detect a bridge can be derived from the purpose a
bridge serves in a landscape. A bridge is designed to span bare earth segments.
Hence, the assumption that a bridge is connected to the bare earth on at least two
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Figure 6.10: Bridge and small object

sides. To span land masses a bridge will necessarily have be raised above the bare
earth (otherwise it would not be a bridge). Hence the assumption that along the
length of a bridge, diametrically opposite points on its perimeter are raised above
the bare earth (except where it connects to the bare earth). Additionally, because
of economic constraints a bridge typically has to be longer than it is wider. Hence
the assumption that a bridge is greater in length than in width.

Before proceeding to explain how bridges are detected based on the above assump-
tions, for the sake of completeness it is necessary to briefly distinguish between
bridges and tunnels. Topologically a bridge and a tunnel are not dissimilar, as
shown in figure 6.9. However, materially they differ in that the ceiling of tunnels
is part of the bare earth. Because of their design purpose, most tunnels are typ-
ically long in length and narrow in width. In this respect they are different from
bridges which as already stated are assumed to be greater in length than in width.

Algorithm for bridge detection

The algorithm for detecting macro objects is based on the shape of line segments.
To explain how the algorithm works the bridge and small object in figure 6.10
shall be used. Before the actual detection can begin, the point cloud has to be
preprocessed. In this preprocessing additional geometric information is obtained
for each point. Before proceeding the reader is encouraged to have a look at the
example in appendix D. It will help in understanding the algorithm.
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Algorithm 6.2: Detecting bridges: Pre-processing
Data: Point cloud, V
Result: Bare earth point cloud, VBE , smoothness and discontinuity

measure ∀v ∈ VBE

begin
Remove from V all v labeled as object.6.2.1

VBE = V - {v|v ∈ V, φ(v) = object}
foreach point v in VBE do

Fit a plane to K nearest planimetric neighbours of v6.2.2

Determine the standard deviation of the residuals
Keep this standard deviation as a property (smoothness) of v

end

foreach point v in VBE do
Determine largest height difference to K nearest planimetric6.2.3

neighbors of v
Keep this height difference as a property (discontinuity) of v

end
end

Step 6.2.1: Bridges are detected in the bare earth. Therefore, before a bridge can
be detected all macro objects have to be removed from the point cloud.

Step 6.2.2: Part of the bridge detection requires the determination of points
where a bridge makes a smooth transition into the bare earth, i.e., where a bridge
connects to the bare earth. This step aims to estimate the smoothness of the bare
earth at a point. The smoothness is estimated by fitting planes at a point. The
smaller the standard deviation of the residuals in the fit the smoother the surface
is deemed to be.

Step 6.2.3: Part of the bridge detection also requires the determination of points
where a bridge is discontinuous to the bare earth, i.e., the edges of a bridge.
Importantly the size of the discontinuity has to be known. The discontinuity at
a point is estimated by determining the largest absolute height difference to its
neighborhood. In figure 6.11(a) points on the edge of the bridge and the small
object show strong discontinuity.

The next step is to identify points that are likely from a bridge structure. These
points will serve as seeds in the detection of bridge structures.
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Algorithm 6.3: Detecting bridges: Identifying possible bridge points
Data: Bare earth point cloud, VBE

Result: Points that are likely off bridges, VRaised

begin
Segment VBE . ΘPI,Consecutive−SlopeVBE ⇒ S6.3.1

foreach point v in VBE do
Get line segments, Lv passing through v6.3.2

foreach line segment lv in Lv do
Get the shape of lv. ψ(lv)6.3.3

Count the shape
end

Label v using the shape with the largest count6.3.4

Remove from VBE all v not labeled as Raised.6.3.5

VRaised = VBE − {v|v ∈ VBE , φ(v) 6= Raised}
end

end

Step 6.3.1: The shape of line segments along a cross section of the bare earth
has to be known. Because diametrically opposite points on the perimeter of a
bridge are raised, it is therefore likely that a raised line segment is from a bridge.
Therefore, the point cloud is segmented by profile intersection using consecutive
labeling with slope. The rationale for using this method of segmentation has been
stated in section 5.4 example 2.

Step 6.3.2: The line segments passing through a point are identified.

Step 6.3.3: The shape of the line segments passing through every point is deter-
mined.

Step 6.3.4: A point is labeled using the shape with the highest count. Points
on a bridge should have many raised line segments passing through them. In
figure 6.11(b) and (c) the points marked v1, v2 and v4 are labeled as raised (large
black circle) because most of the line segments passing through them are raised.
Point v3 is labeled as high (large white circle) because most of the line segments
passing through it are high. In this manner all points in the cloud are labeled as
shown in figure 6.11(d).

Step 6.3.5: The next step of the algorithm is to determine the boundaries of
bridges. These boundaries are determined using the raised points. For this reason
raised points are separated from the bare earth point cloud.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Bridge detection.
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Figure 6.12: Bridge detected.

In the final part of the bridge detection algorithm the boundaries of bridges are
determined and the points within the boundaries are classified as bridge.

Step 6.4.1: To determine the closed boundaries (figure 6.11(e)) the raised points
are first triangulated using Delaunay triangulation. Next, the triangulated points
are segmented by proximity (see section 5.2). Each segment represents a potential
bridge.

Step 6.4.2: Next, the points within each segment are triangulated using Delaunay
triangulation. A 2D convex hull is determined for each segment. All long edges
are removed from the triangulation. A boundary is then traced along the outside
edge of the triangulation.

Step 6.4.3: Once the closed boundary around a segment has been obtained, the
next step is to determine likely boundary points where the bridge connects to the
bare earth. Those parts of a bridge that connect to the bare earth are called Across
edges and those that don’t are called Along edges, because they extend across and
along the length of a bridge respectively. To find Across and Along edges the
boundary is first broken up by connecting adjacent points (on the boundary) if
both their smoothness is greater than or smaller than a chosen threshold. This
partitioning of the boundary yields a series of edges.

Step 6.4.4: In across edges points have smoothness values smaller than or equal
to the smoothness threshold. Furthermore, the length of an across edge is greater
or equal to the expected minimum bridge width.

Step 6.4.5: In along edges points have smoothness values greater than the smooth-
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ness threshold. Furthermore, in an along edge there should be at least one point
whose discontinuity exceeds the minimum bridge height. A minimum bridge height
is defined to avoid incorrectly detecting micro objects as bridges.

Step 6.4.6: A bridge must connect to the bare earth at least twice. Therefore, a
bridge must have at least two Across edges and two Along edges. Those segments
that meet this criteria are treated as being bridge segments.

Step 6.4.7: In figure 6.11(e) the across edge causes the extent of the bridge
to be underestimated. This is a side effect of the bridge seed point detection
(algorithm 6.3). Therefore, from each bridge boundary the points from across
edges are removed. After this removal points from the along edges are merged
into a single closed boundary, figure 6.11(f).

Step 6.4.8: Next all points inside the planimetric bridge boundary are collected.

Step 6.4.9: Segment by proximity all points that fall within a planimetric bridge
boundary.

Step 6.4.10: If a segment touches a bridge boundary then the points within the
segment are labeled as bridge, figure 6.12. This step is necessary to avoid bare
earth points being incorrectly labeled as bridge, because In cases where bridges
split into two or more parts, step 6.4.8 can result in the bare earth being included
in the bridge boundary.

This procedure takes advantage of the information contained in the line segments
generated by the profile intersection technique. Furthermore, as opposed to other
algorithms a bridge need not be of uniform width and additionally a bridge can
split along its length.

If a bridge is wider than it is long, then most of the line segments passing through a
point on the bridge will not be raised, and the bridge will not be detected. For the
same reason tunnels will not be detected. Therefore, this aspect of the algorithm
naturally accommodates the assumption that a bridge is longer than it is wide.

Where the algorithm will face difficulties is when a bridge crosses a deep water
body. In ALS data deep water bodies are not represented, because laser pulses
are absorbed rather than reflected. Therefore, in an ALS point cloud where there
are deep water bodies there are also data gaps. This makes it difficult or near
impossible to establish if a bridge is raised along its length. One possibility of
getting around this problem is to alter step 6.3.5, and search for no shape line
segments instead of raised line segments.
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Algorithm 6.4: Detecting bridges: Final identification
Data: VBE , VRaised, Smoothness threshold, Minimum bridge width,

Minimum bridge depth
Result: Point cloud, V , classified as objects, bridge or bare earth

begin
Segment VRaised. ΘProximityVRaised ⇒ SProx6.4.1

foreach s in SProx do
Determine the closed boundary, c, around each segment, s6.4.2

Segment, c, based on the smoothness threshold6.4.3

foreach boundary segment, ci in c do
if ∃v ∈ ci with smoothness ≤ Smoothness threshold then

if length of ci > minimum bridge width then6.4.4

Label ci as across edge
Count across edge

end
else

if ∃v ∈ ci with discontinuity ≥ minimum bridge height then6.4.5

Label ci as along edge
Count along edge

end
end

if |acrossedges| ≥ 2 AND |alongedges| ≥ 2 then6.4.6

Remove from c all ci labeled as across edge6.4.7

c = c− {ci|ci ∈ c, φ(ci) = acrossedge}
∀vinVBE , get all points, v inside planimetric projection of c6.4.8

⇒ Vc

Segment Vc. ΘProximityVc ⇒ Sc6.4.9

foreach s in Sc do6.4.10

if s ∩ c 6= ∅ then
foreach point v in s do

Label v as bridge6.4.11

end
end

end
end

end
end

end
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6.4 Detecting micro objects

Micro objects reveal themselves as low amplitude high frequency variations in
the surface of the bare earth, or in other words roughness. Because roughness is
a localized phenomenon, local surface fits are applied to search for points that
contribute to the roughness of a surface.

