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ON THE ℓs-BOUNDEDNESS OF A FAMILY OF INTEGRAL

OPERATORS

CHIARA GALLARATI, EMIEL LORIST, AND MARK VERAAR

Abstract. In this paper we prove an ℓs-boundedness result for integral op-
erators with operator-valued kernels. The proofs are based on extrapolation
techniques with weights due to Rubio de Francia. The results will be applied
by the first and third author in a subsequent paper where a new approach to
maximal Lp-regularity for parabolic problems with time-dependent generator
is developed.

1. Introduction

In the influential work [34, 35], Weis has found a characterization of maximal
Lp-regularity in terms ofR-sectoriality, which stands for R-boundedness of a family
of resolvents on a sector. The definition of R-boundedness is given in Definition
3.15. It is a random boundedness condition on a family of operators which is a
strengthening of uniform boundedness. Maximal regularity of solution to PDEs is
important to know as it provides a tool to solve nonlinear PDEs using linearization
techniques (see [4, 23, 25]). An overview on recent developments on maximal Lp-
regularity can be found in [7, 21]. Maximal Lp-regularity means that for all f ∈
Lp(0, T ;X), where X is a Banach space, the solution u of the evolution problem

(1.1)

{
u′(t) = Au(t) + f(t), t ∈ (0, T )

u(0) = 0

has the “maximal” regularity in the sense that u′, Au are both in Lp(0, T ;X). Using
a mild formulation one sees that to prove maximal Lp-regularity one needs to bound
a singular integral with operator-valued kernel Ae(t−s)A.

In [11] the first and third author have developed a new approach to maximal Lp-
regularity for the case that the operator A in (1.1) depends on time in a measurable
way. In this new approach R-boundedness plays a central rôle again. Namely, the
R-boundedness of the family of integral operators {Ik : k ∈ K} ⊆ Lp(R;X) is
required in the proofs. Here Ik is defined by

(1.2) (Ikf)(t) =

∫

R

k(t− s)T (t, s)f(s) ds,
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where T (t, s) ∈ L(X) is a two-parameter evolution family and K is the class of
kernels which satisfy |k|∗f ≤ Mf for f : R → R+ simple and whereM is the Hardy-
Littlewood maximal operator. For evolution families one usually sets T (t, s) = 0 if
t < s.

In this paper we give a class of examples for which we can prove theR-boundedness
of {Ik : k ∈ K}. We now state a special case of our main result. It is valid for
general families of operators {T (t, s) : −∞ < s ≤ t < ∞} ⊆ L(Lq(Ω, w)). We will
not use any regularity conditions for (t, s) 7→ T (t, s) below.

Theorem 1.1. Let Ω ⊆ R
d be an open set. Let p, q ∈ (1,∞). Assume that for all

Aq-weights w,

(1.3) ‖T (t, s)‖L(Lq(Ω,w)) ≤ C, s, t ∈ R,

where C depends on the Aq-constant of w in a consistent way. Then the family of
integral operators {Ik : k ∈ K} ⊆ L(Lp(R;Lq(Ω))) as defined in (1.2) is R-bounded.

In the setting where T (t, s) = e(t−s)A where A is as in (1.1), the condition (1.3)
also appears in [10] and [17, 18] in order to obtain R-sectoriality of A. There (1.3)
is checked by using Calderón-Zygmund and Fourier multiplier theory. Examples of
such results for two-parameter evolution families will be given in [11].

As a consequence of the Kahane-Khintchine inequality (see Remark 3.16) one
can see that in standard spaces such as Lp-spaces, R-boundedness is equivalent
to so-called ℓ2-boundedness. The latter is a special case of ℓs-boundedness (see
Definition 3.1). In Lp-spaces this boils down to classical Lp(ℓs)-estimates from
harmonic analysis (see [14, 15], [12, Chapter V] and [5, Chapter 3]). It follows from
the work of Rubio de Francia (see [26, 27, 28] and [12]) that Lp(ℓs)-estimates are
strongly connected to estimates in weighted Lp-spaces.

To prove Theorem 1.1 we apply weighted techniques of Rubio de Francia. With-
out additional effort we actually prove the more general Corollary 3.14, which
states that the family of integral operators on Lp(v, Lq(w)) is ℓs-bounded for all
p, q, s ∈ (1,∞) and for arbitrary Ap-weights v and Aq-weights w. Both the modern
extrapolation methods with Aq-weights as explained in the book of Cruz-Uribe,
Martell and Pérez [5] and the factorization techniques of Rubio de Francia (see
[12, Theorem VI.5.2] or [15, Theorem 9.5.8]), play a crucial rôle in our work. It
is unclear how to apply the extrapolation techniques of [5] to the inner space Lq

directly, but it does play a rôle in our proofs for the outer space Lp. The factoriza-
tion methods of Rubio de Francia enable us to deal with the inner spaces (see the
proof of Proposition 3.13).

In the literature there are many more R-boundedness results for integral opera-
tors (e.g. [6, Section 6], [7, Proposition 3.3 and Theorem 4.12], [13], [16, Section 3],
[19, Section 4], [21, Chapter 2]). However, it seems they are of a different nature
and cannot be used to prove Theorems 1.1, 3.10 and Corollary 3.14.

Throughout this paper we will write B(X) for the space of all bounded operators
on a Banach space X and denote the corresponding norm as ‖·‖B(X). Let L(X) ⊆

B(X) denote the subspace of all bounded linear operators. For p ∈ [1,∞] we let
p′ ∈ [1,∞] be such that 1

p + 1
p′

= 1.

Acknowledgement The authors thank the referees for helpful comments.
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2. Extrapolation and weights

2.1. Preliminaries on weights. First we will introduce Muckenhoupt weights
and state some of their properties. Details can be found in [15, Chapter 9] and [31,
Chapter V].

A weight is a locally integrable function on R
d with w(x) ∈ (0,∞) for almost

every x ∈ R
d. The space Lp(Rd, w) is defined as all measurable functions f with

‖f‖Lp(Rd,w) =

(∫

Rd

|f |
p
w dµ

) 1

p

< ∞.

