

Delft University of Technology

I Choose You
Automated Hyperparameter Tuning for Deep Learning-based Side-channel Analysis
Wu, Lichao ; Perin, Guilherme; Picek, Stjepan

DOI
10.1109/TETC.2022.3218372
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Emerging Topics in Computing

Citation (APA)
Wu, L., Perin, G., & Picek, S. (2024). I Choose You: Automated Hyperparameter Tuning for Deep Learning-
based Side-channel Analysis. IEEE Transactions on Emerging Topics in Computing, 12(2), 546-557.
https://doi.org/10.1109/TETC.2022.3218372

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TETC.2022.3218372
https://doi.org/10.1109/TETC.2022.3218372

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

I Choose You: Automated Hyperparameter Tuning for
Deep Learning-Based Side-Channel Analysis

LICHAOWU , GUILHERME PERIN, AND STJEPAN PICEK

CORRESPONDING AUTHOR: STJEPAN PICEK (s.picek@tudelft.nl.)

This work was supported in part by the NWA Cybersecurity Call with Project name PROACTwith Project number NWA.1215.18.014 and in part by the Netherlands
Organization for Scientific Research NWO Project DISTANT (CS.019).

ABSTRACT Today, the deep learning-based side-channel analysis represents a widely researched topic,
with numerous results indicating the advantages of such an approach. Indeed, breaking protected implementa-
tions while not requiring complex feature selection made deep learning a preferred option for profiling side-
channel analysis. Still, this does not mean it is trivial to mount a successful deep learning-based side-channel
analysis. One of the biggest challenges is to find optimal hyperparameters for neural networks resulting in
powerful side-channel attacks. This work proposes an automated way for deep learning hyperparameter tun-
ing based on Bayesian optimization. We build a custom framework denoted AutoSCA supporting machine
learning and side-channel metrics. Our experimental analysis shows that our framework performs well
regardless of the dataset, leakage model, or neural network type. We find several neural network architectures
outperforming state-of-the-art attacks. Finally, while not considered a powerful option, we observe that neural
networks obtained via random search can perform well, indicating that the publicly available datasets are rela-
tively easy to break.

INDEX TERMS Bayesian optimization, deep learning, hyperparameter optimization, side-channel analysis

I. INTRODUCTION

Side-channel analysis (SCA) is a well-known and powerful
type of implementation attack on cryptographic algorithms
[1]. A common division of side-channel analysis is into
direct attacks like Simple Power Analysis (SPA) and Differ-
ential Power Analysis (DPA) [2], and two-stage (profiling)
attacks like template attack [3] and machine learning-based
attacks [4]–[6]. Direct attacks do not require access to an
identical and open copy of the device under attack, and they
have no hyperparameters to tune. Simultaneously, to break a
specific implementation, such attacks could require tens to
hundreds of thousands of measurements. Profiling attacks
assume an “open” device (or a copy of it), but the key recov-
ery may require only a few measurements. Today, the most
powerful representatives of profiling attacks come from the
machine learning domain. Such machine learning-based (or
deep learning-based) attacks can break targets protected with
countermeasures, but to reach that level of performance, they
also require a careful hyperparameter tuning [7], [8].

Hyperparameter tuning can differentiate a machine learn-
ing-based SCA that performs “only” satisfactorily from the
one that breaks a target in a few measurements or even in a
single measurement. In previous years, when simpler
machine learning techniques were still commonly used in
SCA, hyperparameter tuning was an important factor in the
attack’s success, but not the only one. For instance, feature
engineering (e.g., dimensionality reduction like PCA [9] and
LDA [10]) played an equally important role as hyperpara-
meter tuning in mounting a successful attack. With deep
learning, pre-processing and feature engineering lost most of
their importance as deep learning techniques are powerful
enough to work with raw traces [6], [11]. Thus, the security
evaluator’s (attacker’s) attention shifted toward hyperpara-
meter tuning as the core task for a successful deep learning-
based side-channel analysis. Nevertheless, suppose one of
the assumptions in the profiling phase involves an adversary
restricted in terms of measurements. In that case, hyperpara-
meter tuning plays a significant role in security evaluations

Lichao Wu and Guilherme Perin are with the Delft University of Technology, 2628 Delft, XE, The Netherlands
Stjepan Picek is with the Delft University of Technology, 2628 Delft, XE, The Netherlands

Received 16 December 2021; revised 11 June 2022; accepted 16 October 2022.
Date of publication 7 November 2022; date of current version 7 June 2024.

Digital Object Identifier 10.1109/TETC.2022.3218372

546
2168-6750 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE

permission. See ht_tps://www.ieee.org/publications/rights/index.html for more information. VOLUME 12, NO. 2, APRIL-JUNE 2024Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0001-7509-4337
https://orcid.org/0000-0001-7509-4337
https://orcid.org/0000-0001-7509-4337
https://orcid.org/0000-0001-7509-4337
https://orcid.org/0000-0001-7509-4337

by allowing the discovery of models that can break targets
with fewer side-channel traces [12].
The problem of hyperparameter tuning in SCA is a diffi-

cult one. In general, we do not know what would be the best
hyperparameter tuning strategy for every setting. Deep learn-
ing architectures have many hyperparameters to tune, so it is
impossible to check all options. Even a grid search becomes
difficult for larger neural network models and datasets. In
SCA, we encounter additional difficulties as we do not know
what hyperparameters influence the attack performance com-
pared to those that show little to no importance. Conse-
quently, considering the number of different datasets,
leakage models, neural network architectures, and hyperpara-
meter options, it is evident that an exhaustive search is not an
option. Simultaneously, random search and grid search offer
good performance in many settings, but we are still left won-
dering how far those architectures are from the optimal ones.
Finally, many SCA evaluators are not experts in machine
learning, and for them, it is not easy to recognize the impor-
tant hyperparameters without significant experience.
When considering machine learning and profiling SCA, sev-

