
League
of Lasers
S. Alaka,
D.J.M. de Bruin,
N.A. Miedema,
J. Vermeer

Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft

League of
Lasers

by

S. Alaka,
D.J.M. de Bruin,
N.A. Miedema,
J. Vermeer

Supervisors: Dr.ir. A.R. Bidarra, TU Delft, supervisor
Dr. S.G. Lukosch, TU Delft, customer

Bachelor Coordinator: Dr.ir. H. Wang, TU Delft
Ir. O.W. Visser, TU Delft

An electronic version of this document is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Summary

This report describes the development of a superhuman sports multiplayer game that makes use of aug-
mented reality through the HoloLens. The game is a reenvisioning of the original League of Lasers, a
pong/football-esque game for Android phones using camera tracking and special headgear for player po-
sitioning. The game was specifically redesigned to use neither a camera or a phone, but instead use the
HoloLens’ spatial localisation features. The goal of the project is to provide a superhuman sports multiplayer
experience on the HoloLens. To be able to provide this, a system for managing spatial anchors and a custom
networking architecture were developed, making use of a game server, game clients, a master game client
and a web server for sharing anchors. Along with this, large-scale playtests were performed, where data was
collected. The corresponding game design changes from the original game are described and implemented
to ensure an optimal experience. As the game was developed in Unity with the Mixed Reality Toolkit, soft-
ware quality was kept at adequate levels throughout the project through a custom CI setup, code written with
testability and maintainability in mind through the humble object pattern, and rigorous PR reviewing guide-
lines. For the development process itself, Scrum was used with weekly meetings, a Waffle project board and
daily status reports. Numerous problems with the combination of Unity, the Mixed Reality Toolkit and the
HoloLens made the project a laborious endeavour, but the final result and design of the game exceeded our
initial expectations.

iii

Preface

This report describes the result of our Bachelor End Project. The bachelor end project is the last project to
complete our bachelors degree in computer science. The goal of the project was to design a “superhuman
sport” that would be submitted to the Superhuman Sports (SHS) Design Challenge in July 2018. The project’s
client is the TU Delft Sports Engineering Institute, with dr. S.G. Lukosch being the contact person for the
institute. Our coach and supervisor was dr.ir. A.R. Bidarra.

During the project, we worked together as a group of four students starting on 23 April till 4 July 2018.
For 11 weeks we delved into the development of games on the Microsoft HoloLens using Unity. At the time
of writing the device is still only intended for developers. This meant that the HoloLens would support most
of its official features, but documentation and working examples were scarce, moreover undocumented bugs
were still present. This made the project a challenge at times, there were moments where we feared these
limitations would prohibit us from realising the project, or that the game might not be fun. However, once
we got our first alpha build running on the HoloLens in week 7 we were ecstatic, the game worked well and
more importantly, it was fun.

We had our first official reveal on the 21st of June at the Virtual Playground Event in the TU Teaching Lab,
where we got valuable feedback. We’re proud of the resulting game and in the end found the project to be
a rewarding experience. Unfortunately, the deadline of this report is before the SHS Design Challenge so we
cannot reflect on that part of the project in this report, but we’re hopeful for that podium spot.

Finally, we would to express our gratitude towards all people that helped to realise the end result. We
thank dr. S.G. Lukosch for being an awesome client: during the project we had some setbacks and dr. S.G.
Lukosch was always understanding of these issues and remained patient, and most importantly gave honest
feedback about how to improve the game. We thank dr.ir. A.R. Bidarra for being the best supervisor we could
possibly have for this project: not only would he provide us with valuable feedback, his guidance helped solve
some of the critical issues in the game and his enthusiasm helped us stay motivated. Dr.ir. A.R. Bidarra would
drop by from time to time just to say hi and check if we encountered any issues. We would also like to thank
him for setting us up with a workplace in the INSYGHTLab, as the location made it easy for us to collaborate
together. We thank dr.ir. H. Wang and ir. O.W. Visser for being part of the assessment committee, and finally
we thank drs. M.J.J. Beerens for inviting us to the Virtual Playgrounds event, which was a fantastic experience.

S. Alaka,
D.J.M. de Bruin,

N.A. Miedema,
J. Vermeer

Delft, June 2018

v

Contents

1 Introduction 1
1.1 Outline . 1

2 ProblemDefinition and Analysis 3
2.1 Problem Definition . 3
2.2 Requirements . 3

3 Design Process 5
3.1 Cooperation . 5

3.1.1 Meetings . 5
3.1.2 Collaboration Tools . 5

3.2 Planning . 6
3.2.1 Prototypes . 6
3.2.2 Scrum . 6

3.3 Development Tools . 7
3.4 Development Challenges . 7

3.4.1 HoloLens Development . 7
3.4.2 External factors . 8

4 GameDesign 9
4.1 Core Game Design . 9
4.2 New Additions to The Design . 10
4.3 Game Phases . 10

4.3.1 Start-up Phases . 10
4.3.2 Play Phases . 10
4.3.3 End Phases. 10

5 Global Network Architecture 11
5.1 Server . 12
5.2 Master Client . 12
5.3 Anchor Parenting . 13
5.4 Web Server . 13

5.4.1 Design & Technology. 14
5.4.2 Sharing Anchors . 14

5.5 Network Discovery . 14

6 SoftwareQuality 17
6.1 Testing . 17

6.1.1 Humble Object Pattern . 17
6.1.2 Unit Testing . 17
6.1.3 Parameterised Tests . 18
6.1.4 Playtests . 18

6.2 Continuous Integration and Unity . 20
6.2.1 Benefits of Continuous Integration . 20
6.2.2 Challenges Using CI and Unity . 20
6.2.3 Our CI Solution . 20

6.3 Code Analysis Tools . 20
6.4 SIG Feedback . 21

6.4.1 First Upload . 21
6.4.2 Better Code Hub . 21

vii

viii Contents

7 Implementations 23
7.1 Game Object Implementations . 23

7.1.1 The Laser Pulse . 23
7.1.2 The Mirror . 24
7.1.3 The Wall . 25
7.1.4 The Target . 26
7.1.5 The Playfield . 26
7.1.6 The Game Manager . 26
7.1.7 The Player . 27
7.1.8 The Timer . 27
7.1.9 Spectator Mode . 28

7.2 Anchor Related Implementations . 28
7.2.1 The Anchors . 29
7.2.2 The Anchored Relative Network Transform . 30
7.2.3 The Anchor Sharing and Management Framework. 30
7.2.4 The Anchor Manager. 31
7.2.5 The Anchor Sharing Manager . 32
7.2.6 The File Manager . 32
7.2.7 The Web Service . 33

8 Analysis of Ethical Implications 35
8.1 Dissemination and Use of Information . 35
8.2 Control, Influence and Power . 35
8.3 Impact on Social Contact Patterns . 36
8.4 Privacy . 36
8.5 Sustainability . 36
8.6 Human Reproduction. 36
8.7 Gender, Minorities and Justice . 36
8.8 International Relations . 36
8.9 Impact on Human Values . 36
8.10 Conclusion eTA . 37

9 Discussion and recommendations 39
10 Conclusion 41

10.1 Reflection on Product Requirements . 41
10.2 Reflection on SHS Evaluation Criteria . 41
10.3 Final Remarks. 42

A Feedback SIG 43
A.1 Feedback First Upload . 43
A.2 Feedback Second Upload . 43

B Original project description fromBEPSys 45
B.1 Project Description . 45

C MOSCOWAnalysis 47
C.1 Must Haves . 47

C.1.1 Mirror . 47
C.1.2 Laser Pulse . 47
C.1.3 Playfield . 47
C.1.4 Score. 47
C.1.5 Time . 48
C.1.6 Targets . 48
C.1.7 Team . 48
C.1.8 Multiplayer . 48

Contents ix

C.2 Should Haves . 48
C.2.1 Mirror . 48
C.2.2 Score. 48
C.2.3 Time . 48
C.2.4 Audience. 48
C.2.5 Multiplayer . 48
C.2.6 UI/UX . 49

C.3 Could Haves . 49
C.3.1 Mirror . 49
C.3.2 Laser pulse . 49
C.3.3 Playfield . 49
C.3.4 Score. 49
C.3.5 Targets . 49
C.3.6 Power-up . 50
C.3.7 Audience. 50
C.3.8 UI/UX . 50

C.4 Won’t Haves . 50

D Plan of Action 51
E Research Paper 59
F Playtest Questionnaire 75
G Playtest Results 79
H Info Sheet 83
I Glossary 85
Bibliography 87

1
Introduction

Over the past thirty years, computer games have risen to become a primary form of entertainment, being
highly effective at captivating users into all kinds of virtual activities [21]. While there was interest in immers-
ing the user more into games through means of Augmented Reality (AR) or Virtual Reality (VR), the technol-
ogy developed for this did not work well enough to provide a compelling experience [31]. Thus, playing video
games was and still is generally performed sedentary behind a computer screen.

In the recent years, interest in providing AR or VR video game experiences started to rise again [4]. Specif-
ically for AR (but not necessarily just for games), Microsoft has developed the HoloLens, a wearable device
capable of accurately laying holograms, representing virtual objects, over the real world through a visor [23].
This creates massive potential for providing new forms of gaming experiences, where the player is no longer
bound to sit on a chair, but rather, is encouraged to move around. Players would then engage in physical
activity to play the game competitively, having an experience that could resemble real life sports.

Figure 1.1: An in-game screenshot of the developed game

In this report we would like to describe how we made use of this opportunity to transform our previous
attempt at creating an AR game, which we described in our own paper [46], into our very own superhuman
sport experience on the HoloLens (see figure 1.1), where two teams of up to three players play a competitive
and physically engaging game akin to football and pong. The game is being developed for the SHS Design
Challenge [33], to showcase the current capabilities and high potential of AR sports.

1.1. Outline
First, an analysis and definition of the problem will be provided to clarify what the requirements of the prod-
uct are and how the developed product will satisfy these. Then, a description of the software design process
will be given, which will go over the team’s cooperation procedures, meetings with supervisors, development
tools, and challenges encountered during development. After that, the actual design of the game itself will be

1

2 1. Introduction

described, explaining how the game is played and how it differs from the original concept. Then, the design
of the developed networking architecture is elaborated upon. Following the network architecture’s design,
the methodologies for keeping the software quality adequate are discussed, touching upon testing, but also
upon play testing, code analysis, Continuous Integration (CI) and lastly discussing the feedback from the code
quality organisation: Software Improvement Group (SIG). After that, we go into the implementation details of
all the components of the game, describing their how they work and how they are used. Then, an analysis
of the game’s ethical implications is given, using the ethical Technology Assessment (eTA) framework. Before
concluding the report, discussion regarding the future of League of Lasers and superhuman sports in general
will be provided, with recommendations for the client. Finally, the report will close with concluding remarks
regarding the successfulness of the project, touching upon the fulfilled criteria and requirements.

2
Problem Definition and Analysis

This section will give a definition and analysis of the problem, followed by a description of the goal and re-
quirements of the final product.

2.1. Problem Definition
In July of 2018, the International Superhuman Sports Society organises the SHS Design Challenge, an inter-
national symposium celebrating the next generation of inventors [33]. The aim of the SHS Design Challenge
is to challenge designers to create sports-like experiences, which involves physical fitness and skill, with a
focus on augmenting human ability with technology. The sports are designed to be played for recreational
and health purposes.

The goal of this project is to redesign the game League of Lasers in such a way that it is more suitable to
be regarded as a superhuman sport, and can be submitted to the SHS Design Challenge. League of Lasers
was a pong/football like game that used a top down camera for player positioning (For further details of the
mechanics of league of lasers see [46], section 4.1 or appendix E). League of Lasers’ core mechanics revolve
around reflecting a laser pulse to guide it towards a target. Each team has its own target, so the players of
one team want to hit the opposing team’s target while defending their own (see figure 2.1a and 2.1b). When a
team’s target is hit by the laser, the opposing team scores a point. The team that scored the most points at the
end of the game wins. All in all, the general idea resembles football (soccer) and Pong.

2.2. Requirements
An essential part of this project is the live demo at the SHS Design Challenge (see appendix B). The SHS
committee will judge the following aspects of the game [33]:

• Human augmentation: How much does the superhuman sport augment human senses and capabili-
ties?

• Fitness and skills: How much does the superhuman sport require or train physical fitness and skills?

• Fun and engagement: How engaging and fun is it for participants to play?

• Innovation: How innovative is the superhuman sport?

• Audience: How much fun is it for the audience to watch the superhuman sport?

• Inclusiveness: Can participants with different backgrounds practice the superhuman sport?

In order to submit League of Lasers to this competition the game will be redesigned as an AR game, which
can be played using the Microsoft HoloLens. This brings a number of unique challenges that this project aims
to solve, including (see appendix: B):

• Use of the HoloLens in a (large) multiplayer setting.

• Integration of tracking, orientation and precise interaction with limited bandwidth.

3

4 2. Problem Definition and Analysis

(a) An overview of the in app play-
field.

(b) An abstraction of the app view.

Figure 2.1: An overview of the original League of Lasers

• Extend the game design to the extreme fast pace of the game (i.e. to the bare minimum imposed by
hardware latency).

• Developmentment of new gameplay elements that prove to be fitting in this Superhuman context.

In addition to the live demo at the Superhuman Sports Design Challenge, another demo will be given at
Virtual Playground, an VR/AR showcase event on 21 June 2018 [3]. This demo will serve as interim milestone
to test the beta version.

In order to solve these challenges and make League of Lasers fit the SHS criteria, a design (see chapter
4) and MoSCoW analysis was created (see appendix C). In chapter 4 the core game mechanics are explained.
These core mechanics are mostly the same as the old version of League of Lasers, since players enjoyed play-
ing the old game [46]. The MoSCoW analysis was used to determine and prioritise the requirements of the
project [7]. The first playable of the game shall include all the “must haves”. Then when the “should haves”
are implemented, the base game is finished and some of the “could haves” will be implemented. These “could
haves” will bring the game to the next level and take advantage of augmented reality technology the new game
has access to. The finished project will have all “must haves” and “should haves” implemented. The “could
haves” are implemented based on their priority. During meetings with the coach and client, these “could
haves” are prioritised according to their needs and the SHS Design Challenge criteria.

3
Design Process

The design process that was used during this project will be elaborated upon in this section. The intention is
to give an overview of the methodology used for cooperation, how the project was planned, which tools were
used during the development of the game and the main issues encountered with HoloLens development.

3.1. Cooperation
During this project, the team worked as a game studio, where everyone has an assigned role. In this case, the
roles were used more as responsibilities, for example the lead art director would be responsible for the art of
the game, while the lead programmer would responsible that high quality code was written. Everyone could
be assigned tasks of these different disciplines and since this is a software development project, everyone
would write code, but the responsible person makes sure all tasks are finished on time and in high quality. The
roles maintained and the team members assigned to these roles can be found in the plan of action (appendix
D).

Since the HoloLenses were locked in the INSYGHTLab at the Delft University of Technology, the team
worked mostly in the INSYGHTLab, five days a week, from nine to five. This also made it easier to share
knowledge around working with Unity and the HoloLens.

3.1.1. Meetings
Each first day of the week, a meeting between the team members was held. Here the previous sprint was
evaluated (see more about the Scrum workflow in section 3.2.2) and the new sprint is planned. The overall
progress of the project and important issues and deadlines were discussed. After this meeting, issues were
made and assigned on the Scrum board.

Each week, a meeting with the supervisor was planned. In these meetings, not only the weekly progress
and the issues faced were discussed, but also what direction to take the game in and how well the mechanics
that were implemented worked.

Weekly or biweekly meetings were planned with the client, depending on the progress made and how
busy the client was. In these meetings it was discussed if they were satisfied with the progress made, which
direction they wanted the game to take and thus which features should be prioritised and implemented.

3.1.2. Collaboration Tools
The team used several software tools to make collaboration and cooperation possible. For communication
within the team, Discord was used. Discord gives the ability to create multiple text and voice channels to
easily split up and discuss topics in a structured manner [8]. Discord also has excellent voice chat capabilities,
including the ability to share one’s screen to others [9]. For communication with our supervisor, WhatsApp
was used. For all other communication purposes, we used email.

For collaboration for the documents, Google Docs was used in combination with Google Drive and Share-
Latex. Google Docs was used to create the drafts of the documents, since it has extensive review tools, for
example the ability to create suggestions for edits that can be easily implemented or rejected with the press
of a button [15]. ShareLatex was then used to create the final versions of the documents, since it allows for
multiple users to collaborate and work together in the same LATEX document.

5

6 3. Design Process

GitHub was used as source control during this project. All code created is uploaded to our GitHub repos-
itories. GitHub contains the ability to easily create and review pull requests [14]. GitHub also allows the
creation of issues with milestones, which were used to plan and assign tasks.

3.2. Planning
This project has as final goal to have an AR reenvisioning of League of Lasers for the Superhuman Sports
Design Challenge, which takes place July 2-5 2018. To realise this, internal deadlines have been created for
several stages of the game:

1. May 25: first-playable, a first version of the game that includes the core functionality necessary to test if
the core mechanics are enjoyable. This version will not yet run on the HoloLens, as that is not necessary
for this purpose.

2. June 8: alpha version, the alpha should contain the core functionality of the game, as described by
the must haves of the MoSCoW analysis (see appendix C). From this version on out, the game will be
playable on the HoloLens.

3. June 22: beta version, the feature complete version of the game. This version should contain all features,
that can be implemented during the time span of this project. After this, no new features will be added.

4. July 4: final version, the final version of the game for this project. This version adds polish, but does not
add anymore features.

3.2.1. Prototypes
because of the new technology (the HoloLens) used in this project, a lot of research was required. Several
throw-away prototypes have been developed to test different functionality of the HoloLens and determine
how well certain game mechanics would function in the augmented reality setting. The following prototypes
where developed:

• Spatial mapping prototype: The spatial mapping prototype was developed to determine how well the
HoloLens could map a room to a mesh and if we could use this mesh to let a virtual ball bounce around
in the room.

• Mirror prototype: This prototype was used to test whether a holographic mirror, controlled via head
movement would be intuitive.

• Anchor prototypes: Multiple prototypes were created to test and research the anchors of the HoloLens.
These anchors ensure holograms are “anchored” to a real-world position. These prototypes include:
testing a single anchor, testing multiple anchors, testing positioning of objects relative to anchors and
sharing anchors via files and Transmission Control Protocol (TCP).

For more information regarding the spatial mapping and mirror prototype, please refer to the research report
(appendix E).

For a large part of this project, the team was split into two groups: the first group would begin laying the
foundation of the game and working towards the first-playable, while the second group worked on these re-
search prototypes for anchoring. By careful planning, the first group could begin laying the game’s foundation
and when the second group was finished with the prototype, the new insight could be applied to the game.
This pipeline was very important for the planning of the tasks, especially in the earlier stages of development.
Without this pipeline, the project would not be finished in time, as it allowed us to start working on the game
while we were researching the capabilities of the new platform, the HoloLens.

3.2.2. Scrum
The team used the Scrum framework, which uses work cycles called sprints. A sprint length of 1 week was
maintained, starting on Monday and ending on Sunday. Each day a daily stand-up was held, where team
members discussed their plans for the day and the issues they had encountered the previous day. If at least
one team member was absent, this daily stand-up was also posted on a special channel in the team’s in-
ternal messaging platform, Discord. Waffle was used as Scrum board, because of its elaborate integration
into GitHub [35]. Waffle uses GitHub’s issues as tasks and can move them automatically to different columns
when referenced in pull requests or commit messages. More details about our Scrum usage can be found in
the plan of action (appendix D).

3.3. Development Tools 7

3.3. Development Tools
This project was developed using the development tools specified by Microsoft for developing HoloLens ap-
plications [48]. To build HoloLens applications, Windows 10 is required. It is preferred to use Windows 10 Pro,
Enterprise or Education since this includes Hyper-V, which is necessary for the HoloLens emulator. During
this project, the team used Windows 10 Enterprise and Education, version 1709.

The recommended game engine is Unity 2017.4 [48]. The latest 2017 version of Unity is 2017.4.3f1. Unity
2017 is prefered above the newer 2018 version as 2018 had issues with the test runner (it was unable to create
a solution to run our unit tests in) [2]. Unity’s default Integrated Development Environment (IDE) is Visual
Studio 2017 Community, which is also the recommended IDE by Microsoft.

Unity has some useful features for HoloLens development. For example it includes Holographic Emula-
tion, which can simulate an HoloLens directly in the editor [36]. This virtual HoloLens is controlled using
a controller (e.g. an Xbox 360 controller). It is ideal for quick prototyping and debugging since it does not
require building the application. The downside of the Holographic Emulation is that it does not have full
support for anchors. It can not import and export anchors for example. Microsoft has also made available a
package for Unity [25], the Mixed Reality Toolkit, which contains lots of examples and prefabs for usage with
the HoloLens in Unity. While this package promises and sometimes delivers nice features, it is also poorly
documented and a lot of the code and examples are broken due to changes in the HoloLens’ and Unity’s
Application Programme Interface (API).

Microsoft’s HoloLens emulator can also be used to simulate the HoloLens [29, p. 7–8] [20]. As mentioned
previously, it requires Hyper-V. It is more powerful than Unity’s built-in Holographic Emulation, as it includes
all the User Interface (UI) elements of the HoloLens and access to the Windows Store, Settings menu, De-
vice Portal, etc. During this project, we didn’t find this HoloLens emulator to be useful in our workflow.
Unity’s Holographic Emulation was enough for simple testing purposes. For testing that could not be done
using Holographic Emulation (e.g. testing functionality that required anchors or playtesting the UX on the
HoloLens), we would simply build and deploy the game to the HoloLenses available.

