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INTRODUCTION

1.1. ASTOCHASTIC MICROSCOPIC WORLD

The physical rules dominating the world of bacteria are quite different than those of the
human world. Bacteria are around 1,000,000 times smaller in length than humans - only
a few pm in size - and weigh an extreme factor of approximately 10'3 less [1]. On that
scale, physical properties like mass and inertia are irrelevant and, for example, bacterial
movement is instead governed by viscous drag [2]. But maybe the biggest difference be-
tween the macroscopic and the microscopic world is the predictability of processes and
reactions: For a finite temperature, the elementary particles of fluids and gases are in
constant random motion. In macroscopic objects such stochastic movements average
out because of the sheer number of involved molecules, and macroscopic processes are
thus deterministic. Within cells, however, the copy number of particles such as proteins
or molecular machines can be very small and hence stochastic fluctuations caused by
thermal motion do not simply average out. For many types of molecules bacterial cells
even rely on that random motion to distribute particles, instead of using active trans-
port mechanisms [3, 4]. As consequence of thermal fluctuations and low copy numbers,
virtually all processes in a cell are to some extent stochastic, or, in other terms, noisy.
Cells can for example not perfectly control the rate at which proteins are produced,
and the concentration of proteins fluctuates over time (Fig. 1.1A) [5, 6]. As consequence
of cellular noise, genetically identical cells can behave differently - even in the same
environment. This variability can range from variation in protein concentration [6-8]
(Fig. 1.1A) to different growth states and sensitivity to antibiotic treatment [9-11], as well
as to differentiation into specialized cell types (Fig. 1.1B) [12]. Even in higher organisms
numerous cell fate decisions are thought to be based on stochastic processes [13, 14].
Many questions arise when considering molecular noise on the one hand and the
robust growth of bacteria on the other hand. For example: How large is the cell-to-cell
variability, for instance in protein content? How do cells cope with this randomness?
Are the consequences of noise detrimental or also advantageous? In recent years, quan-
titative tools for measuring cellular variability became increasingly available and the-



2 1. INTRODUCTION

A 0 min 60 min 120 min 180 min B

Vegetative

o o
@ o i

Competence Sporulation 8

b
/ -

2000

1600

1200

@
o
o

Fluorescence (AU)
D
8

o

0 100 200 300
Time (min)

Figure 1.1: Examples of cell-to-cell variability. (A) Genetically identical E. coli bacteria produce
different amounts of proteins (upper panel) and the protein concentration in single cells fluctuates
over time (lower graph). (B) Clonal B. subtilis bacteria can differentiate into different cell types.
The differentiation is driven by stochastic protein production. Figure (A) was taken from [6], (B)
was taken from [12].

oretical work created models to better understand origins of noise and robustness to
fluctuations [5, 7, 15-20]. Much progress in understanding cellular noise has therefore
been made and some of the results are: The cell-to-cell variability of protein concen-
tration depends inversely on the average concentration, but does not decrease below a
certain noise floor [6, 18, 19, 21]. Cells can actively suppress and enhance protein fluctu-
ations with different feedback networks [22-25]. Fluctuations in proteins can propagate
to other proteins downstream in a regulatory network [26-28]. While noise is considered
to be generally undesired, cellular heterogeneity can be beneficial and increase survival
in unpredictable environments (“bet hedging”) [15, 29, 30].

1.1.1. MORE TO BE DISCOVERED

Despite these advances, many aspects of cellular variability still remain poorly under-
stood. The research done in this thesis aims to contribute to a better understanding of
some of these aspects. One main point that we study is cellular growth rate: Single-cell
growth has not been under much investigation (for recent exceptions, see [31-33]), al-
though it is an important cellular property and directly relates to the fitness of cells. A
central goal of bacterial cells is to grow as fast as possible, but for growth cells must rely
on their protein-machinery - which is noisy. We investigate whether single-cell growth
rates fluctuate as well, how growth and protein fluctuations are related and whether
fluctuations propagate. A second focus point of this thesis are specific sources of cel-
lular variation because little is still known on which sources are the most relevant ones.
Therefore, we investigate two key parameters of bacteria: cell cycle stage and ribosome
content (ribosomes are the protein producing machines). We test whether and to what
extent they cause noise in protein production and growth and, for the latter, whether
they are dynamically limiting cellular growth.

To study these questions, we follow a systems biology approach. Contrary to reduc-
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tionist methods, where a cell is split into increasingly smaller parts, we investigate the
intact system as a whole. For example, we aim to understand fluctuations within the
context of the whole cell and its interaction with the environment. The next section
introduces available and chosen methods to study questions on cellular variability: A
model organism, experimental techniques and theoretical approaches.

1.2. TOWARDS UNDERSTANDING NOISE IN SINGLE CELLS

1.2.1. ESCHERICHIA COLI: A “SIMPLE” MODEL ORGANISM

To investigate variability in cells, we work with a well-studied model organism, the bac-
terium Escherichia coli (E. coli) (Fig. 1.2). Many years of research on E. coli provide a
good knowledge base to study fundamental biological processes. E. coli can be readily
cultured in the lab and, importantly, can be genetically manipulated. It is a rod-shaped,
gram-negative bacterium and like all prokaryotes unicellular [34]. Its length is around
3 um, the diameter roughly 1 pm and, depending on the environment, cells can grow
very fast with doubling times as short as 20 min [1, 35]. The natural habitat of E. coli is
the gut of humans and animals and most E. coli strains live in symbiosis with their host,
while a few are pathogenic. Cells can also survive in many different non-native envi-
ronments and can grow on a wide variety of nutrients. Like many bacteria, E. coli cells
reproduce (normally) by binary fission and therefore daughter cells are typically geneti-
cally identical [34].

The inside of E. coli cells (cytoplasm) is enclosed by a cell wall and an inner and outer
membrane (inside, respectively outside of the cell wall) (Fig. 1.2). Characteristic for bac-
teria, the cytoplasm is not sub-structured, and cells do, for example, not have a nucleus.
The DNA encodes around 4,000 genes [36] and has a contour length of 1.5 mm [37].
Therefore, it is tightly packed in the cell. The cytoplasm of E. coli is very crowded and
molecules continuously bump into each other [38]. Of the cellular dry mass, proteins
constitute the largest fraction (50%), followed by RNA and DNA (20% together) [1].

In this thesis we used the non-pathogenic strain MG1655. It has been grown in the
lab for decades and is based on the natural isolate K-12. The complete genome sequence
of MG1655 was published in 1997 [36], which makes E. coli one of the first organisms to
be sequenced.

Figure 1.2: Illustration of the bacterium
E. coli. Cell wall and membranes (as well as
the filament-like flagella which are required for
swimming) are depicted in green. The cy-
toplasmic area, containing for example pro-
teins and ribosomes, is colored in blue-purple.
The DNA is shown in yellow and nucleoid-
associated proteins are depicted in orange.
The illustration was created by David Goodsell
(http://www.scripps.edu/goodsell/).
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1.2.2. SINGLE-CELL EXPERIMENTS

Investigating cell-to-cell variability requires first of all an experimental technique that
provides single-cell resolution. Second, throughput of cell measurements needs to be
sufficiently high so that the distribution of cellular states, not just its average, can be
obtained. The latter typically requires the use of automated (computer-controlled) se-
tups. Multiple techniques fulfill these criteria and new approaches are being developed
[39-42].

Microscopy is one of the most widespread single-cell methods. It can, for exam-
ple, be used to observe variability in mRNA or protein concentration, in growth rate and
phenotype [7, 9, 12]. To visualize expression of native proteins, they can be fused to (or
replaced by) fluorescent proteins [43]. Importantly, fluorescent proteins can be mea-
sured in live cells and thus allow monitoring of expression over time. With the help of
microfluidics, the environment can be precisely controlled and changed [31, 44]. Detec-
tion of mRNA levels is more difficult and is usually done in fixed (killed) cells. A com-
mon method is fluorescence in situ hybridization (FISH), in which fluorescent tags are
designed to bind to a specific mRNA sequence [40]. Then, single mRNAs become visible
as bright fluorescent spots.

Fluorescence-activated cell sorting (FACS) is a different and high-throughput method
to measure cellular heterogeneity [45]. FACS can be used to measure live cells, but in-
dividual cells cannot be tracked over time. Similar to microscopy; it first requires fluo-
rescent labeling of the quantity of interest, for example, of proteins. For sorting, the cell
suspension is transformed into a very thin and fast stream of liquid droplets, with typi-
cally one cell per droplet. The droplets can then be sorted based on scattering and flu-
orescence properties. With this method data acquisition of thousands of cells is readily
achieved, but interpretation of FACS data is sometimes not trivial [46]. Another single-
cell method is real-time qPCR (polymerase chain reaction), which can measure mRNA
copy number in individual cells at rather high throughput, but requires lysis of cells [47].
The advantage is that this method does not require labeling, and the mRNA of inter-
est is directly selected by adjusting the primer sequence. New single-cell methods are
being developed, and especially advances in the “omics”-field, that is the complete pro-
filing of the cellular proteome, transcriptome, etc., as well as new methods for single-cell
(genome) sequencing, will likely give new insights [31, 41, 42, 48, 49].

In this thesis we study gene expression and growth rate fluctuations and their prop-
agation. To address these questions, time-resolved information of growing E. coli cells
is required. Therefore, the only suitable method is time-lapse microscopy, in which a
movie of multiple generations of growing cells can be acquired. Cells can therefore be
tracked and growth rate and, by using fluorescent proteins, gene expression of single
cells can be determined.

1.2.3. MODELING

Modeling in biology is of ever growing importance, especially since in recent years quan-
titative experimental data with larger statistical power became available [50]. In the con-
text of cellular variability, models can, for example, give valuable insight into the dis-
tribution of protein concentrations [17, 18], the sensitivity of networks to noise [51] or
transmission of fluctuations to downstream components [26, 27]. Natural challenges are
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the complexity of the studied system and modeling of emergent properties, which are
“more” than the physics of its components [50]. While the focus of this thesis is clearly
experimental, we develop and make use of models on several occasions (chapter 4-6).

A detailed overview on methods is beyond the scope of this introduction, therefore
we here focus on one aspect relevant for models in systems biology. To explain an obser-
vation, a model can be either rather mechanistic or rather phenomenological (or lie in
the continuum in between) [52]. “Mechanistic” here means that the equations directly
describe the involved biochemical processes and that parameters have an immediate bi-
ological meaning. The purpose of phenomenological models is to reproduce the exper-
imental data (in a simple way) and to make predictions, without requiring information
on all underlying processes [52]. Such an approach is usually chosen when mechanis-
tic details are unknown, would be too complex too include or would hide the relevant
(global) parameters. Naturally, interpretation of model parameters can then be diffi-
cult. Given the cellular complexity, phenomenological models are regularly chosen in
systems biology and work surprisingly well [32, 53, 54]. Apparently, biological quantities
frequently obey simple relations on the systems level [55]. That aside, systems biology
might benefit from a larger effort to unify these models, by integrating published results
and theories more strongly into new “black box” models.

We develop and use phenomenological models in this thesis. Arguably, they are to
date the better choice for understanding cellular growth, since on the molecular level
thousands of biomolecular processes might need to be considered. Modeling allows us
to connect experimental observations, to make predictions and to, for example, deter-
mine which elements (such as noise sources, regulatory links) are relevant in which en-
vironment.

1.3. THESIS OUTLINE

In this thesis, we address questions around cellular variability which can be categorized
into two main topics: In chapter 4, 6 and 7 we study the connection between fluctuations
in gene expression and fluctuations in cellular growth rate. In chapter 5, we address spe-
cific sources of noise and their relevance for the cell. These topics are not strictly sepa-
rated and some projects can be found in between these categories (see chapter 6 and 7).
In more detail, the thesis is structured as follows:

In Chapter 2 we explain the general experimental and analysis methods used in this
thesis. We describe the construction of fluorescent reporters into E. coli cells and the
experimental protocol used for time-lapse microscopy. Additionally, the methods and
software used for image analysis and cell tracking are introduced. We also describe the
calculation of temporal cross-correlations, which we will use in later chapters to analyze
fluctuations.

In Chapter 3 we characterize different fluorescent proteins and assess their quality
as reporter of dynamic gene expression fluctuations. To this end, we compare cross-
correlations, maturation times (time needed for a produced protein to become fluores-
cent) and photostability of six different fluorescent proteins. We find that for our experi-
mental design a green fluorescent protein variant, as well as a combination of yellow and
cyan emitting proteins (if two reporters are needed), are good choices.



6 1. INTRODUCTION

In Chapter 4 we investigate the general relation between noise in gene expression
and growth rate. To this end, expression noise is decomposed into global cell-wide fluc-
tuations (extrinsic noise) and local promoter-specific fluctuations (intrinsic noise). We
find that growth rate fluctuations are modestly coupled to extrinsic expression fluctua-
tions, but essentially uncoupled from intrinsic expression fluctuations. In contrast, the
magnitudes of both expression and growth noise are very strongly correlated and scale
linearly. A model is used to explain the different scaling behaviors observed for different
noise types and expression levels.

In Chapter 5 we turn towards a specific source of fluctuations in gene expression: the
cell cycle. We show that about half of the noise in protein production rate is caused by
the gene duplication occurring during cell cycle progression. In contrast to that, protein
concentration is hardly affected by the cell cycle. We further show that cell cycle related
fluctuations can be decomposed into deterministic oscillations and a stochastic contri-
bution. The influence of the location of a gene on the chromosome is predicted by a
simple model.

In Chapter 6 we investigate whether random fluctuations in protein concentration
can affect cellular growth. We show that fluctuations in the expression of needed genes
can propagate and cause growth fluctuations. The amount of noise transmission de-
pends on how strongly the enzyme is limiting growth. We further show that growth
fluctuations also propagate back to disturb protein concentrations. An analytical model
is developed to accurately predict noise transmission. Our results indicate that noise
can be propagated by metabolic reactions and that cellular metabolism is inherently
stochastic.

In Chapter 7 we study the influence of fluctuations in the number of ribosomes on
the cellular growth rate. Since ribosomes produce all proteins, they play a central role
in cellular growth, and their concentration is tightly adjusted to the supported growth
rate. We test whether fluctuations of ribosomes are dynamically limiting cellular growth
and whether ribosomes fluctuate around an optimum concentration. Despite the pre-
liminary nature of this chapter, the data suggests that random fluctuations in ribosome
content are not propagating to and thus not dynamically limiting cellular growth.



EXPERIMENTAL AND ANALYSIS
METHODS

In this chapter we introduce the general experimental and analysis methods used in this
thesis. We describe the preparation and carrying out of time-lapse microscopy experi-
ments with E. coli cells. Image analysis methods are introduced, and we describe how

time-resolved data and finally cross-correlations are obtained. Additionally, we discuss
how cross-correlations should be interpreted.
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2.1. SHORT SUMMARY

To answer biological questions about dynamic fluctuations in single E. coli cells, we ac-
quired time-resolved data on gene expression and growth. In a typical experiment we
obtained movies of growing E. coli cells with an automatized microscope. The cells con-
tained fluorescent reporter genes to monitor gene expression. Subsequently, the movie
was segmented automatically to detect cells and then cells were tracked from image to
image. We then determined time-resolved growth rate and protein expression for each
cell at sub-cell-cycle resolution. Finally, we calculated cross-correlations between the
fluctuating signals, taking the tree-like data structure of the growing and dividing colony
into account. Cross-correlations are a useful tool to infer transmission of noise between
fluctuating signals. In the following sections we describe these experimental and anal-
ysis methods in detail. The sections 2.2 - 2.3.6 are based on our publication [56] (chap-
ter 6), but provide more in-depth explanations and were extended with additional meth-
ods developed. As the interpretation of cross-correlations is not trivial and can be mis-
leading, we conclude this chapter by giving guidelines on interpretation. Most of the
experiments throughout this thesis are based on the methods introduced here. Details
on bacterial strains and deviating analysis methods will be explained specifically in each
chapter.

2.2. EXPERIMENTAL METHODS

2.2.1. BACTERIAL STRAINS

We used strains based on wild-type E. coli MG1655 (rph-1 ilvG- rfb-50) for our experi-
ments. MG1655 is a common laboratory strain and has been fully sequenced [36]. Of its
three mutations, only rph-1 is relevant in laboratory conditions, resulting in lower pyrE
expression and a growth defect of ca. 10% due to pyrimidine starvation [57]. Full growth
rate can be recovered by adding the pyrimidine derivative uracil to the medium [57].

Gene expression was measured by inserting fluorescent reporter genes into the bac-
terial DNA. There are many different reporter genes available and in the following chap-
ter 3 we will analyze the quality of different selected fluorescent proteins. The reporter
was placed either under direct control of a promoter or translationally fused to a native
gene (more details in chapter 3.2.3). Cloning of fluorescent reporter genes into the bacte-
rial chromosome was achieved by homologous recombination, following the Datsenko
and Wanner protocol [58]. Briefly, the external linear DNA was inserted into bacteria by
electroporation [59]. This technique exposes cells to high voltage (kV) for short times
and thus creates temporary openings in the cell membrane, through which DNA can
be taken up. The external DNA sequence was constructed such that its end sequences
overlap with the sequence at the desired chromosomal location. Then, recombinase en-
zymes (ARed), which were provided on a plasmid, can exchange native DNA with the
external DNA on the chromosome. The inserted DNA typically also contained a gene
encoding an antibiotic resistance protein. Successful insertions can then be detected as
growing colonies on a selective agar plate (i.e. with added antibiotics). Some constructs
(e.g. rRNA reporters, chapter 7) were difficult to create and accompanied by a lot of false-
positive colonies. Then, fluorescent colonies were directly searched for by imaging the
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complete agar plate on a microscope at low magnification.

In a few constructs a two-step cloning and selection protocol was used to remove the
antibiotic resistance cassette in the second selection step [60]. Some of the used strains
in this thesis were gifts of other research groups, which will be mentioned in the specific
chapters.

2.2.2. GROWTH MEDIA AND PREPARATION OF CELLS

In most of the time-lapse experiments cells were grown in M9 minimal medium (47.7mM
Nap,HPOy, 25mM KH,POy4, 9.3mM NaCl, 17.1mM NHy, 2.0mM MgSOy4, 0.1mM CaCl,)
supplemented with 0.2mM uracil. We added one of various organic components as car-
bon and energy source: 0.1% lactulose (=2.9mM), 0.1% lactose (=2.9mM), 0.1% glucose
(=5.6mM), 0.1% succinate (=8.5mM), 0.1% maltose (=2.9mM) or 0.18% acetate (=30mM).
These carbon sources supported growth rates ranging from 0.2-1dbl/hr. For faster growth
conditions we used rich medium (“MOPS EZ Rich Defined”) from Teknova supplemented
with 0.2% glycerol or glucose. In many experiments the lac promoter P}, controlled ex-
pression of fluorescent reporter genes. For induction of Py, , various levels (0-200uM)
of the gratuitous inducer IPTG (Isopropyl (3-D-1-thiogalactopyranoside) was added. If
not mentioned otherwise, chemicals were obtained from Sigma Aldrich (Sigma Aldrich
Chemie BV, the Netherlands).

Bacteria are stored as glycerol stock at -80°C which keeps them viable for many years.
In the morning before the experiment, cells were inoculated into TY (tryptone yeast)
medium and grown at 37°C. At an OD of 0.02-0.50 (optical density at 600nm), which re-
quired around seven hours of growth, the cells were strongly diluted into the defined
experimental medium (see above). Cells were diluted into three different final concen-
trations to ensure that one of the flasks would contain exponentially growing cells on
the next day. TY concentrations were thereby diluted to <0.05 vol% and remaining TY
was consumed by the cells. Cells were grown overnight and the following day a flask that
contained still exponentially growing cells (OD<0.2) was chosen and diluted again to an
0OD=0.005, which was then used for microscopy.

To observe cell growth for multiple hours, cells need to stay in place and have to grow
into a single layered microcolony. Therefore, we confined growth of bacteria to a narrow
space between a glass slide (coverslip) and a polyacrylamide gel (Fig. 2.1) [44, 61]. Poly-
acrylamide gels fulfill the same role as the more commonly used gels based on agarose.
That is, they confine cells, are soft enough to not disturb growth and act as medium
reservoir. However, gels based on polyacrylamide are easier to handle and cannot be
metabolized by bacteria - contrary to the sugar-based agar gels [62]. We produced the
gels by mixing 1.25 ml 40% acrylamide, 3.7 mL water, 50 pL fresh 10% ammonium per-
sulfate, and 5 uL TEMED, then poured 900 pL into a cavity glass slide and closed it with
a coverslip (same geometry as glass chamber for microscopy, see Fig. 2.1). The glass
was previously silanized to avoid sticking of the solution. Polymerized acrylamide is safe
but monomers are toxic and we therefore prepared the gels very carefully (gloves, fume
hood). Polymerization started within minutes after addition of TEMED, and after one
and a half hours the gel was cut into pieces of ca. 5mm x 10mm. We stored the gel
pads in water and washed them to remove monomers by exchanging the water. In ster-
ile water, gels can be stored for several months. Before the actual experiment, a gel was
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Figure 2.1: Sample chamber for microscopy. A
hole glass slide (manufactured by the mechan-
ical workshop of Amolf) is glued onto a micro-
scope slide with silicon grease. The gel pad is
transfered to the center of the glass chamber and
1uL of cells is pipetted onto it. A coverslip closes
the chamber. The metal holders (gray), which
are subsequently fixated by screws, clamp it. For
microscopy, the sample chamber needs to be
turned upside down.

transfered to a falcon tube with the desired medium and washed three times with fresh
medium.

2.2.3. TIME LAPSE MICROSCOPY

To prepare the sample for microscopy, we transfered all required components to the
warm room. The presoaked polyacrylamide gel was placed into a glass chamber and
approximately 1uL of the diluted cells (OD=0.005) were applied onto it (Fig. 2.1). The gel
was then covered with a coverslip and sealed tightly with a metal clamp to avoid drying
out. The large oxygen reservoir relative to applied amount of bacteria allowed for expo-
nential growth for many hours. Cells were distributed sparsely on the gel pad and single
cells typically grew into microcolonies of several hundred cells before forming multilay-
ers or interfering with other colonies. Growth rate under the microscope was compa-
rable to bulk growth rates measured with a plate reader. In some conditions, however,
multilayers formed rather quickly, which then made analysis impossible. The formation
could be delayed by adding 0.001% of the detergent Tween20 to the medium. Addition
of Tween20 did not lead to growth reduction. On the contrary, we found that it could
sustain bacterial growth (0.5 dbl/hr) due to its organic nature, but we did not observe
co-utilization in the presence of a primary carbon source. Still, caution should be taken
for slow growth conditions or when the type of carbon source is important.

In a few experiments the described static chamber could not be used because a
medium switch was required. Then, the chamber was replaced with a microfluidic setup
[44] which will be described together with the experiment in chapter 3.

In most of the experiments cells were imaged with an inverted TE2000 microscope
from Nikon, using a 100X oil objective (Nikon, Plan Fluor NA 1.3) and 1.5x intermediate
magnification. Images were acquired with a cooled CCD camera (Photometrix, Cool-
Snap HQ) or a CMOS camera (Hamamatsu, Orca Flash 4.0). For both cameras the pixel
size corresponded to around 41nm. A xenon arc lamp (Sutter, Lambda LS) was used
for fluorescence illumination and was connected to the microscope with a liquid light
guide (Sutter). Fluorescence filters were obtained from Chroma. We used 49001 for
CFP like proteins, 41001 (older series) for GFP, 49003 for YFP and 49008 for red emitting
proteins like mCherry. Shutters were computer controlled (Sutter, Lambda 10-3 with
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SmartShutter) and the microscope stage was automated (Marzhduser). The microscope
was located inside an incubation chamber (Solent) to allow for a constant temperature
of 37°C. Microscope and automated image acquisition were controlled with MetaMorph
software (Molecular Devices).

Some of the experiments were performed on a newer version of the microscope (TI-E)
with very similar functionality but some differences in equipment. It was equipped with
a CMOS camera (Hamamatsu, Orca Flash 4.0), LED lamp for fluorescence illumination
(Lumencor, SOLA II) and liquid light guide. Fluorescence filters were identical except for
GFP (Chroma 49002). LED lamps were software controlled and phase contrast light path
was controlled by a shutter (Sutter, Lambda SC Smart Shutter). The incubation cham-
ber was fabricated in house. Microscope and image acquisition were controlled with
Micromanager software [63].

At the beginning of each experiment, we searched the gel for isolated cells, selected
4-12 of them (depending on desired imaging loop frequency) and saved their stage po-
sitions. Then, an automated script acquired phase contrast and fluorescence movies of
the growing cells at each position and for up to 40 hours. Each loop, the routine auto-
matically refocused based on image contrast, using the Brenner algorithm. We acquired
phase contrast images at three different heights and at a frequency of 30-50 images per
cell-cycle and fluorescence images at roughly 6 images/cell-cycle. Illumination time for
fluorescence images was kept as short as possible to reduce photodamage and bleach-
ing. To increase signal-to-noise ratio for fluorescence images, 2x2 binning was used (ef-
fective for CCD cameras) and all disturbing light sources (room light, computer screen)
were turned off.

2.3. DATA ANALYSIS

2.3.1. CELL SEGMENTATION AND TRACKING

After termination of the experiment, we analyzed the acquired movies offline with cus-
tom software written in Matlab (MathWorks). The software is based on Schnitzcells [39]
and was largely changed and extended in our group. First, the movie was restricted to
the frame range with single-layer growth and before cells outgrew the field of view. That
meant usually around 500 cells in the last image, respectively 9 generations of growth.
Then, a segmentation algorithm automatically determined cell areas (see Fig 2.2): The
three phase contrast images were first averaged (a slightly blurred image can decrease
oversegmentation artifacts). Then, the colony region was located by finding the region
of most contrast variation. Primary cell outlines were determined automatically by ap-
plying a Laplacian of Gaussian filter on the phase contrast images. Segmented areas that
were much smaller than a typical cell were automatically discarded. Accidentally con-
nected cells were then separated in multiple ways: Morphological opening separated
barely connected cells. Suspiciously long cells were additionally cut based on concavity
of the cell outline. Subsequently, all cell outlines were filled by seeding them and apply-
ing the watershed algorithm. This segmentation procedure had a low error rate in cell
detection, but all images were visually checked and, if necessary, corrected manually.
After segmentation cells were tracked between consecutive images. Briefly, for each
cell in the next frame, an algorithm determined the nearest cell of the previous frame.
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Figure 2.2: Steps during image segmentation. (A) Phase contrast image is the start image for
segmentation. (B) Applying a Laplacian of Gaussian filter to the phase contrast image detects
outlines of cells and background variations. (C) After removing lines outside of the colony region
mask and small areas, cell areas are properly detected. However, cells that are in contact are not
separated into distinguishable cells yet. (D) After morphological opening and cutting of long cells,
the final segmentation result is obtained by seeding and applying a watershed algorithm.

To determine what is “nearest”, we used two alternative criteria: The standard routine
determined the skeleton of each cell (morphological thinning) and three characteristic
points located at 1/4, 1/2 and 3/4 along that line. Then, the mean square distances be-
tween this triplet and each of the triplets from previous-frame cells were determined
(Fig. 2.3A). The next-frame cell was linked to the previous-frame cell with the smallest
distance. In some cases, for example for filamentous (dividing) cells or when cells moved
alot, the routine would produce insufficient results. Then, we applied a more robust but
slower algorithm that searched for minimal distances between new-frame cell centers
and previous-frame cell areas (Fig. 2.3B). Both routines took the increase in total colony
size into account and automatically checked for tracking errors such as disappearing
cells or cells dividing into three daughters. Each tracking result was checked manually
and we found that for efficient tracking around 30 frames per cell cycle were required.
Once tracking was finished, we obtained a complete lineage tree of the colony with full
information on history of cells. In the next steps, growth and expression data were de-
termined for each cell.

Figure 2.3: Illustration of cell tracking. Dis-
played are the two different algorithms used for
A frame nr B an example of non-dividing cells. (A) Standard

\ —l algorithm: A cell is characterized by three points

| (orange) along its skeleton (thin gray line). Each
new cell is connected to the previous-frame cell
whose characteristic points lie closest by (ar-

rows). (B) Modified algorithm. Shift between
cells is determined as distance of next-frame cell
center to previous-frame cell areas and cells with
the smallest distance were linked. In the example
the distance is zero.
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2.3.2. DETERMINATION OF CELL LENGTH AND GROWTH RATE

For calculation of growth rate we first determined cell length over time and then calcu-
lated growth rate as exponential fit to the cell length. Cell length is similar to cellular
volume because the rod shaped E. coli bacteria only grow along their long axis [32]. Ad-
ditionally, we tested that our analysis was robust to different methods for cell size deter-
mination which also take cell width into account (see chapter 6, Fig. 6.6). We determined
cell length at high resolution by analyzing the phase contrast profile along the cell axis
(61, 64]: To find the cell axis, we fitted a third degree polynomial f(x) through the cell
area (Fig. 2.4A). Choosing a non-linear function took into account that even short cells
can be slightly curved. In experiments with filamentous cells which can be strongly bent
a polynomial of up to seventh degree was used to fit the complex shapes. The cell poles
(denoted xp and x;) were determined with a method similar to a sliding-window ap-
proach (Fig. 2.4B): For each point on the cell axis the sum of distances between that point
and the 25 closest segmentation pixels, here termed silhouette proximity, was computed.
For points located in the center of the cell area this sum is constant. However, when ap-
proaching the cell poles the sum rapidly increases and diverges. We defined the cell pole
as the location where the silhouette proximity increased 10% above the value in the cen-
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Figure 2.4: Determination of cell length and growth rate. (A) Phase contrast image with seg-
mented cell outline (black). The cell axis (white) is determined by fitting a third degree polynomial
through the cell area. (B) Cell length determination. The silhouette proximity (distance of a point
on the cell axis from the 25 closest segmentation pixels) is constant (4.06 pmz) in the center of the
cell. At the poles it rapidly increases and the pole locations xg and x; where defined where the
threshold 4.47 pm? was crossed. (C) Determination of growth rate of a single cell. The length of
a single cell, its parent and its offspring is plotted over time (dark circles). Instantaneous growth
rate is determined by fitting an exponential function to cell length for a fraction of the cell-cycle.
At the beginning and end of each cell cycle, length data of the parent or the offspring are used for
this fitting process (gray circles). Figure and description are from our publication [56] and slightly
modified.
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ter of the cell. The advantage of this involved method for determination of cell poles is
its robustness against variations in segmented cell outline and erratic pixels along the
cell axis. The cell length L was then determined by numerically integrating the cell axis

curve: 3
L - \/ 1+ ’ ! X . 2.1

Growth rates u were determined by fitting an exponential function to the cell length
vector:
L(t) — Loeﬂ-ln(Z)'[ — L02/J-l‘ . (22)

Here, Ly and p are the fitting parameters. The average growth rate of a cell was calculated
by fitting all length data available for that cell. More importantly, instantaneous growth
rate u(t) at sub-cell-cycle resolution was determined by fitting the length data within a
sliding time window. The window was centered around ¢ and the size of the window was
chosen to be one third of the mean interdivision time. Using this size is a compromise
between smoothing sufficiently strong such that growth fluctuations are not dominated
by segmentation uncertainties, but still capturing the fast growth fluctuations with typ-
ical time scale of around half a cell cycle (see chapter 6). We also note that the absolute
number of frames within that window has little influence on determined growth char-
acteristics (tested with 10-60 images per cell cycle), but the window size relative to the
cell-cycle time is relevant. For time points where the sliding window overlapped with a
division event we took parent resp. daughter information into account: If a cell divided,
its growth rate was extrapolated by summing up the length of the daughter cells (see
Fig. 2.4C). At the beginning of the cell-cycle, length data was extrapolated by using the
measurements of the mother cell and roughly dividing the length by two. More precisely,
the division factor was the fraction of the daughter size relative to the mother size, to ac-
count for asymmetric division events. Example traces of fluctuating growth rate can be
found in Fig. 2.6B.

2.3.3. PROTEIN CONCENTRATION AND PRODUCTION RATE

Protein concentration was measured in (arbitrary) fluorescence units. Phase contrast
images and fluorescent images were slightly shifted (<10 pixels) relative to each other. To
determine that deviation, each fluorescence image was overlaid with the segmentation
image at various shifts. Then, the sum of all fluorescence intensity values within the seg-
mented outline was determined. The optimal shift was calculated as the value for which
that sum was maximized for the whole movie and images were shifted accordingly.
Fluorescence images were then corrected for camera noise, which produced a rather
homogeneous offset signal, and for uneven illumination of the field of view. The cor-
rection images were termed [j, for background image and I; for shading image (uneven
illumination). The background image was obtained by acquiring multiple images with
closed camera shutter (that is, no incoming light on the camera) and averaging them.
For the shading image, we acquired and averaged images of a thin and homogeneous
layer of fluorescent dye deposited between a coverslip and a microscope slide. As the
illumination pattern depended somewhat on the fluorescence filter used, we acquired
different shading images for all filters, using the dye fluorescein for cyan, green and yel-
low fluorescence filters and rhodamine for the red filter. The corrected output image I
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Figure 2.5: Determination of protein concentration and production rate. (A) Initial fluores-
cence image. (B) Image after background correction, shading correction and deconvolution with
a point spread function. Total cell fluorescence is determined as the sum of fluorescence values
within the cell outline. (C) Fluorescence concentration was usually determined by averaging total
fluorescence within a central box. For exceptions, see main text. Figure and description are from
[56] and slightly modified.

can then be calculated from the input image I via

I-1
I,=—2
Is_lb

(2.3)

The imaging system produces a slightly blurred image of the sample which is effec-
tively a convolution of the ideal image with an unknown point spread function. To invert
blurring, we first experimentally determined a point-spread function using 0.02 pm sized
beads (FluoSpheres from Invitrogen). Then the image was deconvolved with a stochas-
tic algorithm in Matlab (Lucy-Richardson algorithm), see Fig. 2.5A-B. One effect of im-
age blurring is, for example, that cells located in the center of the microcolony appear
brighter. The deconvolution algorithm could fully remove that bias.

The total fluorescence of each cell was determined by summing up all fluorescence
pixels within the cell outline. Values were normalized for binning and illumination time
to make comparison between different experiments (with the same fluorophore) possi-
ble. Usually, the protein concentration is determined by dividing total fluorescence by
cell area. However, since we already used cell size to determine growth rate it would
be possible that then spurious artificial correlations occur between concentration and
growth. Therefore we determined protein concentration in a different way: Essentially,
we placed a box in the center of the cell and calculated fluorescence concentration by
dividing total fluorescence within that box by its size (Fig. 2.5C). The box was centered
around the cell axis and 0.4 um wide. It extended until 0.3 pm away from the cell poles.
In some reporter constructs proteins were localized within the cell (e.g. ribosomes, see
chapter 7) and determination of concentration via the box could then be inaccurate.
In these cases, we determined concentration directly by dividing total fluorescence by
the cell area. The same approach was used when absolute units of concentration rela-
tive to production rate mattered (see chapter 5). Independent of determination method,
the concentration was further corrected by subtracting background fluorescence (de-
termined from pixels outside the microcolony) and, if needed, autofluorescence (deter-
mined from fluorescence of wild-type MG1655). Protein production rate at time t was
calculated from three consecutive total fluorescence data points centered around ¢. We
determined production rate as slope of a linear fit to these points, taking parent and
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daughter information into account for time points close to division events.

2.3.4. CORRECTION FOR CELL-CYCLE FLUCTUATIONS

Protein production rate depends strongly and systematically on cell-cycle phase and,
to a lesser extent, protein concentration and growth rate depend on the phase as well.
A detailed analysis of these quasi-periodic fluctuations can be found in chapter 5. In
the remaining chapters, we focused on “random” noise and therefore automatically cor-
rected these three signals for cell-cycle fluctuations. We first determined the phase for
each data point, with 0 being cell birth and 1 being cell division. For cells with incom-
plete observed cell-cycle we estimated the phase based on the available cell length data
points. We determined the cell-cycle dependence of each signal by fitting a third degree
polynomial to the phase-vs.-signal dataset of all cells from an experiment. Choosing that
function was heuristic but it was general enough to capture typical dependencies (in-
crease, decrease or both) sufficiently well. Then, all data points were cell-cycle corrected
by subtracting the fitted phase-dependent average.

An alternative method (described in detail in chapter 5) used spline interpolation in-
stead of a 3rd degree polynomial to find the average dependency of a parameter on cell-
cycle phase. The signal was first binned according to its phase and then a spline polyno-
mial fitted between the binned averages. It could produce equal or better results because
it allowed for more general functional shapes. It was, however, only semi-automatic so
we resolved to applying spline interpolation only if automatic fitting was insufficient or
we were specifically interested in the functional shape (chapter 5).

2.3.5. DATA STRUCTURE AND SELECTION

The analysis methods described so far are the standard analysis steps used for data ex-
traction in every experiment. Summarized, as result we obtained a branched lineage
tree with full history information of all cells (except the first one). For every cell at ev-
ery acquired time point the data structure contained instantaneous growth rate, protein
production rate and concentration. Additionally, it contained many more parameters
such as cell length, number of the sister cell, location within the colony etc. For exam-
ple, the data allowed to investigate the distribution of a quantity at one given time point,
as well as the time evolution of its fluctuations over several generations (see Fig. 2.6). We
typically obtained several hundred lineages (defined by the final number of cells), a time
span of nine generations, and a few thousand unique data points. The datasets usually
contained ca. 300-500 cells with complete observed cell-cycle.

For further analysis, the data was restricted to steady state conditions, that is, con-
stant colony average values for growth rate etc. over time. Often, the full dataset was used
but sometimes cells grew slower in the first one or two generations (presumably a stress
response to deposition on the pad). Then, a time window of steady-state growth was
introduced. Some microcolonies also contained a few elongated cells, cells that grew on
top of each other or that ceased to grow. These cells were excluded from further analy-
sis. We also always tested whether spatial effects such as slower growth in the center of a
colony existed, but these effects were usually absent and did not require additional data
restriction.



2.3. DATA ANALYSIS 17

>
w

>/
2/
Y

rel. growth rate
growth rate [dbl/hr]
o
)

0 100 200 300
time [min]

Figure 2.6: Typical data after standard analysis. (A) For every time point, the distribution of in-
stantaneous growth rates within the colony is available. (B) Fluctuations of growth can be followed
along cell lineages over time and for several generations. The black bar denotes average interdivi-
sion time. Examples are given for growth rate but also apply to any other quantity, such as protein
concentration.

Further analysis methods specific to the projects will be described in each chapter.
Only temporal cross-correlations, which we used often and for several projects, will be
introduced in the next section.

2.3.6. CROSS-CORRELATIONS

Cross-correlation analysis is useful to reveal time delays and potential interaction be-
tween two fluctuating signals. Consider for example two signals A(¢) and B(t) (either
one could be growth rate, concentration etc.) as in Fig. 2.7A. Signal B(t) fluctuates sim-
ilarly to A(#) but lags behind with a delay 7. This delay could for example occur when
B(t) is positively regulated by A(#) but reacts slowly. Computing a standard (Pearson)
correlation, which uses simultaneous time points for both signals, will yield a low cor-
relation coefficient. Naturally, it cannot reveal the time delay. The cross-correlation,
however, determines a correlation coefficient for every possible time delay 7 between
the signals and will peak at the characteristic delay 7 (Fig. 2.7B). Thus, it can reveal
interactions and noise transmission between the signals (see also section 2.4.2). Addi-
tionally, the steepness of the correlation curve (how fast the peak decays) indicates the
time scale of fluctuations. This is especially useful for auto-correlation functions where
a fluctuating signal A(t) is correlated with itself (section 2.4.1): Fitting, for example, an
exponential decay function to the auto-correlation reveals the characteristic time scale
of fluctuations in A(#).