eral works discuss hyperparameter tuning, see, e.g., [13], [14].
While those works manage to (partially) answer the question of
better performing neural network architectures for specific
settings, they do not provide a methodology for tuning the
hyperparameters. Still, by recognizing the less important
hyperparameters, those works indirectly help make more effi-
cient hyperparameter tuning. A few papers discuss how to pro-
vide a more structured way to build neural networks for SCA.
More precisely, those works offer methodologies to build neu-
ral network architectures for SCA [7], [8]. Unfortunately, while
such methodologies represent a good start, they are far from
perfect as they require knowledge about the dataset to be
attacked, and they are not easy to extend to other datasets.
More recently, the SCA community experimented with rein-
forcement learning to design neural networks capable of break-
ing various targets [15]. Although this approach can find good
hyperparameters for a successful side-channel attack, the
search process is extremely time-consuming.
This paper proposes the hyperparameter tuning approach

based on the Bayesian optimization optimized for side-chan-
nel analysis. More precisely, we start from a well-known
Bayesian optimization paradigm for hyperparameter tuning,
and we develop a custom SCA framework supporting both
machine learning and SCA metrics. We manage to optimize
neural networks (in this work, multilayer perceptron and con-
volutional neural networks) to reach excellent performance
for several commonly used SCA datasets. By doing this, we
offer a simple yet powerful approach that results in high-per-
forming neural networks for SCA that do not require knowl-
edge about the datasets to be attacked. Moreover, since our
framework offers automated hyperparameter tuning, it is
easy to switch to different datasets.
Our main contributions are:
1) To the best of our knowledge, we are the first to pro-

pose Bayesian optimization for hyperparameter tuning

for deep learning-based SCA. We compare this
approach with a common one in SCA, which is a ran-
dom search. Our results show that for some commonly
considered datasets in deep learning-based SCA, a ran-
dom search can find top-performing neural networks,
which raises the question of how justified it is to
develop methodologies on such simple datasets. On the
other hand, Bayesian optimization performs consis-
tently well (and significantly better than random search
in many settings), making it a natural choice to select
when facing uncertainties about the attack’s difficulty.

2) We develop a custom framework (AutoSCA) based on
Keras Tuner [16] for hyperparameter tuning in SCA that
optimizes machine learning and SCA metrics. The code
is available at https://github.com/AISyLab/AutoSCA

The results indicate that the metric is less important
when the dataset is easy to attack. On the other hand, for
more challenging settings, we found that the recently pro-
posed Lm metric performs the best [17].

3) We compare the neural network architectures obtained
through our framework with the state-of-the-art results
showing our architectures reach better performance.

4) We show that random search can find neural network
architectures outperforming the state-of-the-art results
obtained through recently proposed methodologies. We
postulate that this happens as the datasets are relatively
easy to attack, and many neural networks perform well.
Such randomly obtained neural networks are com-
monly larger than those obtained through various meth-
odologies (i.e., they have more trainable parameters),
but we do not consider this a serious limitation.

II. BACKGROUND

A. NOTATION

We use calligraphic letters like X to denote sets and the cor-
responding upper-case letters X to denote random variables
and random vectors X over X . The corresponding lower-case
letters x and x denote realizations of X and X, respectively.
We denote with k a key candidate taking its value from the

keyspace K. The correct key is denoted with k�. We use uuuuuuu to
denote the vector of parameters learned in a profiling model.
Finally, we define a dataset as a collection of side-channel

traces (measurements). Each trace ti in the dataset is associ-
ated with an input value (plaintext or ciphertext) di and a key
ki. We divide the dataset into disjoint subsets where the
training set contains N traces, the validation set contains V
traces, and the attack set contains Q traces.

B. SUPERVISED MACHINE LEARNING AND PROFILING

SCA

Supervised machine learning represents the task of learning a
function f that maps an input to the output (f : X ! Y))
based on examples of input-output pairs. The function f is
parameterized by uuuuuuu 2 Rn, where n denotes the number of
trainable parameters. Supervised learning happens in two

VOLUME 12, NO. 2, APRIL-JUNE 2024 547

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/AISyLab/AutoSCA

phases: training and test. This corresponds to profiling SCA
phases, commonly denoted as profiling and attack phases.
1) Training phase: the goal is to learn uuuuuuu minimizing the

empirical risk represented by a loss function L on a
dataset of size N (i.e., on the profiling (training) set).

As usual in profiling SCA, we consider the c-classi-
fication task, where c denotes the number of classes
depending on the leakage model, as discussed in Sec-
tion 2.4. More precisely, the classifier f is a function
that maps input features to label space (f : X ! Rc).
As already stated, we consider deep learning techniques
and, more precisely, multilayer perceptron (MLP) and
convolutional neural networks (CNNs). The function f
is a (deep) neural network with the Softmax output
layer. Additionally, we encode classes in one-hot
encoding, where each class is represented as a vector of
c values that has zero on all the places, except one
place, denoting the membership of that class, i.e., yi ¼
eyi 2 f0; 1gc such that 1Tyi ¼ 1; 8i.

2) Attack phase: the goal is to make predictions about the
classes

yðx1; k�Þ; . . . ; yðxQ; k�Þ;

where k� represents the secret (unknown) key on the
device under the attack. The outcome of predicting
with a model f on the attack set is a two-dimensional
matrix P with dimensions equal to Q� c. The cumula-
tive sum SðkÞ for any key candidate k is then used as a
maximum log-likelihood distinguisher:

SðkÞ ¼
XQ

i¼1

log ðpi;yÞ: (1)

The value pi;y is the probability that for a key k and
input di, we obtain the class y (with

Pc
y pi;y ¼ 1; 8i).

