

Delft University of Technology

Learning behavioral fingerprints from Netflows using Timed Automata

Pellegrino, Nino; Lin, Qin; Hammerschmidt, Christian; Verwer, Sicco

DOI
10.23919/INM.2017.7987293
Publication date
2017
Document Version
Final published version
Published in
2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)

Citation (APA)
Pellegrino, N., Lin, Q., Hammerschmidt, C., & Verwer, S. (2017). Learning behavioral fingerprints from
Netflows using Timed Automata. In P. Chemouil, E. Monteiro, M. Charalambides, E. Madeira, P. Simoes, S.
Secci, L. P. Gaspary, & C. R. P. dos Santos (Eds.), 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM) (pp. 308-316). IEEE. https://doi.org/10.23919/INM.2017.7987293
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/INM.2017.7987293
https://doi.org/10.23919/INM.2017.7987293

Learning Behavioral Fingerprints From Netflows
Using Timed Automata

Gaetano Pellegrino∗, Qin Lin†, Christian Hammerschmidt‡ and Sicco Verwer§
∗†§Delft University of Technology, Delft, the Netherlands

‡University of Luxembourg, Luxembourg
Email: ∗g.pellegrino@tudelft.nl, †q.lin@tudelft.nl, ‡christian.hammerschmidt@uni.lu, §s.e.verwer@tudelft.nl

Abstract—We present a novel way to detect infected hosts and
identify malware in networks by analyzing network communica-
tion statistics with state-of-the-art automata learning algorithms.
The automata encode patterns of short-term interactions in
known malicious hosts, and are used to obtain small but effective
fingerprints of machine behavior. We showcase the effectiveness
of our system, named BASTA1 (Behavioral Analytics System
using Timed Automata), on a public dataset containing Netflow
traces of real-world botnet malware. Compared to a deep packet
inspection of communication content, Netflows are easy and
cheap to collect and analyze, and preserve a greater degree of
privacy. Even though the high level of abstraction in Netflow data
makes it more difficult to utilize it, BASTA shows very impressive
results achieving high accuracy in several settings while returning
few false positives. It is also capable of detecting infections of
previously unseen malware.

I. INTRODUCTION

Botnets pose a significant threat to cyber-security. Bots are
zombie computers, remotely controlled by a malicious entity,
and are used for attacks, spam, phishing and information
exfiltration [1], [2]. Despite recent research, detecting and
countering botnets is still considered an unsolved problem [3].
In Feily’s survey [4], three categories of botnet detection meth-
ods are distinguished: signature-based [5], anomaly-based [6]
and DNS-based [7], [8]. In signature-based detection, some
characteristic like hashes are calculated, either on the malware
binary, or from resource usage or from packet content capture.
These characteristics serve as signatures used to identify the
same malware or packets in the wild. Botnet developers
counter this detection using techniques such as code obfusca-
tion, encryption, and polymorphic code [9], makings signature-
based detection increasingly ineffective. DNS-based detection
techniques rely on anomalies in the DNS traffic, caused by
the infected hosts’ need to locate and communicate with a
command and control server, which is usually hosted by a
Dynamic DNS provider. This type of detection often wrongly
considers hosts as malicious, e.g., due to fake-domains and
reconnaissance poisoning [4]. These false positives make
DNS-based techniques fairly unreliable. The last category,
anomaly-based detection methods are often behavior-based
and monitor the run-time execution behavior of malware,
which is much more difficult to conceal [10]. Consequently,
there has been a large amount of research devoted to the
development of effective behavior-based malware detection

1Meaning “enough” in Italian.

and analysis tools, see, e.g. [11], [12]. Behavior-based malware
detection or analysis applies machine learning techniques in
order to automatically learn models from data such as network
traffic. In state machine learning, an instance of generative
learning, is of particular interest: it can detect a botnet in
new data, but its generative property also allows to infer and
analyze the logical structure underlying the observed traffic.
Depending on the data, in some cases it is even possible to
infer a state machine diagram communication protocol used
by the botnet, see [13].

In this paper, we introduce BASTA (Behavioral Analytics
System using Timed Automata), which uses probabilistic
deterministic real-time automata (PDRTAs) to obtain identity
fingerprints of hosts from timed network traffic streams. It
is a behavior-based system, and learns models from Netflow
traces instead of full packet contents. Packet content is typi-
cally used as information source to identify the basic event
types/messages used in communication protocols. Netflows
only contain information on the sources and targets of flows,
the amount of data transmitted, the network protocol used, and
the timing of the flows. This makes it much harder to infer a
botnet’s communication protocol. If successful, however, this
approach opens up the road to many new applications of this
technology because Netflow traces are widely available, while
access to the content of messages is typically restricted due to
proprietary or privacy related issues.

BASTA models specify behavior over timed events. We are
especially interested in this timing information because it can
be very important for determining network traffic behavior
[14], [15]. In addition, PDRTAs can be learned efficiently
from unlabeled data [16], making them an ideal candidate
for modeling network traffic behavior. The development of
BASTA is driven by the practical need of network adminis-
trators that run a wide network composed of many hosts that
require monitoring. A common action taken after identifying
an infection is a hard reset of the given machines in order to
restore it to a trusted state. This operation is often an expensive
one. In contrast to most Intrusion Detection Systems (IDS)
that label individual packets/flows as suspicious, BASTA is
focused on ranking hosts using an indicator of suspiciousness
based on all of the outgoing and incoming flows. This indica-
tor models the overlap in communication behavior between
a given candidate host and a known infected machine. A
low indicator means that frequencies of behavioral patterns

978-3-901882-89-0 @2017 IFIP 308

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

observed in the entire set of flow records match the expected
frequencies obtained from a known infected machine. A high
indicator means that these frequencies do not match, and thus
that the traffic shows no sign of this infection. Although we
initially developed BASTA in order to detect such known
infections, we demonstrate in this paper that many of the
patterns that it learns from Netflow records are generic: initial
results demonstrate that BASTA is capable of detecting new
infections from unknown malware.

Our contribution is BASTA, a system encompassing:

• a technique to learn PDRTAs from Netflow data;
• a formal definition of behavioral fingerprints, and meth-

ods to obtain fingerprints for malware detection;
• two methods for monitoring PDRTA fingerprints in new

Netflow data: detecting occurrences of suspicious states
(called fingerprint-based) and comparing observed fre-
quencies with expected frequencies (called error-based);

• a method to use fingerprints as an indicator to rank hosts
according to their suspiciousness;

• an empirical study on effectively using fingerprints gener-
ated from PDRTAs on botnet data for detecting infections
in real data and synthetic data using a public dataset.

