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Summary

The focus of this project is to develop a web application that automates the process of drawing
schematic networks from geographical networks. It allows users to upload geographical networks
and inspect the schematic representation in the browser.

During the two week research phase we found a Master’s Thesis which explains a method for mod-
elling railway tracks and junctions and attempts to draw schematics. We improve upon the findings
of this thesis.

We wrote a transformer that can transform real-world GeoJSON data of railway networks to abstract
input usable by our algorithms. If our application is to be extended to other infrastructure networks,
a different transformer can be implemented while using the same underlying algorithm.

We performed weekly sprints. At the end of each, we presented the improvements to our client
to receive feedback. With this feedback we created a sprint plan to assign and prioritise the tasks
and responsibilities of the next sprint.

The testing of our application is based on extensive unit tests and end-to-end tests. We evalu-
ated the results of our application and documented recommendations for improving the algorithm.

Our application serves as a proof-of-concept to our client.
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1
Introduction

Moxio1 is an innovative software company in Delft based near the TU Delft campus. They cre-
ate high-level software for managing, visualising and validating information for large infrastructural
projects. The Spoorzone Delft is an example of one of these projects.

Moxio’s clients include large companies which plan and analyse geographical networks such as in-
frastructure and power networks. For this purpose Moxio has created a tool called Objectbrowser
which is a Geographic Information System (GIS) in which these geographical networks are displayed
on a map.

When the properties of interest described in the geographic network are distant from each other,
it is cumbersome to analyse the network. When focusing on one property, the other more distant
properties are not shown on screen, and therefore the overview of the network is lost which makes
it difficult to analyse the relation between distant properties. In this case a schematic representa-
tion of the network would be more suitable. Since a schematic representation shows only relevant
information by emphasising the interconnecting paths and discarding physical details, properties of
interests can be displayed in detail while maintaining an overview of the entire network.

These schematic representations are currently drawn manually, which is a costly process. Each
time the physical network changes, these schematic representations need to be updated manually.
Due to this being such an intensive task this is often neglected, resulting in outdated schematic
diagrams.

The purpose of this project is to design and implement an application which can automatically gener-
ate a schematic representation from a geographical network. With this application, users can upload
files containing geographical network to receive an interactive schematic representation. The main
problem we aim to solve during this project is:
To what extent can a geographical network be automatically transformed into a schematic
representation, ensuring that its properties are correctly represented?

A set of algorithms which transform geographic network into a schematic representation is pre-
sented in the paper Automatic generation of schematic diagrams of the Dutch railway network [1].
We build upon the ideas introduced in this paper by improving the algorithms and adding function-
ality, such as presenting the schematic representation in an interactive web application.

In this report we explain the development of our application in its entirety in the following struc-
ture. In Chapter 2 we describe the problem, present the functional and non-functional require-

1https://moxio.com

1

https://moxio.com


2 1. Introduction

ments, discuss the findings of our research phase including previous work and introduce notation
for modelling the network. In Chapter 3 we discuss the planning and the deliverables as well as
which methodologies we use within our development team. In Chapter 4 we design the architecture
of our application and present all steps of the conceptual algorithm we use to generate schematic
representations. Chapter 5 contains the design choices regarding the technical implementation, in-
cluding its components and their interactions. Chapter 6 describes how we can assure the quality
of our code remains high throughout the development process by using automated tests and con-
tinuous integration. Chapter 7 contains an evaluation of our output images and to what extend they
correspond to our aesthetics criteria and current manually drawn schematic diagrams. In Chapter 8
we reflect back on the project as a whole and give recommendations for future work. Finally we
conclude this report in Chapter 9.



2
Research Report

The first two weeks of the project were dedicated to literature research to get a better understand-
ing of the problem and its possible solutions. In this chapter we discuss the main problem and
divide it into multiple subproblems which assist in solving the main problem. We explain why we
limit our application to Railway networks and give a requirement analysis of the functionality of the
application.

2.1. Problem Description
Geographical networks can be difficult to analyse when properties of interest are distant from each
other. When focusing on one property, the distant properties are not shown on screen which causes
the user to lose the overview of the network. This can be solved by analysing schematic networks
which only show relevant information and discard physical details such as distance.

The drawing of schematic representation of geographical network is a time consuming task. Up-
dates to a geographical network are not always reflected in the schematic representation. This can
happen because the geographical network and the schematic drawing are duplicate sources of in-
formation, so when the geographical network is updated, the schematic would need to be redrawn
manually, which can be neglected. The main goal of this project is to develop a web application that
can automatically generate and display an interactive schematic representation of a geographical
network. Users should be able to upload geographic networks and explore the schematic output.

2.2. Restriction to Railway Networks
The problem posed by Moxio requires the application to make a schematic representation of different
types of geographical networks. During the first stages of the research phase we came to the
conclusion that making such an application would be too complex for the duration of this project.
Extensive research has been conducted on the topic of generating schematic representations of
railways. For these two reasons we decided to limit the scope of our project to railway networks.

2.3. Requirement Analysis
To get a better understanding of the main problems, we create requirements for our application.
We differentiate between functional requirements, which define features of our application, and
non-functional requirements, which describe how these features should be implemented.

3



4 2. Research Report

2.3.1. Functional Requirements
We divide these requirements according to the MoSCoW method1 in the categories: Must have,
Should have, Could have and Won’t have.

Must haves
• The application must be a web-based application, meaning it must be viewable and usable in
a web browser.

• It must be possible to upload a geographical network as a geoJSON input file.

• The web application must be able to show a corresponding schematic representation for a
geoJSON input file.

• It must be possible to zoom in/out and explore the output graph. This means moving the graph
in any direction to view more information.

• It must be possible to view the intermediate steps of the schema generation.

Should haves
• The application should have a set of filters that can be enabled/disabled to obtain a different
view of the output. For example show/hide real-world distances of paths as labels.

• All objects should have a tooltip that displays information about them.

• It should be able to support different geographical network types.

• The application should be usable with only a short manual (one page description) by users who
have knowledge on the domain.

Could haves
• The application could have interactive methods for doing calculations and visualisations of
algorithms applied to the output. For example, two vertices in the graph could be selected,
after which a shortest path algorithm is applied. The shortest path algorithm between those
edges could then be represented as a set of coloured edges.

• It could be possible to submit a custom asset set using the web application, such that custom
assets can be connected to nodes. This way, new network types can be defined by the user.

Won’t haves
• The application won’t support crossings where more than four tracks intersect.

2.3.2. Non-functional Requirements
We introduce non-functional requirements to deliver a codebase which is easy to extend and main-
tain such that our client can continue building on the ideas introduced during this project.

• Maintainability
This is an important aspect of the final product in order to build further upon the concepts
introduced in this project. Maintainability is helpful towards reaching a comprehensive and
extensible code-base. We achieve this by applying static analysis tools (Section 6.3.2) and
making sure the code has a high level of cohesion and a low level of coupling. Additionally,
human code reviews are performed before every pull request, to make sure the standards of
the written code remains high.

1Clegg, Dai; Barker, Richard (2004-11-09). Case Method Fast-Track: A RAD Approach. Addison-Wesley. ISBN 978-0-201-
62432-8.
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• Usability
A crucial aspect is usability, an end user should be able to use the final application with relative
ease. To achieve this requirement, weekly feedback sessions with our client will be held and
front-end design will be a high priority.

• Testability
An integral goal is to achieve a code-base that contains and supports automated tests. To
reach this requirement, test-driven design is applied. Writing failing tests before implementing
the functionality results automatically in a testable application in order to make the failing tests
pass.

2.4. Subproblems
In this section we use the requirements from the previous section to divide the main problem into
manageable subproblems.

2.4.1. How to present the schematic output?
We explored SporenplanOnline which shows schematic views of different railway networks through-
out Europe. Unfortunately we do not have permission to use the drawings from SporenPlanOnline,
but they are published on their website2. As these views are human made they define a format of
relevant information to show in the output scheme. From these views we conclude that the following
objects are relevant in the schematic representation:

• track switches

• track crosses

• railway signals

From the SporenPlanOnline views and (Battista et al, 2009) [2] we extract the following rules for the
aesthetics of the schematic output.

Criteria 1. Avoid edge crossings where tracks do not intersect.

When two tracks are separate in the real world but cross in the output, it gives the impressions
that they also cross in the real world. This should be minimised as much as possible to keep the
schematic representation reliable.

Criteria 2. Edges should have a maximum of two bends.

To minimise the visual clutter we want to keep the amount of bends as small as possible. With two
bends it is still possible to display parallel tracks.

Criteria 3. Keep edge lengths uniform.

Distance does not matter in a schematic representation. To keep the schema evenly spaced we give
each edge a uniform distance.

Criteria 4. All angles between tracks should be the same.

For uniformity we set every angle between edges to 45 degrees.

2.4.2. What similar technologies exist?
During our research phase we found a number of papers that use ArcGIS Schematics [3] for drawing
schematic diagrams. ArcGIS Schematics is software that can help map (geometric) datasets into
schematic diagrams. We studied to what extend ArcGIS Schematics is suitable for (semi-)automatic
transformations of a geographical railway network to a schematic network for the Swedish Transport

2http://www.sporenplan.nl/

http://www.sporenplan.nl/


6 2. Research Report

Administration [4].