Algorithm for detecting micro objects

The fittings are used to approximate a smooth surface and the height variations on
the surface approximate the roughness. Typically, a plane is used. The algorithm
proceeds as below.

Step 6.5.1: Micro objects are detected in the bare earth, therefore object points
are first removed from the point cloud.

Step 6.5.2: Bridges are also removed from the point cloud.

Step 6.5.3: At every point a plane is fit to the K nearest neighbors, and the
standard deviation of the residuals is computed.

Algorithm 6.5: Detecting micro objects
Data: Point cloud, V , Smoothness threshold
Result: Point cloud, V , classified as object, bridge or bare earth

begin
Remove from V all v labeled as object6.5.1

VBE = V - {v|v ∈ V, φ(v) = object}
Remove from VBE all v labeled as bridge6.5.2

VBE = VBE - {v|v ∈ VBE , φ(v) = bridge}
foreach point v in VBE do

Fit a plane to K nearest neighbours of v6.5.3

Determine, σ, the standard deviation of the residuals

if σ Smoothness threshold then
if v is above the fitted plane then

Label v as object6.5.4

end
end

end

end
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Step 6.5.4: If the standard deviation of the residuals at a point is greater than
the smoothness threshold and the point is above the fitted plane, then the point
is deemed to be a micro object. In other words, if the surface about a point is
rough and the point is above the surface then the point must be contributing to
the roughness and hence must be an object.

To avoid mis-detections the point neighborhoods have to be kept relatively small,
particularly in low resolution point clouds. This is one reason why planes and not
polynomials of degree two or higher are used. Nonetheless, pavement edges maybe
lost but this is considered an acceptable trade off. The choice of smoothness
threshold depends on two factors, (a) the accuracy of the points and (b) the
resolution of the point cloud. It should be greater than the accuracy of the point
cloud and smaller than the resolution of the point cloud. How much it should
be greater or smaller than these quantities requires further study. In tests, the
smoothness threshold was chosen on intuition.

6.5 Detection of man made and natural objects

The points that have been classified as objects (sections 6.2 and 6.3) are next to be
classified as man made or natural objects. So far discrimination between segments
has been done solely based on topology. For the discrimination of man made and
natural objects this is not suitable because the topological relation between these
objects is indeterminate. Here geometric and radiometric characteristics are much
more favourable.

Algorithm for detecting man made and natural objects

To make the detection problem more specific man made objects shall be limited
to mean buildings and natural objects every other object in the landscape. Be-
cause of this separation, small objects like motor vehicles, trains, street lights and
other such features shall be treated as natural objects. This is not a satisfactory
separation, but it is convenient since typically after the bare earth, buildings are
the next feature sought in a landscape.

The algorithm for detecting natural and man made objects is divided into three
parts. The first part of the algorithm seeks vegetation islands in the bare earth.

Step 6.6.1: A small cluster of object points in the middle of a sea of bare earth
points is assumed to belong to vegetation on the rational that small objects cannot
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be buildings. Examples of such islands are hedges and bushes1. To detect these
islands the point cloud is first triangulated using Delaunay triangulation. Next,
the triangulation is segmented by using the labels of the points . Points on and
edge are placed in the same segment if they share the same label.

Step 6.6.2: If the number of points in a segment is less than or equal to the
maximum island size, then the points in the segment are labeled as vegetation.
The maximum island size is chosen taking into account the resolution of the point
cloud and the expected size of the largest island object in the landscape.

Algorithm 6.6: Detecting man made and natural objects: Vegetation Is-
lands in a sea of bare earth

Data: Point cloud, V , max island size
Result: Point cloud, V , points labeled as bare earth,

bridge,object,vegetation

begin
Segment V . ΘLabelV ⇒ S6.6.1

foreach s in S do
if |s| ≤ maximum island size AND Label of s, µs = object then

foreach point v in s do
Label v as vegetation6.6.2

end
end

end
end

The second part of the algorithm classifies the buildings and larger vegetation.

Step 6.7.1: The algorithm begins by computing characteristics for points in the
cloud. A plane is fit to the K nearest neighbors of a point. The standard de-
viation of the residuals to the plane estimates the roughness of the surface at a
point. For convenience, the roughness is bounded and scaled. This is necessary
for comparisons with other characteristics such as the RGB triplets.

Step 6.7.2: To classify objects all bare earth and bridge points are removed from
the cloud.

1While objects like cars and lamp posts are man made they are included in the vegetation
class. This contradiction is tolerated because the correct detection of buildings is given higher
priority.
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Algorithm 6.7: Detecting man made and natural objects: Buildings and
Vegetation

Data: Point cloud, V , minimum object size, training data
Result: Point cloud, V , points labeled as bare earth, bridge, building,

vegetation

begin
Fit plane to K nearest neighbors of v6.7.1

Compute the standard deviation of the residuals
Scale the standard deviation of the residuals

Remove from V all v labeled as bare earth, bridge or vegetation6.7.2

Vobject = V - {v|v ∈ V, φ(v) = bareearth OR φ(v) = bridge OR
φ(v) = vegetation}
Segment Vobject by profile intersection, ΘPI,ProximityV ⇒ S6.7.3

Select n features to use in the classification6.7.4

foreach s in S do
Compute the median of the roughness of all v ∈ S6.7.5

Compute the median of the reflectance of all v ∈ S6.7.6

Compute the median of the RGB of all v ∈ S6.7.7

if |s| ≥ min segment size then
Classify by KNN in the n-dimensional feature space ⇒ class label6.7.8

foreach point v in s do
Label v as class label

end
end
foreach point v in s do

Label v as none6.7.9

end
end

end

Step 6.7.3: The object points are segmented by profile intersection with proximity.
Segmentation by proximity is chosen on the strength that building points are closer
to each other than they are to vegetation points and that vegetation points are
closer to each other than they are to building points.

Step 6.7.4: The features to be used in the classification are selected. The features
used are roughness, reflectance(if available) and RGB triplet (if available).

Step 6.7.5: For each segment, the median of the roughness values for all points is
computed.
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Step 6.7.6: If reflectance values are available, then for each segment the median
of the reflectance values for all points is computed.

Step 6.7.7: If RGB triplet values are available, then for each segment the median
of each RGB value for all points is computed.

Step 6.7.8: An n-dimensional feature space is defined by training data (the de-
termination of the training data is described at the end of this section). If the
number points in a segment is greater or equal to the minimum object size, then
the characteristics of a segment are mapped into the n-dimensional feature space.
The K nearest neighbors of the segment in the feature space are determined. All
points in the segment are labeled using the feature class with the highest count.

Step 6.7.9: If the number of points in a segment is less than the minimum object
size, then all points in the segment are labeled as none.

Algorithm 6.8: Detecting man made and natural objects: Walls
Data: Point cloud, V , wall threshold
Result: Point cloud, V , points labeled as bare earth, bridge, building,

vegetation

begin
Remove from V all v labeled as bare earth OR bridge Vobject = V -6.8.1

{v|v ∈ V, φ(v) = bareearth OR φ(v) = bridge}
foreach point v in Vobject do

Determine K nearest planimetric neighbors of v6.8.2

Determine PCA for the neighborhood
Project the neighbors of v onto the eigenvector with the smallest
eigenvalue
Compute, σwall, the standard deviation of the projections along this
eigenvector
if σwall ≤ wall threshold then

Label v as none6.8.3

end
end
foreach point v in Vobject do

if Label of v = none then
Classify using K nearest neighbors of v ⇒ class label6.8.4

Label v as class label
end

end
end

Tests conducted using the above algorithm showed that the largest classification
errors arose from misclassification of wall points. The reason for this is the strong
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roughness values for wall points. To overcome this problem walls need to be
classified using the labels of roof lines. The last part of the algorithm classifies
wall points and points that were classified as none in the previous steps.

Step 6.8.1: All bare earth and bridge points are removed from the point cloud.

Step 6.8.2: At each point a plane is fit to the K nearest planimetric neighbors of v
The principal component of the neighborhood is determined. The neighborhood
is transformed onto the principal components and the standard deviation of the
coordinate along the smallest component is determined.

Step 6.8.3: If the standard deviation is less than or equal to the wall threshold
then the point is labeled as none. This is a preparation for the next step.

Step 6.8.4: If in the cloud a point has the label none, then its K nearest neighbors
are determined. In the neighborhood the label with the highest count is deter-
mined, and the point is assigned this label. In this manner, points below roof
edges will be detected as building.

Training the classifier

In step 6.7.8 of the algorithm training data is used to perform the classification.
This training data is obtained in the following manner:

1. A representative subset of the point cloud is manually classified. To speed
up the classification the macro object, bridge and micro object detection
algorithms can be run to identify objects. From here, the objects can be
separated into buildings and vegetation.

2. Next, the subset is segmented as in step 6.7.3. For each segment the same
characteristics in steps 6.7.5, 6.7.6 and 6.7.7 are determined.

3. Finally a majority classification using the labels from the manual classifica-
tion is used to label each segments.

4. Representative segments and their n characteristics are then chosen to build
the n-dimensional feature space.

The manual classification need only be coarse and if done correctly should take
about one hour for a cloud of 300000 points.
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6.6 Discussion

It was argued that macro objects should be detected first because they are predom-
inant in the landscape. The micro object detection is a more expensive algorithm,
hence this rationale is valid. In the performance tests (chapter 7) the macro objects
were detected first to avoid the overheads of micro object detection.

However, there is an argument for performing micro object detection before macro
object detection. Doing the micro object detection first may remove vegetation
next to buildings and hence reduce the possibility of buildings being merged into
bare earth segments in macro object detection. However, in practice this does
not work because vegetation that is removed leaves behind holes in the data that
complicate the macro object detection.

