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Abstract—The execution of deep neural network (DNN) in-
ference jobs on edge devices has become increasingly popular.
Multiple of such inference models can concurrently analyse
the on-device data, e.g. images, to extract valuable insights.
Prior art focuses on low-power accelerators, compressed neural
network architectures, and specialized frameworks to reduce
execution time of single inference jobs on edge devices which are
resource constrained. However, it is little known how different
scheduling policies can further improve the runtime performance
of multi-inference jobs without additional edge resources. To
enable the exploration of scheduling policies, we first develop
an execution framework, EDGECAFFE, which splits the DNN
inference jobs by loading and execution of each network layer.
We empirically characterize the impact of loading and schedul-
ing policies on the execution time of multi-inference jobs and
point out their dependency on the available memory space. We
propose a novel memory-aware scheduling policy, MEMA, which
opportunistically interleaves the executions of different types of
DNN layers based on their estimated run-time memory demands.
Our evaluation on exhaustive combinations of five networks,
data inputs, and memory configurations show that MEMA can
alleviate the degradation of execution times of multi-inference (up
to 5×) under severely constrained memory compared to standard
scheduling policies without affecting accuracy.

Index Terms—Edge computing, Scheduling, Constrained mem-
ory, Memory aware, Multi-inference, Deep neural networks

I. INTRODUCTION

Deep Neural Networks (DNNs) have been successfully
applied to a wide range of applications, from voice assistants
to autonomous driving. For the example of the life logging
application [1], images of surroundings are periodically cap-
tured to record the daily activities. The information about
faces, gender, and salient objects are inferred by executing
different types of DNNs, such as FaceNet and GenderNet [2].
To accommodate the need to extract multi-faced information
from the same image input, multiple DNNs are increasingly
bundled together – so-called multi-inference jobs.

Recent technological advancements and advantage of data
vicinity enable the shift of DNN inference from the cloud
to the edge devices [3] that have limited processing power,
memory, and energy. It is no mean feat to execute DNNs while
simultaneously respecting resource constraints and guarantee-
ing the performance, e.g., low inference time. This challenge
is further exacerbated when encountering multi-inference jobs
that need to run multiple DNNs on the same data inputs.

That state-of-the-art actively addresses the challenge of
running DNN inference on the resource constrained edge
devices from the perspectives of either being memory aware
or multi-inference. Indeed, memory consumption is the main
concern for executing complex and large-scale DNN on the

edge devices [4], [5]. On the one hand, various memory-
reduction strategies for single DNN are explored, such as
caching technique [6], [7], pruning DNN layers [8] and model
compression [4], [5]. On the other hand, efficient resource
multiplex over multiple DNNs also sheds light on accelerating
the inference performance on edge devices [1], [9], [10], [11]
without sacrificing accuracy [12], [13]. While there is little
work that takes advantages of memory-aware strategies [14],
there is no work that takes into account the effect of different
scheduling algorithms and different batch sizes.

In this paper, we advocate to leverage the layer-wise
scheduling policy to improve multi-inference jobs. To such
an end, we first develop EDGECAFFE [15], a DNN infer-
ence framework for dicing the entire DNN into layers and
providing configurable layer loading and scheduling policies.
Thanks to EDGECAFFE, we empirically evaluate the impact of
layer loading into memory and scheduling policies on multi-
inference pipelines. We first show that the common practise of
loading the entire network at once into memory and executing
multi-inference jobs according to the arrival orders fall short
in coping with a high number of DNN inferences in small
memory space, e.g., 512 MB. We design a novel memory-
aware policy, MEMA, which opportunistically interleaves the
loading and execution tasks of each convolutional and fully-
connected layers1 based on the estimated memory demands.
We extensively evaluate the inference time under different
levels of memory configurations and inference scenarios of
combining five state-of-the-art CNNs. Our preliminary results
show that MEMA can effectively prevent performance degra-
dation, up to 25% for the larger number of networks on
extremely constrained memory.

Our contributions are summarized as following. First, we
develop a general and flexible layer-wise execution framework,
EDGECAFFE (§II). Secondly, we design a novel memory
aware multi-inference scheduler, MEMA (§III), which are
shown effective compared to the standard scheduling policies.
Third, we quantify the impact of different combinations of
loading and scheduling policies (§V) via extensive experimen-
tal evaluations and rigorous statistical tests.

