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Introduction

In 1946, the announcement of ENIAC (Electronic Numerical Integrator and Computer),
the first general-purpose digital computer, marked a milestone in the development of
computers [1]. Together with the burgeoning of the semiconductor technology, com-
puters gradually transformed from a massive, room-sized machine into a small, so-
phisticated device with a remarkable increase in the computing efficiency. In 1958,
Jack Kilby successfully demonstrated that integrating electronic components onto a
single chip was possible [2]. His success unveiled the development of the integrated
circuit, which revolutionized the industry and made personal computers accessible to
the general public.

This rapid technological evolution in the integrated circuit is guided by an empiri-
cal trend, summarized as the Moore’s Law. It gives a rough prediction that the number
of transistors on a chip would double approximately every two years. However, when
the transistors start entering the atomic-scale, physical limitations including quantum
tunneling and heat dissipation add much difficulty in keep reducing the chip size [3].
With the growing demand for computational resources from various industries, find-
ing solutions to overcome this challenge has become urgent. Among these, building
quantum computers stands out as a promising approach.

To overcome the current challenges faced by classical computers, we need to
explore novel computing methods. If the traditional binary-encoded classical com-
puters cannot solve highly complex problems, we can consider adopting a different
computing paradigm. Quantum mechanics offers us another choice of encoding infor-
mation. Instead of using classical bits which can only be in one of the two states 0 or
1, quantum computers use qubits (quantum bits). According to the principles of quan-
tum mechanics, qubits can exist in a superposition state of 0 and 1 simultaneously.
When the number of qubits becomes large, this property enables quantum computers
to process a vast amount of information in parallel. Additionally, Quantum mechanics
also allows qubits to be entangled, meaning the state of one qubit is directly related to
the state of another, even if they are spatially separated at a large distance [4]. The
two exclusive properties of qubits make quantum computers theoretically much more
powerful than classical computers.



The past few decades have witnessed the rapid and prosperous development
of quantum computers. Many physical systems have been explored and verified as
feasible candidates for qubits, including superconducting qubits [5], trapped ions [6],
photons [7] and Rydberg atoms [8]. In 1998, Daniel Loss and David DiVincenzo first
proposed that we could use coupled quantum dot systems to perform quantum compu-
tation [9]. More specifically, we could confine electrons in quantum dots and use their
spin degree of freedom to define a qubit. Researchers have placed high expectations
on semiconductor quantum dot spin qubits. They are promising qubit platforms for
large-scale quantum computing architecture owing to the nanoscale size of quantum
dots. Besides, their compatibility with the well-established semiconductor fabrication
technology is a significant advantage [10].

In the past 26 years since the proposal, great achievements have been made
in developing quantum computers using silicon-based electron spin qubits. For sin-
gle qubit manipulation, the fidelity can reach above 99.9% [11] and for two-qubit gate,
the gate fidelity can also exceed 99%, which meets the threshold requirement for fault-
tolerant quantum computing [12, 13, 14, 15, 16]. Building upon the significant progress
made in electron spin qubits, researchers are now exploring the potential of hole spin
qubits. In recent years, germanium hole spin qubits have become a research hotspot
due to some advantages. Similar to silicon, germanium is also a Group IV semiconduc-
tor, which makes it possible to protect hole spins from the influence of nuclear spins
through isotopic enrichment [17]. Besides, holes enjoy an absence of valley degener-
acy compared with silicon electrons. This eliminates the need for hole spin qubits to
address valley splitting which is quite challenging to control over large quantum-dot
arrays [18]. So far, germanium hole spin qubits have also achieved high-quality single-
qubit gates with fidelity exceeding 99.9% [19]. Two-qubit gate fidelity have reached
99% [20]. Additionally, a two-dimensional 10-qubit array has already been realized by
leveraging advanced technique in material growth and semiconductor device fabrica-
tion [21].

The most essential property of holes that make it worth studying is their strong
spin-orbit interaction. The spin-orbit interaction (also known as the spin-orbit coupling)
is a relativistic effect through which the hole’s spin can be coupled to its orbital angular
momentum [22]. This allows for an efficient all-electric spin manipulation without the
need of micromagnets [23, 24]. Another very important feature of the spin-orbit inter-
action is that it gives rise to the anisotropic exchange interaction. [25, 26, 27]. The
exchange interaction is fundamental to the construction of two-qubit quantum gates
in semiconductor quantum dot spin qubits. Currently, the modeling, control, and opti-
mization of exchange interaction primarily focus on the isotropic type between electron
spins [28, 29]. However, strategies for making full use of the anisotropic exchange
interaction — where the interaction strength depends on the direction — between
hole spins to implement high-fidelity two-qubit gates remain immature. High-fidelity
two-qubit gates are essential for fault-tolerant quantum computing and as hole spin
qubits continue to advance, there is an urgent need for a robust strategy to exploit the
anisotropic exchange interaction.



Thesis outline

In this thesis, we focus on germanium hole spin qubits and utilize the anisotropic
exchange interaction between them to implement two-qubit gates protected against
errors by means of composite pulse technique.

Chapter 2 briefly introduces the background knowledge required for this project,
including the basics of quantum computing and semiconductor quantum dot spin qubits,
hole spin qubits, quantum open system and decoherence.

Chapter 3 gives a concise overview of the composite pulse scheme which is the
core technique used throughout this thesis to implement noise-protected two-qubit
gates.

In Chapter 4, we provide a detailed explanation of how to take advantage of the
anisotropic exchange interaction between hole spin qubits and the electric modulation
of the g-tensor to implement a composite pulse sequence. This unitary sequence is
equivalent to a Controlled-Z(CZ) gate with two single-qubit rotations and it is robust
against errors in exchange coupling.

In Chapter 5, we design simulations to examine the robustness of the composite
pulse scheme. We focus on the performance of multiple gate operations in the pres-
ence of quasi-static noise, voltage fluctuation and so on. We will also make a detailed
comparison of the composite-pulse scheme with other two-qubit gate protocols: the
single-pulse ZZ gate and adiabatic ZZ gate.

In Chapter 6, we introduce a powerful mathematical framework: the filter function
formalism and use it to analyze the impact of errors caused by time-dependent noise
on our composite pulse sequence.

In Chapter 7, we summarize the entire thesis and propose some potential future
research directions.



Background Theory

2.1. Quantum computing and qubits

Quantum computers have the great potential of solving certain specialized tasks ex-
ponentially faster than classical computers, which makes them promising for areas
such as optimization [30], cryptography [31], and drug discovery [32]. The reason is
that quantum computers process information in a fundamentally different way than
classical computers.

Classical computers use classical bits as the elementary units of information while
quantum information is typically represented in the form of quantum bits (qubits). A
classical bit can only be in the state of 0 or 1. For example, it can be implemented by
the CMOS technology where bits are represented by two distinct voltage levels: a low
voltage for logic 0 and a higher voltage for logic 1 [33]. On the other hand, qubits are
quantum two-level systems. In order to describe the quantum properties of qubits, we
can for example use tools from linear algebra. Similar to a classical bit, a qubit also
has two basis states |0) and |1). But instead of just two binary digits, the two basis
states are now vectors in a two-dimensional complex vector space, and they form an
orthonormal basis for this C?, the ‘|)’ below is the Dirac notation:

0) = (é) ) = ((f) - 2.1)

Here lies the main difference between the classical bits and the qubits. Besides
the two states |0) and |1), a qubit can also be in a state which is a linear combination
of them:

[¥) = al0) + Bl1), (2.2)

where the « and § are complex numbers. This property is called quantum superpo-
sition which enables a qubit to contain much more information than a classical bit.
According to quantum mechanics, if we do a measurement on this qubit, it will col-
lapse to one of the two basis states, with the probability |«|? of getting |0) and |3|* of
getting |1) respectively. Therefore, |a|* + |5]* = 1, since these two states are the only
possible outcomes.
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Other than the mathematical representation of the state of a qubit, it is also pos-
sible to represent its state graphically. Notice the requirement that |a|> + |3]> = 1, we
can express an arbitrary qubit state as:

|1) = cos g]O> + €' sin g|1> (2.3)

The 6 and ¢ are similar to the polar angle and azimuthal angle in the spherical coor-
dinates which enables us to correspond the qubit state to a vector starting from the
origin and pointing towards the surface of a unit sphere, as shown in the Fig 2.1 below.
This method is often referred to as the Bloch sphere representation of the single qubit
state.

Figure 2.1: The Bloch sphere representation of the qubit state

2.2. Quantum gates

In the previous section, we have introduced that quantum computers encode informa-
tion into qubits. The next task we should consider is how to make operations on them.
In analogy to classical electric circuits which use logic gates such as AND and NOT
to act on bits, quantum circuits implement quantum gates on qubits to manipulate the
encoded information. In the following paragraphs, we will first introduce single qubit
quantum gates and then elaborate on multi-qubit quantum gates.

We have just shown that in the Bloch sphere representation, a single qubit pure
quantum state |¢) can be treated as a unit vector, starting from the origin which is
located at the center of the Bloch sphere and ending at a point on the surface of
the sphere. A single qubit quantum gate U transforms this |¢)) to another quantum
state |U) = Uly). Importantly, quantum gates must satisfy the unitary requirement:
U'U = I, where U is the conjugate transpose of U and I is the identity matrix. This
brings about two properties of quantum gates:

« Firstly, all the quantum gates are reversible. If a quantum state undergoes the
transform |¥) = U|v), we can just implement another quantum gate U™ to trans-
form it back to its original state: UT|¥) = UTU|¢) = |+). This property distinguish
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the quantum gates from the classical ones since some of the classical gates are
irreversible like the AND gate.

» Secondly, quantum gates preserve the inner product of the quantum states:
(U|W) = (Y|UTU) = (b|1). Therefore, for single qubit quantum gates, the
resulting quantum state should also be a unit vector on the Bloch sphere.

The second property implies that single qubit quantum gates are actually imple-
menting rotation operations on the Bloch sphere. As a result, we can write a general
expression for single qubit gates:

0 0
R:#(0) = exp(—ibii - 5/2) = cos(i)f - isin(i)(nxax + nyo, +n,0,), (2.4)
n = (ng, ny, n,) is the unit vector indicating the rotation axis, ¢ is the rotation angle and

7 is the vector (0,,0,,0,) whose components are Pauli matrices. The Fig 2.2 below
shows two examples of single qubit quantum gates.

1) 1)

Figure 2.2: Examples of the R,(7/2) gate (left) and the Hadamard gate (right). Both gates rotate
1) to 1/v/2(|0) — [1)), where the R,(r/2) gate performs a counterclockwise rotation of /2 around
the y-axis, while the Hadamard gate performs a counterclockwise rotation of = around the direction

i =1/v/2(1,0,1).

Mathematically, quantum gates can be represented by unitary matrices. For in-
stance, the function of a quantum phase gate G is to add an additional phase when
it is implemented on the |1) state and do nothing if it is implemented on the |0) state:
G4|0) = |0), Gy4|1) = €|1). We have already seen in Eq 2.1 that |0) and |1) can be
written as column vectors. Therefore, this enables us to represent GG, as the following
2 x 2 matrix:

Gy = ((1] e%) : (2.5)

For a single qubit, its state space is a 2-dimensional Hilbert space, with basis
states |0) and |1) (also known as computational basis states). Suppose now we have
a system composed of multiple qubits. What should be its state space? To answer this
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question, we can use the concept of tensor product. According to quantum mechanics,
if we merge two isolated systems 51, S, into a single one S, the global state space H
is given by the tensor product of H,, H, which correspond to the individual space of
S1, 52 [34]:

H=H, @M. (2.6)

Consider the case of a two-qubit system. The resulting basis states should be: {|0) ®
|0),10) ® |1), |1) ®|0),|1) ® |1)}, which can be simplified as: {|00), |01), |10),|11)}. We
can see that the dimension of this global system is now 22 = 4. For a system com-
posed of N qubits, its corresponding space dimension should be 2. Each of its basis
states can be represented by a 2"-dimensional column vector. Therefore, for a quan-
tum gate acting on N qubits, it can be written mathematically as a 2V x 2V matrix.

Two-qubit quantum gates can be broadly categorized into two types: entangling
gates, which can generate entangled states, and non-entangling gates which can be
constructed using Identity and SWAP gate up to single-qubit operations. The CNOT
gate represents an important example of entangling two-qubit gates. Suppose the left
qubit is the control qubit and the right one is the target qubit, the CNOT gate flips the
target qubit when the control qubit is in the |1) state: CNOT]|00) = |00),CNOT|01) =
|01),CNOT|10) = [11),CNOT]|11) = [10). Written in matrix, the CNOT gate can be
represented as:

CNOT = (2.7)

o O O
o O = O
_ o O O
O = O O

Similar to the classical case, any complicated quantum circuit can be constructed
using just a simple set of quantum gates. This gate set is called a universal set of
quantum gates. One example is that the set of all single-qubit gates and the two-qubit
CNOT gate together constitute a universal gate set [35].

2.3. Basics of spin qubits

The DiVincenzo criteria is widely used to exam whether a physical system can function
as a viable qubit to make quantum computers [36]. There are five main principles and
can be summarized as follows:

» The system should be scalable with well-characterized qubits.

» The qubits can be initialized in a fiducial state. A fiducial state is a standard,
well-known initial state or reference state for quantum computations. Normally,
we choose the computational basis state |00...00) as the fiducial state, where all
qubits are in the |0) state.

* The system’s quantum coherence times must be long compared to the gate
operation times.
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» The system should be capable of implementing a universal gate set including
single-qubit gates and two-qubit gates.

» The qubit state can be read out accurately.

Among the many systems that fulfill these requirements, semiconductor quantum
dot (QD) spin qubits are promising candidates. The spin degree of freedom of an
electron or a hole confined in a gate-defined quantum dot naturally defines a two-level
system which enables it to function as a qubit. Furthermore, their compatibility with the
well-established semiconductor fabrication technology facilitates the scalability. The
two possible spin projection states along a chosen quantization axis (typically the z-
axis) are denoted as | 1) and ||). Based on our discussion in Section 2.1, these
states form the computational basis for a qubit, where |1) can correspond to |0) and
| ) can correspond to |1). The manipulation of spin states is described using the
spin operators, which are components of the spin angular momentum vector S =
(Sz, Sy, 5:). In the case of a spin-% particle, these operators are represented by the
Pauli matrices:

h(0 1 h(0 —i h(l 0
Sx:§(1 0)’ Sy:E(z’ o)’ SZ:§<0 —1)' (2.8)

These operators allow the construction of arbitrary spin rotations, which form the basis
of single-qubit gate operations as we mentioned in Section 2.2.