The class y is derived from the key and input through a
cryptographic function CF and a leakage model l.

We follow a standard assumption in supervised machine
learning, stating that the training and test data are drawn
independently from identical distributions (commonly called
i.i.d. assumption). This means that the process that samples
the data has no memory, i.e., we do not expect a higher corre-
lation for any two traces compared to other traces.
The goal of a side-channel attacker is to reveal the secret

key k�. Commonly used metrics to estimate the effort
required to reveal the secret key are the success rate (SR) and
the guessing entropy (GE) [18]. This work uses guessing
entropy to estimate the attack performance. For Q traces in
the attack phase, an attack results in a key guessing vector
g ¼ ½g1; g2; . . . ; gjKj� in decreasing order of probability (g1 is
the most likely and gjKj the least likely key candidate).
Guessing entropy represents the average position of k� in g.
Commonly, averaging is done over a number of independent
experiments to obtain statistically significant results. Guess-
ing entropy can be observed for the whole key or separate

key bytes, then denoted as partial guessing entropy. Since we
attack only a single key byte, we calculate partial guessing
entropy but denote it as guessing entropy for simplicity.

C. HYPERPARAMETERS VERSUS PARAMETERS

It is common to differentiate between parameters and hyper-
parameters in machine learning algorithms. Hyperparameters
are all configuration variables external to the model f , e.g.,
the number of hidden layers in a neural network. Neural net-
works (deep learning) have many hyperparameters, making
their tuning very difficult and computationally intensive.
The parameter vector uuuuuuu represents the configuration varia-

bles internal to the model f , and those values are learned
from data.

D. DATASETS AND LEAKAGE MODELS

We consider two leakage models l in this paper:
1) The Hamming weight (HW) leakage model. In this

leakage model, the attacker assumes the leakage is pro-
portional to the sensitive variable’s Hamming weight.
When considering the AES cipher (8-bit S-box1), this
leakage model results in nine classes.

2) The Identity (ID) leakage model. In this leakage model,
the attacker considers the leakage in the form of an
intermediate value of the cipher. When considering the
AES cipher (8-bit S-box), this leakage model results in
256 classes.

The ASCAD dataset contains the measurements from an
8-bit AVR microcontroller running a masked AES-128
implementation [13]. There are two versions of the ASCAD
dataset: one with a fixed key with 50 000 traces for profiling
and 10 000 for the attack. The second version has random
keys, and the dataset consists of 200 000 traces for profiling
and 100 000 for the attack. We attack the third key byte for
both versions as that is the first masked byte. For ASCAD
with the fixed key, we use a pre-selected window of 700 fea-
tures, while for ASCAD with random keys, the window size
equals 1 400 features [13]. These datasets are available at
https://github.com/ANSSI-FR/ASCAD

E. LEAKAGE DISTRIBUTION DIFFERENCE AND

CORRELATION WITH THE KEY GUESSING VECTOR

Recently, Wu et al. proposed a new metric called Leakage
Difference Distribution (LDD) to describe the correlation
among various key guesses [17]. First, to calculate LDD, it is
required to calculate a hypothetical leakage distribution for
every key candidate and all plaintexts for a given dataset.
The obtained leakage distribution variation between different
key candidates gives Leakage Distribution Difference. LDD
aims to provide an estimation of the hypothetical label distri-
bution variation between different key candidates, where a
specific key will have a smaller probability to be selected
based on a (properly) trained profiling model if LDD is large

1Or any cipher with 8-bit S-box.

548 VOLUME 12, NO. 2, APRIL-JUNE 2024

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ANSSI-FR/ASCAD

between that key guess k and the correct key k�:

LDDðk�; kÞ ¼
XQ

i¼0

f ðdi; k�Þ � f ðdi; kÞk k2; k 2 K; (2)

where f ðdi; kÞ is the leakage model function that returns the
leakage value according to a key candidate k and data value
di 2 Q, where Q denotes the number of attack traces in the
dataset. Depending on the leakage model function, we use,
e.g., HWDD for the Hamming weight leakage model or IDD
for the Identity leakage model.
If the profiling model performs well, then we can expect

that the correlation between LDD and the key guessing vec-
tor will be good, which can be used to define a metric esti-
mating how well did the profiling model fit the leakage:

LmðLDD; gÞ ¼ corrðargsortðLDDÞ; gÞ: (3)

F. BAYESIAN OPTIMIZATION

Tuning hyperparameters for deep neural networks is a com-
putationally expensive task. Various neural architecture
search (NAS) methods aim to find the best architecture for
the given learning task and dataset within the deep learning
domain. The NAS algorithms are commonly costly as their
computational complexity depends on the number of neural
network architectures to evaluate and the time needed to
evaluate each network. Therefore, it is crucial to have an effi-
cient method to select optimal hyperparameters when the
number of iterations t is limited due to either computation
power or time. In that context, Bayesian optimization (BO)
can be used to optimize any black-box function [19], [20].
In general, Bayesian optimization aims to find the parame-

ters x0 that maximize the function f ðxÞ over a domain X :

x0 ¼ argmax
x2X

f ðxÞ: (4)