II. EDGECAFFE AND LAYERED MODEL EXECUTION

To execute and record the performance of multi-inference
jobs, we extend the EDGECAFFE [15], which is an in-house

1Here, we specifically consider convolutional neural networks (CNN),
whose main layers are convolution and fully-connected layers. EDGECAFFE,
however, supports for the extension to any Caffe compatible model.
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Figure 1: Detailed overview of the EdgeCaffe Orchestrator, Scheduler, and Taskpools. The Orchestrator keeps a collection of
InferenceTasks, which are delegated to the scheduler for placement on the available Taskpools. Inference tasks get divided into
Network initialization (Init), layer loading (Load), and layer execution (Exec) Tasks.

extension of the Caffe [16] framework which enables layer-
by-layer control of DNNs while executing Caffe models. A
common practice for executing DNNs is to first load the
entire network into memory and process it afterward in one
go. EDGECAFFE, instead, provides the flexibility to load and
execute networks layer by layer via loading Li and execution
Ei tasks, where the subscript i indicates the ith layer.

Two key decisions to make in EDGECAFFE are (i) when
and which task (L or E) to load into memory, and (ii) when
and how to schedule the loaded layers. Tasks are created ac-
cording to a layer loading policy which specifies the execution
order of Li and EI tasks as dependency graphs (see §II-A).
Additionally, a network initialization task I is created to allow
for the lazy initialization of the network. Once free, threads
in a worker pool select tasks which are ready to run, i.e.,
having all their dependencies satisfied. We implement different
scheduling policies on EDGECAFFE to agilely determine the
execution order if multiple tasks are ready to run (see §II-B).

Specifically, the multi-inference jobs are executed by differ-
ent components of EDGECAFFE shown in Figure 1. First, the
inference job is sent to the orchestrator, which creates I , E
and L tasks based on the requested networks and according to
the selected layer loading policy. Once created, the scheduler
pins the tasks to available taskpools and assigns them to
worker threads following the selected scheduling policy. The
taskpools support policies which can schedule independent
groups of tasks in parallel, e.g. the DeepEye policy detailed
in §II-A.

A. Loading Policies

We implement four loading policies: three policies drawn
from state-of-practice and the fourth one providing greater
scheduling flexibility.

Bulk. This policy is the status-quo approach used in most
frameworks for DNN execution. As shown in Figure 2a, it
orders first loading tasks of all layers, before the execution

tasks corresponding to the loaded layers become eligible for
scheduling.

Linear. Linear loading requires that a layer is only loaded
once the preceding layer’s output is available. This results in
completely interleaved execution of all layers’ loading tasks
(see Figure 2b).

DeepEye. This policy mimicks DeepEye’s execution be-
haviour [1]. Task dependencies are set such that the fully
connected layers can be loaded in parallel to the execution
of the convolutional layers (see Figure 2c). This allows for
partial amortization of the loading time of fully connected
layers (IO-bound) over the execution time of convolutional
layers (CPU-bound).

Relaxed. This policy enables the flexible loading of any
layer from different types. As such, the scheduler policy
can have a higher degree of freedom to execute the readily
loaded layers. For example, task Ei and Li+1 can be executed
simultaneously on different threads, given the execution order
specified in the dependency graph.

Under this policy the orchestrator creates tasks such that
layers can be arbitrarily loaded upon network initialization
(see Figure 2d).

B. Standard Scheduling Policies
We implement three well-known scheduling policies from

literature, and design a memory-aware policy described in §III.
First Come First Served (FCFS) is a greedy scheduling

algorithm that prioritizes tasks with the longest waiting time.
This results in executing tasks in order of submission.

Shortest and Longest Job First (SJF, LJF) greedily
schedule tasks in increasing and decreasing order of expected
execution duration, respectively. SJF’s approach minimizes the
average waiting time of tasks, as no task has to wait for the
longest available task. Whereas LJF provides a guarantee that
the longest tasks have minimal waiting time. Both scheduling
policies require estimates on task run times. We infer these
from profiling runs.
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Figure 2: Loading policies ordering Initialization, Lioading and Eixecution tasks for all layers i in a DNN.

III. MEMORY-AWARE SCHEDULER (MEMA)

Ever increasing DNN models challenge the feasibility of
running inference on edge devices due to their limited memory
space. Multi-inference jobs acerbate this even more. To ad-
dress this issue, we propose a novel memory-aware scheduling
policy, named MEMA. The core design idea of MEMA is to
interleave the loading and execution threads of multi-inference
jobs while avoiding the memory over-allocation from pre-
loading the layers. Algorithm 1 provides the pseudo-code for
the MEMA scheduling policy. MEMA does not interfere or
alter the structure of the original trained DNN model, hence
the model accuracy remains unchanged.