With this notion of weights and weighted Lp-spaces we can define the class of
Muckenhoupt weights Ap for all p ∈ (1,∞) for a fixed dimension d ∈ N. Let∫
Q = 1

|Q|

∫
Q. For p ∈ (1,∞) a weight w is said to be an Ap-weight if

[w]Ap
= sup

Q

∫

Q

w(x) dx

(∫

Q

w(x)−
1

p−1 dx

)p−1

< ∞,

where the supremum is taken over all cubes Q ⊆ R
d with axes parallel to the

coordinate axes. The extended real number [w]Ap
is called the Ap-constant.

Recall that w ∈ Ap if and only if the Hardy-Littlewood maximal operator M is
bounded on Lp(Rd, w). The Hardy-Littlewood maximal operator is defined as

M(f)(x) = sup
Q∋x

∫

Q

|f(y)| dy, f ∈ Lp(Rd, w)

with Q ranging over all cubes in R
d with axes parallel to the coordinate axes.

Next we will summarize a few basic properties of weights which we will need.
The proofs can be found in [15, Theorems 9.1.9 and 9.2.5], [15, Theorem 9.2.5 and
Exercise 9.2.4], [15, Proposition 9.1.5].

Proposition 2.1. Let w ∈ Ap for some p ∈ [1,∞). Then we have

(1) If p ∈ (1,∞) then w− 1

p−1 ∈ Ap′ with [w− 1

p−1 ]Ap′
= [w]

1

p−1

Ap
.

(2) For every p ∈ (1,∞) and κ > 1 there is a constant σ = σp,κ,d ∈ (1, p)
and a constant Cp,d,κ > 1 such that [w]A p

σ

≤ Cp,κ,d whenever [w]Ap
≤ κ.

Moreover, κ 7→ σp,κ,d and κ 7→ Cp,κ,d can be chosen to be decreasing and
increasing, respectively.

(3) Ap ⊆ Aq and [w]Aq
≤ [w]Ap

if q > p.
(4) For p ∈ (1,∞), there exists a constant Cp,d such that

‖M‖B(Lp(Rd,w)) ≤ Cp,d · [w]
1

p−1

Ap
.

2.2. Extrapolation. The celebrated result of Rubio de Francia (see [26, 27, 28],
[12, Chapter IV]) allows one to extrapolate from weighted Lp-estimates for a single p
to weighted Lq-estimates for all q. The proofs and statement have been considerably
simplified and clarified in [5] and can be formulated as follows (see [5, Theorem 3.9]).

Theorem 2.2. Let f, g : Rd → R+ be a pair of nonnegative, measurable functions
and suppose that for some p0 ∈ (1,∞) there exists an increasing function α on R+

such that for all w0 ∈ Ap0

‖f‖Lp0(Rd,w0)
≤ α([w0]Ap0

)‖g‖Lp0(Rd,w0)
.
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Then for all p ∈ (1,∞) there is a constant cp,d s.t. for all w ∈ Ap,

‖f‖Lp(Rd,w) ≤ 4α
(
cp,d[w]

p0−1

p−1
+1

Ap

)
‖g‖Lp(Rd,w).

Note that for certain weights the above Lp-norms are allowed to be infinite.
Estimates as in the above result with increasing function α will appear frequently.
In this situation we say that

‖f‖Lp0(Rd,w0) ≤ C‖g‖Lp0(Rd,w0)

with an Ap0
-consistent constant C. This means that for two weights w0, w1 ∈ Ap we

have C([w0]Ap
) ≤ C([w1]Ap

) whenever [w0]Ap
≤ [w1]Ap

. Note that the Lp-estimate
obtained in Theorem 2.2 is again Ap-consistent for all p ∈ (1,∞).

Take n ∈ N and let for i = 1, · · · , n the triple (Ωi,Σi, µi) be a σ-finite measure
space. Define the product measure space

(Ω,Σ, µ) = (Ω1 × · · · × Ωn,Σ1 × · · · × Σn, µ1 × · · · × µn)

Then of course (Ω,Σ, µ) is also σ-finite. For q ∈ (1,∞)n we write

(2.1) Lq(Ω) = Lq1(Ω1, · · ·L
qn(Ωn)).

Next we extend Theorem 2.2 to values in the above mixed Lq(Ω) spaces. For
the case Ω = N this was already done in [5, Corollary 3.12].

Theorem 2.3. Let f, g : R
d × Ω → R+ be a pair of nonnegative, measurable

functions and suppose that for some p0 ∈ (1,∞) there exists an increasing function
α on R+ such that for all w0 ∈ Ap0

(2.2) ‖f(·, s)‖Lp0(Rd,w0)
≤ α([w0]Ap0

)‖g(·, s)‖Lp0(Rd,w0)

for all s ∈ Ω. Then for all p ∈ (1,∞) and q ∈ (1,∞)n there exist cp,q,d > 0 and
βp0,p,q > 0 such that for all w ∈ Ap,

(2.3) ‖f‖Lp(Rd,w;Lq(Ω)) ≤ 4nα
(
cp,q,d[w]

βp0,p,q

Ap

)
‖g‖Lp(Rd,w;Lq(Ω)).

Proof. We will prove this theorem by induction. The base case n = 0 is just
weighted extrapolation, as covered in Theorem 2.2.