ArcGIS differentiates diagrams in three different categories: geographical, schematic and geo-
schematic (see Figure 2.1). Geo-schematic diagrams use geographic locations with straightened
lines.

Figure 2.1: Different diagram types in ArcGIS Schematics (geographic, geo-schematic and schematic respectively) [5]

This brings up the question for us whether a schematic or geo-schematic network is fitting. Con-
cluding from the documentation provided by [5], creating a geo-schematic network is very time-
consuming because it requires manual editing of the converted schema. Our goal is to use purely
automation for schema generation and therefore this method is not feasible.

Many different companies use ArcGIS Schematics, including Dutch and French national railway com-
panies. The French Rail Network (RFF) argued that the algorithm “...does not work on the complex
part of their network because the complex part is non-linear, as the routes have many curves,
switches, overlapping, etc. and they are not only straight lines.” [4]. So according to them, the
algorithm is useful, but only for a small part of a network.

The study also concluded that, for it to be useful for the Swedish Transport Administration, new
features must be added to keep topological ordering after running the algorithm. Currently, this
needs to be done manually which is very time consuming [1].

2.4.3. How can we model a railway network?
A railway network consists of tracks, switches, crossings and stops. In this section we introduce
mathematical notation for all objects so we can use them in our pseudocode in Section 4.2

Definition 2.4.1. Track uv is a track, such that 𝑢 is its source junction and 𝑣 is its target junction.

Definition 2.4.2. Completely straight track: Track 𝑢𝑣 is completely straight if and only if 𝑢𝑣 is
straight out of 𝑢 and straight into 𝑣.

Definition 2.4.3. Straight line: Maximal sequence of connected completely straight tracks.

Definition 2.4.4. A baseline is a centroidal axis of a geographical network that indicates the main
direction of the tracks.

Definition 2.4.5. A single switch allows a train to choose between two forward directions. A single
switch has one or more diverging directions.



2.4. Subproblems 7

(a) Left diverging (b) Right diverging (c) Right and left diverging

Figure 2.2: Single switches and their diverging directions.

Definition 2.4.6. A crossing is an intersection between two tracks where it is not possible to switch
directions.

Figure 2.3: Crossing of tracks.

Definition 2.4.7. A full slip is a crossing of two straight tracks with additional tracks so the train
can go to either direction. A single slip is similar but only has one additional track.

(a) Full slip (b) Single slip

Figure 2.4: Slips and their diverging directions.

Definition 2.4.8. A stop marks the end of a track.

Figure 2.5: A stop.

These components have functional similarities. From now on we will consider them as a junction.
All tracks belonging to a junction will be given an index starting with 0, and increasing clockwise.
The track with index 0 is the one pointing to the left relative to the baseline. The target index is
defined as the index a track has at its target junction and the source index as the index it has at its
source junction. This is made clear in Figure 2.6. 𝑢𝑣፬ and 𝑢𝑣፭ are used as shortened notation for the
respective source and target index of track 𝑢𝑣.

0

1

2

(a)

0 1

2

(b)

0

1

2

(c)

Figure 2.6: Three single switch junctions with adjacent tracks and associated indices.

2.4.4. How can we add additional assets?
After the tracks and junctions of a railway network are generated, additional assets such as signals
and railroad crossing should be added to the output. The location of assets are defined geograph-
ically in the input. To display the assets at the correct location in the schematic output, the assets
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should be matched to the edges of the geographical network. For this matching linear referencing
is used.

Linear referencing is a “support system for the storage and maintenance of information on events
that occur along (or within) a transportation network” [6]. Before the algorithm is run, the locations
of certain assets along edges, like signs, crossings, need to be matched using linear referencing.
Then the edges are transformed to get the correct schematic output, afterwards the assets are
placed back at the correct relative position to the edge it was mapped with.

2.4.5. How can we extend this model to handle different networks?
As described in Section 2.2 we limit the scope of our algorithm to railway networks. However we
define a set of algorithms which map an abstract input to a schematic representation, together with
a set of algorithms which map the geographic input from a railway network to the input of these
algorithms. By splitting up these responsibilities, this system can be extended to apply to other
geographical networks.

2.5. Conclusions of the Research Report
We decide to focus on developing an application that can generate schematic representations of
railway networks instead of networks in general.

To aid the development, we have created the following criteria that our algorithm has to follow.

• Avoid edge crossings where tracks do not intersect.

• Edges should have a maximum of two bends.

• Keep edge lengths uniform.

• All angles should be the same.

During the algorithm design we make decisions based on these criteria to make sure they are met
in the final output.

There exist technologies which convert geographic networks to a schematic representation. How-
ever these technologies are proprietary and therefore we can not build further upon those technolo-
gies. Furthermore it does not comply to our aesthetic criteria.

We introduced mathematical notation to model the railway network. This makes it possible to create
algorithms operating on this model.

Lastly we defined two parts of the application so that it can be improved to work with different type
of geographical networks, while using the same core set of algorithms for generating the schematic
representation



3
Process

In this chapter we discuss everything related to the process of our project. More specifically, we
present the way we approach the problem and the workflow we use during our project, as well as
the responsibilities for each team member.

3.1. Workflow
We work according to the agile methodology, which means we have frequent meetings with our
coach and client. We work in weekly sprints. Starting in week 3, immediately after the research
phase. Every Monday we have a deadline at 15:00 when our issues have to be finished. After that,
at 15:30, we will have a meeting with our client to show the work performed that sprint. Then we
ask for feedback and use that as input to plan the issues of the coming sprint. When issues are not
finished on time they are evaluated and may be scrapped or carried over to the next week.

At 9:30, every day, the group members have a daily internal stand-up meeting. During this meeting,
every member shortly summarises what he has done the previous day, what he is planning to do
today and where he might find any difficulties. After this, general points of discussion are tackled.
We log notes of this meeting on Google Drive1 and add tasks to Trello2.

Every friday afternoon, we create an overview of announcements and points to discuss during the
weekly meeting on monday 15:30. On friday we send this overview (document) to the client and TU
coach.

3.2. Roadmap
3.2.1. Deliverables

Week 1 25/04 Project Plan
Week 2 04/05 Research Report
Week 6 01/06 SIG evaluation 1
Week 9 22/06 SIG evaluation 2
Week 10 27/06 Final Report
Week 11 04/07 Presentation

1https://drive.google.com/
2https://trello.com

9
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3.2.2. Research Phase

Week 1 Creating a Project Plan and forming research questions.
Week 2 Finish the research report and final research questions.

3.2.3. Implementation Phase

Week 3-9 Weekly Sprints carried out as described in Section 3.1.

3.2.4. Report Phase

Week 9 Final SIG review and first draft of Final Report.
Week 10 Finish final report and implement SIG feedback.
Week 11 Presentation.

3.3. Responsibilities
We assigned each member a list of tasks that they are responsible for. This does not mean that they
are the only member working on that task, but they have the responsibility to make sure it gets
done.

Team leader Isha Communicating with Moxio and keeping the team
on schedule.

Secretary Tim Taking notes during daily standups and updating Trello.
Web Application Frontend Rens Responsible for creating the interactive viewer.
Web Application Backend Kaan Responsible for the server that runs our algorithm.
Algorithm Isha Designing and implementing the main algorithms.
Scrum master Tim Making sure we follow the correct SCRUM principles

and we stay Agile.
Report Rens Making sure the final report is kept up to date throughout

the project.
Testing Tim Providing proper testing and CI tools to maintain

code quality.

3.4. Division of Tasks
By the use of an integration between Trello and GitHub issues, tasks are divided over the members
of the group. Furthermore, the expected workload (in terms of hours) is discussed per task in the
daily stand-up meeting. This is then registered per task on Trello. This way the workload can be
evenly spread across the group. If a group member realises that a task significantly differs from
the estimated workload. The task can be tweaked or separated in to smaller tasks during the daily
stand-up meeting to spread the total workload as equal as possible.

3.5. Tools
See 3.1 for an overview of tools we use during our project.
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Table 3.1: Overview of tools.

Tool Description

Slack Communication between team members
ShareLatex Collaboration for writing reports
Git Version control system
GitHub Reviewing pull requests and tracking issues
Travis CI Continuous integration to ensure performance across all systems
Better Code Hub Automated feedback for software quality by the Software Improvement Group
Trello Management of tasks, workload and responsibilities
Google Drive Preparation of meetings, minutes of meetings and preparation of presentations





4
Design

In this chapter we describe the architecture of our application and we define a set of algorithms that
can transform the geographic input data to a schematic representation which can be visualised in
the web browser of the user.

4.1. Architecture
In this section we briefly explain the architecture of our project. One of the requirements described
in Section 2.3 is that the application must be a web application. In Figure 4.1 we outline the archi-
tecture of the complete web application.