CROSS-CORRELATIONS ALONG A LINEAGE

In our experiments we are interested in cross-correlations (and auto-correlations) be-
tween the fluctuating growth rate (i), protein concentration (E) and protein production
(pE) (see also Fig. 2.6B). The definition of cross-correlations introduced here follows the
description in our publication [56] closely (text on cross-correlations therein is by Daan
Kiviet). For computation of cross-correlations we used the following notation (Fig. 2.7C):
A microcolony consists of M lineages, each containing N data values which are sepa-
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Figure 2.7: Concept of cross-correlations and definition of variables. (A) Two example traces
A(?) and B(?) fluctuate over time. The signal B(#) roughly follows A(¢) with a time lag 7p. (B)
Schematic cross-correlation function R 45 (7) for the signals from (A) . The cross-correlation peaks
at the characteristic delay time 7 p and can thus reveal delayed interaction. The standard (Pearson)
correlation is the cross-correlation at delay 7 = 0 and could not have detected a coupling of the
signals. (C) Variables needed for determination of cross-correlation for a branched data structure
and observation at discrete time points. M lineages exist (thick lines) and each lineage contains
N data points (black circles) which are not all unique (see also Fig. 2.8). Data is acquired at a time
interval At and the n’th data point is at time ¢ = n-Af.

rated by time intervals A¢. Then, the n’th data value originates from time point ¢ = n-At.
For each signal we calculated the deviation of it from the population mean (at that time
point). These deviation time traces were termed “noise” (not to be confused with noise
as quantification of distribution width):

Bn = Htn—

E,=E,— Enm (2.4)

Ly
pEn :pEn__ pEn,m *
Mm:l

Here, the sum runs over all lineages. Usually the mean would be determined as time-
average along each lineage [27] and in steady state these two methods are theoretically
equivalent. Practically, mean determination along each lineage is unreliable due to small
data size (ca. 50 points per lineage). It also turned out that using the population mean
per time point in equation 2.4 was more robust for the few experiments in which steady
state could not be perfectly achieved.

We can then determine the cross-covariance C within a single lineage between two
signals at a time lag 7 = r-At [65]. The concept of cross-covariance is similar to a variance
but it quantifies how much two different signals vary together and is generalized to non-
zero time lags between the signals. We use as example E and p but the definition applies
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analogously to other quantities:

N-r
1 = o~ .

E ifr=0
CE,u(rAt) _) N7 ngl( nlnsr)
Cup(=rAr) ifr<0.

(2.5)

The sum runs over all time points for which data also exists at a time 7 later. To determine
the cross-correlation within one lineage, the cross-covariance needs to be normalized
with the standard deviations (o) of both signals. o is equivalent to the square root of the
auto-covariance at time lag = 0:

Cru(rAt
Rpp(ran = —2780 2.6)

v/ Cee(0)Cpy, (0)

COMPOSITE CROSS-CORRELATIONS

Multiple lineages can be combined into a composite cross-covariance by averaging them:

M N-r

ﬁﬁ Y X (Enmbn+rm) ifr=0
m=1 n=

Cru(rAt) = 2.7)

Cue(=rAt) ifr<0.

However, simply averaging all data points with equal weight ignores the fact that
many of the data points are redundant and appear in several lineages (Fig. 2.8). There-
fore, we introduced a correction factor that ensured that independent pairs of data points
are all weighed equally strong in equation 2.7. For each pair we counted the number of
lineages in which these data points are used (1). Multiple contributions of the same pair
of data points can then be corrected by weighing each summand with the inverse of A,
which we term weighing factor:

1
Whnmyr=—— . (2.8
/1(n+ r),m

This weighing results effectively in the same calculation as in Dunlop et al. [27]. wy, m,r
depends on the time point n, the lag r and the lineage m investigated. Many data pairs
consist, however, of two points which are reused a different number of times in other
lineages (see lineages I and III in Fig. 2.8). We used an additional correction to account
for these “half-unique” data points:

1 1
+ .
Zln,m 2/,l(n+r),m

(2.9)

Wn,m,r =

Using this weighing, we can calculate the corrected composite cross-covariance func-
tion:

Ly Y@ ) if
w ifr=0
Cllzl/;[t(rAt)= Wiorn) i iz b nm Wy (2.10)
Cﬁ’é(—rAt) if r <0,

with wyes(r) = Z%Zl ZQ’;{ Wn,m,r- The composite cross-correlation was then calculated
by normalizing with o as in equation 2.6.
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Figure 2.8: Extracting and weighing lineages from a branched data set. (A) Depiction of a grow-
ing microcolony over time, starting with two cells on the left and growing into five cells on the right.
(B) A lineage tree of the data shown in (A) . The tree starts with two lines (left), indicating the two
starting cells, and at each division the line splits, resulting in five cells at the end (right). (C) Five
lineages can be extracted from the data. Note that most lineages share part of their data. When
correlating data points from fy with #1, one pair consists of completely independent data points
(lineage I). Two lineages provide exactly the same pairs of data points (lineages IV and V), and two
lineages only share a data point at fy (lineages II and III). (D) Different types of weighing for the
correlation of data points from #y with #; as used in equation 2.10. No: each lineage is weighed
equally. Unique pairs: weighing such that only comparisons between unique data pairs are used.
Unique points: lineages II and III are not completely independent, which can be corrected for by
the weighing from equation 2.9. This weighing method was used throughout the thesis. Figure
and description are taken from our publication [56].

To determine error bars for the cross-correlations, we split the microcolony into four
independent branch trees which originated from the first four simultaneously present
cells in the colony. We then determined the composite cross-correlation for each of these
lineage trees independently. Subsequently, they were averaged and the standard devia-
tion determined.

2.4. INTERPRETATION OF CROSS-CORRELATIONS

2.4.1. TIME SCALES

Cross-correlations are a powerful tool to learn about cellular fluctuations but have to be
interpreted with care. Therefore, we discuss in this and the next section two important
aspects: how to determine the time scale of fluctuations and how to interpret time delays
and examine causality.

Stochastic fluctuations can be characterized by their amplitude and frequency. Slower
fluctuations may be more relevant biologically because they persist and do not average
out easily [5, 66, 67]. To determine the characteristic frequency of fluctuations, it is help-
ful to analyze autocorrelation functions (i.e. correlation of a signal with itself). The auto-
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correlation is per construction one at zero time delay. For biological processes it typically
decays in an exponential fashion to zero for large time delays (Fig. 2.9A). Then, the ex-
ponent of an exponential fit yields the frequency of fluctuations, and its inverse is the
characteristic time scale 7 4¢ of the fluctuations. This is also the time delay after which
the autocorrelation has dropped to 1/e, or alternatively 1/2 when using base 2 for the
exponential function.

In reality, stochastic fluctuations may occur on multiple fast and slow time scales
[5, 67, 68] and a single exponential fit may be insufficient. Additionally, measurement
uncertainties cause noise in the observed quantities. Experimental fluctuations such as
focusing accuracy are probably uncorrelated between consecutive images and therefore
appear as a fast noise component (“shot noise”). Whether fast fluctuations are real or
experimental noise is very hard to determine. In both cases the autocorrelation function
is multi-exponential (simulated in Fig. 2.9B). Fitting a single exponential function then
determines an incorrect intermediate characteristic time scale (Fig. 2.9B gray line) and a
multi-exponential function should be used (black line). For experimental data we found
both single or (atleast) double exponential decays, depending on the signal investigated.
7 4¢ of the fast component is very hard to determine (see also the ranking approach used
in [5]) due to limited time resolution and lack of knowledge what part of these fluctua-
tions are real. To determine the biologically more relevant 7 4¢ of the slow component,
exponential fitting should be restricted to time delays at which the fast decaying compo-
nent is basically zero.

While experimental noise can lead to a fast drop in autocorrelations, also an opposite
effect exists that artificially broadens the correlation function: Subsequent data points
are often not independent but calculated from partly redundant raw data. For example,
for growth rate determination the sliding window of cell lengths overlaps typically up
to 50% for consecutive data points. This results in a widening of the cross-correlation
at small delays (simulation: Fig. 2.9C, experimental growth data: Fig. 2.9D green cir-
cles). For determination of the correct decay time, such artificially correlated data points
should be excluded from the exponential fit (empty circles in Fig. 2.9C,D). For the win-
dow size that we typically used to determine growth rate, the artificial broadening often
precisely canceled the initial fast drop of the autocorrelation (Fig. 2.9D red circles and
line). Then, the autocorrelation appeared to be a single exponential. This canceling is
however coincidental and for each fit it should be examined whether data points at small
time delays need to be excluded.

We also tested whether the amount of overlap of the fit windows (amount of artifi-
cial correlation) affected cross-correlations. We chose Ry, (7) as example and varied the
window size for growth rate determination (see also Fig. 2.9D). Calculation of production
rate was not changed. The amplitude of the cross-correlation increased with smoothing
(Fig. 2.9E). However, the shape stayed very similar, suggesting that observed features
such as asymmetry are robust to the choice of fit window. Further, the robustness of
the shape indicates that the correlation is probably caused by slow growth fluctuations
and that fast fluctuations (for example present in the blue dataset in Fig. 2.9E) do not
contribute to the cross-correlation. Similar analysis of changing the production rate de-
termination could further corroborate these indications.

Summarizing, when determining decay times one should take into account that mea-
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Figure 2.9: Extracting and interpreting time scales of fluctuations. (A) Illustration of a typical
autocorrelation function that decays exponentially. After a characteristic time 7 4¢ the autocorre-
lation has dropped to 1/e. (B) Autocorrelation of a simulated signal that fluctuates on two time
scales that differ by a factor 10, with both noise sources contributing with equal intensity (circles).
A single exponential fit (gray dashed line) fails, but a double exponential fit (black dashed line) can
determine both decay times. Experimentally, the slow time scale can be determined by excluding
all data points of the initial fast decrease and then fitting a single exponential function. (C) When
data points are obtained from dependent measurements, the autocorrelation function is artifi-
cially broadened and a minimum time scale is imposed. An example is determination of growth
rate where cell length data windows typically overlap for consecutive time points. This effect was
illustrated by using simulated data (black circles) and smoothing it with a sliding window of size 7
(red circles). Using the complete smoothed dataset for decay time determination results in a too
large 7 4¢ (light red dashed line). Excluding the artificially correlated data (empty red circles) re-
covers the correct 7 oc, which is identical for original and smoothed data (dashed black resp. red
line). (D) Autocorrelation of growth rate for cells grown on acetate. Growth rate was determined
with sliding windows of different sizes, denoted as fractions of interdivision time T,;. The red
data corresponds to the window size used in this thesis. Data points are spaced 0.36 - T; (which
is large and spacing in many experiments was around = 0.2T;). For small sliding windows, fast
noise, which is probably measurement noise, dominates (blue, see also (B) ). For large windows
the correlation is broadened (green, see also (C) ). If artificially correlated points (empty circles)
are excluded the decay time can be determined independently of the sliding window size used
(red dashed line: 74¢ = 1.5k, green dashed line: 7 4¢ = 1.6h). In the red data set excluded data
points lie on the fitted line only by chance. Such a collapse onto one line was regularly observed
for growth rates but rarely for production rates. For very small fit window size (blue) fitting is un-
reliable. (E) Cross-correlation of growth and production rate for cells grown on acetate. Growth
rate determination was varied and is colored as in (D) , production rate determination was kept
constant. The magnitude of the cross-correlation changes but the shape is very robust.
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surement noise can cause a fast decrease at small time delays and that data points can
be artificially correlated due to overlapping fit windows.

2.4.2. CAUSALITY

Cross-correlations are used to determine whether fluctuations in a cellular network prop-
agate, and to infer properties of the network structure. For example, the shape and
asymmetry of the cross-correlation function between the concentration of a protein and
its upstream transcription factor can determine whether the regulatory link is active or
not [27]. Cross-correlations between enzyme concentrations and growth rate can reveal
whether a certain enzyme is limiting and fluctuations propagate to growth (see chap-
ter 6). However, when inferring causal relations between two observables one has to
be careful: The mere existence of a non-zero (cross-)correlation between two signals
does not mean that a causal link exists (a statement so famous that it even has its own
wikipedia page). For example, two otherwise unconnected signals can be correlated be-
cause they are affected by the same global fluctuations (see “common noise” in chapter 6
or “extrinsic noise” in [27]). A more complex scenario arises, for example, when an un-
known upstream component X affects the two measured signals Y and Z, but with a
different time delay (Fig. 2.10). Then, the cross-correlation Ry is asymmetric, suggest-
ing a transmission from Y to Z but in reality no causal link exists. For further examples,
see also Dunlop et al. [27].

Interpretation of cross-correlations gets more difficult the less is known about the
underlying network which connects the two signals. Direct regulatory interactions such
as between repressor and target are relatively straightforward to interpret. However, in
reality many fluctuating cellular parameters are inaccessible or regulatory links are un-
known [27]. This is especially true for the cellular growth rate which is somehow linked to
production of proteins and cell mass but with unknown links. Nonetheless, one can test
whether a causal link between two signals is likely to exist. This can be achieved by ma-
nipulating the (suspected) network structure by e.g. introducing knockouts or changing
the active metabolic pathways. The changes should be chosen such that they will affect
the regulation between the two signals or shift limitations to other enzymes. Consider for
example the case that an enzyme fluctuation preceded growth fluctuations, suggesting
a limitation originating from that enzyme. Then, the carbon source can be altered such
that a different pathway without that enzyme should be limiting (by inferring from liter-
ature). If asymmetry in the cross-correlation curves changed accordingly, it supported
the hypothesis that the enzyme was indeed limiting in the first scenario, i.e. a causal

Figure 2.10: Asymmetric cross-correlations do
not imply causality. Fluctuations in an unknown

is asymmetric, suggesting a noise propagation
from Y to Z. However, in reality this link is ab-
time delay sent (see network structure on the left).

X Q:;‘ or unmeasured component X propagate to the
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link existed (see for example chapter 6). Network structure and active pathways can be
manipulated in multiple ways, such as by altering expression levels, changing nutrient
sources or constructing knockouts.

An alternative approach (next to cross-correlations) for determining causal links is
a method called Granger causality (GC) [69, 70]. This method has not been used in this
thesis and would be interesting to investigate in future work. The GC measure deter-
mines how well a quantity Z can be predicted from its past values and tests whether
the prediction is improved by taking the past of the suspected cause Y into account. If
the prediction is significantly improved by Y, then Y is said to Granger-cause Z. This
method is not equivalent to cross-correlations and can be more powerful. For exam-
ple, consider the case that Y is a protein which is always expressed at the beginning of
the cell-cycle while Z is expressed at the end, without any direct connection between Y
and Z. Then their cross-correlation will show a time delay (falsely suggesting that Z is
caused by Y) but the GC will be zero - because the past of Z already reveals the periodic
cell-cycle fluctuations and Y does not add any extra information. It remains to be deter-
mined whether GC is also more powerful when Z only fluctuates randomly without an
underlying rule (such as the cell-cycle timing), which is presumably the nature of fluc-
tuations investigated mostly in this thesis. Note also that the confounding effects of an
unknown upstream variable X (Fig. 2.10) cannot be revealed by the original definition of
GC, and Y would be found to Granger-cause Z. However, more advanced versions of GC
might be able to deal with such hidden variables [70].

I would like to thank Vanda Sunderlikova for constructing the E. coli strains used in this thesis.
The growth protocol was developed by Daan Kiviet. The analysis software, obtained from [7], was
extended in a first step by Daan Kiviet and in a second step by Philippe Nghe and the author.



CHARACTERIZATION OF
FLUORESCENT PROTEINS

Throughout this thesis, we use fluorescent reporter proteins to measure gene expression in
E. coli. These proteins exist in different variants that vary in spectral range and quality.
In this chapter, we therefore characterize different fluorescent proteins. We first establish
which quality criteria are important in our experiments and find several suitable candi-
dates within the cyan to red emitting wavelength range. Then, we compare their perfor-
mance experimentally in the categories cross-correlations, maturation time and photo-
stability. We conclude that the tested GFP version is the best protein for single-label exper-
iments. For double-label experiments we find that the yellow mVenus paired with a cyan
emitting mCerulean variant are the best option based on the tested constructs.
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3.1. INTRODUCTION

To measure expression of endogenous proteins over time we used fluorescent proteins
that function as reporter [43]. Then, apparent expression can be measured in fluores-
cence units. To asses how well the reporter describes expression of the actual protein
of interest it is crucial to understand the properties and quality of the construct and the
used fluorescent protein. Ideally, an observed phenomenon should not depend on the
specific choice of fluorescent reporter but in reality it may (see below, also [71]). There-
fore, we tested and compared different fluorescent proteins. In this chapter, we first give
a (non-exhaustive) overview of different existing variants of fluorescent proteins and re-
porter constructs. Then we determine which criteria define good fluorescent proteins
for our type of measurements. In practice, choosing good proteins for our application
was difficult because few studies exist that systematically compared different proteins
(for good exceptions see [72] and [71]) and the existing studies focused on different qual-
ity criteria. Therefore, we constructed several strains with different fluorescent reporter
genes to search for good reporters. We systematically tested and compared their perfor-
mance based on the needs for our time-lapse microscopy studies.

3.2. OVERVIEW OF FLUORESCENT PROTEINS AND CONSTRUCTS

3.2.1. A BRIEF HISTORY OF DISCOVERY AND IMPROVEMENTS OF FLUORES-
CENT PROTEINS

We here start with a brief introduction to fluorescent proteins. For a very good extended
overview we refer the reader to a scientific summary by Mans Ehrenberg [73], published
as background information on the Nobel prize which was awarded for research on GFP
[74]. Green fluorescent protein (GFP) originates from the jellyfish Aequorea victoria and
was discovered by Shimomura et al. in 1962 [75]. Later, Chalfie et al. showed for the first
time that GFP could be expressed in different organisms [43]. These discoveries opened
unprecedented possibilities for imaging spatio-temporal processes in living organisms.

Today, GFP has been mutated to optimize properties and expression in laboratory or-
ganisms [76-78] and a whole range of spectral variants have been produced (blue: [79],
cyan: [80, 81], yellow: [82, 83], see also Fig. 3.1A). Important improvements were for ex-
ample increased brightness [76, 84] and folding efficiency at 37°C [77, 84]. Increased
photostability allowed for longer imaging before proteins irreversibly transitioned to
non-fluorescent states (“photobleached”) [72, 85] (Fig. 3.1B). Especially for time-resolved
imaging advancements in maturation time were crucial: When newly folded, GFP is
still in a non-fluorescent state [79, 86] (Fig. 3.1B). The chromophore needs to transform
through several stages before becoming functional, a process termed maturation [87].
One of these reactions requires molecular oxygen [79] and is considered rate-limiting,
taking several hours in the native GFP [79] but only a few minutes in engineered variants
[83, 88].

3.2.2. THE MODERN COLOR PALETTE

The discovery of spectrally distinct mutants of GFP made it possible to simultaneously
image different structures or expression of different proteins in living cells [89] (Fig. 3.1A).
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Figure 3.1: Fluorescent protein spectra, expression of fluorescent proteins and possible con-
structs. (A) Normalized excitation spectra (upper panel) and emission spectra (lower panel) of
common fluorescent proteins. From short to long wave length: Cerulean (cyan), EGFP (green,
we used the spectrally similar GFPmut2), Citrine (yellow, we used the spectrally similar Venus),
mCherry (red), mKate2 (dark red). With standard filters cyan-yellow-red and green-red can be
fully separated (taking either one of the red variants). Spectral data was obtained from Chroma
Technology Corp (www.chroma.com). (B) Production and bleaching of fluorescent proteins. Af-
ter transcription and translation proteins fold quickly but are still non-fluorescent (denoted in
gray). Chromophore maturation results in fluorescent proteins (green). lllumination leads to pho-
tobleaching which irreversibly destroys the protein’s fluorescence. (C) Different genetic constructs
that report on gene expression. Upper row: Promoter (or transcriptional) reporter: A fluorescent
reporter gene is directly under the control of the promoter of interest. Middle row: Gene of interest
and fluorescent reporter are transcribed together but translated independently because each se-
quence contains its own ribosome binding sites (RBS). Bottom row: In a translational fusion gene
of interest and reporter are translated together and usually connected via a linker.

Priorities for different applications differ but generally the shortest wavelength variants
(blue fluorescent proteins, BFP) are suboptimal for imaging because of low brightness,
fast bleaching and necessary excitation at short wavelengths [90]. Variants in the cyan
emitting spectral range (CFP) exist however at high quality for a wide range of applica-
tions and a good protein is for example Cerulean [81]. Modern versions of GFP in the
green emitting range are very good and standard reporters. Such improved versions are
for example GFPmut2 [84], EGFP [76] or Emerald [90]. The longer wavelength yellow
(YFP) variants are characterized by high brightness and modern variants include Venus
[83] and Citrine [91]. Further extending the range to red wavelengths was however not
possible by mutating wild type GFP. It could only be achieved after the discovery and
cloning of naturally occurring red fluorescent proteins in corals and anemones [92, 93].
Unfortunately, red fluorescent proteins are often characterized by slow or even incom-
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plete maturation [94, 95], probably also due to two required (slow) oxidation steps [94],
and tend to oligomerize [96]. Extensive work of Tsien and coworkers [72, 97] resulted
in strongly improved variants of the original DsRed (isolated from Discosoma), the most
famous constructed variant being arguably mCherry. More recently, a derivative of a red
fluorescent protein from Entacmaea quadricolor, named mKate2, was developed in the
group of Chudakov [95, 98, 99] and promises high brightness and fast maturation. For
a more complete overview on variants of fluorescent proteins and their quality, see [72]
and [100]. Example spectra of suitable proteins for time-lapse imaging are displayed in
Fig. 3.1A.

To image multiple processes in the same cell one needs to use spectrally distinct
fluorescent proteins. With standard filters and full spectrum illumination (for exam-
ple with a Xenon lamp) up to three different fluorescent proteins (cyan-yellow-red or
green-red variants) can be simultaneously imaged. For different applications that num-
ber can vary: More colors can be imaged when including slowly maturing proteins [72]
or when using narrow band (laser) excitation and filters. Using overlapping spectra and
unmixing the multispectral images mathematically allows for simultaneous use of many
overlapping fluorophores [101].

3.2.3. DIFFERENT REPORTER CONSTRUCTS

We are interested in employing fluorophores to report on the expression of native genes.
The reporting can occur on different levels of the expression (transcription, translation),
depending on the design of the construct. In the simplest case, the native gene and its
promoter are not modified and the fluorescent gene is inserted under control of a copy
of the promoter of interest (Fig. 3.1C upper row). The reporter may be inserted on a
different location on the chromosome or provided on a plasmid (see for example the
Alon plasmid reporter library [102]). The advantage of such a promoter reporter (also
called transcriptional reporter) is that it minimally perturbs the native system and that
it is relatively straightforward to construct. These reporters have proven very useful for
high throughput comparisons of promoter strength and noise in constant and varying
environments [102-104].

When investigating temporal fluctuations of expression on the single-cell level it is
however desirable to have a more direct readout of expression of the native gene. We did
not investigate whether in some cases a promoter reporter is sufficient for our purposes
which might be worthwhile examining. But generally, such a reporter always suffers
from the uncertainty to what extent a transient fluctuation is experienced by all iden-
tical promoters and to what extent only the local expression fluctuated. If the construct
islocated on a plasmid variation in plasmid copy number causes even more uncertainty.
The most direct readout of native gene expression (and localization) can be achieved by
translationally fusing native and reporter gene (Fig. 3.1C bottom row) [105]. Then, the
reporter sequence is chromosomally inserted at the C-terminus (or N-terminus) of the
native sequence and one joint mRNA is transcribed from the promoter. Both genes need
to share one ribosome binding site (RBS), resulting in translation of both proteins con-
nected together. Usually a linker of a few amino acids is inserted between the proteins to
avoid interaction between them. Arguably, this method most accurately tracks expres-
sion fluctuations (and localization patterns) and was mostly used throughout this thesis.
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The functionality of the fused protein of interest may be compromised and it should al-
ways be tested whether wild type performance for e.g. growth rate is still achieved.

An intermediate between these two types of constructs is the here termed transcrip-
tional fusion (Fig. 3.1C middle row, note that nomenclature for types of constructs is not
unified in literature): Native gene and reporter are transcribed into one mRNA but trans-
lated into independent proteins. Since low copy number of mRNA is thought to be the
main source of noise [16, 21] the reporter is likely to track expression fluctuations well.
This was confirmed for the lac enzymes for which a transcriptional and translational fu-
sion was used in chapter 6. If localization instead of expression is of main interest and
especially when no functional fusions exist [106] an alternative approach can be used:
A translational fusion which still localizes is added to the cell, typically on a plasmid,
additionally to the unmodified native gene.

3.3. QUALITY CRITERIA FOR FLUOROPHORES

Independent of the selected type of construct the fluorescent reporter needs to fulfill
some quality criteria. The “[...] guide to choosing fluorescent proteins” of the Tsien
lab [72] provides very good guidelines on desired properties and recommendable fluo-
rophores (only the far-red variant mKate 2 was developed after publication of that guide).
Which criteria are the most relevant depends on the type of application. Here, we sum-
marize which properties are desired for imaging expression fluctuations in vivo with
time-lapse microscopy (criteria based on [72]):

¢ Maturation time: Arguably the most important criterion for our applications. The
maturation time should be short (roughly <10min) so that synchrony or time-
lag between expression and growth fluctuations can reliably be detected (see also
chapter 2.3.6).

* Photostability: Taking approximately six fluorescence images per cell cycle pref-
erentially leads to small bleaching when compared to dilution of fluorescence by
growth.

Further criteria are:

* Brightness: A fluorescence signals should be readily detectable also when tran-
scribed from weaker promoters. The minimum required brightness depends on
cellular autofluorescence in the specific wavelength range.

¢ Monomeric protein: The reporter is ideally monomeric to avoid artificial aggrega-
tion of fusion proteins [71].

* Spectral separation: Reporters for multi-color imaging should have minimal spec-
tral cross-talk.

Several other criteria which were hardly restrictive for our application are [72]: Efficient
expression at 37 °C, non-toxicity and insensitivity to the used environment. Any criteria
for more complex applications such as photo-activation were ignored here.
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3.4. TESTED PROTEINS AND EXPERIMENTAL DESIGN

We chose several modern fluorescent proteins based on literature search [6, 72, 99, 100,
107] to test how they score on the above criteria: mCerulean, Cerulean2.0, GFPmut2,
mVenus, mCherry, mKate2 (see Table 3.1). Since in some projects we planned to image
two different fluorescent proteins simultaneously, using only the in our lab well charac-
terized and established GFPmut2 would not be sufficient. Therefore, we included red &
green and cyan & yellow emitting reporters as potential pairs (the latter allowing for red
as third reporter), see also Fig. 3.1. These combinations hardly cross-talk, thus fulfilling
the last criterion of section 3.3. Proteins were either obtained as monomeric variant or
made monomeric by introducing a A206K mutation [108], see also the second last crite-
rion above. To test the requirements on maturation time, photostability and brightness
each reporter gene was expressed in E. coli . We chromosomally inserted the reporter
under control of a constitutive exogenous Pn25 promoter at the php location, one color
per strain. In the following sections the notation “GFP” shall always refer to “GFPmut2”.
Note that the yellow variant Citrine might have been interesting to test as well, though we
will show in the following sections that mVenus already scores well on our experimental
criteria.

We here briefly summarize the performed experiments and give more details in the
sections below. All experiments were performed on the “standard” microscope (TE2000)
equipped with the CMOS camera (Hamamatsu, see chapter 2.2). First, we obtained
cross-correlations between expression and growth rate for all fluorophores. The reason
for this specific test is that cross-correlations are our most frequently used observable
and we aimed to exclude dependency of features on the reporter protein used. We thus
tested whether the maximum correlation, its sign, time delays and shape of the cross-
correlations were dependent on the specific fluorescent protein. Cross-correlations are
also an indirect measure for maturation time because time delays suggest slow chro-
mophore maturation.

Second, we measured maturation more directly for two example constructs. We grew

Fluorescent protein | Color (emission) | ASC number | Reference | Monomeric
mCerulean cyan ASC823 (81] introduced
Cerulean2.0 cyan ASC833 [107] yes
GFPmut2 green ASC835 [84] introduced
mVenus yellow ASC825 [83] introduced
mCherry red ASC824 [97] yes
mKate2 (far-)red ASC834 [99] yes

Table 3.1: List of tested fluorescent proteins. Proteins for testing were selected based on literature
search. GFP derived proteins were made monomeric in our lab by introducing a A206K mutation
[108]. Note that in some critical fusions even “monomeric” proteins can aggregate [71]. ASC num-
ber refers to the Amolf strain collection index. We named the codon optimized Cerulean for E. coli
from the Elowitz lab “Cerulean2.0”. They also codon-optimized Venus which was not tested here
but could be considered if the standard Venus would cause issues in a construct.
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E. coli cells in a flow cell and blocked translation with an antibiotic [88, 109]. The re-
maining increase of fluorescence is due to maturation and can be used to extract the
maturation rate.

Third, to test photostability we blocked translation and waited for proteins to ma-
ture. Then we bleached the cells with frequent illumination to obtain a characteristic
bleaching rate. One needs to note that the obtained bleaching rates are specific to the
type of lamp and filters used (see also below).

Several of these measurements automatically provided data on perceived brightness
of each fluorescent protein, that is, its signal intensity above the camera noise back-
ground.

3.5. CROSS-CORRELATIONS

3.5.1. EXPERIMENT, ANALYSIS AND WHAT CAN BE TESTED

We started the comparison by obtaining cross-correlations between fluorescence and
growth rate for all reporter proteins. The aim was to determine whether specific proteins
could alter sign, strength or shape of the correlation. The experiment was performed as
described in chapter 2 and cells were grown on M9 + 0.2mM uracil + 0.1% maltose. Mul-
tiple microcolonies per experiment and fluorescent protein were analyzed to increase
statistical significance. The aim was to perform also repeat experiments on a different
day but this was only possible for a subset of colors due to time constraints. We in-
vestigated the cross-correlation between protein production and growth as well as the
cross-correlation between protein concentration and growth. The following questions
could be tested:

* Are the cross-correlations (sign/shape) independent of the reporter? This is im-
portant to compare experiments which used different fluorophores as label (e.g.
ribosomal rRNA and r-protein in chapter 7).

¢ Is the cross-correlation function for one protein reproducible in different experi-
ments?

* Does maturation seem to happen fast? GFPmut2 is a fast maturing protein (=5min)
which we will show directly in section 3.6. Therefore, we consider its timing in
cross-correlations relative to growth rate as “correct”. If other colors show delays
relative to GFP, it suggests slow maturation.

We used the correlations obtained for GFPmut2 as a reference for the shape: GFPmut2
matures fast (section 3.6) and thus does not introduce delays. Further, the correlations
were typically reproducible and changed as expected upon modifying the environment
[56] (chapter 6).

3.5.2. RESULTS

Fig. 3.2 and Fig. 3.3 show the cross-correlations between protein production and growth
rate (R, ) resp. protein concentration and growth rate (Rg,, ) for all tested fluorophores.
We first focus on correlations between production rate and growth (Fig. 3.2). The shapes
of the correlation curves for both Ceruleans, GFPmut2 and mVenus were quite similar:
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Figure 3.2: Cross-correlations Ry, between production rate and growth for all tested fluores-
cent proteins. The colored squares indicate the spectral range. (A) Cross-correlation for one ex-
ample dataset. Error bars are standard deviations obtained from four branch groups. (B) Cross-
correlations for all measured datasets. Experiments were performed on four different days in total
and each color corresponds to one day. The very large peak in one GFP correlation is likely an
artifact of a slowly growing subpopulation. Growth rates were =~ 0.85dbl/hr.
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Figure 3.3: Cross-correlations Rg, between concentration and growth for all tested fluores-
cent proteins. (A) Cross-correlation for one example dataset. Error bars are standard deviations
obtained from four branch groups. (B) Cross-correlations for all measured datasets. Datasets (incl.
the data from (A) ) and color-code are identical to Fig. 3.2.
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Ry, peaked at zero time delay (7) with a correlation coefficient of ~0.2-0.3 and then de-
cayed to zero within around two generations (=2 hrs). GFPmut2 and mVenus might
even show a small positive delay in the example datasets (Fig. 3.2A) but this shift is
likely within the range of day-to-day variability (these two panels in (A) were taken on
the same day). Contrary to that, Ry, of mCherry and mKate2 were very different: The
cross-correlations were very small and without well defined peak. Some of the mCherry
cross-correlations appeared to peak at a negative time delay (one blue and one black line
in Fig. 3.2B).

The concentration correlations Rg, displayed more variability and were harder to in-
terpret, but generally supported the conclusions obtained from Ry, (Fig. 3.3): mCerulean,
GFPmut2 and mVenus were all similar and their concentration was correlated very weakly
with growth. The correlation was slightly negative (=-0.1) at T < 0 and for an unknown
reason slightly positive for 7 > 0. Again, and consistent with their very small R, correla-
tion, mCherry and mKate2 were different and displayed a very strong dilution mode. We
note that also mCerulean2.0 showed a stronger dilution mode of which the reason is not
clear and the experiment should be repeated to test whether the effect is real. Summa-
rizing the results so far, we conclude that mCerulean, GFPmut2 and mVenus (potentially
also mCerulean2.0) produced the same cross-correlations.

We next focused on the second point in the above list which is reproducibility of
cross-correlations. To this end, we compared data from different microcolonies from
the same experiment (i.e. from one day) to experiments from different days. The cross-
correlations obtained for a specific fluorescent protein during one experiment were typ-
ically very similar for different microcolonies (Fig. 3.2B and 3.3B, lines of same color),
with the only exception potentially mCherry. This similarity supported for example the
above conclusion that R, of mCerulean and mCherry, which were measured on the
same day (Fig. 3.2B, black lines), were indeed different. The variation between results
from different days was larger: While the broad features were conserved, the maximum
correlation could change (Rp, of GFPmut2 in Fig. 3.2B) as could the time lag (Rg, of
mCherry in Fig. 3.3B). Therefore, when a precise comparison of more detailed features
is important it is advisable to measure the relevant strains simultaneously in one exper-
iment.

The last point we checked was whether time lags (7 < 0) of the peak in Ry, hinted
towards slow maturation times (Fig. 3.2). Both Ceruleans, GFPmut2 and mVenus were
symmetric or even slightly biased towards 7 > 0. This suggests that they mature fast com-
pared to our time resolution (=15min between data points in Fig. 3.2) and are suitable to
detect biological delays of that order and larger. Unfortunately, an analog interpretation
of mCherry and mKate2 was not possible due to the absence of a correlation peak. This
was surprising for mCherry because for different constructs (e.g. L31 and Icd fusion) it
had regularly produced a spurious delay, which can also be seen in work of the Elowitz
group (Fig. 4A,B in [107]). A reason might be the sensitivity of such delayed correla-
tions: If production and growth are only weakly correlated (as for Pyys ), then the delayed
correlation should be even weaker because any other random fluctuation which occurs
during the delay will decrease the correlation. If randomization is strong enough it could
be that no delayed correlation is left and that Ry, is approximately zero. Summarized,
the Ry, cross-correlations could hint towards a slower maturation time of mCherry and
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mKate2, but the results are not very clear.

3.6. MATURATION TIME EXPERIMENTS

3.6.1. EXPERIMENT, ANALYSIS AND RESULTS

We directly determined maturation times for two fluorescent proteins, GFPmut2 and
mCherry [56]. Cells were grown in a flow cell [44] on minimal medium containing 0.1%
lactulose and 200 uM IPTG. We here describe the setup briefly, for further details see
[44]: Similar to the static gel pad experiments, cells were applied onto a glass slide and
covered with a, now thinner, polyacrylamide membrane. Instead of a microscope slide,
a PDMS with an open channel on the bottom side was used to close the sample on top.
The channel had two exits (punched holes) at the beginning and end. One exist was
connected to a medium reservoir (filled syringe) via tubing, the other was connected
to a waste bin. A pump flushed medium at constant speed from the reservoir through
the channel. From the channel it diffused through the membrane to reach the cells. A
valve was located before the PDMS and allowed to switch between different medium
reservoirs.

When cells had grown into microcolonies of size 10-20, the medium was switched
and a high concentration of the translationally inhibiting antibiotic chloramphenicol
(=100x minimal inhibitory concentration MIC) was added. Such a high antibiotic con-
centration immediately blocked protein production and growth, once cells were exposed.
The remaining increase of total fluorescence is due to maturation of the already trans-
lated but still immature fluorescent proteins (Fig. 3.4). Following [109], we fitted the
maturation curve with the function

M(t) = Mo+ Ip (1— e~ "/Tmar) 3.1)

Here, M(t) is the amount of mature fluorescent proteins at time t, My and I, are the
amounts of mature and immature proteins at the time of antibiotics addition, ¢ is the
time since addition of antibiotics and 7,,,; is the maturation time. The amount of ma-
ture proteins is measured in arbitrary fluorescent units. In practice, frequent illumina-
tion, which is necessary for high time resolution, led to bleaching of fluorescent proteins
(see also section 3.7). Thus, the increase in fluorescence due to maturation is overlaid
with a decrease due to bleaching. We therefore fitted an exponential decay function to
the bleaching-dominated data at large times after the switch, extracted a bleaching rate
and corrected fluorescence values with that rate. The fluorescence trace of each cell and
its progeny was then fitted with the above maturation function. Averaging these rates
resulted in the fitted maturation times 4.7 + 0.5 min for GFPmut2 and 14.0 + 2.4 min for
mCherry (mean + standard deviation). These numbers are in agreement with previously
published data [97, 102, 110].

3.6.2. POSSIBLE ISSUES

There are some uncertainties concerning the determination of maturation times which
we discuss here: First, after a medium switch the cells were not immediately exposed
to antibiotics because the new medium first had to reach the PDMS channel (=2 min),
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Figure 3.4: Determination of maturation times of GFPmut2 (A) and mCherry (B) . Cells were
grown in a flow cell in minimal medium and a high concentration of antibiotics was added at the
time indicated (black line). Protein production stopped and remaining increase of fluorescence
is due to maturation. The bleaching-corrected curves were fitted by a saturating exponential, see
main text. Each figure displays the total fluorescence time traces of three representative cells and
their progeny.

and diffuse through the membrane (=5 min in the absence of air bubbles). The onset
time of antibiotics therefore needed to be estimated and we defined it as the time of
growth cessation. However, excluding or including some data points at the edge of the
fit window led to some variation in fit time and especially could increase the maturation
time determined for mCherry. A decrease in that uncertainty could probably be achieved
by increasing switching speed between media. This could be done by using flow cells
with very thin membranes [111] to reduce diffusion time or by avoiding the membrane
and gluing cells with polylysine [88] to the surface. Whether the slightly toxic polylysine
interferes with protein dynamics would need to be tested.

Second, the maturation kinetics of mCherry are not perfectly understood but involve
two oxidation steps [94]. Therefore, a sigmoidal fit [112] might be a better choice com-
pared to an exponential fit. Our data does not allow to draw conclusions on the precise
shape of the maturation curve.

Third, maturation depends on oxygen. We and other groups [112] have indications
that differences in cellular metabolism, caused by changing growth medium or the used
strain, may affect maturation rates (see also chapter 7.3.1 and Fig. 7.9). Presumably, in-
ternal oxygen concentration is altered, which then affects the rate of oxidation. It also
cannot be excluded that external oxygen within the setup decreased over time. However,
we aimed to keep that concentration high by providing a large reservoir in the sample
chamber and using few cells. Taking all these points into account, we think that the de-
termined values of mCherry are not quite clear because of sensitivity to analysis methods
and might be larger. mCherry might therefore only be suitable for slow-growth experi-
ments. The potential dependence of maturation rate on the environment adds addi-
tional ambiguity. Contrary to that, GFPmut2 matured clearly fast. Therefore, we consid-
ered it suitable for our time-lapse experiments and used its cross-correlation functions
as a reference.
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3.7. PHOTOSTABILITY EXPERIMENTS

3.7.1. EXPERIMENT AND ANALYSIS

To measure photostability, we pregrew cells as described in chapter 2 and used M9 +
0.2mM uracil + 0.1% maltose as growth medium. On the next day, growth and protein
production was stopped by adding 1mg/ml of the translational inhibitor spectinomycin
(100-500x MIC). The acryl gel was immersed into medium with added antibiotics. Before
starting microscopy we waited for two hours to allow all fluorescent proteins to mature.
Then, the sample chamber was assembled as described in chapter 2, but cellular den-
sity was chosen higher (at least OD=0.2 or further concentrated by spinning down). We
searched for positions with ca 10-50 cells in the field of view, then acquired a phase con-
trast and fluorescence movie at maximum frequency (ca. 300 images/hour). Fluorescent
images were taken every loop with illumination time 200ms and refocusing was reduced
to every fifth loop to increase image frequency. After roughly 300 images fluorescent pro-
teins were sufficiently bleached and we restarted movie acquisition for a new position.