3.4. Development Challenges
Life is full of challenges and so these can be expected when developing software. However, during the devel-
opment of League of Lasers the team face more issues and challenges than usual, causing substantial delays
and design overhauls during the course of the project. In this section, the development challenges faced
during the project are discussed. Most of these issues can be attributed to the HoloLens and its software
development kit, others were due to external factors.

3.4.1. HoloLens Development
During development with the HoloLens many issues were encountered. The most prevalent and most time
consuming issues will be discussed in this section. First, issues relating to networking will be discussed,
followed by those relating to the software used.

Networking related issues
While the HoloLens can easily be connected to the internet, running a networked Unity application on the
HoloLens is not that simple. The application’s server and the HoloLenses are required to run on the same local
network. Moreover, the HoloLens is not able to host unity game servers, hosting servers is used in almost all
examples released by Microsoft. Roughly two days were spent, by two team members, to try and get hosting
on the HoloLens working, but it was ultimately deemed impossible. Tests were done with WireShark [41] and
Advanced Port Scanner [12] to check network activity, here the discovery was made that the HoloLens never
opened the port where the game should be hosted. This meant that using a dedicated server is the only way to
run the game and that most examples that we wanted to run in the Mixed Reality Toolkit [25] did not function.

During development and research it was found that certain examples and scripts within the Mixed Reality
Toolkit did not function as intended. At a certain point the team asked [27] on the Github repository whether
the networking with Unity Networking (UNET) examples were abandoned. We received a response on this
within a day explaining that the examples still work. However, this cannot be the case, as the example in ques-
tion used the network discovery component, which has been broken for roughly a year and a half (according
to forum posts [22, 24], correspondence with other teams creating games for the SHS Design Challenge and
our own experience). Five weeks later Microsoft responded to the issue as well telling us that the hosted Wi-Fi
network could be the issue [27]. At this time though, we were already too far into the project and did not have

8 3. Design Process

the budget to buy a new router. Moreover, network discovery was found to work when ran on laptops, only
on the HoloLens did these scripts fail. These problems with the Mixed Reality Toolkit forced us to abandon
and ignore large parts of it and instead create our own anchoring, anchor sharing and networking systems.
These developed solutions made us the first group on the Delft University of Technology that successfully
used anchoring on the HoloLens, according to our client.

Another issue with networking was encountered after roughly four weeks into the project: the HoloLenses
updated themselves spontaneously (this is due to the Windows 10 updating policy, which cannot be config-
ured on the HoloLens). After this update, they could no longer connect to the game server. However, four
days later Microsoft released a new update which fixed the issue on the HoloLens. Unfortunately, Microsoft
did not disclose the presence of this bug in public anywhere, as such the team spent the four days hopelessly
trying to get the game to connect to the server (something that did work before the update) and attempting
to debug the issue, wasting precious time.

A different issue was that the HoloLens has limited access to its network settings. In practice, this means
that the HoloLens is not able to function properly in conjunction with some routers or wireless networks
(including Eduroam and the local NAO network in the INSYGHTLab). In order to remedy this, the team
brought one of their own backup routers which was used for the remainder of the project.

Software related issues
Networking was not the only source of issues, there were also issues related to developing software for the
HoloLens. For example, builds could take up to 7 minutes (5 minutes on average), slowing down iteration
speed, and debugging is difficult as stepping through running code deployed on the device is impossible.
The latter was important as components such as the anchors (see section 7.2.1) are not supported on the
desktop version of Unity, removing the ability to use Unity’s extensive editor-based debugging options for the
HoloLens clients. This has led to extensive logging in the application, by implementing a debug console to
make it easier to find bugs.

During weeks six and seven the team encountered another issue: the HoloLens’ anchors were suddenly
not accurate anymore and were likely to move around during play sessions. After a week of testing, our coach
brought us in contact with a Melbourne based HoloLens developer. After consulting with him, it was eventu-
ally found that the spatial map of the surroundings had become corrupted [42]. This is a known issue that is
not well documented. Deleting the spatial maps on the device seemed to resolve the issue, however a week
of development was lost in researching the issue.

3.4.2. External factors
In this section, the issues and challenges related to external factors are discussed. The most prominent of
these factors was that during the project there were quite some moments where we did not have access to the
HoloLenses. The HoloLenses were not available to us in the first one and a half week, meaning that we were
not able to start development and prototyping early on in the project. Moreover, during the starting weeks
there were quite some holidays during which the faculty was closed and thus we did not have access to the
HoloLenses. Another recurring issue was that we were not the only group that needed the HoloLenses. One of
the other groups also needed them for a symposium (international festival of technology) which lasted three
days. We tried to work around these issues as much as possible, scheduling documentation work for the times
when the HoloLenses were unavailable to us, however this was not always ideal and in many of these cases
access to the HoloLenses would’ve been convenient for debugging the game.

4
Game Design

In this section the general game design of League of Lasers AR is explained. This section will start with an
explanation of the core mechanics of the game, followed by an explanation what changes have been made to
the game compared to its predecessor. Finally the game flow is discussed, which will give insight into how
the player experience is like.

4.1. Core Game Design
League of Lasers is an AR HoloLens game that aims to be a superhuman sport. The game revolves around
players (represented by mirrors) reflecting a laser pulse into a target. The game consists of two teams, each
with their own target to defend. If a target is hit, the other team is awarded one point (see figure 4.1). The
general idea is somewhat like football and pong. The game uses the HoloLens’ positional and orientational
awareness to control the game. Players have to move around in a pitch/field to also move within the virtual
world.

Figure 4.1: A mock-up of how the game is played.

Players each control a virtual mirror that the laser pulse will bounce off when the pulse’s head collides with
the mirror. The orientation of the mirror will bend the laser pulse in different directions through reflection.
As such, players can guide the laser to the target of the opposing team. Currently the game is aimed at 2-6
players with teams consisting out of 1-3 players. The team that scored the most goals (a goal being the act of

9

10 4. Game Design

shooting in the opposing team’s target) after 5 minutes wins the match. If both teams happens to have the
same amount of goals, the match ends in a tie.

4.2. New Additions to The Design
The new version of League of Lasers is different from its predecessor [46]. While the main game-play ele-
ments of the original have been maintained, the switch to AR has changed the game considerably. The game
now uses a first person perspective as opposed to the old version’s top down view. Player movement is tracked
more easily through the HoloLens’ integrated solutions, so no camera and sombreros are needed. Moreover,
the change to a first person view has also changed the movement of the laser: in the old version this move-
ment was on a two dimensional horizontal plane, while in the new version the laser moves around in full three
dimensional space. One of the more important new features is that players no longer need to look down on
their phones to get an overview of the game, and instead focus on looking around them, making them more
aware of their surroundings and thus creating a safer and more pleasant experience This also means that the
game can be played at a much faster pace.

4.3. Game Phases
In this section the different phases of the game are discussed. The game consists out of several phases, each
contributing to either to the setup of the game, playing the game or ending the game. The different phases
are explained below.

4.3.1. Start-up Phases
1. On start-up of the server the amount of players will need to be specified.

2. Players can join the game, each will be assigned a team by the server.

3. The player that joins first is marked as the master client.

4. The master client can now place the anchors (see section 7.2.1) in the game.

5. After placing the anchors, the master client exports these anchors through a button and uploads them
to the web server.

6. The other player now download the anchors.

7. Once all players have joined and downloaded the needed anchors the game starts.

4.3.2. Play Phases
1. The timer counts down from 10 seconds, to make sure everybody is ready.

2. The game starts: the timer is set to count down from 5 minutes and a laser pulse is spawned on the
network.

3. The laser pulse’s position is set to the centre of the playfield and it is given a random horizontal direc-
tion.

4. If a team scores a point by guiding the laser into the opposing team’s target, the team’s score is incre-
mented by one and the game resumes at the previous phase (Play phase 3).

5. Eventually the time runs out. If both teams have the same score, it will end in a tie, otherwise the
leading team wins.

4.3.3. End Phases
1. There will be a waiting time of 10 seconds after the match, for players to see who has won. After this,

the game starts over from the first play phase.

5
Global Network Architecture

The game’s networking is based on UNET, the default networking solution embedded in Unity. The choice
was made to use a dedicated server-client architecture, with the server being a traditional desktop application
and the HoloLenses being the clients. The dedicated server was chosen as hosting on the HoloLens was
found to be a frustrating process. The hardware is poorly optimised for hosting servers and connecting to
these servers seems impossible most of the time (See section 3.4). Another major advantage to using the
dedicated server is that its representation of the game world can be projected or shown on monitors, this way
the audience can get a clear overview of the game played.

Due to some challenges related to synchronising spatial positioning between HoloLenses, the clients will
get more authority than in a traditional server-client application. In fact, the server will rely on one client in
particular, called the master client, to determine its internal representation of the game world, that will be
shared with other clients. In addition to the aforementioned server, another server is run (see figure 5.1 for

Figure 5.1: An overview of the how clients communicate with the servers.

an overview of the services). This is the web server which is used to upload and download files to and from
clients (serialised anchors, see section 5.1 for more information). The web server can also be used as a means
of network discovery.

In the next sections, the aforementioned systems will be discussed and the design choices will be elabo-
rated upon, starting with the server, then the master client, describing the process of anchor parenting, and
finally the web server will be discussed.

11

12 5. Global Network Architecture

5.1. Server
League of Lasers has some unique challenges that need to be solved. One of these is that the real world posi-
tions of virtual objects should be the same for all players. To ensure this, the server, which will control objects,
such as targets, and handles the initialisation of networked objects, needs to have an internal representation
of the game world which matches the real world. The server must communicate this to the client devices as
well.

HoloLens applications, made in Unity, are projected in the space around the user. By default the objects
will be placed relative to the position of the user and not relative to the position of the room the user is in.
In essence, this results in the user’s starting location as being the origin position in the Unity application. All
in all, the user’s starting position is the sole factor in determining the position of the projected holograms
and replicating the exact same position (corrected for drift, see appendix E) is nearly impossible. In practice,
this results in large offsets in the observed world between different devices and play-sessions, meaning that
holographic objects are never displayed at the same real-world position.

The HoloLens is able to create spatial anchors, which “anchors” a hologram to a real-world position (see
section 7.2.1). Objects can be “parented” to such an anchor, which makes the position, rotation and scale
of the object relative to the anchor’s position, rotation and scale, essentially using the object parented to
as the origin for the parented object. The aforementioned anchors can be serialised and shared between
HoloLenses so that multiple players can see holograms in the same real-world position. Sharing of these

(a) (b)

Figure 5.2: The position of objects in the game when the game is started at different real-world locations, using anchors.

anchors can be done via the dedicated server, which would seem to solve the aforementioned synchronisa-
tion issue, however this does not work in our case. While the anchors themselves consistently lock to their
real-world position, their location within a Unity scene will differ per device and per session.

The use of anchors will only move objects to the correct real-world location and not offset the internal
coordinate system in a Unity scene. This means that a cube on device 1 can be at position (a vector with the
x,y and z coordinates) [3, 1.5, 0.5] (see figure 5.2a) and at position [0, 1.2, 0] (see figure 5.2b) on device 2, while
being located at the same real-world position on both devices.

Another issue is that the desktop computer that runs the server does not know the concept of spatial
anchors. This makes sense, since the desktop application does not have the spatial perception capability and
thus cannot place a spatial anchor. In essence this means that the server has no clue where the anchor is
located and thus has no knowledge of the scene as observed by the clients.

5.2. Master Client
As discussed before, game objects that need to be shown at the same location across devices need to be
parented to an anchor, but the server cannot lock these anchors to a position, thus the server has no idea
where the anchors are, relative from each other. In order to grant the server this knowledge the master client
is used. The master client is the first client that connects to the server, this client will place the required
anchors to build the “playfield”. The playfield needs to be setup in such a way that the anchors are spread
out somewhat evenly. The game starts with presenting the master client with three anchors, two of these
need to be placed on the floor and one in the air (see figure 5.3). The aerial anchor must be placed right of

5.3. Anchor Parenting 13

Figure 5.3: An overview of how the playfield is set up using anchors.

both ground anchors. The distance between the anchors on the floor represent the length of the field, the
aerial anchor is used to determine the height of the playing field. The distance between the aerial anchor
and the closest ground anchor is used to determine the width of the playing field. The rotation of the field is
determined by the placement of the two ground anchors.

Preferably a distance of approximately 3-5 meters should be present between all anchors. Anchors should
be placed at unique and easily identifiable positions: it is wise to avoid using dark, reflective or white surfaces
to place the anchors on [43], as these will not be recognised so easily by the HoloLens, causing anchor drifting.

After the anchors have been placed, their positions in the Unity scene will be sent to the server. The server
will then change the internal position of the anchors to the received positions, giving the server a representa-
tion of the master client’s world. After this the anchors are serialised, as a byte array, by the master client and
send to the web server, after which the anchors can be downloaded by other clients. More information about
the interaction between the clients, the game server and the web server can be found in section 5.4.

5.3. Anchor Parenting
As discussed before (in section 5.1), objects that need to be shown at the same location across devices need
to be parented to an anchor. As the server only knows what the master client sees, an object cannot be moved
to another location via the network using Unity’s Network Transform, as the coordinate system within each
client is offset. The solution is to instead move objects relative to an anchor, which ensures that the position
and orientation of objects is synchronised correctly between all clients. This means that all networked objects
should be parented to an anchor at all times. The Microsoft documentation shows that anchors tend to only
be accurate in a 3 meter radius [43]. To ensure accuracy, multiple anchors will thus be needed and networked
objects will need to switch the anchor they are parented to if they move outside of the accurate range of an
anchor. Networked objects will parent themselves to the nearest anchor (see figure 5.4) and message this
change to the clients and server (whoever has authority over the game object), so that these can adjust the
relative position based on the new anchor. Anchor parenting and relative positions synchronise objects, but
players seeing objects parented to anchors further than 5 meters away will sometimes see objects drifting
(see appendix E) together with their anchors. Unfortunately, at the time of writing, no solution to this issue
has been found, but since accuracy is mostly needed in close range contexts (e.g. bouncing off the laser with
the player’s mirror) the choice to optimise for close distance accuracy was made.

5.4. Web Server
If objects are to be placed in their appropriate real-world location, it is essential that anchor files are shared
efficiently and most importantly without any data corruption. To achieve this, an external web server was
designed to share anchor files between HoloLenses. The web server also allows for discovering active games
and registering new game sessions. In this section, a brief outline will be given of its implementation and
inner-workings. Starting with an overview of the design and technology used, followed by an explanation on
how to create a new game session. Finally the anchor sharing functionality is examined.

14 5. Global Network Architecture

Figure 5.4: A diagram showing the functioning of the anchor parenting system. Green arrows mean that the anchor is parented to that
anchor, red lines mean that the distance is too large and thus not parented

5.4.1. Design & Technology
The web server will hosted on a remote cloud server, which makes setting up a game easy as players are not
required to setup their local web server before playing. However, the game should still be playable when no
internet is available, hence it should be possible for any user to run the server on their local network. After
the team experimented with several technologies, the choice was eventually made for GoLang (Go). Go has a
solid standard library, including a built-in http server, and can be cross-compiled into an one-click executable
for all major platforms [18].

5.4.2. Sharing Anchors
The web server makes use of several Representational State Transfer (REST) endpoint which allows for the
creation of both anchors and games. The process of sharing anchors has is displayed in figure 5.5. Before
the game starts, one client will become the ‘master client’, meaning that it will be responsible for placing and
serialising the spatial anchors. After the serialisation has been completed, the master client uploads an byte
array, which contains one or more serialised spatial anchors, to the web server (1). The web server stores the
anchor data and provides the master client with an unique integer id to identify the anchor array (2). The
master client will now sync this id over UNET to the Unity game server which runs on the local network (3).
The Unity server then syncs that id to all other clients in the game (4). Using this id, the clients are now able
to download the anchors from the web server (5, 6).

5.5. Network Discovery
This section briefly discusses the inner workings of network discovery, which was used to make it easy for
the clients to connect to the game server. To join a game it is essential to obtain the Internet Protocol (IP) of
the local game server. However, as discussed in section 3.4, the team was not able to make Unity’s built-in
network discovery work on the HoloLens. Therefore, the web server was to be used for network discovery.
However, on the last day of writing this report, a HoloLens update was pushed that would fix some of these
issues. Unfortunately, the update did not fix network discovery, however, after this update, the team was able
to listen for UDP multicast messages on the HoloLens.

Previously, the team was not able to receive UDP multicast message, but now with the new update, UDP
sockets are able to do so, but only if you write a message to them first (this worked on all HoloLenses available
to us). This message contains a predefined string and will be ignored when it is received from itself or other
HoloLenses. Using the fact that network discovery does work when running on the server (running regular
Windows 10 using UDP multicast), the sender of these messages can be determined and thus the original IP
of the server is found. It is then possible for the HoloLens to join the local game instance.

5.5. Network Discovery 15

Figure 5.5: Process of sharing an anchor.

6
Software Quality

In this chapter an overview is given how we guaranteed that the software written for this project was of high
quality. It will explain how our software was tested (including the custom CI solution) and which tools were
used to analyse the code. Then the playtests and live demos and the feedback received there are described.
Finally the SIG feedback is discussed.

6.1. Testing
To ensure the software written works as intended, it important to test the software rigorously. In game de-
velopment unit testing can be difficult and can not be used to verify if a gameplay element or mechanic is
fun and engaging, therefor playtests were also conducted. This section will give an overview of unit testing in
Unity and how we organised our playtests.

6.1.1. Humble Object Pattern
Testing (unit testing in particular) is non-trivial in Unity, because of MonoBehaviours [32]. These MonoBe-
haviour classes are a core component of Unity, as they control the game objects and run in the game world.
It is the base class from which every Unity script derives, providing access to Unity’s API [39]. Due to per-
formance reasons, these MonoBehaviours are not implemented with interfaces or inheritance, but they get
invoked from Unity’s C++ code [32]. MonoBehaviours can not be instantiated, so they can not be mocked
using the mocking frameworks out there.

This means the logic in MonoBehaviour scrips cannot be unit tested. Therefore, a special design pattern
has been recommended by Unity’s development team, called the Humble Object Pattern. The Humble Ob-
ject Pattern works by moving all logic from the MonoBehaviour script to a separate controller script. The
MonoBehaviour script is then called from the controller, using interfaces, to only execute Unity API calls, but
all the logic is contained in the controller. Since the calls the controller makes to the MonoBehaviour script
are made using interfaces, the logic can be easily tested by instantiating the controller class and providing it
mocks for the MonoBehaviour instances that implement the aforementioned interfaces. The Humble Object
Pattern is visualised in figure 6.1.

The Humble Object Pattern thus provides testability for classes that normally wouldn’t be testable. The
major downside of this pattern is that it is not always trivial to split the logic from Unity API calls. This gives
the code implementation of features requiring this pattern quite a bit of overhead.

6.1.2. Unit Testing
As mentioned in section 6.1.1, we use the Humble Object Pattern to unit test our game’s logic. Using inter-
faces, calls to MonoBehaviours are verified using mocks. We use NSubstitute for mocking objects.

Unity can run unit tests in the so called Unity Test Runner, which uses a Unity integration of the NUnit
library [40]. The Test Runner is a window in the editor that gives the option to run the selected C# test methods
(indicated using NUnit Test attributes) and will visualise whether the tests succeeded or failed. Since the Test
Runner is an integrated component in Unity, it can be ran in Unity Cloud Build (more about Unity Cloud
Build will be explained in section 6.2.2).

17

18 6. Software Quality

Figure 6.1: The Humble Object Pattern [32].

One problem we encountered using Unity’s Test Runner was that in Unity 2018.1, the Test Runner was
unable to find our test classes. This is an issue more people on the Unity Forums had [2]. Our solution was to
downgrade to Unity 2017.4.3f1.

6.1.3. Parameterised Tests
Aside from regular NUnit tests, parameterised tests are used. These are test methods where the input data
is split off from the test method body and given to it via attributes that are placed above the test method.
This makes it very easy to test methods on meaningful arguments in their argument domains, a methodology
also known as boundary value testing [28], where simply the values causing state or behaviour transitions
on changes are checked, instead of all possible or arbitrary values. In addition to this, maintainability is
enhanced due to the ease of adding additional test data, which just requires specifying a new NUnit TestCase
attribute (see figure 6.2) with the relevant data, without altering the test body or adding an entirely new test
method with nearly duplicate code. In our case, all tests using the TestCase attribute have a descriptive name
string as the first test parameter. This name string is not used in the test, but it makes the test easy to identify
in the test runner, as it briefly describes the purpose of the test case.

Figure 6.2: NUnit TestCase attribute tests for the timer.

The downside of using TestCase attributes in NUnit is that the parameters can exclusively be static im-
mutable objects, such as the base types and arrays of them. This is due to the way input values in .NET
attributes work [5]. A solution to this, which was discovered later, was to make use of NUnit’s TestCaseSource
attribute (see figure 6.3), where a static object array (the test cases) containing object arrays (the parameters
per test case) can be referenced. These can also have their names set directly, instead of requiring a string as
first parameter. This feature was not used everywhere in testing due to its later discovery, but will be imple-
mented during future maintenance.

6.1.4. Playtests
In this section, an outline will be given about how playtests were organised in order to retrieve valuable feed-
back from players.

