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Abstract: Polymeric capsules can have an advantage over glass capsules used up to now as
proof-of-concept carriers in self-healing concrete. They allow easier processing and afford the
possibility to fine tune their mechanical properties. Out of the multiple requirements for capsules
used in this context, the capability of rupturing when crossed by a crack in concrete of a typical size is
one of the most relevant, as without it no healing agent is released into the crack. This study assessed
the fitness of five types of polymeric capsules to fulfill this requirement by using a numerical model
to screen the best performing ones and verifying their fitness with experimental methods. Capsules
made of a specific type of poly(methyl methacrylate) (PMMA) were considered fit for the intended
application, rupturing at average crack sizes of 69 and 128 µm, respectively for a wall thickness of
~0.3 and ~0.7 mm. Thicker walls were considered unfit, as they ruptured for crack sizes much higher
than 100 µm. Other types of PMMA used and polylactic acid were equally unfit for the same reason.
There was overall good fitting between model output and experimental results and an elongation at
break of 1.5% is recommended regarding polymers for this application.

Keywords: polymers; capsules; self-healing; concrete; cracks; simulation

1. Introduction

An increasing amount of research on encapsulation of healing agents for self-healing concrete
has been published during the last decade. The existing research is focusing mainly on the
micro-encapsulation of liquid healing agents in spherical capsules with typical sizes in the range
of a few micrometers up to a few millimeters, a technique borrowed from self-healing polymeric
materials [1], but also on the encapsulation in larger, proof-of-concept tubular capsules with typical
inner diameter of 3–4 mm. In the context of self-healing concrete, the healing agents commonly
encapsulated are bacterial spores in a solution, liquid mineral compounds, or polymer precursors [2,3].

Encapsulation protects the healing agents from undesired or premature reactions and degradation,
to guarantee their availability at the onset of damage in the host concrete matrix. The liquid agents
are then released from the capsules typically due to mechanical triggers—i.e., once a certain damage
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level in concrete is achieved, after which a crack crosses the capsule and eventually causes its rupture.
More complex chemical triggers can also be used, by taking advantage of the ingress of chloride ions in
maritime environment [4] or the decrease of pH [5] in concrete once cracks are formed. Thus, instead
of a mechanical rupture, the chemical triggers induce a progressive degradation of the capsule.

Other than being able to effectively release the healing agent after the onset of damage, capsules
need to meet other more basic, but challenging requirements. They have to resist the mechanical
stresses experienced during placing of concrete, in case of pre-placement of the capsules in the
formwork, or during the mixing process, if added to fresh concrete during mixing. The material used
for the capsules also has to be compatible with both the healing agent on the inside and the aggressive,
high pH environment of the concrete matrix on the outside. Furthermore, the capsule’s wall has to
have adequate barrier properties, with low permeability and diffusivity, to be able to retain its content
but also to avoid any undesired chemical interaction between the healing agent and the concrete
matrix. Finally, capsules have to rupture for very low imposed deformations, so that they release their
content when crossed by a crack in concrete. Cracks are typically limited by reinforced concrete design
codes to be no more than 300 µm wide, depending on the exposure conditions [6].

It is the latter requirement, the need for capsules to rupture under small crack openings in
a concrete matrix, that this study wishes to address. Tubular capsules extruded from different polymers
are experimentally tested in order to assess their fitness for this application, with computer simulations
aiding the initial screening of polymers.

Although tubular glass capsules have been used mostly as a proof-of-concept, they are ideal
in terms of barrier properties and rupture for very small deformations. While filling and sealing of
glass capsules is definitely possible at a large scale, as they are already used in the pharmaceutical
and adhesive industries, polymeric capsules are potentially easier to manufacture, due to their
lower processing temperatures and the possibility for integrated extrusion, filling, and sealing steps.
Despite this, the development of tubular, polymeric capsules for self-healing concrete has been seldom
studied [7,8].

Moreover, the development and design of capsules for self-healing concrete can greatly benefit
from numerical simulations. Numerical simulations are, in general, less costly than laboratory tests
and can help in reducing the number of expensive experiments. So far, however, self-healing concrete
has mostly been developed using trial-and-error procedures, with little optimization. There is thus
a great need for robust numerical models. In Schlangen and Joseph [9], a review of modelling work
related to self-healing concrete is given. To date, the majority of numerical models available in the
literature deals with autogenous self-healing [10–12], i.e., by taking into account the innate ability of
concrete to heal cracks by carbonation or continued hydration, for example.