Let us consider that the Bayesian optimization works over t
iterations. Then, Bayesian optimization aims to find the max-
imum point on the function using the minimum number of
iterations. Formally, the aim is to minimize the number of
iterations t before we can guarantee for a given x0 that f ðx0Þ
is less than � from the true maximum f 0.
If the problem is simple, e.g., we search in a small hyper-

parameter space, random search or grid search is often suffi-
cient. When considering larger search spaces, we can
benefit from the memory in the process (i.e., considering
the results from previous measurements). This is commonly
possible with sequential search strategies, represented by
sequential model-based optimization (SMBO) in the Bayes-
ian optimization.
To achieve good results with any search strategy, we need

to account for both exploration (visiting search space regions
not visited before) and exploitation (sampling from more
promising regions based on observed results). In Bayesian
optimization, the aim is to build a probabilistic model of
the underlying function that will include exploitation and

exploration. We first require a probabilistic model of a func-
tion (often referred to as the surrogate model), where there
are several ways to model it. This work considers the Gauss-
ian Process, a common choice for Bayesian optimization,
especially considering Euclidean spaces [21]. A Gaussian
Process is a collection of random variables, where any finite
number of such random variables is jointly normally distrib-
uted. Gaussian Process is defined by the mean function and
the covariance function. We can estimate the function’s dis-
tribution at any new point x�, where the mean gives the best
estimate of the function value, and the variance gives the
uncertainty.
Second, we require an acquisition function for Bayesian

optimization to generate the next neural network architecture
to observe, i.e., to select what point to sample next. More
precisely, the acquisition function takes the mean and vari-
ance at each point x on the function and computes a value
that indicates how desirable it is to sample next at this posi-
tion. We use a common example of the acquisition function
in this work: the upper confidence bound [22]. Upper confi-
dence bound action selection uses uncertainty in the action-
value estimates to balance exploration and exploitation. The
value of the upper confidence bound function is an estima-
tion of the lowest possible value of the cost function given
the neural network f :

aðx�Þ ¼ mðx�Þ � bsðx�Þ: (5)

Here, b is the balancing factor to regulate the exploration and
exploitation (we use the default value from Keras Tuner,
which equals 2.6). This acquisition function computes the
likelihood that the function at x� will return a result higher
than the current maximum f ðx0Þ. For further information
about Bayesian optimization, possible models of the func-
tions, and acquisition functions, we refer interested readers
to [21], [23].

III. RELATEDWORKS

When discussing machine learning approaches, we can divide
the corpus of works based on the complexity of the used tech-
niques and the hyperparameter tuning treatment. The first
works considered simpler machine learning techniques like
random forest [24] and support vector machines [25]. The
main focus was on the attack performance and how those tech-
niques compare with the template attack [3] and its variants
[26]. From 2016 [6], the SCA community shifted a large part
of its attention to deep learning techniques. Since then, the
two most explored approaches have been multilayer percep-
tron and convolutional neural networks. Both approaches
reached top attack performance even considering implementa-
tions with countermeasures [11], [27].
The SCA community’s maturity in using machine learning

can also be examined from the hyperparameter tuning per-
spective. Indeed, the first works do not mention whether they
conduct hyperparameter tuning or even what are the final
hyperparameters selected [28], [29]. Afterward, numerous

VOLUME 12, NO. 2, APRIL-JUNE 2024 549

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

works investigate various machine learning techniques where
hyperparameter tuning is done with a random or grid search.
In [13], the authors conduct an empirical evaluation of differ-
ent hyperparameters for CNNs when attacking the ASCAD
dataset. Perin et al. conducted a random search in pre-defined
ranges to build deep learning models to form ensembles [14].
Recently, reinforcement learning, with SCA-optimized learn-
ing objective, has been applied for hyperparameter tuning in
deep learning-based profiling models [15]. The results
achieved there managed to outperform previous state-of-the-
art results, including those obtained by following specialized
SCA methodologies.
Several works evaluate the influence of various hyperpara-

meters systematically. L. Weissbart considered multilayer
perceptrons and hyperparameter tuning for the number of
layers/neurons and various activation functions [30]. Li et al.
investigated the weight initialization options for MLP and
CNN architectures [31]. These works discuss certain hyper-
parameters’ influence in specific settings, but they do not
offer the whole neural network architecture methodology. At
the same time, they provide directions about the importance
of specific hyperparameters, which can help improve hyper-
parameter tuning in the future.
Finally, some works aim to offer a methodology for build-

ing neural networks. For instance, Zaid et al. proposed a
methodology to select hyperparameters related to the number
of learnable parameters in CNNs [7]. Their investigation
includes the number of filters, kernel sizes, strides, and neu-
rons in fully connected layers. This is the first work to pro-
vide a systematic approach to building well-performing
neural network architectures. Unfortunately, the proposed
methodology has some drawbacks. While the authors pre-
sented CNN architectures that reach top performance, they
also assume significant knowledge about datasets and con-
sider only CNN architectures. What is more, it does not seem
easy to extend this methodology to new datasets (or leakage
models). Wouters et al. [8] improved upon the work from
Zaid et al. [7]. The authors discussed several misconceptions
in the first work, and they showed how to reach similar attack
performance with significantly smaller neural network archi-
tectures. Thus, this shows that we are far from having estab-
lished methodologies or ways to build them.

IV. THE AUTOSCA FRAMEWORK

The AutoSCA framework can be divided into two steps:

1) characterizing the search space by testing different
combinations of hyperparameters;

2) selecting the best candidate (profiling model) out of
these attempts.