First the user selects the files containing the geographical network from which a schematic rep-
resentation should be extracted. These files are then uploaded to the server. The files are read by
the transformer which generates abstract input to be used by the algorithms which generate the
schematic representation. After the schematic representation is generated it is send to the browser
of the client which displays it so the user can interact with it.

On the server side we differentiate between transformer and schema generator, which makes it
extensible to implement and use different transformers for other types of geographical networks as
described in Section 2.4.5.

Figure 4.1: General overview of our application

13
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4.1.1. Client and Server Communication
The client communicates with the server through a Remote Procedure Call (RPC). An RPC makes it
possible to execute a procedure on a remote computer. This remote computer is our server and
the procedure is the transformer and schema generator. The client has access to the API endpoints
on the server. We specify one API endpoint, which is the entry to our application. The required
parameters for the API endpoint are the files containing the geographical network. The output is the
schematic representation.

Our motivation behind choosing RPC is that the clients only desire to obtain a schematic repre-
sentation of their geographical data. Since the transformation and schema generation procedures
are on the server, a remote procedure call is required.

Another common client and server communication architecture is Representational state transfer
(REST). REST architectures are generally more suited for manipulating persisted data, by using Cre-
ate, Read, Update and Delete (CRUD) operations. We do not persist or modify data, thus RPC is
better suited for our application than REST.

4.1.2. Separation of transformer and schema generator
We separate the transformer and the schema generator into their own independent modules. A con-
dition for the output of the transformer, is that its data structure is the same as the data structure
that the schema generator expects. As a result of this, a schematic representation can be generated
by other geographical network data, as long as a user is able to create a valid transformer. This is a
functional requirement defined in Section 2.3.1.

We create our own transformer in the application for geographical railway data. We explain this
in more detail in Section 4.2.1.
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4.2. Algorithms

Figure 4.2: General overview of the algorithms

In this section, we present an overview of the algorithms we use. In the subsequent sections, we
explain every algorithm in detail.

As described in Section 4.1, the schema generator requires appropriate data structures as input.
The task of the transformer is to create these data structures from the data uploaded by the user.
Afterwards, the schema generator creates the schematic representation. We describe the algo-
rithms which form the schema generator below.

The first step of the schema generation is the straight line algorithm. This creates a distinction be-
tween straight lines and divergent tracks. A definition for a straight line is given in Definition 2.4.3.
After this distinction is made, linear referencing is applied to all tracks, which requires a baseline.

This baseline can either be provided by the user, or the longest straight line from the first step
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is used. After linear referencing, the direction of tracks is changed, such that the source junction is
to the left of the target junction.
Then, the vertical ordering algorithm decides the vertical order of every line.
Next, the horizontal scaling algorithm distributes the junctions evenly on the horizontal axis.
In the last step, the divergent tracks algorithm changes the divergent tracks, such that it meets the
aesthetic requirements defined in Section 2.4.1.
See Figure 4.2 for a visual overview of every algorithm step.

4.2.1. Transformer
This component has the purpose of reading geographical data and transforming this into the data
structure described in Section 5.2.2.

Location Matching
The input for the transformer is a dataset consisting of objects mapped to real-world locations. The
Tracks and Junctions described in Section 5.2.2 have relations that represent them having over-
lapping locations. These relations are not explicitly given as input data, therefore we create a lo-
cation matching algorithm. The input format for junctions contain 3 locations: one incoming and
two outgoing locations. These are called 𝑎, 𝑏 and 𝑐 corresponding to the order in which they are
given. Tracks have 2 locations, called 𝑢 and 𝑣, namely their source and target locations. Algo-
rithm 1 shows the location matching algorithm design with the previously described data input.

Algorithm 1: Calculate the relations between tracks and junctions

Data: A set 𝑇 containing track locations and a set 𝐽 containing junction locations. 𝑝 a
precision constant.

Result: Tracks and Junctions in data format described in Section 5.2.2.
1 for 𝑗 ← {𝑎, 𝑏, 𝑐} ∈ 𝐽 do
2 for 𝑡 ← {𝑢, 𝑣} ∈ 𝑇 do
3 if (euclidean distance from 𝑢 to 𝑗ፚ OR from 𝑢 to 𝑗፛ OR from 𝑢 to 𝑗፜) < p then
4 𝑡፬፨፮፫፜፞ ← 𝑗
5 if (euclidean distance from 𝑣 to 𝑗ፚ OR from 𝑣 to 𝑗፛ OR from 𝑣 to 𝑗፜) < p then
6 𝑡፭ፚ፫፠፞፭ ← 𝑗
7 end

8 end
9 return 𝑇, 𝐽

Algorithm 1: Algorithm for matching junctions to tracks

Calculating Junction Types
The divergent direction of the junction is also not explicitly stated in the input data. For each junction,
three locations are given: the three endpoints which connect to corresponding tracks, where point
𝑏 is from the incoming track and 𝑎 and 𝑐 from the outgoing tracks, and one midpoint 𝑚, which is the
point where the tracks diverge in the real world. We design an algorithm to use these four locations
and extract which one is the divergent track. We do this by calculating whether the 𝑚 is either on
line 𝑎𝑏 or on line 𝑏𝑐, by using the cross product between point 𝑚 and lines 𝑎𝑏 and 𝑏𝑐. If 𝑚 is on line
𝑎𝑏, the junction is right-divergent and if 𝑚 is on line 𝑏𝑐, the junction is left-divergent.

4.2.2. Track Types
First, all tracks are given three more properties: 𝑡𝑦𝑝𝑒፬፫፜, 𝑡𝑦𝑝𝑒፭ፚ፫፠፞፭, and 𝑡𝑦𝑝𝑒. 𝑡𝑦𝑝𝑒፬፫፜ and 𝑡𝑦𝑝𝑒፭ፚ፫፠፞፭
can have one of two values. 0 if it is straight in/out of its target/source junction, and 1 if it is
divergent. The type is then calculated by the following formula:

𝑡𝑦𝑝𝑒 = 2 ⋅ 𝑡𝑦𝑝𝑒፬፫፜ + 𝑡𝑦𝑝𝑒፭ፚ፫፠፞፭

𝑡𝑦𝑝𝑒 can have four values.
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0 the track is straight-straight.
1 the track is straight-divergent.
2 the track is divergent-straight.
3 the track is divergent-divergent.

In Algorithm 2 and Algorithm 3 is described how types are extracted from each track.

Algorithm 2: Calculate the source_type of track 𝑢𝑣
Data: A set 𝑇 containing all tracks and a set 𝐽 containing all junctions. Track 𝑢𝑣 = {𝑢, 𝑣} ∈ 𝑇
Result: The source_type of track 𝑢𝑣

1 if 𝑢 is of type single switch then
2 if 𝑢𝑣፬ = 0 OR (𝑢𝑣፬ = 1 AND 𝑢፝።፯ = 𝑟𝑖𝑔ℎ𝑡) OR (𝑢𝑣፬ = 2 AND 𝑢፝።፯ = 𝑙𝑒𝑓𝑡) then
3 𝑢𝑣፭፲፩፞_፬ ← 0
4 else
5 𝑢𝑣፭፲፩፞_፬ ← 1
6 end

7 else if 𝑢 is of type crossing then
8 find track 𝑥𝑢 ← {𝑥, 𝑢} where 𝑥𝑢፭ = (𝑢𝑣፬ + 2)%4
9 𝑢𝑣፭፲፩፞_፬ ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝑇, 𝐽, 𝑥𝑢)

10 else if 𝑢 is of type stop then
11 𝑢𝑣፭፲፩፞_፬ ← 0
12 end
13 return 𝑢𝑣፭፲፩፞_፬

Algorithm 2: Calculate the source_type of track 𝑢𝑣
Algorithm 3: Calculate the target_type of track 𝑢𝑣
Data: A set 𝑇 containing all tracks and a set 𝐽 containing all junctions. Track 𝑢𝑣 = {𝑢, 𝑣} ∈ 𝑇
Result: The target_type of track 𝑢𝑣

1 if 𝑣 is of type single switch then
2 if 𝑢𝑣፭ = 0 OR (𝑢𝑣፭ = 1 AND 𝑣፝።፯ = 𝑟𝑖𝑔ℎ𝑡) OR (𝑢𝑣፭ = 2 AND 𝑣፝።፯ = 𝑙𝑒𝑓𝑡) then
3 𝑢𝑣፭፲፩፞_፭ ← 0
4 else
5 𝑢𝑣፭፲፩፞_፭ ← 1
6 end

7 else if 𝑣 is of type crossing then
8 find track 𝑣𝑥 ← {𝑣, 𝑥} where 𝑣𝑥፬ = (𝑢𝑣፭ + 2)%4
9 𝑢𝑣፭፲፩፞_፬ ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚2(𝑇, 𝐽, 𝑣𝑥)

10 else if 𝑣 is of type stop then
11 𝑢𝑣፭፲፩፞_፭ ← 0
12 end
13 𝑢𝑣፭፲፩፞ ← 2 ⋅ 𝑢𝑣፭፲፩፞_፬ + 𝑢𝑣፭፲፩፞_፭
14 return 𝑢𝑣፭፲፩፞_፭

Algorithm 3: Calculate the target_type of track 𝑢𝑣

4.2.3. Straight Lines
A straight line is a sequence of straight-straight tracks with total length 𝐿, such that a track at posi-
tion 𝑖 < 𝐿 in the sequence, has a target junction that is the source junction of the track at position
𝑖 + 1 in the sequence.