Models used to design engineered self-healing concrete are less common. For example, Joseph [13]
developed a numerical model able to describe the release of glue from a tubular system and the
self-healing effect. On the other hand, several models have been proposed for assessing the probability
of capsule breakage during fracture in concrete [14–16]. At present, these simple models may be used
for selecting the appropriate dosage of the self-healing agent. A major drawback of these models is
that they do not consider the mechanical properties of the capsule material and its interaction with the
cementitious matrix. This interaction has a major impact on the crack propagation [17,18]. It is in this
aspect that numerical models can be advanced. Other researchers still are focusing on the complex
mechanism of bonding between capsule and matrix [19] and on the input necessary to develop models
that simulate the release and dispersion of healing agent once the capsules are ruptured [20].

In this study, numerical modelling is used to simulate breakage of tubular capsules made of
different polymers and with various wall thicknesses. This makes it possible to reduce the number of
experiments and quickly reject materials that are not suitable, regarding their capability to rupture
when crossed by cracks in concrete.
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2. Experimental Testing

2.1. Extruded Hollow Tubes

In this study, five polymers have been selected as encapsulation materials. Polystyrene (PS)
was supplied by BASF AG (Ludwigshafen, Germany; polystyrol VPT granule, Mn = 195,000 g/mol),
polylactic acid (PLA) was obtained from NatureWorks (Blair, NE, USA; PLA 4032D, 1.4% D-isomer).
Two types of poly(methyl methacrylate) were used. PMMA_1 was kindly supplied by Evonik
Performance Materials (Darmstadt, Germany; Plexiglas 8909, Mn = 38,000 g/mol) and PMMA_2 was
also obtained from Evonik Performance Materials (Plexiglas 8N, Mn = 50,000 g/mol). PMMA_1-PEG
was obtained by melt-blending PMMA_1 with 20 wt % of polyethyleneglycol monomethylether (PEG),
which was purchased from Fluka (Buchs, Germany; mPEG2000, Mn = 2000 g/mol).

For the melt-blending, PMMA_1 was dried overnight under vacuum in an oven at 60 ◦C before
compounding in a Brabender (Duisburg, Germany) mixer at 210 ◦C and a speed of 30 rpm for 3 min.
PEG was added after PMMA was completely molten and the compounding process proceeded at
70 rpm for 7 min.

PEG was added as a plasticizer for PMMA_1 to assess the feasibility of this option as a way to
improve the chances of the capsules surviving the mixing process of concrete. The addition of PEG
would increase the ductility of the capsules, making them less prone to be damaged by the stresses
seen during concrete mixing. The PEG would then be partially and progressively leached out into
the moist concrete, further lowering the ductility of the capsules so that they would rupture when
crossed by small cracks in concrete. Resistance to mixing in concrete will be addressed in a separate
publication on a realistic implementation of self-healing concrete based on tubular capsules added to
concrete during mixing. The strategy of using plasticizer migration to achieve evolving brittleness
had already been tried by Gruyaert et al. [8] on capsules made out of ethyl cellulose, but no clear
conclusions regarding its efficacy could be drawn.

The mechanical properties of the polymers were then determined by tensile tests performed on
dog bone-shaped samples (70 mm overall length and a straight section 40 mm long with a cross section
of 1.5 mm × 5.0 mm) on a Zwick (Leominster, UK) universal tensile testing machine with a load cell of
1000 N. A preload of 0.5 N was used, the extension monitored was given by the separation between
the grips and the stress–strain curves were obtained at a speed of 1 mm/min at room temperature.
The results of the tensile tests are listed in Table 1.

Table 1. Mechanical properties of polymers determined on dog bone specimens.

Polymer Tensile Strength (MPa) Elongation at Break (%) Young’s Modulus (MPa)

PLA 67.7 ± 0.5 4.3 ± 1.3 2946.6 ± 22.4
PMMA_1 29.1 ± 3.7 1.1 ± 0.1 2233.9 ± 16.0

PMMA_1-PEG 29.9 ± 0.3 2.8 ± 0.2 1299.7 ± 7.8
PMMA_2 61.5 ± 14.3 3.0 ± 1.0 2222.9 ± 30.6

PS 38.5 ± 1.8 1.5 ± 0.5 2254.5 ± 19.6

This study also considered glass as an encapsulation material for comparison purposes.
The mechanical properties of glass are listed in Table 2 and were taken from literature that investigated
the use of glass capsules for self-healing concrete [21] and from their respective technical sheet
(Hilgenberg borosilicate glass 3.3).

