
 
 

Delft University of Technology

Estimation of Charge, Energy and Polarity of Noisy Partial Discharge Pulses

Rodrigo Mor, A.; Castro Heredia, Luis; Muñoz, Fabio

DOI
10.1109/TDEI.2017.006381
Publication date
2017
Document Version
Final published version
Published in
IEEE Transactions on Dielectrics and Electrical Insulation

Citation (APA)
Rodrigo Mor, A., Castro Heredia, L., & Muñoz, F. (2017). Estimation of Charge, Energy and Polarity of
Noisy Partial Discharge Pulses. IEEE Transactions on Dielectrics and Electrical Insulation, 24(4), 2511-
2521. https://doi.org/10.1109/TDEI.2017.006381

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TDEI.2017.006381
https://doi.org/10.1109/TDEI.2017.006381


 

Estimation of Charge, Energy and Polarity of Noisy Partial 
Discharge Pulses 

 
A. Rodrigo Mor, L. C. Castro Heredia  

Delft University of Technology  
Electrical Sustainable Energy Department  

Delft, the Netherlands  

and F. A. Muñoz 
Universidad del Valle  

Escuela de Ingeniería Eléctrica y Electrónica  
Cali, Colombia

 
ABSTRACT 

The algorithms for the computation of charge, energy and polarity of partial discharge 
(PD) pulses are affected by noise, which can lead to over and underestimation of the PD 
quantities. These quantities can be computed in time domain, frequency domain and 
according to the impulse response method (standard IEC270). In this paper, a 
theoretical study is performed in which each computation method is applied to 
simulated PD pulses having different waveforms and noise level to evaluate the extent 
of affectation on the results due to the noise. The results suggest that the error in the 
estimation of the PD charge is higher for oscillatory pulses regardless of the method. In 
contrast, the estimation of energy is more resilient to the PD waveform and the 
estimation in frequency domain gives rise to low error. In time domain, the charge an 
energy estimation method can be improved by filtering the PD pulse and integrating 
the output pulse to certain limits. A new method for the estimation of PD polarity is 
proposed based on the derivative of the filtered pulse, showing accurate estimation of 
the polarity even for the pulses with low signal to noise ratio. 

   Index Terms — Partial discharge, charge, energy, quasi-integration, pulse filtering. 
 

1 INTRODUCTION 

   THE importance of partial discharge (PD) measurements 
for the diagnosis of high voltage equipment has motivated the 
development of a wide range of measuring circuits and 
instruments. Since the rise time of a PD pulse can typically be 
as short as a few nanoseconds then an important feature of a 
measuring instrument is its bandwidth. This is because it is 
closely related to the waveform of the recorded pulses. If an 
ideal measurement is achieved, the measured PD pulse should 
be unipolar with no oscillation. However, apart from the 
bandwidth, other factors affect the shape of the signals 
arriving to the sensors: the characteristics of the PD pulse at its 
origin, location of the PD source within the HV equipment and 
the distance of the PD source to the sensor. The location and 
distance of the PD source is relevant for the measurements 
because largely capacitive or inductive test objects such as 
stator windings, cables or gas insulated systems behave like 
transmission lines which yield to attenuation, distortion and 
oscillation of the recorded pulses [1, 2]. In practice, the pulse 

signals are in addition distorted by the always present noise. 
The signals, are then processed by both time and frequency 
methods to estimate relevant parameters such as the apparent 
charge, energy and polarity. To accomplish this estimation 
accurately, the PD signals must often be extracted from noise, 
which is a challenging task due to the broad variety of noise 
sources. G. Stone makes a classification of noise sources as 
external and internal noise [3]. The external noise, e.g. arcing 
pulses, thyristor switching pulses, radio transmissions and PD 
pulses from the power system, can be thought as unwanted 
signals that may be erroneously processed as PD signals from 
the test object or swamp the PD signal of interest. The 
knowledge about the signal source has led to noise rejection 
techniques based on attributes of the PD signal and the noise, 
for instance, phase position, frequency spectrum (of the PD 
pulse and the noise), polarity, repetition rate and physical 
location, etc. The internal noise (also referred to as thermal 
noise or white noise) refers to the noise produced by thermally 
induced current fluctuations in the electronics of the 
measuring circuit. Often, the internal noise is seen as less 
harmful than the external one. Yet, the recent increase of 
popularity and availability of unconventional PD measuring 
systems can arise new concerns about the white noise added 
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due to the digitalization of the signals by the analogue-digital 
converter (ADC). As pointed in [4], an uniform step 
quantization would not represent adequately an analogue 
signal with a non-uninform amplitude distribution, as it is the 
case with many PD sources.     