Electron spin resonance (ESR) achieves spin rotation by applying an oscillating
magnetic field, with the amplitude and phase of the field governing the rotation. How-
ever, magnetic control of spin states is typically slow. To overcome this limitation,
intrinsic or artificial spin-orbit interactions allows for a electric-to-magnetic signal con-
version, thus, giving rise to all-electric control by using electric dipole spin resonance
(EDSR) [24]. Qubit readout can be realized through the spin-to-charge conversion [37]
or Pauli spin blockade [38]. Following the readout, the exact qubit state is identified.
Depending on the outcome, the qubit can either be flipped via a spin manipulation or
undergo thermal relaxation, making it initialized to the desired fiducial state for subse-
quent quantum processes[39].

2.3.1. Exchange interaction

A very fundamental but important concept in spin qubit systems is the exchange inter-
action which can be classified into direct and kinetic types. Among these, the kinetic
exchange interaction is more controllable, making it the preferred choice for spin qubit
control. In this subsection, we briefly introduce the physical background behind this
kinetic exchange interaction. We limit our discussion to the system in which two elec-
trons occupy two sites. The introduction and formula derivation in this subsection is
inspired by [10].

In the simplified Fermi-Hubbard hopping model where we only consider the on-
site Coulomb interaction (the energy cost of placing two electrons on the same site)
and neglect inter-dot Coulomb interactions and direct exchange terms, the Hamilto-
nian is given by:
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+ Z UC}L-TC]‘TCL,CJ‘\L, (29)

7=1,2

o= 3 [ w1+ )

o=t Li=12

where p; represents the electron’s potential energy on site j, ¢. denotes a constant
tunnel coupling between the two sites and U is the on-site Coulomb interaction. Only
three configurations are allowed in our system: (1,1), (2,0), (0,2), which correspond
to: one electron on each of the two sites, both electrons are localized on site 1 and
both electrons are localized on site 2, respectively. According to the Pauli exclusion
principle, when both electrons are localized on the same site, they should have the
opposite spin direction. Therefore, electrons in the two configurations: (2,0), (0,2) are
in the singlet state.

The (1, 1) configuration contains four possibilities: one spin-singlet state and three
spin-triplet states, depending on the spin direction. We first define: u; + 2 = 0, which
makes the eigenenergies of the three spin-triplet states equal to zero. We then define
the detuning between the two sites as: j; — us = . The Hamiltonian can be rewritten
in the following form:

H = (U —¢)|5(0,2))(5(0,2)] + (U + £)|5(2,0))(5(2,0)]
+V2L.(]S(2,0))(S(1,1)] + |S(0,2))(S(1,1)| + h.c.). (2.10)

We add another two conditions: the first one is |t.| < U + ¢, which means that the
tunnel coupling is weak and we can treat the hopping term using the perturbation
theory; the second one is |¢| < U, which prevents the system from localizing entirely
on one site due to a large detuning. We further write the Hamiltonian as: H = Hy+ H’
in which H, is the unperturbed Hamiltonian and H’ corresponds to the perturbation
Hamiltonian. They are given by:

Hy = (U —¢)[5(0,2))(5(0,2)| + (U +£)[5(2,0))(5(2,0)], (2.11)

H' = v2t.(]5(2,0))(S(1, 1)| + [S(0,2))(S(1, 1)| + h.c.). (2.12)

We treat |S(1,1)) as the unperturbed ground state with energy with £ = 0 due to
11+ po = 0. The first-order corrected wavefunction can be expressed as:

5 = sy + 3 B0 ) 2.13)
n#0 n

where |S,,) are the two virtual states |5(2,0)), |S(0,2)) and E,, are the energies of these
two states. The final results of the |.S’) is a hybridized singlet state:
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Ve 15,0 — Y2

1) = I1S(L 1) = o2 A

15(0,2)). (2.14)

From the Hamiltonian, we can see that the first-order energy correction is zero, and
according to the equation:

SalH'[S(L, 1))[?
AE® =) I , (2.15)
& B -ED

the second-order energy correction is given by:

(S(2,0)[H[S(L )P [(S(0,2)|H|S(L, 1))
AEg = — : 2.1
5 ( U+e * U—e (2.16)
After simplification, we have:
AU t?
AES:_UQ—EQ' (2.17)

In summary, if we assume the condition |t.| < U £ €, |e| < U, the virtual hopping(or
tunneling) will induce a hybridized singlet state |S’) and lower the energy of the orig-
inal singlet state |S(1,1)) by 4Ut?/(U? — €*). This amount of energy represents the
exchange coupling J. Neglecting other states with relatively higher energy, we can ar-
rive at the Hamiltonian: H = J S - S,, where S, represents the the spin operator of the
electron at site i. This Hamiltonian is referred to as the Heisenberg exchange Hamil-
tonian, which is effective in describing the (1,1) configuration system. .J is tunable
via gate voltage modulation [40] which facilitates the implementation of high-fidelity
two-qubit gates [41, 42].

2.4. Hole spin qubits

Fermi energy is a fundamental but important concept in semiconductor materials. It
refers to the highest energy level that electrons occupy at absolute zero temperature
T = 0K. At T = 0K, all energy states below the Fermi energy are filled with elec-
trons. Therefore, it is intuitive to see that if the Fermi energy lies below the band gap,
a single state in the valence band can become unoccupied. This unoccupied state
behaves like a positively charged quasiparticle and it is referred to as a hole. Holes
also possess spin states, which can be harnessed as spin qubits. In the following
subsections, we will give a brief introduction to hole spin qubits. The topics included
are: hole’s properties which are different from its electron counterpart, the physics of
holes in germanium, and the anisotropy induced by spin-orbit interaction.

2.4.1. Properties of holes

Compared with electrons, holes have a different hyperfine interaction mechanism.
The main contribution to the electron’s states is the s-orbitals. As demonstrated in
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Fig 2.3, this s-like state results in a large overlap of the wavefunction between the
electron and the nuclei. This leads to in a type of isotropic Fermi contact hyperfine
interaction. From Fig 2.3 we can also see that this wavefunction overlap is small
for holes, which makes the contact hyperfine interaction well-suppressed. This is be-
cause the hole state is mainly composed of the p-orbitals from the valence bands.

However, this doesn’t mean holes do not suffer from the hyperfine interaction.
Instead, they experience a different form of hyperfine interaction which is referred to
as dipole-dipole hyperfine interaction. This interaction becomes anisotropic, which
means the interaction strength can vary based on different directions. For a SiGe/Ge
system with a [001] growth direction, this hyperfine interaction is stronger along this
direction and weaker in the other two orthogonal directions.

Figure 2.3: Schematic of the electron and hole states. [43]

Secondly, because of holes’ strong spin-orbit interaction, spins can be coupled to
electric fields which enables all-electric spin manipulation through electric dipole spin
resonance (EDSR) technology [23]. However, this strong spin-orbit interaction gives
rise to an anisotropic g-tensor and exchange interaction which is quite different from
the isotropic Heisenberg exchange interaction of electrons. In later chapters, we will
see how this anisotropic exchange interaction can be utilized to construct two-qubit
gates.

2.4.2. The physics of holes in germanium

Germanium is emerging as a promising platform for hosting hole spin qubits. In the
following paragraphs, we start from introducing the physics of the band structure of
bulk germanium, explaining some important concepts such as the heavy-hole and
light-hole states. After that, we will move on to the 2-dimensional structure to see how
the confinement and strain further affect the band structure.

As mentioned in Subsection 2.4.1, holes reside on the valence band which gives
them p-type orbitals with the azimuthal quantum number [ = 1. This corresponds
to a three-fold degeneracy since the magnetic quantum number m,; can take values
from —1,0, +1. Together with the spin quantum number s = 1/2 which corresponds to
ms = —1/2,+1/2, we would expect a six-fold degeneracy at the valence band top.

In fact, the six-fold degeneracy is lifted into two groups: a four-fold and another
two-fold degenerate state around the zero crystal momentum region (hk = 0) due to
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the spin-orbit interaction. The Hamiltonian that characterizes this interaction can be
written as [44]:

Heo = €0l - . (2.18)

The constant &,, is the spin-orbit coupling strength and 1, s corresponds to the orbital
and spin angular momentum respectively. The eigenstates of this Hamiltonian are
now characterized by the total angular momentum j = 1 + s and its z-component
quantum number m;. The basic principles of quantum mechanics require that the
total quantum number j needs to be integer values and have to satisfy the triangular
condition: |I—s| < j <I+s[45]. Forthel = 1,s = 1/2 case, j can take values: 3/2,1/2
which corresponds to two eigenenergies: &,,/2, —¢,, (detailed derivation is given in
A.2). For j = 3/2, m; can take four values: 3/2,1/2,—1/2,—3/2, and therefore it is a
four-fold degeneracy while for j = 1/2, it is a two-fold degeneracy with m; can choose
between 1/2, —1/2. The energy gap between these two bands is Ay = 3£,0/2. The
j = 1/2 band which has a higher energy value is referred to as the split-off band [44].

The properties of the j = 3/2 band that is located near the top of the valence band
can be derived from the well-known Luttinger-Kohn Hamiltonian [44, 46]. In short, the
four degenerate states can be separated into two groups: the heavy-hole band with
m; = 3/2 and the light-hole band with m; = 1/2. The ’heavy’ and ’light’ correspond to
the effective mass and this difference leads to the result that the heavy-hole band is
higher in energy when the crystal momentum is non-zero.

As mentioned in the first section, a qubit should be a quantum two-level system,
with its two energy levels well-isolated from other states to minimize leakage and en-
sure reliable operation. For holes in germanium, this can for example be realized
by moving into a planar heterostructure, in which an external potential is added as a
confinement. In this Ge/SiGe heterostructure, there are three important properties:

+ At the Ge/SiGe interface, the valence band energy offset traps holes in the Ge
quantum well layer [44].

* The in-plane confinement is much weaker than the out-of-plane confinement,
making it a quasi-2D system. The holes can move freely in the x-y plane while
its coordinate change in the z-axis is strongly limited. The dominance of k,
makes the system eigenstates closely resemble the bulk heavy-hole and light-
hole states, which are characterized by their J, quantum numbers. It also lifts
the four-fold degeneracy, resulting in the formation of distinct subbands and a
splitting between the heavy-hole-like and light-hole-like states [46].

» The lattice mismatch between the Ge layer and the SiGe layer causes a lateral
compressive strain in the quantum well. This strain further splits the heavy-hole
and light-hole bands [46].

The Fig 2.4 below provides an illustration of the valence band states for the ger-
manium structures introduced before. The curvature of the energy curve changes for
the heavy-hole-like and light-hole-like states of the 2D Ge and Ge/SiGe heterostruc-
ture because the in-plane effective mass of light-hole-like bands becomes larger than
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the heavy-hole-like bands [46].

a Bulk Ge b 2D Ge c Ge/SiGe Heterostructure
E E
/TN

il E ﬂ\
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split-off n=t, LA o1 LH
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™
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Figure 2.4: Valence band states for different germanium structures: (a) bulk germanium, (b) 2D ger-
manium, (c) Ge/SiGe heterostructure.

2.4.3. The anisotropy

In this section, we briefly introduce how the spin-orbit interaction induce the anisotropic
g-tensor and exchange interaction for hole spin qubits. The derivation and discussion
of this section is inspired by [18, 46, 47, 48]. As an ansatz, we start from the Luttinger-
Kohn Hamiltonian [18]:

5 h2k? h?
Hik(k) = — (’Yl + —’72> + 2

: 0+ 2 (b by} )+ ), (219

2m0 mo

where /J denotes spin-3/2 operators, 71, 72, and 73 are the Luttinger parameters, m,
is the bare electron mass, {A, B} = (AB + BA)/2, and c.p. means cyclic permuta-
tions of z, y, z. This Luttinger-Kohn Hamiltonian is widely used to study the topmost
valence band states of germanium. From this Hamiltonian, we can recognize a close
connection between the k and J which arises from the spin-orbit coupling.

The Hamiltonian under the envelop function approximation is given by:

Hene = —Hy () + V() + 25153 - B+ 20157 - B, (2.20)
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where eV (r) is the confining potential applied, x and ¢ are also the Luttinger parame-
ters, 7 = (J2,J;, J?) and B is the magnetic field. In the presence of external magnetic

field, we need to consider the its effect on the electronic state, which is included in the
below substitution:

B=VxA(r), hk—mw=—ihV +eA(r). (2.21)

Based on the Eq 2.20, we apply time inversion to this Hamiltonian and then we can
obtain the Zeeman Hamiltonian for holes:

Projecting the Zeeman Hamiltonian to pure heavy-hole subspaces, we can have the
reduced effective Zeeman Hamiltonian:

27 3
Heff,Z - - <3:‘i + ZQ) /vLBBzUz - EQMB (Bxax - Bygy) . (223)

The anisotropy of the g-tensor arises from the fact that |x| > [¢|. Writing the
Hamiltonian into a diagonal matrix: diag(3¢, —3¢, 6k+27¢/2), we can see a much larger
Zeeman splitting in one direction compared with the other two. Further considering
the mixture of heavy-hole and light-hole states, we can use the tools from perturbation
theory, for example the Schrieffer-Wolff transformation, to add higher-order correction
terms to components of the g-tensor [47, 48]. The correction terms are related to the in-
plane component of the groundstate wavefunction, which can be tuned by the potential
applied. That's the main reason why the g-tensor can be electrically modulated and
we will use this property in later chapters.

The spin-orbit interaction will also lead to the anisotropy of the exchange coupling
interaction. According to [27], the resulting anisotropic exchange interaction can be
described by a rotation matrix which is related to the spin-orbit interaction, the spin-
orbit length and the interdot distance. This can also be seen from the fact that there
exists a spin rotation angle when the hole performs a tunneling between the quantum
dots.

2.5. Quantum open system and decoherence

Most quantum mechanics textbooks introduce the unitary time evolution operator in
the beginning chapters, which describes the time evolution of a quantum state gov-
erned by the Schrdédinger equation. Accordingly, we can predict the state at a future
time uniquely by solving the partial derivative equation if we have the Hamiltonian and
the initial state. However, unitary time evolution can only describe the dynamics of
a closed quantum system which does not interact with the external environment. In
reality, closed quantum systems do not exist. Quantum systems will inevitably be cou-
pled to the environment, leading to the transfer of energy between the system and the
environment and the loss of phase information. These two processes are referred to
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as relaxation and decoherence respectively and these systems are called quantum
open systems [49].

When taking the influence of the environment into account, the total Hamiltonian
can be written as [50]:

where the Hgs and He denotes the system and environment Hamiltonian and Hse
denotes the coupling between the system and the environment. In this thesis project,
we assume a classical environment, which makes Hg = 0. This is because a classical
environment typically affects the system through classical external fields, which do not
possess quantum degrees of freedom.