In our empirical study on publicly available Netflow data,
we obtain a high detecting rate, catching 100% of infected
hosts in some scenarios, while maintaining a low false positive
rate. These results are surprising, considering the low detection
rates that have been reported using existing techniques on the
same data [17]. Although the obtained results are not directly
comparable due to the fact that these existing methods try
to label every individual flow, our results do indicate that
assigning labels to hosts rather than flows is a very promising
direction for botnet detection. In addition, they show that
timed automata are very effective tools for capturing the
behavioral patterns in all of this data. In noised settings, the
default settings used by BASTA can produce too many false
positives to be used by network administrators directly. Since
BASTA is a ranker of hosts, however, an admin can opt to
only inspect the most suspicious ones, i.e., the hosts that
are most likely malicious. Furthermore, since BASTA is a
machine learning tool geared toward learning useful models
from network traffic, it can be used as a replacement of
standard machine learning methods used by malware detection
frameworks such as for instance DISCLOSURE [18]. When
using BASTA as a base detection system, such frameworks
will continue to make use of many other tricks such as filters
on IP range and port usage in order to further reduce the
number of false alarms.

The remainder of this paper is organized as follows. We
discuss related work and provide an example use-case as
motivation for BASTA in Section II. We introduce PDRTAs
in Section III together with a brief discussion of the learning
algorithm for identifying PDRTA from positive data. Sec-
tion IV introduces our infection fingerprinting system based
on PDRTAs, and Section V addresses its evaluation on real
Netflow data samples. Section VI presents our conclusions.

II. RELATED WORK

Previous work on botnets ranges from tracking and iden-
tification to infiltration and take-overs of botnets. Tracking
using behavioral models can make use of a variety of data.
Recently, Barabosch [19] observed behavior of botnet malware
on a system level, including CPU and memory usage as
well as kernel events and processes. In very related work,
Babić et al. showed how to capture and analyze malware
behavior observable in system call dependency graphs as tree
automata [20]. If a physical, or at least system level access to
a botnet host is not available, it might be possible to interact
with an infected host. A prime example of such work was
by Cho et al. [13], who inferred a Mealy machine model
of the C&C communication protocol of the MegaD botnet
through interaction with a C&C server. In addition, they
demonstrated how formal analysis can be applied to the in-
ferred model for botnet defense. If neither system level access
nor direct interaction is possible, network communication can
be observed. Instead of relying on analyzing packet content,
summary statistics of communication can be used. Cisco’s
Netflow protocol has attracted a wide interest in academia as
well as industry and led to applications ranging from network
monitoring and measurement to application detection and
intrusion detection [3]. A very related work is [18], where the
authors described a complete, Netflow based, botnet detection
framework called DISCLOSURE. It was composed by several
different modules, including a detection module based on
Random Forest, filters that remove uninteresting traffic, and
a false positive reduction module. BASTA may be thought of
as an alternative to the detection module that is geared towards
modeling network traffic. Reverse engineering of protocols
from passively collected network traces can be found in the
work of Comparetti et al [21], who presented the Prospex tool
for learning deterministic finite state automaton (DFA) models.
Leita et al. developed ScriptGen for the automatic construction
of scripts for HoneyD [22] based on learning simple finite state
machines from network traces. These scripts were then used to
emulate services and fool attackers into believing they connect
to genuine ones. Wang et al. [23] and Krueger et al. [24] learnt
probabilistic variants of state machines (Markov chains and
hidden Markov models (HMM) respectively) from network
traces, which can be visualized to aid reverse engineering and
used to detect anomalies. In [25], it was shown how HMMs
learned from network packet traces can be used to identify
distributed denial of service attacks. Beyond analyzing the
individual flows of network traffic, communication graphs can
be extracted from origin and destination fields of Netflows
and analyzed by themselves. In Nagaraja [26], a topology was
extracted from observed botnet traffic and a graph-theoretic
technique was applied to the communication graphs to extract
bots communicating peer-to-peer. In [27], properties of the
communication graphs are analyzed and used to attack peer-
to-peer botnets.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 309

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

III. STATE MACHINE LEARNING

State machines are key models for the design and analysis of
computer systems [28]. Learning such machines from software
data dates back to 1998 [29]. The formal problem of learning
automata from data has been studied much longer [30]–[32].
It is one of the best studied problems in grammatical inference
and many learning algorithms have been developed [33]. Some
of these have been used for malware detection and analysis
[13], [21]–[24]. These algorithms require discrete events as
input. To obtain events from network packets or system calls
generated by malware, either the messages need to be reverse
engineered, e.g. using [34], or clustered into abstract events,
see, e.g., [23], [24]. The resulting symbolic sequences are
then provided to a state machine learner that will learn the
behavioral structure underlying these sequences.

A. PDRTAs

PDRTAs are a probabilistic version of Real Time Au-
tomata [35], and they are probabilistic automata that include
guards on the transition timings (inter-event) times. Formally,
the events are modeled by timed strings (a1, t1)(a2, t2) · · ·
(an, tn), where ti denotes the time delay between the occur-
rences of the ith and i−1th events. The PDRTA model defines
a probability distribution over such timed strings, having a
Markov property in the distribution over events, and a semi-
Markov property in the time guard.

Definition 1: A PDRTA is a 4-tuple 〈A, E , T ,H〉, where
• A = 〈Q,Σ,∆, q0〉 is a 4-tuple defining the machine

structure: Q is a finite set of states, Σ is a finite set of
event types (symbols), ∆ is a finite set of transitions, and
q0 ∈ Q is the start state;

• E and T are the event and time probability distributions,
respectively. E : (Q,Σ) → [0, 1] returns the probability
of generating/observing a given event in a given state.
T : (Q,H) → [0, 1] returns the same but for a given
time range [v, v′] ∈ H, where H is a finite set of non-
overlapping intervals in R+.

A transition δ ∈ ∆ in a PDRTA is a tuple 〈q, q′, a, [m,m′]〉,
where q, q′ ∈ Q are the source and target states, a ∈ Σ is a
symbol and [m,m′] is a temporal guard.