6.1. Testing 19

Figure 6.3: NUnit TestCaseSource attribute/pattern used for testing the playfield.

Organisation
During the course of the project, roughly two kinds of playtests were conducted. Our team was located in the
INSYGHTLab which has a decent amount of people passing through it. Since the HoloLens is relatively new
technology it was not hard to regularly find people that were willing to try out the game and give us some
feedback. During meetings with supervisors, the team also demoed (parts of) the game in this manner.

Demo at the Virtual Playground Event

Figure 6.4: Players enjoying a game at the Virtual Playground event.

League of Lasers’ first big demo was organised at the Virtual Playground VR & AR Showcase event on the
21st of June [3]. The team was pleased to be invited to display League of Lasers to a large crowd with a specific
interest in the field. During the event, the game was being played continuously (see figure 6.4), without any
interruptions. The interest in the game went above the team’s expectation. In fact, during the peak of the
event, it was not uncommon for there to be a queue of people waiting to play the game. From the event, the
team gained many valuable insights, most notably:

• The INSYGHTLab has limited space and therefore limits movement. League of Lasers is designed as
a superhuman sport and when the available space accommodates it, we found that players quickly
started to play it as such.

• League of Lasers is enjoyable for spectators. Even though the audience could only see the game via the
spectator view (see section 7.1.9) displayed on a screen, they still enjoyed seeing people run and jump
around.

• Part of the people that played the game also filled in a questionnaire (see appendix F and G for the
questionnaire and its results) which gained us some valuable feedback. Including, but not limited to,
the fact that for players it is not always clear what team they belong to. Also several players experienced
that the laser passed through their mirror. We addressed and fixed these issues afterwards.

20 6. Software Quality

6.2. Continuous Integration and Unity
In this section, an overview will be given about how CI was used in conjunction with Unity and how this
benefits the code review process. Secondly, some of the challenges faced implementing CI will be discussed.

6.2.1. Benefits of Continuous Integration
Continuous Integration (CI) is a powerful tool which can be used to build solutions and run tests in a clean
and uniform environment, perform static code analysis, and more [6]. CI services such as Travis CI can be
integrated into some platforms that facilitate pull-based development such as GitHub. In turn, CI becomes a
particularly powerful tool in pull-based development since it allows reviewers additional security that merg-
ing Pull Requests (PRs) will not break build. The latter evaluation could be performed by the reviewer them-
selves on a local machine, however, the result between local machines might differ. Secondly, when multiple
PR are opened simultaneously each merged PR will require the others to be re-evaluated once more; hence
automating this process can save a lot of time.

6.2.2. Challenges Using CI and Unity
A brief outline will be given why it was almost impossible to get CI working for HoloLens in an elegant man-
ner. Firstly, League of Lasers makes use of the Unity as build system. Since the Last few iterations of Unity,
building solutions and running tests can only be done via the command line [45] (necessary for running in
the CI environment) with an activated Unity editor, unless you are in the possession of a Unity Pro serial [34]
which was far out of our budget. This meant that we could not activate the Unity editor remotely. Secondly,
the HoloLens only runs Universal Windows Platform (UWP) apps ([26]), which can only be built on native
Windows 10 [16] (Mono is not sufficient) hence a CI service supporting Windows was needed.

This prevented the usage of most CI services because command line building was required. We did find
an alternative and relatively affordable option (9$/month) ([44]) called Unity Cloud Build. Which offers a
managed platform to build a solution and run Unity’s built-in editor/play-tests. Yet the design of this service
is far from accommodating for pull-based development. To perform a build, a so-called build-configuration
is required, which in turn required the git branch to be specified in advance. Hence, this requires the creation
of a new build configuration for each PR and specification of the branch in question since branch names are
not the same for each PR (and merged branches are generally removed). Additionally, Unity Cloud Build does
not offer any native integration for GitHub, GitLab, etc. such that PRs can easily be blocked when the build
fails. Luckily it does provide a solid API which we used extensively as described in the next section.

6.2.3. Our CI Solution
In our CI solution, Travis CI is essentially used as a wrapper CI service. Travis has near seamless integration
with GitHub Pull Requests allowing us to easy block PRs that failed to pass the CI. Yet we cannot build or test
our solution directly on Travis CI since it does not support building UWP apps nor do we possess a Unity
Pro serial. Consequently, a script was created which uses the Unity Cloud Build API to generate a fresh build
configuration for each pull request. This script runs on Travis CI and prompts the Unity Cloud Build API to
start a new build and consequently poll its status until it has either succeeded or failed. Finally, the build logs
are downloaded from Unity Cloud Build and echoed to Travis CI such that most information concerning the
build can be reviewed straight from the Travis build logs.

6.3. Code Analysis Tools
The usage of (static) code analysis tools can be very helpful for maintaining high code quality and readability.
During this project code analysis tools were extensively used. One of the tools we used was ReSharper, which
performs on-the-fly code analysis [19]. ReSharper integrates well into Visual Studio and provides warnings
for code smells. Instead of only warning about code quality issues, ReSharper will provide and automatically
implement fixes at the user’s discretion. ReSharper also contains various refactoring, code generation and
code formatting tools.

ReSharper also has support for plugins. One of these plugins is StyleCop, which enforces style rules [10].
The rule set used was that of the context project of League of Lasers. Because StyleCop is a ReSharper plugin,
the warnings StyleCop gives are integrated into ReSharper’s code inspection. This means that ReSharper will
not only notify us of code smells, but also of code style issues.

Since our CI runs via Unity Cloud Build, there is no possibility to run ReSharper (and thus also StyleCop)
in our CI. This means the code warnings provided by ReSharper can not be check for, to fail the CI build.

6.4. SIG Feedback 21

The solution used was to make sure there were no code issues before creating a PR and that reviewers always
pulled the branch of the PR and checked if it is indeed the case that the PR does not contain ReSharper
warnings.

6.4. SIG Feedback
During the course of the project, there were two moments where code quality feedback was provided by SIG.
In this section, we will discuss the feedback we were given and how we processed it. The feedback itself can
be found in appendix A.

6.4.1. First Upload
For the first upload, we received a score of 4.4 out of 5, which according to SIG meant our code achieved
above average maintainability. The feedback also mentioned that the only reason why we did not receive the
highest score is due to lower scores for unit size en unit complexity. Hence, given the quality of code, SIG did
not have any concrete recommendations apart from recommending us to keep up the quality standard.

The team was pleased with the result of the first SIG feedback. In short, there were no concrete suggestions
for improvement and it was noted that the current state of the system was good. We suspect the pragmas used
throughout the code base played a big part in the higher unit size and complexity

The team contacted Dennis Bijlsma whether he had any suggestions to improve upon unit size and unit
complexity. He suggested that there should be no focus on marginal improvements, but instead, the current
standard should be upheld since the code base was already in good shape. However, he did suggest running
tools such a SonarQube or BetterCodeHub for the remainder of the project.

6.4.2. Better Code Hub
As suggested by Dennis Bijlsma, we ran BetterCodeHub on the code base to identify potential code issues
and maintain the high code quality [17]. The team chose to use BetterCodeHub since SonarCube did not
work well in conjunction with Unity (mainly due to all the magic annotations) [11]. Consequently, the team
analysed the BetterCodeHub results and corrected most issues found. The word most is chosen here since
not all issues found by BetterCodeHub are actually real problems. For instance, we obtained a lower score on
coupling because the debugger class (which is the only way to do any kind of debugging on the HoloLens, see
section 3.4.1) was coupled with almost all classes. The team did not see this as a real issue, however, it did
prevent the score from becoming a 10 on BetterCodeHub, resulting in a 9/10 final score.

7
Implementations

During the development of the game many different components have been developed, this chapter gives
a brief overview of the implementations of these components. The chapter starts with discussing the game
object implementations, followed by the implementations that compose the anchoring system.

7.1. Game Object Implementations
In this subsection, the implementation details of the game objects will be discussed. With game objects,
specifically the objects that somehow take part or control mechanics of the gameplay are meant. For all
physical game objects, a brief summary of their implementation will be given, followed by physics details,
then the details about their appearance are given, closing off with their behaviour on the network. For the
non-physical game objects, a more generic description of their relevant implementation details will be given,
since their implementations can vary wildly due to generally not making much use of Unity’s built in compo-
nents.

7.1.1. The Laser Pulse
The laser pulse is a dynamic physical game object that collides meaningfully (the collision has an effect on
the game) with any other physical game object in the playfield. Its implementation is mostly based on Unity
components, with some minor script-driven exceptions to make it behave according to specification, see
appendix C. The laser pulse should bounce off any other physical object except for the targets, where it should
be reset to the centre of the playfield with a random velocity. This velocity should be constant at all times,
unless influenced by external forces such as power-ups. See figure 7.1 for an overview of the Laser Pulse’s
code implementation.

Figure 7.1: Overview of the laser pulse’s code implementation in Unified Modelling Language (UML).

In Unity, only one of the two objects involved in a collision require a rigidbody component. In League of
Lasers, the laser pulse carries this responsibility, since all meaningful collisions in the game involve the laser

23

24 7. Implementations

pulse. Some subtle tweaks had to be made in order for the laser pulse to behave correctly. First of all, the
“bounce threshold” setting in the Unity physics settings, which disables bouncing if the incoming velocity, of
the colliding object, perpendicular to the bouncing surface is too low (see figure 7.2a), had to be put to zero,
since this behaviour is undesirable for the laser pulse: it should always bounce. The second tweak involved
all other physical objects that would collide with the laser pulse: these required a physics material that has
minimum friction (0) and maximum bounce (1), along with ensuring that the combination settings always
picked the maximum bounce value of two colliders in a collision and the minimum friction value, otherwise
the reflection angle would not be correct for a “laser pulse”. The only object the laser pulse should not bounce
with is the target. On collision with a target, the laser pulse is reset to the centre of the playfield instead, with
a new random horizontal direction.

(a) No bouncing happens when the perpendicular velocity
component vz is too small, resulting in the laser pulse incor-
rectly following the red vector’s path.

(b) The laser pulse’s visual

Figure 7.2

With these tweaks, the laser pulse can still show undesirable behaviour: its velocity could be altered and
it could even come to a stand-still. For this, additional code was written in Unity’s FixedUpdate method that
would keep the laser pulse’s velocity constant by normalising its velocity vector and multiplying it with a
predefined value. After this, it could still occur that the laser pulse would stand still due to synchronisation
issues between the physics thread and the game loop thread, causing normalisation of the velocity vector to
give a zero vector. To combat this, the laser pulse’s reflection vector after a collision was tracked and updated
every time. If the velocity would ever become zero, this reflection vector multiplied with the predefined laser
pulse speed value was used to make the laser pulse move again. After this fix, no anomalies in the laser pulse’s
behaviour were found anymore. Checks are also present to keep the laser pulse present in the playfield.
Should the laser pulse ever misbehave and leave the playfield due to buggy physics, it will be reset to the
centre of the playfield with a random horizontal direction.

The laser pulse is displayed as a sphere that uses a shade-less red material, rendered early in the render
queue. It features a particle trail with particles using additive rendering and a sharp circular gradient, that
appear over the sphere. Another particle trail with smaller shade-less particles converging at the centre gives
it a nice finishing touch, while also maintaining visibility. See figure 7.2b for the laser pulse’s visuals.

The laser pulse’s movement is networked through our custom network transform, which makes use of
anchors. Since the laser pulse is a dynamic object, it will dynamically attach itself to the closest anchor as it
moves around. The laser pulse’s movement is fully controlled by the server, hence its script needs to inherit
from NetworkBehaviour to ensure the laser pulse’s movement is only being managed on the server. The
movement of the laser pulse is interpolated when it moves in a straight line. The combination of this and a
high send rate for its position make the game feel smooth and responsive for the clients.

7.1.2. The Mirror
The mirror is a dynamic physical game object that is entirely controlled by the player and only collides mean-
ingfully with the laser pulse, bouncing it off. It is almost exclusively implemented using Unity components.
Some code is present in order for it to correctly position itself in front of the camera while rotating and moving
along with it. Additionally, some input code intended for debugging is present, providing keyboard controls
for movement and rotation of the mirror. See figure 7.3a for an overview of the mirror’s code implementation.

7.1. Game Object Implementations 25

(a) Overview of the mirror’s code implementa-
tion in UML.

(b) The mirror’s 3d model

Figure 7.3

The mirror is box-shaped, with the thin axis (the flat face) pointing to the player. The mirror has a 3d
model that looks like a floating screen (see figure 7.3b). The borders, of the model, are opaque while the
screen of the mirror is a semi-transparent material, so that HoloLens users can look through it to see the rest
of the game. The colour of the highlights at the front is changed depending on the team of the player that
owns the mirror.

It uses a box-collider that is slightly thicker than the mirror’s own appearance, to make the collision de-
tection with the laser pulse more robust. The collider has a physics material with friction 0 and bounciness 1,
while taking maximum bounciness and minimum friction as combined values for collisions.

Since the mirror is a dynamic object, it is also networked through our custom network transform (see
section 7.2.2) that makes use of anchors, in the same manner as the laser pulse. Like the laser pulse, the
mirror also has a high send rate, enhancing the responsiveness of the game on the clients.

7.1.3. The Wall
The wall is a stationary physical game object that can collide meaningfully with the laser pulse. It is spawned
six times by the Playfield game object with different dimensions to fully encase the entire field according to
the given parameters. This may make the name somewhat misleading, since the wall also functions as floor
and as ceiling. By itself it contains some code, but mainly consists of Unity components, though some High-
Level Shader Language (HLSL) code was written as well for its grid shader. See figure 7.4 for an overview of
the wall’s code implementation.

Figure 7.4: Overview of the wall’s code implementation in UML.

The wall is box-shaped, its collider fully matching the visual representation. A volumetric object was used
instead of a plane to make collision detection more robust. It uses the same physics material as the mirror to
ensure correct bouncing behaviour of the laser pulse. The transparent grid shader was written specifically for
the wall and is used by its material. It allows configuration of grid line thickness, colour and scaling through
the shader’s property settings, so that it can be easily configured to the needs of the game.

Since transform scaling is not automatically networked, some additional synchronisation code is present

26 7. Implementations

so that it may be scaled correctly by the playfield game object for clients (see figure 7.4). Hence, the script for
this must inherit from NetworkBehaviour.

7.1.4. The Target
The target is a stationary physical game object that can collide meaningfully with the laser pulse. The play-
field game object spawn two targets, one for each team. The target has some additional behaviour code for
handling collisions with the laser pulse, synchronising its team and setting its material colour according to
the team. See figure 7.5 for an overview of the target’s code implementation.

Figure 7.5: Overview of the target’s code implementation in UML.

The target is cylindrical in shape, and uses a mesh collider for the collision detection. The two targets are
placed at the centre of the adjacent short sides of the playfield. They will have the colour of their correspond-
ing team.

When the laser pulse collides with the target, it resets itself to the centre of the playfield with a random
horizontal direction, hence the target does not require a physics material, since no meaningful bouncing
behaviour can take place. The collision check for this takes place in the target, since the target carries the
team information, which is required for determining who has scored. On collision, the target increments the
goals made against the team it belongs to in the GameManager, as can be seen in figure 7.5, and also resets
the laser pulse by calling its reset method.

7.1.5. The Playfield
The playfield is a non-physical manager style game object, responsible for organising the playfield. The play-
field concerns itself with all objects physical objects that, together, form the playfield, such as the walls and
the targets, and will instantiate and spawn these over the network at their appropriate locations. See figure
7.6 for an overview of the playfield’s code implementation.

The locations and scaling of the walls are fully determined by the playfield size, offset and wall thickness
prefab parameters. The targets are positioned at both ends of the playfield, such that they still stick out on
the inside of the playfield. The walls are put around an imaginary box sized as the playfield’s dimensions at
the position of the given offset. They are scaled in a way that makes them as thick as the given wall thickness
along the axis they belong to, and cover the entire face of the imaginary box. This creates an enclosed area for
the laser pulse to be contained in.

In addition to this, the script for the playfield inherits from NetworkBehaviour, since the instantiation of
objects only needs to take place on the server. They automatically get synchronised to the clients and linked
correctly to the server’s instance via the network spawn.

7.1.6. The Game Manager
The game manager is a non-physical manager style game object, responsible for managing everything related
to getting the game and the matches going. For this to happen, it is necessary to spawn in a playfield (which
will spawn in the walls and the targets), a laser pulse, and a timer. In addition to this, it also keeps track of the
goals made in the targets of the two teams through a dictionary and it has controls for match flow (prepare
a match, start a match, end a match), which are used as callbacks in the timer. These methods will control
when the laser pulse should be spawned or destroyed and when scores should be reset and a winner should
be chosen. See figure 7.7 for an overview of the game manager’s code implementation.

Like the playfield, the game manager’s script also inherits from NetworkBehaviour, to ensure that the
objects get instantiated on the server alone and then get synchronised to the clients.

7.1. Game Object Implementations 27

Figure 7.6: Overview of the playfield’s code implementation in UML.

7.1.7. The Player
The Player is a non-physical game object, serving as the game object that relates itself to connecting clients
on the server. The Player is a NetworkBehaviour, meaning that it will be spawned on both the client and the
server. A special property of the player is that it has local authority over itself by default, allowing clients to
move the object without further permission requests towards the server. In our implementation, the Player
carries some additional information, such as the team it belongs to. It also triggers the spawning of the Mirror
associated with the client when the Player is spawned on the network. See figure 7.8 for an overview of the
Player’s code implementation.

An important role of the player in our implementation is the assignment of the master client (see section
5.4.2), which can set up the playfield and export it to the other clients, while also providing the server with
a properly synchronised overview of the game. The first client that joins will be labelled as master client
through the PlayerBehaviour. Any client that joins afterwards will be a normal client, and has to wait for the
master client to finish setting up the playfield.

7.1.8. The Timer
The timer is a non-physical game object responsible for handling events related to match time. Internally,
the timer has three states: pre-match, match, and post-match. These states are represented by the value of
a time integer and a “started” boolean, indicating whether a match has started. The pre-match time, match
duration, and post-match time can be pre-configured in the prefab carrying the behaviour script. See figure
7.9 for an overview of the timer’s code implementation.

At the appropriate state switches, callbacks obtained from the game manager are called to control the
game’s flow. During the pre-match time, no laser pulse is present, it only spawns a laser pulse when the game
transitions from pre-match to a state where the match has started. Then, when the match is over, a callback
is used to despawn the laser pulse and a winner is determined on the transition from the started match state
to the post-match state. After this latter state, another callback ensures that the game is reset and prepared
for the next match.

The time variable is incremented by adding up Unity’s delta time, which is the amount of time that has
passed between two frames, and then incrementing its value if this amount of passed time exceeds 1, resetting
the passed time back to 0 again. This only happens on the server, which is why the behaviour script inherits
from NetworkBehaviour. Additionally, the time integer is a SyncVar, which ensures that it is synchronised
between server and all clients. For testability concerns, most of the timer’s logic resides in the accompany-
ing controller class. The behaviour class only contains Unity-interfacing calls, or variables that need to be
network-synchronised, such as the time integer.

28 7. Implementations

Figure 7.7: Overview of the game manager’s code implementation in UML.

Figure 7.8: Overview of the player’s code implementation in UML.

7.1.9. Spectator Mode
Spectator mode was developed for the audience to see an overview of the game. The spectator mode runs on
the server (see figure 7.10), for the reason that adding a separate observer client was redundant. Moreover,
running the spectator mode on the server also allows for easy debugging. The component uses the Cam-
eraSpectatorBehaviour script, which implements the humble object pattern (see section: 6.1.1). The script
places the camera above the playfield and provides an overview of the game. See figure 7.11 for an overview
of the spectator view’s code implementation.

7.2. Anchor Related Implementations
In this section the implementations related to anchoring are discussed. Some of the discussed compo-
nents are present on others components, such as the AnchorRelativeNetworkTransform, but their impor-
tance makes it necessary to explain them in more detail. Other components aid the game in transferring
anchor information or managing their use within the game. This section will start with a brief explanation of
the anchor game object and will then explain how the anchors are used to derive positions using the Anchor-
RelativeNetworkTransform, followed by sections about the anchor sharing and management system and the

7.2. Anchor Related Implementations 29

Figure 7.9: Overview of the timer’s code implementation in UML.

Figure 7.10: A screenshot of the server-side spectator mode.

components that comprise it: the anchor manager, the anchor sharing manager, the file manager for local
storage and the web service used to communicate with the web server. See figure 7.12 for an overview of the
entire implementation of the localisation and anchor management framework.

7.2.1. The Anchors

Anchors, called spatial anchors by Microsoft [43] and world anchors by Unity [38], represent an important
point in the real world. These anchors’ position can be locked in physical space. Each anchor has a coordi-
nate system that ensures that anchored holograms stay precisely in place. Game objects can be parented to
an anchor to position them relative to that anchor. Holograms parented to anchors are accurate up to 3 me-
ters, otherwise the holograms will have notable positional errors proportional to their distance to the anchor.
Anchors can be shared between HoloLenses and can thus be used to ensure all players see the holograms on
exactly the same real-world position.

In League of Lasers the master client will see the anchors as cubes. Using a modified version of the Mixed
Reality Toolkit’s tap to place script, the master client can place the anchors at the correct real-world positions.
Then the anchors are serialised and shared between all clients. Game objects parented to these anchor game
objects will use this anchor to position themselves relative to it.