Table 2. Mechanical properties of glass according to literature [21].

Material Tensile Strength (MPa) Elongation at Break (%) Young’s Modulus (MPa)

Glass 66 0.1 70,000
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To extrude the hollow tubes from which capsules were cut, pellets of polymer were dried in a hot
air oven at 60 ◦C for one day before extrusion. The extrusion was performed on a Brabender (Duisburg,
Germany) extruder equipped with a single screw and a tubular die with outer and inner diameters of
10 mm and 8 mm, respectively. The processing temperature was 225–235 ◦C with a screw speed of
10 min−1, while the conveyor speed was adjusted to get approximately the desired external diameter
and wall-thickness, which were 6 mm and 0.30 mm respectively. For PMMA_1, tubes with thicker
walls were also tested. The average dimensions of the tubular sections from which the capsules were
cut are listed in Table 3.

Table 3. Average dimensions of the capsules used for the experimental tests.

Polymer External Diameter (mm) Wall Thickness (mm)

PLA 7.42 ± 0.12 0.44 ± 0.11
PMMA_1 6.37 ± 0.25 0.31 ± 0.09

6.69 ± 0.04 0.72 ± 0.02
8.40 ± 0.08 1.19 ± 0.01

PMMA_1-PEG 6.34 ± 0.13 0.26 ± 0.07
PMMA_2 6.14 ± 0.09 0.26 ± 0.07

PS 6.44 ± 0.16 0.42 ± 0.13

2.2. Cracking of Mortar Specimens with Embedded Capsules

To create the capsules to be tested, sections 5 cm long were cut from the polymeric tubes.
The ends of the capsules were heated and shaped to create hooks for improved mechanical locking
once embedded in a mortar matrix. To additionally improve adhesion to the cementitious matrix,
the capsules were sanded in a direction perpendicular to their length, as highlighted in Figure 1.
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Figure 1. Capsule with molded hooked ends and sanded surface.

The capsules were then embedded in reinforced mortar prisms with dimensions 4 cm × 4 cm ×
16 cm by placing one capsule inside each mold, 1.3 cm from the bottom and centered relative to the
sides, before pouring the mortar. The mortar mix consisted of CEM I 52.5 N, and had a sand-to-cement
ratio of 3:1 and a water-to-cement ratio of 0.5. Mixing and molding were performed according to the
EN 196-1 standard. The specimens contained also two reinforcing Ø2 mm smooth metal bars, placed
10 mm away from the sides and the bottom of the specimen, to avoid complete splitting during the
cracking process. Figure 2 shows the relative positions of the capsule and the reinforcement bars on
a specimen split in half.
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removing a single element in each-step. Thus, a non-linear analysis is performed by actually 

Figure 2. Split 4 cm × 4 cm × 16 cm specimen showing an embedded capsule that has been ruptured
during bending.

To create and progressively widen cracks that crossed the embedded capsules, the mortar
prisms were loaded in a three-point bending test controlled by an external linear variable differential
transformer (LVDT) (Solartron, Leicester, UK) with a 1 mm range. The LVDT was attached at one of
the sides of the specimen, parallel to the embedded capsule and at the same height as its bottom fiber
(Figure 3), so that it effectively measured the size of the crack crossing the capsule. To standardize the
orientation of the crack, a triangular notch was molded into the bottom of the specimens, at half of
their length.
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3. Modelling Principle

In this work, the Delft lattice model is used to simulate rupture of tubular capsules subjected
to mechanical loading. Lattice type models have been first used by theoretical physicists to model
fracture mechanisms in heterogeneous materials [22]. This type of model has been adopted by various
authors to simulate concrete fracture [23,24]. Fracture processes in other anisotropic or heterogeneous
materials have been successfully simulated by lattice models as well—e.g., wood [25] or porous reactor
core graphite [26].