The cells were segmented and tracked and time dependent total fluorescence was
determined for each cell. We confirmed that choosing total fluorescence (sum of all
pixels) or fluorescence concentration did not have any influence on determined values.
As result we obtained for every cell a time-dependent total fluorescence curve F(t¢;m)
(Fig. 3.5A, fluorescent protein is mKate2). Here, t.,,, is the summed (cumulative) illu-
mination time experienced by a cell since the beginning of the experiment. We found
that the decay of individual fluorescence traces appeared deterministic and exponen-
tial but the decay rate seemed to vary widely for the same protein. The reason is that
the field of view is illuminated unevenly (Fig. 3.5B). Therefore, cells in the center (light
gray trajectories in Fig. 3.5A) were illuminated stronger and as consequence bleached
faster than cells located at the corners (dark gray trajectories). We corrected for the un-
even intensity by introducing effective illumination times which were proportional to
the locally applied light intensity. Since a microcolony in a growth experiment is typi-
cally located in the center quadrant of the chip (Fig. 3.5B white square), we normalized
to the average light intensity in that quadrant as “standard intensity”. Then, bleaching
curves of individual cells nicely collapsed (Fig. 3.5C), which could also be expected for a
photochemical (non-biological) process.

We fitted an exponential decay function

F(teum) = Fo -2 feum! Tur2 3.2)

to each trajectory. Here, T/, is the characteristic time after which half of the fluorescent
molecules have been bleached and Fy accounts for the initial fluorescence value. Using
the fitted Ty, of all cell trajectories, we then calculated mean and standard deviation of
half-times (red curve in Fig. 3.5C).

3.7.2. RESULTS

Applying this analysis to all tested fluorescent proteins we found that bleaching char-
acteristics were always well described by single exponential functions, which is a priori
not necessarily the case [72] (Fig. 3.5D). A double-exponential could not be excluded
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Figure 3.5: Bleaching curves of fluorescent proteins. (A) Total cellular fluorescence as a function
of integrated illumination time t.,,, for mKate2. Each trace is one cell and initial fluorescence
values are normalized to one. The decays appear single-exponential but with different time con-
stants. Brighter colored trajectories are from cells located more centrally in the field of view and
decay faster. (B) Distribution of illumination intensity on the camera chip in the red channel. The
illumination is uneven and strongest in the center. We normalized illumination by introducing ef-
fective illumination times which correspond to a theoretical illumination with a center-quadrant
intensity (white square). (C) After normalization, the bleaching curves nicely collapse onto one
curve. The red curve is obtained by averaging fitted decay rate and initial value of all cells. (D)
Same as (C) but for all other proteins tested. All curves can be fitted with single-exponentials. The
collapse of data for green and cyan proteins can be improved by normalizing not with the first
(noisy) fluorescence value but a later value. The large standard deviations for cyan variants could
be due to insufficient correction for uneven illumination. (E) Average bleaching curves of all tested
fluorophores. T/, of the Cerulean versions are not significantly different (Table 3.2). Data sizes
are given in caption of Table 3.2.

for e.g. GFP and mCherry traces. We found that photostability varied widely for dif-
ferent fluorescent proteins [72] and T}/, ranged from ca. 3 seconds for mVenus to >20
seconds for both Cerulean variants (Fig. 3.5D,E and Table 3.2). To estimate the im-
pact of bleaching in time-lapse experiments, we calculated for typical experimental set-
tings the fraction of bleached proteins within one cell-cycle (6 images with 100ms il-
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Fraction bleached | Relative signal

Fraction bleached | Per cell-cycle intensity
Fluorescent | Half-time 7/, [sec] | per cell-cycle (adjusted (identical
protein (mean + stddev) (6-100ms) illum. times) illum. times)
mCerulean | 23.7 +4.2 1.7% 1.7% (100ms) 1
Cerulean2.0 | 31.9+6.1 1.3% 1.3% (100ms) 1
GFPmut2 179+ 1.7 2.3% 0.7% (28ms) 3.5
mVenus 3.4+0.3 11.6% 1.9% (15ms) 6.5
mCherry 9.7+1.1 4.2% 0.9% (21ms) 4.9
mKate2 8.5+0.5 4.8% 1.1% (22ms) 4.6

Table 3.2: Bleaching rates of fluorescent proteins. T/, is the time after which fluorescence in-
tensity has decreased to 1/2. Mean and standard deviation were obtained from the distribution of
fitted individual exponential decay functions to each cell. The fraction of proteins (present at cell
birth) which are bleached throughout one cell cycle was estimated in two ways: First, acquisition
of six images with 100ms illumination time. Second, acquisition of six images but adjustment of il-
lumination times such that each fluorophore has the same signal strength above background (see
right column). Illumination for mCerulean was kept constant and the illumination times for other
colors were adjusted accordingly. Then, the unstable but bright mVenus performs similarly well
as other colors. Right column: Measured signal intensity above background for identical illumi-
nation times, normalized to mCerulean intensity. Number of measured cells: mCerulean: n=22,
Cerulean2.0: n=56, GFPmut2: n=33, mVenus: n=28, mCherry: n=35, mKate2: n=46. We note that
the GFP filter transmits less light, resulting in an apparent larger photostability. Using the more
modern 49002 filter (Chroma) would increase bleaching rate of GFP by very roughly 50%. That ef-
fect would be overcompensated by shorter required illumination times, resulting in even smaller
bleaching for a given signal-to-noise ratio.

lumination each, Table 3.2). With these settings, the fraction of initially present pro-
teins that would be bleached after one cell cycle ranged from <2% (both Cerulean ver-
sions) to >10% (mVenus). However, these values are biased because the much brighter
mVenus needs to be illuminated shorter than e.g. mCerulean to obtain the same signal
to noise ratio. Therefore, we next adjusted example illumination times such that all pro-
teins would be imaged with approximately the same signal-to-noise ratio as mCerulean.
Then, the different proteins were bleached by much more similar factors (each <2%), and
GFP was bleached the least. Obviously, increasing illumination times would increase the
fraction of bleached proteins. To assess the relevance of bleaching in a time-lapse ex-
periment, the bleached fraction needs to be compared to the 100% increase of proteins
within one cell cycle (doubling of size). Therefore, 2% is a small loss and all fluorescent
proteins can be considered suitable for time-lapse imaging. However, for longer illumi-
nation times, which are needed for low-copy proteins, bleaching can become substantial
and should be corrected for during analysis.

Importantly, the determined bleaching rates are to some extent specific to the setup
used, especially the light source and filters. Different Xenon lamps will probably produce
similar bleaching characteristics. But a different source than a Xenon lamp, for exam-
ple a higher-intensity laser illumination, can result in substantially different bleaching
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curves [72]. The choice of filter determines the excitation intensity and how much of
the emitted light is detected. A better filter (higher transmission of desired wavelengths)
increases the bleaching rate per second but it decreases the required illumination time
for a given signal-to-noise ratio. The net effect is a reduction in photobleaching. While
our cyan, yellow and red filters belong to the best filters available, the gfp filter could be
upgraded to decrease bleaching of GFP proteins even further, if necessary.

3.7.3. ANOTE ON FLUOROPHORE BRIGHTNESS

We used the signal intensities from the beginning of the bleaching experiment to com-
pare apparent brightness of different proteins in our setup. For medium-high expres-
sion (e.g. promoter Pyys5 , induced Py, ) all tested colors were by far sufficiently bright
and brightness is then not a relevant selection criterion. For low expression, however,
brighter proteins are advantageous because illumination times can be kept shorter. The
signal intensity should then also be compared to cellular autofluorescence: Autofluo-
rescence is highest at short wavelengths (cyan) and almost not detectable at long wave-
lengths (red).

We here only focus on the measured signal intensity on the camera chip, which is the
final result of many contributing factors: intrinsic fluorophore brightness, the excitation
spectrum and intensity of the lamp, filter spectra, camera sensitivity in the specific wave-
length range and expression efficiency of a specific protein. Here, intrinsic fluorophore
brightness is defined as the product of extinction coefficient and quantum yield and de-
scribes the efficiency of a protein to absorb and re-emit a photon. As summarized in
[72], mVenus is the intrinsically brightest protein, usually followed by green, cyan and
red proteins.

Assuming similar expression efficiency we found that mVenus yielded the highest
signal intensity in our setup (Table 3.2, right column). It was followed by mKate2 and
mCherry, then GFPmut2 and finally both similarly bright Cerulean versions (however
other experiments indicated that Cerulean2.0 might be brighter). As mentioned, de-
tected GFP brightness could be increased by exchanging the filter. The red emitting pro-
teins were quite bright and could be suitable for low expression due to the almost ab-
sence of autofluorescence in the red range. However, their slow maturation (see above)
renders them less suitable for some time-lapse experiments. We note that expression ef-
ficiency can change for different reporters and constructs. Therefore, these recommen-
dations should provide a good start for designing constructs but in some cases bright-
ness might need to be tested for the individual case.

3.8. CONCLUSIONS

To conclude, we found that the proteins mVenus, GFPmut2 and mCerulean (and likely
Cerulean2.0) produced similar and reproducible cross-correlations between expression
and growth rate. Cross-correlations of the red emitting proteins mCherry and mKate2
appeared less well defined and less reproducible and therefore these proteins were less
suitable in the tested conditions. Photostability of all measured proteins was sufficiently
high and rather comparable when adjusting for relative signal brightness. But if pho-
tostability needs to be optimized, for example because of long illumination times, then
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GFPmut2 was the most stable protein for a fixed signal intensity. When high brightness
for a fixed illumination time is important mVenus was the best choice. The red proteins
are both rather photostable and bright (plus absence of red autofluorescence) and are
therefore good choices when dynamics are of less importance.

GFPmut2 is probably the most suitable protein for a single-label strain: It produces
good cross-correlations, matures fast (directly measured), has sufficient brightness and
high photostability. However, in a dual-color strain it could only be combined with
red emitting proteins, which appear less suitable. Before the beginning of this char-
acterization study, we had measured GFPmut2 & mCherry dual-label strains in some
experiments (chapter 6). We found that in slow growth conditions the results for cross-
correlations were reasonable. For double-label experiments, the best choice appears to
be a combination of mVenus and mCerulean or Cerulean2.0. They are similarly good
as GFPmut2, except for lower photostability of mVenus (which is likely of little impor-
tance) and dimmer fluorescence of Cerulean. At the beginning of designing a new re-
porter strain one should consider whether a second fluorescent protein might need to be
added later. Then, it is always the best choice to start with cloning mVenus (or Cerulean)
instead of GFPmut2. One note of caution needs to be added: Cerulean is excited at short
wave lengths and while we observed constant growth rate at short illumination times
(=70ms), some cells grew slower at the end of the experiment for longer illumination
(=200ms). Compared to other fluorophores, Cerulean also requires relatively long illu-
mination times (Table 3.2) and cells display significant autofluorescence in this spectral
range. Therefore, it may be advisable to use mVenus for low-copy proteins and, in a dual-
label strain, Cerulean for the more abundant proteins (for which shorter illumination is
sufficient). To close, the results presented here should be seen as general guidelines for
selecting fluorescent proteins. They cannot make testing fusion functionality or growth
burden on the individual construct basis superfluous.

The experiments on cross-correlations in this chapter were performed jointly by Martijn Wehrens
and the author.







INTERDEPENDENCE OF GENE
EXPRESSION AND GROWTH RATE
FLUCTUATIONS IN BACTERIA

Fluctuations in gene expression and growth rate of single cells can have important con-
sequences for cellular function and fitness. While average gene expression and growth
rates obtained in different environments are coupled, it is not known how their fluctua-
tions (noise) are related, nor whether different environments play a role in that relation.
To study this question, we use time-lapse microscopy and measure growth and expression
fluctuations of E. coli cells at various mean growth rates, two different expression levels
and with different promoters. We find that while growth and expression fluctuations are
modestly correlated (0 < R<0.5), the intensities of growth and expression noise are strongly
correlated (R > 0.9) and scale linearly. Noise intensities typically decrease with increasing
average growth rate. Datasets with increased noise levels, that deviated from this trend,
still displayed the same scaling between noise intensities. By measuring expression of two
protein reporters under identical control, we show that global (extrinsic) noise increases
around six times stronger with increasing growth noise than local (intrinsic) noise, but
the dependence of the latter is not negligible. We further develop a linear noise model and
show that fluctuations in a cell can be described by a set of independent noise sources,
whose intensity is, remarkably, set jointly by one global parameter. This model can predict
changes occurring upon a decrease in expression level and explain the different expression
noise observed in transiently faster or slower growing cells. These results are a step towards
a better understanding of the structure of cellular noise.
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4.1. INTRODUCTION

On the single-cell level, variability in genetically identical cells exposed to the same en-
vironment is ubiquitous: the expression of genes displays random fluctuations in time
(noise) [5-8, 113], which has important consequences for signal transmission fidelity
and cellular phenotype [9, 11, 12, 15, 26, 27, 114]. The growth rate of cells also fluctu-
ates in a constant environment, which may have direct consequences for cellular fitness
[32, 56, 115]. Average gene expression in a population of cells was found to depend on its
average growth rate, when measured in different steady states [1, 116-118]. Since cellu-
lar growth rate reflects the production of biomass, of which a major fraction are proteins,
also fluctuations in expression and growth rate should not be separate phenomena, but
must be inherently connected. However, how they are related remains incompletely un-
derstood.

Gene expression noise is thought to be the result of many effectors such as stochas-
ticity of biochemical reactions, fluctuations in concentration of RNA polymerase, ribo-
somes or transcription factors, as well as progression through the cell cycle [5, 7, 16,
119, 120]. Expression noise was found to be inversely related to average expression level
[6, 21] and, in yeast, to be negatively correlated with average growth rate [121]. For the
latter, a major cause was shown to be a changing distribution in a population of cells
into different cell-cycle stages [121]. Growth fluctuations may have many origins, among
which are fluctuations in concentration of limiting enzymes [56]. It was shown that these
fluctuations can propagate forward through metabolic pathways and cause growth fluc-
tuations, and that growth fluctuations can in turn propagate back again to affect enzyme
concentration. Growth noise may be dependent on the environment as well [56, 115]. In
this study, we aim to address the question how the fluctuations in these two important
cellular outputs, expression of proteins and volume growth, are related and how changes
in one may be connected to changes in the other.

To this end, we measure growth end expression fluctuations of hundreds of E. coli
cells using time-lapse microscopy. By growing cells on various carbon sources, we ex-
plore a wide range of average growth rates, which we find to affect noise intensities. Ad-
ditionally, we measure gene expression from different promoters and at two induction
levels. We find that the intensities of gene expression and growth noise are strongly cor-
related, they scale linearly and typically depend inversely on the average growth rate.
In contrast to that, fluctuating expression and growth time traces are only modestly
correlated. The correlation coefficient of the fluctuations is found to be a unique and
non-linear function of the intensity of growth noise. We then use a dual-reporter strain
that expresses two protein reporters under control of identical promoters to separate
global (extrinsic) and local (intrinsic) expression fluctuations. Extrinsic noise is found
to increase around six times stronger with increasing growth noise than intrinsic noise,
but the dependence of the latter is not negligible. We further show that a linear noise
model can describe our results and predict the effects of changing average expression
level. A central result of modeling is that the magnitudes of different sources of cellu-
lar noise vary jointly and can thus be described by using only one global noise intensity
parameter. We further find that in a population of cells, bacteria that transiently grow
faster due to stochastic variations, display lower expression noise levels. Finally, we show
that growth fluctuations are mostly only coupled to extrinsic expression fluctuations but
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hardly to intrinsic fluctuations. These results contribute to a better understanding of
systems-level properties of cellular noise, including inherent constraints and relations
between different sources of noise. In the long term, this may contribute to better un-
derstanding and predicting bacterial behavior.

4.2. RESULTS

4.2.1. EXPRESSION AND GROWTH FLUCTUATIONS DEPEND ON THE GROWTH
MEDIUM.

To study growth and expression fluctuations, we acquired time-lapse movies of E. coli
cells as they grew into microcolonies of several hundred cells (Methods 4.4). We supplied
one of various carbon sources to explore different growth rates. By using automated im-
age analysis and cell length measurement, we determined instantaneous growth rate
1(#) of individual cells at sub-cell-cycle resolution. We measured the rate of gene ex-
pression Y (#) with a chromosomally encoded fluorescent protein (YFP) under control
of a Pjoc promoter (Fig. 4.1A) [7]. Expression rate fluctuates quasi-periodically due to
gene duplication during cell-cycle progression [119], and growth rate typically displays
quasi-periodic fluctuations as well. We subtracted these cell-cycle trends in both pro-
tein production rate and growth rate (chapter 2.3.4). Explicit notation of time depen-
dence will be omitted and we will write u and Y. We found that both protein expression
and growth rate fluctuated over time (Fig. 4.1B,C) [56]. To quantify these fluctuations
and their interrelation, we determined their noise intensity nft and 172Y and correlation
R(Y, 1) . Noise intensity was defined as variance divided by the squared mean (o/u?,
which is the squared coefficient of variation CV?). Fluctuations in protein expression
and growth rate were positively correlated (Fig. 4.1D and 4.6, ref. [56]) and therefore tem-
porarily faster growing cells produced on average more proteins (Fig. 4.1D and 4.7).

To understand what factors determine the relation between growth and expression
fluctuations, we aimed to alter the cellular noise by growing cells under different con-
ditions. We used different carbon sources that resulted in growth rates from 0.2 to 1.8
dbl/hr, as well as two different induction conditions resulting in either high or low ex-
pression levels. Additionally, we measured expression fluctuations from different, con-
stitutive promoters (P) , Pnos ) (see Methods 4.4 and Fig. 4.1E). We indeed found that the
noise properties were significantly affected. The intensity of growth noise varied largely,
ranging from around 0.01 to 0.09, and expression noise varied from 0.08 to 1.6 and was
inversely dependent on average expression rate [6, 8, 19, 21]. The correlation R(Y, 1)
was also affected, and ranged from 0 to around 0.5 (Table 4.1). Finally, we surmised that
the noise intensity could be affected by using high fluorescence illumination exposure
times, as this is known to result in oxidative stress and reduced mean growth rates [122].
Indeed we found that the noise intensities increased under these conditions (Fig. 4.1E).
Thus, both the expression and growth noise depended strongly on the growth condi-
tions.
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Figure 4.1: Fluctuating growth rate and protein production rate, as well as their noise intensity
and correlation. (A) Reporter strain and adjustable parameters. Expression of the fluorescent re-
porter YFP is controlled by a Pj,. promoter. A second reporter (CFP) under control of an identical
copy of the P}, promoter is needed for later analysis. Lacl proteins repress expression but can be
deactivated by addition of the gratuitous inducer Iptg. The environment and thus growth rate is
changed by altering the supplied carbon source. (B) Time traces of fluctuating YFP expression rate
and (C) growth rate for growth on acetate in the presence of Iptg (u=0.2dbl/hr, column (1) in (E) ).
Three example lineages are highlighted. The black bar denotes the average interdivision time. (D)
Correlation of protein production rate and growth rate for growth on maltose in the presence of
Iptg (u=0.6dbl/hr, R=0.28, column (2) in (E) ). Variables are normalized by their mean. The line de-
notes the conditional expectation (Y'|u), that is the average production rate for a given growth rate,
and was obtained with kernel density estimate (Methods section 4.4.2). Error bars are standard er-
ror of the mean (SEM), displayed for a subset of data points, and were obtained by bootstrapping
(Methods). (E) Noise intensity and correlation of expression and growth fluctuations for multiple
tested environments. For coloring, 17,21 and R(Y,u) values were normalized by the maximum of
each row. For n%,, which varies over a large range, 0.6 - max was used for normalization, therefore
n%, in (5) and (6) is saturated on the used color scale (displayed in white). Growth media: (1),(5)
M9+0.18% acetate (u=0.2-0.3dbl/hr), (2),(6) M9+0.1%maltose (u=~0.6dbl/hr), (3) M9+0.1%lactose
(u=0.6dbl/hr), (4),(7) EZ defined rich + 0.2%glycerol (u~1.8dbl/hr). To reach high expression in
(1),(2),(4), 200 uM Iptg was added (induction in (3) directly by lactose). For definition of high and
low expression, see Methods 4.4. Additional experiments: (8) M9+0.1%maltose+200uM Iptg with
high illumination intensity that leads to a decrease in growth rate and hence is toxic to the cell,
(9) M9+0.1%maltose and strong, constitutive P -promoter, (10) M9+0.1%lactose and constitutive
Pn2s5-GFP (expression rate here also denoted with Y). Replicates are not displayed in this overview.
For values, see Table 4.1.

4.2.2. EXPRESSION AND GROWTH NOISE INTENSITY ARE STRONGLY COR-
RELATED AND SCALE LINEARLY.

We found that ni and nzy typically decreased with increasing average growth rate (Fig. 4.8)
[56, 115, 121]. Thus, (u) was in general a fairly good predictor for expression and growth



4.2. RESULTS 47

noise. Some datasets, however, did not follow this trend (Fig. 4.1E, and Fig. 4.8 gray
and dark blue symbols). Therefore, we next tested whether growth and expression noise
might be more directly related to each other by plotting expression noise intensity against
growth noise intensity (Fig. 4.2A). We first focused on experiments with high expression
(induced Pj,. and constitutive promoters; for classification, see Methods 4.4). Surpris-
ingly, the expression and growth noise intensities collapsed onto one single line. Indeed,
the data displayed a high correlation coefficient of 0.94. That means that expression
noise and growth noise intensity determined each other. The data points from the con-
stitutively expressed proteins also obeyed the scaling (Fig. 4.2A, square and diamond
symbols), suggesting that the scaling is independent of the specific promoter used. This
observation was notable for two reasons: First, one could reason that the scaling be-
tween the noise intensities is explained by the observed correlations between the growth
and expression signals (Fig 4.1D, Fig. 4.6), which reflect the fact that faster growing cells
also produce proteins faster. However, these correlations were small (0 < R<0.5) in com-
parison to the ones observed here, which shows that they cannot directly explain the
observed scaling. Second, the linearity of the relation is noteworthy. Many cellular com-
ponents are required for growth and thus growth fluctuations may result from a complex
combination of their fluctuations. This could affect the resulting noise, lead to buffering
or enhancement and, for example, have led to a more complex nonlinear relation be-
tween growth and expression noise.

To better understand the origins of the scaling, we decomposed noise in protein ex-
pression further: Fluctuations in gene expression can be separated into two elementary
categories, “extrinsic” and “intrinsic” noise [7, 19]. Extrinsic noise refers to fluctuations
that affect multiple genes simultaneously, and are thought to arise from variation in the
concentration of transcription factors, ribosomes, etc. Intrinsic noise refers to fluctu-
ations that affect one particular gene, which are thought to arise from stochasticity of
chemical reactions. Because these noise types are fundamentally different, we wondered
whether they would relate differently to growth noise. Hence we measured expression
C from a second, chromosomally encoded, fluorescent reporter gene (cfp), addition-
ally to YFP expression (Fig. 4.1A). Both genes were under control of Pj,. -promoters (or
P, -promoters) and located equidistant to the origin of replication [7]. Then, joint fluc-
tuations in protein expression rate determine extrinsic noise n%_,, , while differences
in fluctuations determine intrinsic noise r]? ir - Mathematically, this can be written as
[7,19]:

2 _ Cov(y,Q) 2 Var(Y-0)
Texr = Zoyyey T T oo

Angular brackets denote averaging over all data points (time points and cells). The sum
of both noise terms equals total expression noise:

4.1)

2 2 2
TIE:nextr+77intr . (42)

Here, E denotes expression rate (either Y or C). Consistently, the noise properties of the
C signal were similar to those of the Y signal (Table 4.1).

We found that both extrinsic and intrinsic noise increased linearly with growth noise,
with the extrinsic noise showing a strong and the intrinsic noise showing a weak depen-
dence (Fig. 4.2B). The dependence on growth noise, as quantified by the slopes of linear
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Figure 4.2: Linear scaling of noise intensities. (A) Total expression noise and (B) extrinsic resp.
intrinsic noise in dependence of growth noise. Lines are linear fits of the model. “High E” in the
legend refers to high expression level (extrinsic noise dominant). 17% is the average of the very
similar 17%, and 772C . Growth of cells expressing YFP from Pj promoters (gray squares) was variable
and sensitive to preparation steps. This produced differences in noise between replicates, which
could be used to explore a larger range of noise intensities. (C) Linear noise model. Specific and
common noise sources (circles) act on the observables Y, C and pu (squares). Np can not only
include transcription factors but also components relevant for the expression of all proteins, such
as amino acid or RNA polymerase concentration. Noise sources vary in intensity (except for Ng)
and can additionally have a constant-intensity noise floor. Shared noise sources can transmit to
connected observables with different efficiencies. For full model description, see appendix 4.5.1
and Fig. 4.9A. (D) Magnitude of different noise sources vary jointly and can thus be described by
only one shared parameter.

fits, was around six times stronger for extrinsic noise than for intrinsic noise. The cor-
relations were strong in both cases (0.96 and 0.81, respectively). This suggested that the
intensity of extrinsic expression noise sources is strongly correlated with the intensity of
sources of growth noise. The fact that the extrinsic noise depends more strongly on the
growth noise than the intrinsic noise may be expected, as factors that cause fluctuations
in growth rate should reflect a global property of the cellular state and thus should affect
both genes. Consistently, the intrinsic noise depends only weakly. However, having a de-
pendence is notable, as intrinsic noise is often considered to be purely local and hence
not correlated with other cellular processes. It could suggest that local stochastic events
do also depend on fluctuating concentrations of global factors, or that the two seemingly
identical genes respond differently to global noise sources.
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4.2.3. ONE GLOBAL PARAMETER SETS THE INTENSITY OF DIFFERENT CEL-
LULAR NOISE SOURCES.

The linear relations between expression noise and growth noise suggested that the data
could be explained by a model in which noise sources couple linearly to expression and
growth. If so, such a model could also show which constraints the data imposes on such
models. We thus developed a linear noise model that contained different independent
sources of noise, which can either act on one observable only or on multiple observables
simultaneously (Fig. 4.2C) [6, 27, 56]. For the latter, we distinguished between global
fluctuations and fluctuations only affecting protein expression (which could for example
be amino acid concentration or transcription factors). Fluctuations from sources that act
on two or more observables cause correlations between them. For details on the model,
see appendix 4.5.1.

A priori, the intensity of different noise sources may be either constant or depend on
the environment, but together, they should reproduce the environment-dependence of
growth and expression noise. To determine which sources vary and how they vary, we
fit the model to the experimental data. As an example, consider the implications of a
varying intensity of global noise, (Né) . Then, the growth noise, as well as the covariance
Cov(Y, 1), would change linearly with <Né) . As consequence, the covariance should be
a linearly increasing function of growth noise (see eq. 4.16). Indeed, the experimental
Cov(Y, u) plotted against ni collapsed onto an increasing line (Fig. 4.10A), thus support-
ing the structure of the linear noise model, and the intensity-variation of the global noise
source.

Using similar arguments, we found that the intensity of almost all noise sources
changed with the environment. We only keep the growth-specific noise <N§> constant
as it is not constrained by the data. Several noise sources possessed, additionally to the
intensity-varying contribution, a non-zero noise floor of constant intensity. This sug-
gested the existence of a minimum noise limit in cells, and was visible as vertical and
horizontal shifts in the linear noise relations (Fig. 4.2A,B, 4.9B, appendix 4.5.1). Surpris-
ingly, the variation in noise intensities is concerted, meaning that doubling the intensity
(above the noise floor) of one noise source is accompanied by a doubling of intensity
of all other noise sources (Fig. 4.2D). Therefore, the changes in all noise sources could
be described by one parameter. This parameter quantifies the amount of “chaos” in the
cell. For a detailed reasoning why noise intensities are coupled and why simpler models
would not capture the data, we refer the reader to the appendix 4.5.1 (see also Fig. 4.9).

4.2.4. NOISE AT LOW EXPRESSION LEVEL SCALES DIFFERENTLY BUT LIN-
EARLY, WHICH CONFIRMS THE MODEL.

To test for the generality of the model, we investigated whether it could explain changes
occurring upon a decrease in gene expression level. Therefore, we grew cells in the
absence of Iptg, which decreased expression rate from the Pj,. -promoters by a factor
of = 30. Consequently, expression noise increased roughly by a factor of eight, with
the main contributor being an increase in intrinsic noise (Table 4.1, see also Fig. 4.1E)
[6, 19, 21]. Unexpectedly, also extrinsic noise increased significantly (around 5-fold),
resulting in a significant contribution of both noise categories to expression noise (Ta-
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Figure 4.3: Influence of mean expression rate on scaling properties. Colored triangles: low ex-
pression, color code for growth media as in Fig. 4.2; gray symbols: high expression (taken from
Fig. 4.10A and Fig. 4.2A,B). (A) Cov(Y, ) in dependence of T]i . Global noise, (Né) , determines
the slope of the line and is independent of expression level. (B) nixtr in dependence of ni . Pro-
tein expression noise (IV: 1?_,) mostly determines line characteristics (slope and intercept) and is thus
increased. (C) 17%” i in dependence of ni . Local noise sources are strongly increased. In (C) , the
orange data point (growth on acetate, u=0.2dbl/hr) was excluded from the fit because the low im-
age acquisition frequency (every 36min, due to the low growth rate) likely missed part of the fast

intrinsic fluctuations [5] and therefore underestimated n?n P,

ble 4.1). The increase in extrinsic noise is for example visible as simultaneous bursting
in Y and C expression rate (Fig. 4.11). It suggests that, next to stochastic (un)binding
events of repressor molecules [8, 113], also the concentration of repressors significantly
affects gene expression noise [7].

The model predicts that the Cov (Y, u) should still obey the same scaling (Fig. 4.10A)
at these lower expression levels, as this covariance is determined by Ng, while changes
in induction of a gratuitous protein should affect only Np, Ny and N¢. This was indeed
the case for our experimental data (Fig. 4.3A, Fig. 4.10C).

Second, the experimental data showed that intrinsic noise strongly increased at low
expression. Within the model, this corresponds mainly to an increase in Ny and Nc.
Growth and expression noise intensity should again display a linear relation, but now
being steeper and potentially upshifted, depending on whether the part of the noise
source with varying intensity or the noise floor is changed (appendix 4.5.1). Third, the
measured increase in extrinsic noise implies an increase in Np. As a result, the extrinsic
noise as function of growth noise is expected to increase in steepness (and potentially
offset), but less extreme. Indeed, we found that the experimental data followed exactly
that prediction and collapsed onto steeper lines (Fig. 4.3B,C). Overall, these correspon-
dences between model and data supported the structure of the model.

4.2.5. CORRELATION BETWEEN GROWTH AND EXPRESSION FLUCTUATIONS
DEPENDS ON THEIR NOISE INTENSITIES.

We showed that noise intensities of growth and expression fluctuations are strongly cor-
related (R = 0.94), but that at the same time the fluctuations themselves are modestly
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Figure 4.4: Correlation of fluctuations. (A) R(Y, 1) in dependence of growth noise. Black curve:
Calculated relation using the line fits of the model (eq. 4.22). Numbers refer to figures of corre-
sponding scatter plots. Color code and symbols as in Fig. 4.2. (B) Coupling of growth fluctuations
to extrinsic and intrinsic fluctuations. Subsets with fastest (slowest) growth rates are colored in
green (red), and their averages are marked as diamonds. Data size is 5% of all data for each sub-
set. (Gray box) Scattering of data points along indicated directions is a measure for extrinsic and
intrinsic noise. Expression rates were normalized by their average.

correlated (0 < R < 0.53). To better understand this apparent contradiction, we turned
to the model. When plotting the correlation R(Y, u) against growth noise, we found that
data points followed a monotonously increasing non-linear curve (Fig. 4.4A). Thus, the
larger the fluctuations in a cell, the more strongly growth and expression fluctuations

are also coupled. Because correlation is defined as R(Y, ) = Cov(Y, )/ /n%,ni, its de-

pendence on growth noise can be readily computed from the line fits for Cov (Y, p), n%, ,
and 77%1 by the model (Fig. 4.4A, black line; eq. 4.22 in appendix). The rather small R(Y, y)
can be explained with the structure of the model noise sources: Only the global noise
source Ng causes correlations in growth and expression fluctuations, while all other, in-
dependent noise sources cause incoherent fluctuations, thus limiting the correlation. In
the low-noise limit, which is for example realized in rich growth medium, Ng vanishes,
which results in uncorrelated fluctuations of growth and gene expression (because other
noise sources do not vanish, see appendix 4.5.1). Using the analytical expression for the
curve (eq. 4.22), we found that the correlation increases linearly with growth noise for
low noise intensities (Fig. 4.4A). Interestingly, in the high-noise regime the correlation
saturates at = 0.6, that is, significantly below one. Thus, the model suggests the exis-
tence of a limit for correlations R(Y, 1) that cannot be exceeded in cells.

We wondered to what extent the growth fluctuations are coupled specifically to ex-
trinsic, respectively intrinsic, expression fluctuations. Since intrinsic noise is thought to
result only from stochastic fluctuations in local reactions, one would expect these fluc-
tuations to be independent of growth fluctuations. Indeed, when plotting two subsets
of cells with temporary higher or lower growth rate, we found that these clouds were
separated along the axis associated with extrinsic fluctuations (Fig. 4.4B, Fig. 4.12A-C).

The correlation between growth and extrinsic (intrinsic) expression fluctuations can-
not be quantified directly. The reason is that for individual data points it cannot be de-
termined what part of the fluctuation is extrinsic or intrinsic - only the noise intensities
M2y » 15, ) are experimentally accessible. Therefore, we used a (co)variance decom-
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position approach, which could separate the (accessible) expression noise into growth-
related and unrelated fluctuations [123-125]:

Noxer = Cov (Y1), (Clu)) +{(Cov (Y, Clp)) =0 pirp + Moerw (4.3)
Woner = 3Var (Y =Ow) + 3 (Var (Y =) =030 5 + Minery 4.4)

For convenience, Y, C, and p were here normalized to an average of one. The nota-
tion (...|y) indicates that the conditional average is calculated for a given growth rate.
Similarly, Cov (Y, C|u) and Var ((Y — C)|u) denote conditional covariance and variance.
Theoretically, variables need to be conditioned not only on current growth rate but its
full history [123, 124]. To test the relevance of history in this case, we compared con-
ditioning on only current growth rate to additionally considering one past growth data
point. The results were not affected and we therefore omitted growth rate history.

The first term in eq. 4.3 is the covariance “explained” by growth rate fluctuations (de-
noted nixtr‘ ) because all other sources of variability were already averaged out by the
inner brackets. Argumentation and notation for intrinsic noise are similar. Note that we
adopted the typically used terminology that growth rate “explains” expression noise, but
emphasize that this analysis concerns correlation, not causation.

By decomposing extrinsic expression noise (eq. 4.3), we found that growth fluctu-
ations coupled in part to extrinsic noise. The explained fraction, defined as Fex;rp =
nix (rE 2., ranged from 0 to 0.3 in the different experiments (Fig. 4.12D). To get a more
intuitive understanding for Fe;, g , we linearized eq. 4.3 and thus obtained a simple re-
lation between explained fraction and correlations (appendix 4.5.2):

R(Y,WR(C, )

Fextre = —R(Y %) . (4.5)

The fractions obtained with this linearized equation were the same as with the general
equation (Fig. 4.13A), which further supported our restriction to a linear noise model.

For intrinsic noise, we found that the coupling to growth fluctuations was close to
zero. However and unexpectedly, in several instances the explained fraction was, al-
though low, still significantly different from zero (Fig. 4.4B: fraction 0.030, p < 0.001,
Fig. 4.12C: fraction 0.026, p = 0.01. For p-value determination see Methods 4.4.2) The
reason is that Y expression coupled slightly stronger to growth fluctuations than C ex-
pression (Fig. 4.7, Table 4.2), and as a consequence the central term in intrinsic explained
noise, (Y — C)|u) (eq. 4.4), is non-zero. This means, that the measured intrinsic noise
is not only local noise, but a small fraction also results from different coupling to com-
mon noise sources (< 15%, see appendix 4.5.1). Biologically, the small difference in Y
and C expression fluctuations might be due to differences in local DNA accessibility (for
example influenced by fluctuations in expression frequency from adjacent genes) or dif-
ferences in the amino acid composition of the otherwise very similar proteins.

4.2.6. TRANSIENTLY FASTER GROWING CELLS DISPLAY LOWER EXPRESSION
NOISE.
While gene expression noise and growth noise were strongly correlated, expression noise

was also correlated to the mean growth rate, though less strongly (Fig. 4.8B). This de-
crease might be related to changes in chemical composition and operation of the cell,
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Figure 4.5: (A) Extrinsic noise and (B) intrinsic noise decrease with increasing growth rate.
Squares: Population averages (also plotted in Fig. 4.8B). Circles: Data of each population was
binned into five subsets according to growth rate. Black curves were calculated from the model.
Color code as in Fig. 4.2, replicates are shown in light gray. Expression noise decreases with in-
creasing growth rate for the different population averages, as well as for fluctuations within a mi-
crocolony.

availability of precursors or cell size. We wondered what the implications for expression
noise were when the growth rate changed spontaneously rather than due to altered ex-
ternal conditions. To this end, we binned the full dataset of a microcolony into subsets
with different growth rates and then determined expression noise for each subset. Note
that since growth rate fluctuates faster than the cell cycle [56], different data points of
the same cell may belong to different bins.

We found that within a microcolony, both extrinsic and intrinsic noise decreased
with increasing growth rate (Fig. 4.5). In other words, transiently faster growing cells dis-
played lower-than-average expression noise. Thus, the same qualitative trend for expres-
sion noise holds for different colony-average growth rates and random growth variations
within a colony (Fig. 4.5, squares, respectively circles). By applying our model (black
lines), we could explain the decrease in expression noise during random growth up-
fluctuations: Transiently faster growing cells produce on average more proteins, but the
model suggested that variance of expression is unaffected (appendix 4.5.1) and therefore
expression noise (variance divided by squared mean) is decreased.

On a quantitative level, differences between the various decreasing “expression noise
versus growth” functions (“7725 vs. ) could be discerned. The following argumentation
holds for both extrinsic and intrinsic noise individually, as well as for the total expres-
sion noise. First, the range of expression noise intensities covered in slowly growing
populations (orange circles) was much larger than at faster mean growth rate (green cir-
cles). In the model, the steepness of the 17% vs. ¢ curve depends positively on the mag-
nitude of the global noise source and thus positively on growth noise (appendix 4.5.1).
Since slower growing microcolonies typically displayed larger growth noise (Fig. 4.8A),
the rﬁ5 vs. p function decreased more steeply and thus a wider TﬁE range was covered.
Second, n% vs. 1 curves obtained from single-cell fluctuations did not collapse onto a
curve that connected the population averages. This has an interesting implication: Cells
that by chance grow at the same speed, but belong to different colonies with different
mean growth rates, are predicted to be distinguishable by their expression fluctuations.
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Expression noise intensity of the transiently faster growing cells (belonging to the colony
with low average growth) is predicted to be lower.