A better approach to avoid the merging of objects into bare earth segments is to
re-segment the segments obtained in the macro object detection. In other words,
during the macro object detection individual segments can be further segmented
to improve the separation between bare earth and objects.



Chapter 7

Results and Quality Analysis

7.1 Introduction

The proposed filtering algorithm was tested on real data. This chapter examines
and discusses the results of the tests. Three different data sets were used in the
test.

1. The first set is the ISPRS data set described in chapter 3.

2. The second set comes from the city of Wijhe in the east of the Netherlands.
The data was acquired by Fugro-Inpark using the helicopter mounted FLI-
MAP system. The point spacing of the data is about 0.5m and associated
with each point is a positive integer representing the strength of the returned
pulse, i.e., the reflectance strength.

3. The third data set comes from the city of Nijmegen (Netherlands). The data
was acquired by TerraImaging using the airplane mounted ALTM system by
Optech. The point spacing of the data is approximately 1.0m, and associated
with each point is an RGB triplet. RGB triplets for the points are extracted
from images taken during scanning.

For purposes of comparison the last two data sets were manually classified into
three classes, bare earth, building and vegetation. The ISPRS data sets were also
manually classified but only into the classes bare earth and object.
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Figure 7.1: Total errors(%) over the 15 samples

7.2 Assessment against ISPRS filter test data

This section presents the results of the tests of the new algorithm against the
ISPRS data set, with a view to determining if the problems noted in chapter 3 have
been solved. The results from the tests and the full comparisons against the other
tested algorithms are presented in appendix C. The results from the developed
algorithm are compared against two of the better performing algorithms (Axelsson
and Pfeifer) in the ISPRS test. The algorithm is also compared against another
one of the algorithms that showed average performance (Roggero).

The total errors committed is shown in figure 7.1. The total error presents the
number of misclassified points in a sample as a percentage of all points in the sam-
ple. Overall, the new algorithm does as well or better than most of the algorithms
tested. Importantly because of the multi-step classification approach (macro and
micro object detection) the algorithm is able to control the reduction of both type
I and type II errors. The Axelsson and Pfeifer algorithms also use a multi-step
approach. In their iterative approach, they start by seeking large objects and then
with each iteration they seek ever smaller objects in a landscape. The significant
difference in the multi-step concept of the developed algorithm and that in the
algorithms of Axelsson and Pfeifer is that the developed algorithm uses different
algorithms to detect macro and micro objects. The algorithms of Axelsson and
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Figure 7.2: Type I errors over the 15 samples

Pfeifer apply the same algorithm at each iteration but at a different scale. Notwith-
standing the differences in their multi-step approaches the good performance of
the new algorithm and the algorithms of Axelsson and Pfeifer reinforce the belief
that iterative approaches do better than non iterative approaches.

The type I errors committed are shown in figure 7.2. The type I error presents
the number of misclassified bare earth points in a sample as a percentage of all
bare earth points in the sample. The developed algorithm does not exhibit large
error variations in type I errors between the sample sites. Considering that the
parameters used in all the tests were nearly the same, this is encouraging because
it indicates that the algorithm is more robust to different landscape types and
hence is more reliable.

The type II errors committed are shown in figure 7.3. The type II error presents
the number of misclassified object points in a sample as a percentage of all object
points in the sample. The type II errors obtained were relatively small, except for
a few sites where the prevalence of low vegetation and large point spacing led to
higher errors. Typically, there are more bare earth points then there are object
points hence the impact of type II errors on the total error is small.

The results for each site shall now be discussed in more detail.
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Figure 7.3: Type II errors over the 15 samples

• Sample 11: Of all the 15 samples, this was the most difficult (for all the
algorithms tested) because of the steeply vegetated slopes and the tiered
buildings. Figure 7.4 shows that most of the Type I errors occur on the
slopes because of over segmentation on the slopes. The increased point
density in the overlap regions leads to under segmentation thus causing the
macro object detection to fail. Hence type II, errors in the overlap regions.

• Sample 12: The algorithm performed very well on this site (figure 7.5).
The flat bare earth and well elevated buildings make this a relatively simple
landscape to filter. Type I errors arise from sparse bare earth points beneath
the dense vegetation canopy segmenting unfavorably. As in sample 11 the
increased point density in the overlap regions is the cause of most of the type
II errors.

• Sample 21: The special characteristic of this site is the bridge. In the
filtering, the bridge was successfully detected (using the bridge detection
algorithm, section 6.3) and later classified as object. The ends of the bridge
were slightly under determined, hence The Type II errors at the ends of the
bridge. Type I errors are relatively few in number and mainly result from the
misclassification of pavement edges in the micro object detection. Despite
this the error is kept small and importantly for an urban scene discontinuities
are preserved, see figure 7.6.

• Sample 22: The special characteristic of this sample (figure 7.7) are the
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Figure 7.4: Sample 11
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Figure 7.5: Sample 12

Original Type I Type II

Figure 7.6: Sample 21
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Original Type I Type II

Figure 7.7: Sample 22

Original Type I Type II

Figure 7.8: Sample 23

two gangways and the large buildings. The macro object had no problems
detecting the large buildings. After the macro object detection the bridge
detection algorithm was run and the gangways were detected. The gangways
were slightly over detected, hence leading to type I errors. Other type I errors
were caused by the micro object detection which mis-classifies low pavement
edges. Type II errors were caused by low vegetation.

• Sample 23: This site (figure 7.8) is used to test filters in a complex urban
scene. It is difficult to define what is and is not bare earth within the
building complex. For example, there is a stairway that rises from the bare
earth to a raised platform and this makes the classification of the platform
ambiguous. For simplicity, all surfaces that connect to the bare earth were
also classified as bare earth. The new algorithm does very well on this site.
A major reason for this is the algorithm’s ability to detect large buildings
and preserve discontinuities. The inability to preserve discontinuities was
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Figure 7.9: Sample 24

Original Type I Type II

Figure 7.10: Sample 31

identified as one of the reasons why current filter algorithms fare poorly in
complex urban scenes.

• Sample 24: This small sample shows the effect of a ramp in the land-
scape, see figure 7.9. Ramps are part of the bare earth, i.e., they are not
bridges. Nonetheless, bridge detection was applied to determine if it would
mis-classify the ramp. The minimum bridge width used in detecting the
ramp was 3m. The width of the ramp is about 3m and hence it was not
detected. Most of the type I errors result from misclassification of pavement
edges in the micro edge detection. This is also the cause of the errors at
the base of the ramp. Type II errors are few and most of them occur in the
overlap areas and at the edges of the data.

• Sample 31: This sample (figure 7.10) is relatively simple except for the
very low outlying point (which cannot be seen). Because of the underlying
segmentation concept this site proved unproblematic. In the macro object
detection the outlying points are detected as single point segments. Seg-
ments containing three points or less are classified as object. This makes the
algorithm robust to outliers.

• Sample 41: This sample demonstrates the effect of gaps in the data, see
figure 7.11. There is insufficient context information to detect the building in
the south west corner of the data. Nonetheless, the algorithm outperformed



126 Results and Quality Analysis

Original Type I Type II

Figure 7.11: Sample 41

Original Type I Type II

Figure 7.12: Sample 42

all the other algorithms.

• Sample 42: The sample is that of a railway station platform (figure 7.12).
The aspects of the data that make it interesting are the railway roof, platform
and track. In general, the algorithm manages to correctly classify the roofs
and platform as object, except for two platforms.The cause of this error is
insufficient points on the railway tracks along these platforms. As a result
the segments formed for the platforms are determined as strongly no shape,
and hence classified as bare earth. A roof segment in the south east corner of
the data is also misclassified because of insufficient information. The type I
errors are caused by high railway tracks that are filtered by the micro object
detection and the sides of pavements that are filtered by the micro object
detection. In the manual classification, all railway tracks were classified as
bare earth.

• Sample 51: The succeeding samples are of a lower resolution. The diffi-
culty in this sample (figure 7.13) is the vegetated slopes. The macro object
detection did well in removing the buildings above the slopes, but because of
under segmentation not all the low vegetation on the slopes were detected.
The micro object detection was applied to remove the low vegetation but
the balance between Type I and II errors was non-optimal hence the large
Type I errors. Even so the total error is relatively small.
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Figure 7.13: Sample 51

• Sample 52: The main cause of error in this site are the low vegetation on
the slopes, see figure 7.14. As in sample 51 the non-optimal balance between
Type I and II errors is the cause of most of the Type I errors.

• Sample 53: Sample 53 is of a quarry and tests an algorithm’s ability to
preserve discontinuities. The new algorithm out performs all the algorithms.
The preservation of discontinuities (figure 7.15) confirms the algorithm’s ro-
bustness in discontinuous landscapes. Some points on the faces of quarry
edges are detected as objects but the cost of this error in a DTM genera-
tion should be negligible. Although not implemented the misclassified points
on the faces of the quarry could be corrected using the wall detection algo-
rithm. The type II errors are relatively large because of the prevalence of
low vegetation.

• Sample 54: Sample 54 (figure 7.16) tests the performance of an algorithm in
a low density point cloud of an urban scene. The macro detection does well
in removing the buildings even though they are poorly defined. In removing
the base of buildings the micro object detection also removes bare earth
points, hence The type I errors.

• Sample 61: Sample 61 (figure 7.17) contains a data gap, road embankments,
ridges and ditches. The challenge in this data set is to filter a landscape that
contains relatively few objects. In this the algorithm does very well with a
type I error of only 1%. The type II error is caused by low vegetation points
on the road embankments.