Figure 1 illustrates a PDRTA inferred from Netflow data.
On the timed string 〈Q − TCP, 500〉〈TCP, 50〉〈TCP, 200〉,
it goes from state 1, via state 4 and 7, to state 2, its probability
is computed as: 0.28 · 0.21 · 0.59 · 1.0 · 0.86 · 1.0 = 0.03. It
can also represent a distribution over (Σ,H)∗ by adding final
probabilities.

Note that in a PDRTA the states are defined by their event-
time value distributions and their transitions to future states.
These cannot be directly observed in data but have to be
estimated using a learning method. PDRTAs are therefore
similar to a timed variant of the HMM [36].

We learn PDRTAs instead of regular automata or Markov
models because time information is important for characteriz-
ing network traffic. In PDRTAs, the influence of time values
on the string probabilities is equal to that of all the other data

root

state 1
[0.40 0.28 0.06 0.25]
[0.63 0.21 0.11 0.05]

state 2
[0.09 0.22 0.01 0.67]
[1.00 0.00 0.00 0.00]

Q-TCP [171,195]
TCP

state 3
[0.93 0.02 0.02 0.04]
[1.00 0.00 0.00 0.00]

Q-UDP [204,2759]

state 4
[0.04 0.37 0.01 0.59]
[1.00 0.00 0.00 0.00]

Q-TCP [31,153]
Q-TCP [196,max]

state 5
[0.85 0.05 0.02 0.08]
[1.00 0.00 0.00 0.00]

Q-UDP [0,203]

state 6
[0.51 0.17 0.01 0.31]
[1.00 0.00 0.00 0.00]

Q-UDP [2760,max]
UDP

state 8
[0.05 0.55 0.01 0.39]
[1.00 0.00 0.00 0.00]

Q-TCP [0,30]
Q-TCP [154,160]

state 9
[0.06 0.03 0.01 0.90]
[1.00 0.00 0.00 0.00]

Q-TCP [161,170]

Q-TCP
TCP [0,1]

Q-UDP

TCP [2,max]

Q-UDP
UDP

Q-TCP

TCP

Q-UDP

state 7
[0.05 0.08 0.01 0.86]
[1.00 0.00 0.00 0.00]

TCPQ-TCP

Q-TCP

Q-UDP TCP

Q-TCP

Q-UDP

TCP

TCP

TCP

Q-TCP

TCP

Fig. 1. A PDRTA inferred from a sample of malicious Netflow traces in
Scenario 9 of our dataset. States 2, 3, and 9 are spamming states. The botnet
initiates many Quick (short duration) UDP/TCP flows. Edges are labeled with
events and temporal guards. The latter are omitted if they are empty. The states
contain two distributions: one for events, one for time intervals. The 4 event
types in order: Quick UDP, Quick TCP, Other UDP, Other TCP. Breaks-points
of the time intervals are: 485, 981, and 1660 ms.

contained in abstract events. Other types of stateful models
such as Hidden Markov Models or Mealy Machines have been
used for detection purposes [17], [21], but cannot be used
to infer time constraints. We focus on deterministic automata
because identifying non-deterministic automata is harder [37].

B. Learning PDRTAs

We use a recent state machine learning algorithm, RTI+ [16]
to learn malicious behaviors from Netflow data, and then use
these as fingerprints for detection.

Here we briefly review this algorithm. RTI+ is based on
state-merging [38]. An untimed probabilistic state-merging
algorithm starts by building a large tree-shaped automaton
called prefix tree from a sample of input strings. Every state
of this tree can be reached by exactly one untimed string and
therefore encodes exactly the input sample. The algorithm then
greedily merges pairs of states (q, q′) in this tree, forming
a smaller and smaller machine. When the target machine is
deterministic, for every event e ∈ Σ the states reached from q
and q′ have to be merged as well (the determinization process).
By iteratively applying these merges, the algorithm generalizes
over the sample and learns the structure of the target machine
used to generate the sample. The algorithm uses a heuristic
to decide merges and avoids overfitting. In an unsupervised
setting, the merge heuristic is determined using statistics. A
merge between q and q′ is considered good if the future
behavior after reaching q is similar to that after reaching q′,
which can be tested using, e.g., a likelihood-ratio test [16].
This essentially tests the Markov property, i.e., whether future
behavior is independent of being in state q or q′. When these
futures are significantly different, the merge is considered

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)310

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

inconsistent and will not be performed. In addition to state
merges, RTI+ is capable of performing transition splits [16].
In the prefix tree, the temporal guards include all possible
time values. A split of a transition δ = 〈q, q′, a, [m,m′]〉 at
time point t creates two new transitions 〈q, q1, a, [m, t]〉 and
〈q, q2, a, [t+ 1,m′]〉. The target states q1 and q2 are the roots
of two new prefix trees that are reconstructed based on the
input sample. In this way, RTI+ can learn temporal constraints
in addition to the machine structure. For more details such as
pseudo code and complexity analysis, the reader is referred
to [36].

IV. INTRUSION FINGERPRINTING

Blacklists, containing addresses of known malicious hosts
detected over time, are one of the simplest and most common
tools network administrators have and use. From passively
observing hosts on these lists, it is possible to learn behavioral
models for any communication between hosts within the
network under observation (NUO) and a known blacklist entry.

We consider all blacklisted hosts as infected by some
malware. By using models learned with BASTA from such
known infected hosts, we can detect malicious behavior in
communications between either trusted partners, or trusted
partners with an unknown source.

This achieves two equally important goals. Firstly, we can
discover new malicious hosts outside of the NUO, allowing
the network administrator to extend the blacklist by additional
entries. Equally important, we detect potentially infected hosts
within the NUO, effectively using the model as a behavioral
fingerprints generator. We call this use case “Infection Fin-
gerprinting”. In the following, we describe our methodology
for obtaining behavioral fingerprints of infections. Our goal
is to identify a PDRTA from the Netflows coming from a
known infected host, and then to use this model for creating
network-specific behavioral fingerprints. To learn PDRTAs on
Netflow data, it is necessary to convert the data into a set of
timed strings. Such strings are constructed in two steps: first
every Netflow record is mapped to a event-time value pair,
and second the resulting sequence is decomposed into a set
of small subsequences captured at regular and predetermined
time intervals. We then use RTI+ to learn a PDRTA.