4.3. DISCUSSION AND CONCLUSIONS

We found that fluctuations in gene expression and growth rate are inherently related and
that their noise intensities scale linearly. For gene expression or metabolic networks that
contain well defined functional links, such a coupling and in that case even propagation
of fluctuations was previously shown [26, 27, 56]. Here, we found that noise in different
cellular parameters is generically connected, also in the absence of a direct causal link.

Noise intensities were strongly correlated, while fluctuations in gene expression and
growth were found to be only modestly correlated. This underlined the importance of
clearly distinguishing between fluctuating time traces and the magnitude of these fluc-
tuations. Our results implied that, in a model, cellular noise can be grouped into few
different noise sources that all fluctuate non-synchronously, but whose noise magni-
tudes vary jointly. Thus, one single parameter could describe the “level of chaos” in a
cell. Biologically, such a noise structure could for example arise when different path-
ways compete for the same limiting resources or enzymes [126, 127]. Up-fluctuations
in one flux could entail down-fluctuations in different pathways that require the same
biomolecules. Then, magnitude of such fluctuations may be coupled, while the up-
fluctuations themselves are not synchronous. Alternatively, de facto non-synchronous
noise sources could arise when consequences of different fluctuating components (ribo-
somes, ATP, ...) become apparent at variable time delays. For example, a random fluctu-
ation in amino acid pool may immediately affect protein expression (Np in the model),
which could then alter rates of biosynthetic fluxes at a delay (once enzyme concentra-
tions are significantly modified) [56]. If the latter affects growth and expression (Ng in
the model), both sources of fluctuations would be coupled but not in synchrony. It would
be interesting to experimentally test these proposed scenarios in future research.

Besides scaling, our results suggested the existence of a non-zero minimum noise
floor, which appears to be present even in the most favorable growth environment. This
would mean that reducing noise in cells even further is either not possible or would be
too costly. Indeed, theory studies showed that suppression of molecular fluctuations
is extremely costly [128] and that signaling accuracy is limited by the finite pool of re-
sources [129].

Noise intensities of growth and expression rate changed systematically with the envi-
ronment and typically decreased with increasing average growth rate. While this obser-
vation appears in line with recent results from yeast [121], we note that that study iden-
tified the varying fraction of cells in different cell-cycle stages (pre/post chromosome
replication) as major source of the changing noise level. This effect should be minor in
our data because we had subtracted the quasi-periodic cell-cycle trend from the protein
production rate. Subtracting the trend should cancel the effect of varying chromosomal
copy number at the beginning and end of a cell-cycle, at least to a significant extent. Be-
sides, the cell-cycle in yeast is structured differently than in bacteria, and possesses more
well defined distinct phases that display differences in gene expression patterns. Our re-
sults suggested that also other, unknown factors can cause an inverse relation between
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noise intensity and average growth rate.

In literature, growth noise was both reported to depend and be independent of av-
erage growth rate [32, 56, 115]. The reason for this discrepancy is not known but might
be a result of the different used strains. We would argue that since proteins are required
for cellular growth and protein noise is environment-dependent [56, 121], a scenario in
which growth noise changes as well is likely. Interestingly, whether noise in interdivision
times changes with mean growth rate [33] cannot be directly inferred from the depen-
dence of growth noise on mean growth rate [115]. Growth noise levels at lower average
growth rate might be increased due to the on average smaller size of cells [1], because in a
smaller volume the ability to average over molecular fluctuations is decreased [130]. Al-
ternatively, the risk of transiently experiencing shortages of required biomolecules (such
as amino acids) might be increased in poorer growth conditions since they are then
not provided with the medium. In addition, lower concentrations of for example RNA
polymerase at lower growth rates could increase extrinsic and intrinsic expression noise
[120, 121]. Extrinsic noise can also already be affected if only noise intensity but not
average concentration of RNA polymerase varies [120]. Intrinsic noise in particular may
also increase due to the on average lower number of chromosomal copies at slow growth
and therefore transcription from fewer gene copies [1]. We remind that growth rate de-
pendence of the average copy number per cell (averaged over a cell’s interdivision cycle)
is a different aspect than a changing partitioning of a population of cells into different
cell-cycle stages (measured at one time point) [121].

In our study, varying the average growth rate was predominantly a means to modify
noise intensities, and we found that the tight coupling of expression and growth rate
occurred actually on the level of noise intensities. Datasets with increased noise levels,
that deviated from the typical relation between noise intensities and average growth rate,
collapsed onto the same linear relation between growth and expression noise.

Both gene expression and growth noise can have important consequences for cel-
lular function, phenotype and fitness [9, 12, 15, 30]. However, many aspects of fluctua-
tions in these parameters are unknown. In particular, we know little about the molecular
mechanisms that underlie the coupling between these fluctuations, the effect of the en-
vironment on noise intensities, and possible constraints on the magnitude of the fluc-
tuations. Especially growth fluctuations have only recently been investigated, despite
their importance for cell proliferation. This study aimed to better understand some of
these inherent relations between fluctuations. Learning more about properties of cellu-
lar noise will help to better understand bacterial behavior. Active manipulation of noise
intensities [130] or noise transmission [56] would be an interesting next step.

4.4. MATERIALS AND METHODS

A detailed description of experiments and image analysis methods can be found in chap-
ter 2. Here, we focus on describing methods and analysis tools specific to this study and
only briefly summarize the common methods.
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4.4.1. EXPERIMENTS AND IMAGE ANALYSIS
BACTERIAL STRAINS

In the experiments we used three different strains, which are all derivatives of E. coli
strain MG1655. MG22 [7] contains the fluorescent genes yfp and cfp under control of
Pj,c promoters, located at intC and galK, which are at opposite halves of the chromo-
some and equidistant from the origin of replication. M22 [7] is the same as MG22, ex-
cept for that expression of yfp and cfp is controlled by strong constitutive P, promoters.
ASC659 contains gfp under control of a constitutive Pn25 promoter at the che location.
The strain was constructed using the Datsenko & Wanner protocol [58]. If not speci-
fied further, strain MG22 was used in the displayed plots, for example in scatter plots
(Fig. 4.1D, or 4.4B) and conditional expectation plots (Fig. 4.7).

Growth rate of different M22 cells varied, was sensitive to preparation steps and fluc-
tuations were typically large. Presumably, high noise levels are due to the strong ex-
pression of gratuitous proteins, which could unbalance metabolism. Since expression
of both reporters was strongly positively correlated, we excluded direct titration effects,
because competition for resources should decrease correlation between expression rates
of the proteins.

EXPERIMENTS

For microscopy;, cells were grown in either M9 minimal medium or rich defined medium
(MOPS EZ rich defined medium from Teknova). M9 was supplemented with 0.2mM
uracil and one of various carbon sources (0.18% acetate, 0.1% maltose, 0.1% lactose).
The rich medium contained 0.2% glycerol as carbon source. When full induction in
strain MG22 was required, 200uM Iptg was added to the growth medium. For a full list of
experiments, see Table 4.1.

Cells were grown and prepared for microscopy as described in chapter 2. Movies
of growing microcolonies were acquired on the Nikon TE2000-E inverted microscope
(chapter 2.2). Imaging frequency was on average 55 phase contrast and 8 fluorescence
images per cell cycle and fluorescence illumination time was kept as short as possible.
We confirmed that cells in the colony center grew on average at the same speed as at the
edge of the colony.

We call a dataset to be at “high expression” when extrinsic noise dominates over in-
trinsic noise (Table 4.1). These experiments correspond to expression in the extrinsic
noise limit (floor), depicted for example in Taniguchi et al. [6]. Next to high expres-
sion, we consider one “low expression” level, which is the basal expression level from the
(truncated) Py, -promoters. Here, intrinsic noise in protein production rate was larger
than extrinsic noise (Table 4.1).

IMAGE ANALYSIS

Images were analyzed offline as described (chapter 2). Briefly, cells were segmented and
tracked and cell length as well as instantaneous growth rate was determined. Cellular
length can be used as measure for cell size because cell width is constant throughout
the cell cycle (Fig. 5.12, [32]. Fluorescence images were corrected and concentration and
production rate was calculated for each cell. Both protein production rate and growth
rate were corrected for quasi-periodic cell-cycle fluctuations.
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4.4.2. DATA ANALYSIS

CORRELATIONS

For analysis, we used a time window of the experiment in which population average
growth rate and protein concentration was roughly constant. Few cells stopped growing
or filamented and where additionally removed from the dataset. The linear noise-scaling
(e.g. Fig. 4.2, 4.3) was robust to taking the full time window of the experiment. Naturally,
then absolute noise intensities increased. Data sizes for each experiment can be found
in Table 4.1 (ca 8 data points belong to one cell with completely observed cell cycle).

We used standard (Pearson) correlations to quantify the coupling of fluctuations in
two signals. This requires that the fluctuations occur simultaneously and not with a
time-delay relative to each other. Such delays were observed in cells [27, 56] and we
therefore calculated cross-correlations (chapter 2.3.6) to test whether the maximum cor-
relation would occur at a delay. We found that the cross-correlation of protein produc-
tion rate and growth rate peaked at a delay of zero, which means that the two signals
fluctuated simultaneously (Fig. 4.14). We also confirmed that fluctuations in production
rates Y and C were simultaneous, which was expected because they are under control of
identical promoters.

NOISE DECOMPOSITION AND CONDITIONAL EXPECTATION VALUES

To determine the conditional expectation values and (co)variances in the noise decom-
position equations (egs. 4.3, 4.4), we used kernel density estimate (KDE) (MatLab script
for one and two-dimensional KDE published by [131]). By applying KDE, we directly ob-
tained continuous functions for the probability distribution of single variables (e.g. P(Y)
and P(w)), as well as for joint distributions (e.g. P(Y, u)). All conditional probability dis-
tributions such as P(Y|u) = P(Y, )/ P(u) could then be calculated from these distribu-
tions. Then, conditional expectation values could directly be calculated. As example, the
conditional expectation (Y|u) depicted in Fig. 4.1D, which is defined as }_ P(Y|u)- Y, was
calculated by summing over a fine grid of Y-values (>200 points) at fixed u. Calculation
of Cov(...|p) and Var(...|u) was similar.

Displayed error bars for (Y|u) (for example Fig. 4.1D, same for (C|u)) are standard
errors of the mean and were obtained by bootstrapping. For each resampled set of the
experimental data we determined the probability distributions with KDE and then the
conditional expectation function (Y |u). The distribution of conditional expectation val-
ues was then used to compute its standard error at each Y-value.

To test robustness of our results to the chosen analysis method, we also determined
the noise decomposition (egs. 4.3 and 4.4) with an alternative binning method. Here, the
data (Y, C, u-triplets) was binned according to growth rate into 15 bins, with equal num-
ber of data points each. Then, averages were calculated for each bin, which yielded for
example (Y |w), defined at 15 discrete p-values (similar calculation for (co)variance). The
chosen number of bins was a compromise between covering growth rate in sufficiently
fine steps and still having enough data points per bin to calculate a meaningful aver-
age/(co)variance. We found that the choice of method, KDE or binning, did not affect
the results (Fig. 4.13B).
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SIGNIFICANCE TEST

The p-values for the explained intrinsic fraction (section 4.2.5) were determined by us-
ing Monte Carlo sampling. A non-zero explained fraction suggested that the coupling
of the two reporter proteins to growth rate differs (eq. 4.4). Therefore, we tested the
null-hypothesis that the correlation of YFP and CFP production rate with growth rate
is identical. We created 10.000 sample datasets with each the size of the experimental
dataset. For sample generation, Y, C and p were drawn from Gaussian distributions.
Standard deviations of the distributions were taken from the experimental dataset and
correlations R(Y, u) and R(C, u) were kept equal and constant (we tested taking the aver-
age or either one of the experimental values). For each sample, the explained fraction of
intrinsic noise was calculated. Then, the p-value was determined as fraction of samples
that yielded an explained fraction of at least the measured value.

At high expression, the null-hypothesis was rejected (p < 0.01). Therefore, the non-
zero explained intrinsic fraction was not simply an artifact of small data size. At low
expression, the null-hypothesis could not be rejected (p = 0.48).

4.5. APPENDIX
4.5.1. NOISE MODEL

CONSTITUTING EQUATIONS

In the model, protein production rates C(¢), Y (¢) and growth rate u(f) are the sum of
different, partly shared and partly specific, random fluctuations Ng(#). Q shall refer to
the indexes for “global” (G), “growth specific” (S) etc, see Fig. 4.2C and Fig. 4.9A. With
one exception (growth specific noise Ng(#) was set to have constant intensity, see also
analysis below), each of these noise sources is the sum of two types of fluctuations: One
part, vgo(t), has a constant noise intensity. A second part, v(t) varies in noise intensity.
Both components are required to reproduce the data (see fitting below). All parts of
all noise sources are defined as independent zero-mean Ornstein-Uhlenbeck processes
and thus (vQ1vq2) = ‘501'02("%31) (6 is the Kronecker delta). That means that neither
fluctuations from different sources nor fluctuations from the constant and varying part
of the same source are coherent.

The random fluctuations with variable intensity, v(¢), are transmitted with efficien-
cies az( to an observable Z (Z being Y, C, or u). The constant-intensity noise sources
vqo(t) shall have a transmission efficiency of one because any deviating efficiencies can
be directly incorporated into most of the noise amplitudes by rescaling them. Therefore,
fluctuations in an observable Z, which are caused by a source Q, are:

NZQ(I) = aszQ(t)+on(t) . (4.6)
Then, the fluctuations in growth rate and protein production rate can be written as:

w(t) = aucve(t) +vso(t) +{(uw) 4.7)
Y (1) =aygve(t) +aypvp(t) +ayyvy (£) + vpo(t) + vyo(D) +(Y) , (4.8)

and analog for C(¢). Again, we will omit explicit notation of time dependence and will
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write Y, C and p. Observables (Y, C, and p) shall each be normalized to an average of
one, and thus noise and variance are equivalent (for example: ni =Var(w).
We can now calculate noise and covariances of all observables:

M5 = @G(ve) + (V) 4.9)
Ny = aye(ve) +aypvp) + dyy (Vi) + ((Vio) + (Vi) (4.10)
Cov(Y, ) = aucayc{vy) (4.11)
Ne = agG(Ve) + acp V) + apcive) + ((Vae) +(vEy)) (4.12)
Cov(C,p) = auGaCGwé) (4.13)

Additionally, we obtain for extrinsic and intrinsic noise:

Moty = Cov(Y,C) = aygacg (V) + ay pacp(vp) + (vVay) (4.14)
Woner = 3 ((ayG — aca)* Vg + (ayp — acp)* (V) + ago(vVe) + ay y (v3))

20 + 3 (Ve (4.15)

Note that we set vgo = 0 in equations 4.7-4.15 based on the experimental data: (VZGO) #0
would be one contribution to the covariance Cov(Y, u) and the covariance would there-
fore always be positive. However, in the experiments the value zero for Cov(Y, i) was in
fact measured (not only extrapolated, see Fig. 4.10).

MODEL FITTING

Solving eq. 4.9 for (VZG) and inserting into eq. 4.10-4.15 expresses all noise intensities
and covariances as function of growth noise. For example, we obtain for Cov(Y, ) (see
Fig. 4.10A,B):

_AYG (2 2
Cov(Y, ) = ” (’lu (v50>), (4.16)

which is a linear function of growth noise. The coupling constants set the slope of the
line, while the axis intercept is set by the constant noise floors (see also Fig. 4.9B for a
different example).

For fitting the model parameters, we first plotted all noise intensities and covariances
of eq. 4.10-4.14 and fitted them with linear functions to obtain axis intercepts and slopes
(Fig. 4.2A,B, 4.10A). We did not include the data of strain ASC659 (Pn3s5 -gfp) in the fitting
because due to the single reporter no data on 7%, and n?, _was available. The fact
that noise values for that strain still collapsed onto the same lines thus supported our
suggested noise structure.

On first sight, the model contains many free parameters, but several of the param-
eters can be fixed: The normalization of noise sources with varying intensity (v() is ar-
bitrary because only the product of (squared) transmission coefficients ag and noise
intensity (VQ2> is “felt” by Y, C and u. We therefore define a, = 1. This sets the scale
of (VZG) to be the same as ni (eq. 4.9). We show in the next paragraph that, for reproduc-
ing the data, the magnitude-varying components of the different noise sources have to
vary concertedly in intensity (growth-specific noise is underdetermined and an excep-
tion, see below). Thus, all of their magnitudes can be described jointly by one global
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parameter. Then, without loss of generality the scale (normalization) of the other noise
sources can be defined as:

(VE) = (va)y = (V) = (vE) . 4.17)

Generality is not lost because the corresponding transmission coefficients are free pa-
rameters.

Still, the system (eq. 4.9-4.15) is underdetermined by one since eq. 4.15 is not inde-
pendent but a linear combination of eq. 4.10, 4.12 and 4.14. To solve the system, we
assumed that the variances resulting from the intensity-varying intrinsic noise sources
for CFP and YFP are the same. That means that the coupling constants are identical:
ayy = acc. This assumption is reasonable because expression of both genes is con-
trolled by identical promoters. We write the common coupling constant as axx and the
noise source as vy.

Now, all model parameters can be determined. Going back to the example of the
Cov(Y, ) vs. ni data (Fig. 4.10A,B), a linear fit yields <V§0> as x-axis intercept and ayg
as slope. Analogously, and by using eq. 4.17, all parameters of eq. 4.9-4.15 can be deter-
mined. The resulting fit values can be found in Table 4.2. We note that while the actual
values of the fit parameters are of interest, the main result of this study is an insight into
the structure or topology of noise sources: (Almost) all sources of fluctuations need to
vary in intensity and, especially, the intensity-variation is concerted.

SIMPLER MODELS AND ALTERNATIVES TO THE CONCERTED VARIATION OF NOISE SOURCES

For several noise sources (Np, N¢, Ny, Ng) we allowed for a noise floor of constant in-
tensity, next to a intensity-varying part. Mathematically, these noise floors can shift the
linear relations between noise intensities along both x-axis and y-axis. We had measured
non-zero axis intercepts (Fig. 4.2A,B and 4.10), which implied the existence of such noise
floors within the model. This suggests that cells are subject to a non-zero minimum
noise level below which they cannot get, even in the most favorable environment.

Most of the noise sources in the model (Ng, Np, N¢, Ny) contained a component
that varied in magnitude. We tested the consequences if one or more of these com-
ponents were forced to be zero (that is, the respective noise source then had constant
intensity). When forcing the intrinsic noise sources (N¢, Ny) to have constant inten-
sity, then the model could not capture the measured scaling of intrinsic noise any more
(Fig. 4.9C-E). If the shared protein source (Np) was additionally forced to be constant,
then not even extrinsic noise could be fitted any more (Fig. 4.9F-H). The global noise
source Ng clearly could not have constant intensity because of the variation measured
for Cov(Y, u) (Fig. 4.10).

One could also consider using a simpler model with less noise sources, for exam-
ple including only one extrinsic source of fluctuations. However, we just showed that
the data could not even be fitted any more if the number of noise floors or intensity-
changing sources was restricted. Thus, fully omitting a noise source would lead to even
worse fit results. In principle, one could also think of noise sources acting only on one
protein and growth (for example Y and p). However, such sources are not likely, given
that both C and Y denote protein expression and due to the symmetry of the construct.
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The most striking feature of the model is the concerted variation of the different noise
intensities (eq. 4.17). We here argue that, if variation was not concerted, then data points
would scatter randomly and not collapse onto lines. Consider a set of experiments with
the same amount of global noise (Né), then growth noise nft is the same in all of these
experiments (eq. 4.9). But if the magnitude of protein noise <N;2)> can for example vary
independently, then nzy (17% ) varies arbitrarily for fixed growth noise (eq. 4.10). Thus,
these data points would not lie on the line of Fig. 4.2A (that is, collapse onto one point
because growth noise is constant) but randomly scatter around it. This, however, con-
tradicts the experimental data. Similar arguments can be made for each noise source.

VARYING THE INTENSITY OF THE GROWTH SPECIFIC NOISE SOURCE Ng

We set the variance of growth specific noise (Né) to be constant because we aimed for
the simplest model to describe the data. In this section we test the effects of permitting
this noise source to vary as well in intensity. The biological and experimental origins of
Ns(t) are not very clear and could for example contain fluctuations in efficiency of cell
wall insertion, osmotic pressure, but also uncertainties in cell segmentation. Therefore,
independent variation and probing of (Ng) is likely impossible. Given that, it is not pos-
sible to know how/whether this noise source varies in intensity. However, since all other
noise sources varied concertedly, we considered this the most likely mode of variation
for (Né). Therefore, to investigate the consequences of varying (Ng), we assumed the
noise intensity to vary jointly with other noise sources. Then, growth rate reads as

p() = aucve(t) + ausvs(t) +vso (1) + 1) (4.18)
and growth noise intensity is
5= @G (VE) + ang(ve) + (V) (4.19)
Analogously to eq. 4.17 and using that noise sources vary concertedly, we set
Vg =% . (4.20)

The relative strength of the two noise sources acting on growth is then set by the trans-
mission coefficients. For a vanishing intensity-varying growth noise, we had set a,¢ =1,
which fixed the scale of (vé), and ays = 0, see also above and main text. Using this, and
inserting eq. 4.20 into eq. 4.19, we obtain the relation

dg+arg=1. (4.21)

Every 0 < a, < 1 then defines a version of the model in which the growth specific noise
source varies in a different range and thus the relative contributions of growth specific
and global noise source to ni change. For each a,¢ this more general model can then be
fitted to the experimental linear relations (Fig. 4.2, Fig. 4.10) by using eqs. 4.10-4.14 and
eq. 4.19. The coupling constants are obtained as function of a,¢ (Fig. 4.15). We found
that the fitted transmission efficiencies to common noise sources depended on the cho-
sen model, specified by a,,, while transmission efficiencies from intrinsic sources were
hardly affected.
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Why fit values for transmission efficiencies change can be understood intuitively for
the example of Cov(Y, u), plotted in dependence of growth noise: The product aycayc
determines the slope of this function. Since the experimental slope is fixed, a decrease
of a, in the model is compensated by an increase in ays. We emphasize that the arbi-
trariness of coupling constants is purely on the level of the theoretical model. It does not
affect fitting precision or predictions for any observable statistic such as noise, correla-
tions or explained fractions.

Low EXPRESSION: PREDICTIONS AND FITTING OF THE MODEL

When lowering expression level, both noise floor (vp) and intensity-varying component
(azqvo) of the different noise sources could be affected. An increase in noise floor would
lead to an up-shift of the expression noise lines (see e.g. (v%()) in eq. 4.10). An increase
in the intensity-varying component is reflected in larger coupling constants because we
fixed the scale of the noise sources (eq. 4.17). Larger coupling constants would increase
the steepness of the expression noise vs. growth noise lines (see e.g. ayp in eq. 4.10).

The model predicts that covariances and noise obtained from low expression data
also collapse onto lines when plotted against growth noise. This prediction can be di-
rectly made from the structure (and concerted noise variation) of the model - if data
would not collapse onto lines, then the model structure would have been wrong. Ad-
ditionally, we can predict that lines can be both up-shifted (increased noise floor) and
steeper (increased coupling constants).

Plotting Cov (Y, u), nfmr and n% .t against growth noise (Fig. 4.3) reveals properties

of Ng, Np and Ny (N¢) for the following reasons: Since the first relation is unaffected by
expression level, we can conclude that Ng is not changed. Then, considering the equa-
tion for extrinsic noise (eq. 4.14), we find that all changes in offset and slope must be a
result of changing Np (that s, vpy and coupling ayp and acp). Finally, the intrinsic noise
line is affected by both Np and the local N¢ and Ny sources. However, we know (see
main text) that at low expression intrinsic noise increased much stronger than extrinsic
noise. Thus, the increase in slope and offset of n%n i VS. ni is largely due to changes in
Ny and N¢. Note that we here present this approximation only to provide an intuition
for Fig. 4.3C. For fitting, we used the full equation for intrinsic noise.
We found that 73, and 7%, collapsed onto lines, which confirmed the model.
Then, by fitting the data, we extracted the increased noise floors and coupling constants
for Np, Ny and N¢. The coupling constants to the intensity-varying component of in-
trinsic noise was roughly increased by v/60, which increased the relative contribution
of that noise component by a factor of = 60, compared to high expression. Coupling
constants to the shared protein source (intensity varying component) were increased by
roughly V10, increasing the relative contribution of that noise source by a factor of = 10.
Noise floors of these sources were up-shifted as well, but less strongly. The here men-
tioned factors are however dependent on whether growth specific noise source (Ng) is
set to have constant intensity. If we allow its magnitude to vary, we find an increase of
> 10 for the changed contribution of shared protein noise and still roughly 60 for the
local sources.

One consequence of the increase in protein specific noise sources is that at low ex-
pression correlations between expression and growth were very small (Fig. 4.6A,C). The
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reason is that the relative contribution of Ng, which is the only source that couples ex-
pression and growth, decreased strongly compared to contribution of the other, expres-
sion dependent, noise sources.

INTRINSIC NOISE

Intrinsic noise is by definition local or gene specific [19] and is therefore in the model de-
scribed by the local noise sources Ny and N¢ (Fig. 4.2C). Ny and N¢ cause differences
in Y and C. Contrary to that, the common noise sources Nz and Np should theoreti-
cally affect both reporter genes in the same way due to the symmetry of the construct.
However, we measured a difference in the coupling constants of the two reporter genes
towards the common noise sources, with YFP coupling stronger than CFP to the shared
noise sources (Table 4.2). This difference in coupling constants caused for example a
non-zero fraction of intrinsic noise that is captured by growth noise. Of the experimen-
tally measured intrinsic noise at high expression, this coupling difference accounts for
15% of the intrinsic noise and the local sources (that it, what is theoretically considered
“intrinsic”) contribute 85% to intrinsic noise. At low induction, the relative contribution
of the local sources is higher.

ANALYTICAL EXPRESSION FOR CORRELATION AND EXPLAINED FRACTION

The expressions for correlation R(Y, u) (Fig. 4.4A) and extrinsic explained fraction Fexr g
(Fig. 4.12D) can be calculated directly from eq. 4.9-4.15. For the correlation we obtain:

ayc ((ni) - (VSOZ>)

(¢ (5 — Vi) + (Vi) + <V%0>)1/2 (7

Correlation: R(Y, ) = (4.22)

)1/2

Here, ¢ = a%,G + ai pt ag( « is the slope of the line nzy Vs. ni. For low growth noise, the cor-
relation starts at zero and increases linearly with n‘z. At high growth noise, it saturates
at ayg/¢''? = 0.6. This functional shape can be understood intuitively by considering
the relative contribution of noise sources in the different growth noise regimes. The only
source that couples Y and p and thus induces correlations is the global noise Ng. At
low noise, it vanishes because it does not have a non-zero noise floor and thus the fluc-
tuations are uncorrelated. At high noise, the intensity-varying components of the noise
sources are dominant and the saturation value of the correlation is defined by the rela-
tive strength of coupling to Np and Ng.
For the explained extrinsic fraction we obtain:

ace dyc(ni - (V502>)2

M (y (5 = (Vi) + V)

Explained extrinsic fraction: Fox;rg = (4.23)

Here, y = aygacc + aypacp is the slope of the line Cov(Y,C) vs. ni. For low growth
noise, Fex;rp increases quadratically with 17/21 and at high growth noise it saturates at
acgaygly =0.4.
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DERIVATION OF: TRANSIENTLY FASTER GROWING CELLS DISPLAY LOWER EXPRESSION NOISE

The expression noise of a subset of cells with a given growth rate can be calculated by
using the probability distributions of ¥ and C conditioned on p, instead of the global
probability distributions. We here derive the analytical expression for extrinsic noise but
intrinsic noise can be derived similarly. For a given growth rate y, extrinsic noise of the
subset of cells growing at this rate is

Cov(Y,Clw)

— (4.24)
YIm{Clm

n?axtr W =

Using the expressions for growth rate and protein production fluctuations, as well as the
equation for growth noise (eqs. 4.7, 4.8 and 4.9), we obtain the conditional expectation

n%— (V)
(Vi) = (Y) + ayg——>
My
=(Y)+Ky-Ap . (4.25)

Analogous for C. Ay was defined as deviation of the current growth rate from its average,
Ap = pu—{uy, and thus (Au) = 0. Ky is a constant within each experiment but for different
experiments depends positively on growth noise intensity. (Y|u) increases linearly with
growth rate (Fig. 4.6 lines). Similarly, we obtain for the conditional covariance:

Cov(C, YW = aygace - Var(vglp) + aypacp - (Vp) + (V) = ...
2 2 2
=Nextr ~Mextr,g = Nextr,u (4.26)

Thus, the conditional covariance (also reflected in the size of red and green subset scatter
plots in Fig. 4.4B) is constant and independent of the growth rate of the subset. Inserting
the last two results into eq. 4.24 finally yields:

2
nextr,U

. 4.27)
(V) + Ky Ap) ({C) + KeAp)

nixtr (A = (

This means that the extrinsic noise of a subset of cells with specific growth rate depends
inversely on the growth rate. The larger the growth noise, the larger Ky (and K¢) and
therefore the stronger the dependence of 2., (Ap) on Ap.

To obtain the functions plotted in Fig. 4.5, we used the previously fitted model pa-
rameters (same values for all experiments), as well as the average growth rate and growth
noise for the specific experiment.

4.5.2. LINEARIZATION OF (CO)VARIANCE DECOMPOSITION

If fluctuations in production rate and growth rate depend linearly on each other, then
the (co)variance decomposition of extrinsic and intrinsic noise (eq. 4.3, 4.4) can be sim-
plified. Here, we derive the linearization of the decomposition of extrinsic noise (eq. 4.5),
the derivation for intrinsic noise is very similar. Let

Y()=ay+Byu®) +ry(t) . (4.28)
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Here, ay and By are offset and slope of the linear relation between Y (¢) and (), ry (t)
is a random noise term (deviation of data points from the line). Let C(#) be defined in
an analog way. For simpler notation we again omit the explicit notation of time depen-
dence. We also subtract the mean values so that all averages are zero ({(u) = (Y) = (C) =
0), and thus ay=0. Then:

(Y|w =Py , and (4.29)
Cov(Y,
R(Y,p) = vy, 1) _ Proy , because Cov(Y, ) ZﬁyO'i ) (4.30)
O'yO'“ Oy

o denotes the standard deviation. An equivalent expression can be derived for C. Using
eq. 4.29 and eq. 4.30, the explained noise is then

Wrg = CovY 1), (Clw) = By fco? = R(Y, WR(C, woyoc . 4.31)

Then, the explained fraction of extrinsic noise can be written as a combination of corre-

lations: )

I _Mexere _ RV, R(C,oyoc _ RY,WR(C, W
extrE = "2 Cou(Y,C) R(Y,C)

extr

(4.32)

We compared the general noise decomposition (eq. 4.3) with this linear approximation
and found that the obtained values were very similar (Fig. 4.13A). For the model, which
is by construction linear, the linear approximation derived here is the exact solution.

Note also that in the case of linear coupling between gene expression and growth
the conditional expectation (Y|u) is a line, when plotted as function of p. This is very
close to the dependence obtained from the experimental data (black lines in Fig. 4.1D
and 4.6). The slope of the line is Cov(Y, u)/ai =By.
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4.5.3. ADDITIONAL FIGURES
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Figure 4.6: Correlation of YFP and CFP protein production rate with growth rate for different
environments. (A) - (C) YFP production rate, (D) - (F) CFP production rate, obtained from the
same experiments (and strain) as for YFP. Scatter plots and correlation coefficients (R) are similar
for both reporters and change jointly with the growth conditions. Specifications of growth condi-
tions: (A) ,(D) : u=0.6dbl/hr, basal expression from Py, . (B) ,(E) : p=0.6dbl/hr, expression induced
with 200puM Iptg. (B) is identical to Fig. 4.1D. (C) ,(F) : u=0.2dbl/hr, expression induced with 200uM
Iptg.
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Figure 4.7: Average production rate in dependence of growth rate. The mean expression rates
for given growth rate ((Y|u) and (C|u)) are plotted for two different environments. (A) Dataset
of Fig. 4.1D, which is the same as for Fig. 4.6B,E. (B) Dataset of Fig. 4.6C,E Black curve: Growth
rate distribution, thus indicating which expression rates of the yellow and blue curves are most
abundant in a colony. Distribution not to scale between (A) and (B) . Error bars are SEM, obtained
by bootstrapping. (Y |u) increases slightly stronger with p than (C|u).
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Figure 4.8: Growth noise (A) and gene expression noise (B) in dependence of average growth
rate. (A) All datasets are displayed. (B) Experiments with high expression (induced Py, promoters
and constitutive promoters) are displayed. In both figures, noise typically decreases with increas-
ing growth rate, but stressed cells deviated from the trend (squares, dark blue circle). Color code
and symbols as in Fig. 4.2 (triangles: low expression).
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Figure 4.9: Model details and minimal model complexity. (A) Linear noise model with all rel-
evant parameters. Red triangle indicates variation in intensity. Transmission efficiencies refer to
the intensity-varying noise component. Np is for example the sum of vpg and axpvp (axp is the
noise transmission coefficient to observable Z) (B) Role of model parameters for the example line
‘expression noise versus growth noise’. The slope is determined by the coupling coefficients, which
couple to the intensity-varying common noise source(s). x-axis and y-axis offset are determined
by the constant noise floors for growth (<V§0>) and expression (e.g. (v%o) plus W%/()))' (C) -(H) Sim-
pler models with less varying noise sources fail to explain the data. Model parameters in (C) -(E)
were fixed by fitting Cov(Y, u), Cov(C, ), n‘%, and TIZC against Tli . In (E) -(H) only the covariances
needed to be fitted to fix the model. Black lines: Predictions of noise scaling obtained from the
simpler models, when parameters were fixed as described here. Gray lines: fits of full model from
panel (A) and main text. Dashed line in (E) is equal to black line in (H) . Both simpler models fail
to describe intrinsic noise, and the model of (F) also does not capture extrinsic noise.
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Figure 4.10: Linear dependence of covariances on growth noise (A) Cov(Y, ) in dependence of
7% . (B) Relation of model parameters to the line in panel (A) . (C) Cov(C, p) in dependence of 77%4 .
Here, data for low expression is plotted as well (triangles). Color code and symbols as in Fig. 4.2.
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Figure 4.11: Simultaneous expression bursts at low expression. (A) , (B) At low average produc-
tion, protein production rate can burst simultaneously for both reporters. Growth rate: 0.6dbl/hr.
Highlighted lineages: Examples of simultaneous bursting. (C), (D) The increase in production rate
is followed by an increase in protein concentration. (E) Fluorescence images of the yellow lineage,
covering a time range from 715min to 850min.
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Figure 4.12: Coupling of growth fluctuations to extrinsic and intrinsic fluctuations in different
environments. (A) -(C) Similar to Fig. 4.4B, but for three different environments. (B) is identical to
Fig. 4.4B. Subsets with fastest (slowest) growth rates are colored in green (red), and their averages
are marked as diamonds. Datasets and environments are the same as in Fig. 4.6. (D) Explained
fraction of extrinsic noise in dependence of growth noise. Black curve is calculated from the line
fits of the model (eq. 4.23). Numbers refer to the figures of corresponding scatter plots. Color code
and symbols as in Fig. 4.2. Data points for growth on acetate (orange) deviate from the fit, which
might be due to additional medium or mean growth rate dependent effects.
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Figure 4.13: Determination of Fex, g with different methods. (A) The linearized Feyx;r, g , which
is a function of the correlations between Y, C and p (eq. 4.5), is plotted against the general Foy ;. g
(obtained by using KDE). (B) Fey g was determined by binning and by using KDE (described in
Methods 4.4). Color code and symbols as in Fig. 4.2. Black lines are the identity function (y = x).
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Figure 4.14: Cross-correlation between expression and growth rate. Displayed are cross-
correlations between YFP production rate and growth rate for three different environments. (A)
M9 + 0.2mM uracil + 0.1% maltose (low expression), same data as Fig. 4.6A,D and Fig. 4.12A. (B)
M9 + 0.2mM uracil + 0.1% maltose + 200uM Iptg (high expression), same data as Fig. 4.6B,E and
Fig. 4.12B. (C) M9 + 0.2mM uracil + 0.18% acetate + 200uM Iptg (high expression), same data as
Fig. 4.6C,F and Fig. 4.12C. (D) repeat experiment of (A) . All cross-correlations peak at a delay of
zero. The signal in (A) is difficult to interpret but a repeat experiment (D) supports the symme-
try of the cross-correlation. Cross-correlations of CFP expression rate and growth rate are similar.
Error bars are standard deviations, obtained by splitting the microcolony into 4 subgroups and
calculating the cross-correlation for each subset (chapter 2.3.6).
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Figure 4.15: Varying the intensity of the growth specific noise source. Transmission coefficients
towards growth obey the relation ai st aiG =1 (eq. 4.21). ay ;=1 corresponds to the model of the
main text, that is, constant growth-specific noise. The dashed line corresponds to equal contribu-
tion of both noise sources towards growth fluctuations. ayy refers to acc and ayy (see model
fitting). acp and ayp probably diverge from each other because of the assumption that both re-
porters couple equally strong to intrinsic noise (ax x).
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4.5.4. ADDITIONAL TABLES

[75] —~

§ & £
E % % 3
o g &£ =
5] = 5] =
= g a 2 0 nk 0y | e T, | RGO RGP RY,p
strain MG22 (Pja¢ -¥/P, Plac -¢fp)
A - 1262 034 | 0212 0842 1.052 | 060 030 | 0.68 0.14 0.11
A + 1900 0.20 | 0.25% 0532 0582 | 024  0.071 | 0.77 0.50 0.53
A 5154 0.20 | 0.222 0.472 0532 | 021  0.045 | 0.83 0.46 0.48
M - 1683 063 | 0202 1352 1282 | 077 096 | 045 0.050 0.14
M - 1947 064 | 0172 1112 1.26% | 061 0.81 | 043 0.063 0.10
M + 3512 0.62 | 0162 0372 0392 | 010 0.042 | 0.71 0.15 0.25
M + 4225 0.62 | 0.192 0422 0432 | 0.13 0.049 | 0.73 0.17 0.28
M, hi  + 2831 054 | 0292 0522 0632 | 028 0.053 | 0.86 0.45 0.49
L + 3359 054 | 0172 0402 0442 | 0.13  0.043 | 0.76 0.20 0.24
L + 3763 0.66 | 0.162 0352 0.35%2 | 0.088 0.036 | 0.71 0.21 0.30
RDM - 929 185 | 0.13% 0792 0932 | 027 048 | 0.37 0.019 0.065
RDM - 1011 1.85 | 0.142 0912 0.89%2 | 029 052 | 0.36 0.012 0.10
RDM + 1117 177 | 0.122 0312 0.29%2 | 0.064 0.024 | 0.72 0.023 0.009
RDM + 806 179 | 0.122 0322 0.292 | 0.064 0.030 | 0.69 0.055 0.068
strain M22 (P, -yfp, P, -cfp)
M + 1500 052 | 0312 0552 0.60%2 | 026  0.069 | 0.79 0.39 0.53
M + 1567 0.82 | 0222 0412 0412 | 0.13  0.035 | 0.79 0.26 0.40
strain ASC659 (PN2s5 -&fP) % R(G,p)
L + 5063 0.89 | 0.182 0.44%2 - - - - 0.25 -
L + 4627 0.88 | 0202 0472 - - - - 0.29 -

Table 4.1: Summary of all data. Abbreviations used for growth media: A: M9 + 0.18% acetate, M:
M9 + 0.1% maltose, L: M9 + 0.1% lactose. RDM: rich defined medium + 0.2% glycerol. h.i.=high
toxic illumination. All M9 media were supplemented with 0.2mM uracil. Symbols used for ex-
pression level: “+”: high expression, either through induction with 200uM Iptg (strain MG22) or
constitutive expression (other strains). “-”: basal expression, no induction. Data points: summed
over all cells and all time points of each cell within the selected time window. The dark-gray shaded
dataset (M+) was used for Fig. 4.1D and 4.4B. All three gray data sets were used in Fig. 4.6,4.12,4.14.
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Transmission coefficients

auc ayg ace ayp
setto =1 1.27 0.94 1.38

Offset noise

dacp AQyy=d4dcc=4azz
1.16 0.60

2 2 2 2
Vso? Wpor Vyor (Vo)
0.0127 0.068 0.026 0.036

Table 4.2: Values of fitted model parameters. For description of model and fitting, see sec-

tion 4.5.1.