To incorporate the effect of the environment, the role of Hsg can be understood
as introducing corrections to specific parameters in H,ys. For a single noisy process
and only considering the error’s lowest order, this general form can be reduced to:

Heys(1 4 €), (2.25)

where ¢ reflects the relative change in the control parameter induced by the environ-
ment.

This type of coupling effect is very common in systems such as multispin control
in nuclear magnetic resonance or semiconductor quantum dot spin qubits. These sys-
tems are highly susceptible to environmental noise or imperfections in control pulses.
In this thesis, we focus on the simplest scenario, where the Hamiltonian can be ex-
pressed in the form of Eq 2.25. Additionally, we assume that the error term remains
constant over a specific timescale, for example, during a single gate operation. This
type of error is referred to as systematic error [51].



Composite Pulse Technique

3.1. Introduction

Fault-tolerant quantum computing requires that the error rates of quantum gates need
to fall below a certain threshold [52]. Therefore, strategies for high-precision quan-
tum control play an important role in the advancement of quantum computers based
on semiconductor quantum dot spin qubits. After decades of development, Nuclear
Magnetic Resonance (NMR) technology has become highly advanced in the coher-
ent control of nuclear spins dynamics. There are many similarities shared between
nuclear spins and electron/hole spins, particularly in their manipulation under external
fields. Therefore, some of the well-established pulse techniques developed in NMR
provide valuable insights into achieving robust control of electron and hole spins. The
construction of using composite pulse sequences is one of them.

The composite pulse technique aims at correcting systematic errors that appear
in pulses applied. The core idea of this technique is to substitute a single pulse with a
sequence of pulses that implement the same operation. The gained redundancy of the
longer gate sequence can then be used to implement operations with a great tolerance.
For NMR, there are three dominant systematic errors, namely the under- and over-
rotation error (also referred to as pulse length errors), the RF phase error, and the off-
resonance error. [51, 53, 54]. For an accurate single qubit gate R;(0) = exp(—ifri-5/2)
as Eq 2.4 implies, these three types of errors correspond to deviations in  and 7.

» The under- and over-rotation error can be viewed as a linear shift in the rotation
angle. The resulting operator would be:

R () = exp(—i(1 + €)0ii - 7/2). (3.1)

n

The ¢ is also referred to as the fractional error [51]. For example, if ¢ = 0.1, the
pulse will over-rotate 10% of the desired angle.

» For the RF phase error, the error takes place on the 7i which deviates from the
original direction. For example, if the resulting 7’ takes the form: (n,cose +

16
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n, sin e, n, cos € — n, sine, n,), this means that 7 rotates around the z axis clock-
wisely by an angle e.

» The off-resonance error occurs due to the mismatch between the driving field
frequency and the spin’s resonance frequency. The operator becomes:

R(0) = exp(—if(7i - & + Ac.) /2). (3.2)

n

A denotes the detuning strength and the Ao, describes the additional phase
evolution caused by detuning.

Figure 3.1: Sketch of (a) under-rotation error and (b) RF phase error. For both cases, the initial direction
of the spin is along +z. For case (a), the ideal rotation is a = rotation around the +x axis, but the actual
rotation is m — 0, resulting in an incomplete rotation. For case (b), the ideal rotation axis is along +=z
with a rotation angle of /2. However, the rotation axis deviates by an angle ¢, leading to the final spin
deviating from the intended target position.

Fig 3.1 shows examples of under-rotation error and RF phase error. The off-
resonance error can be seen as a combination of under/over rotation error and axis
deviation error. For quantum gates made by semiconductor quantum dot spin qubits,
these three types of errors are also the primary sources of gate infidelity. For example,
similar to NMR, random fluctuations or calibration errors in the amplitude or frequency
of signals used to control spin qubits, such as microwave or rf pulses, will also cause
the under/over rotation or RF phase error [54]. Besides, voltage fluctuations induced
by charge noise will affect the hole’s g-tensor and result in the fluctuation of Zeeman
energy. This will induce off-resonance error, which is also referred to as phase errors.
The existence of these error sources highlights the need for advanced error mitigation
protocols, such as composite pulse schemes and dynamical decoupling sequences,
to achieve reliable and high-fidelity quantum computation.
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3.2. The robustness condition

In this section, we give a brief introduction to a key concept in the composite pulse tech-
nique, known as the robustness condition. As described in [53, 55], this robustness
condition serves as the guiding method for designing the composite pulse sequence to
mitigate errors. We assume the elementary pulses that constitute the gate sequence
to be:

S(0, ¢) = exp[—if(cos po,, + sin ¢a,) /2], (3.3)

T(®) = exp|—iPo, ® 0.]. (3.4)
According to Section 2.2, S(0, ¢) represents a single qubit gate where the rotation axis
lies within the xy-plane of the Bloch sphere, 6 corresponds to the rotation angle and ¢

defines the orientation of the rotation axis, indicating the angle between the axis and
the positive x direction. The two-qubit gate 7'(®) represents a controlled-phase gate.

Suppose now we want to design a pulse sequence robust against the under- and
over-rotation errors. The actual single qubit gate takes the following form:

S'(0,¢) = exp[—i(1 + €)f(cos po, + sin poy)/2]. (3.5)

If the deviation angle is relatively small (|¢| < 1), the fractional error ¢ can be viewed
as a perturbation which enables us to expand the 5'(0, ¢) as:

S'(0,¢) = S(0,$) —iedS + O(e?). (3.6)

When constructing a pulse sequence using multiple S’(0, ¢) and assuming the
error to be systematic, the resulting operator U" would be:

U, - S'(91,¢1)S’(92,qbQ)...S’(Qn,gbn). (37)

We can further rewrite the U’ by expanding all the individual pulses like Eq 3.6 and
this gives us:

U =U —iedU + O(e?), (3.8)

where U is the ideal operator whose components are all error-free:

U = 501, ¢1)5(02, $2)...5(6n, én). (3.9)

So if we deliberately design the pulse sequence such that the 6U = 0, we can have
an operator U’ that is robust against error in the rotation angle up to the first order.
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For example, now consider the pulse sequence [51]:

S'(w,7/3)S (m,5m/3)S (7, 7/3), (3.10)

where the elementary pulses within the sequence contain the under- and over-rotation
errors: 0(1 + ¢). The matrix form of 3.10 is given by:

( cos? (37(1+¢)) Leos (%) (=5 — V3 + (i +V3) COS(?TE)))
Leos (%) (=5i + V3 — (—i + V/3) cos(e)) cos? (37(1+¢)) '

If we further expand the matrix elements in the error ¢, we can arrive at the following
simplified version:

(70, i),

—i+0*e)  o*(e)

From this matrix, we can see that the composite pulse sequence 3.10 approximates
a single-qubit X gate up to a global phase. We find that the error in all the matrix
elements are at least in the second order, which means that the first-order error is
canceled.

The robustness condition can also guide the design of two-qubit gates protected
again systematic errors. Here, we assume that the primary noise source originates
from the phase term of the ZZ operator 7" (®) = exp|—i(1+¢€)Po, ®0,], while the single-
qubit gates in the sequence are assumed to be error-free. Consider the following
composite pulses:

U = Té(*g}kl ® ngl)Tr/Lfl(S}zf2 ® 5272)”-(511 ® S%)Tll- (3-11)

Let us expand the 7"(®) to first order in error: (1 — iePo, ® ¢,)T. Substituting it into
Eq 3.11 and writing the resulting unitary operator in the form of Eq 3.8, we obtain the
expression for 6U. Solving the equation 6U = 0 yields the required parameters that
can help us build a composite pulse sequence robust against the error in the coupling
constant up to first order.

3.3. Two types of composite pulses

In this section, we introduce two composite pulse sequences: SCROFULOUS and
Broadband1 (BB1). We will focus on SCROFULOUS, as it plays an important role in
this thesis project. In later chapters, we will implement this composite pulse sequence
by using hole spin qubits to realize a noise-protected two-qubit gate. In the final part
of this section, we provide a brief introduction to BB1.
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3.3.1. SCROFULOUS

SCROFULOUS, which stands for ‘short composite rotation for undoing length over-
and undershoot’ [56], is a robust pulse sequence aiming at mitigating systematic errors
associated with rotation angles. Consider the case in which we want to apply an ideal
single-qubit rotation around the x axis: S(¢,0). However, we assume that the actual
gates we implement are given by Eq 3.5: 5’(¢, ¢). Following the robustness condition,
we can still achieve a very close S(6,0) gate using the composite pulse sequence
below:

S'(©,¢1)S' (7, $2)S"(©, ¢1). (3.12)

Here, the parameters O, ¢,, ¢ can be determined by [54]:

7Tsin © = 20 cos(0/2), (3.13)
¢1 = arccos(—m cos ©/(20sin(0/2))), (3.14)
¢9 — ¢1 = — arccos(—m/20). (3.15)

The SCROFULOUS sequence can be extended to two-qubit systems, which
means there is also a corresponding pulse sequence that can suppress systematic
errors in two-qubit gates [55]. To understand this, we need to introduce first the con-
cept of J coupllng error. We have introduced in Section 2.3 the exchange interaction
H = JS, - S,. For the Ising-type exchange interaction, the Hamiltonian simplifies to:
H = Jo, ® 0./4. Its time evolution operator can be written as exp(—iJto, ® o, /4) (for
simplicity, we set & = 1). Consequently, to get a specific 7'(®,), we can just tune the
evolution time such that &, = J7;. Therefore, for the systematic error in the (1 + ¢),
it is attributed to the errors in the J constant, which we refer as the J-coupling error.

The group theory and lie algebra allow us to associate a single qubit gate with
an operator in a subgroup of SU(4) if the generators of this SU(4) satisfy the same
commutation relations as the Pauli operators. This further leads to the fact that we
can map the pulse length errors in single-qubit rotation operators to J-coupling errors
in two-qubit operators. As a result, by replacing the single-qubit gates that constitute
SCROFULOUS with their corresponding operators within this subgroup of SU(4), we
can construct a SCROFULOUS sequence capable of implementing a two-qubit gate
that is robust against systematic errors in the J-coupling. Following this mapping, we
can have a two-qubit version of SCROFULOUS:

T(¢)52(=0,0)T (m/2)55(6,0)T(C), (3.16)

where we specifically choose the angles: ( = —7secf,secd = —1.28. Simplifying
further, the pulse sequence can be rewritten as:
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S2<_777 0>T(7T/4)S2<T]7 0)7 (317)

where tann = tanfsec(F sect) and Sy(n,0) = I ® S(n,0), indicating that the second
qubit undergoes a single-qubit rotation. Fig 3.2 shows the quantum circuit of the two-
qubit SCROFULOUS pulse sequence.

Q1

(9 T(/2) T
— H 5(—6,0) - S(6,0) H —Q,

Figure 3.2: Schematic of the SCROFULOUS circuit. @; and Q- represent the qubit 1 and qubit 2
respectively.

According to Eq 3.17, the composite pulse sequence Eq 3.16 is equivalentto a ZZ
operator of ® = /4 up to two single qubit rotations. This pulse sequence is designed
based on the robustness condition which protects the ZZ gate in the middle against
systematic errors in the exchange coupling. Suppose in practical situation, the elemen-
tary two-qubit operators within the pulse sequence: 77(¢)S2(—6,0)T" (7w /2)52(0,0)T"(C)
contain errors. This composite pulse protocol achieves a better Z 7 ,, gate compared
with only one single pulse in the presence of the same fractional pulse error: T'(7/4)
(in later chapters, we refer it as the single-pulse protocol).

Fig 3.3 intuitively demonstrates that if we want to implement the ZZ ,, the SCRO-
FULOUS has a higher average gate fidelity(see A.1) compared with a single-pulse ZZ
gate over a certain range of systematic error in exchange coupling, which can also
be referred to as J-tensor fractional error. Besides, this pulse sequence only contains
three two-qubit operators in total which makes it much simpler than other types of
composite pulse sequence.
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Figure 3.3: Comparison of F(1"(r/4),ZZ,,4) and F(SCROFULOUS, ZZ, ,) as a function of the J-
tensor fractional error e.
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3.3.2. Broadband 1

Broadband 1 (BB1) is another composite pulses that is designed to be robust against
the pulse length error. For S(6,0) the sequences provided below offers a highly accu-
rate approximation, in which the ¢ = cos™'(—6/4r):

S'(m,$)S' (27, 36)S (7, $)S' (0, 0), (3.18)
S'(0,0)5"(x, $)S' (2, 36) S (7, &), (3.19)
S'(0/2,0)8 (, $)S' (27, 3¢)S' (., $)S'(8/2,0). (3.20)

As we can see that, the S'(w, ¢)S'(27,3¢)S’(m, ¢) serves as a correction pulse se-
guence to compensate for the errors.

BB1 can also be extended to a two-qubit version [57]. The sequence below effec-
tively suppresses J-tensor fractional error of a ZZ operator, in which the ¢ is related
to 6 in the same manner as in the single-qubit case:

T/(9)52(¢7 O)T/(W)SQ(_¢> 0)52<3¢7 O)T/(QW)S2<_3¢7 O)S2(¢7 O)T,(W)S2<_¢a O) (321)

There is a trade-off between the pulse sequence length and the robustness against
errors. From the Fig 3.4 below we can see that, although BB1 has a much longer

pulse sequence than SCROFULOUS, it demonstrates greater robustness against the
errors.

—_

©
oo
T

—— BBt

0.6

Average gate fidelity

J-tensor fractional error ¢

Figure 3.4: Comparison of F(T'(w/4),Z7Z,,4), F(SCROFULOUS, ZZ,,,) and F(BB1,ZZ,,,) as a
function of the J-tensor fractional error . BB1’s average gate fidelity is still close 1 even when the
e = 0.2, meaning there is a 20% deviation of the J-tensor.



Protected Controlled-Z(CZ) gate

In this chapter, we investigate the physical implementation of a CZ gate that is pro-
tected against J-tensor fractional errors by employing the SCROFULOUS composite
pulse sequence discussed in the previous chapter. Our study focuses on germanium-
based hole spin qubits and uses the experimentally measured data provided in [58].
This chapter is divided into four sections: Section 4.1 establishes the theoretical frame-
work for our two-qubit system; Section 4.2 focuses on leveraging the effective Hamil-
tonian to achieve the desired two-qubit operation; Section 4.3 introduces the method
of g-tensor modulation which is important in realizing the middle process of SCROFU-
LOUS; Section 4.4 discusses the practical implementation; Section 4.5 summarizes
the simulation procedures and demonstrates the results.