Now take n ∈ N∪{0} arbitrary and assume that the assertion holds for all pairs
f, g : Rd × Ω → R+ of nonnegative, measurable functions. Let (Ω0,Σ0, µ0) be a σ-
finite measure space and take nonnegative, measurable functions f, g : Rd×Ω0×Ω →
R+. Assume that (2.2) holds for p0, all w ∈ Ap0

and all s ∈ Ω0 × Ω.
Now take (s0, s1, · · · , sn) ∈ Ω0 × Ω arbitrary. Let q ∈ (1,∞)n be given and

take r ∈ (1,∞) arbitrary. Define r = (r, q1, · · · , qn) and the pair of functions
F,G : Rd → [0,∞] as

F (x) = ‖f(x, ·)‖Lr(Ω×Ω0)
G(x) = ‖g(x, ·)‖Lr(Ω×Ω0)

By our induction hypothesis we know for all p ∈ (1,∞) there exist cp,q,d and βp0,p,q

such that for all w ∈ Ap

‖f(·, s0, ·)‖Lp(Rd,w;Lq(Ω)) ≤ 4nα(cp,q,d[w]
βp0,p,q

Ap
)‖g(·, s0, ·)‖Lp(Rd,w;Lq(Ω))

Now taking p = r we obtain

‖F‖Lr(Rd,w) =
( ∫

Ω0

∫

Rd

‖f(x, s0, ·)‖rLq(Ω)w(x) dx dµ0

) 1

r
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≤ 4nα(cr,q,d[w]
βp0,r,q

Ar
)
( ∫

Ω0

∫

Rd

‖g(x, s0, ·)‖rLq(Ω)w(x) dx dµ0

) 1

r

= 4nα(cr,q,d[w]
βp0,r,q

Ar
)‖G‖Lr(Rd,w)

using Fubini’s theorem in the first and third step. So with Theorem 2.2 using p0 = r

we obtain for all p ∈ (1,∞) that there exist cr,p,q,d > 0 and βp0,p,r > 0 such that
for all w ∈ Ap,

‖f‖Lp(Rd,w;Lr(Ω0×Ω)) = ‖F‖Lp(Rd,w)

≤ 4n+1α
(
cr,p,q,d[w]

βp0,p,r

Ap

)
‖G‖Lp(Rd,w)

= 4n+1α
(
(cr,p,q,d[w]

βp0,p,r

Ap

)
)‖g‖Lp(Rd,w;Lr(Ω0×Ω)).

This proves (2.3) for n+ 1.

Remark 2.4. Note that in the application of Theorem 2.3 it will often be necessary
to use an approximation by simple functions to check the requirements, since point
evaluations in (2.2) are not possible in general. Furthermore note that in the case
that f = Tg with T a bounded linear operator on Lp(Rd, w) for all w ∈ Ap this
theorem holds for all UMD Banach function spaces, which is one of the deep results
of Rubio de Francia and can be found in [29, Theorem 5].

As an application of Theorem 2.3 we will present a short proof of the boundedness
of the Hardy-Littlewood maximal operator on mixed Lq-spaces.

Definition 2.5. Let p ∈ (1,∞) and w ∈ Ap. For f ∈ Lp(Rd, w;X) with X = Lq(Ω)

we define the maximal function M̃ as

M̃f(x, s) = sup
Q∋x

∫

Q

|f(y, s)| dy

with Q all cubes in R
d as before.

We can see that M̃ is measurable, as the value of the supremum in the definition
stays the same if we only consider rational cubes. We will show that the maximal
function is bounded on the space X = Lq(Ω). Note that if Ω = N, the result below
reduces to the weighted version of the Fefferman-Stein theorem [1].

Theorem 2.6. M̃ is bounded on Lp(Rd, w;Lq(Ω)) for all p ∈ (1,∞) and w ∈ Ap.

Proof. Let M be the Hardy-Littlewood maximal operator and assume that f ∈
Lp(Rd, w;Lq(Ω)) is simple. By Proposition 2.1 and the definition of the Hardy-
Littlewood maximal operator we know that

‖M̃f(·, s)‖Lp(Rd,w) = ‖Mf(·, s)‖Lp(Rd,w) ≤ Cp,d · [w]
1

p−1

Ap
‖f(·, s)‖Lp(Rd,w)

Then by Theorem 2.3 we get that

‖M̃f‖Lp(Rd,w;Lq(Ω)) ≤ αp,q,d([w]Ap
)‖f‖Lp(Rd,w;Lq(Ω))

with αp,q,d an increasing function on R+. With a density argument we then get

that M̃ is bounded on Lp(Rd, w;Lq(Ω)).
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Remark 2.7. Using deep connections between harmonic analysis with weights and
martingale theory, Theorem 2.6 was obtained in [2] and [29, Theorem 3] for UMD
Banach function spaces in the case w = 1. It has been extended to the weighted
setting in [32]. As our main result Theorem 3.10 is formulated for iterated Lq(Ω)-
spaces we prefer the above more elementary treatment.

3. Main result

In this section we present the proofs of Theorems 1.1 and 3.10 and Corollary
3.14 which are our main results. In Subsection 3.1 we will first obtain a preliminary
result which is one of the ingredients in the proofs.

3.1. ℓs-boundedness. In this section we will introduce ℓs-boundedness and present
some simple examples. For this we will use the notion of a Banach lattice (see [22]).
An example of a Banach lattice is Lp or any Banach function space (see [36, Section
63]). In our main results only iterated Lp-spaces will be needed.

Although ℓs-boundedness is used implicitly in the literature for operators on
Lp-spaces, on Banach functions spaces it was introduced in [34] under the name
Rs-boundedness. An extensive study can be found in [20, 33].

Definition 3.1. Let X and Y be Banach lattices and let s ∈ [1,∞]. Then we call a
family of operators T ⊆ B(X,Y ) ℓs-bounded if there exists a constant C such that
for all integers N , for all sequences (Tn)

N
n=1 in T and (xn)

N
n=1 in X,

∥∥∥
(

N∑

n=1

|Tnxn|
s

) 1

s ∥∥∥
Y
≤ C

∥∥∥
(

N∑

n=1

|xn|
s

) 1

s ∥∥∥
X

with the obvious modification for s = ∞. The least possible constant C is called the
ℓs-bound of T and is denoted by Rℓs(T ) and often abbreviated as Rs(T ).

Example 3.2. Take p ∈ (1,∞) and let T ⊆ B(Lp(Rd)) be uniformly bounded by a
constant C. Then T is ℓp-bounded with Rp(T ) ≤ C.

The following basic properties will be needed later on.

Proposition 3.3. Let T ⊆ L(X,Y ), where X and Y are Banach function spaces.

(1) Let 1 ≤ s0 < s1 ≤ ∞ and assume that X and Y have an order continuous
norm. If T ⊆ L(X,Y ) is ℓsj -bounded for j = 0, 1, then T is ℓs-bounded
for all s ∈ [s0, s1] and with θ = s−s0

s1−s0
, the following estimate holds:

Rs(T ) ≤ Rs0(T )1−θRs1(T )θ ≤ max{Rs0(T ),Rs1(T )}

(2) If T is ℓs-bounded, then the adjoint family T ∗ = {T ∗ ∈ L(Y ∗, X∗) : T ∈

T } is ℓs
′

-bounded and Rs′ (T ∗) = Rs(T ).