A. Netflow Data

Netflows are sequences of packets passing on a given
network link, from a source host to a destination host. As such,
they are univocally defined by the couple (source-address,
destination-address) and characterized by several properties
derived from the aggregation of packet-based features. The
Netflow features we use in our system are listed in Table I.

We use Netflow records instead of packet captures because
these are frequently logged by network operators and much
easier to obtain. Furthermore, they preserve privacy of the
communication: in contrast to network packets, Netflows do
not contain the content or format of messages. The downside
of learning from Netflows is that the learned machines define
behaviors on a high abstraction level. In the following sections,

TABLE I
NETFLOW FEATURES, WITH TYPE AND EXAMPLES.

FEATURE TYPE VALUES
source-ip string 147.32.84.193
start-time timestamp 2011-08-17 15:51:08.499
protocol string TCP, UDP
duration float 0.103, 2.696
direction string →, ←, ↔

total-packets integer 9, 1
total-bytes integer 1030, 66, 43

we show that these high level machines are very powerful
behavioral models, capable of detecting other infected hosts
with very few false positives.

B. Obtaining Timed Events

Clustering of Netflows basically consists of assigning a nu-
merical code to each flow based on the features in Table I such
that similar Netflows receive the same code. We obtain these
using a simple attribute mapping for each feature. Protocol
type and direction are assigned a progressive non-negative
number for every possible value v, for example, for protocol
type, we assign 0 if v = TCP, 1 if v = UDP, 2 if v = ICMP, etc.
The source-ip feature is only used to distinguish flows from
each other, and the timestamp is used to compute time values.
We use percentiles for clustering other numerical features, i.e.
duration, total-packets and total-bytes. The ELBOW methods
are applied to select the “optimal” number of bins [39]. The
experiments show that within-cluster sum of squares (WCSS)
has a “break point” at number of cluster-5, i.e. 20th, 40th,
60th, and 80th percentiles. We assign values accordingly: 0 if
v is before the 20th percentile, 1 if v is after the 20th and
before the 40th, etc. We then compute the event types from
Netflows using Algorithm 1, where Mi : v → N denotes the
attribute mapping for feature i.
Algorithm 1: Netflow encoding using attribute mappings:
Input: a Netflow n = 〈a0, a1, · · · , ak〉 with k features
Input: an attribute mapping Mi, i = 0, 1, · · · , k
Output: integer code for n
code← 0;
spaceSize←

∏k
i=0 |Mi|;

for i← 0 to k do
code← code+Mi(ai)× spaceSize

|Mi| ;
spaceSize← spaceSize

|Mi| ;

return code;

Algorithm 1 uses attribute mappings to encode a Netflow
Note that |Mi| denotes the number of values for feature ai.
For example, a simplified scenario where every Netflow has
only two features: protocol and total-packets. For the protocol
we observe only two possible values, namely TCP and UDP,
and the attribute mapping will assign 0 to the former and 1
to the latter. For the total-packet feature let assume we have
gathered values: {1, 1, 1, 5, 12, 14, 14, 18, 23, 31} and assume
we are interested in the 20th and 80th percentiles. We first
need to find out the ordinal ranks of such values in the above
collection, using the formula: r(p) =

⌈
p

100 × N
⌉

, where

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 311

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

p is the required percentile, and N is the collection size.
Therefore r(20) =

⌈
20
100 × 10

⌉
= 2 and r(80) =

⌈
80
100 ×

10
⌉

= 8. Percentiles are the collection values corresponding
to the ordinal ranks, thus the 20th percentile is 1 and the
80th percentile is 18, they induce an attribute mapping to
Mtotal−packets(v) = {0 if v ≤ 1, 1 if 1 < v ≤ 18, 2 else}.
where v is the total-packets attribute value for any given
Netflow . Hence the code associated to the instance 〈TCP, 14〉
is: 0× 6

2 + 1× 3
3 = 1. And the code assigned to the instance

〈TCP, 33〉 is 2. Time values are obtained from Netflow data
by calculating the delays between to consecutive events. For
each host of interest, we compute the time differences of its
consecutive flows in milliseconds. Table II shows the results
of this process applied to five example Netflow records.

C. Sliding Timed Frames

As mentioned in Section III-B, RTI+ learns PDRTAs from
sets of timed strings. In this section we address the task
of obtaining timed strings from Netflows , achieved in two
stages: At first stage we group Netflows by source address
(source-ip feature in Table I) because we are interested in
modeling per-host behavior. By doing so, we collect a plain
sequence of Netflows for each monitored host, which is
translated in timed events as showed in the previous section.
At second stage we slide a time window of fixed duration
over the sequence obtained at stage one. For every window
w, we create a timed string by concatenating all events
that occur within the duration of w. The window duration
used in the experiments is 20 milliseconds, which creates
two flows from the data in Table II: (1, 0)(52, 5)(150, 12)
and (52, 5)(150, 12)(150, 2)(44, 5). Each flow represents a
snapshot of 20 milliseconds of timed events produced by a
given host, which we call a “Sliding Timed Frame”.

D. Recognizing a Host as Infected

After obtaining a PDRTA A from a malicious host M, we
use it to evaluate other hosts C. Intuitively, we compare the
expected behavior of a malicious host M , given by the model
A with the observed behavior in C. A symptom of C describes
how the behavior of C fits the behavior of M . Formally, a
symptom is an internal state of A together with the input
needed to reach it:

Definition 2: An infection symptom is a couple 〈q, t〉, where
• q ∈ QM is a state of AM , PDRTA learned from a given

blacklisted entry M ; q is the state reached in AM after
receiving t;

• t = 〈s, δ〉, is a timed event with s ∈ ΣM , the set of event
types for AM , and δ ∈ N, produced by a given monitored
host C;

Every infection symptom is a behavioral fingerprint for a
monitored host, given the infection represented by a black-
listed entry. Such fingerprints have a cross-network component
(q) obtained from M , and a network-specific component (t),
generated from Netflows captured within the NUO. Indeed
one might imagine two or more networks to share the same

behavioral model M for a specific infection, and still to be able
to generate infection symptoms which are specific for each of
them. That is why we refer to PDRTA models as fingerprint
generators.