In addition, since no recommendations are given by any 
standard for the acquisition of PD signal by means of 
unconventional systems, then the relevant parameters for the 
acquisition such as the sampling frequency, the acquisition 
time, the number of samples, etc., are arbitrarily set. Results in 
[5] have shown that the computation of PD parameters from 
digital PD signals are indeed affected by the acquisition 
parameters which also might hinder the comparison between 
tests.  

Both external and internal noise sources end up worsening 
the signal to noise ratio (SNR) of the signals. Ultimately, low 
levels of SNR can overcome the processing capabilities of the 
measuring systems. Bearing in mind the strong influence of 
the bandwidth on the waveform and the unavoidable presence 
of noise in the recorded signals, it is the aim of this paper to 
evaluate the performance of time and frequency domain 
methods in the estimation of charge, energy and PD pulse 
polarity when the PD current pulses have different SNR levels 
and as well as when they have different waveforms. 

2 OVERVIEW OF THE EFFECT OF NOISE 

ON THE ESTIMATION OF PD 

PARAMETERS 
By definition the electric charge Q of a PD current pulse i(t) 

is the integral of the current in time according to the equation 
(1). In relation to a measuring system, the signal i(t) is the 
actual PD current resulting after scaling the sensor output by 
its transfer function, being tpd the pulse duration. 

 

 pdt

dttidttiQ

00

)()(  (1) 

As can be seen, the former analytical definition requires the 
integration of the current pulse up to infinity. However, the 
value of charge is determined only by the area of the pulse. 
When i(t) is a measured signal then the measuring process 
itself and the electromagnetic background, among other 
factors, will add noise and disturbances to the acquisition. 
Therefore the measured PD current signal imeas(t) becomes the 
equation (2) and the charge computation now has to take into 
consideration the sources of noise n(t) as in the equation (3). 

)()()( tntitimeas   (2) 
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The term n(t) in the present contribution is defined as a 
Gaussian White Noise (GWN) component, which is typical 
from ADC noise. A remarkable feature of GWN is that it is a 
stationary random process with theoretically zero mean, 
having the property that any two values of GWN are 
statistically independent no matter how close they are in time 
[6]. Given this property of GWN, the evaluation of the 

equation (3) should equal the equation (1) because the integral 
of n(t) is zero when evaluated from zero to infinity.  

When the signal is no longer continuous but discrete as 
digital PD signals, the result from the equation (3) differs from 
equation (1) because in discrete time, where a finite number of 
samples N are used to represent a signal having a sampling 
period T=1/Fs (Fs sampling frequency) the mean value of the 
noise vector might not be zero. When dealing with discrete 
signals, then the equation (3) becomes the equation (4). 
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Figure 1.  Oscillatory current pulse without noise (top). Cumulative integral 
of the current pulse to estimate the charge (bottom).  

To illustrate the effect of white noise on the result of the 
equation (4), the charge of an oscillating PD current pulse 
without and with a certain level of noise is computed as shown 
in Figure 1 and Figure 2. The amplitude and period of the 
pulse were set to result in a charge of 100 pC. 

As can be seen in Figure 1 the result of the charge value for 
the pulse without noise do not deviate from the expected value 
of 100 pC. For the case of the pulse having a level of noise 
(Figure 2) the computed value the computed value is roughly 
twice the expected value. In a general basis, the result can be 
either an underestimation or an overestimation depending on 
the particular characteristics of the noise. In addition, it seems 
plausible to claim that the acquisition parameters indeed affect 
the computation methods because the sampling rate, the 
number of samples, the vertical resolution, among other 
parameters related to the acquisition influence the level of 
signal to noise ratio. 

Since a level of white noise is always present in practical 
measurements, alternative computation methods are required 
to counterbalance its influence. The computation of other 
significant parameters such as the pulse energy requires the 
evaluation of cumulative integrals thus being also affected by 
the noise. In the next sections, a detailed analysis will be 
presented of the performance of time and frequency domain 
methods and the impulse response method to compute charge, 
energy and pulse polarity when applied to signals resembling 
PD current pulses to which white noise was added. 