Proof. (1) follows from Calderón’s theory of complex interpolation of vector-valued
function spaces (see [3] and [20, Proposition 2.14]). For (2) we refer to [20, Propo-
sition 2.17] and [24, Proposition 3.4].

Remark 3.4. Below we will only need Proposition 3.3 in the case X = Y = Lq(Ω).
To give the details of the proof of Proposition 3.3 in this situation one first needs
to know that X∗ = Lq′(Ω) which can be obtained by elementary arguments (see

Proposition A.1 below). As a second step one needs to show that X(ℓsN)∗ = X∗(ℓs
′

N )
and this is done in Lemma A.2.
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Example 3.5. Let 1 ≤ s0 ≤ q ≤ s1 ≤ ∞. Let X = Lq(Ω) and let T ⊂ L(X) be ℓsj -
bounded for j ∈ {0, 1}. Then for s ∈ [s0, q], R

s(T ) ≤ Rs0(T ) and for s ∈ [q, s1],
Rs(T ) ≤ Rs1(T ). Indeed, note that by Example 3.2,

Rq(T ) = sup
T∈T

‖T ‖ ≤ Rsj (T ), j ∈ {0, 1}.

Now the estimates follow from Proposition 3.3 by interpolating with exponents
(s0, q) and (q, s1).

In particular, it follows that the function s 7→ Rs(T ), is decreasing on [s0, q]
and increasing on [q, s1].

3.2. Convolution operators. Let K be the following class of kernels

K = {k ∈ L1(Rd) : for all simple f : Rd → R+ one has |k| ∗ f ≤ Mf a.e.}.

There are many examples of classes of functions k with this property (see [14,
Chapter 2] and [24, Proposition 4.5 and 4.6]). It follows from [24, Lemma 4.3] that
every k ∈ K satisfies ‖k‖L1(Rd) ≤ 1.

To keep the presentation as simple as possible we only consider the iterated space
X = Lq(Ω) with q ∈ (1,∞)n below (see (2.1)). For a kernel k ∈ L1(Rd), p ∈ (1,∞)
and w ∈ Ap define the convolution operator Tk on Lp(Rd, w;X) as Tkf = k ∗ f . Of

course by the definition of M̃ we also have |k ∗ f | ≤ M̃f almost everywhere for all
simple f : Rd → X .

Proposition 3.6. Let q ∈ (1,∞)n and X = Lq(Ω). For all s ∈ [1,∞] and p ∈
(1,∞) and w ∈ Ap, the family of convolution operators T = {Tk : k ∈ K} on
Lp(Rd, w;X) is ℓs-bounded and there is an increasing function αp,q,s,d such that
Rs(T ) ≤ αp,q,s,d([w]Ap

).

Proof. Let 1 < s < ∞. Assume that f1, · · · , fN are simple. Take t ∈ Ω and
i ∈ {1, · · · , N} arbitrary. Note that we have fi(·, t) ∈ Lp(Rd, w). Then since

|Tki
fi(x, t)| ≤ M̃fi(x, t) for almost all x ∈ R

d, the result follows from Theorem 2.6
using the vector (q1, · · · , qn, s) and the measure space

(Ω× {1, · · · , N},Σ× P ({1, · · · , N}), µ× λ)

with λ the counting measure. Now the result follows by the density of the simple
functions in Lp(Rd, w;Lq(Ω)).

The proof of the cases s = 1 and s = ∞ follow the lines of [24, Theorem 4.7],
where the unweighted setting is considered. In the case s = ∞ also assume that

f1, · · · , fN are simple. With the boundedness of M̃ from Theorem 2.6 we have
∫

Rd

∥∥∥ sup
1≤n≤N

|Tkn
fn(x)|

∥∥∥
p

Lq(Ω)
w(x) dx ≤

∫

Rd

∥∥∥∥ sup
1≤n≤N

M̃fn(x)

∥∥∥∥
p

Lq(Ω)

w(x) dx

≤

∫

Rd

∥∥∥∥M̃
(

sup
1≤n≤N

|fn|

)
(x)

∥∥∥∥
p

Lq(Ω)

w(x) dx

≤ αp,q,d([w]Ap
)p
∫

Rd

∥∥∥∥
(

sup
1≤n≤N

|fn|

)
(x)

∥∥∥∥
p

Lq(Ω)

w(x) dx

with αp,q,d an increasing function on R+. The claim now follows by the density of
the simple functions in Lp(Rd, w;Lq(Ω)).
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For s = 1 we use duality. For f ∈ Lp(Rd, w;X) and g ∈ Lp′

(Rd, w′;X∗), let

〈f, g〉 =

∫

Rd

〈f(x), g(x)〉X,X∗ dx.

It follows from Proposition A.1 that in this way Lp(Rd, w;X)∗ = Lp′

(Rd, w′;X∗).

Moreover, one has T ∗
k = Tk̃ with k̃(x) = k(−x). Now since k ∈ K if and only if

k̃ ∈ K we know by the second case that the adjoint family T ∗ = {T ∗ : T ∈ T } is

ℓ∞-bounded on Lp′

(Rd, w′;X∗). Now the result follows from Proposition 3.3.

Remark 3.7. Proposition 3.6 is an extension of [24, Theorem 4.7] to the weighted
setting. The result remains true for UMD Banach function spaces X and can be
proved using the same techniques of [24] where one needs to apply the weighted
extension of [29, Theorem 3] which is obtained in [32].

The endpoint case s = 1 of Proposition 3.6 plays a crucial rôle in the proof of
Theorems 1.1 and 3.10. Quite surprisingly the case s = 1 plays a central rôle in
the proof of [24, Theorem 7.2] as well, where it is used to prove R-boundedness of
a family of stochastic convolution operators.