30 7. Implementations

Figure 7.11: Overview of the spectator view’s code implementation in UML.

7.2.2. The Anchored Relative Network Transform
The AnchorRelativeNetworkTransform component is the backbone of the application’s localisation frame-
work. Without this component, holograms cannot be displayed at the same real-world location for the dif-
ferent HoloLens clients (see chapter 5). Therefore the script is attached to all game objects that require their
position to be shared (e.g. the laser pulse, walls, mirrors and targets). The script has a simple function: it has
to ensure that the transform (position and rotation) of a game object is relative to its parent anchor across all
client. See figure 7.13 for an overview of the network transform’s code implementation.

The component uses the humble object pattern to make the class testable. The class implements the
IAnchorRelativeMovementController and IAnchorRelativePositionSender interfaces. The IAnchorRelative-
MovementController interface is used to move objects to a position relative from the parented anchor, the
methods in this interface are used on objects that do not belong to the current client or server. The IAn-
chorRelativePositionSender interface contains methods that send the relative position to other networked
instances of the object. These methods are used by clients or servers that own the object.

The AnchorRelativeNetworkTransform also stores and synchronizes the current parented anchor and the
position and rotation relative to said anchor. The class allows the transform to be changed by whoever has
authority over the object just like the regular unity network transform. It also supports some additional fea-
tures besides the synchronisation of the relative transform for example, it supports the use of interpolation
to smooth the movement and rotations of objects. This is done to combat the otherwise jittered movement
that is due to network messages having packet delay and the send rate of packets being lower as the targeted
frame rate [13].

The anchor relative network transform can be used in combination with the anchor parenter script. This
script seeks the anchor closest to the game object the script is attached to and sets it as the new parent anchor
in its AnchorRelativeNetworkTransform. The anchor parenter script only runs on the server or client that has
authority over the object.

7.2.3. The Anchor Sharing and Management Framework
The anchor sharing and management system is a framework which manages the placement, importing, ex-
porting and sharing of anchors. The system uses Unity’s API, but adds a layer of abstraction for simplicity
and reliability. The need for the framework arose when it was clear that the standard implementations were
poorly documented or simply did not work on our network (see section 3.4). Moreover an implementation
that simply handled exporting and importing anchors did not seem to be present.

The anchor sharing and management system has been written in a modular way, such that it can easily
be pulled out of the project and made available for other projects in the form of a Dynamic-link library (DLL)
or unity package. The current API allows exporting and importing anchors from and to either a file or a
web server via http requests. However, these options can be easily expanded by simply extending the base

7.2. Anchor Related Implementations 31

Figure 7.12: Overview of the localisation and anchor management framework’s code implementation in UML.

import/export command classes. This makes the framework an attractive option for future HoloLens projects
at the Delft University of Technology that want to use anchors, since, at the time of writing, we were the only
project team there that has been able to successfully use the anchor capabilities of the HoloLens.

The anchor sharing and management framework uses the anchor manager as the core of the system, users
can utilise its API and give it commands to execute. The anchor manager relies on a sharing manager, a file
manager or a web service to execute its commands. These components will be discussed in the following
sections.

7.2.4. The Anchor Manager
The anchor manager “manages” the anchors in the game. It gives a set of commands that can be used to
interact with Unity’s WorldAnchorTransferBatch [37], providing the functionality to add, remove, export and
import anchors. The anchor manager consists of a controller and a behaviour. The controller follows the
command pattern and has a queue consisting of anchor manager commands that is continuously polled by
the behaviour. When the queue is polled, the controller will check if a command is currently executing, if
not then it will execute the next command. A command calls the OnFinishedExecution callback when it has
finished executing, signalling the anchor manager controller that the command has finished.

The behaviour is a script that has to be on a game object in the scene and is used to continuously poll
the queue. Because this behaviour is a MonoBehaviour, this polling can be done in Unity’s main thread. This
means that the anchor manager commands are executed in Unity’s main thread, which is necessary to be
able to make Unity API calls. Since the anchor manager commands all work on Unity’s WorldAnchorTrans-
ferBatch, they will all make Unity API calls. There are commands for the following actions:

• Adding an anchor

32 7. Implementations

Figure 7.13: Overview of the network transform’s code implementation in UML.

• Removing a specific anchor

• Removing all anchors

• Exporting anchors to a file

• Exporting anchors to a web server

• Importing anchors from a file

• Importing anchors from a web server

• Locking anchored game objects to their correct real-world location. Locking an anchored game object
means moving their holograms to the real-world location of the anchor.

7.2.5. The Anchor Sharing Manager
The anchor sharing manager is a game object which has multiple scripts to ensure the sharing of anchors
between the master client, the server and the regular clients is handled correctly.

The anchor sharing manager component, manages the sharing of anchors between the master client and
the other clients. This script is split between a controller and a behaviour, following the humble object pat-
tern. The behaviour will send a command from the master client to the game server containing the identifier
of the anchor array on the web server (see chapter 5 for more information). When the game server receives
this command, it will send an Remote Procedure Call (RPC) to all clients to download the anchors from the
web server. The controller contains the actual logic to download and import the anchors from the web server,
to make this logic testable.

The anchor server placement behaviour has a command that will be called by the master client, which
will set the position and rotation of the anchors on the server to that of the master client. This is used in, for
example, the creation of the playfield using anchors, where the position of the anchors decide where and how
the playfield will be placed.

7.2.6. The File Manager
The file manager was created to handle the reading and writing of serialised anchors to local storage. It can
read and write byte arrays to a file. The file manager uses the FilePathHelper, which helps to create file paths
and contains a predefined file path to the application’s persistent data path (see figure 7.14).

7.2. Anchor Related Implementations 33

Figure 7.14: Overview of the file manager’s code implementation in UML.

7.2.7. The Web Service
A web service has also been developed to allow clients to communicate with the web server (see section: 5.4).
This web service is implemented as a singleton to ensure that only one instance runs at a time. This was
done because multiple instances can interrupt each other’s calls to the web server (due to Unity being single
threaded).

The service implements the IAnchorWebService interface, which is used to upload and download anchor
files to the web server, in particular it is used by the anchor manager in the export and import anchor com-
mands (see section 7.2.4).

8
Analysis of Ethical Implications

To analyse the ethical implication of our project we choose to use a framework for ethical technology assess-
ment (eTA) introduced by Palm and Hansson [30]. This method of eTA can be conducted by comparing the
ethical implications of the new technology in nine crucial ethical aspects, namely:

1. Dissemination and use of information

2. Control, influence and power

3. Impact on social contact patterns

4. Privacy

5. Sustainability

6. Human Reproduction

7. Gender, minorities and justice

8. International relations

9. Impact on human values

In the following sections, we will briefly introduce these concepts and discuss the ethical implications of
League of Lasers (if any) for each of ethical aspects.

8.1. Dissemination and Use of Information
Dissemination and use of information describes how information spread by this technology is being used.
For example, the Internet is currently being used effectively for spreading pornography and facilitating crime.
League of Lasers does not pose any ethical risk in this category. The players will all be in the same room and
we do not aim to support Wide Area Network (WAN) capabilities, hence no information can be shared apart
from the information that could already be shared implicitly through verbal communication by being in the
same room.

8.2. Control, Influence and Power
Control, influence and power relates to whether the introduction of a technology will lead to a new distri-
bution in control, influence or power, as happened with many new technologies in the past. Again no real
ethical danger is present. The game will be released only for the HoloLens; limiting the audience to mixed
reality enthusiasts, institutions or companies. Since the game is created for the sole purpose of entertain-
ment and does not yield a competitive advantage for early HoloLens adopters in term of control, influence or
power.

35

36 8. Analysis of Ethical Implications

8.3. Impact on Social Contact Patterns
Impact on social contact patterns measures the impact a new technology might have on society. For instance,
the smart-phone has fundamentally changed how people interact with each other. Whether this is good or
bad generally depends on which generation you ask.

In case of League of Lasers, no substantial danger is present. Even if the game becomes a massive success
since it is designed as a superhuman sport the amount of time people can play will be limited by their physical
endurance. Secondly, people will still require other people to play with within the same room. Hence, it might
actually stimulate social interaction.

8.4. Privacy
The balance between privacy is important for any new technology. League of Lasers does not send any per-
sonal data over the internet, however it is possible (though unlikely) that players sitting extraordinarily still
during the scanning process can become part of the spatial mesh and can thus be used as anchors. Since
anchors will be shared between HoloLenses it is possible that a player’s spatial features will also be shared.
However, it is very unlikely that these can be used for anything malicious, being merely a limited set of spa-
tial points (with not enough accuracy to really distinguish or identify a person) used for anchoring that will
become useless when the person moves.

8.5. Sustainability
All new technology may affect the economic, social, and ecological development of future generations. Mak-
ing sure that a technology is sustainable and does not deplete the natural resources of generations is essential.
In terms of sustainability, the product should be safe. First, our product can be reproduced by simply making
a digital copy. Second, when running the game, the power consumption of the HoloLens will be so small that
it is safe to assume no significant impact will be made upon the environment.

8.6. Human Reproduction
Certain new technology might have an effect on human reproduction either decreasing or increasing it (e.g.
In Vitro Fertilisation (IVF)). No scenario could be envisioned in which League of Lasers can affect human
reproduction.

8.7. Gender, Minorities and Justice
Technologies that discriminates against minorities or genders by using e.g. biased algorithms can be danger-
ous. No situation could be envisioned in which League of Lasers can be considered to discriminated minori-
ties or genders.

8.8. International Relations
New technology can change the relations between nations. For example, certain countries might demand
access to a biotechnology at prices affordable to their citizen. On the other hand, nations might demand that
certain countries do not develop particular technologies at all (e.g. weapons technology). We do not see any
way in which the game League of Lasers can impact international relations.

8.9. Impact on Human Values
There are technologies that can have a distinct impact on the way we see the world. To give an example:
In recent years widespread adoption of the Non-Invasive Prenatal Testing (NIPT) [1] has become a famous
example in moral debate. The latter test has made it possible to accurately determine whether the unborn
child has a genetic disposition towards, for example, Down Syndrome (trisomy 21, or 47,+21). And has raised
fears for increased abortion rates and with that impacts the human values.

League of Lasers is not expected to affect human values in any negative way. Games only have two ways
to effectively impact human values namely their content and interaction with other players. The game does
not contain any explicit content such as violence or sex. Explicit content in modern games is sometimes
considered a risk for the human values, but is not condoned in any way in League of Lasers. In terms of
player interaction, since all players are required to be in the same room there is effectively no real difference

8.10. Conclusion eTA 37

between the game and normal human interaction, hence no impact on human values different from regular
sports is expected.

8.10. Conclusion eTA
To analyse the ethical implication of League of Lasers the eTA framework was used. After analysing the nine
critical aspects in the previous sections it was concluded that the game does not pose ethical dilemmas or
complications in any of these aspects. Hence League of Lasers passes the eTA and can safely be enjoyed by
people of all genders, races and ages.

9
Discussion and recommendations

This project was based on hardware and technology which is still in its development phase, to create an
experience not yet seen before: a real-time multiplayer game using the Microsoft HoloLens with accurate
tracking of player’s position and orientation. This meant there were all sorts of issues and limitations along
the way, but it also meant that it showcases what can be done in the future with this technology.

It is of utmost importance that all players see the game objects on the same real-life location as each other,
as this further enhances the augmentation of the real-world and enables team play and coordination. With
this project, a framework was developed to solve this problem: it makes it easy to manage and share anchors.
With a little more work, this framework can be extracted from League of Lasers to be used in future HoloLens
projects. In League of Lasers, this framework was used to position and move game objects relative to anchors.

While the HoloLens still has some issues and limitations, it still is a fantastic device. It shows the great po-
tential AR has and gives a glimpse of what will become possible in the future. At first, we were sceptical about
the “realism” of the holograms produced by the HoloLens, but it blew us away by how “real” the augmenta-
tions felt. A new HoloLens is rumoured to be revealed later this year, which tackles the main limitations: the
limited field of view and the high cost of the device [47].

Future work and research in AR sports, like League of Lasers, should focus on audience participation.
Unlike a regular sport, these virtual augmented sports would make it possible for the audience to change
certain factors in the game. The audience could, for example, activate a power-up, which will alter the match
in progress. In the case of League of Lasers, we could let the audience choose to increase the speed of the
laser pulse or let them add additional laser pulses. Unfortunately, due to time constraints, the team did not
have time to further research, design and implement these gameplay elements.

Since the virtual game world is only visible to the players, the audience will only see the players, fully
immersed in the game, run and jump around. While this is a rather hilarious sight, the audience will have
little information about what is going on in the game. Hence, a spectator view was developed, providing the
audience with a top-down representation of the game, but far more can be done in this regard. The game
could, for example, use a dynamic camera system which switches between top-down, sideline or even first
person viewpoints to give the audience the best view of the action. Unlike a regular sport, the game is fully
visible in the virtual world, which makes it possible to have full control over the camera’s location. Another
possibility is to add replay recordings after a team scored a point, which could show a goal from the best
angle, perhaps even using a slow-motion effect.

39

10
Conclusion

The goal of this project was to create a “superhuman sport” as submission for the SHS Design Challenge. In
more detail, the game should be a continuation of the game, League of Lasers, that was developed during
the context project in 2017. The game was required to run on the Microsoft HoloLens, integrate tracking
of position and orientation in a multiplayer setting, extend the fast pace of the original game and develop
new gameplay elements. Moreover during the SHS Design Challenge the game will be judged on the the
following aspects: human augmentation, fitness and skills, fun and engagement, innovation, audience, and
inclusiveness. These judging criteria formed the basis for our product requirements.

To meet these requirements, a multiplayer game that resembles the old League of Lasers was created.
Prior to this, a MoSCoW analysis (see appendix C) was done and multiple gameplay spikes were prototyped.
The MoSCoW’s must haves have been implemented, as well as most of the should haves (some were deemed
not needed at the end). The could haves have not made it into the final product due to time restrictions.

10.1. Reflection on Product Requirements
The game developed is a faithful continuation of League of Lasers since the rule set is the same; the player
controls a mirror and wants the laser pulse to hit targets. To do this the player must use the mirror to reflect
the laser pulse. The game expands the gameplay by using a first person perspective instead of the top down
view used in the original game. Moreover, an additional dimension has been added to the gameplay, the
game is no longer a two dimensional experience: the laser pulse will now fly and bounce in three dimensions.

The game uses the HoloLens’ capabilities to track the orientation and position of the players. A framework
was developed to easily manage and share anchors, which was used to determine the position of game objects
between clients. The speed of the game has also been increased, the game plays faster as the original, but not
extremely fast. This choice was not made due to hardware considerations, but due to gameplay reasons. If the
laser pulse moves too fast players simply cannot react in time. The game will track players sprinting through
the game field reliably, therefore we consider this criteria met.

10.2. Reflection on SHS Evaluation Criteria
SHS design challenge judges the game based on the following criteria: human augmentation, fitness and
skills, fun and engagement, innovation, audience, and finally inclusiveness.

Human augmentation is a criteria that has multiple interpretations. One could reason that the user’s
vision and hearing is augmented as the game projects holograms in space and uses spatial sound. However,
augmenting the player’s (physical) capabilities does not seem possible with merely an AR/VR headset. With
League of Lasers we focused on the first interpretation, where we augmented players’ vision and hearing to
create a mix between gaming and physical sports.

The developed game requires skill and fitness: a player that can run faster or jump higher can also move
faster and more nimbly through the playfield than others, giving him a distinct advantage. Moreover learning
to position the mirror at the right angle and learning to anticipate the trajectory of the laser pulse is a skill
(see appendix E).

Most of the players in play tests found the game to be fun and quickly got immersed into the game. There-
fore, we conclude that the game is fun and engaging.

41

42 10. Conclusion

League of Lasers is one of the first mixed reality AR sports games for the HoloLens. Other multiplayer
experiences are scarce but do exist on the platform however they do not necessarily focus on sports. It can
therefore be regarded as innovative and a step forward for superhuman sports.

Audience participation was one of the more difficult requirements of the game due to time considerations.
A spectator view was developed to give the audience an overview of what is happening in the game, but there
were more “could have” features planned for it which were not implemented due to time constraints. One
example of such a feature is that the audience could vote for events to happen in the game, such as a sped
up laser, or the appearance of power-ups that influence the players that pick them up. These features are
unfortunately not present in the current release of the game.

Finally, inclusiveness has been met as both children and adults can enjoy the game. Moreover the game
is perfectly playable by people from different backgrounds, the only obstacles being handicaps such as poor
sight or mobility, but this holds for sports in general. However, for most people the game will be perfectly
playable, therefore we consider this requirement met.

10.3. Final Remarks
All in all, the project can be considered a success. League of Lasers solves all technical challenges and ad-
dress all of the requirements and challenge criteria. Not all product requirements and challenge criteria were
implemented to the same degree, but overall the product is satisfactory and works as intended.

A
Feedback SIG

A.1. Feedback First Upload
De code van het systeem scoort 4.4 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door lagere scores voor Unit Size en
Unit Complexity.

Op dit moment is de score dusdanig hoog dat we geen concrete aanbevelingen voor verdere verbetering
hebben, hulde! Wel is het zaak om ervoor te zorgen dat jullie dit niveau tijdens het vervolg van het project
vast weten te houden, en al helemaal op het moment dat de deadline in zicht komt.

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid testcode ziet er ook goed
uit, hopelijk lukt het om naast toevoegen van nieuwe productiecode ook nieuwe tests te blijven schrijven.

Over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt het om dit niveau te behouden
tijdens de rest van de ontwikkelfase.

A.2. Feedback Second Upload
In de tweede upload zien we dat het project een stuk groter is geworden. De score voor onderhoudbaarheid
is in vergelijking met de eerste upload gestegen. Die stijging is echter net genoeg om de score tot 5 sterren
te laten stijgen, complimenten daarvoor. We zien dat jullie de bestaande code op een aantal punten hebben
verbeterd, terwijl de nieuwe code ook van betere kwaliteit is dan bij de eerste upload.

Naast de toename in de hoeveelheid productiecode is het goed om te zien dat jullie ook nieuwe testcode
hebben toegevoegd. De hoeveelheid tests ziet er dan ook nog steeds goed uit. Wel valt op dat jullie bij de
nieuwe code iets minder streng zijn geweest wat betreft de verhouding tussen productiecode en testcode,
probeer er in de toekomst op te letten dat je gedurende het hele project dezelfde kwaliteitsstandaarden weet
aan te houden.

Uit deze observaties kunnen we concluderen dat de aanbevelingen uit de feedback op de eerste upload
zijn meegenomen tijdens het ontwikkeltraject.

43

B
Original project description from BEPSys

Provided by TU Delft Sports Engineering Institute for the BEP Computer Science & Engineering 2017/2018
Q4 course.

B.1. Project Description
Super Human Sports (http://superhuman-sports.org/) are acquiring increasing attention from both massive
public and media. Superhuman Sports have been defined as activities that rely on technology for human aug-
mentation to enhance a human ability, involve physical fitness and skills, and are played for fun, competition
or health reasons.

The type of technology deployed, the amount of movement and the human skills required can strongly
vary. So far, there have been only a few attempts at developing experimental prototypes, often based on
Augmented Reality (AR) technologies.

In this project, you will design and develop a game concept that somehow resembles the traditional ’paalt-
jes voetbal’ game (mix of Football and Pong. . .) but put into a modern, fast-paced, AR Super Human team
sport. We will build upon previous experience with a team game (called League of Lasers) developed within
the Context Project 2017, that was not AR-based, but rather used top-down, camera-based tracking and a
mobile for both input (using its compass) and output (see attached image).

The project will approach and solve a number of unique challenges, including:

1. Use of HoloLens in a (large) multi-player setting

2. Integration of tracking, orientation and precise interaction with limited bandwidth and field-of-view

3. Extend to the extreme the fast pace of the game (i.e. to the bare minimum imposed by hardware la-
tency)

4. Development of new gameplay elements that prove to be fitting in this Super Human context

Each gameplay element of the game will have to be frequently and thoroughly tested in order to assure it
is consistent with the overall experience and smoothly serving the game goals stated above.

In addition, an essential milestone of this project consists of presenting a live demo at the Super Human
Sports Design Challenge (http://superhuman-sports.org/delft/) in the first week of July. As an interim mile-
stone, another demo will be given at a VR/AR Event in the TU Teaching Lab, on 21 June 2018 (possibly, you
will wish to use this for beta testing).

45

C
MOSCOW Analysis

In this section the must haves, should haves, could haves and won’t haves features of the game will be dis-
cussed.

C.1. Must Haves
All of these features are equally important for the final product, the game cannot be played correctly without
any of these. Therefore they have an equal priority.

C.1.1. Mirror
• Each player shall have a mirror.

• The mirror shall bounce the laser on impact, using the angle of incidence and the angle of reflection.

• The mirror shall stay in front of the player’s view, so that he/she can move the mirror around by looking
around the room.

• The mirror shall move along with the player.

• The mirror shall be transparent in order to not obstruct the player’s vision.

C.1.2. Laser Pulse
• The game shall have a single laser.

• laser shall continually move with a constant speed.

• The laser shall reflect off the walls of the playfield.

• The laser shall reflect off mirrors.

• When the laser hits a target, it shall be moved to the center of the playing field and launched in a random
direction.

• The laser shall not be able to leave the playfield.

C.1.3. Playfield
• The playfield shall be surrounded with walls, that will bounce the laser off on collision.

C.1.4. Score
• The game shall track the score of both teams.