GENERATION AND FILTERING OF
GENE EXPRESSION NOISE BY THE
BACTERIAL CELL CYCLE

Gene expression within cells is known to fluctuate stochastically in time. However, the
origins of gene expression noise remain incompletely understood. The bacterial cell cycle
has been suggested as one source. It involves chromosome replication, exponential volume
growth, and various other changes in cellular composition. Elucidating how these factors
give rise to expression variations is important to models of cellular homeostasis, fidelity of
signal transmission, and cell-fate decisions.

Using single-cell time-lapse microscopy, we measure cellular growth, as well as fluctua-
tions in the expression rate of a fluorescent protein and its concentration. We find that
within the population, the mean expression rate doubles throughout the cell cycle with a
characteristic cell-cycle phase dependent shape which is different for slow and fast growth
rates. At low growth rate, we find the mean expression rate is initially flat, and then rises
approximately linearly by a factor two until the end of the cell cycle. The mean concen-
tration fluctuates at low amplitude with sinusoidal-like dependence on cell cycle phase.
Traces of individual cells are consistent with a sudden two-fold increase in expression rate,
together with other non-cell-cycle noise. A model is used to relate the findings and to ex-
plain how the cell-cycle induced variations depend on the chromosomal position.

We find that the bacterial cell cycle contribution to expression noise consists of two parts: a
deterministic oscillation in synchrony with the cell cycle, and a stochastic component due
to variable timing of gene replication. Together they cause half of the expression rate noise.
Concentration fluctuations are partially suppressed by a noise canceling mechanism that
involves the exponential growth of cellular volume.

The contents of this chapter have been published as Walker, N., Nghe, P, and Tans, S.]. Generation
and filtering of gene expression noise by the bacterial cell cycle. BMC Biology 14, 1 (2016). [132]
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5.1. INTRODUCTION

Single-cell experiments have shown gene expression to fluctuate randomly under con-
stant conditions [6-8, 16, 27, 113, 133], which can have key consequences for the fidelity
of signal propagation [26], cell fate decisions [12, 15], and fitness [9, 11, 16, 30, 114, 134,
135]. Noise in gene expression is often quantified by the observed cell-to-cell variability
in the production rate or concentration of a protein when observing many cells in an
isogenic population [5, 7]. Fluctuations in gene expression can be caused by many local
and global factors such as random binding events of RNA polymerase [120], fluctuating
concentration of ribosomes or availability of amino acids [16, 19]. The cell cycle has been
suggested as a general source of gene expression noise [5, 19]. That is, in a snapshot of a
population two cells can differ in protein production rate or concentration because they
are in different phases of their cell cycle. Alternatively, two cells at the same cell-cycle
phase can differ because of cell-cycle independent effects. The key aim of this study is
to quantify and disentangle these effects in E. coli, and to mechanistically understand
cell-cycle contributions.

Eukaryotes exhibit distinct cell-cycle phases that display different levels of growth
activity and of DNA replication, which in turn can result in varying expression levels as
the cell-cycle progresses. Single-cell investigations of Saccharomyces cerevisiae have in-
deed shown quasi-periodic fluctuations of protein expression rates [119] and concentra-
tions [136] in synchrony with the cell cycle. The prokaryotic cell cycle does not display
such distinct replication and growth phases. Escherichia coli for instance, grows and
replicates DNA continuously throughout its cell cycle, though for slow growth there are
periods without replication activity [110, 137]. Expression activity can be dependent on
the cell cycle nonetheless, for instance because the replication of a gene may double the
transcriptional activity at a specific moment in time, as suggested by recent single-cell
studies [5, 138, 139]. That doubling would then in turn affect enzyme concentration and
could cause quasi-periodic fluctuations. But at the same time, cells may exploit spe-
cific regulatory mechanisms to filter such perturbations [140, 141]. Direct experimental
investigations of the impact of the bacterial cell cycle on expression variability are lack-
ing. Elucidating this question is important to understand the origins of gene expression
noise, modeling of genetic circuits, and resulting impact on growth variability [56] as well
as other forms of cellular heterogeneity [15].

To address these questions, we followed a single-cell approach. We imaged E. coli
cells as they grew into microcolonies and measured gene expression as fluorescence
signal of chromosomally encoded fluorescent proteins. As we show here, understand-
ing the temporal dynamics requires detailed information on cellular volume increase
in time, as protein concentrations are affected both by the time-dependent expression
and by dilution. Hence we accurately determined protein expression and cell size at sub-
cell-cycle resolution. We further developed a model to predict the cell-cycle dependence
and amplitude of these quasi-periodic fluctuations in expression rate and concentration.
The model predicted their dependence on chromosomal position, which we tested with
genetic constructs.
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5.2. RESULTS AND DISCUSSION

5.2.1. THE PROTEIN PRODUCTION RATE FLUCTUATES QUASI-PERIODICALLY.

To measure the effect of the cell cycle on protein expression we first determined protein
production rate, as quantified by the time derivative of the total cellular fluorescence
(Materials and Methods, section 5.4). Taking the data for all cells with completed cell-
cycle (n=393) over all cell cycle phases, the protein expression rate displayed a total noise
intensity (defined as standard deviation divided by the mean), of 0.48 [5]. When plotting
the production rate versus cell cycle phase ¢ (where 0 is cell birth and 1 is cell division)
and averaging over all cells (Fig. 5.1A), it displayed the following trend: it was approxi-
mately constant in the first half, after which it rose to about two-fold at the end of the cy-
cle (Fig. 5.1B, 5.6). An initially constant rate and two-fold increase is consistent with the
known chromosome replication pattern for the observed mean growth rate (0.6dbl/hr):
a single chromosome copy in the first period of the cell cycle, after which replication oc-
curs in the second period that produces two copies [142]. Each chromosome copy then
yields a fixed expression rate. This is not unreasonable, as other components required
for expression such as RNA polymerases and ribosomes also double throughout the cell
cycle. At faster growth, replication occurs throughout the cell cycle for multiple nested
chromosome copies [143]. Consistently, we found that the production rate was not flat
initially but instead rose continuously throughout the cell cycle, when growing on a dif-
ferent medium that supported a higher mean growth rate of 1.8dbl/hr (see Fig. 5.7). The
total increase remained two-fold, in agreement with an expected doubling of the num-
ber of gene copies. Overall, these data indicate that the mean protein expression rate
is likely proportional to the gene copy number and hence doubles during chromosome
replication. This variation is more continuous at high growth rate, because of the nested
replication and overall higher gene copy numbers.

5.2.2. DETERMINISTIC CELL-CYCLE VARIATIONS CONTRIBUTE TO EXPRES-
SION NOISE.

To quantify the contribution of the mean cell-cycle fluctuations (Fig. 5.1B) to protein
production noise, we split the single-cell production rate (which is distinct from the pro-
tein concentration) p(¢,x) into the population averaged rate p.(¢) and individual devi-
ations 0 p(¢,x), which together capture all cell-to-cell variability (Fig. 5.1A,B):

p,x) =pc(P) +6p(dh,x) (5.1)

Here, ¢ denotes the cell-cycle phase and x all other causes of cell-to-cell variability. ¢
refers to cell-cycle dependence, which here is redundant because it is implied by the ¢-
dependence but used for notation consistency. p.(¢) can be estimated by the curve in
figure 5.1B, and subtracted from individual traces to obtain an estimate for 6 p(¢),x). The
noise intensity caused by the deterministic cell-cycle fluctuation p.(¢) is 0.26, which
was obtained by considering the phase ¢ as a random variable and then calculating the
variance of the trace. Noise of the individual expression traces 6 p(¢,x), averaged over all
cells and ¢, was 0.42 (see Fig. 5.8A). These values are consistent with a scenario in which
population mean trace p.(¢) and deviation traces d p(¢,x) are independent and thus
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Figure 5.1: Dependence of protein production rate (A,B), protein concentration (C,D) and cell
length (E,F) on cell-cycle phase. Values are normalized by the average. (A), (C), (E) Data for
393 cells (gray) with three example traces and the binned colony average (thick black line). A total
frequency histogram is plotted and the black bar indicates a width of 0.2 times the population
mean. (B), (D), (F) Phase-dependence of the binned data. In (F) an exponential function (black
dashed line) is fitted to the averaged cell length. Error bars are obtained by bootstrapping. For
cell length, error bars are plotted but are smaller than the line thickness. Growth was on minimal
medium supporting a growth rate of 0.6dbl/hr.

their variances (squared noise) can be added up: 0.48% = 0.262 + 0.422. This population-
average cell-cycle contribution towards production rate noise does not include cell-cycle
stochasticity of individual cells and we will consider that below.

5.2.3. CONCENTRATION FLUCTUATIONS ARE BUFFERED BY DILUTION.

Fluctuating production rates can cause noise in the protein concentration. To determine
the latter, we quantified the mean fluorescence per unit area of the cell. The noise inten-
sity of 0.15 (0.10 for fast growth), which was obtained by taking the data of all cells and
at all cell-cycle phases, was consistent with previous reports [7]. After ordering by cell
cycle phase and averaging (Fig. 5.1C), the concentration also showed systematic varia-
tions (Fig. 5.1D, 5.6): it increased slightly right after cell birth, then decreased and finally
rose again. The amplitude of these variations was 4% of the mean. These low values (see
also Fig. 5.8B) and the initial increase seemed inconsistent with the large amplitude of
the production rate fluctuations and its initially constant value (Fig. 5.1B) [139].

To get a more intuitive understanding of these differences, we formulated a mini-
mal cell-cycle model based on the measured cell-cycle dependency of the production
rate (Fig. 5.1B, 5.2A). The concentration cannot be determined by simply integrating the
production rate, as this would ignore dilution due to volume growth. To quantify the
volume growth, we determined for each cell its length and its dependence on the cell-
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Figure 5.2: Model for cell-cycle dependence of protein concentration. (A) Average protein pro-
duction rate normalized by the mean. (B) Exponential length increase (black). Population average
protein production rate integrated in time, or the population average total fluorescence (green).
(C) Determined cellular protein concentration, given by the green signal divided by the black line
in panel (B) .

cycle phase (Fig. 5.1E, Materials and Methods) [56]. The population mean cell length
Z(<p) was well described by an exponential function (see Fig. 5.1F) [144-146], and not by
bi-linear or linear functions (Fig. 5.9), as suggested previously [147-150]. Therefore, an
exponential function for cell size was used as input for the minimal model (Fig. 5.2B).
With a mean protein production p(¢) at phase ¢ (Fig. 5.2A), the concentration E(¢) can
then be written as:

_ (R+ 1 P@hay)

E(p) = — , (5.2)

L(¢p)

where F, is the total amount of protein at cell birth.

By design, E(<p) (Fig. 5.2C) reproduced the measured data (Fig. 5.1D), and provided
an intuitive explanation for the observed functional form. The production rate is low
early in the cell-cycle but the dilution rate is even lower, resulting in an increasing con-
centration. For intermediate phases the dilution rate exceeds the production rate, and
near the end the dilution rate is smaller again. This also explains why concentration fluc-
tuations are small: the functional form of the total fluorescence (as a function of the cell
cycle phase) is almost identical to that of the volume (Fig. 5.2B).

5.2.4. STOCHASTIC REPLICATION TIMING CONTRIBUTES TO EXPRESSION
NOISE.

The single cell data also suggested that stochasticity in replication timing is a source of
protein production noise, which is supported by previous studies [110, 151] (Fig. 5.1A,
thin lines). In other words, 6 p(¢,x) would be the sum of fluctuations caused by cell cycle
stochasticity 6 p. (¢, v) and of fluctuations 6 p,(x) unrelated to the cell cycle (Fig. 5.3A).
Here, v is the cell-cycle phase at which the gene of interest is replicated and v varies from
cell to cell. Thus, the sum of dp.(¢,v) and the population-average p.(¢) yield all the
fluctuations p.(¢p, v) caused by the cell cycle. To determine the stochastic contribution
of the cell cycle to the expression noise, one needs to quantify 6 p.(¢,v). However, it is
not trivial to distinguish 6 p. (¢, v) from the other stochastic, non-cell-cycle variations in
the experimental single-cell traces.
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To overcome this problem, we started with p.(¢,v) and followed a variance decom-
position approach using the law of total variance [123, 124]. The variance of the full
cell-cycle fluctuations can be decomposed as follows:

Var (pe(@,v)) =(Var (pc(@,v)¢)) + Var ({pc(,v)|p)) (5.3)

Here, angular brackets denote averaging, and the notations Var(...|¢p) and (...|¢p) in-
dicate respectively the variance and the average for a given phase ¢ (conditioned on ¢).
In the second term, the brackets thus indicate an averaging over the stochastic variable
v, which yields p¢(¢p). Next, the variance is taken. This variance was in fact calculated
previously, and found to be (0.26)? (see Fig. 5.1B). Thus, the second term indicates the
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Figure 5.3: Production rates of single cells. (A) Description of variables used for noise decom-
position. The protein production rate p(¢,x) (red line) is the sum of three contributions: 1) the
population-average cell-cycle fluctuations p¢(¢) (black line), 2) the contribution due to stochastic
replication timing (difference between blue and black line, § p.(¢p,v)), and 3) stochasticity result-
ing from other, unknown, noise sources (difference between red and blue line, 6 p;,¢(x)). The sum
of dpc(¢,v) and O py (x) represents all of the stochastic contributions 6 p(¢,x). The phase at which
replication occurs is denoted by v. (B) Experimental traces of three different cells (thick lines) and
fitted step functions (thin lines). See appendix (section 5.5) for definition of step function. Initial
value was set to 1 and data is slightly vertically shifted for clarity. (C) Histogram of v. Data is from
53 cells in which a step-function could be discerned from the rest of the noise (14% of the traces).
(D) Comparison of experimental average production rate curve (gray line) and mean of ideal step
functions (orange line).
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deterministic contribution to the cell cycle induced noise.

In the first term, the variance of p.(¢,v) is determined conditionally on ¢, and then
averaged. This term thus denotes the stochastic contribution to the cell cycle induced
noise. The data does not directly provide an estimate of this variance, because the cell-
cycle induced noise and noise from other sources are confounded in the measured single-
cell traces of the production rate (Fig. 5.1A). Indeed, in these traces, other noise sources
such as metabolism [56] and fluctuating transcription factors [7] are substantial and can
mask the quick two-fold increase expected from gene replication events. However, in
a subset of traces the two-fold increase was clear (Fig. 5.3B,C, Materials and Methods).
Fitting each of these traces with a step-function (Fig. 5.10) provided a distribution of the
step-moment, v. We obtained a wide distribution for v with a mean 0.64 and a stan-
dard deviation of 0.17 (Fig. 5.3C). To check whether this distribution was consistent with
the full dataset, we compared the average of the fitted step-functions to the average of
all measured traces (p¢(¢), Fig. 5.1B), and found that they were similar (Fig. 5.3D). These
findings suggested that gene duplication events with stochastic timing in individual cells
underlie the smooth shape of the population average production rate (Fig. 5.1B).

The distribution of v (Fig. 5.3C) now allowed us to estimate the first term in equa-
tion 5.3, by first determining the variance of the step-functions at fixed phase, and then
averaging over all phases (Fig. 5.11A). We obtained a value of (0.23)2 for this stochastic
contribution of the cell-cycle to expression noise, which is comparable in magnitude to
the deterministic contribution denoted by the second term ((0.26)?, Table 5.1). Thus,
variability in initiation timing contributes substantially to the cell cycle induced noise.
The deterministic and stochastic contributions together (p.(¢p,v)) thus caused a vari-
ance of (0.23)% + (0.26)2 = (0.35)2, which is about half (52%) of the protein production
variance (Fig. 5.5B, Table 5.1).

To estimate how the protein concentration noise is affected by the cell-cycle, we
computed the concentration traces resulting from the step-like production rate func-
tions (Fig. 5.11A). For each p.(¢, v) of the set (Fig. 5.3C) the corresponding concentration
curve was computed, using that proteins are diluted due to volume growth (Fig. 5.11B).
We found that the cell-cycle fluctuations contributed less than 1.5% to the variance in
protein concentration (Fig. 5.11B and Fig. 5.5B). Note that one can distinguish contribu-
tions from the population average trend (Fig. 5.1D) and the stochastic deviations around
it due to variability in replication timing (less than 1% contribution each, Table 5.1).

5.2.5. LOCATION ON THE CHROMOSOME AFFECTS EXPRESSION FLUCTUA-
TIONS.

Chromosome replication is initiated at the origin of replication (oriC) from which two
replication forks then progress simultaneously and bi-directionally along the two strands
of DNA [152]. This raises two expectations: First, genes located at opposite sides but
at the same distance from oriC should be duplicated at the same time and thus show
the same cell-cycle dependence of protein production and concentration. Second, if
one gene is located upstream of the other, the increase in protein production should
occur earlier. To test the first prediction, we investigated a cfp gene positioned sym-
metrical to the yfp gene studied so far, at the opposite strand at the same distance from
oriC (Materials and Methods, Fig. 5.4A inset). We indeed found that both reporters dis-
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Figure 5.4: Influence of chromosomal position. (A) , (B) Production rate and concentration for
genes at equidistant and symmetric positions with respect to the origin of replication. (Inset) Loca-
tions of fluorescent genes and origin of replication oriC on the DNA. (C) , (D) Different replication
times ((C) , light to dark gray) and their predicted influence on the concentration (D) . Produc-
tion rates are slightly vertically shifted for clarity. (E) , (F) Production rate and concentration of
GFP (strain ASC636, green line) compared to YFP (strain MG22, gray line). GFP data is from 296
cells with complete cell cycle that have on average 7 data points/cell cycle. (Inset) Location of gfp
compared to other fluorescent genes. Error bars are obtained by bootstrapping.

played a similar dependence of production rate and concentration on cell-cycle phase
(Fig. 5.4A,B, 5.6).

To change the position we studied a gfp gene under Pj,. control closer to oriC than
yfp or cfp (Materials and Methods, Fig. 5.4E). As expected from the earlier replication, the
GFP production rate indeed increased earlier than the previous YFP signal (Fig. 5.4E).
It started comparatively low, then increased more than two-fold and subsequently de-
creased again to end at twice the initial rate (Fig. 5.4E). The cause of the high fold-change
and decrease is unknown, but changes in chromosome structure or transient improve-
ment in competition for RNA polymerases for this promoter (two binding sites at the two
replicated genes) could play a role. As predicted by the model (Fig. 5.4C,D), the dip in
GFP concentration occurred earlier and the initial increase disappeared (Fig. 5.4F). The
magnitude of fluctuations remained at around 4%. Overall, these data show that gene
position on the chromosome affects cell cycle related noise.

5.3. CONCLUSIONS

In summary, we found that the cell cycle can be a major causal factor of observed noise
in the rate of gene expression (52%), with the rest coming from other sources such as
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Figure 5.5: Summary of observed contributions to gene expression noise. (A) The cell cycle
causes fluctuations in the protein production rate, through deterministic and stochastic contribu-
tions. Other non-cell-cycle related sources contribute as well. The fluctuations in protein concen-
tration are determined by protein production noise and dilution due to growth. (B) Contributions
of the different noise sources as described in panel (A) , as fractions of the total observed variance
in gene expression (Table 5.1).

metabolism [56, 153, 154], transcription factors [26], or expression machinery [120] (see
Fig. 5.5A). Within the cell cycle contribution, the data suggests two components: a deter-
ministic mean contribution determined by cell phase (29%), and a stochastic contribu-
tion caused by variability in the timing of replication (23%) (Fig. 5.5B). The initially flat
production rate suggested gene copy number is the main factor in cell-cycle induced
expression rate variations, though alternative explanations cannot be ruled out.

The analysis indicated a noise-canceling mechanism: even sudden two-fold produc-
tion rate increases caused by replication of the gene are effectively compensated for by
a concurrent acceleration of dilution due to exponential growth [140, 141] (Fig. 5.5B).
The observed minor effect of the cell cycle on the protein concentration is thus due to
a passive homeostasis mechanism that exploits the balance between synthesis and di-
lution. When proteins are actively degraded, this noise canceling mechanism would be
less efficient. We note that a similar, but likely active, balancing between synthesis and
dilution was observed in mammalian cells where transcription rate is adjusted to cell
size [155, 156]. The homeostatic mechanism we observed does not necessarily act on
noise from other sources, such as fluctuations in RNA polymerase availability [120] or
transcription factors [8], if they are not synchronized with exponential volume growth.
Indeed, concentrations do display significant noise intensities (0.15 for slow growth, 0.10
for fast growth). We note that other canceling mechanisms can act on non-cell-cycle ex-
pression noise. For instance, metabolic noise that causes expression noise is partially
compensated for by increased growth [56].

Our findings provide insight into how elementary processes such as gene replication
events and volume growth can cause and filter noise in bacterial cells. Elucidating the
sources of gene expression noise is important to obtaining a bottom-up understanding
of cellular heterogeneity, cellular homeostasis and cell-cycle regulation, and to provid-
ing input for mathematical models of gene expression networks. Our results indicate
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that variance decomposition can be a useful tool in disentangling different noise sources
within cells.

5.4. MATERIALS AND METHODS

Experimental and analysis methods were described in detail in chapter 2. Here, we
specifically explain additional or deviating methods.

5.4.1. EXPERIMENTS AND IMAGE ANALYSIS

E. coli strain MG22 [7] was used for all experiments unless noted otherwise. This strain
is a derivative of MG1655 that contains yfp and cfp under control of a lac promoter,
which were inserted into the chromosome at the intC and galK locus. These two loci
are equidistant from the origin of replication, on opposite halves of the circular chro-
mosome. Additionally, we used strain ASC636 in which gene lacA of the lac operon was
replaced by gfp (constructed by A. B6hm).

For microscopy experiments we used either M9 minimal medium (main text figures)
or rich defined medium (MOPS EZ rich defined medium from Teknova, Fig. 5.7). M9
was supplemented with 0.2mM uracil and 0.1% maltose was added as carbon source,
yielding a growth rate of 0.6dbl/hr. To the rich medium we added 0.2% glycerol as carbon
source yielding a growth rate of 1.8dbl/hr. In all experiments we also added 200 uM IPTG
to fully induce the lac promoters.

Cells were grown and prepared for microscopy as described in chapter 2. Movies
of growing microcolonies were acquired on the Nikon TE2000-E inverted microscope
(chapter 2.2). Imaging frequency was on average 55 phase contrast and 8 fluorescence
images per cell cycle and fluorescence illumination time was kept short (YFP: 25ms, CFP:
30ms, GFP: 50ms). Each experiment was performed at least twice (Fig. 5.6).

Images were analyzed offline as described (chapter 2). Cells were segmented and
tracked and cell length was determined (cell width is constant: Fig. 5.12, [32], contrary
to results in [157]). Fluorescence images were corrected and concentration and produc-
tion rate was calculated for each cell. To obtain autofluorescence intensity, we measured
a non-fluorescent strain (MG1655) with the same illumination settings as standard ex-
periments. Measured signal intensity was 2.5% (CFP) resp. 0.4% (YFP) of the actual con-
centration signal from fluorescent proteins. Fluorescence signals were not corrected for
autofluorescence because autofluorescence was small compared to the signal and did
only introduce a constant offset with no effect on our results.

5.4.2. DATA PROCESSING

We analyzed cell cycles within a time window of the experiment that showed a con-
stant population-mean growth rate and mean protein concentration. Population mean
growth and concentration were considered constant when they fluctuated less than 5%
around the long-term average (for GFP in strain ASC636 10% was used as cutoff crite-
rion). Cells that stopped growing or filamented were removed (less than 15 cells per
dataset). The fraction of analyzed cells relative to all cells observed with complete cell
cycle was over 86% for MG22 datasets and over 50% for ASC636 datasets. The main con-
clusions were robust to taking the complete data set of growing non-filamentous cells
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with complete cell cycles. Datasets contained between 215 selected cells (large cells in
rich medium) to 435 selected cells (minimal medium). If one dataset was used for mul-
tiple plots (e.g. Fig. 5.1 & 5.4A,B) the same cells were analyzed.

Traces of production rate (Fig. 5.3) for individual cells were considered “step-traces”
when they deviated from a fitted step trace (see also appendix) less than a fixed thresh-
old. To be considered a step-trace, the mean squared deviation of a data point on the
trace from the fitted value had to be below 2% of the squared trace-average. Figures
and percentages in the main text are determined from one microcolony per strain and
growth condition. Results for the repeat experiment are shown in Fig. 5.6.

To determine the average dependence of a signal (e.g. concentration) on cell-cycle
phase, we binned the signal according to phase and averaged it within each bin (see
Fig. 5.1B,D,F). Error bars are standard errors of the mean from a resampled distribution
of the signal, obtained by bootstrapping from the experimental data for each bin.

The contribution of a specific noise source X (for example deterministic cell-cycle
variations) to total protein production noise was calculated by using the additivity of
variances for independent variables. The production rate p was for example written as
sum p = X + Y with Y being the unknown, not-measured, fluctuations (such as d p(¢,x),
see also main text). Then, Var(p) = Var(X) + Var(Y), and the fraction of the variance
in p which is caused by X is Var(X)/Var(p). We normalized variables such as p by
their mean so that the squared noise is identical to the variance. For example, the con-
tribution of p¢(¢) to p(¢,x) is 0.26%/0.48%. For protein concentration the calculation is
identical.

5.5. APPENDIX

5.5.1. ADDITIONAL METHODS

FITTING BACTERIAL GROWTH WITH AN EXPONENTIAL, LINEAR AND BILINEAR FUNCTION

Since the precise law of bacterial growth is important for cell-cycle fluctuations of pro-
tein concentration, we assessed fits of different growth functions to the binned cellular
length data. We examined exponential [144-146], linear [149, 150] and bilinear [147, 148]
fit functions for growth. Goodness of fit was evaluated via the mean square error M SE
which is the average squared deviation of a data point from the fitted curve:

1
MSE=—-Y ¢%. (5.4)
n

Here, ¢; is the distance of a data point from the fitted value, n is the number of data
points and the sum runs over all data points. Average length of each cell is normalized to
one. More elaborate measures which introduce a penalty for increasing number of fitting
parameters (four vs. two free parameters for bilinear vs. exponential fit) gave essentially
the same result.

The best fit to the population average function of cellular growth was an exponential
function (Fig. 5.9, MSE = 7.4-107°). A bilinear fit was slightly worse (MSE = 31.1-1079),
while cellular growth clearly does not follow a linear growth law (MSE = 316.8-107°).
For several single-cell individual traces, a bilinear fit was better than an exponential fit.
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Since our analysis holds for exponential and bilinear growth functions and an exponen-
tial growth law may be more physiologically relevant we chose an exponential function.

FIT OF STEP FUNCTIONS TO PRODUCTION RATE TRACES

We determined production rate as the slope of a linear fit to three subsequent total-
fluorescence data points. This discrete derivative smoothens a theoretical perfect step-
wise increase of production rate and makes the increase appear more gradual. In order
to fit step functions to production rate traces (Fig. 5.3 in the main text), we needed to
know what a perfect and immediate step function would look like after our data pro-
cessing. We used this result to fit the single cell traces in the main text.

Letd,, do, ...,d, be the phase points for which fluorescence data exists (n fluorescent
data points for one cell cycle, 0 < d; < 1) (Fig. 5.10A,B). All data points have an equal
phase difference of Ad = d;+1)— d;. The sudden increase of production rate is supposed
to occur at phase x which is in between d; and d(;+1) but may also be on either boundary
of this interval. Ax is the phase between the step time and the next data point d(;+1). The
initial production rate is py and doubles at x to be 2py.

For calculation of production rate at phase point dy the total fluorescence data Fx_,
Fy and F41) at phase d-1), d and d k1) has to be fitted by a linear function under a
least square criterion. For k < i, resp. k > (i + 1) the fitted production rate is simply py,
resp. 2pg. However, for the two data points close to the transition in production rate, i.e.
at phase d; and d;-1), a smoothing effect will occur. For calculation of production rate
at these points we need the total fluorescence at the following phase points:

phase total fluorescence

dgi-1) Fi-1

d; F; =F_1)+ poAd (5.5)
dgi+ Fi+1y = Fi-1) + poAd + poAd + poAx

dii+2) Fiiv2) = Fi—1) +2poAd + poAx +2poAd

Fitting a linear function to F(;_y), F;, F;+1) to obtain the production rate p(d;), resp. to
Fi, Fi+1), Fi+2) to obtain p(d;+1)), we get (see Fig. 5.10C):

p(d;) = po-(1+0.5Ax/Ad)
p(di+1) = po- (1.5+0.5Ax/Ad) (5.6)

Thus, after data processing, we obtain one (Fig. 5.10C, blue and green line) or two (red
line) data points with intermediate production rate. Our time resolution is set by the
acquisition frequency of fluorescent images and we therefore restricted the potential
phases for step-events to these time points (i.e. Ax = 0). Therefore, we fitted single cell
traces with a smoothed step function that contains one intermediate data point at 1.5pg
(Fig. 5.10C, blue and green line).

We excluded fitted steps where doubling occurred within the first 25 minutes after
cell birth. DNA duplication takes at least 33 minutes in fast growth but around 70 min-
utes at our slow growth rate [158]. The observed genes are located at least halfway down-
stream from the origin of replication, so duplication should occur at least 35 minutes
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after cell birth. Nested replication forks and hence pre-birth start of replication are not
to be expected to play a relevant role at slow growth rates. Hence, we can expect that
excluding the first 25 minutes for gene duplication does not introduce a bias.

5.5.2. ADDITIONAL FIGURES AND TABLES
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Figure 5.6: Population average cell-cycle dependencies from a replicate experiment. Figures
are to be compared to Fig. 5.1 and Fig. 5.4A,B. yellow: YFP (Fig. 5.1), cyan: CFP (Fig. 5.4)
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cell cycle phase in rich medium. Data is obtained from 215 cells with complete cell cycle, strain is
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tograms of data before (blue) and after (red) subtraction of cell-cycle trends are shown. Variation
in production rates is reduced while concentration distribution is almost unchanged.
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Figure 5.10: Influence of determination method of protein production rate on a step-like in-
crease. (A) The theoretical production rate doubles instantaneously (blue line). Dots denote the
time points at which production rate will be measured in an experiment, the vertical axis is how-
ever not directly measurable due to finite time delays between acquired images. (B) Total fluores-
cence (line) is the integrated production rate. For production rate calculation, total fluorescence
is measured at the indicated phase points (dots). (C) Inferred production rate from total fluores-
cence data for an idealized step-like input rate. Production rate is smoothened and contains one
or two data points at intermediate rates. The applied fit function in the main text corresponds to
the blue and green lines, i.e. when the step occurred at one of the measured time points.
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Figure 5.11: Determination of protein noise caused by stochastic replication timing. (A) Pro-
duction rate. Fitted step-like production rate functions, for 53 individual cell cycles (thin gray
lines), and the resulting averaged production rate (black line, same as orange line in Fig. 5.3D).
Arrows indicate three examples of the conditional variance Var (p¢(¢,v)|¢) at three phases (size
corresponds to standard deviation of the single-cell traces at that phase, first arrow has length
zero). (B) Concentration. We estimated the concentration traces (thin gray lines) using the pro-
duction rate traces from (A) and dilution due to volume growth. The thick black line is the average
of all single-cell traces. The stochastic and deterministic cell-cycle contributions to the concen-
tration fluctuations were then determined in the same way as for production rate, using variance
decomposition. Specifically, the conditional variance (the variance of the protein concentration at
a particular phase) is displayed for three example phases (arrows). Resulting noise contributions
are found in Table 5.1. Initial values here are normalized to 1.
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a) b) c)
variance
variance of caused by total variance
deterministic stochas.tic variance due caused by
cell-cycle r feplllcatlon to cell-cycle | non-cell-
total fluctuations | tming fluctuations: | cycle effects:
variance | Var (pc(¢)) Var (6pc(®,v)) | b)+c) a)-b)-c)
production rate | 0.482 0.26° 0.232 0.35% 0.332
concentration | 0.145% | 0.0112 0.0132 0.0172 0.1447
Table 5.1: Contributions of different components to protein production and concentration

noise. Values are given as variances (squared noise) because then individual contributions can
be added up. Dataset of main text (e.g. Fig. 5.1), strain MG22 grown on M9+0.1% maltose.




STOCHASTICITY OF METABOLISM
AND GROWTH AT THE SINGLE-CELL
LEVEL

Elucidating the role of molecular stochasticity [159] in cellular growth is central to under-
standing phenotypic heterogeneity [160] and the stability of cellular proliferation [161].
The inherent stochasticity of metabolic reaction events [153] should have negligible ef-
fect, because of averaging over the many reaction events contributing to growth. Indeed,
metabolism and growth are often considered to be constant for fixed conditions [162, 163].
Stochastic fluctuations in the expression level [7, 28, 159, 164] of metabolic enzymes could
produce variations in the reactions they catalyse. However, whether such molecular fluc-
tuations can affect growth is unclear, given the various stabilizing regulatory mechanisms
[34, 165, 166], the slow adjustment of key cellular components such as ribosomes [116, 167]
and the secretion [168] and buffering [169, 170] of excess metabolites. Here we use time-
lapse microscopy to measure fluctuations in the instantaneous growth rate of single cells
of Escherichia coli, and quantify time-resolved cross-correlations with the expression of
lac genes and enzymes in central metabolism. We show that expression fluctuations of
catabolically active enzymes can propagate and cause growth fluctuations, with transmis-
sion depending on the limitation of the enzyme to growth. Conversely, growth fluctuations
propagate back to perturb expression. Accordingly, enzymes were found to transmit noise
to other unrelated genes via growth. Homeostasis is promoted by a noise-canceling mech-
anism that exploits fluctuations in the dilution of proteins by cell-volume expansion. The
results indicate that molecular noise is propagated not only by regulatory proteins [5, 26]
but also by metabolic reactions. They also suggest that cellular metabolism is inherently
stochastic, and a generic source of phenotypic heterogeneity.

The contents of this chapter have been published as Kiviet*, D.J., Nghe*, P,, Walker, N., Boulineau,
S., Sunderlikova, V., and Tans, S. J. Stochasticity of metabolism and growth at the single-cell level.
Nature 514, 376 (2014). [56]
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6.1. RESULTS AND DISCUSSION

To investigate the dynamics of cellular growth, we followed individual E. coli cells grow-
ing on different nutrients. Among them was the synthetic sugar lactulose [171], which is
imported and catabolized by the LacY and LacZ enzymes like its analogue lactose, but
unlike lactose does not induce lac operon expression (Fig. 6.1A). Mixtures of lactulose
and the gratuitous inducer isopropyl-3-D-thiogalactoside (IPTG) thus allowed us to vary
the mean lac expression level independently and hence to explore different regimes of
noise transmission. We determined the instantaneous growth rate u(¢) of individual cells
within microcolonies at sub-cell-cycle resolution for various growth conditions, using
time-lapse microscopy [5] at high acquisition rates and automated image analysis (ap-
pendix and chapter 2). We found that u(f) varied considerably in time, both within one
cell-cycle and between different cell-cycles (Fig. 6.1B,C and Fig. 6.4), with noise inten-
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Figure 6.1: Growth rate variability in single E. coli cells. (A) Schematic diagram of the studied
system. Lactulose is metabolized by the lac enzymes, but does not induce lac expression. Mean lac
expression can hence be varied independently by the inducer IPTG. GFP is fused transcriptionally
in the lac operon (Table 6.2). (B) Aligned phase-contrast images for two lineages. Microcolonies
were grown on polyacryl pads (0.1% lactulose and 200 uM IPTG) for eight to nine generations. Up
to 48 images were taken per hour. Red line: cell boundary from image analysis. (C) Instantaneous
growth rate u(#) against time, determined by fitting exponentials to the cellular length. Four lin-
eages are colored for clarity. Black bar, mean division time; light points, division events. (D) Top:
histograms of p values for different IPTG levels. Bottom: noise intensity (standard deviation over
the mean). (E) Autocorrelation function of p(¢) for low (4 uM, green), intermediate (6 uM, ochre)
and high (200 pM, brown) IPTG levels. For clarity, error bars denoting the standard deviation are
indicated only for a fraction of the points. Black lines: exponential fits that provide the correla-
tion time. Correlation functions were determined along the branched lineages (see chapter 2.3.6,
Fig. 2.8). (F) Graph of u(#) correlation time versus mean doubling time. Colors are as in (E) ; black
points are for growth on defined rich, lactose, succinate and acetate (in order of increasing dou-
bling time). (G) - (I) As (C) , (E) and (F) , but for the fluorescence intensity reporting for E(¢) within
single cells. Protein concentrations were determined by the mean fluorescence per unit area (see
chapter 2.3.3, Fig. 2.5).
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sities (standard deviation over the mean) ranging between 0.2 and 0.4 (Fig. 6.1D). Con-
sistently, the growth rates of sister cells were significantly correlated (Fig. 6.5). We found
that the typical timescales of the fluctuations were somewhat smaller than the mean cel-
lular doubling time, as quantified by the autocorrelation functions Ry, (7) (Fig. 6.1E,F).
Such a scaling with doubling time is typical for protein concentration fluctuations [23].
Thus, the data indicated randomly fluctuating growth limitations, and suggested they
could be caused by concentration fluctuations of cellular components.

To study the relation between growth and lac enzymes, we quantified the fluctu-
ations in the lac production rate p(t) and concentration E(f) using green fluorescent
protein (GFP) labeling (Fig. 6.1A,G-I, Fig. 6.4 and Fig. 2.5). We computed the cross-
correlation functions Ry, () and Rg,, (7), which indicate whether expression fluctuations
correlate with u-fluctuations occurring time 7 later, and thus inform on the direction of
transmission [27, 28]. Both Ry, (7) and Rg,(7) showed positive correlations regardless
of the IPTG concentration (Fig. 6.2A,E-G). Their shapes and symmetries did depend on
IPTG, however. Atlow and intermediate IPTG, Rg,(7) was nearly symmetric around 7 = 0
while Ry, (7) was asymmetric with larger weight at 7 > 0 (Fig. 6.2E,F Fig. 6.7). This would
indicate that p fluctuations on average correlated more strongly with u fluctuations that
occur later. Such a delay in p is consistent with the idea that lac expression fluctua-
tions produce variations in lactulose catabolism, which in turn propagate through the
metabolic network and perturb growth.

High IPTG R, (7) displayed a positive peak at T < 0 (Fig. 6.2G and Fig. 6.7). Thus, E
fluctuations correlated more strongly with p fluctuations occurring earlier, which sug-
gested backward transmission from growth to expression. Such a growth-to-expression
coupling could be caused by specific regulatory interactions [53, 116, 172], or more gen-
erally by growth fluctuations that cause variations in general components that are re-
quired for transcription and translation. Overall, the data suggested that noise not only
propagated forward, from expression to growth, but also backward, from growth to ex-
pression.

To determine whether back-and-forth transmission could explain the correlations,
we developed a stochastic model. A black-box approach was followed, in which noise
propagation is represented by phenomenological transmission coefficients that do not
specify molecular details (Fig. 6.2B). Despite the circulating noise, the system could be
decomposed into distinct noise transmission modes; here termed the lac catabolism,
common noise and dilution modes (Fig. 6.2D). The cross-correlation curves for all in-
duction levels (Fig. 6.2E-G) were fitted jointly, using the transmission strength from the
common noise source to p as a single free parameter (Fig. 6.2H-]).