3.3. Integral operators with operator valued kernel. In this section (Ω,Σ, µ)
is a σ-finite measure space such that Lq(Ω) is separable for some (for all) q ∈ (1,∞).

Definition 3.8. Let J be an index set. For each j ∈ J , let Tj : Rd × R
d →

L(Lq(Ω)) be such that for all φ ∈ Lq(Ω), (x, y) 7→ Tj(x, y)φ is measurable and
‖Tj(x, y)‖ ≤ 1. For k ∈ K define the operator Ik,Tj

on Lp(Rd, v;Lq(Ω)) as

(3.1) Ik,Tj
f(x) =

∫

Rd

k(x− y)Tj(x, y)f(y) dy

and denote the family of all such operators by IT .

In the above definition we consider a slight generalization of the setting of The-
orem 1.1: We allow different operators Tj for j ∈ J in the ℓs-boundedness result
of Theorem 3.10.

We first prove that the family of operators IT is uniformly bounded.

Lemma 3.9. Let 1 < p, q < ∞ and write X = Lq(Ω). Assume that for all φ ∈ X

and j ∈ J , (x, y) 7→ Tj(x, y)φ is measurable and ‖Tj(x, y)‖ ≤ 1. Then there exists
an increasing function αp,d on R+ such that for all Ik,Tj

∈ IT ,
∥∥Ik,Tj

∥∥
L(Lp(Rd,v;X))

≤ αp,d([v]Ap
), v ∈ Ap.

Proof. Let f ∈ Lp(Rd, v;X) arbitrary. Then by Minkowski’s inequality for integrals
in (i), the properties of k ∈ K in (ii) and boundedness of M on Lp(Rd, v) in (iii),
we get

‖Ik,Tj
f‖Lp(Rd,v;X) =

(∫

Rd

∥∥∥∥
∫

Rd

k(x− y)Tj(x, y)f(y) dy

∥∥∥∥
p

X

v(x) dx

) 1

p

(i)

≤

(∫

Rd

(∫

Rd

|k(x− y)|‖Tj(x, y)f(y)‖X dy

)p

v(x) dx

) 1

p

≤

(∫

Rd

(∫

Rd

|k(x− y)|‖f(y)‖X dy

)p

v(x) dx

) 1

p
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(ii)

≤

(∫

Rd

(M(‖f‖X)(x))
p
v(x) dx

) 1

p (iii)

≤ αp,d([v]Ap
) ‖f‖Lp(Rd,v;X)

with αp,d an increasing function on R+. This proves the lemma.

Theorem 3.10. Let 1 < p, q < ∞ and write X = Lq(Ω). Assume the following
conditions

(1) For all φ ∈ X and j ∈ J , (x, y) 7→ Tj(x, y)φ is measurable.
(2) For all s ∈ (1,∞), T = {Tj(x, y) : x, y ∈ R

d, j ∈ J } is ℓs-bounded,

Then for all v ∈ Ap and all s ∈ (1,∞), the family of operators IT ⊆ Lp(Rd, v;X) as
defined in (3.1), is ℓs-bounded with Rs(IT ) ≤ C where C depends on p, q, d, s, [v]Ap

and on Rσ(T ) for σ ∈ (1,∞) and is Ap-consistent.

Example 3.11. When Ω = R
e with µ the Lebesgue measure and q0 ∈ (1,∞), then

the weighted boundedness of each of the operators Tj(x, y) on Lq0(Re, w) for all Aq0 -
weights w in an Aq0 -consistent way, is a sufficient condition for the ℓs-boundedness
which is assumed in Theorem 3.10. Indeed, this follows from [5, Corollary 3.12]
(also see Theorem 2.3).

Usually, the weighted boundedness is simple to check with [12, Theorem IV.3.9]
or [15, Theorem 9.4.6], because often for each x, y ∈ R

d and j ∈ J , Tj(x, y) is given
by a Fourier multiplier operator in R

e.

Example 3.12. Let q ∈ (1,∞). Let T (t) = et∆ for t ≥ 0 be the heat semigroup,
where ∆ is the Laplace operator on R

e. Then it follows from the weighted Mihlin
multiplier theorem [12, Theorem IV.3.9]) that for all w ∈ Aq, ‖T (t)‖L(Lq(Re,w)) ≤ C,
where C is Aq-consistent. Therefore, as in Example 3.11, {T (t) : t ∈ R+} is ℓs-
bounded on Lq(Rd, w) by an Aq-consistent R

s-bound.
In order to give an example of an operator Ik,T as in (3.1), we could let T (x, y) =

T (φ(x, y)), where φ : Rd × R
d → R+ is measurable. Other examples can be given

if one replaces the heat semigroup by a two parameter evolution family T (t, s). As
explained in the introduction, this is the setting of [11] (see Theorem 1.1).

To prove Theorem 3.10 we will first show a result assuming ℓs-boundedness for
a fixed s ∈ (1,∞). Here we can also include s = 1.

Proposition 3.13. Let 1 ≤ s < q < ∞ and write X = Lq(Ω). Assume the
following conditions

(1) For all φ ∈ X and all j ∈ J , (x, y) 7→ Tj(x, y)φ is measurable.
(2) T = {Tj(x, y) : x, y ∈ R

d, j ∈ J } is ℓs-bounded.

Then for all p ∈ (s,∞) and all v ∈ A p

s
the family of operators IT ⊆ Lp(Rd, v;X)

defined as in (3.1), is ℓs-bounded and there exist an increasing function αs,p,q,d such
that

Rs(IT ) ≤ Rs(T )αs,p,q,d([v]A p
s

).

Proof. Without loss of generality we can assume Rs(T ) = 1. We start with a
preliminary observation. By [12, Theorem VI.5.2] or [15, Theorem 9.5.8], the ℓs-

boundedness is equivalent to the following: for every u ≥ 0 in L
q

q−s (Ω) there exists

a U ∈ L
q

q−s (Ω) such that

(3.2)

‖U‖
L

q
q−s (Ω)

≤ ‖u‖
L

q
q−s (Ω)

,
∫

Ω

|Tj(x, y)φ|
su dµ ≤

∫

Ω

|φ|sU dµ, x, y ∈ Ω, j ∈ J φ ∈ Lq(Ω).
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For n = 1, · · · , N take Ikn,Tjn
∈ IT and let In = Ikn,Tjn

where j1, . . . , jN ∈ J .