4.1. Theoretical framework

A detailed derivation of this theoretical framework starting from the Fermi-Hubbard
model is given in [59]. In this work, we focus on manipulating hole spins within the
(1,1) charge stability region, where the first (second) value represents the number of
holes in the left (right) dot. In the lab frame, the Hamiltonian can be expressed in the
two-qubit basis: {| 11), | T4), | I1), | J4) } using the experimentally measured g-tensors
and J-tensor as follows:

HEE’I) = 5#33 © 101 + §NBB G202 + 20 J G2, (4.1)

where, for simplicity, we set the & = 1 in this and subsequent chapters. up is the Bohr
magneton, g; and g, correspond to the g-tensor of the first and second qubit, 7; and
09 are the Pauli vectors:

01 = (021,01, 021); (4.2)

0_32 = (O’x,Q,O'y’Q,O'Z’z)’ (43)

23



4.2. Realization of the ZZ operator 24

where ;1 =0, ® 1,0, =1 ®o0;,1 € {x,y, 2z} are the usual Pauli matrices and Bis the
magnetic field which we can express in the spherical coordinate: b is the strength, 0
is the polar angle and ¢ is the azimuthal angle:

B= b(sin 6 cos ¢, sin @ sin ¢, cos ). (4.4)

Because the Hamiltonian needs to be hermitian and we have the freedom to
choose a basis, g; and g, can be expressed by symmetric matrices for a given mag-
netic field. This enables Eq 4.1 to be rewritten as:

Héi?l) = 5#3913-01‘1'5#3923'02‘{’101 - J 0. (4.5)

From Eq 4.5, we can always move into another frame by applying single qubit
rotations R; and R, to the two Zeeman terms respectively to diagonalize them [59]:

1 o 1 o 1. N
H(Ql,l) = §/LBR1(ng> c 01 + 5/,LBR2(QQB) 09 =+ 10'1 . (leRg>0'2 (46)
1 1 1
= §Ez,102,1 + §Ez,20z,2 + 151 - T 9. (4.7)

—

In this new frame, the rotations R, and R, are applied such that iz R, (91 B) = (0,0, E. ;)
and uBRQ(gQE) = (0,0, E,5). The Ry (R,) rotates the vector 918 (¢2B) to point in the
+z direction. These rotations must also be incorporated into the exchange coupling
tensor 7, resulting in the transformed tensor 7< = R, J RY. The matrix representation
of J< is given by:

Jg I Je
Je Je g9 | (4.8)
Je Js Je

This frame, referred to as the qubit frame, will be extensively used in the following
sections.

4.2. Realization of the ZZ operator

With the theoretical framework clarified, we start explaining how we can implement
the desired operators using the Hamiltonians mentioned above. The two-qubit ver-
sion SCROFULOUS is presented in Eq 3.16, where the first pulse is a ZZ operator,
exp(—iCo,0,), with ( = —msec/4,secd = —1.28. This operator can be realized start-
ing from Eq 4.7. To simplify the notation, we use H; to replace Hg,l). We first move
into the rotating frame (see A.3):

HY () = Ul (O 5a(0) = 01,8 (5000a00)). «9)
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If we choose U, ;(t) as:

Urf,l(t) = exp (_Z (Ez,l + Ez,?) (Oz,l + Uz,Q) t/4) ) (410)

the H}’(¢) will become:

T 1 1 ~ 5.
Hlf(t) = (Ez,l — Ezyg) 02,1 + - (EZ,Z — Ez,l) 02,2 + U,,J.rﬁl(t) (—0'1 . jQUQ) Urf,l(t)-

4 4
(4.11)

The first two terms are merely phase terms which can be easily canceled out
through compensation. This simplification leaves us with the effective Hamiltonian
H'(t) in the rotating frame:

>~ =

) 1
(0= Ul 0 (30 75 ) Va0 (4.12)

By expressing ﬁ[{f(t) in the matrix form and applying the Rotating Wave Approximation
(RWA) in which all rapidly oscillating terms are neglected, we arrive at the following
matrix representation:

J2 0 0 0

- 1fo —-J2 J 0
rf ~ 2z €L
HW~31 0 s —s2 o

0 0 0o J

zz

, (4.13)

where the J, = J& + J& +i(J2 — J%).

As a result, we can see that if | J%|/|J.| > 1, the matrix above can be approx-
imated by J%0.0./4. This implies that the time evolution operator of H|’(t) can be
approximated by:

exp(—iJ%o.0.t/4). (4.14)

To realize the desired two-qubit operator exp(—i(o.0.), we simply need to control the
evolution time ¢, such that: ¢, = 1.287/J%.

So far, we have successfully achieved the desired operator in the rotating frame:

exp(~iCo.0.) = Up(t)U}! (1) = Up(tr) exp(~iH}ty), (4.15)

where the U, (t) is the phase compensation term we mentioned above:

Up(t) = eXp(i(Ez,l — Ez,2)<gz,1 — 0'272)25/4). (416)
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We can also have the desired operator directly from Eq 4.7 through the relation below
[60]:

Ur(t) = exp(—iHyt) = Uppa (1)U} (1), (4.17)

Therefore, we can easily see that:

Up(t)UY (1) = Up(t) U/ (81)UL(t1) = U, (41) U/, | (t1) exp(—iHyty). (4.18)

The Up(tl)U:ﬂl(tl) together can be viewed as one phase compensation operator. In
summary, if we specifically design the evolution time of H; and calculate the exact
phase for compensation, we can realize a desired ZZ operator using the double quan-
tum dot system.

4.3. The middle three operators: one single process

As briefly introduced in Subsection 2.4.3, the correction terms in the anisotropic g-
tensor enables it to be electrically modulated. In Subsection 4.3.1, we will discuss
the practical method to electrically modulate the g-tensor during the simulation. In
Subsection 4.3.2, we will explain the idea behind our motivation of implementing this
g-tensor modulation and show how it is connected to the realization of the middle
process of the SCROFULOUS pulse sequence.

4.3.1. Electric modulation of g-tensor

In Section 4.1 we pointed out that we have the freedom to choose the basis such that
the g-tensor can be made a real symmetric matrix. This property enables the g-tensor
to be decomposed into the form [58]:

R(¢7‘97 C)diag<gx’ugy”gz’)R_l(gba07C)7 (419)

where ¢, 0,  represent the zyz Euler angles, corresponding to a sequential rotations:
a rotation around the original +z axis by ¢, followed by a rotation around the rotated
+y axis by 6, and finally, a rotation around the new +z axis by (. These angles define
the orientation of the principal axes of the g-tensor, denoted as ', v/, 2/, with g,/, g,/, 9.
representing the corresponding principal values. The explicit matrix representation of
R(¢,0,() is given in A.4.

In experiments, the two hole spin qubits @), @), are approximately located under-
neath the corresponding plunger gates P,, P». A sudden voltage change AV applied
to the plunger gate or barrier gate near the quantum dot will induce variations in the six
g-tensor components: ¢, 6, ¢, g.+, 9., 9. Therefore, this enables us to electrically mod-
ulate the g-tensor by using the relation between the voltage change and the variations
in these components. For small voltage variations, the changes in these quantities fol-
low an approximate linear relation with AV:
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(a) (b)

Figure 4.1: (a) Sketch of the six parameters in the g-tensor decomposition. (b) Schematic drawing of
the related parts on the device. Q1 and Q- represent the two quantum dots under the plunger gates P;
and P,. Byo, By, B, are the barrier gates. The figures are inspired by [58].

dp

d?}(ﬂ/’ pE {gx’agy’ng’7¢79a C} (420)

p=p+

Fig 4.1 presents a sketch of the six parameters representing the g-tensor decom-

position, along with a schematic illustration of part of the device. For this thesis, we
use the dataset measured in [58]. Explicit details can be found in B.2.

4.3.2. Realization of the middle process
Now consider the SCROFULOUS sequence:

. .0
—i(0,0, zalax

Useq = € e e 15050 mig10n g —iC0z0 (4.21)
At first glance, the sequence might appear to involve five operators. However, we
will show that by using the g-tensor modulation, the three middle operators can be

effectively achieved as a whole only through a single process.

This method is based on an important condition: e~V4U" = Ue~iAUT, where U is
a unitary operator. The detailed proof of this relation is given in A.5. Therefore, if we
can have a Hamiltonian that satisfies:

Hy = e'317 [, 71517, (4.22)
the time evolution of this Hamiltonian will be given by:

—iHot

.0 . .0
e = e'2lowethlgmizlon, (4.23)

We have already shown in Section 4.2 that we can use H, to realize a ZZ operator
by finding the phase compensation and deliberately tune the evolution time. In Sec-
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tion 4.4, we will discuss in detail how to implement the phase compensation for this
middle process. In this section, we first focus on how to obtain the desired H,.

Plugging the expression of H, into the Eq 4.22, we find that the expression for H,
is given by:

010 (1 1 1 |
Hy = ¢i3los <§Ez,1az71 5 Bea0sa + 51 j%) ezl (4.24)

1 1 ’ - 1 . .
= 5l=1021 + §Ez,2 (61%10”02«,26%%]%) + 151 - J° (62%10””%,26_@%[0“) . (4.25)

Analyzing this Hamiltonian, we observe that the two single qubit operators affect
only the Pauli operators of qubit 2, while those of qubit 1 remain unchanged. Therefore,
to simplify the calculation, we now focus on the Pauli operators of qubit 2. Using the
matrix exponential, we can arrive at the following relation:

eig"’”aze_ig‘“ = sin fo, + cosfo,. (4.26)
We highlight here that this is equivalent to perform a linear transformation on the Pauli

vector. The transformation matrix is exactly the rotation matrix R, (0):

1 0 0
R.(6) =10 cosf —sinf |, (4.27)
0 sinf cosf

1 : : 1 — .
§E2,2 (ezgl‘”az,ge—zgl‘”) = éﬂBRQQQB - (R.(0)02) (4.28)
1
= 5(0, 0,E.2) - (04,cosfo, —sinfo,,sinfo, + cosfo,)
(4.29)
1
= §E272(sin o, + cosfo.). (4.30)
Therefore, we can rewrite H, as follows:
1 1 - . 1, o -
Hy = §Ez,10z,1 + 5#332923 : (Rx<0)02) + 101 -J (Rx(e)gz)- (4.31)

In the Subsection 4.3.1 we have mentioned that we can electrically modulate the
g-tensor through applying voltage pulses. If we can numerically find a set of voltage
difference (AVg,,, AVp,, AVp,) that transforms g, into ¢}, which satisfies the following
relation:

1 3} 1 L
§MBR292B (R, (0)05) = §MBRzg§B - 09, (4.32)
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we then achieve the ideal Hamiltonian whose time evolution operator can be tuned to
obtain the desired ZZ operator.

The next steps are quite straightforward. We then control the evolution time of
this Hamiltonian H,. This evolution time should enable the middle operator in the
eislose—ithte=ijlo: o pe equal to e~'37:%: up to the phase factors. Let's denote this
time as t,, which can be calculated through the methods described in Section 4.2. It
is found to be equal to 27 /J%, where J2 is still the element inside the Matrix 4.8. The
final process of the SCROFULOUS sequence is the same ZZ operator as the first one.
To implement this operator, we just tune the voltage of the three gates back to their
original value at time ¢t = ¢, + t,. By doing this, we switch back the Hamiltonian to H,.
We simply let the system evolve again for ¢; to achieve the final ZZ operator. As a
result, at the final time ¢t = 2t; + ¢, we realize the SCROFULOUS pulse sequence.

From another perspective, if we consider the concept of basis transform, the three
operators in the middle ¢/3/7=¢~i37:7:¢~319= can be viewed as one single operator in
another basis. According to linear algebra, two orthonormal basis sets can be trans-
formed into each other through a unitary operator. This means that if {|u;) } and {|v;)}
are two orthonormal bases of a Hilbert space, this transformation can be represented
by a unitary matrix U such that: |v;) = Y. Uj;|u;). As a result, a quantum operator
expressed in one of the orthonormal basis can be transformed into another using the
same unitary matrix: for an operator A, its representation in the new basis is given by
[45]:

A =UAUT. (4.33)

Suppose ¢'3/7z¢~157:9:c=i517: corresponds to the the A in Eq 4.33, if we use
e~i%1: as the basis-transform unitary operator, the resulting operator in that new basis

is actually a single ZZ operator:

jus

e—i%]a'x <6ig]axe—igozoze—igla'x> eiglagc — €_i20202. (434)
Therefore, it is reasonable to regard the three pulses as a single unified process, ef-
fectively performing a ZZ operator in the transformed basis.

One important point we need to notice is that the actual SCROFULOUS also
contains two single qubit rotations, which according to Eq 3.17, is given by:
efinlozefi%azaz ein[oz7 (435)

where tann = tan 6 sec(5 sec ). We can also remove the two single qubit operators by

finding the new basis in which the effect of this SCROFULOUS is truly a CZ gate.

4.4. Technical details

In Section 4.2 and 4.3, we have introduced the core idea and methods of implementing
the SCROFULOUS composite pulse sequence. The Fig 4.2 below summarizes the
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general workflow of the three processes in SCROFULOUS, illustrating how g-tensor
modulation facilitates transitions between the processes. The figure also highlights the
three requirements for implementing the ZZ gate using our hole double quantum dot
system: a large |J%|/|J .| ratio, the carefully tuned phase compensation and evolution
time. In this section, we discuss in detail the practical implementation. This includes
phase compensation, synchronization, and realization of large |J%|/|.J.|.

Q
Fodyy
i
Phase compensation: ¢

7T
Evolution time: t e 12929z

Basis transform
0

> [P’y = e 2% )

SCROFULOUS: | e-60:0: | || pi510x| o=150:0: | p=i5i0x | | | =i€0u0

Process 1 Process 2 Process 3
Vpa = Vz;z‘ V2 = Vi2, Ve12 = Viro V'pa = Vp2,V'p2 = Vp2, V12 = V12
929> 92792

Figure 4.2: Overview of the SCROFULOUS three-process workflow.

4.4.1. Phase compensation

First, we notice from Eq 4.18 that the resulting expression contains single qubit phases
exp(ip10,1) and exp(ipslo,) that we need to compensate by applying the correspond-
ing phase correction. The phase correction can be either performed before or after-
wards. We note, that in an experiment, these phases can often be compensated
digitally by Pauli Z updating.

For the first and the third process of SCROFULOUS, the resulting operator after
the time evolution is approximately the following form:

exp(ip10.1) exp(ipslo.) exp(ipsz0.0.). (4.36)

Therefore, we can preset the phase for the first process: exp(—ipi0,1) exp(—ipslo,)
before the experiment starts. We notice that 0.1, [0, 0.0, commute with each other.
Therefore, for the third process, we can add the compensation after the end of the
total pulse sequence.

However, for the middle process, such a phase compensation cannot be realized
digitally. In practical experiments, we can only tune the phase at the beginning or
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at the end of the process. Due to this constraint, an additional operation is required,
which is the focus of the next subsection: synchronization.