An illustration of the AutoSCA framework is shown in
Figure 1. The framework allows tuning of various types of
neural networks, e.g., multilayer perceptrons, convolutional
neural networks, residual neural networks, or recurrent neural
networks. Following the recent advances in deep learning-
based SCA, this paper focus on MLP and CNN. Indeed,
based on the literature, a prevailing number of works use
MLP and CNN, and the results reported with those techni-
ques are consistently breaking the investigated targets. To
evaluate the efficiency of AutoSCA (we denote such experi-
ments as BO since the framework uses Bayesian optimiza-
tion), we compare it with random search (RS). In terms of
search iterations, the iteration number is determined based on
the extensive preliminary tuning phase. Specifically, during
the preliminary tests, we observed that a higher number of
searching iterations could help BO better characterize the
search space, thus obtaining architectures with stronger
attack performance than the one obtained by RS. To balance
search performance and time consumption, eventually, our
framework performs 200 iterations (i ¼ 200) to test different
hyperparameter combinations. In each iteration, the Bayesian
optimization function outputs a set of hyperparameters Pi to
build the model, followed by the training process. Each pro-
filing model is trained for ten epochs to speed up the training
process. This also brings the additional benefit that the best
model obtained from this setting would consume less training
time for the real attack, increasing the attack efficiency. The
search can be finalized within ten hours with a single CPU
and an NVIDIA GTX 1080 Ti graphics processing unit
(GPU) with 11 Gigabytes of GPU memory and 3 584 GPU
cores. Note that we also tested the search efficiency with an
increased number of training epochs (50), but the results are
comparable to the 10-epoch training. Thus, 10-epoch training
is more efficient, and we will show those results only.
The attack performance of each model is evaluated by cal-

culating the score OðPiÞ of the different objective functions
with 2 000 attack traces. Note that the score is only calcu-
lated in the validation phase to speed up the test procedure.
After 200 iterations are finished, the best hyperparameter
combination is selected based on its score, and the best
model is constructed following this setting. Then, to evaluate

FIGURE 1. AutoSCA framework.

550 VOLUME 12, NO. 2, APRIL-JUNE 2024

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

its actual attack performance, this model is trained for either
10 or 50 epochs and then used to attack 5 000 traces ran-
domly selected out of 10 000 traces (the attack is repeated
ten times). As a result, guessing entropy can be calculated by
averaging the key rank of each attack.
We do not add the neural network architecture size (measured

by the number of trainable parameters) into our design considera-
tions. We consider the neural network size less important than
the attack performance. Additionally, the neural networks used in
SCA are smaller than deep learning architectures used in other
domains. Still, it is easy to extend the SCA framework to search
for small neural networks that perform well in SCA.

V. EXPERIMENTAL RESULTS

In Tables 1 and 2, we give the ranges for our search for MLP
and CNN hyperparameters, respectively. We selected those
ranges as a rough estimate to expect a good attack perfor-
mance based on related works results. We could have
selected even smaller ranges for certain settings, but that
would make the search too easy for a random search and
Bayesian optimization. Note that the ranges for MLP still
result in a search space size of “only” 23 040 hyperparameter
combinations (Table 1). On the other hand, for CNNs, the
exhaustive search should evaluate 637 009 920 hyperpara-
meter combinations (Table 2). Still, the AutoSCA framework
can find models breaking the targets within hours. Although
a larger search range would increase the search time, we
believe the task can be completed with reasonable computa-
tion time (i.e., within a day). At the same time, the search
ranges we investigated are sufficiently large to give even the
latest state-of-the-art results that consider significantly larger

datasets (i.e., more features in side-channel traces [32].
Recall, we randomly (RS) select a profiling model or run BO
for 200 iterations to obtain a profiling model in all the experi-
ments. The best profiling model is then trained for a certain
number of epochs (10 or 50), and the test set evaluates the
SCA performance. We use 50 000 traces for profiling, 2 000
for validation, and 5 000 for the attack for both versions of
datasets. Besides profiling on the original dataset, we add dif-
ferent Gaussian noise levels to simulate a more difficult
attack scenario (but also a more realistic one). The noise
addition increases the search difficulty, and it could better
demonstrate the performance difference between BO and
RS. We note that we conducted experiments on one more
dataset commonly used in the SCA domain (usually denoted
as CHES CTF), but we do not show results due to the lack of
space. Still, the obtained results align with the observations
for the ASCAD datasets. For objective functions, we con-
sider validation accuracy, validation key rank, and Lm. Accu-
racy and Lm are maximized, while key rank is minimized. To
increase the readability of tables, we present the results for
the smallest architectures in italic style, while the best-per-
forming ones are in bold style.

A. ASCADWITH THE FIXED KEY

First, in Figure 2, we depict the results for three objective
functions (accuracy, key rank, and Lm), where we compare

TABLE 1. Hyperparameter search space for MLP.

Hyperparameter min max step

Dense (fully-connected) layers 2 10 1
Neurons (for dense or fully-connected layers) 8 1 024 8

Options

Learning Rate 1e-3, 5e-4, 1e-4,
5e-5, 1e-5

Activation function (all layers) ReLU, Tanh,
ELU, or SELU

TABLE 2. Hyperparameters search space for CNNs.

Hyperparameter min max step

Convolution layers 1 4 1
Convolution Filters 8 256 8
Convolution Kernel Size 2 10 1
Pooling Size 2 5 1
Pooling Stride 2 10 1
Dense (fully-connected) layers 1 3 1
Neurons (for dense or fully-connected layers) 8 1 024 8

Options

Pooling Type max pooling, avg
pooling

Learning Rate 1e-3, 5e-4, 1e-4,
5e-5, 1e-5

Activation function (all layers) ReLU, Tanh,
ELU, or SELU

FIGURE 2. Search results for MLP with the HW leakage model on ASCAD with fixed key with no noise added.