The effects of induction could be explained by altered intensities of the modes. At low
and intermediate IPTG, the lac catabolism mode was dominant, with lac noise causing
up to 30% of the growth noise (Table 6.1). At higher IPTG this mode weakened because
of decreased transmission from E to u. This decrease is plausible, as catalyzed reactions
are less dependent on catalyst when the latter is abundant, consistent with the observed
relation between the mean E and U (Fig. 6.2C). On the other hand, the rather constant
Ry, (0) (Fig. 6.2E-G) indicated that the common-noise mode had an almost fixed inten-
sity for all IPTG concentrations. To probe the generality of this mode further, we made a
number of genetic modifications. We found that it remained active when we knocked-
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Figure 6.2: Cross-correlation functions and mathematical model. (A) Instantaneous growth rate
against lac enzyme concentration from one microcolony, corresponding to the cross-correlation
value Rgy,(0) in (E) . (B) Model of the coupling between expression and growth noise. Two noise
sources are specific to p and p, one is common to p and u. Correlations arise when noise emit-
ted from one source is received by two observables (p, E or p). Analytical solutions revealed all
contributing pathways, and showed they were finite despite the looped network structure (ap-
pendix). (C) The mean growth rate versus the mean expression level, as measured for different
levels of IPTG induction. Line: fit to a Monod growth model. (D) Three classes of noise transmis-
sion modes. As an example, a noise source (left) emits a block wave, giving rise to signals u, p and
E (middle) and their cross-correlations (right). Other pathways contribute as well. For instance,
common noise can also drive the catabolism mode. (E) -(G) Cross-correlation functions Rpu(0)
for the enzyme production rate p(#) and growth rate p(#) (thin line), as well as Ry, (¢) for the en-
zyme concentration E(¢) and u(#) (thick line). Growth is on lactulose (0.1%) with IPTG: 4 uM (E) ,
6 UM (F) , 200 uM (G) . Top triangles indicate mean division time. Error bars denoting the standard
deviation are indicated for some data points only. The main features were robust to changing the
growth determination method and taking the cell width into account (Fig. 6.6E-H). Growth and
expression differences typically did not correlate with location within the microcolony (Fig. 6.61).
Protein production rates were determined by the time-derivative of the total fluorescence per cell
(Fig. 2.5, Fig. 6.4A). (H) -(J) Fits to the experimental data (E) -(F) .

out the lacrepressor, changed the GFP position within the operon, altered the type of flu-
orescent protein or used an exogenous constitutive promoter (Fig. 6.6A-D). These data
suggest that common noise transmits to expression in general, which does not exclude
additional coupling by specific regulatory interactions.

Next, we tested key findings. First, if the asymmetry in Ry, (7) (Fig. 6.2E,F) is indeed
caused by lac catabolism, this asymmetry should be suppressed when carbon enters
central metabolism via another pathway. Growth on acetate was similarly slow as on lac-
tulose and low induction, but Ry, (r) was now indeed nearly symmetric (Fig. 6.3A,B and
Fig. 6.7). At the same time, Rg,, () became more asymmetric as predicted for a dominant
common noise mode transmission (Fig. 6.3A,B and Fig. 6.7). When growing on other nat-
ural substrates including lactose, the Rg, peak-width scaled roughly with doubling time
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consistent with dilution setting the transmission delay timescales (Fig. 6.3B and Fig. 6.8).
To test further whether lac fluctuations could be causal in the growth noise, we exposed
the cells to IPTG pulses in a microfluidic device. The resulting pulses in lac expression
were indeed followed by a pulse in growth (Fig. 6.9A). Next, we aimed to mimic com-
mon noise fluctuations by growing cells on glucose minimal medium and pulsing with
amino acids. These pulses indeed produced transient increases in p and p (Fig. 6.9B),
consistent with common noise propagating to enzyme expression and to growth.
Second, the network structure implied a homeostatic control mechanism: upward
fluctuations in common noise increase E when transmitted via p, but also decrease E
when transmitted via u (Fig. 6.2B). These opposing effects offer a direct prediction: if
the positive pathway dominates, Rg,(7) should be positive, as is the case so far. If the
negative pathway would dominate, however, Rg, () should become negative (Fig. 6.3C).
One cannot manipulate how volume changes affect dilution. To tilt the balance, we thus
looked for constructs with a weaker coupling to common noise in the positive pathway,
as measured by R),,(0). A constitutively expressed mCherry with a twofold lower R+, (0)
indeed displayed negative Rg+ (1) (Fig. 6.3D and Fig. 6.7). Thus, two parallel antagonis-
tic pathways that together form a so-called incoherent feedforward network motif [173]
can partly cancel noise. This canceling also explains why Rg,(0) is low even though
Rp,(0) is high at high induction where common noise dominates (Fig. 6.2G). Interest-
ingly, while up-fluctuations in u are associated with up-fluctuations in E (Fig. 6.2G), in-
creases in mean [ lead to decreases in E (Fig. 6.8E) [53, 116]. These opposing dependen-
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Figure 6.3: Model predictions and experimental tests. Top: re-wired noise transmission net-
works with predicted dominant pathways (black). Colored genes indicate labeling with GFP and
mCherry. Middle: predicted cross-correlation with mean doubling time (triangle). Bottom: mea-
sured cross-correlation. Error bars denote the standard deviation. (A) , (B) For growth on acetate
the lac enzymes are catabolically inactive. (C), (D) Gene with a weaker coupling from common
noise to expression (compared with the lac operon), leading to dominant dilution. (E), (F) Trans-
mission from the lac genes to another gene via growth. When the lac genes do not transmit be-
cause cells grow on acetate, the correlation is symmetric (Fig. 6.10C,D). (G) Time delays for lac,
pfkA, gltA and icd in lactose (not boxed) and acetate media (boxed), as derived from the correla-
tion functions Rpu(7) (Fig. 6.10E). Small square boxes indicate which gene is considered limiting
in steady-state in a particular medium (see main text).
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cies suggest that different mechanisms underlie these two types of expression variation.

Third, if lac enzymes transmit to growth and growth transmits to expression in gen-
eral, then lac enzymes ought to transmit also to other genes. Hence we quantified p* (t)
of mCherry controlled by promoters with no known functional interactions with the lac
system. For lactulose and low induction, mCherry fluctuations indeed occurred after
lac fluctuations on average (Fig. 6.3F and Fig. 6.10A,B) in accordance with predictions
(Fig. 6.3E). In contrast, this delay was absent for acetate, which is consistent because lac
then does not transmit to growth (Fig. 6.10C,D). Noise in lac expression can thus couple
to other genes without specific regulatory interactions.

For the lac genes, the lac catabolism mode transmitted to growth only when the
mean lac expression was kept artificially low and limited the mean growth rate. Hence,
we wondered whether limiting enzymes in central metabolism could similarly perturb
growth. For growth on lactose, glycolysis is considered limited by pfkA, and the tricar-
boxylic acid cycle by icd but not by gltA; while in acetate, glfA is limiting, icd may be lim-
iting but pfkAis not [174-176]. We indeed observed positive time delays in R, for pfkA
and icd in lactose, and for gltA and icd in acetate, but not in the other cases (Fig. 6.3G
and Fig. 6.10E). This pattern of correlation delays is consistent with the mechanism
found for lac, in which growth limitation in steady-state resulted in noise transmission
to growth. Notably, the differences in noise transmission behavior were observed for
enzymes catalyzing nearby reactions in the pathway. For instance, icd acts almost di-
rectly after gltA, but icd displayed delayed correlation in lactose while glftA did not. This
excludes the possibility that the delayed correlations are caused by synchronous fluctu-
ations of pfkA, gltA, icd and other central metabolic genes. Together, the results indicate
that expression-to-growth noise propagation occurs more generally for limiting genes.

6.2. CONCLUSIONS

Our study shows that fluctuations in gene expression can affect the growth stability of
a cell, and, in turn, growth noise affects gene expression. This entanglement between
growth and expression noise reflects the inherent auto-catalytic nature of self-replicating
systems: metabolic enzymes help synthesize the building blocks for their own synthe-
sis. The results raise the question how different fluctuating metabolic activities within
the cell are coordinated, and which regulatory mechanisms are implicated in maintain-
ing growth homeostasis. Metabolic stochasticity could allow clonal cells in a population
to adopt a wide spectrum of metabolic states, and hence enable bet-hedging strategies
to exploit new conditions optimally. Metabolic stochasticity could represent a generic
source of cellular heterogeneity [15], but also prevent optimal growth [177] and limit ef-
ficient biosynthesis. Novel approaches are required to incorporate noise transmission
within the current theoretical framework of metabolism.
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6.3. APPENDIX
6.3.1. EXPERIMENTAL MATERIAL AND METHODS

TIME LAPSE MICROSCOPY, IMAGE ANALYSIS AND CROSS-CORRELATIONS

The experiments and analysis methods were extensively described in chapter 2. There-
fore, we here only give a brief summary and focus on details that differed from the com-
monly used methods.

We used derivatives of E. coli strain MG1655 (see Table 6.2) for the experiments. To
measure expression of the lac operon, lacA was replaced with GFPmut2 [84]. mCherry
and GFPmut2 controlled by the constitutive promoter Py25 [178] was inserted into the
chromosome at different locations using the Datsenko & Wanner protocol [58]. LacZ-
GFPmut2 fusion was performed using the Hamilton & al. protocol [179].

For the microscopy experiment cells were grown in minimal M9 medium supplied
with one of various carbon sources or in EZ defined rich medium. First, cells were inoc-
ulated into TY medium at 37 °C in the morning and after several hours highly diluted into
the medium used for microscopy. On the next morning the still exponentially growing
cells were diluted to OD=0.005. An acryl gel pad which was presoaked in medium was
placed into a glass chamber and 1pL of cells were applied onto it. The glass cavity was
closed with a coverslip and clamped tight. Despite thorough washing of glassware and
using distilled water, our gels contained organic contamination as observed by slow but
significant cell growth on minimal M9 media without sugar. Such organic contamina-
tions have also been observed for growth in batch cultures [180-182]. To make sure that
cells would not use these contaminants as carbon source in experiments at low growth
rate, we first grew cells with a knocked-out lac operon on the gel (strain NCM520), as to
consume the organic contaminants before the actual experiment.

Growth of cells into microcolonies was observed with an inverted microscope (Nikon
TE2000) at 100x magnification and 1.5x intermediate magnification. Image acquisition
was automatized and phase contrast and fluorescence time-lapse movies were acquired.
We measured maturation times of GFPmut2 and mCherry to be approximately 5 and 15
minutes, respectively (Fig. 3.4), similar to other reported values [102, 110]. The movies
were analyzed offline with a custom software based on Schnitzcells [39]. Cells were seg-
mented and tracked, resulting in a full lineage tree of several hundred cells. Growth rate
as derivative of cell length was determined at sub-cell-cycle resolution. Fluorescence
images were corrected and apparent protein concentration and production rate were
determined as described in chapter 2. All obtained parameters were corrected for quasi-
periodic cell-cycle fluctuations (Fig. 6.11). The temporal fluctuations of two signals rela-
tive to each other were determined by cross-correlations. Here, the redundancy of data
in the tree-like lineage structure was taken into account (Fig. 2.8).

PULSE EXPERIMENTS IN MICROFLUIDIC DEVICE

The microfluidics devices were similar to those described in ref. [31]. Briefly, concen-
trated cells are loaded into a PDMS structure bound to glass, after which cells grow in
a narrow channel of limited length. Due to growth, cells are pushed out of this narrow
channel into the wider flow channel that supplies nutrients and washes away the excess
cells. Media is pumped through the device at a rate of 0.5mL/hr using syringe pumps
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(New Era). Media is switched using a valve (Hamilton), with a characteristic half-time
of less than 1 minute (determined using a fluorescent dye). Cells were imaged with an
inverted Olympus X81 microscope with ZDC hardware focus, equipped with an oil ob-
jective (Olympus UPLFLN100x), cooled CCD camera (Olympus XM10), mercury lamp
with liquid light guide (X-Cite 120), GFP filter set (Chroma N49002), automated stage
(Marzhduser Scan IM 120x80) and an incubation chamber (Life Imaging Services) allow-
ing precise 37°C temperature control.

6.3.2. MODELING MATERIAL AND METHODS

ANALYTICAL EXPRESSION OF THE CORRELATIONS

We note E the enzyme concentration, p its production rate and u the rate of increase of
volume. Given that enzymes are long-lived compared to the cell cycle time:

The rates p and p can vary due to fluctuations in the concentration or the activity of
global factors (such as ribosomes, ATP, amino-acids or common regulatory elements) or
due to fluctuations of specific factors, such as lacl repressor binding to the lac operon
or enzymes catalyzing cell wall production. Hence we consider three independent noise
sources: Ng is the effect of common components, Ng and N, are components specific
respectively to E (more specifically: protein production p) and p. These Nx are modeled
as independent colored noises:

Nx =0x-Bx-Nx . (6.2)

Here, Bx is the decay rate and 0 the amplitude of a white noise source. We computed
analytical solutions for the time-correlations under a linear response approximation,
which is suited to probe quantitatively the short term response of the network when
fluctuations are of sufficiently limited amplitude. We defined the perturbed variables
6X(t) = X(t) — Xp (where Xj is the mean of X) and logarithmic gains Txy representing
how a variable X responds to the fluctuations of a source Y. Given the network of noise
coupling interactions described in the main text (Fig. 6.2B), we write the following ad-
ditional relations between variables p, E, and u, and the noise sources Ng , Ng , and
Ny:

O g % NG+ N, 6.3)
Ho Ey

O 1,528 NG+ N, 6.4)
Ep - 1o Ey

A first order development of equation 6.1 gives:

SE OE op ou
= 4 Tpy - — (6.5)
Eo-po  Eo  Eo-po o
where the transmission of dilution fluctuations is denominated as Tg, = —1. Fourier

transforms of equation 6.3-6.5 (X indicates the Fourier transform of X) result in a linear
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system for E and p fluctuations in the frequency domain:

51:_ Ho
Ey _pE+iw

[NE+ (TEG+ TEuT,uG)'NG"' TE.UNH] (6.6)
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where the rate pg = po(1 — Tg, Tug — Tgg) sets the timescale of E fluctuations.

TllE . [NE + (TEG + TE” TuG) 'NG + TEyNu] + TMGNG + [\7” (6.7)

Let R(1) = < oSl %dﬁ be the cross-covariance between E and y normalized
by their mean, Rgg and R, their respective auto-covariance. In the frequency domain

we have:

Rup=(—"—)» Regp={ —— ), Ryy=(—— (6.8)
o Ep Ey Ky Ho Mo

Using the independence of noise sources (eq. 6.2) together with eq. 6.6- 6.8, the cross-
covariance in the time domain is:

Rup(t) =1-Tyug - Sp(0) + (Teg + TepTuc) - Tue (Tec + TeuTuc) - Sc(T)
+ Tgu Tue Tep - Su(@ + (Tee + TeuTuc) - Tug - Ag(T) + Ty - 1+ Au(T) (6.9)

Each term of the sum on the right-hand side of equation 6.9 is the product of three fac-
tors separated by dots, respectively representing: fluctuations transferred to E, fluctua-
tions transferred to u, and a 7-dependent function quantifying delayed correlation aris-
ing from a particular noise source. We find these functions have one of two forms: Sx
(symmetric) or Ax (asymmetric, negatively delayed), which are inverse Fourier trans-
forms of the frequency dependent components of the cross-correlation (obtained fol-
lowing the method described in detail in [27]):

2 —sign(t)-ugt —sign(t)-BxT
Sx(@) =04 ——0 | % . (6.10)
z(ﬁX_ME) HE ﬁX
2 Ho LET _ Ho BxT :
Ax(1) = GX((ﬁi—u@e ST e ) ifr<0 (6.11)
[f— R—— ift=0.

X" 2Bx(Bx—pp)

The first three terms of eq. 6.9 correspond to the symmetric modes generated by direct
transmission fluctuations from E to y, originating from Ng, Ng and N, (Fig. 6.2D). These
modes thus depend on lac catabolism (they disappear when T,z = 0), and are hence
named ‘ac catabolism’ modes (see Fig. 6.2D). The fourth term represents the asymmet-
ric contribution arising from the joint dependence of protein synthesis and cell volume
increase on noise in common factors, and was hence named the common noise’ mode
(see Fig. 6.2D). The fifth term is the asymmetric contribution originating from the ef-
fect of volume growth on enzyme concentration by dilution (Tg, = —1), and was thus
termed the dilution’ mode (see Fig. 6.2D). Similarly, we obtain analytical expressions for
the auto-covariance for 7 = 0:

Rep(1) = Sp(1) + (TeG + TeuTue)* - Sa (1) + T, - Su(T) 6.12)
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Ryup() = T2 - Ap(1) +2Z—E T (T + Ten Tuc) - Sa (@) + 2% Ty Ty Su(T)
0 0
+ Ty - Bg(1) + By (1) (6.13)

92
where Bx (1) = ZTXXe‘ﬁX'T.

The cross-covariance function between the production rate and growth rate is ob-
tained in the same way:

Rpu(0) = TG Ty Bo(@) + T~ Ty [Se () + (Tee + TeuTuc)” So(0) + T, Su(@)

+ Tep(Tgc + TeuTue) - Tuc - Ac(=1) + TeG - Tue(Tec + TepTue) - A(7)
+TEETE'U’I’AIU(—T)+1'T“E’AE(T). (6.14)

In the case of a second constitutively expressed gene F, we computed similarly the dif-
ferent types of correlation functions, assuming the response of the production rate p* to
be:

OE
ZTFE'E_"'TFG'NG"'NF' (6.15)

FITTING PARAMETERS FOR GROWTH EXPERIMENTS ON LACTULOSE

The parameters of the model (Table 6.3) are the average growth rate p, the amplitudes
of the noise sources {0, 6, 0}, their relaxation constants {g, B, Bc} and the transfer
coefficients {7, , Teg , Tgc}. Additional coefficients Tg, and T, were used in the model
for notation consistency but have imposed values: Tg, = —1 models the physical dilution
and T, was arbitrarily set to 1 as it only normalizes Trg and Ng .

Most parameters were determined directly from the measurements as follows. The
population average growth rate 1y was determined as the average of the measured in-
stantaneous growth rates. Timescales 1/6, and 1/ (growth specific and common
noise respectively) were taken equal to the measured autocorrelation time of p. The
timescale 1/ S (lac specific noise) was varied to fit Ry, (0) and was in all cases found to
be consistent with previously reported timescales [5] for gene specific noise (= 9 min in
doubling units). The amplitudes of the noise sources {0, 8, 0} were determined from
the experimentally measured {Rgg(0), Ry (0), Rgu(0)} by solving the linear system ob-
tained from equations 6.9, 6.12, 6.13 in real time space at ¢ = 0. The feedback of E on
itself Tgr determines the characteristic time of E fluctuations (see ug in equations 6.6
and 6.7) and was taken to match the measured autocorrelation time of E.

The two remaining parameters Tgg (response of lac expression to common noise
Ng) and T, (response of p to E fluctuations) were the only parameters that determined
the values of the cross-correlation functions Rg, and Ry, for time delays different than
zero. T, was determined independently from the cross-correlations as the slope of the
E — p clouds of Fig. 6.12. Consequently, the only fitting parameter for the shape of the
functions Rg,(7) and Ry, (7) was Tgc , for which we could use the single value of 1.3 for
all experiments.
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ROBUSTNESS OF THE FIT

We quantified the quality of the fit of the cross-correlations by computing the weighted

_ 2
sum of squared errors 62 = % Xt (y(t;(—tf)z(t))’ where y(?) is the measured correlation at

time delay ¢, f(¢) the predicted correlation, o(¢) the experimental variance and N the
number of time points. 82 = 1 can be interpreted as the amplitude of the residuals being
comparable to the experimental variance, while # > 1 indicates that the fit is poor. We
computed 6?2 for Rgy, and Ry, for different Tgg. The range T = 1.3 - 1.5 yielded best
quality fits 62 < 0.6 for all IPTG induction levels on lactulose. For simplicity, we used the
unique value Tgg = 1.3 which is optimum at low induction (Fig. 6.13A). The symmetries
of the cross-correlations were robust to variations of the parameters Trg and T,g that
determine the shape of the cross-correlation functions (Fig. 6.13B,C).

PREDICTIONS FOR REWIRED NETWORKS

For the other conditions of Fig. 6.3, average growth rate o was measured experimentally.
Following the trends observed on lactulose experiments, we took f,, = fa = 2 and
1/fg =9 min. For Tyg and Tgg , we took the values found for lactulose experiments at
the same induction level, otherwise zero when the enzyme was in excess or inactive. We
considered Tgg/ T, to be promoter specific and kept the value of 1.3 for the lac operon.
We found Tcg/ Ty = 0.7 for the exogenous constitutive promoter independently of the
genomic location of its chromosomal insertion. g, 6, and 6 were fitted to reproduce
the experimentally measured values Rgg(0), Ry, (0) and Ry, (0). In all cases (except panel
G, for which there is no prediction), the cross-correlation between growth rate and gene
concentration was fully predicted. The correlation between the production rates p of
lac enzyme and p* of mCherry under a constitutive promoter (Fig. 6.3E, Fig. 6.10C,D)
were fully predicted: we took the parameters already obtained from the experiments on
the same growth medium, assumed that noise transmission from the lac catabolism af-
fected similarly the production rate of lac and the production rate of the constitutive
gene (Tcp = Tgg), and arbitrarily took the same noise level nr for the constitutive pro-
moter as measured on lactose.

EFFECT OF ACTIVE DEGRADATION

The model can be extended to take into account active degradation of lac enzymes at
rate Yo, by replacing the expression of ug by yo + po(1 — Ty Tyr — Tgg). Interestingly,
active degradation would result in less self-sustained fluctuations of E, and the model
predicts a reduction of 90% in E noise and a corresponding decrease of 19% in u noise
(Fig. 6.14). This indicates a potential mechanism for noise reduction at the expense of
higher protein production costs.




102 6. STOCHASTICITY OF METABOLISM AND GROWTH AT THE SINGLE-CELL LEVEL

6.3.3. ADDITIONAL FIGURES
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Figure 6.4: Cell length, enzyme concentration and production rate. (A) Enzyme production rate
against time p(¢) for all lineages within a microcolony, from 5 h into the experiment and onwards.
Four lineages are colored for clarity. Black bar, mean division time; light points, division events.
(B) Cell length against time L(#) as in (A) . (C) Histograms of observed E values for different IPTG
induction levels. Bottom panel indicates the noise intensity, defined as the standard deviation
over the mean. For information on cell segmentation, determination of cell length and enzyme
concentration (part of the published figure) we refer the reader to chapter 2, Fig. 2.2-2.5.
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Figure 6.5: Correlations between the growth rate of sister cells during growth on lactulose for
increasing levels of IPTG induction. (A) At 4uM IPTG, R = 0.72, n = 171, P < 10727 (¢-test). (B)
At 6uM IPTG, R =0.42, n =382, P < 10716, (C) At 200uM IPTG, R=0.32, n =314, P < 1078, (D)
Evolution in time of the correlation coefficient between growth rate of sisters, for 6uM IPTG. A
decreasing exponential was fitted with a decay time of 2.86 h.
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Figure 6.6: Cross-correlations of control experiments and using different methods of growth-
rate determination. (A) Expression of lac in a lacl repressor knockout strain on lactose minimal
medium (to be compared with Fig. 6.2G). (B) Expression of lac measured with a GFP fusion to LacZ
shows the same result as co-transcriptional expression of GFP on 0.1%lactulose and 6 uM of IPTG
(to be compared with Fig. 6.2F). (C) Exogenous constitutive promoter (Py25 ) driving the produc-
tion of GFP, inserted in the cheZ locus, on minimal medium with lactose. (D) The lac promoter
driving the production of yellow fluorescent protein (YFP), inserted in the intC locus, on minimal
medium with maltose. (E) Cross-correlations for lactulose growth at low IPTG (4 uM), with growth
rate determined as follows: S(¢) is the surface area of the cell silhouette versus time (Fig. 2.4A).
The growth rate is the time derivative of S(¢). (F) The same, for lactulose growth at high IPTG (200
puM). (G) Cross-correlations for lactulose growth at low IPTG (4 uM), with growth rate determined
as follows: S(7) is the surface area of the cell silhouette versus time, L() is the length of the cell
silhouette versus time (Fig. 2.4A,B). The growth rate is the derivative of L(£)- (S(£)/L(£))%. Note that
S(#)/L(¢) is taken as a measure for the width of the cell, and the width squared times the length as
a measure for the cell volume. (H) The same, for lactulose growth at high IPTG (200 uM). These
cross-correlations display the same shape and symmetry as in Fig. 6.2E, G, where the growth rate
is determined as the derivative of the length of the cell silhouette (Fig. 2.4C). Hence the central
features are robust to different methods of growth rate determination. (I) Scatter plot of instan-
taneous growth rate and cell position within the microcolony. The cell position was calculated as
the minimal distance of the center of a cell to the edge of the microcolony. Data obtained during
growth on lactulose at intermediate IPTG induction (6 uM).
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Figure 6.7: Quantification of symmetry of cross-correlation functions. For each cross-
correlation (corresponding figure indicated at top), we computed the weighted average of the time
delay g = ¥ ;=1 (Rt - 1)/ X t=1 Rt, with R; the correlation intensity at time delay ¢, considering sig-
nificantly cross-correlations (¢-test, P < 0.05, n = 4) within the interval I = [-2,2] cell cycles. A
positive (respectively negative) 7 g indicates that the cross-correlation R has more weight at posi-
tive (respectively negative) times. Error bars denote the standard deviation of the symmetry values
determined for four subbranches. Note that the E—pu cross-correlations of Fig. 6.3C,D are negative,
and hence we display —7g.
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Figure 6.8: Cross-correlations for growth on different carbon sources. (A) Schematic diagram
of noise transmission during growth on lactose, which is predicted to be similar to the case of
growth on lactulose at high IPTG induction (see Fig. 6.2G, J). (B) Corresponding measured cross-
correlations. (C) Theoretical cross-correlations obtained by using the parameters during growth
on lactulose and changing exclusively the population average growth rate to the experimentally
measured value. This prediction displays a positive asymmetric peak towards negative time and
a width scaling with the average growth rate. (D) Corresponding measured cross-correlations.
(E) Population average lac enzyme concentration versus the population average growth rate on
minimal medium supplemented with varying carbon sources.
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Figure 6.9: External media perturbations in microfluidic device. (A) Growth of AB460 in mi-
crofluidic device (see appendix) on M9 medium with 0.1% lactulose, 0.01% Tween-20 and 16 uM
IPTG. A 2-h pulse to medium with 3 uM IPTG is indicated in red. Black line is the mean, and gray
area is the standard deviation, of approximately 60 cells. Indicated are the lac production rate (p),
lac concentration (E) and cell growth rate (). The duration and intensity of the pulse was chosen
to reflect the naturally occurring fluctuations in lac expression. Upon the pulse, the production
rate transiently decreased, followed by a gradual transient decrease in lac concentration, and a
transient decrease in growth rate. These data are consistent with the catabolism transmission
mode (top). (B) Growth of ASC631 in microfluidic device on M9 medium with 0.1% glucose, 0.01%
Tween-20 and 1 uM IPTG. To mimic fluctuations in common components, a 1-h pulse of amino
acids (Teknova M2104) added to the medium is indicated in green. Both growth and production
rate increase immediately upon addition of amino acids, reflecting the common noise transmis-
sion mode (top). The enzyme concentration remained relatively stable, showing that for these
perturbations the production increase and dilution increase canceled each other. These data are
consistent with the common noise mode (top).
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Figure 6.10: Cross-correlations of additional constructs. (A) Transmission from lac to another
gene via growth (on 0.1% lactulose and 6 pM IPTG) shown by the asymmetric cross-correlations
between lac production rate and mCherry production driven by the constitutive bla promoter. (B)
The same for lac production rate and mCherry driven by the mel promoter induced by 0.2% meli-
biose (AmelA strain). (C) Symmetric cross-correlation between lac production rate p and other
gene production rate p* predicted for growth on acetate (see (D) ). (D) Absence of transmission
shown by the cross-correlation between lac production rate p and the mCherry production rate
p* driven by the constitutive Pyo5 promoter, on minimal medium with 0.18% acetate, consistent
with predictions (see (C) ). (E) Cross-correlations (Rp,,) for lac, pfkA, gltA and icd in lactose (left)
and acetate media (right).
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Figure 6.11: Effect of the cell cycle correction (red without and blue with correction) on the
autocorrelation of the production rate of lac p (A-C) and the cross-correlation between p and
[ (D-F) during growth on lactulose for the respective induction levels IPTG = 4 / 6 / 200 pM. The
increase of the gene copy number across the cell cycle causes periodic variations in the production
rate, which appear as oscillations in Ry, with the periodicity of the average cell cycle duration.
Subtracting the averaged trend over all cell cycles from the signals allow to remove most of this
signal. Cross-correlations p — u are negligibly affected by this correction.
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Figure 6.12: Scatter plots of the growth rate and the enzyme concentration normalized by their
average. Darker dots indicate the p average over bins of E. These plots have been obtained for
increasing IPTG induction levels on minimal medium and lactulose 0.1%: from left to right, IPTG
=4 uM, 6 uM and 200 uM.
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Figure 6.13: Robustness of the fitting. (A) 62 for different values of the fitting parameter Ty at
low induction, for the fit of Rg,, (blue), Rpy (red) and their average (black). The fitting is optimal
for Tgg = 1.3 and within the experimental error (92 < 1) (B-C) Symmetry of the cross-correlations
was quantified by the value 7y as described in the caption of Fig. 6.7, for Ry, (full lines) and Rpy,
(dotted lines) for the three induction levels (low in blue, intermediate in green and high in red)
when varying the parameters Tgg (B) and Ty (C) . Symmetries are conserved for domains of the
curves which are on the same side of the axis 7p = 0. In particular, the symmetry of all cross-
correlations is stable for Trg = 1 — 1.5 at all induction levels (model value 1.3), for TuE > 0.31
at low induction (model value 0.7), T, > 0.18 at intermediate induction (model value 0.5) and
T, <0.08 at high induction (model value 0).
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Figure 6.14: Model prediction for the effect of active degradation of lac enzymes with a
timescale of 60 min during growth on lactulose with 6 pM IPTG with an average doubling time
of 140 min. We compare the cases when there is no active degradation and active degradation
taking or not into account the possibility of additional noise specifically due to degradation (we
assumed that degradation noise was of same amplitude than production noise).
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6.3.4. ADDITIONAL TABLES

Lactulose experiments | Noise observed in | Transmitted from E
low induction p 12%
(Iptg=4 uM) E 34%

u 31%
intermediate induction p 9.80%
(Iptg=6 pM) E 19%

u 20%
constitutive gene p* 13%
(Iptg=6 uM) E* <1%

Table 6.1: Contribution of noise transmitted from lac concentration E to different variables in
various culture media. The contribution of noise transmitted from E was computed by comparing
the coefficient of variation of a given variable with or without transmission from E, using the values
fitted with the model. Note that a decomposition of noise as a sum of coefficient of variations is not
possible here, given the feedback of E on itself, which leads to self-sustained fluctuations which
impact the noise intensity in a non-additive way.

Strain Genotype Origin

AB460 AlacA::gfp-cat Constructed by A. Bchm
ASC631 AlacA::gfp-cat, Aphp::-mCherry-kan® This study

ASC636 AlacA::gfp-cat, AcheZ::-mCherry-kan® This study

ASC638 AcheZ::-gfp-kan® This study
ASC639 | AlacA:gfp-cat, Alacl:kan® This study
ASC662 lacZ-gfp This study

ASC640 AlacA::gfp-cat, Aphp::Bla-mCherry-kan® | This study
ASC644 AlacA::gfp-cat, AmelA::mCherry-kan® This study
ASC666 | L3I-mCherry-kan®, gltA::gfpA206K-cat This study
ASC677 L31-mCherry-kan®, pfkA::gfpA206K-cat This study

ASC678 | L3I-mCherry-kan®, icd::gfpA206K-cat This study
MG22 AintC Py _jac01-VIP Elowitz lab
NCM520 | AlacAYZ Coli Genetic Stock Center

Table 6.2: List of strains used in this study. Construction of strains is described in chapter 2.2.1.
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R | e | Robanat | acetmte | Tran 11){*2;4 scetate
IPTG IPTG IPTG promoter |
Fig.6.2H | Fig.6.21 | Fig.6.2] | Fig.6.3A | Fig.6.3C | Fig.6.3E | Fig.6.10C
o (b7 | 0.23 0.42 0.84 0.22 0.91 0.35 0.29
(ﬁ lf_;)ﬁ M1 033 0.58 3.23 0.45 1.82 0.71 0.58
Pe 5.63 6.06 7.36 7 7 7 7
(h™)
nE 1.03 0.78 0.48 0.60 - 0.78 0.60
Ny 0.16 0.12 0.03 0.07 0 0.12 0.07
nG 0.22 0.19 0.22 0.24 0.17 0.19 0.24
Teg 1 0.68 -0.23 0 - 0.68 0
Tue 0.7 0.5 0 0 - 0.5 0
TeG 1.3 1.3 1.3 1.3 = 1.3 1.3
nr - - - - 0.3 0.3 0.3
Trp - - - - 0 0.5 0
TrG - - - - 0.7 0.7 0.7

Table 6.3: Parameter values used to fit the experimental data. Values are for growth on lactu-
lose at different IPTG concentrations (first 3 columns corresponding to model fits in Fig. 6.2H-])
and for the predictions of the rewiring experiments (Fig. 6.3A,C,E and Fig. 6.10C). Population aver-
age growth rate is measured and indicated in bold. Grey boxes correspond to parameters inferred
from other experiments with similar conditions, as explained above. The noise sources ampli-
tudes are expressed as the standard deviation of the random variable Nx which corresponds to

nx =0x/v/2Bx.

Daan Kiviet and Sander J. Tans conceived and designed the experimental approach. The exper-
iments were performed by Daan Kiviet, Philippe Nghe, the author (especially central metabolic
genes, noise transmission to constitutive genes) and Sarah Boulineau. Vanda Sunderlikova de-
signed and constructed the strains. Philippe Nghe developed the theoretical model. Daan Kiviet,
Philippe Nghe and Sander J. Tans wrote the published manuscript.



INFLUENCE OF RIBOSOME
EXPRESSION DYNAMICS ON
CELLULAR GROWTH

In this chapter we study the influence of fluctuations in ribosome content on cellular
growth. Ribosomes are the machines that produce proteins and are highly abundant in
cells. On the population level, their concentration appears to be precisely tuned to the
cellular growth rate. Their role within the cell is central because cells cannot grow faster
then ribosomes replicate themselves (and other components). We aimed to investigate
whether transient fluctuations away from the average concentration render ribosomes
growth-limiting and whether ribosomes are tuned to an optimal level. Therefore, we first
characterize different fluorescent reporters to monitor ribosome production. Then, we de-
termine temporal cross-correlations and the results suggest that ribosomes are not dynam-
ically limiting growth rate. Neither do ribosomes appear to fluctuate around a clear op-
timal concentration. The results of this study are of preliminary nature and we conclude
the chapter with suggestions for future research directions.
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7.1. INTRODUCTION

Ribosomes are a central component of every living cell: They translate the genetic infor-
mation encoded in mRNA into proteins, which then carry out virtually every function in
a cell [183]. A ribosome is a complex machine consisting of ribosomal RNA and many
proteins and is present in thousands of copies in a bacterial cell [1]. The number of
required ribosomes increases strongly with growth rate [1, 53, 55] but producing these
large numbers is costly. Therefore, on the population level ribosome synthesis is strictly
regulated and precisely adjusted to the need imposed by the environment [184, 185].
But just as all other cellular components ribosomes are likely subject to noise and their
concentration or efficiency may dynamically fluctuate in single cells. Considering their
central role in cellular growth, any fluctuation away from the mean concentration could
have an effect on growth rate. Indeed, it is commonly believed that fluctuations in ri-
bosome content directly affect gene expression (“extrinsic noise”) and thus may cause
fluctuations in biomass generation (growth) [5, 123].

In this chapter we aim to address the question whether fluctuations in ribosome con-
tent dynamically limit growth of single cells. In other words, are ribosomes a bottleneck
and do cells that temporarily have a higher ribosome concentration also grow faster? Or
is the opposite true and these cells only feel the extra production burden while they can-
not use the extra translational capacity, resulting in transiently slower growth? Related
to this question is a third scenario: The mean ribosome concentration could be optimal
and yield maximal growth while both up- and down-fluctuations could reduce growth
rate. Moreover, it is an open question whether cells dynamically regulate ribosome con-
tent and thus counteract fluctuations to achieve growth homeostasis. To address these
questions, we constructed a fluorescent reporter for ribosomes and measured growth
and expression fluctuations over time. We then used amongst others cross-correlation
analysis (chapter 2.3.6) to test whether ribosome fluctuations might transmit to growth
rate. Limitations would manifest themselves as delay between ribosome production and
growth rate fluctuations. This project is work in progress and we here report preliminary
results and give an outlook on potential future directions.

Designing relevant experiments and interpreting data requires detailed understand-
ing of ribosome production and its regulation. Therefore, we first give a brief introduc-
tion to ribosome composition and functionality and discuss regulation of ribosome syn-
thesis. We also review how ribosome concentration and growth rate are coupled on the
bulk level, then introduce our reporter strains and subsequently describe our results.

7.1.1. RIBOSOME BIOGENESIS AND FUNCTIONALITY

E. coliribosomes are composed of a large 50S and a smaller 30S subunit [183] (Fig. 7.1).
Together, they consist of three stable ribosomal RNAs (rRNA) and 54 ribosomal proteins
(r-proteins) [183]. Around 65% of a ribosome is rRNA and around 35% are r-proteins
[186]. rRNA is transcribed from seven operons which are all very similar, highly accessed
and located close to the origin of DNA replication [184, 187]. Still, these operons are
not transcribed at maximum capacity and only five of the seven operons are needed
(then transcribed at maximum capacity) to produce the required rRNA and to yield near
maximal growth rate [187]. This means that expression from rRNA promoters is gene-
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growing peptide Figure 7.1: Illustration of a translating ribo-

® chain some. The ribosome (green) consists of a small
S (30S) and a large subunit (50S), both of which
\ contain TRNA and r-proteins. During transla-

tion, it moves along an mRNA and converts each

tRNA nucleotide triplet into an amino acid, which is

mRNA added to the growing polypeptide chain (pro-

e x tein). tRNAs provide the “nucleotides-amino-

acid” pairs. Image was taken from [199] and la-
bels were adjusted.

dosage compensated [188]. Genes encoding r-proteins are arranged in 19 operons of
variable size, ranging from one to eleven genes per operon [189, 190]. To form a mature
ribosome, the rRNAs need to be modified and fold and all r-proteins need to bind in the
correct order [184]. Ribosome assembly takes around 1-4 minutes [191, 192].

For translation, the ribosome binds mRNA at the ribosome binding site (RBS) and
starts decoding at the start codon, which is a specific nucleotide triplet [184]. Each codon
is recognized by a transfer RNA (tRNA) which is charged with the encoded amino acid
(Fig. 7.1). The tRNA binds the mRNA, adds the amino acid to the growing peptide chain
and then unbinds [184]. This process is repeated until the stop codon is reached. rRNA
performs the core catalytic functions during translation while r-proteins have rather as-
sisting functionality [193, 194].

Ribosomes are not distributed uniformly throughout the cytoplasm but avoid the
nucleoid region and are mostly located at the cell poles [195, 196]. In growing cells, 80%
of all ribosomes are actively translating, independent of the growth rate [1, 184]. An
exception are very slow growth conditions where the inactive fraction might be increased
[197]. Ribosomes that are not active might still be in the final stage of de novo assembly
[1] or might be in the process of being reactivated (repaired) [198]. The elongation rate
during translation is independent of growth rate [53, 55, 197]. Together with the constant
fraction of active ribosomes, this implies that the total rate of protein synthesis can only
be changed by changing the number of ribosomes in a cell.