0 
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Figure 2.  Oscillatory current pulse having a certain level of noise (top). 
Cumulative integral of the current pulse to estimate the charge (bottom).  

3 PULSE WAVEFORMS 
Different PD current pulses were generated by means of a 

math software having each a different waveform. A series of 
5000 pulses were generated for each type of pulse. The pulse 
length was 1000 ns and the sampling frequency was 1 GS/s 
(time resolution 1 ns). The analytical equations used to 
generate every type of pulse are summarized in Table 1, 
whereas the shape of the generated pulses can be seen in 
Figure 3. To reconstruct such pulses, the units for the time t 
shall be ns and u(t) is the step function. It can be noted as well 
that the pulses are shifted t0 = 150 ns in time. The amplitude 
and coefficients in the analytical equations for each current 
pulse were chosen to result in a charge of 100 pC. 

Table 1. Analytical Equations to Generate Each Type of PD Current Pulse. 

TYPE EQUATION 
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From practical measurements it is well known that the pulse 
shapes at the recording point can vary from unipolar pulses to 
oscillatory pulses. As reported in [7], corona discharge pulses are 
examples of unipolar pulses with a pulse duration of the order of  
100 ns for which pulses of type 1 and 2 are good representations. 
Other PD sources like free-moving particle discharges and 
internal discharges showed oscillatory behaviour as that described 
by pulses of type 4 and 5. In addition, Figure 3 allows to highlight 
that on account of pulse duration and oscillations the frequency 
spectrum of pulses may be very different than the theoretical flat 
spectrum usually assumed for PD pulses in literature. In this 
sense, the type of pulse 3 with a short duration of just 10 ns 
approaches the best to a flat spectrum. 

  
Figure 3.  Waveforms corresponding to each pulse type and comparison of 
the corresponding frequency spectrum. 

4 CHARGE ESTIMATION METHODS 
The apparent charge of a PD pulse can be estimated by 

several methods both in time and frequency domain. In time 
domain, the charge value results from the time integral over 
the PD current pulse. In frequency domain, the low frequency 
components of the PD current pulse are used to approximate 
the charge value. The method proposed by the standard 
IEC270 is a particular impulse response method that requires 
the computation of a scale factor after a calibration with a 
pulse of known charge. The particularities for each method are 
described as follows.  

4.1 FREQUENCY DOMAIN CHARGE ESTIMATION 
METHOD 

The Fourier Transform of an ideal fast and very short 
current pulse results in a frequency spectrum being flat in a 
wide range of frequencies [8] as depicted in Figure 4. 
Furthermore, it can be claimed that the mean component (DC 
component) carries information about the area of the current 
pulse which is the charge value of the pulse.  

Type 4 

Type 5 
Type 3 
Type 2 

Type 1 

Type 1 Type 2 

Type 3 Type 4 

Type 5 
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polarity from the sign of the peak of the filtered pulse. From 
Figure 11b that corresponds to the IEC270-filtered output signal 
of the positive pulse in Figure 11a, it is not obvious that the 
input pulse has positive polarity, and in fact the first peak has 
negative polarity.      

As an approach to compute the polarity of pulses that is more 
resilient to oscillation and noise, in this paper a derivative 
method of the filtered output signal has been implemented. 
First, the input pulses are fed into a second order, Butterworth 
filter with a lower cut-off frequency of 10 kHz and upper 
frequency of 500 kHz. Then, the approximate discrete 
derivative of the output signal is computed (Figure 11c). If the 
assumption is made that the actual pulse should have the highest 
rise time than any other oscillation in the output signal, then the 
sign of maximum peak of derivative curve succeeds in 
computing the polarity of the input pulse. 

 
Figure 11.  Filtering of PD pulse and derivative method for the computation 
of pulse polarity: top) input PD signal, middle) filtered pulse and bottom) 
derivative of the filtered pulse.  

7 CHARGE ESTIMATION RESULTS 
The simulation study consisted of evaluating the effect of 

the Gaussian White Noise on each of the methods for charge 
and energy estimation. For this analysis, the pulses listed in 
Table 1 were scaled to 100pC and for the set of 5000 pulses of 
each type the signal to noise ratio (SNR) was varied from 1dB 
to 30dB. The reference values of energy were computed as 
well for each pulse type (without noise) and are summarized 
in Table 2. 