4.4.2. Synchronization

For the middle process, the resulting operator is given by:

exp(iflo,) exp(—ipi0.1) exp(—ipslo,) exp(—ips0,0,) exp(—iflo,). (4.37)

Since o, and ¢, do not commute with each other, we can not manually cancel out the
effect of exp(—ipol0,). To address this, we can tune some other parameters such that
the resulting o, = 2mn, n € Z, which makes exp(—ip2lo,) = I. In our case the pa-
rameter we can tune is the magnetic field strength and this operation is referred to as:
synchronization. From Eq 4.7, we can easily calculate that the phase accumulation
w9 in Eq 4.37 is given by:

1 7TEZ72 7T|/LBR2(92§)’

Let its value be equal to 27n and then we can calculate the suitable magnetic field
strength through the equation:

s Ra(g2B)| = 2n.J%. (4.39)

Fig 4.3 visualizes the phase compensation and synchronization we apply during
the experiment. The remaining operators in black constitute the SCROFULOUS pulse
sequence.
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Figure 4.3: Sketch of phase compensation and synchronization.

4.4.3. Realization of large |J%|/|.J ]|

As mentioned before, the data we used primarily comes from the paper: [58] including
the lab-frame g-tensors for the two germanium quantum dots, which is provided in B.1,
and the measured corresponding voltage-induced change of the components in the
decomposed g-tensor, also provided in B.2. However, this paper does not provide
data of the lab frame J-tensor. According to [59], the exchange interaction is actually
a rotation matrix: 7 = JyRso (Os0), Where R, represents a rotation matrix around
the direction of the spin-orbit field and O, is related to the parameters such as the
spin-orbit length and interdot distance. Therefore, we also use a rotation matrix to act
as our J-tensor. We assume the 7-tensor is given by:

J =Jo- R.(m), (4.40)

where 7, = 0.27 GHz and this magnitude comes from [59]. The polar angle and the
azimuthal angle of the magnetic field is: 1.600509 rad and 0.244323 rad. The magnetic
field strength is 0.510431T. For this magnetic field, we find a quite large ratio for:
|J2|/|JL| = 1.78 x 10°. The resulting exchange coupling term 17, - 7<5, in the qubit-
frame Hamiltonian after calculation is given by:
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_0.157 0 0 —0.139 — 0.282i
0 0.157 0 0
0 0 0.157 0
013940282 0 0 —0.157
0 39442 —24+4Ti 0
| -32-a2i 0 0 24-47i| o
94— AT 0 0 3.9 — 4.2
0 904+ A4Ti  32+4.2i 0
0 0 0 0
0 0 874160 0 "
Tlo —87-16i 0 of X110
0 0 0 0

The voltage change set (AVg,,, AVg,, AVp,) we find is (1081.81, —1253.04, 1283.82)
with the unit in millivolts (mV).

We need to highlight here that a large ratio of |J%|/|.J.| is important for the real-
ization of high-fidelity ZZ gate using the SCROFULOUS composite pulse sequence.
We have already seen in Subsection 4.4.1 that the premise of expressing the time
evolution operator as exp(ipi0,1) exp(ipslo,) exp(ipso.o,) and implementing phase
compensation is the commutation of 0.0, with 0.1 and .. Therefore, if this exchange
coupling term is not approximately an oo, operator in the rotating frame, which means
the exchange coupling term contains off-diagonal operators,this will introduce unde-
sired phase errors and quantum states transitions. The composite-pulse quantum
gate is a non-adiabatic quantum gate, which means the error will easily accumulate
during the process. Therefore, we need the |J2|/|J, | to be large enough to suppress
the error.

4.5. Results

Before we start discussing the simulation and results, there is one point that we need
to pay attention to. In the original basis the J% turns out to be negative as can be
seen from the matrix form of 2, - 795,. This makes the evolution time ¢, = 1.287/.J%
and t, = 27 /J2 also negative which is unrealistic. One way to transform J%o .o into
—J%0.0, is using the relation: o0,0.0, = —0.. We can perform an additional basis
transform in the qubit-frame on qubit 1 to transform Eq 4.7 into:

1 S 1 S 1. N
HR )= §u3Rx(w)R1(ng) F01+ 5#332(923) 02+ 01 (Ro(m)RiT R3)5s  (4.41)
1 1 1. .
= —glz10m + 572022 + 10 T Crewa. (4.42)

For this 7% cu, J2 ..., = —J< which makes it a positive number and so do the ¢, =

1.287/J2 =6.4nsand t, = 27/J2 = 10ns.
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We simulate the SCROFULOUS composite pulse sequence through the following
procedures. We first define the time-dependent Hamiltonian:

Hl, 0<t<ty
H(t) = Hy, t1 <t<ti+ty : (4.43)
Hy. ti+1<t<t+2t

Attime t = t1, we apply the voltage pulse (AVjg,,, AVp,, AVp,) which tunes the g-tensor
of qubit 2 and transforms the Hamiltonian from H, to H,. Attime ¢t = t; + t5, we turn
off the voltage pulse to switch the Hamiltonian back to H;. With the explicit form of
this time-dependent Hamiltonian in hand, we can numerically solve the Schrddinger
equation:

d

EU@ = —iH(t) - U(t), (4.44)
which gives us the unitary time evolution operator at time ¢ = ¢; + 2ty: U(t; + 2t5).
Implementing the synchronization by finding the suitable magnetic field strength and
adding the phase compensation, we can have the total unitary operator for the SCRO-
FULOUS composite pulse sequence: Eq 4.21.

As mentioned in Subsection 4.3.2, the SCROFULOUS sequence contains two
single qubit rotation. During the simulation, we manually remove these two operators
through:

plnlos (e*InIUzeffgo-zo'zelnIUI) e~ Inloz (4.45)

Additionally, besides the pre-set phase compensation we need to apply, we can also
add extra phase correction terms before and afterwards to further minimize the result-
ing gate infidelity. These extra phase correction terms can be calculated numerically.

Fig 4.4 demonstrates the average gate fidelity of the SCROFULOUS ZZ gate real-
ized through hole spin qubits. We compare it with the same ZZ gate achieved through
the single-pulse protocol, which is realized by simply let the Hamiltonian H; evolve
for atime 7/J% = 5ns and implement corresponding phase compensation to the time
evolution operator. Despite at the error-free point ¢ = 0 the fidelity of the single-pulse
ZZ gate is around 0.9998, which is a bit better than that of the SCROFULOUS ZZ gate:
0.9994, when the error starts to increase, the SCROFULOUS ZZ gate maintains a rel-
atively higher fidelity while the fidelity of the single-pulse ZZ gate drops rapidly. For
example, when the error reaches a value of |¢| = 0.3, the fidelity of the SCROFULOUS
ZZ gate is still higher than 0.990 while the fidelity of the single-pulse ZZ is only around
0.956. Therefore, we can conclude that the SCROFULOUS composite pulse scheme
indeed suppresses the J-coupling error.
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Figure 4.4: Comparison of the average gate fidelity of SCROFULOUS and the single-pulse ZZ gate
between ZZ,,, as a function of the J-tensor fractional error e.

Fig 4.5 compares the average gate fidelity of the SCROFULOUS ZZ gate realized
through hole spin qubits with an ideal one. Fig 4.5(a) shows the general trend that for
the negative J-tensor fractional error, the fidelity deviation of the physically-realized
SCROFULOUS ZZ gate from the ideal gate is smaller compared to the case when
the J-tensor fractional error is positive. This can be seen more clearly if we look at
a smaller range: ¢ € [—0.35,0.35], which is shown in Fig 4.5(b). For example, when
the e = —0.3, the fidelity of the physically-realized SCROFULOUS ZZ gate is 0.9927,
with around 0.0015 lower than the ideal gate’s fidelity. However, when the ¢ = 0.3,
the fidelity of the physically-realized SCROFULOUS ZZ gate drops to 0.9909, with
around 0.003 lower than the ideal gate’s fidelity. For the positive ¢, this fidelity deviation
between the physically-realized SCROFULOUS gate and an ideal SCROFULOUS
gate actually increases with growth of ¢, reaches a 0.02 deviation at e = 1.

In this section, we focused on the simulation of SCROFULOUS with only one
type of error included: we only implemented the gate once and tested the J-tensor
fractional error ¢ which remains constant during this gate operation. A more detailed
investigation, testing and analysis on the robustness of SCROFULOUS follows in the
next chapter.
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Figure 4.5: Comparison of the average gate fidelity of SCROFULOUS and an ideal SCROFULOUS
between ZZ , as a function of the J-tensor fractional error ¢: (a) e € [-1,1]. (b) € € [-0.35,0.35].



Robustness Analysis

In this chapter, we investigate the performance of SCROFULOUS under various error
scenarios, aiming to acquire a comprehensive understanding of its robustness. We
will focus on the following types of error: quasi-static Gaussian J-tensor fractional
error ¢, voltage fluctuation induced by charge noise and errors introduced by ramp
voltage change. We assume the quasi-static noise to be static during a single shot,
but varies between different shots. Fig 5.1 gives a visualization of the experiments
we will simulate in Section 5.1 and Section 5.2. For the simulation of implementing
multiple gate operations, we employ the Monte Carlo method when calculating the
average gate fidelity. For each specific gate number (), we simulate the process
for a large number of times and during each time a new random error or error set is
picked depending on the type of error. Finally, we compute the mean value of all the
resulting average gate fidelities. In the final part, we compare the SCROFULOUS ZZ
gate with an adiabatic ZZ gate approach, highlighting their respective advantages and
limitations.
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Figure 5.1: Visualization of the experiments we simulate in Section 5.1 and Section 5.2.
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5.1. Modeling and analysis of Gaussian errors

In this section, we continue to focus on the J-tensor fractional error e. However, in-
stead of assuming a fixed value for this error, we now model it as a Gaussian er-
ror. In Subsection 5.1.1, we calculate and compare the expected process fidelity of
the SCROFULOUS and single-pulse ZZ gate under this Gaussian error with different
standard deviations. In Subsection 5.1.2, we study the scenario in which the SCRO-
FULOUS and single-pulse ZZ gate are implemented consecutively multiple times in
the presence of two types of quasi-static errors.

5.1.1. Comparison of expected process fidelity

We assume the Gaussian distributed J-tensor fractional error ¢ follows a distribution:
e ~ N(0,0%), with a mean of zero and a standard deviation of . Therefore, the
probability distribution of the Gaussian error is given by:

fle0) = - 1% exp <—% (5)2) | (5.1)

We denote the erroneous ZZ gate implemented through SCROFULOUS as U, (€)
and the ZZ gate realized through the single-pulse protocol as Uz (¢). Let U, represent
the ideal 7/4 - ZZ operator and allow o to vary within a small range, we can calculate
and compare the corresponding expected process fidelity for these two quantum gate
protocols, which is given by:

t
Fsero —/ f(e) |tr U Uscm( ))| de, (5.2)

zz—/ Fet UTUZZ( DE e (5.3)

Fig 5.2 shows the resulting process fidelity when o varies from 0.01 to 0.3. We
note that errors with o higher than 0.1 can already be considered as large errors.
For these errors, we calculate and compare the corresponding process fidelities to
show the capabilities of the composite pulse scheme. We focus on errors with smaller
standard deviations, such as the region highlighted by the shaded area in Fig 5.2(a).

We have already shown in Section 4.5 that in ideal error-free case, the fidelity
of the single-pulse ZZ gate will be slightly better than the SCROFULOUS ZZ gate.
Fig 5.2(b) also demonstrates similar results. The data reveals that if the standard de-
viation of the error ¢ is smaller than 0.027, the process fidelity of the single-pulse ZZ
gate is higher than that of the SCROFULOUS ZZ gate. For ¢ = 0.01, the process
fidelity for single-pulse ZZ gate is 0.9996 while the process fidelity for SCROFULOUS
ZZ gate is 0.99926. This phenomenon is caused by phase and non-adiabatic errors
as already discussed in Subsection 4.4.3. The exchange interaction is only approxi-
mately a 0.0, operator in the rotating frame. The actual operator includes additional
terms such as 0,0, and o,0,, which do not commute with ¢, and Io,. Such residual
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non-adiabatic errors prevent us from obtaining a perfect ZZ gate through this compos-
ite pulse scheme.

However, when ¢ starts to increase, the process fidelity of the single-pulse ZZ
protocol drops off rapidly while the SCROFULOUS shows a relatively slower decline
and remains a fidelity above 0.99 even for o = 0.2.
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Figure 5.2: Comparison of the expected process fidelity as a function of the Gaussian error’s standard
deviation between the composite pulse protocol and the single-pulse protocol. (a) o € [0.01,0.3]. (b)
o €10.01,0.08].

5.1.2. Multiple implementation of the quantum gates

In this subsection, we implement the quantum gates multiple times to analyze the
accumulation of errors and their impact on the gate fidelity. We assume that the error
still follows a Gaussian distribution: ¢ ~ A(0,0%). We further assume the error to
be quasi-static which remains static during a single shot, but varies between different
shots. In the next paragraph, we provide a more detailed definition and distinguish
between different types of quasi-static errors.

In the following simulation, we examine two types of quasi-static error, namely
the time-correlated error and a time-uncorrelated error which emulates low-frequency
noise on the time-scale of the gate time. We postpone the exact treatment to Chap-
ter 6. It is important to remark that quasi-static error itself is time-correlated. Quasi-
static error is defined as an error that remains static during a single shot. For the
two types of error we examine, the time-correlated error means the error adopts the
same value among subsequent gate operations, demonstrating a quite long correla-
tion time. For the time-uncorrelated error, each subsequent gate experiences a dif-
ferent error. Therefore, we distinguish these two errors based on whether they show
time-correlation among different gate operations. For the time-correlated error, the
error value remains static during subsequent gate operation in a single circuit. For
the time-uncorrelated error, we pick up a random value for each quantum gate we
implement. The error is static for one single gate and varies between different gates.

For each type of error, we consider three different standard deviations for the error
distribution: 0.1, 0.2, and 0.3 and we simulate quantum gates applied consecutively,
ranging from 1 to 10 gates. As mentioned in Subsection 5.1.1, these are large errors
showing the capabilities of the composite pulse scheme.
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The Fig 5.3 and Fig 5.4 below show the results using 1000 Monte Carlo simu-
lations. In general, we can see that for both time-correlated and time-uncorrelated
error, the SCROFULOUS performs better than the single-pulse gate. Besides, the
two figures reveal further insights regarding the error behavior and robustness of the
SCROFULOUS scheme. In the following paragraphs, we will discuss these points in
detail.