RELEVANCE FOR THE PROJECT

Since ribosomes consist of many components, it is not trivial to decide which part to la-
bel with a fluorescent reporter. One needs to choose whether expression of r-proteins or
rRNA should be tracked and of which representative precisely within these classes. Ribo-
somal proteins can be expressed as translational fusions, but location within the operon
and on the ribosome should be considered to retain functionality. rRNA expression can
be monitored by introducing a promoter reporter. The fast assembly of the ribosomes
suggests that expression fluctuations of one component will be a good proxy for fluctu-
ations in the number of assembled, functional ribosomes.
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7.1.2. REGULATION OF RIBOSOME SYNTHESIS
TRANSCRIPTION AND TRANSLATION

Producing large amounts of ribosomes is costly, as is translation of unnecessary proteins
by overabundant ribosomes. Therefore, ribosome synthesis is strictly controlled. We
here give an overview of regulation, for more detailed reviews on ribosome regulation
see for example [184, 185], and on ppGpp (see below): [200, 201].

Expression of rRNA is regulated on the transcriptional level and r-protein synthesis
is controlled during transcription and translation [202]. An important regulator of rRNA
transcription is a small molecule called ppGpp (Fig. 7.2A) [201, 203]. It binds to RNA
Polymerase (RNAP) and inhibits transcription from ribosomal RNA promoters [204]. The
effect of ppGpp is potentiated by the protein DksA which binds to RNAP and modifies
it [205, 206]. Additionally, rRNA expression is regulated by the transcription factor Fis
[207] and the concentration of initiating nucleoside triphosphate (iNTP) [208]. iNTP is
especially important during outgrowth from stationary phase and Fis levels change dur-
ing transitions to and from stationary phase, but ppGpp dominates regulation during
nutrient shifts and exponential growth [209].

Expression of r-proteins is balanced with rRNA expression by the following transla-
tional feedback mechanism (Fig. 7.2A): When r-proteins exist in excess and free rRNA is
absent, many of these proteins bind with lower affinity to their own mRNAs [197]. This
prevents the mRNA from being translated and additionally enhances its degradation
[190, 210]. For a long time it was thought that free rRNA concentration is the master reg-
ulator which controls expression of r-proteins [197, 210, 211]. Recently, it was however
shown that additionally transcription of r-proteins is directly regulated by ppGpp and
DksA, similar to regulation of rRNA transcription [202]. It was suggested that these two
mechanisms may complement each other: one could adjust the r-protein level upon se-
vere up- or downshifts while the other mechanism might be responsible for fine-tuning
within a steady state [202].
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Figure 7.2: Regulation of ribosome synthesis. (A) Transcription of rRNA and of many r-proteins
is regulated by ppGpp and DksA. Additionally, r-proteins are regulated on the translational level
because excess r-proteins bind to their own mRNA and inhibit translation. (B) ppGpp is synthe-
sized by RelA and SpoT and different stresses trigger ppGpp production by these enzymes. SpoT
also hydrolyzes ppGpp. Image (A) was taken from [202] and (B) from [200].
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THE SIGNALING MOLECULE PPGPP

The alarmone (p)ppGpp is synthesized by RelA and both synthesized and hydrolyzed by
SpoT [212, 213] (Fig. 7.2B). RelA senses amino-acid starvation and is bound to the ribo-
some when non-active [214, 215]. When an uncharged tRNA enters the ribosome, RelA
starts synthesizing ppGpp and thus triggers the “stringent response” [214]. Increased
ppGpp levels then downregulate ribosome production (see above) and upregulate for ex-
ample expression of amino acid synthesis enzymes [211]. The synthase activity of SpoT
remained unknown for a long time but recently it was found that synthesis is triggered
by multiple stresses. Among them are carbon starvation [216], fatty acid limitation [217],
phosphate starvation [218], but not amino acid starvation (for a review see [201]).

SpoT always synthesizes a basal level of ppGpp, also in non-stressed conditions, and
the basal ppGpp concentration depends inversely on the growth rate [1, 185, 213, 219].
As we will see in more detail in the next section, ribosome concentration increases with
increasing growth rate (“growth rate control”) and much research was done to find the
mechanism of that control [219-221]. Now, it is thought that the basal ppGpp level sets
the ribosome concentration [221]: The better the growth medium, the lower the ppGpp
level and therefore the higher the expression from ribosomal promoters. It was recently
also shown that regulation of ribosome synthesis by ppGpp is sufficient to robustly opti-
mize growth rate because it balances supply and demand of amino acids [222]. For com-
pleteness, it should be noted that ppGpp regulates much more than ribosome synthesis:
It upregulates expression of the general stress response sigma factor (rpoS), expression
of genes necessary for survival in stress conditions, expression of biosynthetic enzymes,
etc. (200, 201]. ppGpp is a key regulator during entry into stationary phase [201] and can
convey persistence during antibiotics treatment [10, 223].

RELEVANCE FOR THE PROJECT

It should be checked that translational fusions do not interfere with the translational
feedback mechanism (e.g. do not affect degradation). Further, fluctuations in r-proteins
could lag behind rRNA fluctuations because of that regulation mechanism.

The role of ppGpp was so far only investigated in steady state and under severe
stresses. It would be interesting to test whether ppGpp is also important during dynamic
fluctuations and for example mediates a balance between ribosome content and growth.
It is unclear whether SpoT or RelA would be the more relevant ppGpp source during dy-
namic adjustments and whether the relevance depends on the growth medium (for ex-
ample with/without supplied amino acids). Further, externally manipulating the ppGpp
level could potentially be used to alter ribosome concentration.

7.1.3. CORRELATION OF RIBOSOME CONCENTRATION AND GROWTH RATE
AT THE BULK LEVEL

To interpret how fluctuations of ribosomes are related to growth rate fluctuations, it is
useful to know how their averages (in different environments) are coupled. Therefore,
we here summarize literature on bulk measurements: When growing cells in different
media, the concentration of ribosomes increases strongly and linearly with the growth
rate (Fig. 7.3A) [1, 53, 55]. As mentioned above, ppGpp is thought to be the regulator of
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Figure 7.3: Scaling of ribosome concentration with growth rate. (A) Ribosome concentration
(measured as RNA/protein ratio) depends linearly on growth rate. Different symbols denote dif-
ferent strains, the color corresponds to different growth media (displayed for one strain). (B) Ribo-
some concentrations for various growth media (color) and chloramphenicol concentrations [Cm]
(numbers, in uM). At higher [Cm] the translational efficiency decreases, therefore the ribosome
concentration is raised and growth rate is lower. (C) The linear correlations can be explained with
a resource allocation model. Upper panel: The proteome is divided into a ribosomal fraction ¢p
and two non-ribosomal fractions (¢ p and ¢¢). Lower panel: Optimal fractions are determined by
balancing fluxes and depend on the growth rate. Figures were taken from [53].

this growth rate control [221] by coupling ribosome synthesis to supported growth rate.
Transcription rate of rRNA promoters thus increases strongly with growth rate. For r-
proteins, however, differential transcription (relative to total mRNA synthesis) is rather
independent of growth rate and the linear increase is controlled by increasing translation
[210]. The total number of r-proteins per cell ranges from around 7,000 in slow growth
conditions to 70,000 at maximum growth, which corresponds to a fraction of 9% resp.
21% of the proteome [1]. In most experiments, the fraction of r-proteins was determined
by indirect methods (e.g. inferring from rRNA concentration), but recently the Weissman
group directly measured synthesis rates in different conditions and results are consistent
[224]. The fraction of synthesized stable rRNA and tRNA relative to total RNA is high and
ranges from 40% during slow growth to 85% during fast growth [1].

Few years ago, the Hwa group revisited this growth rate scaling in the light of op-
timal resource allocation [53]. We here give a brief summary (see Fig. 7.3): The ribo-
some concentration scales with growth rate and scaling is independent of the bacterial
strain and precise medium composition (Fig. 7.3A). This linear correlation suggests that
ribosomes are growth limiting [53], or, in other words, that a certain growth rate could
not be achieved if ribosome concentration was below the line in Fig. 7.3A. We note that
the medium-independence was challenged in [225] which argued for a growth medium
dependence (minimal medium vs. added amino acids). The slope in Fig. 7.3A is de-
termined by the translation rate per ribosome and the offset by the fraction of inactive
ribosomes. Decreasing the translation efficiency by e.g. adding antibiotics or genetic
manipulation is compensated with an increased ribosomal fraction (Fig. 7.3B). This is
at the cost of synthesis of other proteins and results in a lower growth rate. The Hwa
group showed that ribosomal fraction of the proteome can be predicted with a resource
allocation model (Fig. 7.3C). A key ingredient is the balancing of nutrient influx on the
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one side and amino acid requirements for protein synthesis on the other side. Given a
constant ribosome efficiency [1], the protein synthesis flux can then only be adjusted by
changing the ribosomal fraction (¢g). For example, in rich media less resources need to
be devoted to synthesis of precursors. Thus, more ribosomes can be produced to process
these precursors, that is, the ribosomal fraction increases.

WHAT LIMITS THE GROWTH RATE OF E. COLI?

The maximum growth rate of E. coli is bounded due to the finite ribosome elongation
rate. Cells cannot grow faster than ribosomes can synthesize a copy of themselves. In
the theoretical extreme case where this is their only task, they would need around 6 min-
utes for this copy to be produced [53]. In reality, many more proteins are required in a
cell and their copies need to be produced as well, which increases the workload of each
ribosome. Taking that “replication burden” into account, the maximum growth rate was
estimated to be a doubling time of around 20 minutes [53].

Apart from that extreme limit, ribosomes are often thought to be growth limiting
in a given environment [53]. That is, cells cannot grow faster without increasing their
ribosomal fraction. However, at the same time there exists an optimal ribosome fraction
for each growth medium and cells cannot grow faster by simply increasing that fraction
[53]. The reason is that the increase would be at the cost of other enzyme concentrations,
which would then limit metabolite fluxes. Whether similar arguments hold for dynamic
fluctuations away from the mean value is unknown and the topic of this chapter.

Interestingly, other work suggests that not ribosome capacity but supply of amino
acids is rate-limiting in minimal medium [226]. Therefore, the actually growth-limiting
process might be different in minimal medium and in complex medium with supplied
amino acids (see also Outlook).

7.1.4. GENETIC CONSTRUCTS USED

To monitor fluctuations in ribosome content we constructed translationally fused re-
porters for two different r-proteins and a promoter reporter for rRNA expression (see Ta-
ble 7.1). We chose the large subunit proteins L19 and L.31 which were successfully labeled

Strain Genotype Remarks
ASC656 | L31-mCherry-kan® (no linker)
ASC657 | L19-mCherry-kan® (no linker)

ASC680 | L3I-mCherry-kan® (no linker), AcheZ::Py,-GFP -cat®
ASC779 | AcheZ:Pyy,-GFP not used
ASC810 | L31-mCerulean-kan®

Table 7.1: Ribosome constructs. The study was started with ASC656, ASC657 and ASC680 and
we later switched to ASC810. Strain ASC779 was tested but showed unexplainable low expression
and slow growth and was therefore discarded. GFP is monomeric in all constructs (A206K muta-
tion), as are mCerulean and mCherry. Strain ASC810 contains a standard GC-linker between L31
& mCerulean, which is the linker that was used for most other constructs in this thesis as well.
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Figure 7.4: Labeled ribosomal proteins. Ri-
bosomal proteins L31 (A) and L19 (B) , which
were fused to a fluorescent reporter in differ-
ent constructs, are shown in blue-red. The
reporter gene was fused to the C-terminal
(red). Color code: green: r-proteins, gray:
rRNA, light color: 50S subunit, dark color: 30S
subunit. The tunnel through which mRNA
proceeds is visible as black hole. Structure
PDB files are 1lvs5 and 1lvs6 and obtained
from http://www.ebi.ac.uk/. UCSF Chimera
(http:/ /www.cgl.ucsf.edu/chimera/index.html)
was used for visualization.

before [215] (Fig. 7.4). Their C-terminal, to which the fluorescent gene was fused, is at
the ribosome surface and accessible. L31 (rpmkE) is non-essential, only loosely attached
to the ribosome and expressed from a one-gene operon. L19 (rplS) is essential, located at
the interface between the two ribosomal subunits and expressed as last gene from a four-
gene operon (www.ecocyc.org). The proteins were originally fused to mCherry (without
linker). Due to some issues (see next section) we later constructed a L31-mCerulean fu-
sion that also contained a linker between the proteins. The promoter reporter for rRNA
expression (P, ) [102] was chromosomally inserted at the cheZ location and controlled
expression of GFPmut2. Note that likely only full-length rRNA or complete ribosomes
can feedback on rRNA expression and convey dosage compensation [188]. Therefore,
we do not expect the reporter to affect expression from other rRNA promoters.

7.2. GENERAL CHARACTERIZATION OF R-PROTEIN-MCHERRY
AND RRNA REPORTERS

7.2.1. GROWTH RATE AND RIBOSOME LOCALIZATION PATTERN

Before investigating questions on dynamic fluctuations, we characterized general prop-
erties of the obtained constructs to assess their quality. Labeling a protein could com-
promise its function and correct insertion into the ribosome. The high copy number
of additionally produced fluorescent proteins, both as fusion and as promoter reporter,
may introduce a growth burden. Especially mCherry expression (from a plasmid) has
been reported to create a growth defect [112]. Therefore, we first checked key character-
istics of the constructs: First, is the growth rate similar to wild type (WT) and second, can
labeled r-proteins be inserted into the ribosome? The latter can be tested by observing
the localization pattern: Ribosomes are enriched at the cell poles due to nucleoid exclu-
sion and the fluorescence signal should show the same non-uniform distribution. We
also compared properties between the L31-mCherry and L19-mCherry strain. The L31-
mCerulean reporter, which was constructed much later, will be characterized in section
7.4. However, in a few cases (for example Table 7.2) a direct comparison was convenient
and then results are already discussed here.
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Strain u(dbl/hr) (microscope) | p(dbl/hr) (plate reader)
ASC555 (WT) 1.0 not measured

ASC656 (L31-mCherry) 0.97 0.95

ASC657 (L19-mCherry) 0.95 0.87

ASC680 (L31-mCherry, P -GFP) | 0.75 0.77

ASC810 (L31-mCerulean) 1.0 not measured

Table 7.2: Growth rates of ribosome constructs. Growth rates were measured on M9 + 0.2 mM
uracil + 0.1% lactose. Microscopy growth rates are averages of multiple colonies. Plate reader
growth rates were averaged over 3-5 wells (measured on the same 96 well plate). The slow growth
of ASC657 in the plate reader is atypical because usually cells grow at least as fast in bulk compared
to a surface (microscope). It could be due to stress or transient entry into stationary phase during
preparation steps.

We found that coexpression of mCherry led to only a minor decrease in growth rate
of <5%, despite the high copy number of mCherry proteins (Table 7.2). Since experi-
ments in Table 7.2 were performed on different days, which can cause growth variabil-
ity, it is not clear whether the decrease is statistically significant. The later used strain
containing the L31-mCerulean fusion did not have any detectable growth defect com-
pared to WT. In general, these high growth rates were a positive surprise because thou-
sands of additional fluorescent proteins were produced in the reporter strains. However,
the double-label strain with the additional Py,-GFP did grow slower. Depending on the
growth medium, the growth decrease was around 15% (rich medium) to 25% (M9 with
lactose, see Table 7.2). Tests with the single label strain Py, -GFP (ASC779) produced a
growth rate similarly slow as with the double-label strain. This suggested that the specific
expression from an rRNA promoter could cause the growth burden and not the addition-
ally produced proteins per se (which should be much higher in the double label strain).
For some constructs, we also measured bulk growth rate (Table 7.2) and these growth
rates were very similar compared to microscopy data.

Next, we checked whether r-protein fusions were correctly inserted into the ribo-
some by examining the spatial distribution of the fluorescence signal. The reporter for
rRNA naturally only reports on expression and is therefore uniformly distributed in the
cell. We found that for all used r-protein fusions the fluorescence intensity was dis-
tributed non-uniformly: it was low at the nucleus location and high at the cell poles and
the location between the nuclei (e.g. fast growing cells presumably contained multiple
nuclei), see Fig. 7.5. This localization pattern is typical for ribosomes and was shown in-
dependent of fluorescent-protein techniques by for example cryofixation [227]. There-
fore, the observation indicated that the fusion was properly incorporated into the ribo-
some. We observed very similar localization patterns for L31-mCherry, L19-mCherry
and L31-mCerulean. Note that the segregation strength between ribosome and nucleus
was stronger at fast growth compared to slow growth (Fig. 7.5), for which we do not know
the reason. This observation seems however consistent with ref. [195] (their Fig. S11).
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Figure 7.5: Localization pattern of labeled r-proteins. L31-mCherry localization pattern is dis-
played for growth on (A) rich medium (EZ RDM + 0.2% glycerol, u=~2dbl/hr) and (B) minimal
medium (M9 + 0.2mM uracil + 0.1% lactose, p=1dbl/hr). The intensity histograms are taken along
the displayed lines. The reason for the stronger ribosome-nucleoid separation during fast growth
is unknown.

7.2.2. MORPHOLOGY OF MICROCOLONIES

Despite this promising first characterization we unfortunately encountered several is-
sues with the r-protein-mCherry fusions. First, for an unknown reason, the morphology
of microcolonies was affected and cells suddenly seemed to repel each other (Fig. 7.6A).
This effect was dependent on the growth medium and was often observed for growth on
lactose (Fig. 7.6A) but never on acetate (Fig. 7.6B) or rich medium. We excluded changes
in the glass and acryl gel surface as potential cause. Strains without labeled r-proteins
almost never formed colonies with sparsely distributed cells. Growth rate was not af-
fected by this colony morphology but cross-correlations were usually irreproducible and
differed from results for dense colonies. We suspect that the apparent cell areas in the
phase contrast images may play a role in the changed cross-correlations because iso-
lated cells appear thicker. This could introduce artificial differences in measured fluo-
rescence concentration for which cellular area is used. We can only speculate on the
reason for this phenotype but it might be a stress reaction, cells could secrete some mes-
senger molecules or the production of pili could be altered. The stress could be caused
by misfolded mCherry proteins.

Since the rRNA reporter is in a background strain with r-protein-mCherry fusion,
these experiments also produced the same open colony shape. The effect was even more
severe for the double-label strain. In large contrast to that, the later used L31-mCerulean
construct did not suffer from unexpected colony morphology and grew normally into
a dense colony. Thus, the altered colony shape was likely due to either the choice of
fluorescent protein or the absence of a linker between r-protein and reporter.

Figure 7.6: Morphology of microcolonies. (A)
L31-mCherry cells were grown on M9 + 0.2mM
uracil + 0.1% lactose. Cells seem to repel each
other. (B) Same strain grown on M9 + 0.2mM
uracil + 30mM acetate. Colonies were always
dense.
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7.2.3. SCALING OF FLUORESCENCE CONCENTRATION WITH GROWTH RATE

ONLY THE RRNA REPORTER CONCENTRATION SCALES WITH GROWTH RATE

We next tested whether the characteristic linear increase of ribosome concentration with
growth rate (Fig. 7.3A) could be reproduced with our constructs. Therefore, we measured
the fluorescence intensity for three different growth conditions, supporting growth rates
from around 0.3dbl/hr to 2dbl/hr. We found that the concentration of L31-mCherry and
L19-mCherry decreased slightly with increasing growth rates and both reporters pro-
duced very similar concentration values (Fig. 7.7A). The similar concentration supported
the equivalence of the two different labels. However, the growth scaling strongly differed
from the linear increase established in literature and was hence unexpected [1, 53]. Con-
trary to that, the concentration of GFP expressed from the rRNA promoter increased lin-
early with growth, in agreement with results reported literature [1, 53] (Fig. 7.7B). There-
fore, P, -GFP seemed to be a better reporter for ribosome expression. The properties of
L31-mCerulean will be discussed in detail in section 7.4. For the remainder of this chap-
ter we will refer to the linear increase of concentration with growth rate as “growth (rate)
scaling”.

WHY COULD GROWTH SCALING BE ABSENT?

There are two possible interpretations why r-protein concentration did not show growth
rate scaling: First, the effectis real and r-protein concentration does not scale with growth
rate. Second, the effect is an artifact and was in one way or the other introduced by
mCherry.

Why could the lack of scaling be real and have been omitted in literature? It would be
possible that at slow growth r-proteins are overproduced. Then, not all proteins could
be incorporated into ribosomes but many would be freely diffusing. Thus, the r-protein
concentration would be higher than the concentration of assembled ribosomes. Most
studies on growth rate scaling did not measure r-protein concentration directly but mea-
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Figure 7.7: Dependence of measured ribosome concentration on growth rate. (A) Concentra-
tion of r-protein-mCherry fusions plotted against growth rate (ASC656 and ASC657). The con-
centration does not scale as expected. (B) Concentration of GFP expressed from a Py, promoter
plotted against growth rate (ASC680). The linear correlation is as expected [53]. Each data point
was obtained as average of =45 cells, which were pregrown in the respective medium and then
imaged under the microscope. Growth rates were taken from time-lapse experiments with these
strains in the respective media.
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sured concentration of stable RNA and used it as proxy for ribosomes [53, 228]. Other
studies which focused on stoichiometry of the ribosome typically used sedimentation
techniques to obtain (complete) ribosomes, but could not detect freely diffusing pro-
teins [229-231]. Also in newer super-resolution studies freely diffusing proteins would
likely be too fast to detect [196].

However, r-protein synthesis rate was measured directly by Cole & Nomura [210] and
recently by the Weissman group [224]. Both studies did find a strong increase of r-protein
synthesis with growth rate, that is, growth rate scaling (see e.g. Table mmcl in [224],
which includes the r-proteins L31 and L19). Additionally, the scenario of overproducing
r-proteins at slow growth would be inefficient for a cell, would deplete resources, and
would contradict the translational feedback mechanism (section 7.1.2). Therefore, we
suggest that the lack of scaling is most likely an artifact caused by mCherry-labeling.

One possibility is that mCherry interferes with the regulation of r-protein expression.
It might affect the translational feedback mechanism and alter mRNA lifetimes: mCherry
is a very large protein with 256 amino acids (AAs) compared to L31 (70 AAs) and L19
(115 AAs). Therefore, the secondary structure of mCherry-mRNA might sterically block
r-proteins from binding their own mRNA and thus disable the translational feedback
control. Growth rate control is mostly exerted on the translational level and a purely
transcriptional reporter would decrease in concentration with increasing growth rate,
similar to our observation (see Fig. 7.8 which is reproduced from [210]). Additionally, at
least some mRNAs of r-proteins are degraded in the 3’-to-5’ direction, which is unusual
for mRNA degradation [232]. Thus, the mCherry mRNA, which is fused to the 3’ end (the
later C-terminal), could affect degradation rate. Taken together, we think that a likely
scenario is abolishment of translational feedback by the mCherry fusion and the creation
of an effective transcriptional reporter. Still, it remains unclear why two different fusions
showed exactly the same altered growth rate behavior.

Figure 7.8: Growth rate dependence of tran-
scription and translation of r-proteins. This fig-

A B ure shows work of Cole & Nomura [210]. Relative

g L synthesis rate of four different r-proteins (see leg-
%_@ e . | end)was measured for different growth rates. L1
%Ag 3 ats r N | andL11 arein the same operon, which is transla-
_55 i tionally regulated by L1-binding. (A) Intact trans-
%’:ﬁ; 2& 8 i lational feedback mechanism. All proteins show
kS il B i / growth rate scaling. (B) Translational feedback
e ' ¢ of L1 and L11 is disrupted by a mutation in L1.
5o s TR T Then, relative synthesis rate decreases with in-

Growth rate, doublings per hr creasing growth rate (black symbols), similar to
our observation (Fig. 7.7A).

EFFECT OF MATURATION TIME

Additionally, the maturation time of mCherry, which seems to be slow at least in some
conditions (chapter 3), may be play a role in the lack of growth rate scaling. If fluo-
rophore maturation is slow, then the observed fluorescence intensity will be lower than
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the actual number of proteins present because newly produced proteins are not visi-
ble yet. This effect is more severe at fast growth rates because proteins are then diluted
faster. To quantify the impact of slow maturation times and to test if it can explain the
lack in growth rate scaling, we modeled protein maturation as first order rate equation,
following the derivations in [88, 109]. The total protein concentration E is the sum of ma-
ture, fluorescent proteins M, which can be measured, and immature, non-fluorescent
proteins I, which cannot be measured: E = M + I. The time dynamics of I and M are:

j:a_ﬂel_/lmatl ,
M = Apmar] — peM . (7.1)

Here, «a is the translation rate, y, = - In2 the growth rate, computed with base e, and
Amar = 1/Tmq, the maturation rate (base e). In words, immature proteins are produced
by translation and disappear (are effectively degraded) due to maturation and growth.
The mature proteins are produced by maturation and disappear due to growth.

In steady state, the time derivatives in eq. 7.1 are zero and the second equation de-
termines the relative fraction of mature and immature proteins:

[ He

= M (7.2)
Amat

The first equation determines the absolute protein concentration, which is of less rel-
evance here. The total protein concentration as function of measured concentration is
then

E:(1+A'r‘;[)~M
=1+ Tmar-In2)-M (7.3)
= S(H;Tmat)'M,

where s(u, Tmqr) is defined as scale factor between measured and real protein concen-
tration.

The measured concentration M of e.g. L31-mCherry was approximately constant
for a wide range of growth rates (Fig. 7.7A). For a maturation time of 15min (see chap-
ter 3.6) and constant measured concentration, the real concentration E would be around
30% higher at the fastest measured growth rate compared to the slowest growth rate (Ta-
ble 7.3). This increase is by far not enough to explain the factor 3 difference in ribosome
concentration for these growth rates (Fig. 7.7B, and Scott et al. [53]). Also a maturation
time of 40 min would create less than a factor 2 difference for E during fast and slow
growth. Only an unrealistically slow maturation time of 180 min could account for the
absence of growth scaling (Table 7.3). Thus, we conclude that maturation times caused
the measured ribosome concentration to increase somewhat less steeply with growth
rate. However, this effect is likely not the main cause for the absence of growth scaling.
Note that the estimates presented here assumed that maturation times are independent
of the growth medium. If maturation was slower at slower growth rate (see section 7.3.1),
its influence on growth scaling would be even weaker.
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growth rate Tmat

(dbl/hr) 5 min 15 min 40 min 180 min
0.35 1.02 1.06 1.16 1.73

1 1.06 1.04) 1.17(1.1) 1.46(1.3) | 3.08(1.8)
2 1.11(1.09) 1.35(1.3) 1.92(1.8) | 5.16 (3.0)

Table 7.3: Scale factor between real and measured protein concentration. The scale factor
S(4, Tmar) of eq. 7.3 is shown for the three growth rates of Fig. 7.7 and four different examples
for maturation times. Small numbers in brackets are the rounded multiplicative factor between
real protein concentration in the current and the slowest growth medium, when the measured
protein concentration is the same in both media. 7,4 = 180min was chosen such that this factor
is 3 between fastest and slowest growth, which would be required to explain the absence of growth
scaling solely by maturation time (Fig. 7.7).

7.3. FLUCTUATIONS, LIMITATION AND OPTIMALITY
7.3.1. CROSS-CORRELATIONS AT DIFFERENT GROWTH RATES

From the previous section we concluded that both rRNA and r-protein reporters had ad-
vantages and disadvantages. For example, P;,-GFP caused a reduction in growth rate
but displayed growth rate scaling as expected, while the opposite was true for r-protein
fusions. Since no label was clearly better we continued using both labels when now turn-
ing towards the actual scientific question: Are fluctuations in ribosome concentration
dynamically limiting growth rate? If so, do cells with transiently less ribosomes grow
slower and with more ribosomes grow faster or does ribosome concentration fluctuate
around an optimum and all deviating cells grow slower?

We first investigated whether ribosomes are a bottleneck that limits growth by test-
ing whether fluctuations in ribosome content are transmitted to growth rate. To that
extent, we calculated the cross-correlation functions Ry, (7) between ribosome produc-
tion rate p and growth rate y, as well as R, (1) between ribosome concentration E and
growth rate. If, for example, ribosomes were growth limiting, then an up-fluctuation in
ribosome production rate should be followed by an increase in growth rate, thus Ry, (7)
would be asymmetric and shifted towards 7 > 0. Since ribosome concentration varies
strongly with the growth conditions, we tested for a wide range of growth rates (0.3-
1.7dbl/hr) whether limitations and noise transmission are present.

RESULTS

Fig. 7.9 displays the cross-correlations Ry, (7) and Rgy(7) for the r-protein fusions L31-
mCherry and L19-mCherry, obtained for three different growth rates. At slow growth the
protein production rate and growth rate were weakly positively correlated (Fig. 7.9A).
Surprisingly, the production rate fluctuations followed behind the growth fluctuations,
with a delay of = 0.7T; (T;=1/u being the mean interdivision time). Such a delay was
previously neither observed for constitutively expressed nor regulated genes (for an ex-
ception, see below). Rg,(7) , however, displayed a shape that we frequently observed
for constitutive promoters (“dilution mode”, chapter 6): Protein concentration lagged
behind growth fluctuations and their correlation was strongly negative (=-0.4). Cross-
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Figure 7.9: Cross-correlation of r-protein-mCherry with growth rate. Cross-correlations Ry, (1)
of protein production rate and growth rate (bright purple) and Rg,(7) of protein concentration
and growth (dark purple) are displayed for the L31-mCherry fusion (left) and L19-mCherry fu-
sion (right). Average growth rate increases from top to bottom and the thick black lines indicate
mean interdivision time. Error bars are standard deviations (see chapter 2.3.6), plotted for every
fourth data point. (A) Growth on M9 + 0.2mM uracil + 30mM acetate. (B) and (C) Growth on
M9 + 0.2mM uracil + 0.1% lactose. (D) and (E) Growth on EZ defined rich (which contains amino
acids)+ 0.2% glycerol. Fluorescence concentration was determined by using the complete cell area
instead of a center box because of the non-uniform protein localization (chapter 2.3.3). The cross-
correlation shapes are likely an artifact of the mCherry label, see main text.
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correlations were very similar at intermediate growth rates (Fig. 7.9B,C), even the time
lag in Ry, (1) scaled with growth rate. Only the negative correlation of R, (1) was now
less pronounced but still displayed the “dilution mode”. At fast growth, when ribosomes
constitute a major fraction of the cellular mass, the cross-correlations were qualitatively
different (Fig. 7.9D,E): production rate and growth fluctuated (almost) simultaneously
and were weakly correlated, while r-protein concentration and growth were practically
uncorrelated. The two different L31-mCherry and L19-mCherry reporters produced iden-
tical cross-correlations (Fig. 7.9B-E) which increased confidence into the correctness of
the signals. However, we note already here that although 131 and L19 fusions were also
characterized above to be very similar, both lacked typical “ribosome behavior” such as
scaling of concentration with growth rate (section 7.2) and might thus be similar but bad
reporters.

Before interpreting these cross-correlations we first present the corresponding cor-
relations of the rRNA reporter (Fig. 7.10). In slow growth conditions the rRNA cross-
correlations differed strongly from the corresponding r-protein correlations: Ry, (1) was
now symmetric and the correlation strongly positive at T = 0 (Fig. 7.10A, bright line).
The correlation between reporter concentration and growth rate had even switched sign
(dark line). These correlations were quite similar to correlations observed for regulated
but not limiting proteins, for example metabolic enzymes (chapter 6). The strong dif-
ference between the two reporter types was surprising since both were thought to be a
proxy for the “same” ribosomes and we will investigate possible reasons for this differ-
ence further below. Cross-correlations for intermediate growth rate could not be mea-
sured due to the strange colony morphology. During fast growth, however, correlations
were similar to results of the r-protein fusions (Fig. 7.10B): Ry, (7) was symmetric and
positive but small, while Rg,, (t) was indistinguishable from zero.

RIBOSOMES APPEAR NON-LIMITING

Despite the differences between the r-protein and rRNA cross-correlations, both data
suggested that fluctuations in ribosomes are not dynamically limiting growth rate, not
even in the fastest growth condition tested. We recall that if ribosomes were limiting,
then the current ribosome concentration would dictate the current growth rate - Rg,(7)
should be positive and peaked at delay zero or close to zero. This was clearly not the
case for the negatively correlated r-proteins. And while Rg,(7) for rRNA was in fact pos-
itive in slow growth conditions, the time lag of the peak was large (hours). This strongly
suggested that concentration and growth rate fluctuated jointly because of global noise
sources (“common noise”, see chapter 6), but not due to direct transmission of fluctua-
tions. The non-limitation can also be seen in Ry, (7) : Neither fluctuations in r-protein
production rate nor in rRNA production rate preceded fluctuations in growth rate.

TRANSLATIONAL REGULATION MIGHT CAUSE A TIME LAG BETWEEN REPORTERS

The different cross-correlations that were obtained with the seemingly redundant re-
porters for r-protein and rRNA expression were surprising. Especially striking was the
observation that fluctuations in r-protein production rate lagged behind growth rate
fluctuations (Fig. 7.9). Since the latter fluctuated in synchrony with rRNA production
(Fig. 7.10), this meant that fluctuations in rRNA production were preceding fluctuations
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Figure 7.10: Cross-correlation of Pyrp-GFP with growth rate. Cross-correlations Rp,(7) of pro-
tein production rate and growth rate (bright green) and Rp,(7) of protein concentration and
growth (dark green) are displayed for the ribosomal RNA promoter reporter Py -GFP . The thick
black lines indicate mean interdivision time. Both datasets were obtained with dual-label strains
containing also L31-mCherry and corresponding r-protein cross-correlations (in Fig. 7.9), ob-
tained from the same microcolony, are indicated in the figure. Error bars denote the standard
deviation (see chapter 2.3.6) and are indicated for a fraction of the data points. (A) Growth on M9
+ 0.2mM uracil + 30mM acetate. (B) Growth on EZ defined rich (which contains amino acids)+
0.2% glycerol. Fluorescence concentration of this uniformly distributed reporter was determined
with the standard procedure (center box, see chapter 2.3.3).

in r-protein production. As expression of rRNAs and r-proteins is co-regulated and these
components are needed in a one-to-one stoichiometry during ribosome biogenesis, we
would have expected synchronous fluctuations. Therefore, we investigated what biolog-
ical process could cause such a delay and whether we can believe this delay to be real or
an artifact caused by labeling.

If the time delay between rRNA and r-protein expression is real, then it must stem
from a regulatory process which affects r-protein expression differently than rRNA ex-
pression. Transcription of both components is regulated very similarly and can thus
be excluded. However, r-protein expression is additionally controlled during transla-
tion by the amount of free rRNA, and this control could cause a delay (Fig. 7.11): Con-
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Figure 7.11: Translational regulation can cause a delay of r-protein production in Ry, (). rRNA
production rate and growth rate are simultaneously affected by a common noise source (circle
with tilde), in the figure a down-fluctuation is illustrated. The concentration of free rRNA then
decreases because of dilution. This process is slow, with a time scale in the order of the doubling
time. Free r-proteins do not find rRNA to bind any more, therefore bind to their own mRNA and in-
hibit translation (ribosome in gray). The slow dilution process of rRNA causes the delay in Ry, (1)
of r-proteins in this scenario.

sider for example a random down-fluctuation in rRNA production rate. Growth rate will
down-fluctuate simultaneously (Fig. 7.10), and maybe also r-protein expression down-
fluctuates to some extent. With a delay on the order of the interdivision (dilution) time
free rRNA concentration decreases. Then, free r-proteins will repress their own trans-
lation due to lack of free rRNA and r-protein production down-fluctuates with a delay.
The delay would be caused by the time needed for changes in rRNA production rate to
significantly affect rRNA concentration.

To directly test this scenario, we measured a transcriptional mCherry reporter under
control of the L31-promoter (Prpmg, strain ASC789), which should not be affected by
translational regulation. Unfortunately, the cross-correlations were ambiguous, showing
different results for different microcolonies. The experiment was not pursued further
because at this time issues with the mCherry label became evident (see below), and a
repeat will only be useful with a better r-protein reporter.

As side remark, we also tested whether ppGpp, synthesized by RelA, might play a
role in any of the correlations and differences observed. To this end, we constructed a
knockout ArelA in the L31-mCherry strain (ASC689, a knockout in the rRNA reporter
background was not tested here but might be interesting). Cross-correlations, as well as
average r-protein expression, were identical in the parent and the knockout strain. This
suggested that fluctuations were either not mediated via ppGpp or that SpoT instead of
RelA is the relevant ppGpp synthase in this context. Creating a spoT deletion is, however,
not trivial because a single knockout is lethal and a double knockout of spoT and relA
creates a viable, but sick phenotype.

R-PROTEIN-MCHERRY CROSS-CORRELATIONS MIGHT BE AN ARTIFACT

A different explanation for the observed cross-correlations and time lags is that they
are artifacts produced by the r-protein-mCherry label. Indeed, mCherry has proven to
be problematic in several cases: When for example placing mCherry under control of
an exogenous, constitutive promoter, the correlation between protein production and
growth rate sometimes, but not always, displayed very similar time delays (Fig. 7.12).
The delay appeared to be larger at slower growth rate (was for example smaller in di-
rect maturation time measurements at faster growth, chapter 3.6). This suggests that
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Figure 7.12: Cross-correlation Ry, (7) of constitutively expressed mCherry. mCherry is ex-
pressed from an exogenous constitutive promoter (Py,, ASC640). Two repeats of the experiment
are shown and the thick bars indicate mean interdivision time. Error bars denote the standard
deviation. Cells were grown on M9 + 0.2mM uracil + 0.1% lactulose + 6uM Iptg. The large change
in growth rate is likely due to organic contamination of the gel pad used for the right dataset. We
note that error bars are large and therefore cross-correlations are barely significant.

a slow maturation time could be the cause of the delay and thus cause differences in
Pim-GFP and r-protein-mCherry signal. The maturation rate and therefore oxygen con-
centration would then need to be growth medium dependent (slower at slower growth)
and would need to vary between experiments because the delay was not always present.
This is in principle possible because external oxygen concentration could change with
for example the number of applied cells. The internal oxygen reservoir might be de-
pendent on cellular metabolism [112], which is itself dependent on the supplied carbon
source.

A second issue was that, in general, cross-correlations of a variety of proteins (e.g.
Icd) fused to a different fluorescent reporter (e.g. GFP) were difficult to reproduce when
the reporter was exchanged for mCherry. Third, the lack of growth scaling investigated
above could simply be due to the type of constructed fusion (e.g. no linker), but it can-
not be excluded that it is due to an intrinsic problem of mCherry. Taken together, these
problems motivated the systematic investigation of fluorescent proteins, which was pre-
sented in chapter 3. For this study here, we decided to construct a control fusion with a
different fluorescent protein, L31-mCerulean, and to include a linker between the pro-
teins (ASC810, Table 7.1). mCerulean was shown in chapter 3 to be a “good”, recom-
mended fluorescent protein. The results obtained with that construct will be presented
in section 7.4.

7.3.2. LITTLE EFFECT OF ANTIBIOTICS ON LIMITATION

Translation inhibiting antibiotics render ribosomes less efficient and therefore limit the
growth rate. Cells react to that perturbation by producing more ribosomes, at the cost of
other proteins (Fig. 7.3B,C). We wondered whether, once cells are adjusted, ribosomes
are still dynamically limiting growth or whether a new non-limiting equilibrium was
found. To test this, we grew cells in rich medium at subinhibitory concentrations of
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Figure 7.13: Cross-correlation of ribosomes and growth rate in the presence of antibiotics.
Cross-correlations Rp,(7) of protein production rate and growth rate (bright lines) and Rgy, (1)
of protein concentration and growth rate (dark lines) are displayed for (A) the L31-mCherry fusion
(purple) and (B) the Py -GFP reporter (green). Error bars denote the standard deviation and are
plotted for some data points only. Growth is in EZ defined rich + 0.2% glycerol + 0.5uM Tetracy-
cline. The translationally inhibiting antibiotic doubled the interdivision time (thick black line).
Corresponding cross-correlations without antibiotics are Fig. 7.9D and Fig. 7.10B.