For each pulse type, the effect of noise was evaluated 
through the statistical parameters  and µ. The reference 
values were computed by means of the time integrals over the 
original pulses without noise listed in Table 1. The values of 
µ refer to the variation of the computed value over the pulse 
with a SNR of 30dB with respect to the reference value. With 
a SNR of 30dB the noise level is almost negligible, therefore 
the values of µ are accounting only for the variation of each 
computation method when compared to the result of 
evaluating the time integrals in the definition of charge and 

energy. The values of represent the standard deviation of 
errors of the 5000 pulses having different SNR levels.  

Table 2. Reference Values of Charge and Energy for Each Pulse Type.  

Type 
CHARGE 

[pC] 
ENERGY 

[pJ] 

Type 1 100 0.1000 
Type 2 100 0.1598 
Type 3 100 1.7620 
Type 4 100 5.5836 
Type 5 100 14.109 

Due to space limitations, only the results of charge values as 
a function of SNR for the pulse type 5 will be discussed in 
detail in the next sections. The results corresponding to the 
other pulse types will be discussed by means of the values of 
µ and     

7.1 RESULTS OF CHARGE ESTIMATION METHOD 
IN TIME DOMAIN 

The charge values computed in time domain for the pulse 
type 5 are presented in Figure 12, where can be observed that 
the scatter of the results increased as the SNR decreased.  

 
Figure 12.  Results of the charge estimation method in time domain for the 
oscillatory pulse type 5.   

At lower SNR, it was possible to see a significant effect of 
noise over the computation of the charge. For instance, in 
some cases the charge value was overestimated, reaching 
values as high as 350 pC, i.e. 3.5 times higher than the 
reference value. There were other cases where a critical 
underestimation was also possible leading to charge values of 
0 pC. For the pulse whose charge was overestimated to 
350 pC, the filtered pulse shown in Figure 13 (top-right) still 
did not reach a steady value before the pulse length of 
1000 ns, and therefore the cumulative integral Figure 13 
(bottom) had an increasing trending without any obvious local 
maximum.  

The examination of the pulses that deviated the most from 
the reference value and with the lowest SNR showed large DC 
components (0 Hz) in the frequency spectrum of the noise. As 
an example, the noise signal and its frequency spectrum, 
added to a pulse resulting in a SNR of 1.93dB is shown in 
Figure 14. For this pulse, the DC component of the noise is 
roughly 250 pC and the value of charge was overestimated to 
347 pC, which means an error of 247%.  

Contrasting with the previous case, Figure 15 depicts the 
noise signal and its frequency spectrum for a pulse that despite 
having SNR of 1.15dB, the DC component of the noise 
happened to be very low, 14 pC. Note that in Figure 14 and 
Figure 15 only frequencies up to 10 MHz are plotted. The 
higher frequencies are removed by the Butterworth filter so 
they do not affect the charge computation. 
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Figure 13. Pulse type 5 for which the charge value was overestimated to 
350 pC. Pulse signal having a SNR of 1.93dB (top-left), Filtered pulse (top-
right), cumulative integral of the filtered pulse (bottom).  

Figure 14.  Noise signal and its frequency spectrum for a pulse with SNR of 
1.93dB and estimated charge of 347 pC. 

In general, it was observed that the estimation of charge 
deviated the most for those pulses whose added noise had 
large DC components at low frequencies. Because of its 
random behaviour, at low SNR the noise can lead to 
overestimation or underestimation of the charge value.    

 
Figure 15.  Noise signal and its frequency spectrum for a pulse with SNR of 
1.15dB and estimated charge of 101 pC. 

As the SNR increases the estimation of charge is less 
affected by the noise and the results tend to cluster around the 
reference value of charge as can be noted in Figure 12.  

The statistical analysis through the variation of µ and  for 
all pulse types is shown in Table 3. In addition, the charge 
values were computed without filtering the pulse signals, i.e. 
evaluating the cumulative integral over the original noisy 
pulses, in order to compare results from both methods. 

Table 3. Statistical Analysis of the Charge Estimation in Time Domain with 
and without Filtering of Pulses. 

Type 

Filtered  
Time Domain 

Time Domain 

 
[%] 


[%] 

µ 
[%] 


[%] 

Type 1 4.1 2.2 -0.2 3.4 
Type 2 3.9 2.6 -0.6 4.4 
Type 3 5.3 9.4 0.3 14.7 
Type 4 8.4 25.4 2.0 25.2 
Type 5 5.0 27.1 0.0 36.7 

In general terms, the estimation method upon the filtered 
pulses provides accurate results of charge as supported by the 
lower values of meaning less scatter of the results, 
compared to the time domain method without filtering. For 
example, the deviation for the set of charge values of the pulse 
type 5 had a reduction of almost 10%, decreasing from 36.7% 
to 27.1%. Nevertheless, the values of µ are slightly higher 
with this method.  