• Sample 71: This sample (figure 7.18) tests the removal of a bridge in a
low density data set. It is a relatively difficult sample. The reason for this
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Figure 7.14: Sample 52

Original Type I Type II

Figure 7.15: Sample 53

difficulty was the overestimation of the bridge. The cause of this error is the
steep slopes combined with the low point density. In the bridge detection
a slope threshold of 45◦ was used. The slopes are a little steeper than this
therefore the bridge is detected further into the slopes. The solution for this
was to increase the slope threshold. Although a better solution was obtained,
the bridge was slightly overestimated leading to type I errors. Other type I
errors are caused by misclassification of steep slopes and ridges in the bare
earth. The type II errors are caused by low vegetation.

One of the primary objectives of the research was to develop a filter algorithm that
performs equally well in all landscapes. In this respect and based on the results of
the ISPRS test the developed algorithm is deemed to succeed. It performs better
or as well as the other algorithms.

The algorithm is able to do this mainly because, (i) segmentation allows better
discrimination of large objects, (ii) it targets specific features (e.g., macro objects,
bridges, etc.,) in a landscape, (iii) it is better at preserving discontinuities, and
(iv) the multi-step nature of the algorithm allows both type I and II errors to be
reduced. This is unlike most of the current algorithms that have to make a trade
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Figure 7.16: Sample 54
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Figure 7.18: Sample 71
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Cross-matrix

Bare earth Man made
object

Natural
object

Total

Bare earth 124948 14 365 125327
Man made object 272 22988 1529 24789
Natural object 1339 1551 17677 20567
Total 126559 24553 19571 170683

Error-matrix: bare earth, object

Bare earth Object

Bare earth 379 (0.3%)
Object 1611 (3.6%)

Error-matrix: bare earth, man made object, natural object

Bare earth Man made object Natural object

Bare earth 14 (0.0%) 365 (0.3%)
Man made object 272 (1.1%) 1529 (6.2%)
Natural object 1339 (6.5%) 1551 (7.5%)

Table 7.1: Summary of Wijhe results

off.

In the following sections the performance of the developed algorithm in respect to
the classification of man made objects, natural objects and bridges is tested.

7.3 Wijhe - High density data with reflectance

This data set was chosen because it is a high resolution sample of a residential area,
figure 7.19. The bare earth in the landscape is flat except for a road embankment
to the south west of the data set. The buildings are relatively small and are
surrounded by both high and low vegetation.

The results after application of the algorithms are summarized in figure 7.19 and
table 7.1. The results are discussed on two levels, (i) the separation between the
bare earth and objects, and (ii) the separation between man made and natural
objects. Overall, the errors are small and the algorithm can be said to have
performed well. Particularly in the bare earth and object separation.
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Shaded relief

Manual classification:
bare earth (light gray),
buildings (dark gray),
vegetation(black).

Bare earth misclassified
as object

Object misclassified as
bare earth

Building misclassified as
vegetation

Vegetation misclassified
as building

Figure 7.19: Wijhe test. Depiction of errors in the cross-matrix
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Errors from bare earth and object separation

The error in the misclassification of bare earth points (Type I error) is 0.3%. This
error is very small. The error arises from sparse points beneath dense vegetation
canopies. Sparse points do not segment well, leading to very small segments. In
the classification, very small segments (arbitrarily chosen as segments with 5 points
or less) were classified as object. Some other causes of bare earth misclassification
included:

• Some bare earth points at the base of buildings are misclassified as building
in the wall detection.

• Sparsely spaced points lead to small segments that are in turn classified as
vegetation. For example this happens beneath dense trees.

• In the micro detection some hillocks (depending on their size) are detected
as object.

The misclassification of object points (Type II error) is about 3.6%. The main
cause of this error is the misclassification of very low vegetation points. This
is evidenced by the misclassification of vegetation points as bare earth, which is
6.5%. In the micro object detection the fit threshold used was 0.2m. Therefore,
vegetation below this threshold was not detected. Some other causes of object
misclassification included:

• If the bare earth gradually blends into the base of a building macro or micro
object detection will fail to detect some object points.

• Glass houses and buildings covered by material that absorb laser pulses lead
to sparse point coverage for such buildings. Sparse coverage can lead to
islands in the macro object detection. Because these islands are shaped as
no shape they are classified as bare earth.

The total error in the bare earth object separation is about 1.1%. The flatness
of the bare earth combined with the fact that the object misclassification arises
from low vegetation means that the cost of this error in a DEM generation will be
small.
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Errors from building (man made object) and vegetation (nat-
ural object) separation

These classifications show a relatively larger error than those of the bare earth -
object classification. However, considering that only two features were used, i.e.,
roughness and reflectance, this result is deemed good. Most of the errors result
from the misclassification of vegetation. Part of the cause for this large error is the
strength of the discriminators used in the classification. Surface segment rough-
ness and reflectance were used in a 2-dimensional feature space to separate between
buildings and vegetation. As explained in appendix A most of the strength of the
discrimination is in the roughness characteristic of a surface segment. Therefore,
for objects for which roughness is a poor discriminator the reflectance discrimina-
tion may likely fail to compensate. An example of this is hedges whose segments
have small roughness and low reflectance, and are therefore classified as building.
Other causes of vegetation misclassification included:

• Hedges or small trees next to buildings are merged into the same segment
as the buildings. If the roughness values of the building dominate those of
the vegetation then the vegetation is classified as building.

• Hedges have fairly smooth surfaces and hence the segments formed by them
have small roughness.

Small sheds with steep sloped roofs can have strong roughness. If they are covered
by vegetation or reflective material then the points from them will posses strong
reflectance signatures. Such buildings are misclassified as object. Other causes of
building misclassification included:

• Where wall detection is unsuccessful, wall points are classified as vegetation
because they possess strong roughness.

• Chimneys on roofs maybe classified as vegetation if their points are plani-
metrically tightly packed.

• Sparsely sampled buildings will yield small segments. The roughness value
computed for small segments maybe overestimated, leading to a classification
as building.

• Small buildings may be merged in the same segment as large vegetation
causing the small building to be classified as vegetation.

• Small buildings (shacks) may be covered by material whose spectral char-
acteristics are closer to that of vegetation. This leads to a classification as
vegetation.
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• The roughness at a point is computed using a fairly large neighborhood
(about 15 to 20 points). Hence for small buildings with slanted roofs, a
neighborhood will invariably contain the roof apex and points from various
faces of the roof. This results in a large roughness for the building segment
and hence a classification as vegetation.

7.4 Nijmegen - Medium density data with RGB
attributes

This data set was chosen because it is a medium resolution sample of an urban
area, figure 7.20.

The results after application of the algorithms are summarized in figure 7.20 and
table 7.2. Overall errors are relatively small except for the mis-classification of
vegetation. This is a satisfactory result considering that in this data set there are
more object points than there are bare earth points. As in the Wijhe test the
results shall be discussed on two levels, (1) the separation between the bare earth
and objects, and (2) the separation between man made and natural objects.

Errors from bare earth and object separation

The error in the misclassification of bare earth points (Type I error) is about 3.8%.
This is a very small error and the source is mainly sparse points beneath dense
vegetation canopies. Sparse points segment unfavorably and this increases the
chance of misclassification. Other causes of bare earth misclassification included:

• Errors at platform edges caused by the micro detection algorithm (not crit-
ical)

• Errors beneath trees caused by point sparsity. Point sparsity leads to small
segments. Small segments are classified as vegetation.

• Errors at the edge of buildings caused by open drainage systems and pave-
ments.

• Some errors because of edge effects.

The misclassification of object points (Type II error)is about 3.6%. The major
source of this error is the misclassification of very low vegetation points. In the
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Cross-matrix

Bare earth Man made
object

Natural
object

Total

Bare earth 39781 401 1184 41366
Man made object 58 33588 2409 36055
Natural object 624 2698 19585 22907
Total 40463 36687 23178 100328

Error-matrix: bare earth, object

Bare earth Object

Bare earth 1585 (3.8%)
Object 682 (1.2%)

Error-matrix: bare earth, man made object, natural object

Bare earth Man made object Natural object

Bare earth 401 (1.0%) 1184 (2.9%)
Man made object 58 (0.2%) 2409 (6.7%)
Natural object 624 (2.7%) 2698 (11.8%)

Table 7.2: Summary of Nijmegen results

micro object detection the fit threshold used was 0.2m. Therefore, vegetation
below this threshold was not detected. The cost of the misclassification of low
vegetation in a DEM generation should therefore be small. Other causes of object
misclassification included:

Causes of object misclassification

• Very low vegetation are not detected by the micro detection algorithm.

• Overlapping regions create an area of fuzziness in the bare earth. In the
manual classification the highest points, despite being bare earth were clas-
sified as vegetation. In the automatic classification these points, because
they are very low are not detected by the micro detection algorithm.

• Very few building points (57) are misclassified, because most buildings are
fairly well off the ground. Those points that have been misclassified are at
the base of buildings.
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Shaded Bare earth classified object Object classified bare earth

Bare earth classified veg. Veg. classified bare earth Bare earth classified veg.

Build. classified bare earth Veg. classified build. Build. classified veg.

Figure 7.20: Nijmegen test. Depiction of errors in the cross-matrix

Errors from building (man made object) and vegetation (nat-
ural object) separation

The errors generated from these classifications were much larger. The total error
in this classification was about 8.8% (5107 points). However, this is comparable



7.4 Nijmegen - Medium density data with RGB attributes 137

to results typically obtained in the classification of landscapes in rasterized laser
data. Considering that classifying the raw data poses greater difficulties than it’s
raster counterpart, this result is deemed acceptable.

As in the Wijhe data part of the cause for this large error is the strength of the
discriminators used in the classification. The strong mixing (appendix A) of the
point and surface segment characteristics weakens the partitioning of the feature
spaces. To overcome this mixing, a KNN classifier was used. The drawback
of using this classifier is that the need for a representative training set becomes
more critical, as oversampling of buildings or vegetation on the boundaries of the
building and vegetation clusters can dramatically affect the classification results.
This can be appreciated by examining the scatter plots in figure A.4.