Tetracycline. The antibiotic halved the growth rate, which was now quite similar to
growth in minimal medium supplemented with lactose (“intermediate growth rate”, for
example Fig. 7.9B,C). We observed a strong upregulation of rRNA expression, but expres-
sion of r-protein-mCherry seemed not to be upregulated. While the general issues of
mCherry were already discussed above, it may still be of interest to compare this dataset
to cross-correlations obtained with the same reporter.

Both Ry, (7) of the Pyy,-GFP reporter and r-protein-mCherry was slightly positive
and peaked at a delay of zero (Fig. 7.13). Concentration fluctuations were not signifi-
cantly correlated with growth (r-proteins, Fig. 7.13A), or negatively correlated and de-
layed to negative T (rRNA, Fig. 7.13B, consistent with “dilution mode”, see chapter 6 and
Fig. 6.2). These cross-correlations suggest that ribosomes are not dynamically limiting
growth rate, because Rgy,(7) is not positive. Cells seem to adjust to a new non-limiting
steady state under the harsher environment. Interestingly, the cross-correlations resem-
ble the correlation curves obtained in the same medium without antibiotics, that is at
much faster growth rate (Fig. 7.9D,E, Fig. 7.10B). They differ from correlations in mini-
mal medium supporting a similar growth rate (Fig. 7.9B,C). This suggests that the precise
growth medium may be relevant when studying ribosomes and fluctuations.

7.3.3. RIBOSOMES DO NOT SEEM TO FLUCTUATE AROUND A NARROW OPTI-
MUM

We next tested whether the ribosome level was at an optimum, such that both up- and
down-fluctuations would lead to a decrease in growth rate. Contrary to the scenario of
“limiting ribosomes”, cells expressing more ribosomes would not simply grow faster. The
relation between growth and expression would be non-monotonous, peaking at an inter-
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Figure 7.14: Scatter between rRNA expression and growth does not indicate an optimal expres-
sion level. (A) If ribosomes are tuned to an optimal level (arrow) both up- and down-fluctuations
should decrease growth rate. Cross-correlations are not suitable to detect such non-linearity. (B)
Cross-correlations Ry, (7) (bright green) and Rgy,(7) (dark green) between Prm-GFP and growth
rate. Image is identical to Fig. 7.10A. Growth was on M9 + 0.2mM uracil + 30mM acetate
(0.3dbl/hr). A scatter plot as illustrated in (A) is determined for the time lag displaying the highest
correlation coefficient (squares). (C) Scatter between protein concentration and growth resp. (D)
protein production and growth at time lags indicated in (B) . Displayed quantities are mean sub-
tracted. Using a different time lag produced very similar scatter plots. Lines are contours of equal
probability, obtained by kernel density estimate. Growth rate is not maximal at an intermediate
ribosome level. Script for plotting was developed by Martijn Wehrens.

mediate expression level (Fig. 7.14A). Cross-correlations cannot detect non-linearities,
and we therefore plotted the full distribution of growth rates against (rRNA) expression
(Fig. 7.14C,D). Arguably, ribosome concentration may be the more relevant parameter,
compared to production rate, to test whether growth rate is maximized at an intermedi-
ate value. Since concentration fluctuations are, however, complex (resulting from pro-
duction and dilution fluctuations), we analyzed both concentration and the more direct
measure production rate.

We found that growth rate increased monotonously with ribosome concentration, as
well as with ribosome production rate (Fig. 7.14C,D). Therefore, the data suggests that
ribosomes do not fluctuate around a narrow peak. The correlation between concentra-
tion and growth was, however, very small (Fig. 7.14C), suggesting that ribosome concen-
tration has low control on growth rate. This would be consistent with a wide range of
optimum ribosome levels (flat peak). We note that fluctuations of the observables can
occur with a time delay relative to each other, leaving the chosen time difference be-
tween variables as free parameter when creating a scatter plot. The displayed figures
show the distribution of growth in dependence of expression at the time delay for which
the cross-correlation peaked (Fig. 7.14B). Different delays led to very similar results.

Conceptually, fluctuations around a steady state are fundamentally different to vary-
ing the steady states. Thus, this argumentation based on bulk level results for different
steady states may have been too simply to transfer directly to dynamic fluctuations and
adjustments may be needed (see also Outlook 7.6).
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7.4. THE NEW R-PROTEIN-MCERULEAN REPORTER: CHARAC-
TERIZATION AND RESULTS

7.4.1. GENERAL CHARACTERIZATION AND GROWTH SCALING

Since issues with the r-protein-mCherry fusions became apparent (see above), we de-
cided to construct a control fusion L31-mCerulean (with linker, ASC810). In the simul-
taneously conducted study on fluorescent proteins mCerulean was shown to give good
and reproducible results (chapter 3). The L31-mCerulean strain was growing at full wild
type growth rate, labeled proteins localized in the cytoplasm as expected (suggesting cor-
rect insertion into the ribosome) and the colony morphology was normal (section 7.2).

The concentration of L31-mCerulean proteins increased strongly with growth rate
(Fig. 7.15), in contrast to the data on mCherry (Fig. 7.7A). Such an increase is expected
from growth scaling reported in literature and supported the quality of the new reporter.
We note that on a quantitative level, the increase with growth would be expected to be
larger (similar to rRNA data in Fig. 7.7B). Potential reasons are that experiments were
performed on different days with differently aged lamps or that maturation time still
decreases the apparent concentration at very fast growth (7;=24min). Taken together,
we concluded that the new L31-mCerulean reporter is suitable to report on ribosome
expression.

w
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Figure 7.15: Estimate of r-protein-mCerulean concentration in dependence of growth rate.
Concentrations were obtained as average values of growing microcolonies (different from Fig. 7.7).
The medium for fastest growth is richer than in Fig. 7.7, the other media are identical. Experiments
were performed on different days and with two different light bulbs. Concentration for interme-
diate growth was determined for both bulbs and thus used to normalize the concentrations of the
other conditions. The data is useful for a qualitative check for growth-scaling but may have quan-
titative uncertainties. Concentration scales with growth rate, qualitatively consistent to Scott et al.
[53] and in contrast to the previous label L31-mCherry.

7.4.2. CROSS-CORRELATIONS

We again measured cross-correlations between protein production and growth resp. pro-
tein concentration and growth for a wide span of growth rates (Fig. 7.16). It was im-
mediately apparent that the cross-correlations differed strongly from previous correla-
tions obtained with mCherry. For example, Rg,(7) between concentration and growth
rate was negative when growing at intermediate growth rates and expressing mCherry
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Figure 7.16: Cross-correlation of r-protein-mCerulean with growth rate. Cross-correlations
Rpu(7) of protein production rate and growth rate (bright purple) and Rg,,(7) of protein concen-
tration and growth (dark purple) are displayed for the the L31-mCerulean fusion. Average growth
rate increases from top to bottom and the thick black lines indicate mean interdivision time. Error
bars are standard deviations and are indicated for a fraction of the data points. (A) Growth on M9
+ 0.2mM uracil + 30mM acetate. Dataset is rather small: 140 cells as final colony size. (B) Growth
on M9 + 0.2mM uracil + 0.1% lactose. (C) EZ defined rich + 0.2% glucose (different from above
figures). Fluorescence concentration was determined as for Fig. 7.9. The cross-correlation shapes
differ strongly from the theoretically equivalent label L31-mCherry (but without linker) of Fig. 7.9.
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(Fig. 7.9B). Contrary to that, the same cross-correlation for L31-mCerulean was positive
(Fig. 7.16B). Since the properties of the L31-mCerulean strain appeared in general better
(growth rate scaling, colony morphology), this discrepancy points towards a potential
issue with the cross-correlations obtained with L31-mCherry.

When investigating the cross-correlations of r-protein-mCerulean with growth rate
for different conditions (u=0.3-2.5dbl/hr), it was surprising that the functional shape was
even qualitatively different in every condition. It also differed from results for Py,-GFP
(Fig. 7.10). During slow growth, fluctuations in protein production rate, as well as in
concentration, preceded growth fluctuations (Fig. 7.16A). This suggested that ribosomal
r-proteins might be limiting, which was unexpected at such slow growth. A larger dataset
would be needed to test this indication. At intermediate growth rates protein production
and growth rate were strongly positively correlated and protein production was follow-
ing behind with a small delay (ca 15min, Fig. 7.16B). This delay was confirmed in two in-
dependent experiments and did not occur for a constitutive promoter (Fig. 3.3). There-
fore, it may be the result of active regulation and could be produced by slow transla-
tional feedback (Fig. 7.11). A transcriptional reporter could confirm this hypothesis. The
concentration-growth correlation Rg,(7) was positive and delayed to negative 7. Quali-
tatively, that shape resembled the cross-correlation that was observed for lac expression
and which could be described with a model (chapter 6). Briefly, the model showed that
Rg,, (1) would be positive if expression rate and growth fluctuations were coupled strong
enough (consistent with the rather large correlation Ry, (7) observed for ribosome pro-
duction, Fig. 7.16B). However, quantitatively, Rg,(7) of ribosomes was more complex:
Before increasing at larger negative time delays, the cross-correlation reached a mini-
mum at around 7 = 0. This decrease could be due to the time delay observed between
protein production and growth rate, because it could render Rg,(7) at T < 0 being domi-
nated by dilution (see also model in Fig. 6.2). In addition, ribosomal proteins do not ap-
pear growth limiting at intermediate growth rate. During fast growth, cross-correlations
were close to zero, similar to previous results (Fig. 7.16C). Whether the slightly positive
Rg,(7) points towards limitation would need to be investigated in independent experi-
ments.

7.5. CONCLUSIONS

In the study presented in this chapter a lot of effort was spent on finding and character-
izing good reporters for ribosome expression. We here present the conclusions of this
search and preliminary conclusions on the biological question - whether ribosomes are
limiting, optimal, and dynamically regulated.

7.5.1. CHOOSING THE BETTER REPORTER FOR RIBOSOMES

The r-protein-mCerulean fusion and P, -GFP yielded different results, for example con-
cerning cross-correlations. One thus has to choose which signal more likely reports on
active ribosomes. Results of r-protein-mCherry were again different, but this fusion ap-
peared unsuitable. Criteria for choosing are: The r-protein-mCerulean fusion did not
affect growth rate, while an additional rRNA reporter caused a significant decrease (to be
checked with a functional single-label strain). Both reporter concentrations, but rRNA
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more accurately, scaled with growth rate. The fusion exactly reflects the r-protein copy
number, while for rRNA concentration GFP is only a proxy. rRNA is, however, the more
important component of a ribosome, regulation of rRNA expression is less complicated,
and it is better studied in literature. Taken together, a strain containing both r-protein
and rRNA reporters would be useful to shed light on the differences. When one reporter
needs to be chosen, then an r-protein fusion seems better because of the absence of
growth defects and the precise reporting on expression of the labeled ribosomal compo-
nent.

7.5.2. RIBOSOMES ARE LIKELY NOT LIMITING, NOR FLUCTUATE AROUND A
SHARP OPTIMUM

Cross-correlations showed that ribosomes are probably not dynamically limiting the
growth rate because no synchronous up-fluctuations of ribosome concentration and
growth rate were observed. That would suggest that ribosome content is not a limiting
factor in gene expression, but further proof is needed. Showing non-limitation would be
interesting because, contrary to our indications, it is commonly believed that fluctua-
tions in the ribosome content directly cause noise in gene expression (“extrinsic noise”)
(5, 123].

The following experiments could corroborate our indications further (for more de-
tails, see the following Outlook section): To directly test whether a correlation between
ribosome concentration and translation rate exists, expression of a constitutive gene can
be measured together with ribosome concentration. Further, ribosomes could prob-
ably be made artificially limiting, which may result in different and contrasting cross-
correlations.

Are our results contradicting results from literature? Likely not because all published
results concern the relation between average ribosome concentration and population
mean growth rate (for example [53]). This is conceptually very different from investigat-
ing fluctuations around an average. For example, we showed in chapter 6 that mean lac
expression relates to mean growth rate very differently compared to fluctuations around
that mean (Fig. 6.8 and 6.2). A more relevant argument is: To achieve a specific growth
rate, cells need a corresponding ribosome concentration [53]. If they had less ribosomes
they would grow more slowly (Fig. 7.3). In that sense ribosomes limit the growth rate.
However, when cells express the required amount of ribosomes, an up-fluctuation may
not increase growth because it can be at the cost of expression of other proteins. Thus,
ribosomes would not appear limiting in a dynamic sense.

This argumentation suggests that ribosomes could fluctuate around an optimal level
and both up- and down-fluctuations would yield lower growth rate. However, we did
not find such a peaked optimum because the relation ribosomes-growth rate was flat or
monotonous (Fig. 7.14). A possible reason is that global fluctuations (“common noise”)
may confound such a relation because faster growing cells always produce more pro-
teins. Using a constitutive promoter to normalize for current cell state, that is, transla-
tion capacity, might disentangle these effects (see Outlook).
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7.5.3. R-PROTEINS MIGHT LAG DUE TO TRANSLATIONAL FEEDBACK

Fluctuations in r-protein production lagged behind growth fluctuations in certain condi-
tions (Fig.7.16B). Such a delay was not observed for a transcriptional r-protein promoter
reporter supplied on a plasmid (data not shown). While data for rRNA is missing for that
growth condition, the available data suggests the absence of delays for rRNA production.
If this is the case, the delayed r-protein production might indicate that feedback on the
translational level is active during dynamic fluctuations. This hypothesis can be tested
by comparing results to a (chromosomally inserted) transcriptional r-protein reporter.

7.6. OUTLOOK

We conclude this chapter with suggestions on how the preliminary conclusions can be
further tested and which future directions for research around the ribosome can be of in-
terest. Our present results indicated that cells are quite robust in adjusting ribosome lev-
els and balance is not easily disturbed. For example, cross-correlations did not change
significantly after addition of antibiotics (Fig. 7.13) or deletion of RelA (data not shown).
Therefore, if one wishes to search for clearly different phenotypes (e.g. “limiting ribo-
somes”), then more extreme perturbations such as nutrient up-/downshifts, addition of
stress agents or manipulation of ribosome content might be needed. Next to that, the
following list provides ideas for future projects.

7.6.1. INCREASE LIMITATION OF RIBOSOMES

An unexpected indication from our results was that during dynamic fluctuations ribo-
somes may be non-limiting for growth. To support this hypothesis, it would be helpful
to construct a setting in which ribosomes are growth limiting and to contrast the results
(for example cross-correlations) in these two scenarios.

A straightforward idea is to grow bacteria in the presence of low concentrations of
translation inhibiting antibiotics because then efficiency of ribosomes decreases. How-
ever, cells adjust to this condition and increase the ribosome concentration, now grow-
ing at a lower rate (Fig. 7.3B). Indeed, our data indicates that in this new steady state
ribosome concentration is again sufficient and not dynamically limiting (Fig. 7.13). We
note that the effect of antibiotics was only tested in rich and not in minimal medium.
To avoid adjusted cells, bacteria could be exposed to a small (sub-inhibitory) upshift of
translation inhibiting antibiotics by using a microfluidic device. During the transient
dynamics after the shift, cells will likely be unbalanced and ribosome concentration still
needs to be adjusted. Thus, in this time window ribosomes may be growth limiting, and
arandomly higher or lower ribosome concentration may result in faster or slower grow-
ing cells.

An alternative approach is to artificially increase the concentration of the alarmone
ppGpp. ppGpp is a negative regulator of ribosome expression and therefore ribosome
levels should decrease. Raising the ppGpp concentration can be achieved by overex-
pressing RelA from a plasmid or expressing a constitutively active mutant of RelA [233,
234]. Curiously, the absolute level of ppGpp seems to depend directly on the number of
RelA proteins, without feedback from the ppGpp concentration [233]. Upon overexpres-
sion, activity of rRNA promoters and accumulation of stable rRNA indeed decreased, as
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did the growth rate [233].

Expression from rRNA promoters can also be manipulated in a different way: The
seven rRNA promoters are largely redundant and therefore up to six of these promoters
can be deleted (usually denoted as A6) [187, 235, 236]. This reduces the concentration
of rRNA in a cell and can thus make ribosomes growth limiting. Cells try to compen-
sate the deletions with higher transcription from the remaining rRNA promoters. For
up to roughly A3 no severe growth defect was observed, but for more deletions growth
rate decreased significantly [187, 235, 236]. The severeness of the effect depended on the
richness of the medium and thus the growth rate. However, it is also possible that the ac-
tual growth limitation is a result of the reduction of transfer RNA (tRNA) concentration
instead of rRNA [235]. The tRNA and rRNA are jointly transcribed from the same pro-
moters and tRNA expression is therefore also decreased upon Py, deletion. Providing
tRNA on a plasmid indeed eliminated a large part of the growth defect for A4 and A5,
thus suggesting that tRNA was growth limiting (Fig. 5 in [235]). However, for the severe
A6 knockout a strong effect of rRNA limitation was observed [235].

Alternatively, ribosomes could be made growth-limiting by expressing large amounts
of useless proteins (such as GFP) from plasmids. Then, growth rate is reduced [237],
which is possibly caused by ribosomes being titrated away from the production of needed
proteins. The precise expression burden may fluctuate over time due to variation in
plasmid copy number, but cross-correlations between ribosome level and growth rate
should represent a time-average of this additional expression load. According to a study
of Shachrai et al. [238], the severeness of the growth burden seems, however, to depend
on the growth state of the cell: During the first few generations after outgrowth of sta-
tionary phase or after a nutritional upshift, ribosomes were shown to be very limiting
and the extra burden of gratuitous protein production is high. As consequence, ribo-
somes are produced at high rates. But after a couple of generations of growth, the bur-
den significantly decreased. Probably ribosomes were not the main limiting factor any
more but co-limiting growth with other factors. We note that the observed growth bur-
den due to gratuitous protein expression differs in literature and was for example higher
in work of Dong et al. [237], than in the study of Shachrai et al. [238]. Other studies ob-
served variable growth defects upon overexpression, and the severeness of the decrease
seemed to depend on the specific protein being overexpressed [112, 239].

Taken together, transient dynamics during an antibiotic upshift, or overexpressing
the ppGpp synthase RelA or gratuitous proteins might be the most promising approaches
to render ribosomes growth-limiting.

7.6.2. MEASUREMENT OF A CONSTITUTIVE PROMOTER

A complementary new possible experiment involves monitoring the expression from a
constitutive promoter (e.g. a g7p promoter) next to the ribosome reporter. This dual
reporter construct would allow to investigate (at least) two open questions:

First, it could corroborate the indications that ribosome concentration is not lim-
iting growth, or, more precisely, that it is not limiting the translation rate (i.e. rate of
protein mass accumulation). To test this, fluctuations in ribosome concentration can be
cross-correlated with fluctuations in production rate from the constitutive promoter. If
ribosomes are non-limiting, this cross-correlation should not be positive at a delay of
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Figure 7.17: Potential benefits of a constitutive promoter. Monitoring expression from a con-
stitutive promoter could allow disentangling of global and ribosome specific fluctuations by nor-
malizing ribosome expression with the constitutive expression. (A) Hypothetical different contri-
butions to the cross-correlation. (B) Even if the ribosome concentration was optimal for a fixed
global state (three gray clouds), the observation may be confounded by averaging over all global
states (black outline). Distinguishing for different global expression states with the constitutive
promoter might provide a better test to investigate whether ribosomes fluctuate around an opti-
mum.

Zero.

Second, the constitutive promoter would allow to distinguish between general fluc-
tuations in cellular state and ribosome specific effects. For example, production rate of
many proteins is positively correlated with growth (for example chapter 3 and 6). Pro-
duction of ribosomes is also positively correlated with growth rate, but appears to be
related also by a regulatory interaction (Fig. 7.16B). To discriminate between common
fluctuations and a regulatory level, ribosome expression can be normalized (divided) by
expression from constitutive genes (Fig. 7.17A). Such an approach was already success-
fully used in bulk measurements to normalize for general expression activity [238]. It
could also allow to readdress the question whether the ribosome level is optimal. This
would manifest itself in a non-monotonous relation between ribosomes and growth rate
(Fig. 7.17B). We note that if ribosomes were limiting and thus would affect expression of
the constitutive gene, then this disentanglement might be more complicated.

7.6.3. MEASUREMENT AND MANIPULATION OF PPGPP

The alarmone ppGpp plays an important role in adjusting the ribosome synthesis to the
demand (section 7.1.2). For example, the basal ppGpp level changes with mean growth
rate, and upon stress a high level of ppGpp is transiently produced to decrease ribosome
production [201]. Despite that importance and a variety of open questions, this study
so far focused little on ppGpp. It is for example unknown whether and to what extent
ppGpp signaling is also active during the more subtle fluctuations of ribosome content
around its steady state. One question is whether cells transiently experience amino acid
starvation and whether the ppGpp level fluctuates. Also, it was recently shown theoreti-
cally by Bosdriesz et al. [222] that ppGpp control is a robust and sufficient mechanism to
maximize growth rate because it balances amino acid supply and demand. It would be
interesting to test whether ppGpp is also involved in dynamically balancing amino acid
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supply and demand and whether it is therefore involved in growth homeostasis.

To address these questions a sensor for ppGpp level is needed. Biochemical sensors
suitable for time-lapse microscopy are to our knowledge not available. A good option
is to use a fluorescent reporter controlled by a ppGpp-dependent promoter. Transcrip-
tion of rpoS, the general stress response sigma factor, is strongly positively regulated by
ppGpp level, and life-time of transcripts increases as well with ppGpp [10]. Therefore, a
transcriptional or translational fluorescent reporter of rpoS expression could be used to
monitor ppGpp concentration [10, 240].

Next to the questions mentioned above, such a reporter could also be used to test
what type of stress (if any) cells experience during dynamic fluctuations: amino acid
shortage triggers ppGpp synthesis by RelA, while many other stresses trigger synthe-
sis by SpoT. Deleting either of the synthesis proteins could reveal which one was rele-
vant during transient fluctuations (AspoT is however lethal in a wild type strain [241]
and a knockout strain is only viable if relA is mutated as well). To artificially cause an
amino acid starvation, the serine analog serine hydroxamate (SHX) can be added to the
medium [202].

7.6.4. REGULATION OF R-PROTEIN SYNTHESIS AT THE TRANSCRIPTIONAL
AND TRANSLATIONAL LEVEL

Potentially but not necessarily related to ppGpp regulation is the regulation of r-protein
synthesis on transcriptional and translational level. It was suggested that one compo-
nent may be more relevant during severe shifts while the other could do the fine-tuning
during exponential growth [202]. This question could be addressed by measuring a tran-
scriptional reporter and a translational fusion to r-proteins simultaneously. The mea-
surement should be performed during balanced growth, as well as during severe up-
and downshifts.

7.6.5. GROWTH MEDIUM DEPENDENCE - AMINO ACID VERSUS RIBOSOME
LIMITATION

In recent research growth rate was often successfully used to parametrize the environ-
ment [53, 116], see for example scaling of ribosome concentration with the growth rate
(Fig. 7.3A). In these works, details on the chemical composition of the medium were
omitted and two media were basically equivalent if they yielded the same growth rate.
However, conflicting work states that not only growth rate but the growth medium is im-
portant for control of physiological parameters of the cell [225]. In minimal medium,
when typically a sugar is the only supplied carbon source, the flux of amino acids (and
not ribosomes!) is suggested to be limiting the translational capacity and thus growth
[225, 226]. A question posed by Ehrenberg et al. in [225] is: “Why are the concentra-
tions of ribosomes (demand) and the activity of amino acid synthetic enzymes (supply)
not balanced to each other during growth in poor media?” The situation is different in
rich medium when amino acids are supplied: Then ribosomes themselves may be lim-
iting growth. Also the ribosome concentration might depend on the environment in a
more complex fashion than simple growth rate scaling: When a minimal medium and
a rich medium (containing amino acids) support the same growth rate, then ribosome
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concentration may be lower in the rich medium [225].

Therefore, investigating minimal and rich media yielding the same growth rate would
be a very interesting (and very feasible) experiment to shed more light on the limiting
factors of cell growth. A first step could be to investigate the shape of cross-correlations
at the same mean growth rate, but with different or no precursors supplied. The study
could be complemented with a reporter for amino acid synthesis. Medium shifts that
add or remove amino acids (partly done in [225]) could for example reveal whether the
ribosome pool in minimal medium has spare capacity to immediately process a higher
influx of amino acids.



CONCLUSION AND OUTLOOK

In this thesis we studied stochasticity of gene expression and growth rate on the single-
cell level. So, in addition to simple curiosity, why should one care about origins and
consequences of stochasticity in cells? Or not simply accept the noise as given, because
cells seem to be doing just fine [128]? A vivid motivation and comparison was given in
Lestas et al. [128], who studied signal transmission fidelity, and which we here sum-
marize: Consider gravity - it poses strong constraints on movement, but neither does it
make flight impossible, nor do birds just happen to fly sufficiently well. Similarly, molec-
ular stochasticity poses strong constraints on cellular control, but neither does it make
any level of control impossible, nor do cells just happen to operate sufficiently determin-
istically. The task for scientists is to understand the trade-offs involved and to discern
when noise is acceptable to cells and when not. Moreover, understanding properties of
cellular noise is important for understanding robustness of cell proliferation [161], phe-
notypic heterogeneity (such as persistence to antibiotics) [9], cell fate decisions [12], and
for designing robust synthetic gene circuits [242].

In this work, we found that the noise intensities of growth and expression fluctua-
tions are connected by a remarkably simple linear relation (chapter 4). Thus, despite
the inherent complexity of a living cell, rather simple quantitative relations can be found
(53, 117, 121]. Such phenomenological relations can be very useful to quantify and pre-
dict behavior of complex biological systems before a full understanding of the processes
on the molecular level is available [53]. With the help of a linear noise model we also
showed that the intensities of different generic sources of cellular noise are connected
by one global parameter. In future work, it would be interesting to explore how such a
coupling could arise biologically, as well as which precise biological processes can be
associated with the different model noise sources.

In the next chapter 5 we investigated the influence of the bacterial cell cycle on gene
expression. We showed that about half of the noise measured in gene expression rate
is caused by progression through the bacterial cell-cycle, or, more specifically, chromo-
some replication. Of that cell-cycle noise, more than half was attributed to the pop-
ulation averaged characteristics of cell cycle progression. Hence, large fluctuations in
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cells can be caused by a deterministic process, but would appear random to an observer
who is lacking the relevant information on the cells (here: their age). In biology, it is a
long standing open question to what extent cellular variability is due to stochastic pro-
cesses, and to what fraction it is caused by deterministic (but maybe unknown) factors
[243, 244]. An interesting recent study by Balaban and coworkers [245], for example,
showed that seemingly random variations in interdivision times of mammalian cells are
actually rather deterministic and controlled by few parameters. In contrast to that, by
applying the same algorithm [246] to E. coli expression data, they found that fluctua-
tions in protein concentrations are reminiscent of random noise.

Our results showed that protein concentration, contrary to the production rate, was
hardly affected by the cell cycle (consistent with the randomness detected in [245]; the
focus of the analysis methods is, however, very different and results cannot be directly
compared). This indicated a noise canceling mechanism: The twofold increase in pro-
duction rate is automatically compensated for by a concurrent acceleration of volume
increase. Thus, a passive homeostasis mechanism, for which active control is not re-
quired, balances protein concentration. If proteins were actively degraded, the noise
canceling should be less efficient, which would be interesting to test experimentally.
Next to that, as replication of the whole chromosome takes a significant amount of time
[158], future work could test whether a regulatory interaction between two proteins is
influenced by the relative distance of their genes on the chromosome.

In the next chapter 6 we showed that fluctuations in enzyme levels can propagate and
cause growth fluctuations, and that fluctuations in growth rate can propagate back again
to affect enzyme concentrations. This suggested that cellular metabolism is inherently
stochastic. Because of the large number of reactions involved and the presence of stabi-
lizing regulatory mechanisms [34], metabolism and growth were often considered to be
constant [162, 163]. Our work suggests that, in future, stochasticity should be included
in models, and be considered in experiments. It is still largely unknown and remains to
be discovered what the consequences of fluctuations in metabolism are. Recent work
in the group of Teusink [154] suggests that the effects can be large: They showed that
heterogeneity purely on the metabolic level determined the cell fate of yeast cells upon
exposure to a glucose upshift. Metabolism in a, genetically indistinguishable, subpopu-
lation was imbalanced, which resulted in growth arrest of these cells.

A second interesting observation in our study was the existence of a noise-canceling
mechanism that stabilized protein concentrations. Up-fluctuations in the global state
of a cell (metabolic activity) increased protein production rate as well as growth rate.
These two parameters act antagonistically on protein concentration and thus partly can-
cel each other, resulting in only small fluctuations in the enzyme level. Hence, a second
balancing mechanism, next to the cell-cycle buffering discussed above, acts on protein
concentration. The existence of these passive (automatic) buffering mechanisms may
promote growth homeostasis. They could be a first explanation to why cells can grow so
robustly, despite the stochasticity on the molecular level.

Still, cellular growth rate is not completely steady but fluctuates, as was shown by
us and [31, 32]. The properties of growth fluctuations are poorly understood and could
be addressed in future projects. Open questions are for example: Why does the growth
noise intensity depend on the environment? Why is the dominant time scale of growth
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fluctuations faster than the time scale of fluctuations in protein concentration (note that
active transmission from enzymes as studied in chapter 6 caused additional fluctuations
at slower time scales)? Is growth noise an evolvable property [247] and does lower noise
convey a fitness advantage? To approach the first of these questions, one could try to dis-
entangle possible influences such as average growth rate, richness of the growth medium
(e.g. supplied amino acids) and cell size. The second topic might be addressed with
modeling. Specifically, one could test whether the combined action (additive or multi-
plicative) of multiple slow noise sources can result in fast fluctuations as output.

In the last study presented, we investigated the influence of dynamic fluctuations
in the concentration of a central molecular machine, the ribosome, on the growth rate
(chapter 7). The results of this study are preliminary but indicate that ribosomes are
neither dynamically limiting growth rate, nor fluctuating around a sharply peaked op-
timum concentration. If this result can be further supported, it naturally opens up the
question which other components are the main factors that limit growth, or cause fluc-
tuations in growth rate and gene expression. In chapter 6 we already found that some
central metabolism proteins and lowly expressed lac proteins can transmit fluctuations.
But the influence of many other factors such as RNA polymerase concentration [120],
metabolite or ATP concentrations, or activity-regulated proteins is largely unknown. Po-
tential approaches could include the use of spinach aptamers [248] for visualizing small
molecules and FRET sensors or mutants for detecting, respectively manipulating, pro-
tein activity. More generally, also limitations occurring during fluctuating environments
(e.g. during nutrient shifts), next to the here studied steady-state fluctuations, would be
interesting to investigate.

As last point, the studies presented in chapter 6 and 7 also showed the fundamental
difference between measuring population averages in different steady states, or single-
cell fluctuations within one population in one environment (see also [32]). Relations
obtained from bulk experiments may be quite different when measured on the single-
cell level, hence intuition may be misleading and one should be open for surprises.
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SUMMARY

Life of single cells is not deterministic, but virtually all processes in a cell are subject to
stochastic fluctuations. As consequence, genetically identical cells, which are living in
the same environment, can behave differently. They can, for example, produce different
amounts of proteins, grow at different rates and can even specialize into completely dif-
ferent phenotypes. The discovery of cell-to-cell variability opened up many questions,
ranging from what are the origins of the fluctuations, to whether its consequences are
detrimental or beneficial for cells.

The aim of this thesis is to better understand stochasticity in gene expression and
growth rate of bacterial cells. To this end, we investigate whether, next to gene expres-
sion, also growth rate of single cells fluctuates dynamically, which we will show to be the
case. We then focus on the following questions about gene expression and growth: What
are the origins of fluctuations? Can fluctuations propagate from one to the other? To
address these questions, we work with a model organism, the bacterium E. coli. This or-
ganism is simple enough to allow for quantitative experiments, but already so complex
that many processes inside these cells have not been understood yet.

Studying stochastic fluctuations in gene expression and growth rate in single cells re-
quires precise and rather high throughput tools to measure these quantities. In chapter 2
and 3 we describe these methods. By using automated time-lapse microscopy, we ac-
quire movies of growing E. coli cells which are expressing fluorescent proteins. We then
use automated analysis software to segment, track and analyze cells. To accurately mea-
sure gene expression, a fluorescent protein reporter of high quality is needed. Therefore,
we present a comparison of different fluorescent proteins which assesses their suitability
for time-lapse experiments.

In chapter 4 we investigate the general interdependence of fluctuations in gene ex-
pression and growth rate. We find that the noise intensities of both fluctuations are very
strongly correlated and that they scale linearly. In apparent contrast to that, the fluctu-
ating time traces are shown to be only modestly correlated. We develop a linear noise
model to explain these observations and analyze what constraints the linear scaling im-
poses on such models. A central result is that the intensities of different cellular noise
sources do not change independently, but are set by one single global parameter.

In chapter 5 we study the effects of a specific source of fluctuations in gene expres-
sion: the bacterial cell cycle. As cells grow and prepare for division, they copy their chro-
mosome. With two copies of each gene and an increasing cell size, the production rate
of proteins increases. We show that about half of the noise in protein production rate is
caused by gene duplication. In contrast to that, protein concentration is hardly affected
by the cell cycle because the exponential volume increase almost perfectly cancels the
increase in protein production rate.

The fact that gene expression fluctuates has been known for many years. However,
it was unclear whether such fluctuations also affect the growth rate of cells. This ques-
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tion is addressed in chapter 6. We show that fluctuations in enzymes can indeed propa-
gate and cause growth fluctuations. Conversely, growth fluctuations also propagate back
to disturb protein concentration. We develop an analytical model to accurately pre-
dict noise transmission. Our results indicate that fluctuations can not only propagate
through gene networks but also through metabolic reactions. They also suggest that cel-
lular metabolism is inherently stochastic.

Finally, in chapter 7 we investigate the influence of fluctuations in ribosome con-
centration on the growth rate. Because ribosomes are the molecular machines respon-
sible for protein production, they play a central role in cellular growth. Each cell needs
thousands of ribosomes and as producing these large numbers is costly, the ribosome
production is tightly regulated and adjusted to the need. Still, their concentration in
single cells fluctuates, and we here investigate whether these fluctuations affect growth
rate. Our data suggests that fluctuations in ribosome concentration do not propagate to
growth, which indicates that ribosomes are not dynamically limiting growth rate.



SAMENVATTING

Het leven van individuele cellen is niet deterministisch, in praktisch alle processen in
de cel spelen stochastische fluctuaties een rol. Hierdoor kunnen cellen die genetisch
identiek zijn en zich in dezelfde omgeving bevinden, zich toch anders gedragen. Ze
kunnen bijvoorbeeld verschillende hoeveelheden van bepaalde eiwitten produceren, op
verschillende snelheden groeien, en zich zelfs tot compleet verschillende fenotypen ont-
wikkelen. De ontdekking van deze variabiliteit tussen cellen leidde tot veel vragen: varié-
rend van waar deze fluctuaties vandaan komen, tot of dit goede of slechte consequenties
heeft voor de cel.

Het doel van dit proefschrift is beter te leren begrijpen welke invloed stochastici-
teit heeft op genexpressie en de groeisnelheid van bacteriecellen. Daarom onderzoeken
we of - naast genexpressie — ook groeisnelheid van individuele cellen dynamisch fluctu-
eert. Dit blijkt inderdaad het geval te zijn. Vervolgens kijken we naar de volgende vragen
rond genexpressie en groei: wat zijn de oorzaken van de fluctuaties? Kunnen fluctua-
ties propageren van de ene naar de andere parameter? Om deze vragen te onderzoeken
gebruiken we het modelorganisme E. coli . Dit organisme is simpel genoeg om kwanti-
tatieve experimenten te faciliteren, maar al zo complex dat veel processen in deze cellen
onbegrepen zijn.

Het bestuderen van stochastische fluctuaties in genexpressie en groeisnelheid in in-
dividuele cellen vereist precieze, high throughput meetinstrumenten. In hoofdstuk 2
en 3 beschrijven we de methoden om deze precieze, high throughput metingen te doen.
We gebruiken geautomatiseerde time-lapse microscopie om filmpjes te verkrijgen van
groeiende E. coli cellen die fluorescente eiwitten tot expressie brengen. Een compu-
teralgoritme segmenteert, volgt en analyseert de cellen vervolgens. Om genexpressie
accuraat te kunnen meten is een fluorescent reporter eiwit van hoge kwaliteit vereist.
Daarom vergelijken we verschillende fluorescente eiwitten wat betreft hun geschiktheid
voor time-lapse experimenten.

In hoofdstuk 4 onderzoeken we de onderlinge athankelijkheid van fluctuaties in ge-
nexpressie en groeisnelheid. We laten zien dat de intensiteit van de ruis in deze beide
grootheden sterk is gecorreleerd. Bovendien is er een lineair verband tussen de inten-
siteit van de expressieruis en de intensiteit van de groeiruis. In ogenschijnlijk contrast
hiermee zijn de signalen over de tijd slechts matig gecorreleerd. We hebben een lineair
model ontwikkeld dat deze observaties verklaart, en bekijken tot welke beperkingen de
lineaire schaling leidt binnen deze modellen. Een belangrijk resultaat is dat de inten-
siteiten van verschillende bronnen van ruis niet onafhankelijk van elkaar veranderen,
maar bepaald worden door één centrale parameter.

In hoofdstuk 5 bestuderen we de effecten op genexpressie van een specifieke bron
van ruis: de bacteriéle celcyclus. Wanneer cellen groeien en zich voorbereiden op de
celdeling, kopiéren zij hun chromosoom. Ten gevolge van de verdubbeling van genen en
de toename in celgrootte, neemt de productiesnelheid van eiwitten toe. Wij tonen hier
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aan dat ongeveer de helft van de ruis in eiwitexpressie veroorzaakt wordt door gendu-
plicatie. Daarentegen wordt de concentratie van eiwitten nauwelijks beinvloed door de
celcyclus omdat de toegenomen productiesnelheid van eiwitten vrij nauwkeurig wordt
gecompenseerd door de exponentiele toename in celvolume.

Dat genexpressie fluctueert is al jaren bekend. Het was echter niet duidelijk of deze
fluctuaties ook een effect op de groeisnelheid van cellen hebben. In hoofdstuk 6 gaan
we in op deze vraag. We laten zien dat fluctuaties in enzymconcentraties zich inderdaad
kunnen propageren en fluctuaties in de groeisnelheid veroorzaken. Omgekeerd kun-
nen schommelingen in de groeisnelheid van de cel ook de eiwitconcentraties in de cel
verstoren. We hebben een analytisch model ontwikkeld waarmee we accuraat de voort-
planting van de ruis kunnen voorspellen. Onze resultaten tonen aan dat fluctuaties zich
niet alleen via gen-netwerken propageren maar ook via metabole reacties. Daarnaast
duiden onze resultaten erop dat het metabolisme inherent stochastisch is.

Als laatste, in hoofdstuk 7, onderzoeken we het effect van fluctuaties in de ribosoom-
concentratie op de groeisnelheid. Omdat ribosomen de moleculaire machines zijn die
verantwoordelijk zijn voor eiwitproductie, spelen ze een belangrijke rol bij de celgroei.
Elke cel heeft duizenden ribosomen nodig en de productie van deze grote aantallen is
zeer kostbaar. Daarom is de ribosoomproductie strikt gereguleerd en wordt deze op de
vraag afgestemd. Desondanks fluctueren ribosoomconcentraties in individuele cellen
en hier onderzoeken we of deze fluctuaties de groeisnelheid beinvloeden. Onze data
toont de afwezigheid van propagatie van fluctuaties in ribosoomconcentraties naar cel-
groei. Dit suggereert dat ribosomen niet dynamisch limiterend voor de groeisnelheid
zijn.

Graag wil ik Joris Paijmans en Martijn Wehrens bedanken voor hun Nederlandse vertaling van de
samenvatting.
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