7.2 RESULTS OF CHARGE ESTIMATION METHOD 
IN FREQUENCY DOMAIN 

The results of the charge estimation for the pulse type 5 as a 
function of SNR are shown in Figure 16.    

The estimation of charge in frequency domain turned out 
being affected in the same way as with the method in time 
domain, i.e. the scatter of results increased with decreased 
SNR. However, the method in frequency domain appear to be 
more accurate compared to the results in time domain, hence 
the values of µ are lower as can be noticed after comparing 
Table 3 and Table 4.  

 
Figure 16.  Results of the charge estimation method in frequency domain for 
the oscillatory pulse type 5.   

Table 4. Statistical Analysis of the Charge Estimation in Frequency Domain. 

Type  
[%] 


[%] 

Type 1 -1.7 2.4 
Type 2 -1.0 3.1 
Type 3 -0.2 7.0 
Type 4 6.5 18.3 
Type 5 0.0 27.0 

 
The deviation of errors resulting in frequency domain 

slightly decreased, particularly for the pulse type 4 and 3. The 
estimation of the charge for the pulse types 1 and 2 showed 
the lowest dispersion, as opposed to the oscillatory pulse type 
5 whose error deviation was the highest regardless the 
computation method. 

7.3 RESULTS OF IMPULSE RESPONSE CHARGE 
ESTIMATION METHOD  

Of particular interest for this paper was to vary the 
relationship between the pulse frequency spectrum and 
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filter bandwidth and limiting frequencies, considering 
frequencies within and beyond those recommended in the 
standard IEC270. The specific values for each case of study 
are summarized in Table 5 as well as the statistical analysis 
of the results of the charge estimation. In this first 
sensitivity analysis, only the pulse type 5 were used to test 
each filter due to its oscillatory waveform.  

Table 5 highlights that the deviation in the charge 
estimation values decreases as the cut-off frequencies of 
the filters increased. For instance, for the filter with cut-off 
frequencies of 100-200 kHz the deviation value was 27.2%, 
but with cut-off frequencies of 800-900 kHz the deviation 
value was reduced down to 17%. This reduction of the 
deviation can be observed in Figure 17 where clearly is 
noticed that the estimated charge values remain more 
clustered around the reference value of 100 pC. 

Table 5. Performance Analysis of Filters according to Impulse Response 
method and Statistical Analysis of Charge Estimation for Pulse Type 5.  

# 
Bandwidth 

[kHz] 

f1 

 [kHz] 

f2 

 [kHz] 

 

 [%] 



[%] 
1 90 10 100 1 27.3 
2* 100 100 200 1.3 27.2 
3 100 400 500 -0.1 19.5 
4 100 600 700 0.7 18.8 
5 100 700 800 -0.1 17.1 
6 100 800 900 1.2 17 
7 190 10 200 0.3 28.3 
8* 200 100 300 -0.5 27.2 
9 200 500 700 1.6 18.2 
10 200 600 800 2.0 17.5 
11 200 700 900 -1.7 16.1 
12 290 10 300 9.4 27.5 
13* 300 100 400 -2.3 22.6 
14 300 400 700 1.3 18 
15 300 500 800 2.5 17.8 
16 300 600 900 0.1 16.9 
17 400 10 400 1.0 25.5 
18 400 300 700 -2.3 18.3 
19 400 400 800 1.8 18 
20 400 500 900 -2.3 16 
21 500 10 500 -2.9 23.7 
22 500 300 800 0.9 18.2 
23 500 400 900 -3.9 17.1 

*filters within IEC270 limits 

To increase the cut-off frequencies might result in a way 
to filter out the low-frequency components of noise, 
especially the DC component that, as was discussed in 
previous section, can have large magnitudes affecting the 
charge estimation. 

In addition, the upper cut-off frequency seemed to have a 
larger effect on the reduction of the deviation than the 
increase of the bandwidth. Consistently, all filters with 
upper cut-off frequency of 900 kHz showed the lowest 
values of deviation regardless the bandwidth of the filter. 
Conversely, the filters with the lowest lower cut-off 
frequency led to the highest deviation of the results, with 
just a slight reduction for the cases of filters with 
bandwidth of 400 and 500 kHz.  