Firstly, we notice that when the number of gates applied increases, the fidelity of
the single-pulse ZZ gate drops much quicker in the case of time-correlated error com-
pared with the time-uncorrelated error. For SCROFULOUS, there is no such large
difference between these two types of errors. The distinction arises due to how errors
accumulate over multiple gate applications. For the time-correlated errors, the errors
remain the same for all gates implemented, which leads to a coherent accumulation of
the errors. This will result in a consistent drift, causing the final gate to deviate further
from the ideal operation as more gates are applied. For example, for a single-qubit
gate operation, if each gate operation has a fixed small angle deviation ¢, after 10 op-
erations, the total deviation will be amplified to 10e. However, for the time-uncorrelated
errors, the errors are randomly drawn from a Gaussian distribution at each gate appli-
cation. The errors do not accumulate in a specific direction and may partially cancel
out the effect of each other, similar to a random walk. This explains why the fidelity of
the single-pulse ZZ gate decreases less rapidly for the time-uncorrelated errors.

In the previous paragraph, we pointed out the difference in the error accumulation
pattern between the time-correlated and time-uncorrelated errors. Next, we will ana-
lyze the performance of SCROFULOUS in the presence of these two types of errors
respectively. From Fig 5.3, we can see that the SCROFULOUS performs much better
than the single-pulse ZZ gate, which is expected. The time-correlated errors remain
fixed during each gate operation and can be regarded as reproducible systematic er-
rors, which are exactly the type of errors that composite pulses are well designed to
suppress [54].

From a frequency-domain perspective, time-correlated errors show lower frequen-
cies compared to time-uncorrelated errors. According to our definition, For a constant
time-correlated error, its frequency is approximately zero, while the error update fre-
quency of the time-uncorrelated error is 1/T, where T is the duration time of a single
gate operation. As shown in Fig 5.4, we observe that although SCROFULOUS demon-
strates suppression of time-uncorrelated errors, the fidelity difference between SCRO-
FULOUS and the single-pulse ZZ gate is less significant compared to time-correlated
errors. We also notice that, in Fig 5.4(c), as the number of gates increases, the fidelity
of the single-pulse ZZ gate surpasses that of SCROFULOUS. This result is consistent
with previous studies, which reported that some dynamical error suppression (DES)
strategies perform poorly when dealing with errors that contain strong high-frequency
components [61]. In Chapter 6, we will use the filter function to analyze the sensitivity
of SCROFULOUS and the single-pulse ZZ gate to errors with different frequencies.
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Figure 5.3: Comparison of the average gate fidelity calculated through Monte Carlo of SCROFULOUS

and a single-pulse ZZ gate applied repeatedly multiple times for the time-correlated Gaussian J-tensor
fractional error.



5.1. Modeling and analysis of Gaussian errors 41

(3) Time-uncorrelated Gaussian error, o = 0.1
[z, 1
>
© 0.98
O
9
5 0.96
()
)
8 0.9411 _ SCROFULOUS
j% — Single 7/4 - ZZ pulse
O I
Number of gates applied N
(b

Time-uncorrelated Gaussian error, o0 = 0.2
1

0.95

o
oo
a

| — SCROFULOUS
— Single 7/4 - ZZ pulse

Average gate fidelity I# ~—

2 4 6 8 10
Number of gates applied N

o
o'
S

—
(@)
~

Time-uncorrelated Gaussian error, o = 0.3
1

o
©

o
N

| — SCROFULOUS
— Single 7/4 - ZZ pulse

Average gate fidelity I

o
o))

2 4 6 8 10

Number of gates applied N
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5.2. Voltage fluctuation

Other than the J-tensor fractional error, another type of errors that may arise in ex-
periments are voltage fluctuations. The physical origin of voltage fluctuations can be
attributed to charge noise. Fig 5.5 illustrates the composition of a planar germanium
heterostructure. The defects near the SiO,-SiGe interface act as charge traps, which
will lead to fluctuation of the number of carriers and ultimately cause voltage fluctu-
ations [62]. From the Hamiltonian, we can see that voltage fluctuations will induce
fluctuating Zeeman energies and fluctating Rotation matrices of the two qubits. We
simulate this by considering a Gaussian-distributed voltage noise and analyze how
this voltage noise affects the gate fidelity.

Plunger Barrier Plunger

Sio,
SiGe

Ge

Figure 5.5: Schematics of a planar germanium heterostructure. Beneath the electrostatic gates, there
is an oxide layer, with the dielectric material SiO, serving as an insulator. Below this layer lies the
conventional SiGe-Ge-SiGe heterostructure.

For qubit 2, the perturbation to the Zeeman term caused by this voltage fluctuation
is more intuitive. As discussed in Section 4.3, we can decompose the g-tensor into
a rotated diagonal matrix characterized by three principal values and three rotation
angles. The relation of how these parameters vary with voltage changes is also pro-
vided. Therefore, if we regard this voltage fluctuation §1" as a small voltage pulse, the
g-tensor can be expressed as: ¢, = g2(0Vp12,0Vp2,0Vps) Where Vg9, dVpa, 6Vpy COI-
respond to the voltage fluctuation on the barrier gates and plunger gate. We assume
0Vp12 = 0Vpy = 0Vpy = OV for simplicity. Therefore, the Zeeman term becomes:

1 .
5RngB. (5.4)

For qubit 1, the effect of the voltage fluctuation on g-tensor is less straightforward
because the paper [58] did not provide the corresponding data which characterize the
voltage-induced change of the six parameters for qubit 1. However, in A.6, we give
the detailed explanation of how the standard deviation of the Gaussian-distributed
voltage fluctuation is connected to the dephasing time 7’ which is provided in [58]. In
the following paragraphs, we will estimate a suitable standard deviation and the first
order correction of the Zeeman energy due to the voltage fluctuation for qubit 1.

We notice from the paper [58] that the dephasing time and magnetic field strength
roughly exhibit an inverse proportional relation: 17.6 us/9.2 us ~ 35mT/20mT. The
magnetic field strength we use in our project is around 500 mT which, according to
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the inverse proportionality, gives us an approximate dephasing time: 0.7 us. For the
dimensionless a, we approximate it with the following expression:

 |ppB||9gs | gy

R ‘ v v (5:5)
_ UBE 1, 0ga 0gar 0gar 1. gy, 0gy 0g,y
~ e ‘3(81/312 v, Tove) T3l o T 9

Due to the relatively large principal value g.,, the magnetic field we find is very close to
the xy-plane which gives us more freedom to tune the qubit quantization axis. There-
fore, dg,» and dg,, should be the main contribution to the dg if we approximate the
g-tensor in the first order: ¢,(6V) ~ g, +dg,. Following the relation 7y = v/2h/aec and
plugging in the parameters with the correct unit, we found a standard deviation for the
voltage fluctuation around: o = 0.195 (mV). For the first-order correction of Zeeman
energy E.; = aedv, we can express it as: E,; = 0.01035 - )V (GHz), in which we set
h =1 and the §V is in the unit of mV.

Similar to our previous analysis of J-tensor fractional error, we first analyze the
influence of a fixed voltage fluctuation value on the performance of a single gate op-
eration. Based on the estimated standard deviation o = 0.195 (mV), we assume the
fluctuation lies within the range of —1 mV to 1 mV, which should encompass the vast
majority of possible voltage fluctuation values. According to Fig 5.6, as the absolute
value of voltage fluctuation increases, the average gate fidelity of SCROFULOUS de-
creases rapidly. However, the fidelity of the single-pulse ZZ gate shows no significant
decline and remains at a high value close to 1.

The main factor that causes the rapid fidelity drop of SCROFULOUS is phase
errors. In our Hamiltonian model, after we add the voltage fluctuation, the Zeeman
energy for qubit 1 deviates from the ideal value with a correction term E. ;. For qubit
2, however, not only does the Zeeman energy change, but the Zeeman term may
also not remain diagonalized. In addition to /o, other operators may also be present.
SCROFULOUS has a longer gate time than the single-pulse ZZ gate which results
in a larger phase error accumulation. Due to the voltage fluctuation, the g-tensor
modulation we perform in SCROFULOUS is not accurate anymore, which introduces
additional phase errors and non-adiabatic errors during the time evolution of the sec-
ond process. Based on the results, we can have a preliminary conclusion that this
composite pulse scheme is not robust against the voltage fluctuation error. It is sen-
sitive to the charge noise. This result is also consistent with the conclusion in [54],
which showed that SCROFULOUS is very sensitive to off-resonance errors.

We then perform the similar simulations as we do in Section 5.1. We implement
the quantum gates consecutively multiple times with a quasi-static Gaussian voltage
fluctuation, which can also be characterized as time-correlated or time-uncorrelated
based on our previous definition. We then employ the same Monte Carlo method to
calculate the average gate fidelity. Fig 5.7 illustrates the corresponding simulation
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result, further confirming that SCROFULOUS is not robust against this type of quasi-
static voltage fluctuation error.
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Figure 5.6: Comparison of the average gate fidelity of SCROFULOUS and the single-pulse ZZ gate
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5.3. Ramp voltage change

All our previous discussions have been based on the assumption that the voltage
will instantaneously reach the pre-set value when voltage pulses are applied on the
electrostatic gates. However, in practical experiments, achieving ultra-fast voltage
changes imposes high demands on the precision and performance of the instruments.
Meanwhile, if the voltage does not change instantaneously, the time evolution of the
system during the voltage transition will accumulate errors. In this section, we simulate
such a scenario: the voltages on the three gates simultaneously reach their pre-set
values after a duration time 7. During the process, the voltage changes linearly with
time, which we also refer to as a ramp voltage pulse.

to

Vv

Figure 5.8: Schematic of the voltage pulse with a ramp transition time. ¢; and ¢, correspond to the
time duration of the three time evolution processes in the SCROFULOUS sequence and T is the ramp
time we assume.

Fig 5.8 shows a schematic illustration of how the voltage changes with a ramp
time. Based on the plot, we can express the voltage change as a time-dependent
equation. Taking the voltage change on the plunger gate AVp, as an example, its
expression is given by:

(

0, 0<t<t
1283.8187(t — ) /T, h<t<t+T

AVpy = { 1283.8187, h+T<t<ti+ts+T
1283.8187(ty + to + 2T — t)/T, ti+to+T <t <ty +ty+2T
0. ty 4ty + 2T < t < 2ty +ty 4 27T

The voltage changes on the two barrier gates: AVg, and AV, follow the same time-
dependent relation.

Remember that the g-tensor variation will also lead to change in the exchange
coupling tensor 72 = R, J R through the rotation matrix. Suppose R, denotes the
original rotation matrix for qubit 2 and R, corresponds to the one after the voltage
change. For simplicity, we assume the rotation matrix during this ramp transition R,(t)
also follows a linear interpolation:
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(R, 0<t<t

Rg(t): RIQ, t1+T§t<t1+t2+T
Ry(ty +ts+ 2T — ) /T + Ro(t —ty —ta — T)/T, t1+ta+T <t <ty +1ts+2T
R;. th 4+t + 2T <t <2t +ty+ 2T

\

As demonstrated in Fig 5.9, the fidelity of the SCROFULOUS ZZ gate is very
sensitive to the ramp time. Fig 5.9(a) shows the region where the ramp time ranges
from 0 to 1ns. We can observe a dramatic fidelity fluctuation which is because of
the phase error introduced by the high-frequency Zeeman terms in the Hamiltonian.
Fig.5.9(b) extends the range of the ramp time, where we can observe an interference
pattern. From this result, we can acquire the conclusion that: if the instruments cannot
achieve the pre-set voltage value within an extremely short time, the introduced phase
error will significantly influence the gate performance. Therefore, it is necessary to
consider ways to mitigate this effect.

-

-

—
QO
~
—

O
~

o
®

0.8

0.6

Average gate fidelity F'
Average gate fidelity F

°
o

0.4

02 04 06 0.8 1.0 5 10 15 20
Ramp time T'(ns) Ramp time T'(ns)

o

Figure 5.9: The average gate fidelity of SCROFULOUS as a function of the ramp transition time.

5.4. SCROFULOUS vs adiabatic quantum gate

Currently, one of the commonly adopted approaches to achieving high-fidelity two-
qubit gates is through the adiabatic quantum gate protocol. In this section, we first
propose a hypothetical method to implement an adiabatic ZZ gate using our double-
quantum-dot hole spin qubit system and compare this protocol with our SCROFU-
LOUS ZZ gate to analyze their robustness.

According to the adiabatic theorem, the system Hamiltonian needs to vary slowly
enough such that the system can maintain in the instantaneous ground state without
being excited to higher energy states [63]. Therefore, the exchange interaction should
be gradually turned on and off to avoid sudden changes in the Hamiltonian. Based on
this requirement, we design the adiabatic Hamiltonian to be:

1 1 1 2t
H,,=-F, 0, -F. 50, — 1 - 7 - TG , 5.7
d= 5 10,1+ 5 20,9+ 1321 < Cos (th)> 01 J~0, (5.7)
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where the T represents the total duration time of SCROFULOUS which equals to
4.567/J2. We assume the gate operation time is equal for both gate protocols to
make the comparison results more fair. The(1 — cos (2nt/T,t)) /4.56 is multiplied in
the exchange coupling term to gradually switch on and off the exchange coupling and
achieve the desired amount of phase at the time point ¢t = Ti.

With the adiabatic Hamiltonian introduced, we compare this adiabatic-protocol
ZZ gate with the SCROFULOUS ZZ gate, focusing on their robustness to the J-tensor
fractional error and the voltage fluctuations. Fig 5.10 shows the performance of the two
gate protocols in the presence of these two errors. Similar to the results we got from
previous sections, the SCROFULOUS ZZ gate is more robust against the J-tensor
fractional error while performs less well than the adiabatic ZZ gate regarding on the
voltage fluctuations.

In Fig 5.11, we make a more direct comparison by calculating the fidelity differ-
ence between them: AF = FscroruLous — Fadiavatic- From this plot, we can clearly
see that although the SCROFULOUS ZZ gate performs worse than the adiabatic gate
when there is no J-tensor fractional error and only voltage fluctuation, its fidelity outper-
forms that of the adiabatic gate in the regions where both errors exist simultaneously.
When the voltage fluctuations are not too large, and the J-tensor fluctuation error is
also present in the system, SCROFULOUS demonstrates better performance. This
highlights the advantage of SCROFULOUS gate protocol over adiabatic protocols be-
cause in actual operations, these two errors may occur simultaneously.
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Figure 5.10: Fidelity density plot of the ZZ gate in the presence of both the J-tensor fractional error ¢
and voltage fluctuation 6V: (a) SCROFULOUS. (b) Adiabatic ZZ gate.