Take f1, · · · , fN ∈ Lp(Rd, v;X) and note that

∥∥∥∥

(
N∑

n=1

|Infn|
s

) 1

s ∥∥∥∥
Lp(Rd,v;X)

=

∥∥∥∥
N∑

n=1

|Infn|
s

∥∥∥∥
1

s

L
p
s

(

Rd,v;L
q
s (Ω)

)

.

Let r ∈ (1,∞) be such that 1
r +

s
q = 1 and fix x ∈ R

d. As Lr(Ω) = L
q

s (Ω)∗, we can

find a function u ∈ Lr(Ω), which will depend on x, with u ≥ 0 and ‖u‖Lr(Ω) = 1

such that

(3.3)

∥∥∥∥
N∑

n=1

|Infn(x)|
s

∥∥∥∥
L

q
s (Ω)

=

N∑

n=1

∫

Ω

|Infn(x)|
s
u dµ.

By the observation in the beginning of the proof, there is a function U ≥ 0 in Lr(Ω)
(which depends on x again) such that (3.2) holds. Since ‖kn‖L1(Rd) ≤ 1, Hölder’s

inequality yields

(3.4) |Infn(x)|
s
≤

∫

Rd

|kn(x− y)||Tjn(x, y)fn(y)|
s
dy.

Applying (3.4) in (i), estimate (3.2) in (ii), and Hölder’s inequality in (iii), we get:

N∑

n=1

∫

Ω

|Infn(x)|
s
u dµ

(i)

≤

N∑

n=1

∫

Ω

∫

Rd

|kn(x− y)||Tjn(x, y)fn(y)|
s
dy u dµ

=
N∑

n=1

∫

Rd

|kn(x− y)|

∫

Ω

|Tjn(x, y)fn(y)|
s
u dµ dy

(ii)

≤

N∑

n=1

∫

Rd

|kn(x− y)|

∫

Ω

|fn(y)|
s
U dµ dy

=

∫

Ω

N∑

n=1

∫

Rd

|kn(x − y)||fn(y)|
s
dy U dµ

(iii)

≤

∥∥∥∥
N∑

n=1

∫

Rd

|kn(x− y)||fn(y)|
s
dy

∥∥∥∥
L

q
s (Ω)

.

Combining (3.3) with the above estimate and applying the ℓ1-boundedness result

of Proposition 3.6 to |fn|
s
∈ L

p

s

(
R

d, v;L
q

s (Ω)
)
(here we use v ∈ A p

s
), we get

∥∥∥
( N∑

n=1

|Infn|
s) 1

s

∥∥∥
Lp(Rd,v;X)

≤

∥∥∥∥
N∑

n=1

∫

Rd

|kn(·− y)||fn(y)|
s dy

∥∥∥∥
1

s

L
p
s

(

Rd,v;L
q
s (Ω)

)

≤ αp,q,s,d([v]A p
s

)

∥∥∥∥
N∑

n=1

|fn|
s

∥∥∥∥
1

s

L
p
s

(

Rd,v;L
q
s (Ωe,w)

)

= αp,q,s,d([v]A p
s

)

∥∥∥∥

(
N∑

n=1

|fn|
s

) 1

s ∥∥∥∥
Lp(Rd,v;X)

with αp,q,s,d an increasing function on R+. This proves the ℓs-boundedness.
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Next we prove Theorem 3.10. For a constant φ depending on a parameter t ∈
I ⊂ R , we write φ ∝ t if φt ≤ φs whenever t ≤ s and s, t ∈ I.

Proof of Theorem 3.10. Fix q ∈ (1,∞), p = q, v ∈ Aq and κ = 2[v]Aq
≥ 2. The

case p 6= q will be considered at the end of the proof.
Step 1. First we prove the theorem for very small s ∈ (1, q). Proposition 2.1

gives σ1 = σq,κ,d ∈ (1, q) and Cq,κ,d such that for all s ∈ (1, σ1] and all weights
u ∈ Aq with [u]Aq

≤ κ,

[u]A q
s

≤ [u]A q
σ

≤ Cq,κ,d.

Moreover, σ1 ∝ κ−1 and C ∝ κ.
By Proposition 3.13, IT ⊆ L(Lq(Rd, v;X)) is ℓs-bounded for all s ∈ (1, σ1) and

(3.5) Rs(IT ) ≤ Rs(T )αs,q,d([v]A q
s

) ≤ Rs(T )βq,s,d,κ,

with βq,s,d,κ = αq,s,d(Cq,κ,d). Note that β ∝ κ and β ∝ s′.
Step 2. Now we use a duality argument to prove the theorem for large s ∈

(q,∞). By Proposition 2.1, v′ ∈ Aq′ and κ̃ = 2[v′]Aq′
= 2[v]

1

q−1

Aq
= 2(κ

1

q−1 ).

Note that we can identify X∗ = Lq′(Ω) and Lq(Rd, v;X)∗ = Lq′(Rd, v′;X∗) by
Proposition A.1. Define I∗

T = {I∗ : I ∈ IT }.
It is standard to check that for Ik,Tj

∈ IT the adjoint I∗k,Tj
satisfies

I∗k,Tj
g(x) =

∫

Rd

k̃(y − x)T̃j(x, y)g(y) dy = Ik̃,T̃j
g(x)

with k̃(x) = k(−x) and T̃j(x, y) = T ∗
j (y, x). As already noted before we have

k̃ ∈ K. Furthermore, by Proposition 3.3 the adjoint family T ∗ is Rs′ -bounded
with Rs′ (T ∗) = Rs(T ). Therefore, it follows from Step 1 that there is a σ2 =

σq′,κ̃,d ∈ (1, q′) such that for all s′ ∈ (1, σ2], I
∗
T is ℓs

′

-bounded on Lq′(Rd, v′;X∗)
and using Proposition 3.3 again, we obtain IT is ℓs-bounded and

(3.6) Rs(IT ) = Rs′(I∗
T ) ≤ Rs′(T ∗)βq′,s′,d,κ̃ = Rs(T )βq′,s′,d,κ̃.