 
Figure 17.  Effect of the increase of the bandpass filter cut-off frequencies on 
the dispersion of the charge estimation values. 

As suggested by low values of µ, the computed values of 
charge remained around 100 pC almost regardless of the tested 
filter. The highest variation of µ of 9.4% was for the case of 
the filter with bandwidth of 290 kHz, without any obvious 
correlation to the parameters of the filter. 

The second analysis that was conducted was to apply the 
filters that gave rise to the lowest deviation, i.e. those with 
 <18%, to all of the pulse types considered in this paper. In 
practical measurements, an IEC measuring system is 
calibrated with a pulse waveform that can be very distinct 
from the waveforms of the PD pulses reaching the bandpass 
filter. Due to this, the calibration factor for each filter was 
computed by using only the waveform of the pulse type 3. The 
results of this analysis are presented in Table 6. 

Table 6. Statistical Analysis for Filters 5, 6, 10, 11, 14, 15, 16, 19, 20 and 23. 

Type 
Filter # 5 Filter # 6 Filter # 10 Filter # 11 
 
[%] 


[%] 

µ 
[%] 


[%] 

µ 
[%]


[%]

µ 
[%]


[%]

Type 1 -1.8 1.6 -3.7 1.5 -2.6 1.5 -3.0 1.5 
Type 2 -1.6 2.0 -2.7 1.9 -2.0 1.9 -2.4 1.9 
Type 3 1.1 6.3 -0.8 6.7 -0.6 6.7 -0.6 6.8 
Type 4 9.8 11.7 9.1 10.2 8.5 11.5 10.1 11.5 
Type 5 5.4 17.1 9.2 17.4 4.7 17.6 6.7 16.7 

  

Type 
Filter # 14 Filter # 15 Filter # 16 Filter # 19 
 
[%] 


[%] 

µ 
[%] 


[%] 

µ 
[%]


[%]

µ 
[%]


[%]

Type 1 -1.6 1.8 -1.6 1.7 -2.0 1.5 -1.7 1.7 
Type 2 -1.0 2.2 -1.0 2.1 -1.1 1.9 -1.3 2.2 
Type 3 0.2 7.5 -0.4 6.7 0.5 6.4 -0.1 7.4 
Type 4 8.0 12 7.5 11.3 12.5 11.3 8.1 12.1 
Type 5 2.0 18.8 2.8 17.9 6.7 16.5 6.1 18.5 

 

Type 
Filter # 20 Filter # 23 
 
[%] 


[%] 

µ 
[%] 


[%] 

Type 1 -3.0 1.6 -0.8 1.5 
Type 2 -2.3 1.9 -0.4 2.0 
Type 3 -0.7 6.8 0.5 6.8 
Type 4 9.1 11.0 10.4 11.4 
Type 5 5.0 18.4 6.8 18.6 

The collection of the results for the several filters tested 
allowed to be aware in a straightforward way of the error in 
the charge estimation that is achieved on account of a 
calibration factor computed from a particular waveform. Pulse 
type 1 and 2 are non-oscillatory with a waveform similar to 
that of type 3 (used as calibration pulse) and therefore it is 
reasonable to ascribe their low values of µ to the similarities 
of the waveforms. As the pulse waveform starts to differ from 
the calibration pulse, as in the case of the oscillatory pulse 
type 4 and 5, the error in the charge estimation increased with 
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a factor of at least few times. As can be seen in the zoom in 
the frequency spectrum of Figure 3, the resonance peak 
around 10 MHz for the pulse type 4 results in frequency 
components larger than those for the pulse type 3 within the 
frequency range of the filters. This explains also why the 
values of µ for the pulse type 4 were always higher for all 
the filters.  

Regarding the effect of noise on the charge estimation, the 
deviation showed for all the cases of study an increase from 
the non-oscillatory pulses to the oscillatory ones regardless of 
the filter tested. It is also interesting to note that the filter #15 
with frequencies of 500-800 kHz led to the lowest values of 
µ. On the other hand, the change in the cut-off frequencies 
did not show a significant reduction of the deviation This is, 
the values of deviation for each pulse type remained almost 
unchanged, e.g. for the pulse type 1,  was around 1.5% and 
for the pulse type 5,  was around 18% regardless of the filter 
frequencies. 