VOLUME 12, NO. 2, APRIL-JUNE 2024 551

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

their performance for random search (RS) and Bayesian opti-
mization (BO) when tuning MLP profiling models. Based on
these results, one can decide what objective function is
appropriate for the specific setting. Note that we do not
depict more results for the objective functions due to the lack
of space, but we discuss the results in the text. The profiling
models are trained with ten epochs with the Hamming weight
leakage model. We see that the key rank decreases regardless
of the objective function. The performance of key rank and
Lm is better than accuracy, and for all three objective func-
tions, BO converges faster than RS.
Based on the results from the best RS and BO profiling

models, we show the guessing entropy results for several set-
tings (Figure 3). As mentioned, we consider three objectives
and two training durations (10 or 50 epochs), resulting in six
settings. When using BO, Lm with ten epochs works the best,
as shown in Figure 2(a). This indicates that BO can find pro-
filing models that generalize well. What is more, the best set-
ting reaches GE of 1 for around 800 attack traces. The same
observation also holds for RS, as shown in Figure 2(c) where
Lm objective manages to reach GE equal to 1 for around 400
attack traces. At the same time, the accuracy objective func-
tion with RS requires more traces to reach GE of 1. Interest-
ingly, our results show very strong attack performance with

ten epochs already, which is somewhat differing from related
works where it is common to train for significantly more
epochs [7], [11], [13]. Finally, we observe that multiple pro-
filing models perform well, confirming that the ASCAD
dataset with the fixed key is easy to attack.
For the ID leakage model, the results align with the HW

leakage model results, and BO performs better for all three
objective functions. The results for the attack dataset are
shown in Figure 4, where the profiling model selected by BO
performs, on average, significantly better than the one from
RS. When training with ten epochs, the best model from BO
requires around 191 attack traces, while the best model for
RS requires only around 67 attack traces. Note that the best
result from RS depends on chance, while BO obtains well-
performing models consistently. Both results indicate (signif-
icantly) better attack performance than reported in state-of-
the-art [7], [8]. The good results for random search indicate
this dataset is easy to break, and we do not (necessarily)
require any special methodologies to succeed in the attack.
Next, we show the results when optimizing CNN hyper-

parameters. The results for optimizing different objectives
for CNN and the HW leakage model are significantly worse
than MLP as now, the search space size is more than 27 000
times larger. Still, accuracy and Lm reach a significantly

FIGURE 3. The GE comparison with the best MLP models

obtained by two search methods with the HW leakage model on

ASCAD with the fixed key.

FIGURE 4. The GE comparison with the best MLP models

obtained by two search methods with ID leakage model on

ASCAD with a fixed key.

552 VOLUME 12, NO. 2, APRIL-JUNE 2024

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

better key rank with BO. The guessing entropy results
depicted in Figure 5 show good performance, where around
1 100 attack traces are enough for most of the settings to
reach a guessing entropy of 1. The best performing result is
obtained with RS, where we need only 965 traces to break
the target. Nevertheless, BO has a higher probability of find-
ing good models as it converges faster than RS.
For the ID leakage model, BO performs better than RS

with key rank and Lm objectives. The best results are for BO
and accuracy as the objective metric (155 traces to break the
target). Class imbalance does not pose a problem when using
the ID leakage model, and thus, accuracy is more stable.
Considering the GE results in Figure 6, both models from
BO and RS converge well: 500 traces on average are suffi-
cient to break the target.
The obtained best architectures are retrained to validate

their attack performance. Due to the random weight initiali-
zation, the attack performance may differ from the GE plots
discussed before. In Tables 3 and 4, we compare the results
for several architectures for both leakage models. Note that
[7] provides results for the ID leakage model only, so we
adapted the neural network models to work for the HW leak-
age model by changing the number of output classes. Thus,
the adapted model is not an optimal architecture from [7],

but it represents the best option for the comparison. We con-
sider complexity (the number of trainable parameters) and
the number of traces needed to reach GE of 1. To evaluate
the attack performance of the obtained models, we train the
model with 10 and 50 epochs separately, the corresponding
GE are listed in the Tables (separated with the “/” symbol).
For the HW leakage model, both AutoSCA MLP and

AutoSCA CNN reach top performance. Specifically, 447
traces are required to break the target for AutoSCA MLP
with 10-epoch training, which is more than two times less
than for [7]. Compared with the results obtained with rein-
forcement learning, we observe that AutoSCA produces neu-
ral networks with more trainable parameters, but they
perform better. Note that more than a million trainable
parameters for both models were obtained with AutoSCA
(while those from related works are significantly smaller).

FIGURE 5. The GE comparison with the best CNN models

obtained by two search methods with the HW leakage model on

ASCAD with the fixed key.

FIGURE 6. The GE comparison with the best CNN models

obtained by two search methods with the ID leakage model on

ASCAD with the fixed key.

TABLE 3. Comparison of performance on ASCAD with the fixed

key and the HW leakage model.

[7] [15] AutoSCA MLP AutoSCA CNN

Complexity 14 235 5 566 1 388 457 1 086 801
Traces to reach GE ¼ 1 1 246 906 447/1 224 539/4 136

Complexity denotes the number of trainable parameters.

VOLUME 12, NO. 2, APRIL-JUNE 2024 553

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

However, 10-epoch training is enough for a model to retrieve
the secret key, thus efficiently erasing the time complexity.
For the ID leakage model, Benadjila et al. [13] consider a sig-
nificantly larger neural network, as evident through the train-
ing time and the number of trainable parameters. On the
other hand, the architecture from Zaid et al. [7] is the small-
est. However, it takes more time than AutoSCA MLP (MLP
is simpler to train) and AutoSCA CNN when training with
ten epochs. Indeed, the obtained best model outperforms
state-of-the-art models from the literature for both HW and
ID leakages models.
It is worth noting that 10-epoch training for the best