In these models, material is discretized as a set of small truss or beam elements that can transfer
forces (Figure 4). In the Delft lattice model as used herein, all individual elements exhibit linear elastic
behavior. The fracture simulation is achieved by performing a linear elastic analysis of the lattice
under loading, and removing an element which exceeds a prescribed fracture criterion (e.g., strength,
strain, or energy) from the mesh. This analysis is then repeated in a step-wise manner, removing
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a single element in each-step. Thus, a non-linear analysis is performed by actually performing a
number of linear analyses. Using this method, realistic crack patterns are found. Furthermore,
even though individual elements all behave brittle, a ductile global response is achieved. Details about
the underlying elastic equations as well as the full computational procedure of the model are available
in [27,28].
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In the present work, a fracture criterion based on the tensile stress in beams is adopted.
Normal force (N) and bending moments (Mx, My) are both taken into account by the following
general relation:

σ = αN
N
A

+ αM
max(MX , MY)

W
(1)

where A is the beam cross-sectional area, W the cross-sectional moment of resistance, αN and αM are
the normal force influence factor and the bending influence factor. Their values are adopted herein as
1.0 and 0.05, respectively.

To simulate tubular carriers, a capsule is placed within the material domain. The capsule is
connected to the matrix lattice elements through bond beam elements (Figure 5).
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For matrix elements, a brittle fracture law is adopted, as presented in Figure 4. For the capsule
elements, experimental data for each of the considered materials is input as a multi-linear stress/strain
relation (Figure 6). Bond beams are not allowed to break in the present simulations, because a perfect
bond is seen as a prerequisite for breakage of the tubular carriers.
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In the simulations so far, a 30 mm × 30 mm × 30 mm mortar block with a single tubular capsule
is simulated. It is schematically shown in Figure 7. It is subjected to uniaxial tension along the axis of
the capsule, and the breakage of the capsule is monitored. The mortar is simulated as having a Young’s
modulus of 20 GPa and a tensile strength of 3.5 MPa (which is within the range of values used in our
previous work [29,30]).
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4. Results

The numerical model was used to simulate the mechanical response of capsules embedded in
a cementitious matrix. This was performed for the different polymers listed in Table 1, considering
capsules with a 5 mm external diameter and a wall thickness in the range 0.1–1.0 mm, to have a first
assessment of their fitness. The dimensions used as input for the model at this stage are representative
of the typical size of capsules that can be manufactured with the extrusion equipment used. As shown
in Figure 8, only capsules made of polystyrene (PS) and a polymethyl methacrylate (PMMA_1) seem
fit for the intended application, as they rupture for a crack size below the targeted limit of 100 µm
(see introduction), however only if the wall thickness is kept under ~0.5 mm. Of the two materials,
the crack size at rupture for capsules of PMMA_1 is the least affected by the wall thickness. It is also
shown that capsules of both of these materials still rupture for a crack size several times higher than
the size required to rupture glass capsules of similar dimensions. The glass curve was based on the
properties listed in Table 2 and assumes a perfectly-elastic brittle behavior.
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As a rule, the mechanical properties of polymers—such as tensile strength, stiffness, and
ductility—rise with increasing molecular weight. This can be clearly observed in Figure 6, where
PMMA_2 (Mn = 50,000) shows higher tensile strength and ductility than PMMA_1 (Mn = 38,000).
As both types of PMMA have a similar Young’s modulus, the higher tensile strength (twice as high)
and ductility of PMMA_2 result in larger elongation at break, which explains its much larger crack
size at rupture. It can also be said that the inadequate performance of PLA capsules, which break only
for crack sizes of ~0.2 mm or higher, is not necessarily intrinsic to the material type, depending also on
the molecular weight of the PLA used.

Overall, different combinations of tensile strength, stiffness, and ductility of the different polymer
types and molecular weights result in different values of elongation at break, which is the commanding
factor for guaranteeing rupturing of capsules when crossed by small cracks in concrete. Given the
good predicted performance of PMMA_1 and PS capsules shown in Figure 8, and according to their
elongation at break listed in Table 1, an elongation of 1.5% or less is recommended for polymers
considered as encapsulating materials in self-healing concrete. Polyethylene terephthalate (PET)
and polyvinyl alcohol (PVA) could potentially also fulfill this requirement for low elongation at
break. Although being water-soluble, PVA would not be the best solution for application in concrete.
Other factors should also be considered, such as compatibility with the encapsulated healing agent
and with the extrusion process. All polymers used in this study were equally easy to melt and flowed
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easily during extrusion, while their cost was not as relevant, as all selected polymers were inexpensive
(<1 EUR/kg).