47

48 C. MOSCOW Analysis

C.1.5. Time
• The game shall keep track of the time played.

• The game shall have a time limit of 5 minutes.

• At the end of the time limit, the game must end and the team with the highest score wins.

C.1.6. Targets
• Both teams shall have a target.

• The targets shall be at opposing sides of the playfield.

• Targets will grant a point to the opposing team when hit by the laser.

C.1.7. Team
• The game shall have two teams

• The game shall support teams of at least one player each

C.1.8. Multiplayer
• The game shall support local network multiplayer

• The game shall sync the position of all game objects (mirrors, walls, targets etc.) in the game at the
same real world position for each player.

• The game shall support networking for at least 2 players.

C.2. Should Haves
All of these features are quality of live improvements that will change the game from being a first playable
to a truly functional product. The priority is mentioned after each feature, the priority scale goes from A to
F where A means most important and F being least important. Crossed out features are features that were
removed after feedback from either the supervisor or client.

C.2.1. Mirror
• Moving the mirror shall be responsive, the player should not notice any lag when moving his head. (A)

• The mirror shall have a short cooldown when the laser hits it. During the cooldown it may not collide
with the laser anymore, this is to exclude exploits in which very short bounces are used to walk the laser
to a target. (F)

C.2.2. Score
• The game shall have a visual representation of the current score, on the spectator view. (B)

C.2.3. Time
• The game shall have a visual representation of how much time is left, on the spectator view. (B)

C.2.4. Audience
• The game server shall have a top-down visual representation of the game that can be projected or

shown on a monitor. (D)

C.2.5. Multiplayer
• The game shall support 2 to 6 players. (E)

C.3. Could Haves 49

C.2.6. UI/UX
• The game shall have an indicator that will point the user to the laser’s position. (C)

• Game flow (multiplayer):

1. The first player that joins will get asked how many players will play the game. Replaced with: The
server will ask how many players are playing, once it is started. (E)

2. When the game starts, it will automatically connect to the server. Replaced with: Once a client
starts a server selection screen is shown where the client can select a server. (D)

3. Then each player will get asked which team they want to join. (E)

4. When each player has selected their team, the match will start in 10 seconds. (E)

5. When the match ends, the final score will be displayed. (C)

6. After 30 seconds, one player will get asked how many players there are. (F)

7. After this each player will get asked which team they want to join and the match will start.

8. This will repeat itself.

C.3. Could Haves
These features will be developed if there is additional time. The priority is mentioned after each feature, the
priority scale goes from A to F where A means most important and F being least important. Crossed out
features are features that were removed after feedback from either the supervisor or client.

C.3.1. Mirror
• The mirrors shall give an auditory cue when they hit a laser. (A)

• The mirrors shall temporarily deactivate if they are hit often enough within a certain time frame. (B)

C.3.2. Laser pulse
• The laser pulse shall have a looping (3D) sound, so that players can easily determine its location in the

game. (A)

• The laser pulse shall have a particle trail to give it a visual representation of the direction it is heading
towards. (B)

• The laser pulse shall have the ability to change its speed through power-ups or influences from the
audience. (D)

• The laser pulse shall increase in speed each time it hits a mirror. (D)

C.3.3. Playfield
• The playfield shall be based on a spatial map of the real-world playfield. (C)

• The laser should be able to bounce off objects scanned in the spatial map. (C)

• The game shall feature real-life obstacles that will have an effect in the game, these can be moved as
well. (F)

C.3.4. Score
• Players shall have an individual score, that will increment through rewarding the player for prestigious

actions (e.g. show how many times the player scored a point, how many times he/she hit the laser, show
who was the MVP). (F)

C.3.5. Targets
• The target shall give an auditory cue when hit by a laser. (A)

• The targets shall have the ability to move around under influence of the audience or through power-
ups. (E)

50 C. MOSCOW Analysis

C.3.6. Power-up
• The game shall support multiple lasers at the same time, this can be done as a player pickup or as an

audience decision. (C)

• The game shall support power-ups that will change the movement speed of the laser(s). (D)

• Power-up where the laser is split into two, each of these lasers can only hit one predefined target. These
lasers can be reflected by all players. (D)

• The game shall support moving targets as variant of the main game or as audience decision. (E)

• The game shall support changes to the size of the targets as power-ups or as audience decision. (E)

C.3.7. Audience
• The audience shall be able to make decisions about the game, these can be the activation of power ups

or choosing which power-ups should be next as pickup. (C)

• The audience shall be able to stream an overview of the game on their smartphone. (C)

• The game shall show replays of goals, and alternate between player views in a representation of the
game. (E)

C.3.8. UI/UX
• The game shall have a minimap in game to give players a better overview of the game. (E)

• The game shall have an announcer that highlights important events in the game. (F)

C.4. Won’t Haves
These features will not be developed.

• There shall not be any form of AI in the game.

• The game shall not support single-player.

• The game shall not support a chat system, players are close enough to each other to hear one another.

D
Plan of Action

51

Roles

Name Role

Arjen Meeting organizer
Lead Game Designer
Lead Network Architect

Shaad Lead Communication
Lead Art Director
Minutes Secretary

Jop Lead Programmer
Producer

Niels Lead CI, Testing and Code Quality
Lead Interaction Design and UX
Playtest Organization

Responsibilities

Meeting Organizer

● Makes agenda for meetings and presents them to others
● Prints agenda
● Leads the meetings

Producer

● Responsible for sprint planning for the week
● Ensures there’s enough work to do, plans meeting if work runs out
● Ensures people add new features throughout the week to the pending-backlog column,

and ensures no new features are added to the backlog randomly
● If tasks are too heavy, moves them to next week
● Organizes Waffle board - create according to scrum principles with the inclusion of a

pending-backlog column

Lead Communication

● Setting up communication measures
● Moderating communication measures
● Ensure everybody communicates effectively (daily slackup/standup, no important

matters in whatsapp unless contacting client)

Lead CI, Testing and Code Quality
● Ensures CI setup (Travis) is functional for our purposes
● Ensures code is tested properly with sufficient coverage
● Ensures all code is of high quality, free of smells
● Ensures code is well-commented

Lead Programmer

● Makes the decisions and choices regarding program architecture
● Ensures code is of high quality
● Documents important design decisions regarding the program

Lead Art director

● Responsible for everything related to decisions regarding sounds, music and visuals of
the game

● Additionally responsible for providing the art whenever needed

Lead Game designer

● Explores various game concepts and shares these with the rest during brainstorm
sessions

● Responsible for choosing the game’s mechanics, direction, and concept

Lead interaction design and UX

● Process feedback from the playtest by
○ Analyzing feedback from users, the good, the bad and the ugly.
○ Creating proposals for improvement based on e.g. playtest feedback

● Ensure that players find the UX / Hololens experience intuitive
● Ensure that UI/Game is: meaningful, convenient, pleasurable, usable, reliable and

functional.

Playtest Organization

● Playtesting should be done as early as possible.
● We aim to create a functional prototype by the end of May
● After the functional prototype has been created we aim to do (preferably) a weekly

playtest.

Lead network architect

● Chooses a viable network architecture for the game
● Designs the networking infrastructure for the game or finds existing libraries
● Provides documentation for networking implementation or some other way to make

important design implications clear to the rest of the team

Roadmap
Important Deadlines

- May 7 end of research phase / research report deadline
- May 11 hand in final paper SHS (13 may is the hard-deadline)
- May 31 target for first playtest
- International Festival of Technology 6-8 June
- SIG

- 1 Juni deadline first upload to SIG
- 22 Juni deadline second upload to SIG

- Juni 25 deadline report
- Juni 25 deadline executive summary

○ Milestones

Internal deadlines

- May 25 first-playable
- June 8 alpha version
- June 22 beta version

Collaboration

Sprint Planning and organization (SCRUM)
● Daily stand-up

○ Every day (9:30am at its latest) a short meeting, max 15 min. During these team
members discuss their plans for the day and the issues they encountered before.
If members a working remote the daily should be posted on discord.

○ The discord version will be posted BY EVERYONE if at least ONE person cannot
attend the meeting. This is to ensure transparency.

● Weekly meeting first day
○ Previous sprint is evaluated and the new one is planned. Also the overall

progress of the project is discussed. After this meeting issues are made and
placed on the scrum board.

● Meetings with client/coach
○ We strive to meet these every week.

● “What we do when we have no work for the week anymore”
○ We’ll have a meeting and assign new issues that can be solved in the leftover

time. Also we should consider how we should improve our planning.
● “Same as above for too much work”

○ When it is apparent that internal deadlines are not going to be met we should
instead plan a short meeting and delay certain issues to a later sprint.

● How sprint planning looks (waffle etc)
○ How issues should look

■ Description of issue
■ Estimated Hours
■ Responsible person
■ Actual Hours
■ Tag (see below)

● PR/Issue behavior
○ Issues should have different tags to describe the issue. The different tags are

listed below.
○ User stories always need to be referenced in the pull request, if the pr belongs to

a feature.
○ Pull requests should try to be as small as possible, also pr’s should (if possible)

indicate which classes and methods should get extra attention during the review.
○ PRs should never be greater than 250 (ex test) lines of c# code
○ Should contain the actual amount of effort

● User stories
○ All features should belong to a user story.

● Sprint Management
○ Waffle

■ Will be used as a SCRUM board. The board will have the columns,
Backlog, Pending Issues, To do, In Progress, Testing, Done. Pending
issues is a special column, issues that are found during development will
be placed here, in the weekly we will decide if these issues will make it
into the backlog or not. The To do column will contain all issues that
should be solved in the current sprint.

■ Descriptions of issue should be clean and only contain an actual
description

● Estimated effort will be assigned through the “size” attribute of
Waffle issues

○ Actual effort will still be put in PRs when features are
finished

● Responsible person will be implicitly assumed through the division
of roles at the top of this document

● Everybody will put their issues and user stories on Waffle
■ All issues must have a short name and at least a short and more

elaborate description
■ The “feature” label will exclusively be used for product features (see

description of labels for their use cases)
■ User stories should be mentioned in their corresponding issues via

#issuename
■ When branches are made for issues, name them “name-#relevant_issue”,

this way the issue is moved to “in progress”
● For issues where no branch can be made (research etc), the

move should be done manually

● For PRs, put “ closes #relevant_issue” in the title at the end, so
that the issue is also moved to “In Review” and “Done” when being
reviews resp. is done.

■ Interaction with issues on github should be minimized, mainly use Waffle
(only PR discussion can happen on github)

○ SCRUM
■ On the first working day of a week, a review will be held of last week

● How far everything is coming along
● How many hours were spent on tasks
● What tasks from the previous sprint need to be moved to the

current sprint
● What we will do to ensure timely sprint completion (or what went

wrong)
■ Sprint planning and putting things in Waffle will happen directly after the

first meeting
■ A roadmap will be made containing our milestones and completion goals

● Issue tags
○ The following tags are used:

■ User story
■ Feature
■ Test
■ Bug

Communication

● Discord
○ Everyone should have Discord on their laptop/desktop and the phone. It is

assumed everyone will stay up-to-date.
● Whatsapp

○ Whatsapp will only be used to talk to the project coach
● Conflict resolution

○ If at least one person is in disagreement with a proposal
■ Responsibilities disagreeing person

● Try to understand the proposal
● Explain why you disagree clearly
● If more than half of the group agrees, be flexible and go with it

■ Responsibilities proposal maker
● Clearly explain and define the proposal in a way that the relevance

is obvious and that it is flexible for adjustment in case
○ Make use of a pro/con list when discussing it

● If the above does not work after a reasonable amount of time,
change the proposal slightly in order to reach consensus

● If the above does not work after a reasonable amount of time,
drop the proposal

■ General for the group
● If the majority agrees with a proposal, then whoever disagrees has

to put up a flexible stance on the matter and go with the proposal
● Meet face-to-face if discussion is too complex/hard to resolve

online
■ Behaviour

● Take the time to respond and stay calm: don’t use an angry tone
while speaking and reason sensibly about what you say

● In particular, never resort to threats
● Don’t execute the proposal anyway unless the majority agrees:

doing so anyway will damage the overall trust within the group

Code Quality

● CI
○ We will use Travis CI for continuous integration. The setup will be identical to that

of our context project. It is important to remember that the combination of Unity
and Travis is a bit iffy. Before a PR, always run the tests locally and check for any
ReSharper issues in Visual Studio.

● Unit tests
○ We will try to test as much as possible using the Unity Test Runner, NUnit and

the Humble Object Pattern (see old github repo for examples).
● Style checking & Code smells

○ We will use ReShaper and the ReSharper plugin StyleCop as tools to check for
code smells. It is important to run this locally and not rely on Travis as there is no
integration for StyleCop with Unity using Travis.

● Documentation
○ All code should be well-commented, will be checked by StyleCop.

Tooling

● Github
○ Link to old repo, we will fork this if we can reuse the codebase, otherwise we will

create a new repository. We will not use the github SCRUM board, we use Waffle
for this.

● Discord
○ Both laptop/desktop and mobile version.

● Visual Studio 2017 community (comes standard with Unity)
○ We will use the newest Visual Studio 2017 version available and keep up to date

with the updates. We will use the Unity debugger plugin that is automatically
installed with Unity.

● Resharper + Stylecop (see guide on the github wiki)
○ Plugin for Visual Studio that checks for code quality issues, style issues, code

smells etc. Please check locally for any errors, before creating a PR, since Travis
can’t detect these issues.

● Unity
○ We will use the newest Unity version available and keep up with the Unity

updates.
● Waffle

○ Waffle will be used as our SCRUM board. See this guide how to automatically
use Waffle

● Google Drive
○ Link to drive

● Windows 10 pro/edu/enterprise
○ Only these versions support the HoloLens dev kits from Microsoft

Hardware

● HoloLens
● Laptops

E
Research Paper

59

Research Paper HoloLens Game Design

Shaad Alaka 4287851 Niels de Bruin 4375440 Arjen Miedema 4447247
Jop Vermeer 4462734

May 2018

1 Introduction
In July of 2018 the Superhuman Sports Design
Challenge (SHS), an international symposium cel-
ebrating the next generation of inventors, is held.
It is organized by the International Superhuman
Sports Society [1]. The SHS aims to create sport-
like experiences where the focus lies on augmenting
human ability with technology and involve physical
fitness and skills. These sports will be played for
fun and physical health.
This project, proposed by Dr. ir. A. R.

Bidarra and Dr. S. G. Lukosch, aims to make
an HoloLens/AR version of League of Lasers, a
game designed for the TU Delft context project in
2017.

League of Lasers’ core mechanics revolves around
reflecting a laser pulse to guide it towards a target
[2]. Each team has its own target, so players of one
team want to hit the opposing team’s target while
defending their own (see figure 1a and 1b). When a
team’s target is hit by the laser, the opposing team
scores one point. The team that scored the most
points at the end of the game wins; all in all, the
general idea resembles football (soccer) and Pong.

(a) An overview of the in app
playfield.

(b) An abstraction of the app
view.

The new version of the game will use the me-
chanics of League of Lasers but should be regarded
as a continuation of the original game. The game
will be developed to be played using the Microsoft
HoloLens [3]. Moreover the game needs to use a
method to track the position and orientation of
players in the game field, preferably without the
use of sombreros and a overhead camera, which
were needed in the original League of Lasers. The
game needs to be fast paced, meaning that play-
ers should be able to move freely without being
hindered by hardware limitations. Another require-
ment is to add new gameplay elements to league
of lasers that are fitting to the Superhuman Sports
context.
In addition to the requirements of the project

the game will be judged at the Superhuman Sports
Design Challenge. The competition committee will
look at the following aspects of the game [1]:

• Human augmentation: How much does the
superhuman sport augment human senses and
capabilities?

• Fitness and skills: How much does the super-
human sport require or train physical fitness
and skills?

• Fun and engagement: How engaging and fun
is it for participants to play?

• Innovation: How innovative is the superhuman
sport?

• Audience: How much fun is it for the audience
to watch the superhuman sport?

• Inclusiveness: Can participants with different
backgrounds practice the superhuman sport?

1.1 Research Question
Our research question is as follows:

How can the game design of League of
Lasers be augmented for usage on the Mi-
crosoft HoloLens and meet the require-

1

ments of the project and the Superhuman
Sports Design Challenge?

This question can be split into the following sub-
questions:

• How can we integrate tracking and orientation
handling?

• How does the HoloLens function in a Multi-
player setting (2 or more HoloLenses)?

• What are the hardware limitations of the
HoloLens?

• How can the design of League of Lasers be
improved through usage of the HoloLens?

– What can we do with real life objects in
augmented reality?

– Are there any alternative control schemes
that improve the gameplay?

• How can the design of League of Lasers be
adapted to fit the requirements of the Super-
human Sports Design Challenge?

– How to include physical fitness and skill
in the design?

– How to engage the audience?

– How to make the game accessible (inclu-
sive)?

– How to make the game fun and engaging?

1.2 Structure
The paper is structured as followed: first the re-
search methodology is discussed. Secondly the
methods of tracking player are discussed. Then the
multiplayer capabilities and requirements for the
game are explored. Next, the hardware capabilities
and limitations of the HoloLens are analyzed and
finally the game design is discussed. After the sub-
questions have been answered a conclusion is given,
which will provide recommendations for adaptions
of the design of League of Lasers necessary in an
AR setting.

2 Methodology
To answer the research question a mixture of liter-
ature research and experimentation was be used.
For the literature overview several scientific papers
and sources were used. Do note however, that due
to the technical nature of the project and the rela-
tive young age of the technology, papers discussing
the HoloLens hardware are limited. Therefore the

choice was made to use technical manuals and doc-
umentation as sources as well.
The experiments were mostly relevant for

the game’s design, to get a clear overview of
the capabilities of the Microsoft HoloLens and
how well certain game mechanics of League of
Lasers would translate to the HoloLens. For each
experiment a small research question was created
and a small report was written afterwards, these
can be found in the design chapter of this paper.
The code can be found in the following repositories:
https://github.com/jopenmolles/BouncingLaser,
https://github.com/nielsdebruin/mirror-hololens.
The tools and hardware used for these small
experiments are discussed in the following section.

2.1 Development Tools And Materi-
als Used

For creating Windows mixed reality (HoloLens) ap-
plications, Windows 10 is required (Pro, Enterprise
or Education versions are preferred due to them in-
cluding Hyper-V, which is necessary for Microsoft’s
HoloLens emulator) [4]. Therefore all experiments
were performed on Windows 10 Education. The
team was using the most recent version of windows
10 Education, namely version: 1709.

Microsoft recommends the use of Unity as an
easy way to build HoloLens applications. Unity is
a game engine, which primarily uses C# as pro-
gramming language [5]. As code editor, Visual
Studio 2017 is recommended and is Unity’s default
editor. Microsoft has released a toolkit, which in-
cludes a collection of scripts and components which
accelerates mixed reality development with Unity,
called the MixedRealityToolkit-Unity [6] [7, p. 81–
93]. This toolkit includes scripts for input, sharing
(using multiple HoloLenses together), spatial map-
ping and a lot more. Because of this toolkit and the
team’s previous experience with Unity, the choice
was made to develop all experiments in Unity us-
ing the MixedRealityToolkit. In more detail Unity
2017.4.2f2 was used and MixedRealityToolkit-Unity
version: 2017.2.1.4 was used.

Unity has a holographic emulator, which can
simulate a HoloLens in the unity editor [8] [7, p. 7–
8]. One important note is that a game controller
or gamepad is necessary to be able to control the
player (e.g. Xbox 360 controller). The holographic
emulator of Unity does not require Hyper-V, mean-
ing it will run on operating systems other than
Windows 10 Pro, Enterprise or Education. The
holographic emulator is primarily used for quick
testing and debugging, as it runs directly in the
Unity editor without the need to build and deploy
the game to an HoloLens.

2

Microsoft’s own HoloLens emulator can also be
used to simulate the HoloLens. It requires Hyper-
V and thus needs Windows 10 Pro, Enterprise or
Education [7, p. 7–8] [9]. The HoloLens emulator
is more powerful than Unity’s built-in holographic
emulator, since it includes all the UI elements of
the HoloLens and access to the Windows Store, Set-
tings menu, Device Portal, etc. Unlike the Unity
holographic simulator, you have to build and deploy
the application to Microsoft’s HoloLens emulator,
so it is recommended to only use it near the end
of the project for performing a final check, before
installing the app on an actual device. The team
did not use this emulator all that much during the
experiments, as the usage of the built in Unity em-
ulator was easier and faster to use and HoloLenses
were usually present to deploy the builds on.

3 Tracking Possibilities

In this chapter the question: "How can we inte-
grate tracking and orientation handling?" will be
answered. To answer this question, we will consider
several methods to determine a player’s orientation,
a player’s position and the positions of other objects
within the game in real-time, after that a conclusion
giving the proposed methodology is given.

3.1 Determining A Player’s Orienta-
tion

In this section, several methods to determine a
player’s orientation in the virtual world from their
actual orientation in the real world will be dis-
cussed.

3.1.1 Gyroscope

The gyroscope is part of the HoloLens’ Inertia Mea-
surement Unit (IMU) [10]. Since the HoloLens is a
head-mounted device, a HoloLens’ user can move
its head around to change the orientation of its
representation in the virtual world. This function-
ality is already put to use in the basic environment
of the HoloLens, where Windows’ menus can be
opened and the user always faces them [11]. Addi-
tionally, the user’s head orientation also partially
controls the central pointer’s location that is used
for interacting with user-interface elements, which
is known as Gaze tracking [12].
Devices such as Android smartphones also con-

tain gyroscopes [13]. The gyroscope’s output can
be accessed by running a native app on the smart-
phone through the Android SDK and sending this
information to the game. This form of tracking

is desirable if the game clients run on the smart-
phones, as they can directly access the gyroscope,
such as with the game’s former implementation [2].
However, the data the app provides could be sup-
plementary to the main device of the game client.