AutoSCA models always performs better than 50-epoch
training. This is because the models are trained and evaluated
with 10-epoch training during the search process. As a result,
the search algorithm selects the models with greater learning
ability, as they could reach higher scores when training with
ten epochs. Note that [7] and [15] reach very similar attack
performance, but compared to BO, their performance is
worse (around three times more traces are required to break
the target in the best case scenario). Finally, we reach better
performance with 10-epoch training for both leakage models,
indicating that longer training causes overfitting and that it is
possible to have a short training phase that results in top
attack performance.
Next, we add Gaussian noise with a standard deviation of

two and four to the dataset to investigate the hyperparameter
tuning difficulty when dealing with more complex datasets.
A brief overview is shown in Table 5. The averaged final GE
at the tenth training epoch is used to compare BO and RS. If
one search method is better than the other for a certain leak-
age model and objective function, the better search method
(BO or RS) is noted in the table’s corresponding position. If
their key-rank difference is within five (thus, no significant
performance difference), a sign ‘-’ is added. Table 5 includes
the comparison for two noise level (noise2/noise4). From the

results, when we exclude the cases where BO and RS
are comparable, BO outperforms RS in 16 out of 21 cases,
again indicating BO’s superiority in hyperparameter tuning.
Regarding the key rank difference, the performance variation
between BO and RS increases with more noise added to the
traces, indicating BO’s capability to find strong models when
training with more difficult datasets.

B. ASCADWITH RANDOM KEYS

For the HW leakage model and MLP, BO performances with
all three objectives are slightly better than for RS and in line
with the results in the previous section. The guessing entropy
results are shown in Figure 7. Observe that the Lm results are,
in general, the best for both RS and BO. The best model is
obtained for BO with the key rank objective and ten epochs:
only around 600 traces are required to reach GE equal to 1.
As this dataset is more difficult to attack than the ASCAD
dataset with a fixed key, MLP with RS has more issues
reaching top performance, and BO should be already consid-
ered a preferable option for hyperparameter tuning.
Next, we consider the ID leakage model and MLP for the

ASCAD dataset with random keys. Note that there are more
labels in this leakage model (256 classes), and the dataset is
more difficult than ASCAD with a fixed key. The results

TABLE 5. Comparison of performance of BO and RS with the

addition of different noise levels (two and four) - ASCAD with the

fixed key, both leakage models.

Accuracy Key rank Lm

MLPHW RS/- BO/BO BO/BO
MLPID -/BO BO/BO RS/BO
CNNHW RS/BO BO/BO BO/BO
CNNID BO/- BO/BO RS/RS

FIGURE 7. The GE comparison with the best MLP models

obtained by two search methods with the HW leakage model on

ASCAD with random keys.

TABLE 4. Comparison of performance on ASCAD with the fixed

key and the ID leakage model.

[13] [7] [15] AutoSCA
MLP

AutoSCA
CNN

Complexity 66 652 444 16 960 79 439 1 544 776 3 510 424
Traces to reach
GE ¼ 1

1 476 191 202 120/430 257/690

Complexity denotes the number of trainable parameters.

554 VOLUME 12, NO. 2, APRIL-JUNE 2024

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

indicate that BO performs significantly better than RS with
the key rank objective. Figure 8 shows corresponding GE
results, where BO with key rank can break the target with
3 481 traces with 10-epoch training.
The obtained results suggest that accuracy is similar to the

HW leakage model, while the key rank and Lm objectives are
somewhat better. Translating these into the attack perfor-
mance, we show guessing entropy in Figure 9. Again, the
profiling model selected by BO converges faster than RS in
general, as the best-performing profiling model requires only
496 traces to break the target.
For the ID leakage model and CNN, all three objectives

struggle to reach good performance, suggesting that our pro-
filing models will have problems with generalization. Such
intuition is confirmed in Figure 10, where we display the GE
results. Here, RS works significantly better as it reaches GE
of 1 for around 1 500 attack traces (key rank and 50 epochs).
For BO, no results suggest we can break the target. We
believe this happens as the search space is very large, and
BO probably needs significantly more iterations to exhibit
good performance.
Next, in Tables 6 and 7, we retrain and compare the results

for several architectures for both leakage model. Again, the
model complexity and the number of traces needed to reach

GE of 1 are considered. For the HW leakage model, the attack
performance of AutoSCA CNN is comparable with the model
listed in [14]. Interestingly, the authors in [14] used an ensem-
ble of neural networks to reach such an attack performance. On
the other hand, we managed to find a single profiling model
that performs similarly. Compared with the model listed in
[15], our best models have more trainable parameters, but we
argue that the model’s attack performance should be prioritized
when selecting the models. For the HW leakage model, the
similar GE performance between [15] and the MLP models
obtained in this work indicate that with a good hyperparameter
tuning, MLP can represent a viable option even compared to
CNNs. The AutoSCA CNN model performs significantly bet-
ter than [15] for the HW leakage model. On the other hand,
both benchmark models perform significantly better for the ID
leakage model than those obtained with AutoSCA. One possi-
ble reason could be that the search space is not fully explored
by the search algorithm, where more iterations may lead to bet-
ter attack models. Also, additional training effort may be
required to learn from this dataset with the ID leakage model,
as a shorter training time (10 epochs) gives significantly worse
results than 50 epochs.
Finally, we add Gaussian noise with standard deviations of

two and four to the dataset, with a brief conclusion shown in

FIGURE 8. The GE comparison with the best MLP models

obtained by two search methods with the ID leakage model on

ASCAD with random keys.

FIGURE 9. The GE comparison with the best CNN models

obtained by two search methods with the HW leakage model on

ASCAD with random keys.

VOLUME 12, NO. 2, APRIL-JUNE 2024 555

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

Table 8. In line with the tests on ASCAD with a fixed key, 15
out of 19 cases indicate that BO performs better than RS.
With the increasing noise level added to the traces, the per-
formance difference between BO and RS becomes larger, as
observed from the key rank difference, indicating BO’s abil-
ity to cope with more difficult datasets.