It is important to underline once more that infection symp-
toms are generated partially by using a PDRTA learned on Net-
flows coming from a malicious source (training Netflows data),
and partially from data gathered on the monitored network
(evaluation Netflows data). For instance, by considering the
PDRTA shown in Figure 1 with the following frame, gathered
in our network, as input: {(Q-UDP, 171) (Q-TCP, 8) (Q-TCP,
0) (Q-TCP, 0)(Q-TCP, 0) (Q-TCP, 0)}. The symptoms are:
〈STATE-5, (Q-UDP, 171)〉 and 〈STATE-2, (Q-TCP, 8)〉 with 1
occurrence and 〈STATE-2, (Q-TCP, 0)〉 with 4 occurrences.

Once we have learned a PDRTA as a fingerprint for a given
malicious host M , we use two different strategies for finding
the same infection in a new host C in newly observed data.
Both strategies rely on infection symptoms.

Our first strategy, called error based, compares the infection
symptoms with occurrence counts of the same fingerprints in
new data. We thus compare whether a new candidate host
C shows the same symptoms as a known malicious host M .
Let CountsMi and CountsCi be counts of symptom i in M
and C, respectively. Host C is classified as infected if the
absolute error S =

∑
i |CountsMi − CountsCi | < τ , i.e.,

if absolute differences between the expected and observed
symptom counts fall below a a pre-computed threshold. This
threshold is obtained using a configuration dataset of known
benign hosts, see Section V. The absolute error S can be
used as a score function. Using it, we can rank i different
hosts Ci according to suspiciousness Ci. The second strategy,
called fingerprint based, uses this configuration dataset to find
distinguishing symptoms that occur when a host is malicious,
but never when it is benign. CountsFi denotes the sums of all
symptom counts in the configuration set.

Host C is then classified as malicious if there exists a
symptom i such that CountsFi = 0, CountsMi > 0, and
CountsCi > 0.

E. Circumventing BASTA
At present, BASTA should not be considered as a complete

system for the detection of botnets. It has rather been designed
as a machine learning engine of a more complex detection
device (e.g., random forest module in [18]). Having said that,
it is good to clarify that BASTA is a botnet fingerprinting
system. This means you need traffic from an infected host
known as such, to get a PDRTA representing its behavior
and the fingerprint generator. It is also important to point out
that thanks to these generators, fingerprints have the desired
property of being specific for the network. In particular, to
circumvent the detection of BASTA, a bot master should have
access to the traffic of the network he intends to attack in order
to craft elusive flows and bypass its fingerprints.

V. EVALUATION

BASTA is evaluated on a dataset released by Garcia et
al [17]. The dataset is organized in 13 different scenarios,

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)312

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NETFLOW EVENTS FROM SCENARIO 9.

prot dir time duration packet byte event prot dir time duration packet byte event
udp → 0 0.000304 1 68 (1,0) tcp ↔ 24 0.120181 6 212 (150,2)
udp ↔ 5 0.000442 5 590 (52,5) udp → 22 0.17121 10 7701 (44,5)
tcp ↔ 17 0.000527 3 479 (150,12)

each of them containing Netflows from a network infected
by a different type of malware. The scenarios are numbered
from 1 to 13, and referred to by their number. The goal of
BASTA is identification of other infected hosts knowing at
least one, e.g. from a blacklist. Our experiments focus on
the four scenarios containing multiple bots running the same
malware. Using the same scenario numeration as in [17],
Scenario 9 contains a network infected by Neris, a spamming
botnet that operates though IRC (Internet Relay Chat) and is
capable of performing port scanning and click frauds. Scenario
10 and 11 contain a network infected by Rbot, a botnet capable
of leading distributed denial of service attacks (DDoS). The
UDP and ICMP protocol are used respectively. Scenario 12 is a
network infected by NSIS.ay, a trojan capable of coordinating
DDoS attacks.

In [17] several existing botnet detection methods are com-
pared on this dataset. The different methods are trained on
samples from Scenarios 3, 4, 5, 7, 10, 11, 12, and 13, and
evaluated on Scenarios 1, 2, 6, 8, and 9. The purpose of this
setup is to test whether the methods are able to generalize from
one botnet to another. In addition, the methods are evaluated on
how quickly they can detect new threats. Understandably, the
methods perform poorly on this task, sometimes even worse
than a baseline that labels all flows as malicious.

For a network administrator it is much more useful to have
labels assigned to hosts instead of individual Netflow records
because hosts can be investigated and reset to a trusted state.
We therefore focus on labeling and ranking hosts.

Our initial goal is to detect new infections of known
threats. A network administrator can learn models for such
threats using Netflows that connect to known blacklisted hosts.
Afterwards, we consider the setting used in [17] of trying to
detect infections by unknown threats.

We preprocessed the data, removing null values if present,
and accounted for discrepancies in date formats across mul-
tiple scenarios. We also removed all Netflows labeled as
background as our use-case is a binary problem: discovering
whether a given host has or not has been infected by a
malware. For each scenario we constructed three disjoint
datasets. Table III summarizes the sets.

• The configuration dataset, containing 30% of the se-
quences, randomly selected. It used for calculating per-
centiles in features with numeric domain. It is also used
for estimating the selectivity threshold for the error based
strategy and for identifying the distinguishing symptoms
used in the fingerprint based strategy. It does not contain
Netflow sequences from botnet hosts.

• The training dataset, containing all Netflows coming from
one of the infected hosts.

• The evaluation dataset, containing the remaining se-

TABLE III
THE NUMBER OF FLOWS (HOSTS) OF EACH OF THE THREE SET PER

SCENARIO.
Scenario Configuration Set Training Set Evaluation Set Infected Hosts

9 91386 (185) 29712 (1) 648627 (1077) 10
10 159995 (141) 19889 (1) 465462 (380) 10
11 1004 (32) 138077 (1) 149821 (87) 3
12 6506 (4) 807 (1) 2483 (18) 3

quences from the scenario: both infected and benign
Netflows from all other hosts. The evaluation dataset
sometimes is much bigger than the training set. The
reason for this is in how we learn: model is learned from
just one host while the objective is to detect other infected
machines in a big network.

In all the experiments, the attribute mapper has been initial-
ized using the configuration dataset with 20%, 40%, 60%, 80%
as percentiles for all scenarios except for Scenario 11, where
only the 50% percentile was used in order to avoid overfitting
on a small training dataset. Regarding the selectivity threshold
used in the error based strategy, it has been estimated by
collecting the sum of errors for each host in the configuration
set and computing the average error µ along with the standard
deviation σ. The threshold has then been set to τ = µ− 2σ.