8 ENERGY ESTIMATION RESULTS 
In the estimation of the energy, when the time integral is 

evaluated directly over the pulses without any filter, the error 
increases with decreasing SNR. In fact, the effect of noise led 
to deviation values of 18% as can be noted in Table 7. By 
filtering the signals, a slight reduction of the error in the 
energy estimation is achieved and the deviation values 
decreased down to around 15%. In contrast, a significant 
reduction of the deviation is obtained by means of the methods 
in frequency domain and impulse response.   

Table 7. Statistical Analysis of Energy Estimation. 

Type 

Time 
domain 

Filtered  
time domain 

Frequency 
domain 

Impulse 
response 

 
[%] 


[%] 

µ 
[%] 


[%] 

µ 
[%]


[%]

µ 
[%]


[%]

Type 1 -0.1 18.3 4.3 15 -1.5 2.2 -1.7 5.8 
Type 2 0.1 18.4 4.0 14.9 -0.7 2.2 -0.3 5.6 
Type 3 0.0 18.4 4.2 15.1 -0.2 2.5 0.1 5.7 
Type 4 0.0 18.3 4.4 14.9 -0.4 2.2 -0.3 5.5 
Type 5 0.1 18.2 2.6 15.6 -6.7 2.1 -7.2 5.9 

By the impulse response method the deviation is around 
5.5%, whereas the lowest deviation of roughly 2.2% was 
computed by the method in frequency domain. It is also 
noticeable that the computation of energy in frequency domain 
and by impulse response method gives rise to very low values 
of µ for pulse types 1, 2, 3 and 4. The square of the pulse in 
the energy computation has the effect of make larger the 
differences between the amplitudes of the pulse. Thus, the 
pulse might be assumed as having less noise level, which 
might explain the low values of µ. On the other hand, for the 
pulse type 5 the values of µ were comparatively much higher 
than for the other pulse types. 

9 ESTIMATION OF PULSE POLARITY   
The method based on the derivative of the filtered output 

signal proved to accurately estimate the pulse polarity. After 
applying this method, the positive polarity of all of the pulse 
types was correctly estimated. 

10 CONCLUSION 
In digital measuring systems, the SNR affects the estimation 

of charge and energy to a different extent depending on the 
computation method. In general, the scatter of the results 
increased with decreased signal to noise ratio. The effect of 
the noise on the results was observed as a large under or 
overestimation of the computed values. This was the case for 
some of the oscillatory pulses of type 5, in which the charge 
value was overestimated in 250% with respect to the reference 
value of 100 pC. Underestimation of the charge value was also 
possible leading to a null value. 

It was observed that the oscillatory pulses led to the highest 
scatter of the charge values due to the noise. For example, the 
deviation of the charge values computed in frequency 
domain for the pulse type 5 was 27%, whereas for those non-
oscillatory pulses (type 2 and 3) the deviation was around 5%. 
In contrast, for the energy computation, the pulse waveform 
did not affect significantly on the deviation of the computed 
values.   

 Based on the results from Table 7, it can be claimed that 
the energy estimation method in frequency domain gives rise 
to the lowest error in the estimation. 

The charge and energy estimation method in time domain 
was enhanced by filtering the signal and establishing specific 
integration limits, being this particularly suitable to overcome 
the negative effect of oscillation on the accuracy of the 
estimation. In estimating the charge, it was possible to reduce 
the deviation  for the pulse type 5 from 36.7% to 27.1% after 
the filtering of the signal. It is also noticeable that the 
estimation of charge deviated the most for those pulses whose 
added noise had large DC components and large low 
frequency components. 

In frequency domain, the deviation in the charge estimation 
was similar than that resulting from the time domain method, 
however lower values of µ were obtained in frequency 
domain. 

Regarding the charge estimation by means of the impulse 
response method, it can be concluded that the deviation 
decreases as the cut-off frequencies of the filters increased. 
For instance, for the filter with cut-off frequencies of 100-200 
kHz the deviation value was 27.2%, but with cut-off 
frequencies of 800-900 kHz the deviation value was reduced 
down to 17%. 

 In addition, the upper cut-off frequency seemed to have a 
larger effect on the reduction of the deviation than the increase 
of the bandwidth. Consistently, all filters with upper cut-off 
frequency of 900 kHz showed the lowest values of deviation 
regardless the bandwidth of the filter. Conversely, all of the 
filters with the lowest lower cut-off frequency led to the 
highest deviation of the results. 
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