Purely using data from a gyroscope to determine
an orientation is prone to drift: the accumulation
of position/orientation related error over time [14].
The HoloLens has its own solution for this phe-
nomenon, which is also used for position tracking
and will be elaborated in detail in section 3.2.1.

3.1.2 Camera

By utilizing image processing techniques on the in-
put of an overhead camera, the players’ orientation
could also be determined. The players would be
given a hat (e.g. a sombrero) that has an obvious
front-facing direction, either by painting an arrow
on it or through its elongated shape [15]. Then,
the camera placed above the playing field facing
downwards would capture the hats and derive their
direction through image orientation analysis, thus
finding the dominant orientation [16].
While this approach was not used for orienta-

tion tracking in the game’s former implementation,
it was used for position tracking. It was able to
track players accurately, but it was sensitive for
lighting conditions and had some mapping errors
related to boundary behaviour (perspective effects,
pin-cushion effect at the camera’s edges of field
of vision) that did not affect positional tracking
adversely [2]. The expectation is that the same will
hold for orientation tracking, and that boundary
artifacts will be more visible for orientation track-
ing as it relies on working with shapes which may
deform easily.

3.2 Determining A Player’s Posi-
tion

In this section, several methods to determine a
player’s position in the virtual world from their
actual position in the real world will be discussed.

3.2.1 HoloLens

For positional tracking, the HoloLens makes use of
its “spatial mesh” and its IMU [17]. The spatial
mesh is a 3D model from the environment around
the user that is generated by the HoloLens through
four cameras as the user looks around with the
HoloLens, creating a 3D virtual representation of
the real world environment through a Simultaneous
Localization And Mapping (SLAM) algorithm [17]
[18, Section 1]. This mesh is continuously updated

3

and refined, but these updates occur with some
latency and the resulting captures are noisy [19].

Through the IMU, changes in the HoloLens’ po-
sition can be measured. This measurement is used
in combination with a comparison of the scene cap-
tures of the cameras before and after the movement
[17]. Through this comparison and the IMU data it
can be determined whether the environment or the
user has moved, and by how much. The IMU on its
own can provide an approximate answer with little
latency and noise by adding up differences, though
this approach has relatively large errors through
the phenomenon called drift, as explained in section
3.1.1. This is where the scene captures come in:
by using the feature comparison between the two
scene captures, which have relatively high noise
and latency, but no drift, the player’s position can
be determined accurately in the order of millime-
ters, thus nullifying the error build-up by drift [17].
This mechanism is called inside-out tracking and is
a very powerful feature of the HoloLens, allowing
accurate position tracking without using additional
tools (e.g. antennae).
While this approach works well for the position

of the HoloLens, maintaining the positions of static
holograms on the spatial coordinate system requires
additional measures [20]. Microsoft recommends
staying within 5 meters of the scanned area to pre-
vent any drifting artifacts from becoming apparent.
However, for applications that require a larger en-
vironment, spatial anchors may be used. These
are important points in the scanned area that the
HoloLens will remember. Holograms close to these
will be free of drifting issues.

3.2.2 Camera

Similar to how orientation tracking would work
using image processing, positional tracking is also
possible using a camera as described in subsection
3.1.2. It is only necessary to detect and identify
the users. The game’s former implementation used
large round hats with either a black or white rim,
with a colored dot in the center [2]. The color was
used for identifying the player, while the rim was
used for identifying the team. These hats were
detected using blob detection, through a multipli-
cation of the value and saturation channels in the
HSV color-space of the image, which would retrieve
the centers of the colored dots [15], [21]. Since the
shape does not matter much, it is only necessary
to detect the specific combination of rim and dot
color to determine some player’s position on the
playing field relative to the field of view of the cam-
era [2]. Therefore any errors related to the shape
of the hat are not significant. The perspective and

camera boundary artifacts, can causing a relatively
large error, but did not significantly impact the
gameplay. however lighting condition did affect the
implementation’s ability to detect the colored dots
properly.

3.2.3 WiCapture

It is also possible to use Wifi access points for po-
sition tracking that is resistant to occlusion and
has a fairly long range [22]. The method for this
described by Manikanta Kotaru and Sachin Katti
called “WiCapture” makes use of the multipath
problem in Wifi routing, making it work in fa-
vor of the problem at hand, by looking at phase-
differences in the various propagation paths of the
same packet. More Wifi access points or anten-
nae can be added at stationary points to make the
system more accurate. This will generate many
false estimates from reflected paths, but also a few
true estimates that resulted from the direct paths
to the access points, which will generally lie close
together. While existing Wifi localization systems
can determine positional changes with an error of
40 cm, WiCapture is able to bring this down to a
few millimeter.

One large benefit of this system is that it works
with any commodity Wifi router, making use of
packet meta-data called CSI which is present in
any packet sent by any commodity Wifi router [23].
As mentioned above, the system is resistant to
occlusion, has a large working range and is accurate
down to a few millimeter. This all makes it suitable
for VR/AR application.
For tracking multiple devices simultaneously

though, it is not clear how the tracking accuracy
would be affected, as the experiments that had
demonstrated the high accuracy were only per-
formed for tracking a single device. On top of
that, the method was only tested with rather bulky
WiFi routers attached to VR headgear: it is unclear
whether the networking hardware in the HoloLens
is powerful enough to substitute for such routers.
These uncertainties, along with the uncertain imple-
mentation details make this a rather experimental
endeavour that may be too time-consuming or im-
practical to set up properly.

3.3 Determining The Position Of
Other Objects

Several image processing libraries exist that may
aid in tracking real-world objects within the user’s
view. In this section two of these libraries will be
discussed.

4

3.3.1 Vuforia

Vuforia is an object tracking library, it is able to
recognize and track pre-determined visual mark-
ers robustly with very little latency [4], [24]. The
robustness comes from the fact that not all fea-
tures of some visual marker need to be visible in
order to detect the object and when a marker is
detected once, it can be tracked even when the
marker becomes mostly occluded [24] [25, Section
6]. Because of this robustness and the overall speed
at which Vuforia operates it can give users a great
sense of immersion [26]. The Vuforia engine is
natively integrated with Unity, which provides an
easy development workflow [27].
Vuforia utilizes VuMarks for object detection.

These VuMarks are similar to QR-codes in that
they can encode information, but they allow more
designer-freedom in terms of how they look, which
is useful for creating logos with encoded URLs in
them, or in this case, encoding object identifying
data in an aesthetically pleasing way [28], [29].

3.3.2 Object Tracking Using OpenCV

OpenCV is another image processing library that
may be utilized for object tracking, although it is
a more general purpose image-processing library
[30], whereas Vuforia focuses on object tracking
specifically [24]. Object tracking in OpenCV can
be approached in a multitude of ways, one example
is the blobbing approach that was mentioned before
in section 3.2.2. Another example is SIFT, which
uses scale-invariant features on objects to identify
them regardless of their size or screen-perpendicular
orientation [31].

3.4 Conclusion

The team is fairly confident that it would be most
convenient to initially start off with using the inside-
out tracking of the HoloLens to determine a player’s
orientation and position. If issues with these meth-
ods arrive during development, a multi-modal solu-
tion could be implemented using one of the other
discussed techniques. If the position of other ob-
jects would need to be determined in the game, it
is proposed to use Vuforia as it is fully integrated
within Unity.

4 Networking

This section will analyze how the HoloLens func-
tions in a multiplayer setting. First some core
concepts are given, which can be used to share
a mixed reality scene between HoloLenses. After

that, some multiplayer solutions compatible with
the HoloLens are discussed.

4.1 Core Concepts HoloLens Shar-
ing

The major challenge with creating a networked
game with multiple HoloLenses is sharing the same
virtualized world between them. The holograms
should be located at the same position in both
the game and the real world for all players. To
enable this, HoloLenses make use of spatial anchors
[20]. Spatial anchors are positions in the real world
to which we want to attach a hologram. These
holograms will then always be rendered at that
particular position, and the rendering of these holo-
grams will not be relative to the HoloLens itself,
meaning that the hologram will not move if the
HoloLens would lose track of its position or shift its
internal coordinate system. Anchors should only
be used for static objects that never move.

Anchors can be shared between HoloLenses, thus
allowing different HoloLenses to see the same holo-
gram at the same position even if their internal
maps of the environment might differ [32]. This is
useful for rendering static holograms at the same
position for all players. Dynamic holograms such a
the laser and mirrors could be parented to these an-
chors to synchronize their position, parenting these
objects means that their position will be relative to
the anchor until they move outside of the anchor’s
range (after that point they should be parented to
another anchor). Static holograms such as walls
and goals could be implemented as anchors [20]. A
game like League of Lasers will depend on synchro-
nized holograms for the laser, mirrors and other
game objects as players should be playing in the
same room and thus share the same representation
of the virtual world. Therefore it is necessary to
choose a networking solution that easily integrates
into Unity and that supports the usage of anchors
and anchor sharing.

4.2 Multiplayer Frameworks

In this section several networking solutions are
briefly discussed, followed by a conclusion about
which solution should be used. Frameworks that
are incompatible with Unity and/or the HoloLens
setup have been omitted.

4.2.1 Photon

The team is not familiar with this service but its
features are promising. Photon uses a client to

5

server architecture [33]. It is cloud based, cross-
platform and has features such as match-making.
The Photon servers are room-based which is ideal
for a game as league of lasers. Photon advertises
its ease of use however these features do come at
a cost, Photon is free for usage with less than 20
concurrent users, but everything after this point is
paid. Another disadvantage is that Photon cannot
be hosted on a user’s own device. Moreover, Photon
has no built-in convenience methods to share spatial
anchors between players, these would have to be
developed.

4.2.2 UNET

UNET is Unity’s own networking solution, it fea-
tures matchmaking and cloud-hosting, is room-
based and fully integrated in Unity, and is cross-
platform [34]. From experience, the team can tell
that it is not the most intuitive networking solution,
the system has a somewhat incomplete documenta-
tion and sometimes does not work as documented.
However, it offers the option to deploy your own
servers which are free of a concurrent player limit.
UNET has support for sharing HoloLens anchors
as well [35].

4.2.3 Microsoft Sharing Server

Microsoft’s MixedRealityToolkit-Unity comes with
a sharing package, which contains a console based
server, called the Microsoft Sharing Server, that
can be used to communicate world anchors between
HoloLenses. Moreover, it can synchronize changes
between players and send custom messages to other
clients [36]. The main problem with this framework
is the poor (almost non-existent) documentation
and the fact that the server is not extendable, mean-
ing modifications and extensions cannot be made
to the source code of the server. It is the recom-
mended networking solution provided by Microsoft
and thus mentioned here.

4.2.4 Conclusion

Due to our previous experience with UNET and the
full support of the HoloLens from within UNET, it
seems like the most logical choice for this project.
UNET has more and better documentation than
the Microsoft sharing server and more flexibility
when it comes to deployment than Photon. Local
deployment is an important aspect for the team as
it makes debugging easier and gives the ability to
host on a local network which may reduce latency.

Another feature of UNET that is not present in
the Microsoft sharing server, is that it allows the
server to have a graphical interface, meaning that

the game can be visualized in the same application
instance as the server. This makes debugging lo-
cally more intuitive and also allows for displaying
the game on a projector. Using the other frame-
works, displaying the game on a projector would
be more difficult, as a special client would have to
be created.
All in all the team’s previous experience and

familiarity with UNET plus its full support of the
HoloLens makes it the preferred choice for this
project.

5 Hardware Limitations And
Capabilities

In the following subsections, the capabilities and
the limitations of the HoloLens hardware will be dis-
cussed. First the Holographic Optics are discussed.
Second, The HoloLens’ capabilities and limitations
in terms of processing power are discussed. Third,
the available sensors are described. Finally, meth-
ods for human interaction are discussed.

5.1 Capabilities And Limitations Of
The Holographic Optics

The HoloLens boasts some impressive optic spec-
ifications on paper, especially when compared to
the current state of the art of AR headsets [10].
However, as with all new technology, there will
be some challenges during development. In this
subsection, we will highlight some of the HoloLens’
optics capabilities but also discuss its limitations.
The HoloLens has been equipped with the fol-

lowing optic capabilities:

• See-through holographic lenses

• 2 HD 16:9 light engines

• Automatic pupillary distance calibration, al-
lowing the device to adjust the hologram dis-
play according to the users’ interpupillary dis-
tance. Doing this makes sure holograms do
not become unstable or appear at an incorrect
distance [37].

• Holographic Resolution: 2.3M total light
points

• Holographic Density: >2.5k radiants (light
points per radian)

5.1.1 Limited Field View

One of the HoloLens’ most prevalent visual limi-
tations is the limited field of view. Currently, the

6

HoloLens supports a field of view of 30x17.5 degrees
(horizontal x vertical) [38]. This limitation means
that the image projected does not fully cover the
human field of view which is 210x150 degrees [39].
It is possible that more experienced HoloLens users
will get used to this limitation and will compensate
for it by relying more on head movement instead
of eye movement. However, for players just testing
out the game (e.g. on a public event) this might
severely impact their first impression of a game
that makes extensive use of head movement.

5.1.2 Holograms Will Only Appear At A
Certain Distance

The Holograms that the HoloLens projects appear
at a distance of 80 centimetres [40], and moving
closer to a Hologram will cause it to fade out. This
might be a problem for League of Lasers since
the laser beams will disappear before reaching the
players. From testing with the HoloLens, we found
that holograms fully disappear at a distance of
approximately 50 centimetres. For optimal user
experience, holograms should be placed between
2 and 5 meters from the HoloLens user [40] (see
figure 1). At this point, the holographic displays
will start to overlap which yields the best hologram
quality. Moving holograms too far or close can
cause strain on the user’s eyes.

Figure 1: Optimal zone for hologram placement

5.2 Capabilities And Limitations In
Terms Of Processing Power

The HoloLens makes use of an 32 bit Intel chip and
has 2GB of RAM [10]. Given some of the more
complex game demos such as RoboRaid [41] that
we have seen so far we do not expect to be severely
limited by processing power when implementing
the basic League of Laser features (mirrors, lasers,
collisions). However, we cannot estimate the impact
of any potential new or modified gameplay features.

5.3 Available Sensors
Numerous sensors [10] are available to provide in-
formation about the user or the environment:

• 1 Inertial Measurement Unit

• 4 environment understanding cameras, used
for tracking the head position and inside out
tracking.

• 1 depth camera

• 1 2MP photo / HD video camera

• Mixed reality capture

• 4 microphones

• 1 ambient light sensor

Even though we anticipate using each sensor we
do not need to interact with them directly. For
instance, the Spatial Mapping API [42] will access
the depth camera for us and abstract most of the
low-level logic.

5.4 Available Methods For Human
Interaction

There are multiple ways in which users can interact
with the HoloLens. We will discuss these in this
subsection.

5.4.1 Spatial Sound

The HoloLens supports spatial sound, which allows
the user to experience sounds generated by a holo-
gram, from the direction the hologram is located
[43]. This in itself is not a new or revolutionary tech-
nology, however, it could be used to help the user
generate additional spatial awareness [44]. Spatial
sound is easy to implement using Unity [45] and
will thus greatly increase the spatial awareness.

5.4.2 Gaze Tracking

Gaze tracking can be used to determine where a
user is looking [12]. In our experience controlling
an application through gaze tracking tends to be
intuitive, but is not very accurate, since it is hard
for a user to hold his head steady in place. Gaze
tracking can be a powerful tool, some of its use
cases are [12]:

• Intersect user’s gaze with holograms to deter-
mine the focal point of user’s attention.

• Target gestures e.g. control a menu, targeting
system.

7

• Determine when a user is not looking in a
certain direction. The latter could be used to
alert the user about incoming enemies or other
objects, through visual or audio cues when the
player is not looking at them.

5.4.3 Gesture Input

Gestures are a supported input method, though
these are limited. Essentially there are only two
gestures: air tap (figure 2) and bloom (figure 3) [46].
Air tap can be used to interact with holograms after
targeting it with Gaze. Air tap is the equivalent
of a "click". Bloom is generally used to open en
closed the HoloLens’ main menu.

Figure 2: The Air Tap gesture

Figure 3: The Bloom gesture

5.4.4 Voice Support

The HoloLens comes with build in Cortana Support
[47] and uses the same voice recognition technology
as is used in the Windows Universal access apps.
For our game voice recognition will probably be in-
feasible, since we will be using multiple HoloLenses
in close proximity of one another. In such a setting,

voice commands will start to interfere with one and
another since user-specific voice recognition is not
supported.

6 Game Design

In this section the research questions: "How to
adapt the design of League of Lasers to fit the re-
quirements of the Superhuman Sports Design Chal-
lenge?" and: "How to improve the design of League
of Lasers by using the HoloLens?" are answered.
To tackle these questions, the core mechanics of
League of Lasers were explored in small program-
ming experiments. The experiments and the results
will first be discussed, then several extensions to
the gameplay that take these results into account
will be presented.

6.1 Experiments

Two small experiments (spikes) have been devel-
oped to test and research some of the core mechan-
ics of the game. The first spike was about the
spatial mapping of the HoloLens: can we bounce a
laser around a spatial map of a room? The second
spike was about the control scheme: how playable
and intuitive would a mirror be that is projected
in front of the player’s view and follows the player
around?

6.1.1 Spatial Mapping Experiment

The goal of this experiment was to research how
spatial mapping works with the HoloLens. There
are multiple ways to implement spatial mapping:
using Unity’s own spatial mapper or using the spa-
tial mapper of the MixedRealityToolkit for Unity
[48]. To use the spatial understanding capabilities,
the MixedRealityToolkit’s spatial mapper should
be used. We wanted to know whether the HoloLens
could map a room for use as a playfield and if we
could let game objects interact with the mesh gen-
erated from the spatial.

Methodology
A small Unity project was developed where we used
the MixedRealityToolkit’s spatial mapping and un-
derstanding to map the room. When the game
starts, the player has to move around to scan the
room. The spatial mesh is given a physics mate-
rial with the bounciness parameter set to 1, which
causes colliding game objects to bounce off the
mesh. After the scan has been completed, a ball
is spawned with a starting velocity towards a ran-
dom direction, with the velocity being maintained.

8

When it hits the spatial mesh, it will bounce off.
This will cause the ball to bounce around in the
room, since this spatial mesh contains the walls,
the ceiling, the floor and other objects in the room.

Result
The mapping worked and spatial understanding
resulted in a fully-closed spatial mesh of the room,
where the ball could bounce around in. Any holes
in this mesh are filled up and if necessary virtual
walls are created, so that the spatial mesh is fully
encapsulated and the ball cannot escape. This
means that it will create a virtual wall in order to
still have a fully-closed playfield, if the playfield is
missing walls or a ceiling.

During the scanning process, it is recommended
to not have moving objects in the playfield, oth-
erwise they will remain in the spatial map, since
it retains old meshes for a rather long time. This
means that the game thinks there is an object that,
in the real-world, is not there anymore. After the
scanning is done, the room is mapped and the
spatial mesh is not updated anymore.
We also noticed that the HoloLens had difficul-

ties tracking large black surfaces (e.g. a projector
screen, black table), they would not be mapped
in the game. This finding corresponds with the
spatial mapping documentation [19]. Here several
factors that can create errors in the spatial map
are listed, one of which being the fact that dark
surfaces do not reflect enough light, so they can
create holes in the mesh. This is something to keep
in mind when choosing/creating a playfield.
This experiment let us know it is possible to

map the real-world playfield to a mesh in the game.
This means the laser can interact with real-world
objects (e.g. bounce off walls and obstacles). We
now also know that we can let the laser bounce in
3d space since it will just bounce off the ceiling and
floor.

6.1.2 Mirror Experiment

The goal of this experiment was to determine the
feasibility of moving a mirror through head move-
ments using the HoloLens. Within League of Lasers
the movement of mirrors is the way players interact
with the laser. The simplest way to do this is to
connect the mirror to the players head. We wanted
know how well this mechanic translates to actual
gameplay, so this experiment was designed. We will
measure the feasibility through three criteria that
will be elaborated upon below. Then the results,
with respect to these criteria, will be discussed and
it will be determined whether a mirror, controlled
in the way described, is a feasible solution.

Methodology
A small Unity project was created, making use of
the MixedRealityToolkit project and scene settings
for the basic setup, and then adding a box with
rigidBody and collision components to act as a
mirror. This mirror was attached to the in-game
camera and placed directly in front of it. It follows
the camera around by changes its position and/or
orientation, while preserving the same facing direc-
tion as the camera.

A laser object represented by a collision enabled
sphere is spawned and launched in the direction
of the mirror from a stationary point, with the
HoloLens Air Tap gesture. The “laser” collides
with the mirror and bounces in the new direction
depending on the orientation of the mirror. Since
the in-game camera is controlled using the position
and orientation of the HoloLens, the mirror moves
and rotates as the player moves and rotates. This
allows the player to re-position himself in order
to try and hit the laser with the mirror and make
it travel in a specific direction towards a point of
interest (such as a closet that is visible in the real
world).

We used the following criteria to evaluate the
results of our experiments.