We find straight lines by starting from a straight-straight track 𝑡. Then we look for another straight-
straight track that has a source junction equal to the target junction of 𝑡. If it exists, we add it to the
sequence and repeat the process. If it does not exist we stop and go in the other direction. We look
for a straight-straight track that has a target junction equal to the source junction of 𝑡 and repeat
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that until no more straight-straight tracks can be found. Algorithm 4 contains the pseudocode for
obtaining straight lines.

Algorithm 4: Obtain all straight lines from tracks

Data: Set T containing all tracks
Result: Set Q containing all straight lines

1 𝑄 = ∅
2 for 𝑢𝑣 ∈ 𝑇 do
3 if 𝑢𝑣፭፲፩፞ ≠ 0 then
4 𝑇 = 𝑇 ⧵ {𝑢𝑣}
5 continue

6 end
7 𝑀 = ∅
8 𝑅 = {𝑣𝑤|𝑣𝑤 ∈ 𝑇, 𝑣𝑤፭፲፩፞ = 0}
9 while |𝑅| > 0 do

10 𝑀 = 𝑀 ∪ 𝑅
11 𝑇 = 𝑇 ⧵ 𝑅
12 𝑅 = {𝑤𝑟|𝑤𝑟 ∈ 𝑇,𝑤𝑟፭፲፩፞ = 0}
13 end
14 𝐿 = {𝑡𝑢|𝑡𝑢 ∈ 𝑇, 𝑡𝑢፭፲፩፞ = 0}
15 while |𝐿| > 0 do
16 𝑀 = 𝑀 ∪ 𝐿
17 𝑇 = 𝑇 ⧵ 𝐿
18 𝐿 = {𝑠𝑡|𝑠𝑡 ∈ 𝑇, 𝑠𝑡፭፲፩፞ = 0}
19 end
20 𝑄 = 𝑄 ∪ {𝑀}
21 end

Algorithm 4: Obtain all straight lines from tracks

4.2.4. Linear Referencing
Since we want to draw all straight lines horizontally, every straight line needs to have an y-coordinate
in the final output. Just using the y-coordinate of the straight lines does not suffice, as this will not
accurately represent the main direction the tracks are going. An example of this is shown in Fig. 4.3
where 𝑐𝑑 is the baseline of the network. If just the y-coordinates would be taken to create a vertical
order, then track 𝑒𝑓 would be above 𝑎𝑏. This is the wrong solution as 𝑎𝑏 is above the baseline and
𝑒𝑓 below. In order to solve the above mentioned issue, we apply linear referencing. The goal of
linear referencing is to find the appropriate positions of every junction with regard to the baseline.

a

b

c

d

e

f

Figure 4.3: Straight lines with baseline ፜፝.

During linear referencing we consider each straight line to be a polyline. We map every point in a
polyline to the baseline. For each point we calculate a projection to the closest point of the baseline.
A visualisation of this projection is given in Figure 4.4. ABCD is the baseline and EF is the polyline
that we map. The mapped locations are G and H. The distance between the point on the polyline
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and the point on the baseline is stored.

A

B

C

D

E

F

G

H

Figure 4.4: Straight line mapped to the baseline.

When we have calculated this point and distance for each polyline, we consider the x-axis to be our
new baseline. We place the junctions in a 90 degree angle from the baseline at the projected point
and the distance we have previously calculated. Figure 4.5

A B C D

E

F

G H

Figure 4.5: The network after linear referencing.

The pseudocode for linear referencing is written in Algorithm 5, Algorithm 6, Algorithm 7 and Algo-
rithm 8.

Algorithm 5: Linear referencing

Data: Polyline 𝑇 = {𝑡ኻ, 𝑡ኼ, … , 𝑡፧}, baseline 𝐵 = {𝑏ኻ, 𝑏ኼ, … , 𝑏፦}
Result: Polyline 𝑄, that is linearly referenced from 𝑇

1 𝐵 ← baseline_mapping(T, B)
2 𝐵 ← baseline_straightening(B)
3 𝐵 ←B.rotate_to_horizontal()
4 𝑄 ← obtain_points(B)
5 return 𝑄

Algorithm 5: Linear referencing algorithm

4.2.5. Modify Direction of Tracks
As every track begins in a source junction and ends in a target junction, it is more convenient if all
tracks are placed in the same direction. That means that for every track {𝑢, 𝑣} where 𝑣፱ < 𝑢፱, we
swap the direction of the track so that it becomes {𝑣, 𝑢}.

u v w

Figure 4.6: Original data where the track goes right to left.
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Algorithm 6: Baseline mapping: 𝐵 ← baseline_mapping(T, B)

Data: Polyline 𝑇 = {𝑡ኻ, 𝑡ኼ, … , 𝑡፧}, baseline 𝐵 = {𝑏ኻ, 𝑏ኼ, … , 𝑏፦}
Result: Baseline 𝐵, with 𝑇 mapped

1 for 𝑡 ∈ 𝑇 do
2 𝑑፦።፧ ← ∞
3 𝐿፬ ← ∅
4 𝑘 ← 0
5 for 𝑖 is 1 to (𝑚 − 1) do
6 𝑏፬ ← 𝑏። ∈ 𝐵
7 𝑏፭ ← 𝑏።ዄኻ ∈ 𝐵
8 𝐿 ← {𝑏፬ , 𝑏፭}
9 𝑑 ← distance(t, L)

10 if 𝑑፦።፧ > 𝑑 then
11 𝑑፦።፧ ← 𝑑
12 𝐿፬ ← 𝐿
13 𝑘 ← 𝑖
14 end

15 end
16 𝑊 ← line with start point 𝑡, length 𝑑፦።፧ and touches 𝐿፬
17 𝑝፞ ←W.endpoint
18 𝑝፞ᑧ ←< 𝑡፱ − 𝑝፞ᑩ , 𝑡፲ − 𝑝፞ᑪ >
19 𝐵 ← {𝑏ኻ, 𝑏ኼ, … , 𝑏፤} ∪ {𝑝፞} ∪ {𝑏፤ዄኻ, 𝑏፤ዄኼ, … , 𝑏፦}
20 𝑚 ← 𝑚 + 1
21 end
22 return 𝐵

Algorithm 6: Map polyline to baseline algorithm

Algorithm 7: Baseline straightening: 𝐵 ← baseline_straightening(B)

Data: Baseline 𝐵 = {𝑏ኻ, 𝑏ኼ, … , 𝑏፦}
Result: Straightened baseline 𝐵

1 𝐿ፁ ← length of 𝐵
2 �⃗� ←< 𝑏፦ᑩ − 𝑏ኻᑩ , 𝑏፦ᑪ − 𝑏ኻᑪ >
3 for 𝑖 = 2 to 𝑚 do
4 𝐿 ← euclidean distance from 𝑏ኻ to 𝑏።
5 𝑝 ← 𝐿/𝐿ፁ
6 𝑏። ← 𝑏ኺ + 𝑝 ⋅ �⃗�
7 end
8 return 𝐵

Algorithm 7: Straighten baseline algorithm
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Algorithm 8: Obtaining transformed polyline from baseline: 𝑄 ← obtain_points(B)

Data: Baseline 𝐵 = {𝑏ኻ, 𝑏ኼ, … , 𝑏፦}
Result: Polyline 𝑄, that is linearly referenced

1 {𝑣ኻ, 𝑣ኼ} ← B.get_orthogonal_vectors()
2 𝑄 ← ∅
3 for 𝑡 ∈ 𝐵 do
4 if is_polyline_location(t) then
5 𝜃ኻ ← 𝑣ኻ.get_angle(𝑡፯)
6 𝜃ኼ ← 𝑣ኼ.get_angle(𝑡፯)
7 𝑣 ← ∅
8 if 𝜃ኻ > 𝜃ኼ then
9 �⃗� ← 𝑣ኼ

10 end
11 else
12 �⃗� ← 𝑣ኻ
13 end
14 𝑟 ← 𝑡 + �⃗�
15 𝑄 ← 𝑄 ∪ 𝑟
16 end

17 end
18 return 𝑄

Algorithm 8: Obtaining transformed polyline from straightened baseline algorithm.

u v w

Figure 4.7: Data after modification.

4.2.6. Vertical Ordering
Once the direction of all tracks is uniform, the tracks need to be ordered vertically. As not every
junction is located on a straight line, some of the ’lines’ consist of a single junction. We consider the
baseline as a straight line and give it a y-value of 0. To determine the vertical order we loop through
all pairs of straight lines to infer a relation between them.

We decide on this relation based on two rules. The first rule checks if there is a single switch that
connects the two straight lines. If that is the case we take the divergent direction of this switch to
decide which line is above the other. If line A for example has a right-diverging track that goes to
line B, this must mean that line A is above line B. The second rule checks if the start and endpoint of
a line are above the start and endpoint of another line. This means that a line is completely above
the other. If neither of these cases if applicable we can not infer a relation between the two lines.