Another strong contributor to the misclassification is the surface segmentation
itself. From figure 7.20 it can be observed that most of the building-vegetation
errors occur where there is vegetation adjacent to buildings. In these regions,
vegetation is sometimes merged into building segments and hence vegetation is
classified as building.

Other causes of vegetation misclassification included:

• Some vegetation are merged into a large building segments and then classified
as building

• Elongated but thin vegetation segments are misclassified as wall points

• Stray vegetation in the vicinity of buildings are misclassified in the K nearest
neighbour classification

• The uncertainty in the mixed regions of the feature space combined with
insufficiency in the training can in a few instances lead to a misclassification
of building segments. To avoid bias, in the training data the number o
building and vegetation samples are kept nearly the same. Vegetation shows
much more variation than buildings and therefore the balancing of samples
can lead to the poor training of vegetation. This is a bigger problem for
vegetation than it is for buildings.

Buildings that are over segmented (as happens with steeply roofed buildings) are
classified as vegetations. This is because as a rule small segments are classified as
vegetation on the assumption that small segments cannot be buildings.

Other causes of building misclassification included:

• Not all wall points classified correctly, because of over segmentation. Over
segmentation is necessary to reduce the effect of vegetation next to buildings
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Landscape minus macro objects Detected overpass

Figure 7.21: Bridge detection

• Complex roof segments possess strong roughness values because many of the
neighborhoods used in the local roughness determinations will contain dis-
continuities. This is also because the point spacing is insufficient to counter
this problem.

• Some buildings are merged into a large vegetation segment and then classified
as vegetation

• Some motor vehicles and other non vegetation materials because of their
smoothness and spectral characteristics are classified as building

• Some building segments are mapped into mixed areas in the feature space.
The uncertainty in the mixed regions combined with insufficiency in the
training can in a few instances lead to a misclassification of building seg-
ments.

7.5 Nijmegen data - overpass

A sample from another part of the city of Nijmegen, figure 7.21, was used to test
the performance of the bridge detection algorithm. In this landscape, there is an
overpass that starts from an elevated position and divides into two as it descends
to the bare earth below. In the sample, macro objects were first removed from the
landscape leaving behind potential bare earth.

The landscape was then segmented using profile intersection with labeling by slope.
Five profile directions were used in the segmentation. This number is greater than
that used in the macro object detection segmentation. Because bridge detection
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is primarily a point based classification it is important to gather sufficient profiles.
The slope threshold used in the profile labeling controls the extension of the bridge
into the bare earth. The smaller the threshold the more the bridge extends into
the bare earth. A slope threshold of 45◦ degrees was found to work well. The
overpass was successfully detected, but as can be seen in figure 7.21 one is also
over estimated at its higher end. The cause of this is the steep slopes (> 45◦)
of the embankments. Because a threshold of 45◦ degrees was used the algorithm
incorrectly detects the bare earth in this area as an extension of the overpass.
Correcting this problem requires a modification of the slope labeling algorithm so
that it accounts for variations in slope. Unfortunately, there was insufficient time
to effect this modification.

The fact that the branching overpass is detected indicates that the foundation of
the bridge detection concept is sound.

7.6 Using first pulse returns to detect natural ob-
jects in last pulse returns

In section 5.5 it was argued that first pulse returns were of marginal value in the
segmentation, but were useful for the classification. In vegetated areas first pulse
returns typically come from the top of vegetation, and the last pulse from the bare
earth or some point within the vegetation canopy.

Because of this, in vegetated areas there is a separation between corresponding first
and last pulses returns. A large separation indicates that the first pulse is from
vegetation. Thresholding this separation (in the first pulse data) using the accu-
racy of the point measurement yields potential vegetation points and unclassified
points.

Necessarily vegetation points can only be identified in the first pulse returns. Re-
calling that for bare earth detection the last pulse returns are preferred, then some
method has to be found to use the detected vegetation points to aid in the classi-
fication of last pulse returns. The method proposed here is to classify every last
pulse return in the vicinity of a vegetation point (first pulse) as vegetation. This
method works on the assumption that any point in the vicinity of a vegetation
point must itself also be a vegetation point (figure 7.22).

There was insufficient time to include this approach into an actual classification
algorithm, but visual examination of a simple implementation indicates that it is
viable and holds promise for better classifications. An example of the approach is
shown in figure 7.23. First pulse points that are 0.5m above their corresponding
second pulse were labeled vegetation. The 5 (intuitively chosen based on the
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First pulse returns Last pulse returns

Distance between first and last pulse
returns thresholded. First pulse
points with distances above the
threshold are classed as vegetation
(black points).

Last pulse returns in the neighbor-
hood of vegetation points classed as
vegetation.

Figure 7.22: Using first pulse returns to classify vegetation in last pulse returns.

resolution of the point cloud) nearest second pulse neighbors of these vegetation
points were then also labeled vegetation. As can be seen in the figure a considerable
number of vegetation points on the slopes are detected. This offers a better starting
point for the other algorithms. One drawback of the approach is that points on
the edges of some buildings can be misclassified as vegetation.

7.7 Discussion

Eventually most filtered ALS point clouds are used to generate DTMs. The preser-
vation of discontinuities is important in reducing the cost of errors. Because of
this even though the developed algorithm has generated higher errors on some
samples, the cost of the error in generating a DTM maybe lower.
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Steep slopes with vegetation First pulse points (dark gray) that
are strongly separated from the last
pulse points (light gray)

Steep slope with vegetation (last
pulse)

Last pulse points in the neighbor-
hood of first pulse points removed

Figure 7.23: A possible use of first pulse data.
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Despite the performance gains, the algorithm has difficulties in classifying features
at the edges of the data, and difficulties in filtering low resolution point clouds
(even more than other algorithms). At first glance, this may appear to be a
weakness. The algorithm is designed to classify a surface segment and if there is
insufficient topological or contextual information, the class of the surface segment
will be uncertain. This problem is similar to that faced by a human operator
confronted with a surface at the edge of the data. The smaller the surface the
greater the uncertainty. The fewer contextual information available, the greater
the uncertainty. The solution in this case is to trust only the classification of those
points away from the edge of the data.

The man made - natural object classification generated total errors of less than
10%. This is similar to that generated by other documented algorithms. However,
most other algorithms work with raster data where wall points are not a problem.
A large contributor to errors in this classification is the merging of vegetation
and buildings into the same segment. This suggest that an alternative method of
segmentation needs to be sought or segments have to be split in a pre processing
step before classification.

In conclusion, the errors obtained in the classifications (by most of the algorithms
tested) have mostly been less than 10%. Compared to classical land use clas-
sification from imagery this is extremely good. This shows that the geometric
information contained in a point cloud (i.e., the position of points) is a strong
basis for discriminating different features in a landscape. The challenge now is
to develop sound concepts that combine both the geometric information in ALS
point clouds and radiometric information from other sources to improve the classi-
fication of digital landscapes. In the developed algorithm, radiometric information
has been used to aid in distinguishing between buildings and vegetation. Good
results have been obtained but these can be further improved.



Chapter 8

Conclusion and future work

8.1 Conclusion

An experimental study of eight different filtering algorithms was done to gauge
the design strengths and weakness of different classification algorithms. The ma-
jor findings of the study were that (i) surface based filters performed better than
structure based filters, (ii) most of the current algorithms are ill suited to preserv-
ing discontinuities in the bare earth (a major problem in urban landscapes), (iii)
most of the algorithms are landscape-type specific, (iv) type I and type II errors
cannot be minimized using a single algorithm, (v) features like bridges that are
extensions of the bare earth need to be detected separately, and that (vi) segmen-
tation based filtering approaches have the potential to offer greater reliability of
classification.

To solve some of the above problems a new algorithm was developed. The new
algorithm departs from most of the current algorithms in that it is segmentation
based, and bridges are detected explicitly. Unlike most of the current algorithms,
the new algorithm works based on the relationship of surfaces in a landscape as
opposed to the relationship of points in a landscape. Moreover, it is a multi-
scale algorithm in that it applies a different algorithm to classify points objects
at different scales (not to be confused with using the same algorithm at different
scales).

A new segmentation algorithm was developed. The segments obtained from the
segmentation of the point cloud are made from sets of parallel profiles. These
profiles have the property that they implicitly code the topological relationship
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of a segment to neighboring segments. The topological information contained
in the profiles is aggregated in a novel way to to classify a segment as either
object or bare earth. Current segmentation methods classify segments based on
the outlines of segments. This can pose difficulties in urban environments where
the arrangement of objects can complicate classification. The new segmentation-
classification method does not require the outline of an object to be known and
because of this it does well in complex environments. Tests on point clouds of
complex urban landscapes have shown that the algorithm works well and that its
ability to preserve discontinuities reduces many of the errors experienced by other
algorithms.

In a landscape, bridges are ambiguous features in that they are extensions of
the bare earth but they are also man made. For this reason they have to be
detected explicitly. The novel bridge detection algorithm also makes use of the new
segmentation algorithm. The topological information contained in the profiles is
used to identify seed bridge points. The seed bridge points are then used to detect
actual bridges. The bridge detection algorithm is novel in that the algorithm is
blind to the shape of a bridge, i.e., bridges need not have parallel sides and bridges
can branch out. The bridge detection algorithm was found to work well in most
cases. However, the algorithm was found to experience problems where a bridge
extends from an embankment and in low resolution data.

An algorithm was also setup to classify man made and natural objects in a point
cloud. The algorithm employs the roughness of a surface segment and the re-
flectance of its constituent points. If available the RGB triplet of segment points
are also used. Classification accuracies in the order of 5-10% were obtained. This
is comparable or better than the accuracy achievable with other data sources, e.g.,
satellite imagery. However, with the additional use of other data (e.g., infra red
imagery) the accuracies can be further improved.