MEMA aims to prevent memory over-allocation and avoid
its severe performance penalty during execution. When a
process allocates more memory than available, the OS needs
to dump currently unused memory pages to disk. When such
memory pages are accessed, a page fault is triggered to
reload the page from disk. Since disk accesses are orders
of magnitude slower than RAM accesses, paging can lead to
(severe) execution time penalties. The MEMA policy aims to
avoid racking up this penalty by preventing over-allocation,
loading only as many layers as fit into the available memory
and delaying the others. As memory requirements of even a
single layer may exceed the available memory on constrained
edge devices, the scheduler is always allowed to load at least
one layer in advance.

MEMA tracks the per-layer loading and execution tasks that
may be scheduled via two prioritized task lists. The order
in which layers are loaded matters. With stringent memory
availability in mind, MEMA loads layers in order of appear-
ance in the network, i.e. layer k before layer k+1. Hence the
loading task list is ordered by layer index. Instead, the ordering
of the execution task list is based on expected throughput.
This throughput priority is calculated by the expected memory
requirement of a layer, divided by the expected computation
time of the layer. Since completed execution tasks free up
the memory used by the corresponding layer, the throughput
metric allows to privilege execution tasks which free up
resources faster. Consequently, MEMA can (pre)load layers
at a faster pace and increase the chance of “hiding” loading
times (typically IO-bound) behind execution times (typically

Algorithm 1 Pseudo code of MEMA scheduling policy.

1: procedure INITINFERENCETASK
2: inferenceTasks ← NEXTJOB()
3: Insert task.loadTasks into load priority queue
4: Insert task.execTasks into exec priority queue
5: end procedure
6: function READYTASKS
7: while CANSTARTNEWINFERENCE() do
8: INITINFERENCETASK()
9: end while

10: execTasks ← READYEXECUTETASKS(exec)
11: loadTasks ← READYTASKS(load)
12: return loadTasks, execTasks
13: end function
14: procedure MEMA
15: exec, load ← READYTASKS()
16: Add exec to FCFS worker queue
17: while !OVERSPENDMEMORY() do
18: Add NEXTTASK(load) to FCFS worker queue
19: end while
20: end procedure

CPU-bound). We infer the layer memory usage and execution
times from profiling runs.

IV. TESTBED SETUP

Scenarios. We consider two scenarios where DNN infer-
ence runs on an image of size 500x500 from the EDUB-
Seg dataset [17], [18]. The first scenario focuses where only
one image is processed by multiple networks, i.e., a single
image and multiple DNNs job listed in Table II. In the second
scenario, a job consists of multiple images2, each of which
needs to run inferences on DNNs. Both scenarios evaluate
the inference performance in terms of average execution time
per job across the combinations of the four loading policies
and four scheduling policies from §II and §III, and four
memory sizes. In addition, for the scenario of multi-image
multi-inference jobs, we consider running one or two networks
in parallel as well as four batches sizes of images, namely 1,

2we term the number of images as the batch size
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Table I: Run-time configurations.

Parameter Values

Memory 1 GB, 512 MB, 256 MB
Scheduling Pol. FCFS, SJF, LJF, MEMA
Loading Pol. Bulk, Linear, DeepEye, Relaxed

Parallelism 4 (concurrent networks)
Batch size 1, 2, 4, 8 (images)

Table II: Overview of used DNNs; conv.: convolutional, fc:
fully connected.

Model Size (Disk) Architecture

AgeNet [2] 45.6 MB conv:12 fc:8
GenderNet [2] 45.6 MB conv:12 fc:8
FaceNet [21], [22] 227.5 MB conv:16 fc:8
SoS [23] 227.5 MB conv:16 fc:6
SoS GoogleNet [23] 23.9 MB conv:10 fc:142

2, 4, and 8 images per job. Table I summarizes all the test
variables. Each experiment was repeated 20 times.

DNNs. We consider five DNN models, namely AgeNet,
GenderNet, FaceNet, SoS and SoS GoogleNet, for both sce-
narios. These models were chosen as they can be deployed
for realistic applications, e.g. life-logging [19]. The objectives
and architecture of those networks are summarized in Table II.