• Accuracy consists of several components:
First, It should be possible for a player to con-
trol the position/rotation of the mirror without
any noticeable input lag. Second, it should not
be difficult to target the laser into a certain
direction using the mirror.

• Intuitiveness allows players to be able to
move the mirror the way they intend in a
relatively short playtime. Additionally, it also
means that moving the mirror should not be
a cumbersome act.

• Physical fitness and skill should provide an
advantage, allowing players to actively engage
with competing in the game.

Result
The implementation seems to be accurate: players
can control the mirror without noticing input lag.
It is trivial to reflect the laser towards a pre-defined
target when its direction is not far from the incom-
ing direction of the laser. When a target further
away (in terms of angular change required for the
laser) has to be reached, the player has to move a
bit more, by walking and rotating a bit just before
the laser hits the mirror. This clearly involves phys-
ical fitness and skill, hence satisfying that criteria

9

as well. The prototype was also intuitive: for users
it felt as if they were holding a transparent sheet
in front of them and coming up with the position-
ing to reflect the laser into the intended direction
seemed like a task that was straightforward, but
also challenging enough to remain interesting for
larger angles. All in all, the results seem to be
strictly positive, according to the specified criteria,
meaning that this is a viable design direction for
the game.

6.2 Adapting the Design of League
of Lasers for the Superhuman
Sports Challenge

In this section different aspects of the Superhuman
Sport Design Challenge (see 1) and how League of
Lasers could fit these aspects are discussed. Also
additions to the design that fit within the Super-
human Sport Design challenge are given.

6.2.1 Human Augmentation

Human augmentation was something League of
Lasers already did to some extent: humans were
given a virtual representation that they were able to
control through their movement and orientation in
the physical world, while perceiving these changes
on a screen. This representation can be conceived
as an extension of their being into a virtual world,
where they can be given abilities that are not lim-
ited by their physical form (such as deflecting a
laser off their “body”). However, it can be argued
that this is not a form of augmentation that is
“convincing” enough, since especially in terms of
augmenting the senses it is not all that different
from the ordinary video game that is played on a
PC.
The usage of the HoloLens will definitely bring

the aspect of human augmentation to League of
Lasers. In addition to being able to control exten-
sions of themselves in a virtual world, users will
be able to perceive a virtual world overlaid on top
of the physical world. This is done by directly
augmenting the players’ vision and hearing with
information that is necessary to play the game,
instead of doing this through a detached screen
and audio source. This will allow players to reason
about the virtual world as they would do in the
real world, which is a large gain from the former
implementation.

6.2.2 Physical Fitness And Skill

League of Lasers was already a skill based game,
however, due to the reliance on mobile phones for

orientation and visualization of the playfield and
the need to wear a sombrero for player tracking,
the gameplay was slow paced. This was done as
players needed more time to safely move around as
they were watching their phones. Running could
also cause players to lose their sombrero. The slow
pace meant that, while players were moving and
standing, their physical fitness was not tested by
the game.

The usage of the HoloLens could potentially im-
prove the speed of the gameplay, as players will no
longer have to look down at their screens nor will
they need a sombrero on their head. The expec-
tation is that the increase in speed will stimulate
players to move faster and challenge their fitness
more, though research is needed to proof this. As
the rotation of the player is still measured and the
team mechanics are still present in the AR ver-
sion of the game, the skill aspect should remain
unchanged.
During the second experiment (section 6.1.2) it

was found that controlling the mirror with head
movement is more natural than expected. Addi-
tionally, the distance between the mirror and the
player ensured that the laser hologram could not
fade out as a result from (virtually) getting too
close to the player.

While this control scheme seems satisfactory, pe-
ripherals could also be implemented, by for example
equipping players with handheld devices that could
act as mirrors in-game. The idea here is to use an
arm mounted device which contains a gyroscope
and accelerometer, such as a WiiMotion plus [49],
to act as a virtual shield in the game. The advan-
tage to this method would be that, if the hardware
is accurate, players can reflect the laser more freely.
The disadvantage is the need for more hardware
and calibration steps in the game [49]. The usage
of peripherals such as the above mentioned shield
should add another skill aspect to the game, if
needed.

6.2.3 Fun And Engagement

To define fun, the following description proposed
by R. Koster [50, p. 90] is used. Koster defines fun
as “the act of mastering a problem mentally”. He
later expands on this definition by stating that fun
is the feedback the brain gives when we are starting
to understand patterns for learning purposes [50,
p. 96].
Predicting the laser’s movement pattern is

straightforward under normal circumstances, the
laser always responds in the same manner un-
der normal circumstances (power-up could change
these), moreover from previous playtests we learned

10

that the rules and goals of the original version of
League of Lasers as described in section 1 are easy
to understand [2], players will quickly learn how to
play. Therefore the game is extremely suitable for
casual play due to its ease of entry.
While the game is easy to learn, mastering the

game is difficult. The interaction between team
mates and opponents ensures a great degree of
variance and uncertainty in what’s going to happen
in an instance of the game, much like soccer for
example.
As shown above the game is easy to learn, yet

it is hard to master, due to the cooperative nature
and the interaction between players. This means
players will be stuck in the “act” of mastering the
game and thus the game should be and stay fun.

6.2.4 Innovation

League of Lasers in itself was a quirky idea: there
are not a lot of games like it, that combine team
sports with AR. It is a good example of a case
where mixed reality can really make a difference
in innovation and uniqueness of a game concept.
Mixed reality has some unique properties, the spa-
tial mapping experiment (section: 6.1.1) showed
the prospects of scanning environments and using
them as the play field in the game. The usage
of the ceiling and floor of the a allowed for some
interesting interactions where the laser can bounce
in all three dimensions. This behaviour could be
extended by allowing players to build a unique play-
field by placing objects in a room that will then be
scanned into the geometry of the game. A challenge
with this approach will be the synchronization of
these objects across different HoloLenses.

Another interesting mechanic would be to place
and move objects in the field that will then be
tracked by the game. These objects will then
change into mirrors or other objects in the game.
The difference with the previous idea is that these
objects can be moved after being scanned. Players
would need to build paths for the laser to score a
point, while the other team would try to destroy
these. To make these kinds of interactions possi-
ble, alternative tracking methods will likely need
to be used in the game. All in all, there is enough
potential to further innovate within the formula of
League of Lasers.

6.2.5 Audience

The previous version of League of Lasers already
has an audience aspect, as the game overview can
be shared on either a television or a projector and
spectators can watch the match just like any other

sport. With the addition of the HoloLens, the play-
ers’ feeds could be streamed as well, using Mixed
Reality Capture [51], [52]. This feature was tested
and a latency of roughly 4 seconds was observed as
well as performance issues with the HoloLens, which
makes this unsuitable for live streaming footage,
however, it could still be used for showing replays
of game highlights, such as scoring a point.

Another option is to engage the audience by hav-
ing them participate in the game. Giving audience
members the option to help and/or hinder players
during a game greatly increases their engagement
and interaction [53]. This concept could also be
implemented in League of Lasers, by giving specta-
tors the option to select which power ups (if any)
should be active or to alter parameters in the game
to make the game easier or harder (laser speed,
obstructed areas, etc.).

6.2.6 Inclusiveness

Accessibility and inclusiveness of games is a matter
mostly discussed in relation to traditional video
games. The SHS will look at how well people from
different backgrounds can play the game. In the
case of League of Lasers there are no discriminatory
factors present that could exclude a person on the
basis of cultural background, as the game resem-
bles football, the most popular sport in the world
[54], which is played all over the world. Moreover,
playtests showed that adults and children both have
no trouble playing the game [2]. Therefore it makes
sense to look at accessibility to judge whether a
person can play the game or not, instead of focusing
on inclusiveness.
Guidelines exist to ensure a game has high me-

chanical accessibility [55]. Some of these guidelines
relate to the input method of the game, in the case
of a HoloLens game using the orientation and loca-
tion determining abilities of the HoloLens, players
would only need to be able to move their bodies and
rotate their head to be able to play. This excludes
people with poor mobility from playing.
One could look further and view accessibility

as more as just mechanical accessibility but also
as an extension of game design [56]. In this case
accessibility is about how easy it is to understand
and learn the game. As discussed previously (see
section: 6.2.3) the game is easy to learn due to its
simple mechanics. This was also supported by the
play tests [2], which showed that children were able
to understand the game rather quickly and had
fun playing it. This leads to the conclusion that
the game should be playable for most people, as it
is easy to understand and it only excludes people
with poor mobility.

11

6.3 Conclusion

As shown, the core mechanics of League of Lasers
should translate well to the HoloLens. Moreover
it was discussed that the game can implement the
mentioned Superhuman Sports Design Challenge
criteria and suggestions were made to further im-
prove the game in order to better match the criteria.
In the following section a final game design is given
that combines the lessons learned from all individ-
ual research questions.

7 Conclusion

We propose to modify the original game design of
League of Lasers in such a way, that the core con-
cepts will stay the same, but the weaker elements,
also with respect to the Superhuman Sport Design
Competition criteria, will be enhanced. First, we
want to change the way tracking is done. The
original version of League of Lasers uses a camera
with sombreros to track players’ positions and their
smartphone’s gyroscope to track the players’ orien-
tation. The camera was sensitive to light changes
and required sombreros. The gyroscope orienta-
tion tracking implementation was also prone to
drift. Using the HoloLens, these issues should be
resolved, as it can accurately track its own position
and orientation.

The HoloLens can project a first person view of
the playfield, where the players can see the laser,
the targets, the mirrors, etc. This removes the need
of smartphones and gives a first person perspective
instead of a top-down perspective, which makes
the gameplay a more intuitive experience. The
audience would still see a top-down representation
of the game on a projector.

Using the HoloLens’ spatial mapping capabilities,
we can map the real-world playfield to a virtual one
and let the laser interact with it (e.g. bounce off
real objects and walls). This virtual playfield can
be visualized, letting the players easily see where
the bounds of the playfield are and where the laser
is. The spatial mapping also enables us to change
the playfield by placing or moving obstacles, in the
real world, even while the game is in progress.

The core concept of providing each player with a
mirror, which can be used to guide the laser towards
the opponent’s target, also translates rather well to
the HoloLens. During the experiments it was found
that projecting the mirror in front of the player
and moving it around with the player’s head, was
a natural and intuitive way to control the mirror,
even more so than using the gyroscope found in the
player’s smartphone. An extension could be to use

an arm mounted device with an accelerometer and
gyroscope (e.g. a sort of shield with a smartphone
mounted to it) as the mirror. Such a mechanic
would allow players to bounce the laser without
the necessity to adjust their heads orientation for
operating the mirror.

Since the core gameplay of League of Lasers was
fun and players liked it, we want to mostly extend
and enhance the game’s design, instead of making
radical changes. Using the HoloLens, we can reduce
or even remove the weak points of the original
design, while further improving the good points,
also taking the SHS criteria into consideration.

References
[1] Superhuman Sports Society. Superhuman

Sports Design Challenge. url: http : / /
superhuman- sports.org/delft/ (visited
on 04/30/2018).

[2] Jop Vermeer, Shaad Alaka, Niels de Bruin, et
al. “League of Lasers: A superhuman sport us-
ing Motion Tracking”. In: Superhuman Sports
Design Challenge: First International Sym-
posium on Amplifying Capabilities and Com-
peting in Mixed Realities Proceedings. Vol. 1.
ACM. 2018.

[3] Microsoft. Microsoft HoloLens. url: https:
//www.microsoft.com/en- us/hololens
(visited on 04/30/2018).

[4] Matt Zeller, Chris White, Cosmos Darwin,
et al. Install the tools. Mar. 2018. url: https:
//docs.microsoft.com/en-us/windows/
mixed-reality/install-the-tools (vis-
ited on 04/30/2018).

[5] Adam Tuliper. Developing Your First Game
with Unity and C#. Aug. 2014. url: https:
//msdn.microsoft.com/en-us/magazine/
dn759441.aspx (visited on 05/07/2018).

[6] Microsoft. Microsoft/MixedRealityToolkit-
Unity. url: https : / / github . com /
Microsoft / MixedRealityToolkit - Unity
(visited on 04/30/2018).

[7] Sean Ong. “Beginning Windows Mixed Real-
ity Programming”. In: ().

[8] Unity Technologies. Holographic Emulation.
url: https : / / docs . unity3d . com /
Manual/windowsholographic- emulation.
html (visited on 04/30/2018).

12

[9] JonMLyons, Matt Zeller, and Brandon Bray.
Using the HoloLens emulator. Mar. 2018.
url: https : / / docs . microsoft . com /
en - us / windows / mixed - reality /
using - the - hololens - emulator (visited
on 04/30/2018).

[10] Matt Zeller and Brandon Bay. HoloLens hard-
ware details. Mar. 2018. url: https://docs.
microsoft.com/en- us/windows/mixed-
reality / hololens - hardware - details
(visited on 05/01/2018).

[11] Addison Linville, Matt Zeller, rwinj, et al.
Billboarding and tag-along. Mar. 2018. url:
https://docs.microsoft.com/en- us/
windows/mixed- reality/billboarding-
and-tag-along (visited on 05/04/2018).

[12] Alex Turner, Matt Zeller, rwinj, et al. Gaze.
Mar. 2018. url: https://docs.microsoft.
com/en-us/windows/mixed-reality/gaze
(visited on 05/01/2018).

[13] Android Developers. Motion sensors. Apr.
2018. url: https://developer.android.
com / guide / topics / sensors / sensors _
motion (visited on 05/04/2018).

[14] N. O-larnnithipong and A. Barreto. “Gy-
roscope drift correction algorithm for iner-
tial measurement unit used in hand motion
tracking”. In: 2016 IEEE SENSORS. Oct.
2016, pp. 1–3. doi: 10.1109/ICSENS.2016.
7808525.

[15] H. Kong, H. C. Akakin, and S. E. Sarma.
“A Generalized Laplacian of Gaussian Filter
for Blob Detection and Its Applications”. In:
IEEE Transactions on Cybernetics 43.6 (Dec.
2013), pp. 1719–1733. issn: 2168-2267. doi:
10.1109/TSMCB.2012.2228639.

[16] Sravan Bhagavatula and Nashlie Sephus. “Es-
timating the Dominant Orientation of an Ob-
ject Using Image Segmentation and Principal
Component Analysis”. In: Advances in Visual
Computing. Ed. by George Bebis, Richard
Boyle, Bahram Parvin, et al. Cham: Springer
International Publishing, 2015, pp. 243–252.

[17] Paul Aaron, Matt Zeller, and Matt Woj-
ciakowski. Inside-out tracking. Dec. 2017.
url: https : / / docs . microsoft . com /
en - us / windows / mixed - reality /
enthusiast-guide/tracking-system (vis-
ited on 04/30/2018).

[18] Reid Vassallo, Adam Rankin, Elvis
C. S. Chen, et al. Hologram stability evalua-
tion for Microsoft (R) HoloLens TM. Mar.
2017.

[19] Brandon Bray, rwinj, Matt Zeller, et al. Spa-
tial Mapping and Design. Mar. 2018. url:
https : / / docs . microsoft . com / en -
us / windows / mixed - reality / spatial -
mapping-design (visited on 05/04/2018).

[20] Alex Turner, Matt Zeller, Eliot Cowley, et
al. Spatial anchors. Mar. 2018. url: https:
//docs.microsoft.com/en-us/windows/
mixed-reality/spatial-anchors (visited
on 05/02/2018).

[21] S. Sural, Gang Qian, and S. Pramanik. “Seg-
mentation and histogram generation using
the HSV color space for image retrieval”. In:
Proceedings. International Conference on Im-
age Processing. Vol. 2. 2002, II-589-II-592
vol.2. doi: 10.1109/ICIP.2002.1040019.

[22] Manikanta Kotaru and Sachin Katti. “WiCap-
ture: Motion Capture UsingWiFi”. In: (2015).
url: http://stanford.edu/class/ee367/
Winter2015/report_kotaru.pdf.

[23] Manikanta Kotaru and Sachin Katti. “Po-
sition Tracking for Virtual Reality Using
Commodity WiFi”. In: CoRR abs/1703.03468
(2017). arXiv: 1703.03468. url: http://
arxiv.org/abs/1703.03468.

[24] Vuforia. Attach digital content to specific ob-
jects. url: https : / / www . vuforia . com /
features.html (visited on 04/30/2018).

[25] Alexandro Simonetti Ibañez and Josep Pare-
des Figueras. “Vuforia v1. 5 SDK: Analysis
and evaluation of capabilities”. MA thesis.
Universitat Politècnica de Catalunya, 2013.

[26] Fuguo Peng and Jing Zhai. “A mobile aug-
mented reality system for exhibition hall
based on Vuforia”. In: Image, Vision and
Computing (ICIVC), 2017 2nd International
Conference on. IEEE. 2017, pp. 1049–1052.

[27] Vuforia. Getting Started. url: https : / /
library.vuforia.com/.

[28] International Organization for Standardiza-
tion and International Electrotechnical Com-
mission. Information Technology – Automatic
Identification and Data Capture Techniques –
QR Code 2005 Bar Code Symbology Specifi-
cation. International standard ISO.: Interna-
tional Organization for Standardization. ISO
IEC, 2006. url: https://books.google.
nl/books?id=Ga4PMQAACAAJ.

[29] Vuforia. VuMark. url: https://library.
vuforia.com/articles/Training/VuMark
(visited on 05/03/2018).

13

[30] Kari Pulli, Anatoly Baksheev, Kirill Ko-
rnyakov, et al. “Real-time Computer Vision
with OpenCV”. In: Commun. ACM 55.6
(June 2012), pp. 61–69. issn: 0001-0782. doi:
10.1145/2184319.2184337. url: http://
doi.acm.org/10.1145/2184319.2184337.

[31] T. Lindeberg. “Scale Invariant Feature Trans-
form”. In: Scholarpedia 7.5 (2012). revi-
sion #153939, p. 10491. doi: 10 . 4249 /
scholarpedia.10491.

[32] Alex Turner, Matt Zeller, Eliot Cowley, et
al. Shared experiences in mixed reality. Mar.
2018. url: https://docs.microsoft.com/
en-us/windows/mixed-reality/shared-
experiences- in- mixed- reality (visited
on 05/01/2018).

[33] Exit Games. PUN. url: https : / / www .
photonengine.com/en-US/PUN (visited on
05/01/2018).

[34] Unity. Services - Multiplayer. url: https:
/ / unity3d . com / unity / features /
multiplayer (visited on 05/01/2018).

[35] Unity Technologies. Anchor Sharing. Apr.
2018. url: https : / / docs . unity3d .
com / Manual / windowsholographic -
anchorsharing . html (visited on
05/01/2018).

[36] Microsoft. MixedRealityToolkit-Unity. url:
https : / / github . com / Microsoft /
MixedRealityToolkit - Unity / blob /
master / Assets / HoloToolkit / Sharing /
README.md (visited on 05/01/2018).

[37] BrandonBray and Matt Zeller. Calibration.
url: https://docs.microsoft.com/nl-
nl/windows/mixed-reality/calibration
(visited on 05/03/2018).

[38] HoloLens and Field of View in Augmented
Reality. Aug. 2015. url: http://doc-ok.
org/?p=1274 (visited on 05/01/2018).

[39] Harry Moss Traquair. An Introduction to
Clinical Perimetry. Henry Kimpton, 1938.

[40] Mark Hachman.We found 7 critical HoloLens
details that Microsoft hid inside its devel-
oper docs. Mar. 2016. url: https://www.
pcworld.com/article/3039822/consumer-
electronics / we - found - 7 - critical -
hololens-details-that-microsoft-hid-
inside- its- developer- docs.html (vis-
ited on 05/01/2018).

[41] Microsoft Corporation. Get RoboRaid - Mi-
crosoft Store. Mar. 2018. url: https : / /
www . microsoft . com / en - us / store /
p / roboraid / 9nblggh5fv3j (visited on
05/05/2018).

[42] Matt Zeller, Kelly Bakker, and Brandon
Bray. Voice input. Mar. 2018. url: https:
//docs.microsoft.com/en-us/windows/
mixed-reality/spatial-mapping (visited
on 05/01/2018).

[43] Hak0n, Matt Zeller, Kelly Bakker, et al.
Spatial sound. Mar. 2018. url: https: //
docs . microsoft . com / en - us / windows /
mixed-reality/spatial-sound (visited on
05/01/2018).

[44] V. Sundareswaran, Kenneth Wang, Steven
Chen, et al. “3D Audio Augmented Reality:
Implementation and Experiments”. In: Pro-
ceedings of the 2Nd IEEE/ACM International
Symposium on Mixed and Augmented Reality.
ISMAR ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 296–. isbn: 0-
7695-2006-5. url: http://dl.acm.org/
citation.cfm?id=946248.946841.

[45] alex turner, Matt Zeller, Eliot Cowley, et
al. Spatial sound in Unity. Mar. 2018. url:
https://docs.microsoft.com/en- us/
windows/mixed-reality/spatial-sound-
in-unity (visited on 05/04/2018).

[46] Matt Zeller, rwinj, and Brandon Bray. Ges-
tures. Mar. 2018. url: https : / / docs .
microsoft.com/en- us/windows/mixed-
reality/gestures (visited on 05/01/2018).

[47] Hak0n, Matt Zeller, and Brandon Bray.
Voice input. Mar. 2018. url: https : / /
docs . microsoft . com / en - us / windows /
mixed- reality/voice- input (visited on
05/01/2018).