We apply an algorithm for topological sorting first described in (Kahn, 1962)[7]. This algorithm
works on graphs so we transform our relations to a graph where the straight lines become nodes
and the relations become edges. If line A is above line B it means we draw an edge from node A to
node B. This topological sorting algorithm generates an order of the nodes such that for every edge
𝑢𝑣 node 𝑢 comes before node 𝑣. We apply this ordering to our straight lines to determine the final
vertical order.

4.2.7. Horizontal scaling
One of the final steps consists of normalising horizontal distances between junctions.

In a schematic representation of the data, real-world distances do not matter. Therefore, to im-



22 4. Design

prove readability, we create a visualisation with equal spacing between subsequent junctions.

We take all schema-coordinates from junctions and order them horizontally. Then, we define a stan-
dard offset as distance between each subsequent junction. This results in a uniform distribution of
junction locations over the horizontal axis.

To give a more aesthetically pleasing output, vertically aligned junctions are placed on the same
x-coordinate. This means that junctions that are close to each other by their x-value, get assigned
the same x-value. We determine closeness by using standard interval. This interval describes the
allowed mismatch in x-value the junctions can have after linear referencing, to still be placed on the
same x-value.

4.2.8. Divergent Tracks
Divergent tracks are tracks that are not straight and thus, not drawn as a horizontal line. In Sec-
tion 2.4.1, we stated that all angles need to be 45 degrees. This means that divergent tracks must
have a 45 degree angle from the horizontal axis. In order to achieve this criteria, we define two
different groups of divergent tracks. The first group is divergent-divergent tracks. The second group
is the non-divergent-divergent tracks. The algorithm can draw the second group of tracks in four
different ways, depending on certain conditions. These conditions are summarised in Table 4.1 and
the these tracks are visualised in Figure 4.8, where 𝑢 is the source, 𝑣 is the target and 𝑟 is a bending
point.

Table 4.1: Condition table of non-divergent-divergent tracks.

Straight-divergent track type Divergent-straight track type
Target above source Right-up divergent track Up-right divergent track
Target below source Right-down divergent track Down-right divergent track
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Figure 4.8: Right-up, up-right, right-down and down-right divergent tracks

The group of divergent-divergent tracks consist of parallel tracks and diagonal tracks. A divergent-
divergent track is a parallel track if its source and target are on the same level, otherwise its a
diagonal track. See Figure 4.9 for a visualisation of parallel track 𝑢𝑣, that starts on 𝑢, goes to 𝑎, 𝑏
and lastly 𝑣. We draw a diagonal track 𝑢𝑣 directly from 𝑢 to 𝑣, without any intermediate bends.
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Figure 4.9: Parallel track

A problem that arises when creating a diagonal track 𝑢𝑣, is that junction 𝑢 or 𝑣 might need to be
moved in order to obtain a 45 degree angle. A possible consequence is that the topological order of
the network becomes invalid. In order to maintain the correct topology, every junction that is to the
right of the previous location of the repositioned junction, is moved to the right the same distance
as the repositioned junction.
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To reduce the complexity of this problem, we integrate a few rules into the divergent track algo-
rithm:

1. Junctions are only allowed to be moved to the right.

2. It is preferable to move target junctions.

In the first step, the divergent track algorithm focuses on the junctions of diagonal tracks. All di-
vergent tracks are sorted by their source x-value to an ascending order. Then for every divergent
track that is classified as a diagonal track, the algorithm check if its target junction can be moved
to the right, such that it creates a 45 degree angle with the horizontal axis. If this is the case, then
the target junction is set as the selected junction, which is the junction that the algorithm will move.
Otherwise the selected junction is the source junction. The algorithm moves the selected junction
from its original position 𝑥ኻ to the new position 𝑥ኼ. Afterwards, the algorithm moves every other
junction that is to the right of 𝑥ኻ with 𝑥ኼ − 𝑥ኻ, excluding the selected junction and its opposing junc-
tion.

If the selected junction is a source junction, find a divergent track such that its target is the se-
lected junction. If no such track exists, then continue to the next divergent track.

However, if that track is found, set the selected junction as the source of that track, move the
selected junction to the right such that its track has a 45 degree angle with the horizontal axis. Then
move every junction, excluding the selected junction and its opposing junction, that is to the right
of the old position of the focus junction with the same displacement to the right.

When the algorithm finishes on focusing on the junctions of diagonal tracks, it creates non-divergent-
divergent tracks and parallel tracks. If a junction is moved in order to create this track, then every
other junction must be displaced as described above.





5
Implementation

In this chapter we will discuss what choices were made in the implementation of the algorithm. For
example where we had to deviate from our original pseudocode due to technical limitations.

5.1. Dependency Considerations
In this section we describe different decisions made concerning the implementation of the applica-
tion.

5.1.1. Back-end
On of the must have requirements is that our application needs to be a web application. There are
various back-end frameworks that we can use for such an application. We have chosen to develop in
Python, because Python is easy to learn and makes back-end tasks simple with certain web frame-
works. Additionally, a lot of different libraries exist that make displaying and reading graphs and
geometric data easy.
We decided to use the framework Flask [8]. Flask is very flexible: it is lightweight and easily cus-
tomisable within your application [9].

5.1.2. Front-end
The front-end is critical to build an application with usability in mind, since the front-end determines
how our application interacts with the user. The user needs to be able to use our application with
relative ease, therefore it is important that the applications is interactive and has a proper layout.
Interactive front-end web development is primarily done in JavaScript, in combination with CSS and
HTML, since it is the language native to the web [10]. Furthermore, since JavaScript is so abundantly
used on the web, there are many JavaScript packages, frameworks and libraries we can use. For
these two reasons we decide to use JavaScript for the interactive front-end of the final application.

It is also beneficial to use some sort of framework, to provide a good structure for the front-end
application, thereby improving code quality and to reduce the level of complexity. Frameworks we
considered were: Angular1, Vue2 and React3. The main difference between Angular and the other
two is that Angular also features a rich back-end, while Vue and React focus on the display logic [11].
Since we already have a working back-end we do not need the back-end capabilities of Angular for
the front-end. We choose Vue as some team members already have experience using it.
Drawing and interacting with graphs is a critical part of the front-end and there exist a number of
JavaScript packages providing this functionality, we chose d3.js4 for this, since it is powerful library

1https://angular.io/docs
2https://vuejs.org/
3https://reactjs.org/
4https://d3js.org/
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for manipulating and visualising data documents.

5.2. Data Structures
In this section we explain the data structures we use within the entire application.

5.2.1. User Input
The input data structure encompasses the files that are uploaded to the server which are used by the
transformer to generate usable data for the algorithm. The input data structure should be multiple
GeoJSON files. For the specific railway context there must be one file describing the tracks. another
the switches and one describing the stops. Assets should be uploaded as separate GeoJSON files. We
use GeoJSON because it is an open format for describing geographical locations using JSON, which
is one of the most popular file format for data communication on the internet. Furthermore Moxio
fully supports GeoJSON so samples of geographical data are also in this file format.

5.2.2. Schema Generation Input
The schema generation input is the result of the user input after being manipulated by the trans-
former. With this input we implement the model introduced in Section 2.4.3. The main classes we
use for this purpose are shown in Figure 5.1.

Figure 5.1: Output data structure of tracks and junctions

Figure 5.1 shows an inheritance relation from Track to Polyline. The representation of the Polyline
class in this diagram is merely a short overview of what properties it contains. Crossings and Sin-
gleSwitches have specific coordinates. The original coordinates are kept in memory, to calculate the
direction in which they diverge and to match Tracks.

5.2.3. Output
The server sends a JSON file as output to the browser with all the information needed to draw the
schematic representation. After each stage of the algorithm a schema is generated which can be
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added to the output so the different stages of the algorithm can be visualised. A schema in the
output consists of a list of polylines. A polyline in the output has the lines property which defines
the endpoints of the line segments, a points property describing additional assets along the polyline
and a tooltip attribute which contents are shown when the user hovers over the polyline. A simple
example JSON output is shown below.

1 {”result”: {
2 ”schemaName”: [
3 {
4 ”lines”: [
5 {”id”: 0, ”x”: 0, ”y”: 0},
6 {”id”: 1, ”x”: 1, ”y”: 2},
7 ],
8 ”points”: [
9 {”id”: 125, ”x”: 0.33, ”y”: 0.67},

10 {”id”: 5, ”x”: 0.67, ”y”: 1.33},
11 ],
12 ”tooltip”: {
13 ”ExampleKey”: ”ExampleValue”,
14 },
15 },
16 {
17 ”lines”: [
18 {”x”: −1, ”y”: 0},
19 {”x”: 2, ”y”: 5},
20 ],
21 ”tooltip”: {},
22 },
23 ],
24 }

5.3. Web Application
The web application is the interface for the user and the part the user interacts with. A screenshot
of our web application is shown in Figure 5.2. The features we implemented besides drawing the
schematic representation can also clearly be seen. One of these features is highlighting and dis-
playing a tooltip of a polyline when the user hovers over one with their cursor. This gives additional
information about the track as described in Section 5.2.3. In this screenshot the junctions on this
track and track type are displayed. Labels for assets are also displayed in the application, in this
example the id’s from the input data for the signals. Furthermore in the right upper corner there is
a dropdown where the user can choose which schema needs to be shown.
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Figure 5.2: Screenshot of the web application

5.4. Algorithms
In this section, some remarks are made that occurred during the implementation of each algorithm
previously mentioned in Section 4.2.