The mechanical response of the capsules was then experimentally determined by embedding
them in mortar specimens cracked under bending, where the capsules rupture under tensile stress once
the crack crossing them reaches a critical size. Rupturing of the capsules induces a sharp load drop in
the stress-displacement curves and a small reduction in the load capacity after that. These features
were then used to experimentally determine the crack size at rupture of the capsules. Representative
curves are shown in Figure 9 for the capsule types for which an average was possible to determine—i.e.,
for which all capsules ruptured before a 0.4 mm crack size was achieved.
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The experimental data regarding the crack width at rupture for the different capsule types is
plotted in Figure 10 and it confirms that the capsules extruded from PMMA_1 (wall thickness of
0.31 mm) rupture for a crack size below 100 µm, which makes them fit for the intended application.
The results also show that PEG did not leach out of the PMMA_1-PEG material, or it did not leach out
enough for capsules of this material to behave as capsules made out of PMMA_1, instead rupturing
for crack sizes more than twice as large. The experimental data for PMMA_1-PEG also shows more
scattering and the average crack size at rupture ended up being larger than the model output, when
the opposite would be expected if there had been leaching of the PEG plasticizer. Accordingly, it was
for these capsules that the model output showed its maximum deviation from the experimental results,
at ~29%. The scattering of experimental data for this polymer can be due to insufficient blending of
PMMA and PEG, resulting in a polymer matrix that is not homogeneous. Given the good modelled
performance for extruded PS, it was unexpected that two out of three capsules of this polymer did not
rupture during the test, which achieved a maximum crack size of 400 µm. A possible explanation for
this could be a somewhat worse adhesion of the PS material to the cementitious matrix, which would
cause the capsules to slip instead of deforming. An additional reason could be that the mechanical
properties of PS were affected by the extrusion process, which would then result in a mismatch
between the experimental results and the model, which used as input the mechanical properties prior
to extrusion. Mechanical properties can also be affected by exposure to the alkaline environment of
concrete, but that is unlikely to be the case, given the relatively short exposure of 14 days.
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For the remaining polymers, the crack width at rupture was much higher than the targeted limit
of 100 µm, as expected from the model output and confirming that these polymers are not good
candidates for the intended application. For PMMA_2, the model output was very similar to the
average crack size at rupture determined experimentally, with a deviation of ~10%. Regarding PLA
capsules, it was not possible to assess how accurate the model was, given that their crack size at
rupture is larger than the range of the experimental test and estimated by the numerical model to be
0.547 mm.
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For the best performing PMMA_1 polymer, capsules with thicker walls were then extruded
and experimentally tested and the results were compared to the model output based on the exact
same dimensions. The results are plotted in Figure 11. The average crack size at rupture determined
experimentally followed the same trend of the model output, i.e., an increase in crack size at rupture
with increasing wall thickness (for similar external diameters), with a maximum deviation from the
model of ~16% for the capsules with a 1.19 mm wall. The absolute values of crack width at rupture
determined experimentally were 69 ± 22 µm, 128 ± 36 µm, and 251 ± 4 µm, respectively for capsules
with an average wall thickness of 0.31, 0.72, and 1.19 mm.

Materials 2017, 10, 10  10 of 13 

 

For the remaining polymers, the crack width at rupture was much higher than the targeted limit 
of 100 μm, as expected from the model output and confirming that these polymers are not good 
candidates for the intended application. For PMMA_2, the model output was very similar to the 
average crack size at rupture determined experimentally, with a deviation of ~10%. Regarding PLA 
capsules, it was not possible to assess how accurate the model was, given that their crack size at 
rupture is larger than the range of the experimental test and estimated by the numerical model to be 
0.547 mm. 

 
Figure 10. Crack size at the moment of rupturing of the capsules, in relation to the targeted 
maximum crack size of 100 μm. 