Therefore, Proposition 3.3 yields that IT is ℓs-bounded on Lq(Rd, v;X) for all
s ∈ [σ′

2,∞).
Step 3. We can now finish the proof in the case p = q by an interpolation

argument. In the previous steps 1 and 2 we have found 1 < σ1 < q < σ′
2 < ∞ such

that Iα is ℓs-bounded for all s ∈ (1, σ1] ∪ [σ′
2,∞) with

(3.7) Rs(IT ) ≤ Rs(T )γq,s,d,κ.

where γq,s,d,κ = βq,s,d,κ if s ≤ σ1 and γq,s,d,κ = βq′,s′,d,κ̃ if s ≥ σ′
2. Clearly,

γ := γq,s,d,κ satisfies γ ∝ κ, γ ∝ s′ for s ∈ (1, σ1] and γ ∝ s for s ∈ [σ′
2,∞).

Moreover, σ1 ∝ 1
κ and σ′

2 ∝ κ.
Now Proposition 3.3 yields the ℓs-boundedness and the required estimates for

the remaining s ∈ [σ1, σ
′
2] and by (3.7) we find

Rs(IT ) ≤ max{Rσ1(IT ),R
σ′

2(IT )}

≤ max{Rσ1(T ),Rσ′

2(T )}γ.

where γ = max{γq,σ1,d,κ, γq′,σ2,d,κ̃}. By Example 3.5, Rσ1(T ) ∝ κ and Rσ′

2(T ) ∝
κ. Also γ ∝ κ in the above. Therefore, the obtained Rs-bound is Aq-consistent.
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Step 4. Next let p, q ∈ (1,∞). Fix s ∈ (1,∞). For n = 1, · · · , N take Ikn,Tjn
∈

IT and let In = Ikn,Tjn
. Take f1, · · · , fN ∈ Lp(Rd, v;X) ∩ Lq(Rd, v;X) and let

F =
∥∥∥
( N∑

n=1

|Infn|
s
) 1

s
∥∥∥
X

and G =
∥∥∥
( N∑

n=1

|fn|
s
) 1

s
∥∥∥
X
.

By the previous step we know that for all v ∈ Aq,

‖F‖Lq(Rd,v) ≤ C‖G‖Lq(Rd,v),

where C depends on d, s, q, and [v]Ap
and is Ap-consistent. Therefore, by Theorem

2.2 we can extrapolate to obtain for all p ∈ (1,∞) and v ∈ Ap,

‖F‖Lp(Rd,v) ≤ C̃‖G‖Lp(Rd,v),

where C̃ depends on C, p and [v]Ap
and is again Ap-consistent. This implies the

required Rs-boundedness for all p, q ∈ (1,∞) with constant C̃.

Corollary 3.14. Let Ω ⊆ R
d be an open set. Let 1 < p, q, q0 < ∞. Assume the

following conditions

(1) For all φ ∈ Lq(Ω) and j ∈ J , (x, y) 7→ Tj(x, y)φ is measurable.
(2) For all w ∈ Aq0 , sup

j∈J ,x,y∈Ω
‖Tj(x, y)‖L(Lq0(Ω,w)) ≤ C, where C is Aq0 -consistent.

Then for all v ∈ Ap all w ∈ Aq and all s ∈ (1,∞), the family of operators IT ⊆

Lp(Rd, v;Lq(Ω, w)) as defined in (3.1), is ℓs-bounded with Rs(IT ) ≤ C̃ where C̃

depends on p, q, d, s, [v]Ap
, [w]Aq

and on Rσ(T ) for σ ∈ (1,∞) and is Ap- and
Aq-consistent.

Proof. In the case Ω = R
e, note that Example 3.11 yields that for each q ∈ (1,∞)

and each w ∈ Aq and s ∈ (1,∞), T considered on Lq(Ω, w) is ℓs-bounded. More-
over, Rs(T ) ≤ K, where K depends on q, s, e and [w]Aq

in an Aq-consistent way.
Therefore, the result follows from Theorem 3.10.

In the case Ω ⊆ R
e, we reduce to the case Re by a restriction-extension argument.

For convenience we sketch the details. Let E : Lq(Ω, w) → Lq(Re, w) be the
extension by zero and let R : Lq(Re, w) → Lq(Ω, w) be the restriction to Ω. For

every x, y ∈ R
d and j ∈ J , let T̃j(x, y) = ETj(x, y)R ∈ L(Lq(Re, w)) and let

T̃ = {T̃j(x, y) : x, y ∈ R
d}. Since ‖T̃j(x, y)‖L(Lq(Re,w)) ≤ ‖Tj(x, y)‖L(Lq(Ω,w)) ≤ C,

it follows from the case Ω = R
e that IT̃ ⊆ Lp(Rd, v;Lq(Re, w)) is ℓs-bounded

with Rs(IT̃ ) ≤ C̃. Now it remains to observe that the restriction of Ik,T̃j
to

Lp(Rd, v;Lq(Ω, w)) is equal to Ik,Tj
and hence Rs(IT ) ≤ Rs(IT̃ ) ≤ C̃.

Next we will prove Theorem 1.1. In order to do so we recall the definition of
R-boundedness.

Definition 3.15. Let X and Y be Banach spaces and let (εn)n≥1 be a Rademacher
sequence on a probability space (A,A ,P). A family of operators S ⊆ B(X,Y ) is
said to be R-bounded if there exists a constant C such that for all integers N , for
all sequences (Sn)

N
n=1 in S and (xn)

N
n=1 in X,

∥∥∥
N∑

n=1

εnSnxn

∥∥∥
L2(A;Y )

≤ C
∥∥∥

N∑

n=1

εnxn

∥∥∥
L2(A;Y )

The least possible constant C is called the R-bound of S and is denoted by R(S ).
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Remark 3.16. For X = Y = Lq(Ω) with q ∈ (1,∞)n, the notions ℓ2-boundedness
andR-boundedness of any family S ⊆ B(X,Y ) coincide and C−1R2(S ) ≤ R(S ) ≤
CR2(S ), where C is a constant which only depends on q. This assertion follows
from the Kahane-Khintchine inequalities (see [8, 1.10 and 11.1]).