5.4.1. Transformer
Location Matching
The input for the transformer is a dataset consisting of objects mapped to real-world locations, in
GeoJSON format (Section 5.2.1). We created the first implementation using a hash-map. For every
location as given by tracks and junctions, we did the following:

1. Round the longitude and latitude on some precision (to handle input data errors);

2. Calculate a hash of the rounded longitude-latitude combination;

3. Create a hash-map where the key is the output of step 2 and the value is a list of objects that
match to this.

The precision factor as described in step 1 was difficult to decide. Because rounding is used, this
factor can only be in multitudes of 10. Another issue was that locations that may be very close in the
real-world, but not matched through this algorithm as rounding would put the locations on different
sides of the boundary. For example: a location with latitude, longitude (0.4999, 1) gets a completely
different hash value than the location (0.5, 1) but they are still very close in the real world. This
resulted in a lot of mismatches.
Therefore we decided on building another implementation which uses bounding boxes around the
locations:

1. Add a small number 𝑛 to the longitude and latitude of each location to create a bounding box.
For example, the location (1,1) would result in a bounding box from (1−𝑛, 1−𝑛) to (1+𝑛, 1+𝑛).

2. Create a key-value store. For each location, try if the location lies in a bounding box. If it does,
add it to the store with bounding box as key and a list of locations as value.

3. All locations within the same bounding box are matched.

The downside of this algorithm is that it requires larger time complexity, namely 𝑛ኼ with 𝑛 the
amount of locations. But the outcome was better and the real running time was feasible.
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Crossings
Crossings are a complex type of junction which caused a number of challenges during the imple-
mentation. Crossings appear in two different forms in the railroad context, these types of crossings
are defined in Section 2.4.3.

The first type of crossing we implement is the full slip switch. Which, in our implementation, be-
haves the same as a single slip switch. An example of this type of crossing can be seen in Figure 5.3.
In this type of crossing four different track segments are linked to the crossing and opposite track
segments need to be determined in order to calculate the track type. Since a crossing is defined by
five coordinates (the centre and the four endpoints), the two coordinates which form a straight line
with the centre coordinate need to be determined. Then when a track is linked to the crossing, the
track is added to the correct track pair corresponding with the coordinate pairs determined previ-
ously.

a

c

d

b

Figure 5.3: Full slip, with track pairs (a,b) and (c,d)

The other type of crossing we implemented, the plain crossing, is only implemented separately for
double crossover switches. This followed from the input data we received, where plain crossings
only occur in these double cross switches. All other crossings are the full slip variant. In order to
correctly visualise the double crossover switches, two tracks are created linking the correct single
switches. An example is shown in Figure 5.4 where tracks 𝑎 and 𝑏 are created from a crossing. This
can be implemented because in double crossover junctions the interconnecting tracks are always
diverging, and will therefore not be an issue when determining track types.

a b

Figure 5.4: Double crossover junction

5.4.2. Linear Referencing
In linear referencing, polylines that consist of junctions are translated and rotated. Whenever a junc-
tion is transformed, a new junction would be returned with a new location. A problem that occurred
was that the id of the old junction was not set to the new junction. This would mean that a new id
was generated every time a junction is transformed. We kept these ids for referencing purposes,
and thus, the reference would be lost.

Another problem that occurred was during the transformation of a junction. Its super-type, the
SchemaCoords, was returned. This had the effect of losing type information, like SingleSwitch, Stop
or Crossing. This information was needed later in the algorithm and also for debug purposes.
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5.4.3. Straight Lines
In order to correctly draw the schematic representation the application needs to determine which
tracks are straight tracks and which tracks diverge from straight tracks. In Section 4.2.3 we defined
an algorithm capable of determining these track types. For single switches and stops this was
straight forward to implement. However, full slip crossings as shown in Figure 5.3, needed a few
additional steps to determine which track pair is the straight line. This was caused by the fact that
the type of a track linked to a full slip crossing could only be determined once all four tracks are
linked to the full slip crossing.

5.4.4. Order of Execution Changes
In our implementation, we switched the order in which the linear referencing and straight line algo-
rithms are executed. The straight line algorithm splits straight lines from divergent tracks. If linear
referencing is done after obtaining straight lines, both straight lines and divergent tracks would have
to be linearly referenced separately.

5.4.5. Vertical Ordering
A problem that can occur in vertical ordering is when lines have a circular relation. For example line
A is above B and B above C, but C above A. Kahn’s algorithm comes to a halt when there are cycles
in the graph, so they need to be resolved. During each iteration of Kahn’s algorithm, just before it
would halt due to cycles, we check for cycles. If they exist we discard conflicting edges until there
are no more cycles. This ensures that the algorithm always returns a result and we can always get
vertically order of the straight lines.

5.4.6. Divergent Tracks
An issue we came across was a mismatch between a junction location, and a track source or target
location. It appeared that while junction locations were updated during previous steps in our appli-
cation, the track source or target locations did not. We traced this problem back to how location
updating is handled. This was due to the data structures of intermediate results of the algorithms
not being clearly defined. It regularly occurred that a update location of a junction was stored in the
copy of that junction. In the copy process, the tracks property of the new junction gets a reference
to the tracks of the old junction. This track list, however, only holds a track that has a reference to
the old junction and not the new one. This became a problem, because we were working with tracks
instead of a polyline in this step of the algorithm.
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Testing

Testing is a vital part of software development, since it forms a guarantee that the application is
working as expected. It assists in reaching a maintainable codebase by designing for testability.
Furthermore testing is a form of self documenting code, since the expected behaviour of each com-
ponent is defined in the tests.

To make sure the code works in a clean working environment we make use of Docker1, which exactly
describes the environment in which the code should run.

6.1. Test Driven Development
We apply the Test Driven Development (TDD) methodology. The TDDmethodology defines that tests
should be written before the application logic it tests. By applying this method each components
behaviour is exactly defined before the is implemented, which makes sure the implemented com-
ponent works exactly as expected. It also provides a strong bias towards writing loosely coupled
testable code, which improves the overall code quality and maintainability.

6.2. Testing Requirements
We define the following set of requirements that our code should adhere to.

• Code coverage from unit tests must always be above 80%.

• Each new feature should increase overall code coverage.

• Every component should be responsible for a single piece of functionality.

• The code style should be proper and readable.

• The functionality of the code should be well documented.

• All tests must pass, there must be a single point of truth for this purpose.

6.3. Tools
To meet the defined testing requirements we use a set of tools, which verify that the code lives up
to the standards.
1https://docker.com
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6.3.1. Unit Testing
Unit tests form the foundation for testing the code we write by making sure that each individual
component works as expected. The unit tests are also the source for the coverage statistics we use.
We use PyTest2 and unittest3 for writing and running tests written in Python. Jest4 is used for writing
tests in JavaScript.
Unit tests help us with Test Driven Development. They allow for creating a concrete description
of the functionalities of components beforehand and their Definition of Done. They create a clear
distinction in design and implementation, such that these can be done independently. For example,
developer A can describe the required functionalities of class X through a Unit test and developer B
can write an implementation to make this test pass.

6.3.2. Static Analysis
Static analysis tools analyse written code and give feedback without compiling or executing the
code. We check for the following code smells with static analysis tools.

• Pycodestyle & ESLint are used make sure the code style is uniform and lives up to the language
standards, these tools are also utilised to verify that class and method size do not exceed a
defined maximum, which encourages the single responsibility requirement.

• pydocstyle is used to make sure each component is properly documented.

• MyPy5 makes sure type errors are reduced to a minimum.

6.3.3. Pull Requests
Wemake extensive use of pull request so that all the code is written undergoes manual review by the
other team members. This reduces the chance of having errors in the master branch and improves
the code quality. Each pull request is also checked against our requirements, making sure the newly
implemented code lives up to our standards.

6.3.4. Continuous Integration & Continuous Deployment
Travis CI6 is the service we use to check each Pull Request against our requirements. Travis CI has
the following responsibilities:

• Building and compiling for continuous deployment, so that the product can always be viewed
in a web browser, without extra manual work. This is done using a customised Docker7 image.

• Running the Python and JavaScript tests and check whether they all pass.

• Running static analysis tools and check whether they comply to the requirements as described
in Section 6.3.2.

• Generating code coverage reports and sharing the final result with the developers. The cov-
erage report and trend-line can be viewed on Codecov8, Codecov is also responsible for the
check that the code coverage is above 80% and should only increase.