For the best performing PMMA_1 polymer, capsules with thicker walls were then extruded and 
experimentally tested and the results were compared to the model output based on the exact same 
dimensions. The results are plotted in Figure 11. The average crack size at rupture determined 
experimentally followed the same trend of the model output, i.e., an increase in crack size at rupture 
with increasing wall thickness (for similar external diameters), with a maximum deviation from the 
model of ~16% for the capsules with a 1.19 mm wall. The absolute values of crack width at rupture 
determined experimentally were 69 ± 22 μm, 128 ± 36 μm, and 251 ± 4 μm, respectively for capsules 
with an average wall thickness of 0.31, 0.72, and 1.19 mm. 

 

Figure 11. Crack size at the moment of rupturing of PMMA_1 capsules with different external 
diameter (Ø) and wall thickness (t), according to both the numerical model and the experimental 
results. 

Figure 11. Crack size at the moment of rupturing of PMMA_1 capsules with different external diameter
(Ø) and wall thickness (t), according to both the numerical model and the experimental results.

Finally, to assess how the results were affected by the treatment of the capsules, which included
sanding of the outer surface and molding hooks at the ends (Figure 1), tests were also performed
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on smooth capsules without the treatment. The capsules used were from the same batch as those
identified in Figure 11 as having a wall thickness of 0.72 mm. Without the treatment, the capsules did
not rupture within the testing range, which achieves a crack size of 400 µm. Reintroduction of only the
sanding step, without the molded hooks at the ends, re-established rupturing for a similar range of
crack sizes (111 ± 18 µm).

This proves also that it is unlikely that the poor performance of the PS capsules was related to
a lack of adhesion, since the good adhesion between the best performing PMMA_1 capsules and the
cement paste matrix was essentially mechanical in nature and achieved due to the roughness of the
capsule’s surface introduced by sanding it, i.e., not due to a particularly good compatibility between
PMMA and the cement paste.

5. Conclusions

The numerical model identified a wide range of performances for the polymeric capsules and
was confirmed to be a useful tool for preliminary screening of materials to be used for encapsulation.
The model’s output showed only two types of capsules (PMMA_1, PS) potentially rupturing for crack
sizes below 100 µm, i.e., the maximum limit after which they should rupture and release the contents
in the context of self-healing concrete. The low elongation at break of these polymers was a critical
factor in achieving good performance and thus it was suggested that an elongation of less than 1.5% is
recommended for this application.

For the PMMA_1 capsules, the experimental results agreed well with the model’s output, which
showed a maximum deviation of 16%. Capsules with ~0.3 mm thick walls were considered fit for
application in self-healing concrete, as they ruptured when crossed by an average crack size of 69 µm,
while capsules with ~0.7 mm walls ruptured slightly above the targeted limit, for an average crack
size of 128 µm. The latter size can potentially still be used for the considered application, but PMMA_1
capsules with ~1.2 mm were considered unfit. Regarding the PS capsules, the experimental results
showed them to rupture only for very large crack sizes, unlike the result foreseen by the numerical
model. The reason for this was not clear, although a lack of adhesion was improbable, as proper
adhesion was proven to depend mainly on the abrasive treatment applied to the surface of all capsule
types. Changes to this material during extrusion were thought to be the reason for the unexpected
poor performance of PS capsules.

The experimental results confirmed that the remaining types of capsules (PMMA_1-PEG, PLA,
PMMA_2) rupture for crack sizes much higher than the targeted limit and thus are unfit. The model
output showed a high maximum deviation of 33% relative to average experimental results in the case of
PMMA_1-PEG, most probably due to the fact that this material is a blend and thus less homogeneous
than the other polymers, which resulted in higher scattering of results. Additionally, PEG was expected
to leach out from the PMMA_1-PEG matrix towards the moist cementitious matrix, thus reducing the
ductility of the capsules, but this was not confirmed. In the case of PMMA_2, its molecular weight was
too high, making this material too ductile and strong compared to PMMA_1, but the model accurately
predicted its performance, with a maximum deviation of 10%.

The presented modelling approach proved to be a valuable tool for designing capsules to be used
as carriers of healing agents in self-healing concrete. The use of this and similar approaches in the
future can provide guidance for experimental design and reduce the number of tests needed to design
a robust self-healing system for use in concrete.
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29. Šavija, B.; Luković, M.; Pacheco, J.; Schlangen, E. Cracking of the concrete cover due to reinforcement
corrosion: A two-dimensional lattice model study. Constr. Build. Mater. 2013, 44, 626–638. [CrossRef]
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