5.4. SCROFULOUS vs adiabatic quantum gate 48

w

p —

(@)

S

S

o 0.075
©

c 0.050
.

o 0.025
©

S
u— 0.

p —

(@)

n -0.025
o

- -0.050
-4 -08

~05 0 05
Voltage fluctuation §V (mV)

Figure 5.11: The difference in fidelity between the SCROFULOUS ZZ gate and the adiabatic ZZ gate
at the same point (6V ¢).



Filter Function Formalism

The filter function formalism is a powerful mathematical framework developed in the
field of quantum control theory. Quantum control methods such as dynamical decou-
pling protocols and composite pulses are specially designed to decouple the system
from interference of environmental noise or systematic errors. The filter function for-
malism can be used to characterize the performance of these protocols by calculating
the overlap between the noise’s power spectral density (PSD) and the spectral sus-
ceptibility of these protocols to noise at different frequencies which is the so-called
filter function [64].

Following the derivation provided in [64], we briefly demonstrate how the filter
function can describe the influence of noise and its connection to the average gate
fidelity, using the example of purely dephasing noise in single-qubit control. In this
case, the noise Hamiltonian can be modeled as:

Hy(t) = B:(t)o-. (6.1)

The fidelity here is defined as the ensemble average of process fidelity in which all
realizations of the noise Hamiltonian Eq 6.1 are considered. According to [64], the
fidelity can be expressed as a series expansion in terms of a so-called error vector.
Assuming we are in the weak noise regime which allows us to ignore higher order
expansion terms, the fidelity, after controlling the qubit to evolve for a time interval
[0, 7], can be written as:

Fe1-% /OTdtQ/OTdt1(@(tl)ﬁz(t2)>Rzi(t1)Rzi(t2), (6.2)

1=2,Y,%

where C(t1,ty) = (5.(t1)5.(t2)) denotes the noise correlation function at two time
points: ¢, to and R.;(t1), R.:(t2),i € {x,y,z} are elements of the so-called control
matrix which, we will see later, are directly related to the filter function.

If we further require the noise to be at least weakly stationary, which enables
the C'(t1,t2) to be written as C'(|t; — t2|), the cross-correlation function can be further

49
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expressed in the frequency domain as:

(B.(t1)5.(t2)) = % /oo dwszz(w)eiw(tz—tl)‘ (6.3)

o0

Here S..(w) represents the power spectral density (PSD) of the noise. If we relate
e“ to R_;(t,) and e~™' to R_;(¢,), and define the following Fourier transform:

Ryj(w) = —iw / At Ry (1), (6.4)
0

we can express the fidelity as:

1———2}/ e (@) Rew)RE () (6.5)
—Lu—z/'%@w@ww (6.6)

As a result, we then automatically have the first-order filter function defined as:

FOW) = Y |Ra(w)|* (6.7)

1=,Y,2

In the weak noise regime where the higher order expansion terms in error vectors are
ignored, the fidelity Eq 6.2 can also be approximated as:

F = S(1+ explx(7) (6.8)

where in this form, x(7) is the function characterize the fidelity decay:

X(1) = /Ooo Z—C;SZZ(w)Fz(l)(w). (6.9)

This x(7) can also be derived through the qubit density matrix formalism and be used
to describe the decoherence [65]. From Eq 6.8 we find that if we want to prevent the
decay of the gate fidelity, we need to let the x(7) as close to 0 as possible. Therefore,
Fz(l)(w) should approach 0 in regions where S. . (w) is large, effectively filtering out the
noise. This characteristic is the reason why it is referred to as a filter function.

In the rest of this chapter, we first give a detailed derivation and calculation of the
filter function for two-qubit systems which is inspired by [64, 66]. Based on that, we
calculate and plot the filter function for the SCROFULOUS composite pulse protocol.
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6.1. The filter function for two-qubit systems

Suppose our system is subject to ZZ-type noise. The effective Hamiltonian now is
given by:

H. = H(QLl) + 55(02 ® O-Z)a (610)

where 05 represents the strength of the fluctuating term. Here, H8,1> is the qubit-frame
Hamiltonian given in Eq 4.7. It is now regarded as the control Hamiltonian and its time
evolution operator is denoted as: U.(t). Moving into the interaction picture with respect
to the control term, the effective Hamiltonian becomes:

HI™ = 6BUL(1) (0. ® 0.) Udlt). (6.11)

In practical situations, the intensity of the noise is usually dependent on the fre-
quency. For example, a common type of noise in solid-state devices such as semicon-
ductor quantum dots or superconducting qubits is 1/ f noise [67]. Its PSD is inversely
proportional to the frequency: S(w) « 1/f. The noise intensity increases as the fre-
quency decreases and reaches a high value at very low frequencies. Therefore, we
need to include the frequency information in the noise term. This can be achieved by
substituting the 65 with 65 = 5327/t which is now a complex term with frequency f
included. The Hamiltonian now reads:

HI" = 65U (t)(0. ® 0.)Ue(t). (6.12)

From this Hamiltonian, we can now calculate the first-order filter function according to
the following integral:

1 g rrint
P =57 [ A o (6.13)

The Hilbert space of a two-qubit system is a four-dimensional complex vector
space. It is spanned by the tensor product of Pauli matrices and the identity matrix.
The basis can be represented as: P, ® P;|P,, P; € {I,0,,0,,0.} which forms an or-
thogonal basis for all 4 x 4 matrices under the Hilbert-Schmidt inner product. This
property allows us to decompose F..(f) as:

F.(f)= (For(f), o Fou(f) - (I ® 04y ...y 0, R 7,), (6.14)

where we ignore the trivial I ® I component. Using the orthogonality and considering
the normalization factor, we can calculate the corresponding component:

Froois () = iTr[FZZ (o1 ®0,)]. (6.15)
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The magnitude of the F.(f) is consequentially given by:

6.2. The filter function of SCROFULOUS

The previous section demonstrated how to compute the filter function for a two-qubit
system under a single noisy process. For quantum control protocols such as dynam-
ical decoupling and composite pulse scheme, they normally include sequences of
control operations designed to mitigate noise and enhance coherence. The Fig 6.1
shows the diagram for a piecewise-defined control sequence. For example, in the
case of the CPMG dynamical decoupling protocol, the control operations consist of
m-pulses applied at times ¢t = ¢;,1 € [1,n — 1] and = /2-pulses applied at time ¢ = ¢, and
t=1,.

0, '":::f"é"]'"::::::::::::::::::_////'_::::::::::::::::::::::::::::::

- - Q,, T [/ T oo

AR Q, 7T ;::_____Q,__:___

S . // . T

1"" Pn t'n,fl P"'] lt'n,72 n-2 tQ PZ tl PI tU
Time

Figure 6.1: lllustration of a piecewise-defined control sequence [64]. Within each time interval [t;_1, t;],
a control operation P, is applied. The operators ; represent the control propagators evaluated at the
beginning of the [-th pulse, fori =1,2,..., n.

In [64], the author uses the method of control matrix to analytically derive the
expression of the filter function for a piecewise-defined control sequence. For each
time-interval [t, 4, ¢;], the corresponding control matrix is influenced by the control op-
eration P, and the cumulative control operator ();. For some complex composite pulse
sequences, deriving the analytical form of the filter function using this method is com-
plicated. In this section, we propose an simpler method, in which we numerically
calculates the filter function. We illustrate our new method by calculating the filter
function with respect to the SCROFULOUS composite pulse scheme.

As mentioned in Section 5.1, the SCROFULOUS composite pulse sequence
Eq 4.21: ei60:0z¢islosgifos0:o—iflow—io:0: can be viewed as a three-process op-
eration. For the first process which corresponds to the realization of the e=%=7= we
can simply follow the steps introduced in Section 6.1 to calculate its filter function F..;.
Therefore, the F.; is given by:

Foa(f) = % /0 lﬁlg'"t( f,7)dr, (6.17)

where the A (f,7) = 68U (t)(0, ® 0.)U (t), and U (t) = exp (—ng’l)t) For the time

renormalization required in the final expression of the filter function, we use the total
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time duration.

We claim two important points that should be paid attention to when we calculate
the filter function for this sequence. The first is that we need to stick to the same basis
and qubit-frame when we do the calculation. This means the Hamiltonian we use to
calculate the control unitary operator: U,(t) for the second process should also be the
original H(Cf’l). The reason is that the noise operator 65(c, ® o.) maintains this form
only in the same basis and frame. Therefore, when calculating the filter function, we
can not treat the second process of this pulse sequence in another basis or frame.

This brings us to the second point: in the original basis and frame, the voltage
pulse can be treated as implementing a single-qubit gate. We can see from Eq 4.30
that the g-tensor modulation is actually equivalent to R, (6)d. Therefore, we can also
consider the electric modulation of g-tensor as implementing a single qubit rotation
around the X axes by rotation angle 6. This approach requires that the g-tensor mod-
ulation we perform to be very precise. As a result, for the second process, the effective
Hamiltonian in the interaction picture is equal to:

Hiy'(f,1) = 08U (1)’ 17U (#) (0. @ 0.)U (£)e 517U (1), (6.18)
The resulting filter function is given by:

1 ti+ta

= % i HZY(f, 7)dr. (6.19)

In a similar way, for the third process, we just tune the voltages back to their original
value, which is equivalent to implementing a reverse gate that rotates the second qubit
around the X axis by an —6. The effective Hamiltonian and the filter function are as
follows:

FzzQ(f)

HI(f,4) = 68U (t)e 27 Ut (ty)e 1217 U (t) (0, ® 0,)U (1) e’ 277 U (t)e 27 U (1),
(6.20)

1 2t1+t2

= — H2ZY(f, 7)dr. 6.21
(55 Ltts e3 (f ) ( )

The total filter function is just the sum of these three functions, normalized by the total
sequence duration:

FzzS(f)

1

Fzz O —
(f) 2t1 + 1o

(Fear(f) + Feea(f) + Fas(f)) - (6.22)

Specifically, we are interested in the component: F,....(f), which is given by:

Emdﬁ:iﬂﬁgwg®%ﬂ (6.23)
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6.3. Results and discussion

Based on the procedures introduced in Section 6.1 and Section 6.2, we calculate
the filter function F,....(f) for SCROFULOUS. As demonstrated in Fig 6.2(a), this
filter function tends to zero when the frequency is approaching zero, which means it
effectively suppresses the low-frequency component of the noise.
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Figure 6.2: The filter function F..s..(f) of the SCROFULOUS composite pulse sequence realized
through hole spin qubits. (a) F..g..(f) as a function of frequency. (b) F..x..(f) plotted in the log-log
scale.

Fig 6.2(b) focuses on the low-frequency region by employing a logarithmic scale
on both the horizontal and vertical axes. We notice that as the frequency decreases
to approximately 10-°GHz, the filter function no longer follows a linear decline. This
is caused by the disturbance term in the exchange coupling term &, - 7 <&, which is
only an approximate o, ® o, operator in the rotating frame. We can confirm this by
calculating the filter function using an ideal Hamiltonian:

1 1 1
Hideal = §Ez,10—z,l + 5 2,202.2 + ZJZC?ZO—ZO-Z' (624)

The corresponding log-log scale filter function is given in Fig 6.3.

100,

10721

Filter function F,...

1078 1076 1074 1072 10°

Frequency f(GHz)

Figure 6.3: The filter function F..s..(f) of the SCROFULOUS composite pulse sequence realized
through a Hamiltonian with an ideal Ising-type exchange interaction.
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We also calculated the filter function F...(f) for the single-pulse ZZ gate and
the adiabatic quantum gate introduced in Section 5.4. As demonstrated in Fig 6.4 and
Fig 6.5, when the noise frequency approaches zero, both filter function values are
approximately one, which means the adiabatic gate and the single-pulse ZZ gate is
not robust to low-frequency noise in the o.0.. We notice that these two filter functions
both drop to zero at multiples of 1/7, where T is the duration time of one single gate
operation. These points correspond to the cases in which the effect of the noise is
equal to identity [66].
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Figure 6.4: The filter function F..5..(f) for the single-pulse ZZ gate.
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Figure 6.5: The filter function F,.g..(f) calculated through the adiabatic Hamiltonian: Eq 5.7.

Previously, we mentioned that we will use the filter function formalism to analyze
the performance of SCROFULOUS and the single-pulse ZZ gate in the presence of the
time-correlated and time-uncorrelated error we defined in Subsection 5.1.2. According
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to Eq 6.9, the overlap between the power spectral density of the noise and the first-
order filter function characterize the fidelity decay. Therefore, we first calculate the
power spectral density of these two types of errors.

For the time-correlated error, its autocorrelation function is given by: C(tq,t5) =
o2, where ¢ is the standard deviation of the Gaussian error. The power spectral density
is defined as the Fourier transform of the autocorrelation function. Since the autocor-
relation function is a constant, its Fourier transform results in a Dirac delta function:
a%(f). Therefore, the power spectral density of the time-correlated error is a delta
function centered at zero frequency. Comparing the filter function values of the SCRO-
FULOUS, the single-pulse ZZ gate, and the adiabatic quantum gate at f = 0, we can
clearly see that the SCROFULOUS'’s filter function approaches zero at f = 0, indi-
cating small overlap. This means SCROFULOUS filters out a significant amount of
low-frequency noise. In contrast, the filter functions of the single-pulse ZZ gate and
the adiabatic ZZ gate are both close to 1 at f = 0, resulting in a much larger overlap,
which can easily cause fidelity decay. This further confirms our conclusions in Sub-
section 5.1.2, where we demonstrated that in the presence of such time-correlated
errors, SCROFULOUS performs much better than the single-pulse ZZ gate.

According to our definition of the filter function, the error is assumed to be weakly
stationary: C(t1,t2) = C(|t; — t2|). However, the time-uncorrelated error defined in
Subsection 5.1.2 does not actually satisfy this condition. Here, we relax the condition.
Because the duration time of a single gate operation is short, we can approximate
the error as a discrete sequence of independently sampled values, which makes it a
kind of white noise. Specifically, the error is sampled from the Gaussian distribution
N(0,0?%) every interval T, and these sampled values are uncorrelated with each other.
Therefore, the autocorrelation function is given by:

0'2, |t1—t2| =0

(6.25)
0. |ti—to] £0

Clty — t2]) = {

We can also rewrite it using the Dirac delta function: C(|t; — t2|) = o2§(|t; — ta]). The
power spectral density is given by:

S(f) =" (6.26)

The sampling theorem enables us to only focus on the frequency region: (0,1/T).
We can see that the power spectral density of this error remains constant within this
frequency region. It not only contains the zero-frequency component but also includes
higher-frequency parts. Therefore, we observe that in this case, the filter function of
SCROFULOUS also overlaps with the power spectral density of this error. This further
supports our previous conclusion that SCROFULOUS is less effective in suppressing
this type of error compared to time-uncorrelated ones. However, within a certain range,
SCROFULOUS still exhibits some capability for error mitigation.