When all checks have passed and Travis is building the master branch a working copy is deployed
to Heroku 9

2https://pytest.org/
3https://docs.python.org/3/library/unittest.html
4https://facebook.github.io/jest/
5http://mypy-lang.org/
6https://travis-ci.com/
7https://www.docker.com/
8https://codecov.io/
9https://heroku.com/
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6.4. End-to-end Testing
End-to-end tests are run by NightwatchJS10, these are utilised to check if the final product works
as defined. We do not gather coverage statistics from the end-to-end tests since these tests are
used as a smoke test to verify the application works as expected instead checking whether each
individual component is properly implemented.

10http://nightwatchjs.org

http://nightwatchjs.org




7
Evaluation

This chapter is an evaluation of the results as output from our algorithms. It contains comparisons
of the output schematic diagrams of our application to the current manually drawn schematics, to
inspect the differences in terms of aesthetics criteria. We also compare the output to the geograph-
ical input data to see whether the output is topologically correct. Since our application is restricted
to railway networks as described in Section 2.2, we compare results of a number of railway networks
in the Netherlands.

Sneek-IJlst

Figure 7.1: Sneek-IJlst: original input

This railway network is the simplest of all networks we ran experiments with. It is a network in the
north of the Netherlands. This network contains a parallel track and a diverging track. The output
after running the algorithm on this dataset is shown in 7.2.

Figure 7.2: Sneek-IJlst: final output
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Figure 7.3: Sneek-IJlst: manually drawn schematic diagram

The baseline of this dataset has a direction from right to left, referring to Figure 7.1. For this reason,
the output as seen in Fig. 7.2 has the elements in the opposite direction. This output has a correct
topology. Both diverging tracks are at the start image on the opposite sides of the main straight
track, which is reflected in the final output. The signal is also referenced to the correct track. Fig. 7.3
shows a manually drawn schematic diagram given to us by our client Moxio. The tracks in this
drawing shows similarity to the tracks as output from our algorithm.

Kersenboogerd-Enkhuizen
Kersenboogerd-Enkhuizen is a railway network in the north-west of the Netherlands. It is not a very
complex dataset, however it is more complex than the Sneek-IJlst dataset.

Figure 7.4: Enkhuizen: geographical input

Figure 7.4 shows the original geographical data for the Enkhuizen area. The signals are not shown
here as they would take up too much space to all show them at the same time.

Figure 7.5: Kersenboogerd-Enkhuizen: vertically ordered lines

Figure 7.5 shows the all the straight lines after applying the vertical ordering algorithm.
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Figure 7.6: Kersenboogerd-Enkhuizen: final output

Figure 7.7: Hoogkarspel-Enkhuizen: manually drawn schematic diagram

Figure 7.7 shows a manually drawn schematic diagram given to us by our client Moxio.
The final output of our application has the correct topology and is nearly the same as the manually
drawn schematic diagram. The only remark for this output is the placing of signals: Some signals
were not matched as they are too far away from tracks. This could be fixed by increasing the
tolerance parameter for matching assets to tracks. However this causes false positives to appear,
meaning there would be signals shown in the output which are matched to the wrong track compared
to the input.

Enschede station
This dataset contains information about a railway network in the Enschede area, which is in the east
of the Netherlands. This dataset contains railway signals, in the form of points in latitude/longitude.
These are referenced to railway tracks in the right order. As output, the signals are spread uni-
formly over the straight tracks. The input and output of this is shown in Figure 7.8 and Figure 7.9,
correspondingly.
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Figure 7.8: Enschede: railway traffic signals and tracks output from Transformer

Figure 7.9: Enschede: railway traffic signals after referencing to tracks

Figure 7.10: Final output of Enschede dataset
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Figure 7.11: Manually drawn schematic visualisation of Enschede provided by Moxio

Figure 7.10 shows the final output for the Enschede area. When compared to Figure 7.11, they show
similarities. However, there are differences which can primarily be attributed to two things. The first
is that in our application straight tracks are always drawn horizontally. While in the manually drawn
schematic this is not necessarily the case. For example the straight track at the switch 1019 in
the provided schematic diagram is drawn diagonally. Furthermore, there are some issues with false
positives in terms of crossings. Some straight-divergent and divergent-straight tracks are drawn
using our own set of heuristics as described in Section 4.2.8 which create bends in tracks. The
placement of these bends in these tracks can create unexpected crossings.

Vlissingen-Arnemuiden
The railway network Vlissingen-Arnemuiden is located in the south-western area of the Netherlands.
It is simpler than the Enschede dataset in terms of complexity. However it contains many full-slip
crossings, of which the track types are difficult to determine.

Figure 7.12: Vlissingen: geographical input

Figure 7.13: Vlissingen-Arnemuiden: final output

The final output as shown in Figure 7.14 shows difficulties with the ordering of tracks. This is due
to multiple crossings existing in the dataset. In the vertical ordering algorithm, only the divergent
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directions of single-switches are taken into account. This makes the ordering of tracks connected to
crossings difficult to determine.

Kijfhoek
Kijfhoek is a complex railway network south of Rotterdam, the Netherlands. This dataset has ap-
proximately ten times more tracks and junctions than the Enschede dataset. Due to it being a more
complex dataset and our algorithm not being optimised for performance, calculating the output
takes infeasible time.
Another issue is that our algorithm does not handle multiple baselines, which this dataset has. More-
over, flyovers and tunnels are supported by our algorithms. For this reason, we can not give a clear
output.

Figure 7.14: Kijfhoek: geographical input
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Discussion

In this chapter we reflect on the process of our project. We also present the limitations of our
application and what future work can be done to improve it. Furthermore, the ethical implications of
our work are briefly discussed.

8.1. Process Reflection
In this section we reflect back on the three phases of our project to see if we followed our Project
Plan correctly

Research phase
The project started with a research phase where we spent the first two weeks doing literature review.
This time was useful to our project as our subject is rooted to theory. It was not easy to decide what
to explore while there was no clear idea of the end product. We started with broad exploration about
railway networks and narrowed it down to schema generation as the research phase progressed. At
the end everyone had a general idea of the algorithm we would formulate.

Implementation phase
At the start we split up the algorithm in parts which we assigned to individual team members. We
had one person responsible for the algorithm design, while the others were implementing the al-
gorithm. This led to some confusion about some steps in the algorithm not properly connecting.
The output of the linear referencing for example could not be used for vertical ordering. Because
of inconsistencies like this we had to refactor code early on. While this lead to higher quality code,
it was time-consuming. We would not have had this problem if we sat together at the start of the
project and designed the implementation together instead of working on our parts separately. More
specifically, we could have defined interfaces for the algorithms mentioned in Section 4.2.

Our weekly sprints worked well in conjunction with our client meetings. As the sprint ended on
Monday we had a meeting with our client immediately afterwards to discuss our progress and what
we would work on the next week.

Continuous Integration and Deployment
The continuous integration and deployment pipeline proved to be really helpful in maintaining code
quality and providing a single source of truth for the status of the project. However we experienced
some issues during our project. First of all in the first week of the project when we were setting up
the pipeline Travis CI had a day downtime which hindered our progress. Another annoyance we had
with Travis CI was that we did not have parallel builds, which sometimes caused the queue to build
up and limit our efficiency. Furthermore Heroku changed it’s API halfway during our project which
broke the deployment process. Therefor the live application was outdated for approximately a week
which was unfortunate for the client as they did not see much progression during that time.
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Testing
Although we tested our application extensively, some unexpected behaviour appeared when testing
with real datasets. This was caused primarily by the fact that our application focuses on visual
output, and while we test that our aesthetic criteria as described in Section 2.4.1 are met. It does
not guarantee that the visual output is perfect.

Report phase
We documented our progress during the project. Before a feature was considered done it would had
to be documented in the report. This made the Report phase go much smoother as we just needed
to connect the documentation into a coherent report. The unfortunate situation of the report phase
is that we needed to work on the report and the application at the same time. This led us to properly
sort out our priorities as we had deadlines for the report and the application in the same week.

8.2. Limitations
The final product has some shortcomings in comparison to the originally planned product. The
following three requirements are not satisfied due to time constraints and complexity underestima-
tions. The last requirement was declared as low priority, but should have been a higher priority.

Filters
The "should-have" requirement: "The application should have a set of filters that can be enabled/dis-
abled to obtain a different view of the output." is not satisfied. This is a low priority functionality to
our client.

Interactive methods
The "could-have" requirement: "The application could have interactive methods for doing calcula-
tions and visualisations of algorithms applied to the output" is not satisfied. This is a low priority
functionality as well to our client.

Custom assets
The "could-have" requirement: "It could be possible to submit a custom asset set using the web
application, such that custom assets can be connected to nodes" is not satisfied. This was wrongly
placed as a low priority functionality to our client, and due to time constraints, we could not finish it.

8.3. Future Work
In this section we present recommendations for improving the application, both functionally and
structurally.

Horizontal and Vertical Ordering Improvements
Our implementation of horizontal and vertical ordering is not without flaws. There are situations
where tracks and junctions are not placed in the correct location in the output and introduce topology
errors. An example of this can be seen in the output of the Enschede dataset Chapter 7. Future
research can be conducted towards improving these algorithms.