The algorithm was tested on data sets of different landscape types and resolu-
tions. In general, it is an improvement on current algorithms. However, problems
remain on steep slopes, particularly those that are vegetated. Other aspects of the
algorithm that can be improved are outlined in the next section. It is envisaged
that with the inclusion of external data (e.g., thematic maps, existing digital el-
evation models, infra red imagery, etc.) and the use of waveform ALS data the
classification accuracy of ALS point clouds will only improve.

8.2 Future work

New segmentation and classification procedures have been proposed. The algo-
rithms, particularly the segmentation algorithm were designed to be extendible.
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Because of insufficient time it was not possible to fully extend and test them.
Therefore, some aspects of the research require further attention.

• The new algorithm does not work as well as expected in steep slopes. This
is partly because of the labeling algorithm. A further segmentation of the
detected line segments by curve fitting may help prevent objects merging
into bare earth segments.

• Many of the parameters in the algorithm were chosen intuitively or by trial
and error. They may not necessarily have been optimal parameters. During
tests, it was observed that there is a link between the choice of certain
segmentation parameters and the point spacing. This link requires further
investigation.

• The classification of buildings and vegetation posed one of the greatest prob-
lems. The problems mainly arose from the merging of buildings and vegeta-
tion into the same segment. It has been found that segmentation by profile
intersection can lead to loosely connected segments, as exists between vegeta-
tion and buildings. Because of this after segmentation a post processing step
is necessary to remove the loose connections. A possible means of detecting
loose connections is a strongly connected components analysis.

• In the ISPRS filter test a quantitative assessment was possible because of
manually generated reference data. The results showed that filters are not
foolproof and performance can vary from one type of landscape to another.
Therefore, while testing a filter against reference data is a good measure
of gaining an appreciation of the filters performance, it is not a guarantee
that a filter will always perform as expected. If the type of environment
being filtered is untested, then unpredictable results can be and should be
expected. In these circumstances, it would be advantageous to an operator
(doing quality control) if filters could be designed to report the anticipated
quality of the filtering and/or flag where the filter may have encountered
difficulties.

One possible way of identifying uncertain regions is to apply a filter on a
point cloud using different parameter values. The areas whose classification
changes with a variation of the parameter values are flagged as uncertain.
Gooch and Chandler (2001) use such a scheme in the prediction of failure in
automatic DEM generation. However, some features (such as large buildings)
are invariant to changes in filter parameters. Therefore, another approach
is proposed here. In the simplest approach an uncertainty band is placed
on the class grade in equation 6.4. Those surface segments that have a
class grade within the uncertainty band (e.g., 0.5-0.6) can be flagged as
uncertain segments and set aside for classification by a human operator. In
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this research, this flagging method was tried with some success, but it still
requires more investigation.

• In the concept of the segmentation by profile intersection, profiles are not
allowed to overlap. This is partly because it is desired that parallel profiles
only connect through cross profiles. However, if the point spacing is large,
then there may be some merit in allowing profiles to overlap.
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Appendix A

Analysis of point and
segment attributes

A.1 Wijhe Point Attribute Characteristics

Because the Wijhe data was manually classified the distribution of bare earth,
building and vegetation characteristics could be studied. Figure A.1 shows the
distribution of the roughness and reflectance values in the data. In general the bare
earth and buildings show weak roughness (darker points) while vegetation (lighter
points) shows strong roughness. Mid-level roughness (light gray) is apparent on
grass patches, slopes and roof apexes. The distinctions become even more apparent
when the cloud is segmented and the roughness values aggregated for segments.
On the strength of this observation, it can be said that roughness is a good measure
for separating between vegetation and buildings.

For reflectance, the distinction between features is less apparent. Most buildings
are mid-level gray as are most of the vegetation. However, a considerable amount
of gray is also found in the bare earth. The reflectance does not appear to be a
convincing attribute for separating between features. For this reason the scatter
plots for the different classes were compared to determine the interaction between
roughness and reflectance.

In figure A.2 building points are concentrated in a small cluster near the origin,
indicating that buildings have small roughness and reflectance values. This is
as expected because the roof of buildings are relatively smooth. Most roofs are
also covered by the same material hence the reflectance values fall in a narrow
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Shaded relief

Manual classes: bare earth (light gray), buildings (dark gray), vegetation (black)

Roughness (dark values < light values)

Reflectance (dark values < light values)

Figure A.1: Wijhe point characteristics.
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Figure A.2: Scatterplots - Wijhe.

banded. The outlying building points are from walls and roof apexes that have
strong roughness.

As expected vegetation shows a wider range of roughness and reflectance values,
Because of the variation in the height, density and material content of vegetation
(for convenience cars, lamp posts were included in the vegetation class). Impor-
tantly though the vegetation cluster does not appear to greatly overlap building
cluster.

The bare earth cluster is less compact than the building cluster but more compact
than the vegetation cluster. This is because the bare earth shares some qualities
from both buildings and vegetation. The bare earth is covered by vegetation (e.g.,
grass), which gives it the radiometric qualities of vegetation. It also contains
discontinuities, which give it the geometric characteristics of buildings.

Because the detection of the bare earth from objects is purely geometric, therefore,
roughness offers a good means for separating between buildings and vegetation.
The reflectance is not as strong a discriminator as the roughness.
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Shaded relief Manual classes Roughness (dark values
< light values)

Red (0-255) Green (0-255) Blue (0-255)

Figure A.3: Nijmegen data characteristics.

A.2 Nijmegen Point Attribute Characteristics

Unlike the Wijhe data, in the Nijmegen data, associated with each point is an
RGB triplet instead of a reflectance value. Figure A.3 shows the distribution of
the roughness and reflectance values in the data. As with the Wijhe data the bare
earth and buildings show weak roughness (darker points) while vegetation (lighter
points) shows strong roughness. Some buildings in the north of the data have a
strong roughness. The cause of this is the narrowness of the buildings and the
steepness of their roofs. This is because the neighborhood used in the roughness
computation at each point will contain points from opposing roof facets. Some
large trees in the south show small roughness because of their size. On such trees
the roughness is smaller at their center (i.e. top) than at their edges.
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For the RGB triplets the separation between the classes is less clear. While the
vegetation generally appears dark and the buildings light, there are also exceptions.

In figure A.4 the roughness and RGB triplets are plotted against each other based
on the classes building and vegetation. The buildings and vegetation in the scene
have a yellowish tinge, which can be partly explained by the strong correlation
between the red and green components. The exception to this is the orange roofed
buildings. From the scatter plots it can be said that the red and green compo-
nents are useful for separating the brightest buildings. For a better separation
between buildings and vegetation the red-blue and green-blue component pairings
offer better discrimination, because in these cases the vegetation clusters are more
compact even though the components are still strongly correlated. The use of
roughness improves the discrimination of buildings and vegetation. In particular,
the roughness-blue pairing appears to separate the clusters well.

A classification of segments (after a segmentation) is intended to improve the
discrimination of vegetation and buildings by reducing the mixing of the clusters.
For example, if wall points can be included in building segments then the small
roughness values of the many roof points will suppress the large roughness values of
the wall points. This leads to the problem of combining the point characteristics to
obtain a single value for each segment. Particularly with a view to improving the
discriminating power of the geometric and radiometric characteristics. Figure A.5
shows some ways of obtaining a single value for each segment. To generate the
figures segments were manually classified. Single values were obtained by taking
the nth-percentile, mean and standard deviation.

For the roughness the worst combination is the standard deviation. Because of the
wall points buildings have a large standard deviation which causes the building
and vegetation clusters to mix. Using the 10th percentile suppresses the large
roughness values and hence compressing the building and vegetation clusters. This
compression also leads to shift of the clusters toward the origin. The vegetation
cluster is shifted more than the building cluster and hence there is mixing. The
reverse process happens when the 90th percentile is used. The median and mean
show little difference, but eventually the median was used to obtains single values
because of its robustness to outliers.

Because the material characteristics of most objects are fairly uniform, the radio-
metric characteristics of object segments are more stable, in particular for vege-
tation segments. As can be seen the clusters do not shift dramatically between
percentiles. Building clusters because of their greater material variability expand
with higher percentiles. As with the roughness, the median was used to obtain a
single RGB values for the surface segments.
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Figure A.4: Scatterplots - Nijmegen.
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Figure A.5: 1D Plots for segment characteristics - Nijmegen. Values are jittered to emphasise the distribution. Buildings
are shown in black and vegetation in white.
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Appendix B

Algorithm Parameters

The purpose of this appendix is to explain how the parameters in the different
segmentation and classification algorithms are chosen. Although a total of 37
parameters have to be set for all the algorithms combined it will be shown that
most of these are related to the point spacing (e.g., segmentation parameters) and
some others independent of the whatever point cloud is used (e.g., man made and
natural object detection parameters). Therefore, during classification only a few
parameters need to be set.

It will also be shown that the choice of values for the parameters is intuitive
and easy for an operator to relate to the characteristics of a point cloud and its
corresponding landscape.

B.1 Macro object detection parameters

Fifteen parameters are used in the macro object detection algorithm, see table B.1.
Eight of these relate to the segmentation algorithm, and seven to the classification
algorithm.

Segmentation parameters

The segmentation algorithm starts by profiling a point cloud in a given number of
directions. Each profile is then further segmented to yield line segments. Surface
segments are finally obtained by stitching together line segments that pass through
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the same point. The concept of the algorithm is elaborated in section 5.3. The
parameters to be set relate to the thickness of the profiles, the rule used to segment
the profiles (labeling rule), and the thresholds used in the labeling rules (height
and proximity thresholds).