The following subsections discuss two different types of
experiments. Section V-A shows performances by taking each
scenario individually. These experiments illustrate the capabil-
ities of the system in the task of detecting a host infected by
a known threat. Section V-B shows an experiment involving
all scenarios together. This experiment aims to assess BASTA
performance with threats it does not know anything about,
i.e. it cannot rely on a model learned on purpose for such a
menace.

A. Single Scenario Simulation

All experiments in this section share the aim of evaluating
the system in detecting an already known infection. A known
infection is a host known to be infected by prior knowledge,
e.g. through a blacklist. In each experiment we compare results
with a BIGRAMS baseline.

BIGRAMS are essentially sequences of two
consecutive events. For instance, if we consider
the stream in Table II, we can get the following:
(1, 52) , (52, 150) , (150, 150) , (150, 44). This baseline
does not use any serialization, i.e. no sliding frames, no time
information, just the labels. With BIGRAMS it is possible to
estimate the conditional probability of the events. If we have
the bigram (E1, E2) where E1 and E2 are consecutive events,
the conditional probability P (E2|E1) can be estimated by
computing the join probability of (E1, E2) and the marginal
probability of E1. Performance is presented in terms of
true/false positives/-negatives, where a true positive (TP in
the tables) means a host correctly classified as malicious.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 313

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

0 500 1000 1500 2000 2500 3000 3500 4000
Expected Occurence

0

500

1000

1500

2000

2500

3000

3500

4000

O
b
se

rv
e
d
 O

cc
u
re

n
ce

147.32.86.165 True Negative (S1)
 False Positive (S2)
147.32.84.193 True Positive (S1, S2)
147.32.84.204 True Positive (S1, S2)
204.12.234.66 True Negative (S1, S2)
205.188.17.129 True Negative (S1, S2)

Fig. 2. Expected and observed frequencies of infection symptoms in Scenario
9. Each x−y pair indicates the expected frequency count versus the observed
frequency count of a specific infection fingerprint for one of five given
hosts. Regression lines are also drawn for each host. For true negatives, we
observe low counts while a fingerprint of an infection expects high counts.
The regression line is along the x axis. For true positives, the observed and
expected counts match, and the regression line is y = x.

Noiseless sources, noiseless targets: Table IV refers to a
first setting where both source and targets are noiseless. In
this context the word “noiseless” is used to express that every
Netflow coming from any evaluation machine is legitimate if
and only if such a machine is legitimate, and every Netflow
coming from any evaluation and infected machine is actually
malicious as well. The results on three out of four scenarios
are impressive: 100% accuracy for the error based strategy
and few false positives for the fingerprint based strategy.
Scenarios 11 and 12 show somewhat worse results. One host in
Scenario 11 is falsely identified as benign (one false negative)
out of the two malicious hosts in the testing data. There
is also an improvement in comparison with BIGRAMS on
Scenarios 11 and 12, where the baseline is not able to detect
any infected host. BIGRAMS seem to work better with the
fingerprint based strategy, introducing less false positives and
hitting all the malicious machines. Figure 2 illustrates the
expected and observed frequency distribution in each testing
hosts. S1 and S2 are the error based and fingerprint based
strategies, respectively. Two hosts are detected correctly as
infected (TP) by S1 as their regression plot is very close to
y = x. The other three hosts are correctly detected as safe
(TN). Interestingly, one host is incorrectly detected as infected
by S2. Although this host is behaviorally very different from
what the PDRTA model expect, it shows malicious behavior
that never occurred in the configuration dataset, in this case
the symptom 〈s = 1, t = 〈3, 4〉〉 (see Figure 1).

Noiseless sources, noised targets: Results in Table V are
about a different setting where the sources for each scenario
are still noiseless, but the infected evaluation targets are not.
This is a more realistic situation where a fingerprint generator,
namely the PDRTA, of an infection has been provided by some
partners (e.g. security companies) able to run the infection

TABLE IV
TOP: ERROR BASED STRATEGY PERFORMANCES ON NOISELESS DATA.

BOTTOM: FINGERPRINT BASED STRATEGY PERFORMANCES. THE TABLE
REPORTS HOSTS CORRECTLY AND INCORRECTLY IDENTIFIED IN

ABSOLUTE NUMBERS.
BASTA BIGRAMS

TP TN FP FN TP TN FP FN
9 9 1068 0 0 9 1068 0 0

10 9 371 0 0 9 371 0 0
11 1 85 0 1 0 85 0 2
12 2 16 0 0 0 16 0 2

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 1038 30 0 9 1066 2 0
10 9 370 1 0 9 369 2 0
11 1 80 5 1 1 83 0 2
12 2 4 12 0 2 15 1 0

TABLE V
TOP: ERROR BASED STRATEGY PERFORMANCES WITH NOISELESS
SOURCES AND NOISED TARGETS. BOTTOM: FINGERPRINT BASED

STRATEGY PERFORMANCES. THE TABLE REPORTS HOSTS CORRECTLY
AND INCORRECTLY IDENTIFIED IN ABSOLUTE NUMBERS.

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 4 1244 0 5 1 1244 0 8
10 0 503 0 9 0 503 0 9
11 1 115 0 1 1 115 0 1
12 0 18 0 2 0 18 0 2

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 1219 25 0 9 1244 0 0
10 9 503 0 0 9 503 0 0
11 1 111 4 1 1 114 1 1
12 2 6 12 0 2 17 1 0

in a safe environment. However, the target infected machines
present mixed traffic made of both Netflows labeled as ma-
licious and legitimate. We have devised this setting coupling
each malicious host with the most verbose (in terms of number
of NetFlows), legitimate, and available one. Then we have
merged Netflows of the coupled host so creating new targets
with mixed behavior. Even in this case we observe no false
positive with the error based strategy, and an improvement in
Scenario 9 on the baseline. BIGRAMS with fingerprint based
strategy show better performance than the alternative system,
confirming the trend of the previous setting.