Multiple Baselines
During the project, the client informed us that many railway networks contain multiple baselines.
While our algorithm can only handle a network with a single baseline, we have an idea on how to
handle multiple baselines.

It is possible to extend the transformer to assign all objects in the network to a baseline. When
there are multiple baselines all objects are assigned to the baseline closest to them by distance.
When all objects are assigned, the algorithm can be run multiple times, once for each baseline. This
will generate separate schematics which can be overlapped based on the relations between the
baselines.
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Circular Baselines
It is theoretically possible for a railway network to have a circular baseline which connects to itself.
Our algorithm is not prepared to handle this as it is based on the assumption that a network has
a main linear direction. This is not the case when the baseline is circular. This can be solved by
splitting the circular baselines in multiple linear baselines and applying the solution proposed in
Section 8.3.

Flyovers and Tunnels
Flyovers and tunnels are types of crossings we currently do not support. These tracks that cross
the same location but at a different height in the real-world. This is currently not something our
transformer recognises as it only looks at the endpoint of tracks, and does not check for crossings in
the middle of tracks. Because it is not possible to switch tracks at flyovers and tunnels, they do not
change the topology of the network. It would however be useful to have an indication in the final
schema of where these flyovers or tunnels are located by a special link between the two tracks.

Complex Assets
Our current application supports signals, which are represented as single locations using small cir-
cles. The asset matching algorithm can be extended to support assets which are more complex than
single points.
An example of a complex asset is a railway platform. Platforms are polygons, and should be shown
like such in the output. Supporting platforms would require assets to be referenced to multiple
tracks at the same time. This is because platforms can serve one or two tracks. Currently, assets
can only be referenced to single tracks.

8.4. Ethics
Our application is build as a proof-of-concept to reduce the amount of work a technical drafter has
to perform. It has no risks and can not be used maliciously.





9
Conclusion

During the course of this project, we explored the possibilities for automatically generating a schematic
diagram of railway networks. We improved on an existing algorithm presented in the paper Auto-
matic generation of schematic diagrams of the dutch railway network [1]. Because no implemen-
tation was publicly available, we had to implement the algorithm from scratch. We made a major
improvement with regards to (Brands, 2016) in the vertical ordering of lines as described in Sec-
tion 4.2.6. We developed a web-application that allows for uploading geographical data which gets
converted into a schematic diagram that adheres to our aesthetic requirements.

We experienced that many railway networks contain multiple baselines. Our algorithm currently
does not support multiple baselines but we outlined a possible solution in Section 8.3. Furthermore
due to limited time we were not able to properly display relevant assets (e.g. platforms, stations, fly-
overs). The vertical ordering algorithm is vulnerable when the number of parallel tracks gets large.
A mistake in the vertical ordering can invalidate the aesthetics requirements.

Our application works as a proof-of-concept. It demonstrates that our algorithm is effective and
can be implemented efficiently. If Moxio decides to implement our algorithm they can refer to the
design chapter of this report.

Based on our results we conclude that it is possible to automatically generate a schematic repre-
sentation from a geographical network while ensuring that its properties are correctly represented,
however our implementation is limited to small datasets and minimal assets.
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A
Infosheet

General Information
Title: Schematic visualisation of geographic networks
Client: Moxio
Presentation date: 4th of July, 2018

Description
The analysis of geographical networks in its current form is inefficient. Network analysis becomes
much simpler when an analyst uses a schematic representation of a network. In a schematic rep-
resentation only relevant information is shown. A large drawback of schematic representations is
that they are made manually. This is a cumbersome process, and when a change to the network is
made, the drawing needs to be updated as well.
The main challenge of our project is to build a web application that automates the process of drawing
schematics railway networks. During the research phase, we found a Master’s Thesis which explains
a way of modelling railway tracks and junctions and attempts to draw schematics. We improve upon
the findings of this thesis.
We worked in weekly sprints. By the end of each week, we presented the changes to the client
and received feedback. At the start of every sprint, we created a sprint plan. In this sprint plan,
we defined the division of tasks and responsibilities, as well as their priority levels. An unexpected
challenge was that we were too optimistic in our planning. We overcame it by being discussing the
difficulty of tasks with the client to get a more realistic assessment of the workload.
We have created a product that is able to create schematics from geographical railway data. During
development, we wrote extensive unit tests and integration tests. Additionally, we created end-
to-end tests and presented our schematics to the client at the end of every sprint and received
feedback. The application serves as a proof-of-concept to our client and will not be integrated on its
own to their existing services.

Members
• I. Dijcks: I was responsible for designing the algorithms and in the final stages the report
documentation.

• R. Heddes: In the first half of the project I was mainly concerned with building an interactive
front end and enabling continuous integration and deployment, I later helped with implement-
ing transformer and schema generation algorithms

• T. Wissel: My contributions mainly consisted of calculating and displaying assets, and building
the data transformer.

• K. Yilmaz: My contributions were mainly implementing schema generation algorithms.

Contact Information
Client: H. van der Kolk, Moxio
Coach: S. Roy, PhD student SERG, TU Delft
Project: I. Dijcks. Email: ishadijcks@gmail.com
The final report for this project can be found at: http://repository.tudelft.nl
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B
SIG feedback

In this appendix we discuss the feedback gained from the Software Improvement Group and reflect
on their suggestions.

B.1. First submission
Our first submission was at the end of sprint 4. Most of our algorithm worked at this time although
not all functionality was connected.

B.1.1. Feedback
De code van het systeem scoort 3.5 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de
code marktgemiddeld onderhoudbaar is. We zien Unit Size en Unit Complexity vanwege de lagere
deelscores als mogelijke verbeterpunten.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het op-
splitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te
begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen de langere methodes
in dit systeem, zoals bijvoorbeeld, zijn aparte stukken functionaliteit te vinden welke ge-refactored
kunnen worden naar aparte methodes.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemiddeld complex
is. Het opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makke-
lijker te begrijpen, makkelijker te testen is en daardoor eenvoudiger te onderhouden wordt. Door elk
van de functionaliteiten onder te brengen in een aparte methode met een descriptieve naam kan
elk van de onderdelen apart getest worden en wordt de overall flow van de methode makkelijker te
begrijpen.

In jullie project gaan de twee vaak samen. Zo is TrackFactory.calculate_tracks() een vrij groot algo-
ritme dat in zijn geheel in één methode is geïmplementeerd. Dat maakt het op termijn moeilijk om
de methode aan te passen, want door de grote scope is nu moeilijk te overzien wat een aanpass-
ing voor gevolgen gaat hebben. Voor _calculate_target_type in track.py geldt eigenlijk hetzelfde.
Probeer meer abstractie in dit soort methodes aan te brengen, zodat de code onderhoudbaar blijft
op het moment dat de hoeveelheid functionaliteit gaat toenemen.

Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is
sterk aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit automatische
tests gedefinieerd te hebben om ervoor te zorgen dat eventuele aanpassingen niet voor ongewenst
gedrag zorgen.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest
van de ontwikkelfase te realiseren.

Erratum
We gebruiken onze tool voor automatische herkenning van testcode. Dat gaat blijkbaar niet voor
alle frameworks goed, na handmatige controle zie ik nu dat jullie inderdaad een behoorlijk aantal
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tests hebben. Beschouw mijn opmerking over testcode daarom als niet verzonden.

B.1.2. Discussion
To reduce our Unit Complexity we refactored the calculate_track() method in TrackFactory and the
_calculate_target_type method in Track by splitting them into multiple functions. This makes the
methods more readable and easier to test. To make sure we will not add any more smells to our
codebase, we have enabled the bettercodehub plugin to our Continuous Integration. If new code
contains a bad practice we will refactor it before we add it to our codebase.



C
Project description

The project description as given by our client, Moxio:

“Moxio is an innovative software company in Delft based near the TU Delft campus. We create high-
level software for managing, visualizing and validating information for large infrastructural projects.
For example on the Spoorzone Delft Tunnel. We’re a team of around 20 people, mostly with a TU
Delft background. Clients include [...] (some large companies that work with geometric data).

Infrastructural projects generate a lot of data. This information is generally linked to a geographical
representation which you can display on a map. Since infrastructure is usually about networks (rail,
road, water, energy, telecommunications) we want to be able to create a schematic representation
of these networks so we can convert data into geographical and schematic visualizations. We want
to be able to switch between graphic representations such as such as logical and physical display
and create flow charts.

In an interactive version of the schematic visualization we want to be able to add information to
views and manipulate these views. Manipulating views is about adding additional assets, enlarging
certain areas, selecting network-parts and generating a new schematic result as a clear and uncom-
plicated visualization. Currently available graph software and libraries are not extensible enough
and do not fit real world representations.

One of the items is that the schematic representation should link to the real world representation of
the layout and should be able to render crossings and multiple levels.
We’re looking for enthusiastic students with skills in graphs, visualization techniques and algorithms
who want to tackle this project.
We develop products and our RailNEXT platform, using an advanced framework of JavaScript and
PHP with specific parts in C# and java."
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