In the macro object detection the segmentation process is iterated several times
(section 6.2, algorithm 6.1). After each iteration the profile range is incremented
and the height (or proximity) threshold is decremented. In the macro object
detection this iteration simulates the gradual stripping away of objects from the
bare earth (starting with the most elevated and working down toward the bare
earth). Typically, three iterations are required for a good classification, but it
depends on the height threshold, and the profile range.

In the labeling rules too small a height threshold can result in over segmentation.
For example, artifacts on roofs will be treated as separate objects but also small
bare earth segments can be misclassified as object. Conversely too large a threshold
leads to under segmentation, which can protract the macro object detection and
necessitates more iterations. To offset the effects of over and under segmentation,
in each iteration the threshold is decremented. This can be likened to removing
ever smaller objects with each iteration. The optimal choice of a threshold has not
been studied, but experiments have showed that typically a starting value equal
to one third of the point spacing and a decrement of factor 0.8 works well.

The profile range controls the segmentation algorithms ability to span planimetric
gaps in the data. The greater the range, the greater the gap spanned. Too small a
range leads to over segmentation. Too large a range leads to under segmentation,
as large gaps between objects are spanned. The choice of range depends on the
resolution of the data and distance between objects in a landscape. Experiments
have shown that in relatively flat landscapes the optimal range is about twice
the point spacing. In steeper landscapes a smaller range is chosen to prevent
objects from merging into the bare earth because of reduced lateral separations (see
figure 4.3(c)). Like the height threshold, the range is varied with each iteration.
As objects are stripped from the landscape, they leave gaps behind. Because of
these gaps, to correctly determine the shape of new line and surface segments,
small gaps have to be spanned. This requires the range to be increased in each
iteration, hence the range increment. A range increment of 1.5 has been found to
work well.
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Line segment shapes and surface segment classification pa-
rameters

In figure 6.4(a) it was shown that an object segment is composed of both raised
and high line segments. Similarly, a potential bare earth segment is composed of
both lowered and low line segments. Terraced line segments can belong to either
objects or the bare earth. To this can be added that line segments that have no
shape are indeterminable. For this reason objects are not associated with segments
that have no shape, i.e. βobject,noshape = 0 ( see table B.1).
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Segmentation
Parameter Typical values Comment
Profile width 1 ∗ point spacing The profile width
Labeling rule PI-MST Profile intersection (PI) by minimum spanning tree (MST)
Profile range 2 ∗ point spacing Largest planimetric separation between adjacent points in a line segment
Height Threshold 1/3 ∗ point spacing Largest height difference between two adjacent points in a line segment
Number of profiles 3 Number of profile directions
Iterations 3 Number iterations in the classification
Range increment 1.5 The factor by which the profile range is increased with each iteration
Threshold decrement 0.8 The factor by which the height threshold is decreased with each iteration

Line segment shapes and surface segment classification (see section 6.2)
Parameter Typical values Comment
raised 1 βobject,raised

lowered 0 βobject,lowered

terraced 0.5 βobject,terraced

low 0 βobject,low

high 1 βobject,high

no shape 0 βobject,noshape

εobject 0.6 Threshold on the class grade g(φ(s) = object) (equation 6.4)

Table B.1: Algorithm Parameters: macro object detection
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Figure B.1: The choice of slope threshold

B.2 Bridge detection parameters

Ten parameters are used in the bridge detection algorithm, see table B.2. Two, five,
and three parameters are involved in the roughness computation, segmentation and
classification respectively.

Roughness and discontinuity parameters

The purpose of roughness is to determine places where a bridge connects to the
bare earth. Roughness is determined as the standard deviation of heights above
and below a fitted plane. To obtain the roughness at a point a minimum area
of the landscape around a point is sampled (K-nearest neighbours, KNN). For
this reason the higher the resolution of the point cloud the greater the number of
points that are sampled. The discrimination of a point as a possible bridge-bare
earth connection is based on a fit threshold. Because bridge surfaces are generally
smooth and their transition into the bare earth is shallow, this threshold is chosen
to be small. In experiments, a value of 0.20m was chosen. This value may seem
to be large, but it is chosen to avoid the detection being influenced by errors in
the laser points measurements, which are in the order of 0.10-0.15m.

The purpose of the discontinuity parameter is to detect the presence and size
of discontinuity around a point. It is determined as the largest absolute height
difference in the neighborhood of a point (K-nearest neighbours, KNN). If the
height difference is negative, the discontinuity is assigned a negative value.
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Segmentation parameters

The segmentation is done using profile intersection with slope labeling. Figure B.1
shows the section of a bridge. Shown in the figure are four points running along
the bridge and another four corresponding points along the base. Traveling up the
bridge the slope between the base and the bridge edge is seen to increase. In the
segmentation the choice of slope threshold determines where the bridge edge tears
from the bare earth. In experiments a slope threshold of 45◦ has been found to
work well.

Classification parameters

A bridge has been characterised by its width and its headroom. The design width
is chosen based on the type of traffic that it will carry. A small bridge designed
to carry a single motor vehicle will have a width of about 3m. Therefore, this
value was chosen as the minimum width of a bridge. Motor vehicles have a height
of about 2m or less. The headroom of a bridge has to greater than this. Here a
minimum headroom of 3m was chosen.

B.3 Micro object detection parameters

The micro detection algorithm consists of only two parameters, table B.3. Firstly,
the size of the point neighborhood for which roughness values are computed and
secondly the threshold on the roughness. The same rationale is used in selecting
the neighborhood size and threshold as in the bridge detection.
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Roughness and Discontinuity
Parameter Typical values Comment
Roughness 10 nearest points 3D neighborhood
Discontinuity 5 nearest points 2D neighborhood - planimetric

Segmentation
Parameter Typical values Comment
Profile width 1 ∗ point spacing The profile width
Labeling rule PI-Slope Profile intersection (PI) with consecutive slope labeling
Profile range 2 ∗ point spacing Largest planimetric separation between adjacent points in a line segment
Slope Threshold 45◦ Largest slope between two adjacent points in a line segment
Number of profiles 5 The number of profile directions

Classification
Parameter Typical values Comment
Fit threshold 0.20m Smoothness threshold used when searching for bridge ends
Bridge height 3.00m Minimum bridge height
Bridge width 3.00m Minimum bridge width

Table B.2: Algorithm Parameters: bridge detection

Parameter Typical values Comment
Roughness 10 nearest points 3D neighborhood
Fit threshold 0.25m Smoothness threshold used when searching for low object points

Table B.3: Algorithm Parameters: micro object detection
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B.4 Man made and natural object detection pa-
rameters

Ten parameters are used in the man made and natural object detection algorithm,
see table B.4. One, five, one, one and two parameters are involved in the islands
classification, segmentation, roughness computation, main classification and walls
classification respectively.

Island classification

Cars, lamp posts, clumps of vegetation and similar objects can be thought of as
islands in a sea of bare earth. As explained already islands are treated as natural
objects. Removing islands before proceeding to the main classification improves
the final accuracy in the separation between man made and natural objects. To
avoid classifying building blocks as islands, the maximum size of and island is
limited to a few square meters. In experiments, using a maximum area of between
10 to 20m2 was found to work well. Depending on the resolution of a point cloud
this equates to a few points.

Segmentation

There is strong cohesion between points from the same object. For this reason a
proximity based segmentation is chosen. The choice of segmentation parameters
has been explained previously and shall not be elaborated.

Roughness

Before the main classification can be done a roughness value has to computed
for every point. This computation is done in the same manner as in the bridge
detection algorithm, except this time a limit is placed on the size of the roughness
values and the value is scaled.

roughness =
{
σ ≥ 0.5 255.0
σ < 0.5 255σ/0.5

}
(B.1)

Where σ is the standard deviation of residuals in a plane fit in the neighborhood of
a point. The thresholding (in this case 0.5m) and scaling (0-255) is necessary for
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comparison with other attributes that are used in the feature space classification
(i.e., reflectance or RGB). As desired the thresholded and scaled roughness is a
measure that is deterministic for all landscapes.

Main classification

The main classification is done in an n-dimensional feature space. In the feature
space a point is classified using the majority class of its K nearest neighbors. In
experiments a K≥5 points was used successfully. For the experiments all available
features were used, i.e., position (x,y,z), reflectance (if available) and RGB triplet
(if available). Segments with fewer than 5 points were classified as unlabeled.

Walls and unlabeled points classification

After the main classification walls are detected. Building segments are partly dis-
tinguishable from vegetation segments in that they are smooth. This however does
not hold true for wall segments (which posses strong roughness values). Similar to
islands, walls are therefore treated separately to improve the accuracy of classifi-
cation. In experiments walls in the point cloud were assumed to have a maximum
depth of 0.15m1.

The points from these segments and the wall points are now classified using the
majority label of their nearest K points. In experiments the 10 nearest points were
used.

1The fact that a maximum depth of 0.15m can be successfully used to detect wall points
demonstrates that the relative planimetric accuracy of lidar points is much better than the
published absolute accuracy of 0.5m
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Islands classification
Parameter Typical values Comment
Max. island size 10 to 20m2 Object islands in the bare earth, e.g., small trees, bushes, cars, etc.,

Segmentation
Parameter Typical values Comment
Profile width 1 ∗ point spacing The profile width
Labeling rule PI-Proximity Algorithm used for segmenting profiles
Profile range 2 ∗ point spacing Largest planimetric separation between adjacent points in a line segment
Height Threshold 1/3 ∗ point spacing Largest height difference or slope between two adjacent points in a line

segment
Number of profiles 3 The number of profile directions

Roughness
Parameter Typical values Comment
Roughness 10 nearest points 3D neighborhood

Main Classification
Parameter Typical values Comment
Partitioning scheme KNN Feature space partitioning scheme K nearest neighbours

Walls and unlabeled points classification
Parameter Typical values Comment
Wall threshold 0.15m Maximum depth of a wall. Threshold on the smallest eigenvalue for a plani-

metric neighborhood of points
KNN (Unlabeled) 10 nearest points Number of points in the neighborhood of an unlabeled point

Table B.4: Algorithm Parameters: man made and natural object detection



Appendix C

ISPRS Filter Test Results

In section 7.2 the performance of the new algorithm was compared against three
other algorithms studied in the ISPRS test. This appendix presents a comparison
of the performance of the new algorithm against all the algorithms studied in the
ISPRS test. The comparison is done over the 15 samples used in the test. A
description of the algorithms can be found in section 2.3.