TABLE VI
TOP: ERROR BASED STRATEGY PERFORMANCES WITH NOISED SOURCES

AND NOISED TARGETS. BOTTOM: FINGERPRINT BASED STRATEGY
PERFORMANCES. THE TABLE REPORTS HOSTS CORRECTLY AND

INCORRECTLY IDENTIFIED IN ABSOLUTE NUMBERS.
BASTA BIGRAMS

TP TN FP FN TP TN FP FN
9 2 1244 0 7 1 1244 0 8

10 2 503 0 7 2 503 0 7
11 2 101 14 0 1 98 17 1
12 0 17 1 2 0 18 0 2

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 1228 16 0 1 1244 0 8
10 9 503 0 0 9 503 0 0
11 1 98 17 1 1 89 26 1
12 2 5 13 0 2 17 1 0

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)314

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
TOP: ERROR BASED STRATEGY PERFORMANCES ON NOISELESS DATA

INCLUDING BACKGROUND FLOWS. BOTTOM: FINGERPRINT BASED
STRATEGY PERFORMANCES. THE TABLE REPORTS HOSTS CORRECTLY

AND INCORRECTLY IDENTIFIED IN ABSOLUTE NUMBERS.
BASTA BIGRAMS

TP TN FP FN TP TN FP FN
9 9 237381 0 0 9 237381 0 0

10 9 129596 0 0 4 129596 0 5
11 1 20609 0 1 0 20609 0 2
12 0 41687 0 2 0 41687 0 2

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 237340 41 0 9 237320 61 0
10 9 129594 2 0 9 129592 4 0
11 1 20607 2 1 0 20607 2 2
12 2 41667 20 0 2 41668 19 0

Noised sources, noised targets: The last experiment, whose
results are reported in Table VI, combines noised sources
(obtained with the same previously described coupling pro-
cedure) and noised targets. Even with a comprehensible drop
in performance compared with already described experiments,
the error based strategy still shows better performance on all
scenarios but 12. In this case both systems are unable to
detect any infected machine, but only the alternative system
returning a false positive. Hence, even with the fingerprint
based strategy,the trend of the previous setting is unconfirmed
and BASTA achieves better results on Scenario 9 and 11
making the comparison with the baseline more uncertain.

Including Background Traffic: In Section V we explained
why, as a pre-processing stage, we decided to filter out the
background traffic from the dataset at our disposal. On one
hand we don’t know the actual label of every background
flow, i.e. whether it is malicious or not, posing more than
few questions (e.g. how to evaluate a legitimate host which
includes some background flows). On the other hand, by
including background traffic, we reproduce a more realistic
setting in which we are interested to test BASTA performance.
Finally we decided to plan additional experiments on single
scenarios, with noiseless data, including background traffic.
We treated background flows in a neutral way: if a legitimate
host contains background flows it remains legitimate, and
hosts containing background flows only are considered not
malicious. Results of our experiments are showed in Table VII,
where the trends of the same experiment without background
traffic (Table IV) have been confirmed.

B. Multi Scenario Simulation

We also test our system on the setup described in the
paper [17] published with the Netflow dataset. The training
set consists of samples from scenarios 3, 4, 5, 7, 10, 11, 12,
13, and the evaluation sets contains hosts from scenarios 1,
2, 6, 8, 9. It is important to mention that we selected training
and evaluation scenarios as in the corresponding experiment
in [17]. The scenarios in the training set contain different
botnet families than the evaluation set and can therefore exhibit
very different behavior. We learned PDRTAs for all malicious
hosts in the training samples, and tested whether any of them
mark any of the hosts in the testing scenarios as malicious.

TABLE VIII
PERFORMANCE ON THE SETUP IN [17] WITH ERROR BASED STRATEGY

(TOP) AND FINGERPRINT BASED STRATEGY (BOTTOM). SCENARIOS 1,2,6,
AND 8 ONLY CONTAIN A SINGLE MALICIOUS HOST, SCENARIO 9

CONTAINS 10 MALICIOUS HOSTS. OVERALL, THE EVALUATION SET
CONTAINS 3087 HOSTS.

Scenario 1 2 6 8 9
TP 1 1 1 1 10
FP 3 73 55 84 109
TP 1 1 1 1 10
FP 4 26 12 52 72

In spite of our method focusing on behavioral detection, the
fingerprint based method produces encouraging initial results,
see bottom half of Table VIII. Overall our system detects all
the infected hosts and produces 166 false positives out of 3072
benign hosts. The error based strategy is able to detect all
14 infected hosts, but the performance are deteriorated by
an almost doubled amount of false positives (i.e. 324, see
Table VIII, top half).

VI. CONCLUSIONS

We presented BASTA, a system using the RTI+ algorithm
for learning PDRTA to learn behavioral models from Netflow
traces. It has a simple but effective technique to obtain timed
strings from Netflow data using attribute mappings and sliding
windows over the flows. We presented two strategies for
detecting new infections: error based and fingerprint based.
Both strategy can effectively detect known infections, as
proved in our experiments on single scenarios from the public
dataset from [17]. In fact, in our experiments with detecting
known infections, BASTA detected nearly all infected hosts
with very few false positives. To increase the difficulty, we
mixed traffic from and to different hosts. In this setting,
BASTA is capable of detecting threats, too. Finally, in the
very difficult setting from [17] (learning from one type botnet
to detect another type), BASTA also detects threats albeit with
some false positives. Administrators can adjust and reduce this
number by using different thresholds, although this costs some
true positives. In practice, choosing fewer false positives over
maximizing true positives is seen as desirable as true positives
have a very low incidence rate. BASTA can also replace
the other machine learning tools used by existing detection
frameworks. In this way, BASTA can make use of the different
methods and filters used by these frameworks that reduce
the false alarms. Interestingly, the error-based approach gives
better results on noiseless data while using simple fingerprints
works better in noised settings. This is likely due to incorrectly
estimated expected counts, and suggests that error-based is
better in noise-free settings where the network manager is able
to isolate the traffic (using for instance IP destinations). When
this results in too few data, it is better to use the fingerprinting
approach on the noisy intertwined traffic.

In the near future, we envision a new symptom generation
algorithm specifically for dealing with noisy input sequences,
i.e. both non-malicious and legitimate Netflow flows, using
dynamic programming to filter flows. In future work, we will
also confirm our results by testing the system in our campus
network.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 315

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work was partially supported by Technologiesticht-
ing STW VENI project 13136 (MANTA) and NWO project
62001628 (LEMMA).

REFERENCES

[1] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection,” in USENIX Security, pp. 139–154, 2008.

[2] Z. Zhu, G. Lu, Y. Chen, Z. J. Fu, P. Roberts, and K. Han, “Botnet
research survey,” in IEEE COMPSAC, pp. 967–972, 2008.