[48] Alex Turner, Matt Zeller, Eliot Cowley, et
al. Spatial mapping in Unity - Mixed Re-
ality. Mar. 2018. url: https : / / docs .
microsoft.com/en- us/windows/mixed-
reality / spatial - mapping - in - unity #
holotoolkit.spatialunderstanding (vis-
ited on 05/02/2018).

[49] Michael Erickson, Romulo Ochoa, and Cris
Ochoa. “The Wiimote on the Playground”. In:
The Physics Teacher 51.5 (2013), pp. 272–275.
doi: 10.1119/1.4801352. eprint: https://
doi.org/10.1119/1.4801352. url: https:
//doi.org/10.1119/1.4801352.

[50] Raph Koster. Theory of fun for game design.
" O’Reilly Media, Inc.", 2013.

14

[51] Jonathan Lyons, Matt Zeller, Kelly Baker,
et al. Using the Windows Device Portal. Mar.
2018. url: https://docs.microsoft.com/
en- us/windows/mixed- reality/using-
the - windows - device - portal # Mixed _
Reality_Capture (visited on 05/01/2018).

[52] Wguyman, Matt Zeller, Eliot Cowley, et al.
Mixed reality capture. Mar. 2018. url: https:
//docs.microsoft.com/en-us/windows/
mixed-reality/mixed-reality-capture
(visited on 05/01/2018).

[53] Joseph Seering, Robert Kraut, and Laura
Dabbish. “Shaping pro and anti-social be-
havior on twitch through moderation and
example-setting”. In: Proceedings of the 2017
ACM Conference on Computer Supported Co-
operative Work and Social Computing. ACM.
2017, pp. 111–125.

[54] FIFA.com. 2014 FIFA World CupTM reached
3.2 billion viewers, one billion watched fi-
nal. Dec. 2015. url: http : / / www . fifa .
com / worldcup / news / y = 2015 / m =
12 / news = 2014 - fifa - world - cuptm -
reached - 3 - 2 - billion - viewers - one -
billion-watched--2745519.html (visited
on 05/04/2018).

[55] Game accessibility guidelines. Full list. url:
http : / / gameaccessibilityguidelines .
com/full-list/ (visited on 05/04/2018).

[56] Eitan Glinert. Motivation for Accessibility
in Games. url: https://www.gamasutra.
com / view / feature / 3538 / designing _
games_that_are_.php?print=1 (visited
on 05/04/2018).

15

F
Playtest Questionnaire

75

League Of Lasers PlayTest Questionnaire
*Vereist

1. What is your age?

2. How would you rate the game (alpha) *
Markeer slechts één ovaal.

1 2 3 4 5 6 7 8 9 10

awful awesome

3. What do you think of the speed of the laser *
Markeer slechts één ovaal.

 Should be faster

 Just right

 Should be slower

 Anders:

Mogelijk gemaakt door

4. What do you think of the responsiveness of the mirror. *
Markeer slechts één ovaal.

 Perfect

 Lags a bit, not a problem for gameplay

 Unresponsive I was not able to control the game

5. Was something unclear?

6. Did you encounter any bugs?

7. Suggestions?

G
Playtest Results

79

Virtual Playground Questionnaire results

H
Info Sheet

83

Superhuman Laser Game:

League of Lasers

Organization: TU Delft Sports Engineering Institute

Date Final Presentation: 04-07-2018

Challenge: Creating a Superhuman sport similar to 3D-Pong/Soccer on the HoloLens with multiplayer for the

Superhuman Sports Design Competition.

Research: We learned about hardware limitation of the HoloLens and about the available approaches for

multiplayer experiences on the HoloLens. From this, we developed an approach to consistently display Holograms

at the correct location for multiple devices, using spatial anchors. We also created several prototypes for design

elements of the game, such as bouncing off a ball hologram with a mirror hologram in front of the player, where

we found high potential for the game we intended to make.

Process: We worked as a game studio, where each member had a specific role/responsibility. We used the SCRUM

methodology for the game’s development and pull based development. The game was created using Unity and

Visual Studio 2017. We used a custom CI setup using Travis/Unity Cloud Build.

Product: The product consists of a HoloLens Unity app that includes the game client, a Unity game server and a

web server responsible for transferring anchors between the clients. The product was tested using playtests on the

HoloLens and unit tests via the humble object pattern and parameterized tests among other things. The

framework for anchor management could easily be extracted for use for future HoloLens projects

Outlook: Technically the game functions well, and the codebase was written with maintainability in mind. Future

recommendations would be to add game mechanics and systems that involves audience participation and further

polish of the visuals, UI and audio. League of Lasers will be used for the Superhuman Sports Design Challenge.

The Team:

Member Roles and Interests

Arjen Miedema

Roles: Meeting organizer, Lead Game Designer, Lead Network Architect
Contribution: Anchor relative transform system, client side web service and spectator view
Interests: Game design, game development, network programming.

Shaad Alaka

Roles: Lead Communication, Lead Art Director, Minutes Secretary
Contribution: Game implementation, art, network interpolation
Interests: Shader programming, game development, sound design and visual design

Jop Vermeer Roles: Lead Programmer, Producer
Contribution: Anchor management system and playfield creation
Interests: Game development

Niels de Bruin Roles: Lead CI & Code Quality, Lead Interaction Design/UX, Playtest Organization
Contribution: Custom CI and Web server
Interests: Artificial Intelligence, devops and web development

Contact:
Rafael Bidarra Coach Computer Graphics & Visualization Group R.Bidarra@tudelft.nl
Stephan Lukosch Client TU Delft Sports Engineering Institute s3_delft_design@superhumansports.org
Shaad Alaka Team Lead Communication shaad1@live.nl

The final report for this project can be found at: http://repository.tudelft.nl

I
Glossary

API Application Programme Interface. 7, 17, 20, 30, 31

AR Augmented Reality. 1, 3, 4, 6, 9, 10, 19, 39, 41

CI Continuous Integration. 1, 17, 19, 20

DLL Dynamic-link library. 30

eTA ethical Technology Assessment. 1, 35, 37

Go GoLang. 13

HLSL High-Level Shader Language. 25

IDE Integrated Development Environment. 7

IP Internet Protocol. 14

IVF In Vitro Fertilisation. 36

NIPT Non-Invasive Prenatal Testing. 36

PR Pull Request. 20

REST Representational State Transfer. 14

RPC Remote Procedure Call. 32

SHS Superhuman Sports. v, 1, 3, 4, 7, 41

SIG Software Improvement Group. 1, 17, 21

TCP Transmission Control Protocol. 6

UI User Interface. 7

UML Unified Modelling Language. 23, 24, 25, 26, 27, 28, 29, 30, 32

UNET Unity Networking. 7, 11, 14

UWP Universal Windows Platform. 20

VR Virtual Reality. 1, 4, 19, 41

WAN Wide Area Network. 35

85

Bibliography

[1] Megan Allyse, Mollie A Minear, Elisa Berson, Shilpa Sridhar, Margaret Rote, Anthony Hung, and Sub-
hashini Chandrasekharan. Non-invasive prenatal testing: A review of international implementation and
challenges. International journal of women’s health, 7:113–26, 01 2015.

[2] Astrogee. Unit tests cannot find my namespaces/classes, 2 2018. URL https://forum.unity.com/
threads/unit-tests-cannot-find-my-namespaces-classes.515742/.

[3] Michel Beerens. Virtual playground, 2018. URL http://virtualplayground.tudelft.nl/.

[4] Jim Blascovich and Jeremy Bailenson. Infinite Reality: Avatars, Eternal Life, New Worlds, and the Dawn
of the Virtual Revolution. William Morrow & Co, 2011. ISBN 0061809500, 9780061809507.

[5] jnm2 CharliePoole, ChrisMaddock. Testcase attribute, 2017. URL https://github.com/nunit/docs/
wiki/TestCase-Attribute.

[6] Travis CI. Core concepts for beginners, 5 2018. URL https://docs.travis-ci.com/user/
for-beginners/.

[7] Agile Business Consortium. Moscow prioritisation, 10 2014. URL https://www.agilebusiness.org/
content/moscow-prioritisation.

[8] Discord. What features does discord have?, 2018. URL https://discordapp.com/features.

[9] Discord. Screen sharing & video calls, 2018. URL https://support.discordapp.com/hc/en-us/
articles/115000982752-Screen-sharing-Video-Calls.

[10] Matt Ellis and Andy Reeves. Stylecop by jetbrains, 5 2018. URL https://resharper-plugins.
jetbrains.com/packages/StyleCop.StyleCop/.

[11] ElvisAlistar. Sonarqube and unity (code quality), 12 2016. URL https://forum.unity.com/threads/
sonarqube-and-unity-code-quality.444490/#post-2878642.

[12] Famatech. Advanced port scanner, 2018. URL https://www.advanced-port-scanner.com/.

[13] Glenn Fiedler. Snapshot interpolation, 2014. URL https://gafferongames.com/post/snapshot_
interpolation/.

[14] GitHub. Github features: the right tools for the job, 2018. URL https://github.com/features.

[15] Google. Suggest edits in google docs, 2018. URL https://support.google.com/docs/answer/
6033474?hl=en&co=GENIE.Platform=Desktop.

[16] Saisang Cai Paul Chapman Miku Jones Tglee Mike Blome Colin Robertson Gordon Hogen-
son, Genevieve Warren. Develop apps for the universal windows platform (uwp), 10
2017. URL https://docs.microsoft.com/en-us/visualstudio/cross-platform/
develop-apps-for-the-universal-windows-platform-uwp.

[17] Software Improvement Group. Better code hub, 2018. URL https://bettercodehub.com/.

[18] JBD. Go cross compilation, 2016. URL https://rakyll.org/cross-compilation/.

[19] JetBrains. Resharper: Visual studio extension for .net developers, 2018. URL https://www.jetbrains.
com/resharper/.

[20] JonMLyons, Matt Zeller, and Brandon Bray. Using the hololens emulator, 3 2018. URL https://docs.
microsoft.com/en-us/windows/mixed-reality/using-the-hololens-emulator.

87

https://forum.unity.com/threads/unit-tests-cannot-find-my-namespaces-classes.515742/
https://forum.unity.com/threads/unit-tests-cannot-find-my-namespaces-classes.515742/
http://virtualplayground.tudelft.nl/
https://github.com/nunit/docs/wiki/TestCase-Attribute
https://github.com/nunit/docs/wiki/TestCase-Attribute
https://docs.travis-ci.com/user/for-beginners/
https://docs.travis-ci.com/user/for-beginners/
https://www.agilebusiness.org/content/moscow-prioritisation
https://www.agilebusiness.org/content/moscow-prioritisation
https://discordapp.com/features
https://support.discordapp.com/hc/en-us/articles/115000982752-Screen-sharing-Video-Calls
https://support.discordapp.com/hc/en-us/articles/115000982752-Screen-sharing-Video-Calls
https://resharper-plugins.jetbrains.com/packages/StyleCop.StyleCop/
https://resharper-plugins.jetbrains.com/packages/StyleCop.StyleCop/
https://forum.unity.com/threads/sonarqube-and-unity-code-quality.444490/#post-2878642
https://forum.unity.com/threads/sonarqube-and-unity-code-quality.444490/#post-2878642
https://www.advanced-port-scanner.com/
https://gafferongames.com/post/snapshot_interpolation/
https://gafferongames.com/post/snapshot_interpolation/
https://github.com/features
https://support.google.com/docs/answer/6033474?hl=en&co=GENIE.Platform=Desktop
https://support.google.com/docs/answer/6033474?hl=en&co=GENIE.Platform=Desktop
https://docs.microsoft.com/en-us/visualstudio/cross-platform/develop-apps-for-the-universal-windows-platform-uwp
https://docs.microsoft.com/en-us/visualstudio/cross-platform/develop-apps-for-the-universal-windows-platform-uwp
https://bettercodehub.com/
https://rakyll.org/cross-compilation/
https://www.jetbrains.com/resharper/
https://www.jetbrains.com/resharper/
https://docs.microsoft.com/en-us/windows/mixed-reality/using-the-hololens-emulator
https://docs.microsoft.com/en-us/windows/mixed-reality/using-the-hololens-emulator

88 Bibliography

[21] Lucien King. Game on: The History and Culture of Video Games. Universe Publishing, Incorporated,
2002. ISBN 0789307782.

[22] Peter Koch. Hololens contest – (9 weeks to go) – networking, web server, shared experiences, 2017. URL
http://talesfromtherift.com/hololens-contest-week-9/. Broken network discovery men-
tioned somewhere below.

[23] Yang Liu, Haiwei Dong, Longyu Zhang, and Abdulmotaleb El Saddik. Technical evaluation of hololens
for multimedia: A first look. IEEE Multimedia, 2017.

[24] Microsoft. Udp-communication [solved], 2017. URL https://forums.hololens.com/discussion/
7980/udp-communication-solved. Marked as solved while issue persists.

[25] Microsoft. Microsoft/mixedrealitytoolkit-unity, 2018. URL https://github.com/Microsoft/
MixedRealityToolkit-Unity.

[26] Microsoft. Microsoft hololens - development, 3 2018. URL https://docs.microsoft.com/nl-nl/
windows/mixed-reality/development-overview.

[27] N.A. Miedema. Example sharingwithunet still relevant?, 2018. URL https://github.com/Microsoft/
MixedRealityToolkit-Unity/issues/2102.

[28] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons, Inc., USA, 2004.
ISBN 0471469122.

[29] Sean Ong. Beginning Windows Mixed Reality Programming. Apress, 2017.

[30] Elin Palm and Sven Ove Hansson. The case for ethical technology assessment (eta). Technological Fore-
casting and Social Change, 73:543–558, 06 2006.

[31] Lucio Tommaso De Paolis. Virtual and augmented reality application. University Lecture, 2015. URL
http://avrlab.it/wp-content/uploads/2015/03/lez-1-introduction.pdf.

[32] Tomek Paszek. Unit testing part 2 – unit testing monobehaviours, 3 2014. URL https://blogs.
unity3d.com/2014/06/03/unit-testing-part-2-unit-testing-monobehaviours/.

[33] Superhuman Sports Society. Superhuman sports design challenge, 2018. URL http://
superhuman-sports.org/delft/.

[34] Tak. Cant activate personal license???, 8 2016. URL https://forum.unity.com/threads/
5-4-0p1-fails-to-launch-due-to-license.425277/#post-2753911.

[35] CA Technologies. Developer-first project management for teams on github, 2018. URL https://
waffle.io/.

[36] Unity Technologies. Holographic emulation, 2017. URL https://docs.unity3d.com/2017.4/
Documentation/Manual/wmr_testing.html.

[37] Unity Technologies. Worldanchortransferbatch, 2017. URL https://docs.unity3d.com/2017.4/
Documentation/ScriptReference/XR.WSA.Sharing.WorldAnchorTransferBatch.html.

[38] Unity Technologies. Worldanchor, 2017. URL https://docs.unity3d.com/2017.4/Documentation/
ScriptReference/XR.WSA.WorldAnchor.html.

[39] Unity Technologies. Monobehaviour, 5 2018. URL https://docs.unity3d.com/ScriptReference/
MonoBehaviour.html.

[40] Unity Technologies. Unity test runner, 5 2018. URL https://docs.unity3d.com/Manual/
testing-editortestsrunner.html.

[41] The Wireshark Team. Wireshark, 2018. URL https://www.wireshark.org/.

[42] Alex Turner, Matt Zeller, Eliot Cowley, and Brandon Bray. Hologram stability - mixed reality, 2018. URL
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability.

http://talesfromtherift.com/hololens-contest-week-9/
https://forums.hololens.com/discussion/7980/udp-communication-solved
https://forums.hololens.com/discussion/7980/udp-communication-solved
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://docs.microsoft.com/nl-nl/windows/mixed-reality/development-overview
https://docs.microsoft.com/nl-nl/windows/mixed-reality/development-overview
https://github.com/Microsoft/MixedRealityToolkit-Unity/issues/2102
https://github.com/Microsoft/MixedRealityToolkit-Unity/issues/2102
http://avrlab.it/wp-content/uploads/2015/03/lez-1-introduction.pdf
https://blogs.unity3d.com/2014/06/03/unit-testing-part-2-unit-testing-monobehaviours/
https://blogs.unity3d.com/2014/06/03/unit-testing-part-2-unit-testing-monobehaviours/
http://superhuman-sports.org/delft/
http://superhuman-sports.org/delft/
https://forum.unity.com/threads/5-4-0p1-fails-to-launch-due-to-license.425277/#post-2753911
https://forum.unity.com/threads/5-4-0p1-fails-to-launch-due-to-license.425277/#post-2753911
https://waffle.io/
https://waffle.io/
https://docs.unity3d.com/2017.4/Documentation/Manual/wmr_testing.html
https://docs.unity3d.com/2017.4/Documentation/Manual/wmr_testing.html
https://docs.unity3d.com/2017.4/Documentation/ScriptReference/XR.WSA.Sharing.WorldAnchorTransferBatch.html
https://docs.unity3d.com/2017.4/Documentation/ScriptReference/XR.WSA.Sharing.WorldAnchorTransferBatch.html
https://docs.unity3d.com/2017.4/Documentation/ScriptReference/XR.WSA.WorldAnchor.html
https://docs.unity3d.com/2017.4/Documentation/ScriptReference/XR.WSA.WorldAnchor.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://www.wireshark.org/
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability

Bibliography 89

[43] Alex Turner, Matt Zeller, Eliot Cowley, and Brandon Bray. Spatial anchors, 3 2018. URL https://docs.
microsoft.com/en-us/windows/mixed-reality/spatial-anchors.

[44] Unity. Unity cloud - build, 6 2018. URL https://unity3d.com/unity/features/cloud-build.

[45] Unity. Unity cloud - build, 6 2018. URL https://docs.unity3d.com/Manual/
CommandLineArguments.html.

[46] Jop Vermeer, Shaad Alaka, Niels de Bruin, Nico Arjen Miedema, Nick Winnubst, Cyril Trap, and Rafael
Bidarra. League of lasers: A superhuman sport using motion tracking. In Superhuman Sports Design
Challenge: First International Symposium on Amplifying Capabilities and Competing in Mixed Realities
Proceedings, volume 1. ACM, 2018.

[47] Tom Warren. Microsoft planning to unveil hololens 2 this year, Jun 2018. URL https://www.theverge.
com/2018/6/13/17458168/microsoft-hololens-2-details-rumors.

[48] Matt Zeller, Chris White, Cosmos Darwin, and Brandon Bray. Install the tools, 3 2018. URL https:
//docs.microsoft.com/en-us/windows/mixed-reality/install-the-tools.

https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-anchors
https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-anchors
https://unity3d.com/unity/features/cloud-build
https://docs.unity3d.com/Manual/CommandLineArguments.html
https://docs.unity3d.com/Manual/CommandLineArguments.html
https://www.theverge.com/2018/6/13/17458168/microsoft-hololens-2-details-rumors
https://www.theverge.com/2018/6/13/17458168/microsoft-hololens-2-details-rumors
https://docs.microsoft.com/en-us/windows/mixed-reality/install-the-tools
https://docs.microsoft.com/en-us/windows/mixed-reality/install-the-tools

	Introduction
	Outline

	Problem Definition and Analysis
	Problem Definition
	Requirements

	Design Process
	Cooperation
	Meetings
	Collaboration Tools

	Planning
	Prototypes
	Scrum

	Development Tools
	Development Challenges
	HoloLens Development
	External factors

	Game Design
	Core Game Design
	New Additions to The Design
	Game Phases
	Start-up Phases
	Play Phases
	End Phases

	Global Network Architecture
	Server
	Master Client
	Anchor Parenting
	Web Server
	Design & Technology
	Sharing Anchors

	Network Discovery

	Software Quality
	Testing
	Humble Object Pattern
	Unit Testing
	Parameterised Tests
	Playtests

	Continuous Integration and Unity
	Benefits of Continuous Integration
	Challenges Using CI and Unity
	Our CI Solution

	Code Analysis Tools
	SIG Feedback
	First Upload
	Better Code Hub

	Implementations
	Game Object Implementations
	The Laser Pulse
	The Mirror
	The Wall
	The Target
	The Playfield
	The Game Manager
	The Player
	The Timer
	Spectator Mode

	Anchor Related Implementations
	The Anchors
	The Anchored Relative Network Transform
	The Anchor Sharing and Management Framework
	The Anchor Manager
	The Anchor Sharing Manager
	The File Manager
	The Web Service

	Analysis of Ethical Implications
	Dissemination and Use of Information
	Control, Influence and Power
	Impact on Social Contact Patterns
	Privacy
	Sustainability
	Human Reproduction
	Gender, Minorities and Justice
	International Relations
	Impact on Human Values
	Conclusion eTA

	Discussion and recommendations
	Conclusion
	Reflection on Product Requirements
	Reflection on SHS Evaluation Criteria
	Final Remarks

	Feedback SIG
	Feedback First Upload
	Feedback Second Upload

	Original project description from BEPSys
	Project Description

	MOSCOW Analysis
	Must Haves
	Mirror
	Laser Pulse
	Playfield
	Score
	Time
	Targets
	Team
	Multiplayer

	Should Haves
	Mirror
	Score
	Time
	Audience
	Multiplayer
	UI/UX

	Could Haves
	Mirror
	Laser pulse
	Playfield
	Score
	Targets
	Power-up
	Audience
	UI/UX

	Won't Haves

	Plan of Action
	Research Paper
	Playtest Questionnaire
	Playtest Results
	Info Sheet
	Glossary
	Bibliography