Conclusion and Future Research

7.1. Summary

In Chapter 2, we briefly introduced the necessary background knowledge for this the-
sis, focusing on some important concepts such as the exchange interaction between
semiconductor quantum dot spin qubits, the physical background of hole spin qubits
and the anisotropy induced by the spin-orbit interaction.

In Chapter 3, we introduced the basic concepts of composite pulse scheme, which
is the core technique used in this project to construct noise-protected two-qubit gate.
We showed two examples of composite pulse: SCROFULOUS and BB1. For single
qubit gates constructed based on SCROFULOUS and BB1, they are robust against
the pulse-length error; for corresponding two-qubit gates, they are robust against the
J-tensor fractional error.

In Chapter 4, we studied the procedures to implement the SCROFULOUS composite
pulse sequence by using two hole spin qubits in the germanium double quantum dot
system. We first proposed the theoretical framework in which we explained how to
transform the lab-frame Hamiltonian into the qubit-frame Hamiltonian. Based on that,
we demonstrated how to realize a ZZ operator if the condition |J%|/|.J.| > 1 s fulfilled.
We further showed that the three operators in the middle can be viewed as one unified
process which is achieved through electric modulation of g-tensor for quantum dot
2. We also discussed some points related to the practical implementation such as
the phase compensation and synchronization and finally we showed the results and
detailed simulation steps.

In Chapter 5, we designed some tests to analyze the robustness of this SCROFU-
LOUS ZZ gate, under different types of noise:

» We started from modeling the J-tensor fractional error as a Gaussian-distribued
error. We first calculated the expected process fidelity of SCROFULOUS and
the single-pulse ZZ gate in the presence of the Gaussian error with different stan-
dard deviation. We found that the single-pulse ZZ gate showed a higher fidelity
in the error-free case but its fidelity drops more rapidly than the SCROFULOUS
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ZZ gate when the error’s standard deviation increases. Then we simulated the
cases in which we implemented the gates multiple times and further classified
the error as time-correlated and time-uncorrelated based on its value during
each gate operation. We found that SCROFULOUS shows an impressive ro-
bustness against the time-correlated error. Although its robustness against the
time-uncorrelated error is less significant, SCROFULOUS still performs better
than the single-pulse ZZ gate when the error and number of gates is not too
large.

» Besides the J-tensor fractional error, we examine the impact of voltage fluctu-
ations caused by charge noise. We first analyzed the influence of a fixed volt-
age fluctuation value on the performance of a single gate operation. We found
that the average gate fidelity of SCROFULOUS drops rapidly compared with
the single-pulse ZZ gate. We further assumed the voltage fluctuation follow a
Gaussian distribution and calculated its approximate standard deviation. We did
the similar simulation in which we implemented the gates consecutively multiple
times with the time-correlated and time-uncorrelated error respectively. Accord-
ing to the simulation results, the SCROFULOUS ZZ gate performs worse than
the single-pulse ZZ gate for both types of errors. We concluded that the SCRO-
FULOUS is not robust against the phase errors introduced by voltage fluctuation.

» The SCROFULOUS ZZ gate protocol requires instant voltage changes on the
electrostatic gates. If the voltage takes a certain amount of time to reach its
preset value, this could also be a potential source of error. We examined a
simple case: the ramp voltage pulse, in which the voltage value changes linearly
within the transition time. We found that the gate’s fidelity is very sensitive to the
voltage transition time, which is mainly due to the phase errors accumulated.

» We finally compared the SCROFULOUS gate with an adiabatic ZZ gate. We
calculated and compared the average gate fidelity for these two gates in the
presence of both J-tensor fractional error and voltage fluctuations. Apart from
obtaining conclusions similar to previous experiments, such as SCROFULOUS
being more robust to J-tensor fractional errors but more sensitive to voltage fluc-
tuations, we found that when both J-tensor fractional errors and voltage fluc-
tuations are present, the SCROFULOUS ZZ gate exhibits higher fidelity if the
voltage fluctuations are not too large.

In Chapter 6, we first introduced basic concepts of the filter function formalism and pro-
vided detailed steps to numerically calculate the filter function of the SCROFULOUS
pulse sequence. We kept assuming the error term in the Hamiltonian takes the form:
§Be?" (0, ® o) and calculated the filter function component: F. ... (f) for the SCRO-
FULOUS ZZ gate, the single-pulse ZZ gate, and the adiabatic ZZ gate. According to
the plots, the filter function of SCROFULOUS remains close to zero as the frequency
approaches zero. In contrast, for both the single-pulse ZZ gate and the adiabatic ZZ
gate, the filter function takes a value of one at f = 0. This indicates that SCROFU-
LOUS effectively filters out the low-frequency noise component, whereas the other
two gate protocols do not. Furthermore, we computed the power spectral density of
the time-correlated error and found that it takes the form of a delta function. Because
the overlap between the SCROFULOUS filter function and this power spectral density
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is minimal, SCROFULOQOUS effectively suppresses time-correlated errors. However,
for the single-pulse ZZ gate and the adiabatic ZZ gate, the overlap is significantly
larger, as their filter functions reach their maximum values at f = 0 . This explains
why SCROFULOUS performs significantly better in suppressing time-correlated er-
rors. For time-uncorrelated errors that approximate white noise, the power spectral
density contains high-frequency components. Since the SCROFULOUS filter function
also overlaps with these high-frequency components, its performance in mitigating
time-uncorrelated errors is less effective compared to time-correlated errors.

7.2. Outlook

In this thesis, we only focused on the realization and analysis of a simple composite
pulse sequence, the SCROFULOUS. However, it is worth noting that there exist some
other more advanced composite pulse schemes that can not only eliminate the first-
order error but also suppress higher-order errors. BB1, which we briefly introduced in
Chapter 3, is one of the examples.

The ZZ gate implemented through BB1 composite pulse sequence shows a bet-
ter robustness against the J-tensor fractional error. The trade-off is that its pulse se-
quence is much longer compared with SCROFULOUS. We need to perform two differ-
ent basis transforms and apply the voltage pulses three times. This will lead to more
phase errors and non-adiabatic errors that decrease the gate fidelity, which weakens
its advantage. Therefore, exploring the suitable methods to implement the BB1 pulse
sequence by using the hole spin qubit system represents a potential research direc-
tion.

Besides, as we have demonstrated in Section 5.2 and Section 5.3, the SCRO-
FULOUS composite pulse sequence is vulnerable to the effect of charge noise and
the phase errors induced by the voltage change time. The next steps should focus
on exploring methods to mitigate or eliminate these effects. In order to suppress the
voltage fluctuations induced by charge noise, apart from improving device design and
materials, we can also try concatenated composite pulses [53]. These concatenated
composite pulses incorporate two types of composite pulses such that they are robust
against two types of errors simultaneously. Based on this idea, we can also design a
concatenated composite pulse to make it robust against the J-tensor fractional error
and phase errors simultaneously.

As for dealing with the problem of voltage transition time, we can explore ways to
compensate for the phase errors it introduces. For example, based on the voltage tran-
sition time measured, we can find another voltage change set: (AVY,,, AV}, AV),)
around the exact one. This second voltage change set should be specially designed
such that the phase errors are compensated during the voltage transition process. Af-
ter the voltage reaches the second voltage set, we then quickly tune it to the exact
voltage set that is required to perform SCROFULOUS. This is only a preliminary idea,
but it has the potential to address the errors introduced by voltage transition time.
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Supplementary concepts / derivation

A.l. Average gate fidelity

Average gate fidelity is a widely used metric to quantify the performance of a quantum
gate. Suppose the desired quantum gate is U and the actual quantum operation is &,
the average gate fidelity is given by:

Fong(U.€) = / dp (BITTE () )UT). (A1)

The |¢)) represents the pure states distributed uniformly over the Hilbert space (Haar
measure) and it fulfills the condition: [ dy> = 1. This "average” ensures that the fidelity
is not biased toward specific input states but reflects the gate’s overall performance
for the entire space of possible quantum states.

The expression can be reduced to a much more simplified version [68]:

dF,(U, &) + 1

Foy(U,E) = 11 ,

(A.2)

where the F, (U, £) is another fidelity called process fidelity and d is the dimension of
the quantum system. If our quantum gate is given by the corresponding time evolution
operator V (t) of Hamiltonian H(¢) which can be calculated through the Schrodinger
equation:

iRV (t) = H(t)V(t), (A.3)
V(0) =1, (A.4)
and at some specific time point, we have the approximate quantum gate V, the pro-

cess fidelity will be given by:
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tr(UV)]?

- (A.5)

Plugging it into Eq A.2 and for the two-qubit system d = 4, we can finally arrive at
a simple formula for calculating the average gate fidelity for two-qubit gates [29]:

P \tr(UTf/)\z—i-d B ]tr(UTV)]2+4
Wi od(d+1) 20 '

(A.6)

A.2. Eigenenergies correspond to j=1/2 and 3/2

Squaring both sides of j = 1 + s, we have j> = 1?2 + s + 2j - s. This enables us to
rewrite the spin-orbit coupling term ;.1 - s = £2(j2 — 12 — s2). According to quantum
mechanics, the eigenvalues of j2, 12 and s? should be equal to [45]:

F10) = K50 + D), (A7)
Pl = KU+ D)), (A8)
$[) = Rs(s + D]w). (A9)

Therefore, the eigenvalues of &1 - s are:

HEwli(G+1) — 11 + 1) — s(s + 1)) (A.10)

For the valence band with a p-type orbital [ = 1 and a spin-1/2 particle s = 1/2, j can
choose between 3/2,1/2. Working in the unit of & = 1 and plugging into j = 3/2,1 =

l,s=1/2and j =1/2,1 =1,s = 1/2 respectively, the two eigenergies are 5;“, —£s0-

A.3. The rotating frame

Still working in the unit where i = 1, the Hamiltonian of two coupled hole spins in the
qubit frame is given by:

1 1 1. B
H(?J) = §Ez,10z,1 + 522022 + 10 TG, (A11)

Suppose the basis state is represented by ). It should satisfy the Schrodinger equa-
tion: iLly) = Hfi,l)!w- Let [¢) = UT(t)[v)) which means we do a basis transform.
Plugging |¢/) = U(t)|¢)) into the Schrodinger equation, it becomes:

d

W)+ i (FU0) 15) = B U015) (A.12)
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Applying both sides with UT(t) from the left side and rearranging the terms, the
Schrodinger equation for the state |¢/) can be written as:

d ~

5 10) = [0 (OHE U () — 0 (0) U 01). (A13)

Therefore, the effective Hamiltonian H in this basis can be expressed as:

H=U'(t)HE \U(t) — iU (1)U (t). (A.14)

1)

A.4. Rotation matrix in the decomposed g-tensor
R(¢7 97 C) =

cos(¢) cos(f) cos(C) — sin(¢) sin(¢) —sin(¢) cos(¢) — cos(¢) cos(#) sin(¢) cos(¢) sin(6)
sin(¢) cos(0) cos(C) 4 cos(¢) sin(¢)  cos(¢) cos(¢) — sin(¢) cos(#) sin(¢)  sin(¢) sin(0)
— sin(#) cos(¢) sin(0) sin(Q) cos(0)
(A.15)
A.5. Proof of e=UAUT — [je—iAyt
We can prove this by using the definition of the matrix exponential:
L (X
. X:n; ot (A.16)
The left-hand side can be written as:
a5 iAo . (A17)
n=0
We can also write the right-hand side as:
i -~ (—iA)” (i)
Ue AUt =U (; T) Ut = ; UTUT. (A.18)

Using the property of unitary operators U, where UUT = UTU = I, we can show by
induction that:

(UAUN™ = UA™UT. (A.19)

Substituting this result into the left-hand side, we have:

S WAV S (rUATT A2

n! n!
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For the right-hand side:

o0

it N (CIA)" L O ()" UAMNUT
Ue AU _ZU—n! U _Z—n! . (A.21)
n=0 n=0

Therefore, we can see that e VAU = =AU,

A.6. Dephasing time and voltage fluctuation

According to [58], the volatge change on the gates near the quantum dots will induce
a variation of the g-tensor. Since the Zeeman term in the qubit-frame Hamiltonian is
given by (using qubit 1 as an example):

1 A |
H = 5#35’1(913) c01 = §Ez,1az,1: (A.22)
we can see that the variation of the g-tensor will lead to the fluctuation of the Zeeman
energy L. ;. As a result, the Hamiltonian will be:

1
H = §(<Ez70 + Ez,l)az)a (A23)

where we assume the E, , is the average energy and E., ; is the energy induced by the
voltage fluctuation which follows a Gaussian distribution jv. For simplicity, we assume
they follow a linear relation: E,; = aedv, where « is a constant and e is the elementary
charge.

We can remove the average energy term in the rotating frame and the time evo-
lution operator of this Hamiltonian becomes:

(B 10zt EZ t L. EZ t
Ult)=e o = cos| 2}; )1 — isin(( 2;

))o. (A.24)

Suppose now we want do a Ramsey experiment and prepare the state |+) = \/%(|0> +

|1)). We let the system evolve freely for time t and calculate the |(+|U(t)|+)|?, which
equals to cos2(E§gt). Given that the voltage fluctuations follow a Gaussian distribution,

their effect can be properly characterized by evaluating the following integral:

& E. it 1 (50)2
2 z,1 —
—=—). 2.2 div. A.25
/OO cos”( oF ) 27ra€ v ( )

2.2 2.2

Substituting E. ; = aedv, its result will be 1(1+ e~ 27 ). At the initial time the value
equals 1. When tincreases, the value starts to decay and when it reaches 1(1+¢7!),

the corresponding time is 73;. Therefore, the expression for the T is Ty = V2h

aeo ”



Supplementary data

B.1. Data of g-tensor

The two g-tensors are derived from the g-tensor components given in [58].

0.08288 0.01844 0.49529
gl =10.01844 0.39412 0.02021
0.49529 0.02021 11.23300

0.00601 0.35958 —0.03803

0.06538  0.00601  0.21444
g2 =
0.21444 —0.03803 10.94564

B.2. Voltage-induced g-tensor variation

Table B.1: Description of g—‘i of Q2 for a voltage pulse applied to gates P2, B2, and B12 [58].

o P2 B2 B12
S& (mrad- mv—!)  -0.11(2) 1.3(2) 3.1(1)
20 (mrad- mvV-1)  0.0008(5) 0.005(4) 0.028(3)
- (mrad- mvV—')  0.04(2) -2.3(1) 2.2(1)
Xl (mVY) 0.000181(9) -0.00028(7) -0.00073(6)
% (mv1) 0.000507(3)  0.00037(2) -0.00146(2)
% (mV) 0.0045(1)  -0.0001(8)  -0.0071(7)
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