Proof of Theorem 1.1. The result follows directly from Corollary 3.14 and Remark
3.16 with X = Lp(R;Lq(Ω)).

Appendix A. Duality of iterated Lq-spaces

Let (Ωi,Σi, µi) for i = 1, . . . n be σ-finite measure spaces. The dual of the
iterated space Lq(Ω) as defined in (2.1), is exactly what one would expect. In

a general setting one can prove that Lp(Ω;X)∗ = Lp′

(Ω, X∗) for reflexive Banach
function spacesX from which the duality for Lq(Ω) follows, as is done in [9, Chapter
IV] using the so-called Radon-Nikodym property of Banach spaces. Here we present
an elementary proof just for Lq(Ω).

Proposition A.1. Let q ∈ (1,∞)n. For every bounded linear functional Φ on

Lq(Ω) there exists a unique g ∈ Lq′(Ω) such that:

(A.1) Φ(f) =

∫

Ω

fg dµ

for all f ∈ Lq and ‖Φ‖ = ‖g‖Lq′(Ω), i.e. Lq(Ω)∗ = Lq′(Ω).

Proof. We follow the strategy of proof from [30, Theorem 6.16]. The uniqueness
proof is as in [30, Theorem 6.16]. Also by repeatedly applying Hölder’s inequality
we have for any g satisfying (A.1) that

(A.2) ‖Φ‖ ≤ ‖g‖Lq′ (Ω).

So it remains to prove that g exists and that equality holds in (A.2). As in [30,
Theorem 6.16] one can reduce to the case µ(Ω) < ∞. Define λ(E) = Φ(χE) for
E ∈ Σ. Then one can check that λ is a complex measure which is absolutely
continuous with respect to µ. So by the Radon-Nikodym Theorem [30, Theorem
6.10] we can find a g ∈ L1(Ω) such that for all measurable E ⊆ Ω

Φ(χE) =

∫

E

g dµ =

∫

Ω

χEg dµ

and from this we get by linearity Φ(f) =
∫
Ω fg dµ for all simple functions f . Now

take a f ∈ L∞(Ω) arbitrary and let fi be simple functions such that ‖fi−f‖L∞(Ω) →

0 for i → ∞. Then since µ(Ω) < ∞ we have ‖fi − f‖Lq(Ω) → 0 for i → ∞. Hence

(A.3) Φ(f) = lim
i→∞

Φ(fi) = lim
i→∞

∫

Ω

fig dµ =

∫

Ω

fg dµ.

We will now prove that g ∈ Lq′(Ω) and that equality holds in (A.2). Take k ∈ N

arbitrary. Let E1
k = {s ∈ Ω : 1

k ≤ |g(s)| ≤ k} and define for i = 2, · · · , n

Ei
k =

{
s ∈ Ω : ‖gk(s1, · · · , si−1, ·)‖Lq′

i (Ωi,···L
q′n(Ωn))

≥
1

k

}
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Now take gk = g
∏n

i=1 χEi
k
and let α be its complex sign function, i.e. |α| = 1 and

α|gk| = gk. Take

f(s) = α|gk(s)|
q′n−1

n∏

i=2

‖gk(s1, · · · , si−1, ·)‖q
′

i−1
−q′i

Lq′
i (Ωi,···L

q′n (Ωn))

where we define 0 · ∞ = 0. Then f ∈ L∞(Ω) and one readily checks that

(A.4)
∫

Ω

fgk dµ = ‖gk‖
q′
1

Lq′ (Ω)
and ‖f‖Lq(Ω) = ‖gk‖

q′
1

q1

Lq′ (Ω)
.

So from (A.4) we obtain

‖gk‖
q′
1

Lq′ (Ω)
=

∫

Ω

fgk dµ = Φ(f) ≤ ‖f‖Lq(Ω)‖Φ‖ = ‖gk‖
q′
1

q1

Lq′(Ω)
‖Φ‖

which means ‖gk‖Lq′ (Ω) ≤ ‖Φ‖. Since this holds for all k ∈ N we obtain by Fatou’s

lemma that ‖g‖Lq′(Ω) ≤ ‖Φ‖, which proves that g ∈ Lq′(Ω) and ‖g‖Lq′ (Ω) = ‖Φ‖.

From this we also get (A.3) for all f ∈ Lq′(Ω) by Hölders inequality and the
dominated convergence theorem. This proves the required result.

To obtain the duality result in Proposition 3.3 for s = 1 and s = ∞, one also
needs the following end-point duality result. Let X(ℓsN) be the space of all N -tuples
(fn)

N
n=1 ∈ XN with

‖(fn)
N
n=1‖X(ℓs

N
) =

∥∥∥
( N∑

n=1

|fn|
s
)1/s∥∥∥

X

with the usual modification if s = ∞.

Lemma A.2. Define X = Lq(Ω). Take s ∈ [1,∞] and N ∈ N. Then for every

bounded linear functional Φ on X(ℓsN) there exists a unique g ∈ X∗(ℓs
′

N ) such that

Φ(f) =

N∑

i=1

〈fi, gi〉X,X∗

for all f ∈ X(ℓsN) and ‖Φ‖ = ‖g‖X∗(ℓs
′

N
), i.e. X(ℓsN)∗ = X∗(ℓs

′

N ).

Also this result can be proved with elementary arguments. Indeed, for r1, r2 ∈
[1,∞] we have X(ℓr1N ) = X(ℓr2N ) as sets and the following inequalities hold for all
f ∈ X(ℓrN) and r ∈ [1,∞]

(A.5)
‖f‖X(ℓr

N
) ≤ ‖f‖X(ℓ1

N
) ≤ N1− 1

r ‖f‖X(ℓr
N
)

‖f‖X(ℓ∞
N

) ≤ ‖f‖X(ℓr
N
) ≤ N

1

r ‖f‖X(ℓ∞
N

).

Now the lemma readily follows from X(ℓrN)∗ = X∗(ℓr
′

N ) for r ∈ (1,∞) and letting
r ↓ 1 and r ↑ ∞.
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