AgeNet and GenderNet [2] estimate the age and gen-
der of subjects in images. We used the implementation
provided by the original authors available on [20].
FaceNet [21] specializes in detecting faces in differ-
ent poses in images. We used the implementation by
Guo [22].
SoS and SoS GoogleNet [23] perform salient object
subitizing. The networks are based on the AlexNet [24]
and GoogleNet [25] structures, respectively. We used the
implementation from [26].

System specifications. Experiments are performed on Rasp-
berry Pi’s, which ran ran Ubuntu 18.04 with 4 cores, and 2
GB and 4 GB RAM. The implementation of EDGECAFFE is
based on Caffe V1.0.0 with OpenBlas v0.2.20 as backend.
In addition we use Linux cgroups to limit varying levels of
available memory and set the number of worker threads to
four.

V. EVALUATION

This section first present the impact of limited memory
on multi-inference jobs for the scenarios of single image
before moving to scenarios of multiple images. We aim to
show how different combinations of loading and scheduling
policy, including the proposed MEMA, can combat the limited
memory space.

A. Single Image Multi-inference Jobs

We start by investigating the effects of constraining memory
on single-image jobs, i.e. executing 5 DNNs inference on
one image only. For each neural network in Table II, we
run inferences on all combinations of loading and scheduling

Table III: Normalized execution time relative to bulk loading
with FCFS scheduling (status-quo) for each memory size.
Lower the values, lower the average execution times.

Loading Scheduling 2GB 1GB 512MB 256MB

Bulk

FCFS 1.00 1.00 1.00 1.00
LJF 1.06 0.94 1.02 1.05
MEMA 1.02 1.21 0.45 0.61
SJF 1.04 0.96 0.97 1.04

Deepeye

FCFS 1.10 1.06 0.62 0.79
LJF 1.14 1.03 0.62 0.81
MEMA 1.14 1.11 0.44 0.56
SJF 1.15 1.02 0.63 0.80

Linear

FCFS 1.12 1.06 0.39 0.57
LJF 1.14 1.06 0.40 0.57
MEMA 1.17 1.11 0.39 0.59
SJF 1.13 1.07 0.39 0.57

Relaxed

FCFS 1.20 0.99 0.99 1.04
LJF 1.19 1.04 1.01 0.99
MEMA 1.21 1.09 0.44 0.57
SJF 1.26 1.09 1.18 1.01

policies and measure the average execution time. To highlight
the impact of the different loading/scheduling policies under
diminishing available memory, we normalize each result with
respect to bulk loading and FCFS scheduling for each memory
size. Such a configuration represents the state-of-practice of
most deep learning frameworks [1]. Table III presents the
results averaged across all five neural networks on Raspberry
Pi.

Loading policies, such as bulk and linear, enforce strict
execution orders and give little to no freedom on scheduling
layers. Consequently, when memory is unconstrained relative
to inference on DNNs, i.e. 2 GB and 1 GB, execution times
across scheduling and loading policies do not differ as shown
by a normalized execution time of ≈ 1.0. When memory is
scarce, i.e. 256 MB and 512 MB, linear loading is better
because it only requires loading one layer into the memory
at a time, which reduces the memory demand. As a result,
we see ≈ 60%, and 40% improvementt across all scheduling
policies for 512 MB and 256 MB, respectively.

The DeepEye loading policy divides the tasks into two
groups: one CPU-intensive and one IO-intensive which cor-
respond to convolutional layers and fully connected layers.
These two groups can be run in parallel to take advantage of
their orthogonal resource requirements and optimize execution
time. This speedup is shown in Table III.

Relaxed gives the highest freedom to the scheduler. Conse-
quently, under this loading policy, we observe MEMA outper-
forms significantly across scheduling policies when memory
is scarce, i.e. 512 MB and 256 MB. With sufficient memory,
i.e. 2 GB and 1 GB, the differences among scheduling policies
are limited.

Moreover, we run four-way analysis of variance (ANOVA)
to rigorously quantify the significance and importance of
different factors on the DNN inference time, namely memory
sizes, loading policies, scheduling policies, and the concur-
rency levels of networks. Due to the space limit, we omit
the presentation of the ANOVA table and only provide the
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Figure 3: Multi-inference execution time (seconds) under diminishing memory and relaxed loading policy. Each bar represents
average execution time of single image (normalized by the batch sizes).

description here. Indeed, all four factors are significant, their
resulting F statistics are greater than the significance values of
0.05. In terms of the order of their importance, memory size
is the most important one followed by the loading policies,
and the scheduling policy and network concurrency are the
least important ones. This resonances well with the empirical
observations above.