[3] B. Li, J. Springer, G. Bebis, and M. Hadi Gunes, “Review: A survey of
network flow applications,” J. Netw. Comput. Appl., vol. 36, pp. 567–
581, Mar. 2013.

[4] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet and
botnet detection,” in IEEE SECURWARE, pp. 268–273, 2009.

[5] Y. Tang and S. Chen, “Defending against internet worms: A signature-
based approach,” in IEEE INFOCOM, vol. 2, pp. 1384–1394, 2005.

[6] J. R. Binkley and S. Singh, “An algorithm for anomaly-based botnet
detection,” in USENIX SRUTI worskhop, pp. 43–48, 2006.

[7] H. Choi and H. Lee, “Identifying botnets by capturing group activities
in DNS traffic,” Computer Networks, vol. 56, no. 1, pp. 20–33, 2012.

[8] O. Pomorova, O. Savenko, and S. Lysenko, “A technique for the botnet
detection based on DNS - traffic analysis,” in Computer Networks: 22nd
International Conference, CN 2015, Brunów, Poland, June 16-19, 2015.
Proceedings, vol. 522, p. 127, Springer, 2015.

[9] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in DSN, pp. 177–186, IEEE, 2008.

[10] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and
classification of malware behavior,” in DIMVA, pp. 108–125, Springer,
2008.

[11] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Computing Sur-
veys, vol. 44, no. 2, p. 6, 2012.

[12] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware:
from a survey towards an established taxonomy,” Journal in computer
Virology, vol. 4, no. 3, pp. 251–266, 2008.

[13] C. Y. Cho, E. C. R. Shin, D. Song, et al., “Inference and analysis of
formal models of botnet command and control protocols,” in ACM CCS,
pp. 426–439, 2010.

[14] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, “Botnet detection
based on network behavior,” in Botnet Detection, pp. 1–24, Springer,
2008.

[15] M. Jaber, R. G. Cascella, and C. Barakat, “Can we trust the inter-packet
time for traffic classification?,” in IEEE ICC, pp. 1–5, 2011.

[16] S. Verwer, M. de Weerdt, and C. Witteveen, “A likelihood-ratio test for
identifying probabilistic deterministic real-time automata from positive
data,” in ICGI, pp. 203–216, 2010.

[17] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical com-
parison of botnet detection methods,” Computers & Security, vol. 45,
pp. 100–123, 2014.

[18] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Disclo-
sure: Detecting botnet command and control servers through large-scale
netflow analysis,” in Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pp. 129–138, ACM, 2012.

[19] T. Barabosch, A. Dombeck, K. Yakdan, and E. Gerhards-Padilla,
“Botwatcher: Transparent and generic botnet tracking,” in Research in
Attacks, Intrusions, and Defenses: 18th International Symposium, RAID
2015, Kyoto, Japan,November 2-4, 2015. Proceedings, pp. 565–587,
2015.

[20] D. Babić, D. Reynaud, and D. Song, “Recognizing malicious software
behaviors with tree automata inference,” Form. Methods Syst. Des.,
vol. 41, pp. 107–128, Aug. 2012.

[21] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in IEEE S&P, pp. 110–125, 2009.

[22] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: an automated script
generation tool for honeyd,” in IEEE ACSAC, pp. 203–214, 2005.

[23] Y. Wang, Z. Zhang, D. D. Yao, B. Qu, and L. Guo, “Inferring protocol
state machine from network traces: a probabilistic approach,” in Applied
Cryptography and Network Security, pp. 1–18, Springer, 2011.

[24] T. Krueger, H. Gascon, N. Krämer, and K. Rieck, “Learning stateful
models for network honeypots,” in ACM AISEC, pp. 37–48, 2012.

[25] W. Bongiovanni, A. E. Guelfi, E. Pontes, A. Silva, F. Zhou, and S. T.
Kofuji, “Viterbi algorithm for detecting ddos attacks,” in Local Computer
Networks (LCN), 2015 IEEE 40th Conference on, pp. 209–212, IEEE,
2015.

[26] S. Nagaraja, Computer Security - ESORICS 2014: 19th European Sym-
posium on Research in Computer Security, Wroclaw, Poland, September
7-11, 2014. Proceedings, Part II, ch. Botyacc: Unified P2P Botnet
Detection Using Behavioural Analysis and Graph Analysis, pp. 439–
456. Cham: Springer International Publishing, 2014.

[27] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann,
C. J. Dietrich, and H. Bos, “Sok: P2pwned - modeling and evaluating
the resilience of peer-to-peer botnets,” in Security and Privacy (SP),
2013 IEEE Symposium on, pp. 97–111, May 2013.

[28] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines - a survey,” Proceedings of the IEEE, vol. 84, no. 8,
pp. 1090–1123, 1996.

[29] J. E. Cook and A. L. Wolf, “Discovering models of software processes
from event-based data,” ACM TOSEM, vol. 7, no. 3, pp. 215–249, 1998.

[30] E. M. Gold, “Complexity of automaton identification from given data,”
Information and Control, vol. 37, no. 3, pp. 302–320, 1978.

[31] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-state
machines from samples of their behavior,” IEEE Trans. Comput., vol. 21,
no. 6, pp. 592–597, 1972.

[32] D. Angluin, “On the complexity of minimum inference of regular sets,”
Information and Control, vol. 39, no. 3, pp. 337–350, 1978.

[33] C. de la Higuera, Grammatical Inference: Learning Automata and
Grammars. Cambridge University Press, 2010.

[34] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering,” in ACM CCS, pp. 621–634, 2009.

[35] C. Dima, “Real-time automata,” Journal of Automata, Languages and
Combinatorics, vol. 6, no. 1, pp. 3–23, 2001.

[36] S. E. Verwer, Efficient identification of timed automata: theory and
practice. PhD thesis, TU Delft, Delft University of Technology, 2010.

[37] C. De la Higuera, Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010.

[38] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the abbadingo
one dfa learning competition and a new evidence-driven state merging
algorithm,” in ICGI, pp. 1–12, Springer, 1998.

[39] C. Goutte, P. Toft, E. Rostrup, F. Å. Nielsen, and L. K. Hansen, “On
clustering fMRI time series,” NeuroImage, vol. 9, no. 3, pp. 298–310,
1999.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)316

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2021 at 11:43:21 UTC from IEEE Xplore. Restrictions apply.