Sample 11

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Type I 33.6 26.6 16.0 28.3 62.0 33.2 39.1 37.7 26.1

Type II 4.4 12.2 3.7 2.4 2.5 3.9 3.4 3.5 12.0

Total 22.4 20.5 10.8 17.4 37.0 20.8 24.0 23.3 20.1

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 16104 5682 21786 26.1%
Object 1940 14284 16224 12.0%
Total 18044 19966 38010 20.1%
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Sample 12

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Type I 12.4 8.9 4.9 7.3 29.6 11.9 11.9 19.2 4.8

Type II 3.3 7.9 1.5 1.5 2.0 0.9 0.9 0.6 3.8

Total 8.2 8.4 3.3 4.5 16.3 6.6 6.6 10.2 4.3

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 25420 1271 26691 4.8%
Object 972 24456 25428 3.8%
Total 26392 25727 52119 4.3%

Sample 21

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Type I 25.9 8.4 0.5 2.8 11.4 12.5 5.2 9.6 2.2

Type II 1.8 10.4 18.5 1.6 1.6 0.0 2.3 0.7 2.6

Total 8.5 8.8 4.3 2.6 9.3 9.8 4.6 7.8 2.3

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 9877 221 10098 2.2%
Object 73 2789 2862 2.6%
Total 9950 3010 12960 2.3%
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Sample 22

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Type I 20.6 5.7 2.7 8.3 31.2 33.4 9.7 29.3 4.2

Type II 1.9 11.9 5.9 3.1 1.8 1.0 2.4 1.0 5.4

Total 8.9 7.5 3.6 6.7 22.3 23.8 7.5 20.9 4.6

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 21134 923 22057 4.2%
Object 579 10070 10649 5.4%
Total 21713 10993 32706 4.6%

Sample 23

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Type I 18.7 7.3 3.7 12.1 50.3 41.9 18.4 40.9 3.9

Type II 4.0 12.8 4.3 3.8 2.4 1.9 2.6 2.1 3.7

Total 12.3 9.8 4.0 8.2 27.8 23.2 11.0 22.7 3.8

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 13024 525 13549 3.9%
Object 423 11120 11543 3.7%
Total 13447 11645 25092 3.8%
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Sample 24

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Type I 31.8 13.2 3.4 8.5 47.6 30.4 14.4 32.8 5.6

Type II 3.0 13.8 7.5 9.0 2.9 1.7 3.3 3.5 6.1

Total 13.8 13.3 4.4 8.6 36.1 23.3 11.5 25.3 5.8

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 5127 307 5434 5.6%
Object 125 1933 2058 6.1%
Total 5252 2240 7492 5.8%

Sample 31

0.0

5.0

10.0

15.0

20.0

25.0

Type I 8.5 4.8 7.9 1.6 21.8 3.0 3.2 4.9 1.1

Type II 2.3 8.3 1.0 2.0 2.4 1.1 1.1 1.1 2.7

Total 5.3 6.4 4.8 1.8 12.9 2.1 2.2 3.2 1.8

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 15392 164 15556 1.1%
Object 357 12949 13306 2.7%
Total 15749 13113 28862 1.8%
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Sample 41

0.0

10.0

20.0

30.0

40.0

50.0

Type I 14.4 19.3 25.8 19.9 32.4 21.6 17.6 47.1 12.5

Type II 0.9 3.2 1.9 1.6 0.5 2.7 0.5 1.7 2.2

Total 8.8 11.3 13.9 10.8 17.0 12.2 9.0 23.7 7.4

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 4901 701 5602 12.5%
Object 125 5504 5629 2.2%
Total 5026 6205 11231 7.4%

Sample 42

0.0

5.0

10.0

15.0

20.0

25.0

Type I 4.3 1.0 4.7 8.0 20.4 13.4 10.7 12.2 5.5

Type II 2.0 2.1 0.3 0.2 0.3 0.3 0.4 0.2 2.7

Total 3.7 1.8 1.6 2.6 6.4 4.3 3.5 3.9 3.5

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 11761 682 12443 5.5%
Object 804 29223 30027 2.7%
Total 12565 29905 42470 3.5%
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Sample 51

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Type I 49.3 10.3 0.1 4.2 28.2 1.9 14.0 7.0 7.1

Type II 1.6 5.7 12.0 1.9 3.6 7.0 2.2 7.0 3.7

Total 21.3 9.3 2.7 3.7 22.8 3.0 11.5 7.0 6.4

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 12955 995 13950 7.1%
Object 146 3749 3895 3.7%
Total 13101 4744 17845 6.4%

Sample 52

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

Type I 85.1 12.3 1.8 21.3 50.4 9.8 26.5 30.4 6.8

Type II 1.3 9.5 14.2 5.7 3.8 9.7 1.0 3.6 11.8

Total 58.0 12.0 3.1 19.6 45.6 9.8 23.8 27.5 7.3

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 18796 1366 20162 6.8%
Object 272 2040 2312 11.3%
Total 19068 3406 22474 7.3%
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Sample 53

0.0

20.0

40.0

60.0

80.0

100.0

Type I 92.5 20.5 8.6 12.5 54.9 17.8 28.3 38.4 5.4

Type II 0.2 13.2 16.8 14.2 1.6 4.7 1.0 4.8 19.3

Total 48.5 20.2 8.9 12.6 52.8 17.3 27.2 37.1 6.0

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 31196 1793 32989 5.4%
Object 268 1121 1389 19.3%
Total 31464 2914 34378 6.0%

Sample 54

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Type I 27.9 6.7 1.3 10.7 49.5 1.0 15.9 12.4 11.4

Type II 2.6 4.8 4.9 1.0 2.0 8.4 0.5 1.1 2.3

Total 21.3 5.7 3.2 5.5 23.9 5.0 7.6 6.3 6.5

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg

Bare earth Object Total Error
Bare earth 3527 456 3983 11.4%
Object 107 4518 4625 2.3%
Total 3634 4974 8608 6.5%
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Sample 61

0.0

20.0

40.0

60.0

80.0

100.0

Type I 91.3 3.0 1.9 7.2 22.5 19.6 13.9 22.4 1.0

Type II 0.1 3.7 6.2 0.2 0.0 0.6 0.3 0.3 12.1

Total 35.9 3.0 2.1 6.9 21.7 19.0 13.5 21.6 1.4

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole New Alg
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Appendix D

Example of macro object
and bridge detection

The purpose of this appendix is to provide a step-by-step example of a macro
object and bridge detection. The example uses a cloud of about 130000 points.
The point cloud is that of an urban landscape in which there are large buildings,
vegetation (both low and high), traffic, and two overpasses. In the figure below
the point cloud is colored by height, black is low and white is high.



182 Example of macro object and bridge detection

The point cloud is profiled. This figure shows
the profiles at an orientation of 30◦. Once done
each profile is segmented (in this case using a
minimum spanning tree labeling). After the
profiles have been segmented the shape of each
line segment is determined.

Raised and high line segments are shown in
black, lowered and low line segments are shown
in light gray and terraced and no shape line
segments are shown in dark gray.
The point cloud is profiled in several direc-
tions. This figure shows the profiles at 90◦.

This figure shows the profiles at 150◦. Once all profiles have been segmented they are
overlaid. Line segments that have points in
common are linked. This linking is continued
until surface segments are obtained. As can
be seen objects like buildings are conspicuous
by the fact that they contain many raised and
high line segments.

The surface segments. For clarity, the bound-
aries of the segments are shown.

Once surface segments have been obtained,
class grades are computed for them. Surfaces
with a light color have a higher class grade.



183

The class grades are thresholded. All surfaces
with a class grade greater than 0.6 are labeled
as object (shown in black). The remaining sur-
faces are labeled as possible bare earth.
The first classification does not catch all ob-
jects.

Therefore, the detected objects are removed,
the shape of the line segments recomputed and
new class grades determined for the remaining
surface segments. The class grades are again
thresholded. This process is repeated several
times. The figure above shows the result after
the third repetition.

After the macro objects in the landscape have
been identified, they are removed from the
point cloud (colored by height). This is nec-
essary for the bridge detection, recalling that
bridges are detected in the bare earth.

The bare earth point cloud is segmented by
profile intersection with slope labeling. In the
case above, five directions are used. It will
be noticed that on the bridge there are many
raised line segments (shown in black).

Points that have a majority of raised line
segments passing through them are isolated.
These are seed bridge points.

The isolated seed points are segmented by
proximity (3D).
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Boundaries are determined for the bridge seg-
ments.

Roughness values are computed for each point
in the cloud. Roughness is determine by fit-
ting planes to point neighborhoods and deter-
mining the standard deviation of the distance
of points from the fitted planes. In the figure
above points with a high roughness are shown
in dark gray.

The bridge boundaries are now trimmed (not
shown in the figure) using the roughness val-
ues. Points that have a small roughness value
are removed from the boundaries. In this way
the edges along the length of the bridge and
across the length of the bridge are identified.

If a bridge segment boundary contains more
than one across edge it is labeled as bridge. In
the figure above the two overpasses have been
identified.

After the bridges are identified the macro ob-
jects (detected earlier) are put back into the
point cloud.
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