B. Multiple Image Multi-Inference Jobs
Here we evaluate multi-inference jobs which a batch of

multiple images are inferred by all five neural networks at
a time. Specifically, we consider the batch sizes of 1, 2, 4,
and 8 images. We also allow up to two concurrent network
inferences to take advantage of available memory, especially
in the case of 1 GB. We refer to execution time per job as the
time to complete processing a whole batch of images. Due to
space constraints we focus on the results with relaxed loading
policy, since this policy allows for the highest impact from
scheduling, as seen in section §V-A. We consider the same
scheduling policies and memory limits as before. Figure 3
summarizes the normalize results, where each bar represents
the multi-inference execution time per image. In other words,
we normalize the average execution time by the batch sizes.

The impact of scheduling policies increases in the batch
sizes and decreases in memory sizes. As shown in Figure 3a,

the highest impact of scheduling policies when the batch size
is 8 images under 1 GB memory. In term of the absolute
time, the difference between MEMA and the second best
method is ≈ 16 seconds. When memory is restricted further,
i.e., 512 MB, memory clearly starts to be scarce. Results in
Figure3b show that MEMA performs as the best scheduling
policy with the notable difference compared to other methods.
As the number of images in each batch increases eightfold,
the execution time of MEMA increases by approximately 4
seconds, while other methods increase by an average of 23
seconds under 512 MB memory size. Other scheduling policies
have higher execution time under concurrent execution: on
average 82% longer executions, i.e, 5× improvement. In
addition, the impact of growing batch size when it increases
from single image to a larger number is greater than when the
batch size is more than one image.

In the most memory constraint case. i.e., 256 MB, the
execution time for all scheduling policies almost double due to
halving the memory size. Same as the observation for 512MB
memory, the impact of increasing the batch size on execution
time from 2 images per batch to more is minor compared to
increasing from a single image to more than one. This is shown
in Figure 3c. Different from LJF, SJF, and FCFS, MEMA keeps
the execution times almost constant relative to the batch sizes.
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Specifically, in terms of the time difference between batch
size 1 and 8, MEMA results into a higher execution time by
only 6% on average, while the execution time increases for
LJF, SJF and FCFS by 13% , 19% and 17%, respectively.
Furthermore, at 256 MB MEMA requires ≈ 133 seconds less
on average to complete the multi-inference jobs compared to
the second best performing scheduling algorithms. Moreover,
MEMA avoids any penalty stemming from concurrent model
execution.

As we mentioned, another trend is the impact of increasing
batch sizes. Under LJF, SJF and FCFS, one can clearly see that
the execution times increase in batch sizes, whereas MEMA
is able to keep the increment much lower. Such a contrasting
performance is even more visible in cases of stringent memory,
i.e., 512 and 256 MB. Additionally, the observed trend for
MEMA in Figure 3 is almost constant under 256, 512 MB,
while in the case of 1 GB, the trend follows a linear pattern.
Compared to all scheduling policies for all the cases, MEMA
deteriorates less than LJF, SJF, or FCFS.

Moreover, we validate rigorously our results using three-
way ANOVA using memory availability, scheduling mode, and
concurrency as predictors for execution time normalized by
the batch size. The resulting F-statistics validate the afore-
mentioned observations.

Existing solutions for multi-inference jobs such as
NeuOs [12] optimize for throughput and energy usage but
do not consider memory. The focus on memory usage within
MEMA is beneficial for small devices with limited memory.

VI. CONCLUSION

Motivated by the emerging trend of using multiple neural
networks at edge devices, we address the research questions
how (novel) scheduling policies can improve the inference
performance on memory constrained devices. To such an end,
we first develop the execution framework, EDGECAFFE, which
enables per-layer execution of DNNs via configurable loading
and scheduling policies. To overcome the performance degra-
dation due to the memory constraints, we then design MEMA
which aims to effectively schedule multi-inference jobs by
opportunistically interleaving the loading and executions of
convolutional and fully-connected layers of DNNs according
to the estimated memory demands. Extensive evaluation on
different combinations of inference networks on Raspberry Pi
shows that MEMA can greatly alleviate performance degrada-
tion up to 5×, especially in the challenging scenarios of five
networks inferring a large number of images under limited
memory. For the future work, we will improve the memory
estimations of MEMA and explore different edge devices.
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