VI CONCLUSIONS AND FUTURE WORK

This article proposed Bayesian optimization for the deep
learning-based SCA hyperparameter tuning. We develop a
custom framework that supports both machine learning
and side-channel metrics, and we evaluate the performance
of such obtained profiling models with random search and
state-of-the-art results. We can observe that BO works
well and produces a large number of highly-fit profiling
models. This indicates that BO should be the first choice
when running deep learning-based SCA, especially when
the evaluator is more restricted concerning the number of
measurements and wants to search for the strongest possi-
ble profiling model. We also see that random search can
find excellent profiling models, especially for simpler
datasets. Still, random search results need to be considered
from a proper perspective as we pre-select some “reason-
able” ranges. Extending the ranges makes the problem

more difficult for a random search. Thus, there is a trade-
off between the hyperparameter tuning complexity and the
assumptions on the architectures one makes.
It is particularly interesting to observe that BO results can

outperform the results obtained through a methodology
approach [7] or reinforcement learning [15]. Considering that
[15] reports on average 100 hours to perform a single experi-
ment, Bayesian optimization requires on average 10� less
time while having similar attack performance. However, one
should keep in mind that the tuning complexity is positively
correlated with the range of the search space. Indeed, a too
large search range would increase the tuning complexity and
more likely constrain the size of the generated models due to
the limitation of the computation devices (i.e., GPU memory).
The complexity will be governed by the number of models
generated and their size (concerning the number of trainable
parameters). Finally, we plan to extend our analysis to different
types of Bayesian optimization in future work. We considered
one surrogate model (Gaussian Process) and one acquisition
function (upper confidence bound) in this work. While those
choices are common options, further investigation should be
done to judge specific design choices’merits.

REFERENCES

[1] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards, Berlin, Germany: Springer, 2006.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc.
Adv. Cryptology 19th Annu. Int. Cryptology Conf., 1999, pp. 388–397.

[3] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Proc. Crypto-
graphic Hardware Embedded Syst. 4th Int. Workshop Redwood Shores,
2002, pp. 13–28.

FIGURE 10. The GE comparison with the best CNN models

obtained by two search methods with the ID leakage model on

ASCAD with random keys.

TABLE 6. Comparison of performance on ASCAD with random

keys with the HW leakage model.

[14] [15] AutoSCA MLP AutoSCA CNN

Complexity N/A 15 241 1 783 425 4 128 753
Traces to reach GE ¼ 1 470 911 617/818 496/1 112

Complexity denotes the number of trainable parameters.

TABLE 7. Comparison of performance on ASCAD with random

keys with the ID leakage model.

[14] [15] AutoSCA MLPAutoSCA CNN

Complexity N/A 70 492 1 699 744 1 539 320
Traces to reach GE ¼ 1 105 490 3 481/1 596 2 945/1 568

TABLE 8. Comparison of performance of BO and RS with the

addition of different noise levels (two and four).

Accuracy Key rank Lm

MLPHW RS/BO RS/BO BO/-
MLPID BO/- BO/BO BO/BO
CNNHW -/RS -/BO BO/BO
CNNID -/BO BO/BO RS/RS

Complexity denotes the number of trainable parameters.

556 VOLUME 12, NO. 2, APRIL-JUNE 2024

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

[4] G. Hospodar, B. Gierlichs, E. D. Mulder, I. Verbauwhede, and J. Vande-
walle, “Machine learning in side-channel analysis: A first study,” J. Cryp-
tographic Eng., vol. 1, no. 4, pp. 293–302, 2011.

[5] L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and F.-X. Standaert,
“Template attacks versus machine learning revisited (and the curse of
dimensionality in side-channel analysis),” in Proc. Int. Workshop Con-
structive Side-Channel Anal. Secure Des., 2015, pp. 20–33.

[6] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic imple-
mentations using deep learning techniques,” in Proc. Int. Conf. Secur. Pri-
vacy Appl. Cryptography Eng., 2016, pp. 3–26.

[7] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for effi-
cient CNN architectures in profiling attacks,” IACR Trans. Cryptographic
Hardware Embedded Syst., vol. 2020, no. 1, pp. 1–36, Nov. 2019.

[8] L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “Revisiting a meth-
odology for efficient CNN architectures in profiling attacks,” IACR Trans.
Cryptographic Hardware Embedded Syst., vol. 2020, no. 3, pp. 147–168,
Jun. 2020.

[9] C. Archambeau, E. Peeters, F. X. Standaert, and J. J. Quisquater, “Tem-
plate attacks in principal subspaces,” in Cryptographic Hardware and
Embedded Systems, L. Goubin and M. Matsui Eds., Berlin, Germany:
Springer, 2006, pp. 1–14.

[10] F.-X. Standaert and C. Archambeau, “Using subspace-based template
attacks to compare and combine power and electromagnetic information
leakages,” in Proc. Int. Workshop Cryptographic Hardware Embedded
Syst., 2008, pp. 411–425.

[11] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make some
noise. unleashing the power of convolutional neural networks for profiled
side-channel analysis,” IACR Trans. Cryptographic Hardware Embedded
Syst., vol. 3, pp. 148–179, 2019.

[12] S. Picek, A. Heuser, G. Perin, and S. Guilley, “Profiling side-channel anal-
ysis in the efficient attacker framework,” Cryptology ePrint Archive,
Report 2019/168, 2019.

[13] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning
for side-channel analysis and introduction to ASCAD database,” J. Crypto-
graphic Eng., vol. 10, no. 2, pp. 163–188, 2020.

[14] G. Perin, L. Chmielewski, and S. Picek, “Strength in numbers: Improving
generalization with ensembles in machine learning-based profiled side-
channel analysis,” IACR Trans. Cryptographic Hardware Embedded Syst.,
vol. 2020, no. 4, pp. 337–364, Aug. 2020.

[15] J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning for
hyperparameter tuning in deep learning-based side-channel analysis,”
IACR Trans. Cryptographic Hardware Embedded Syst., vol. 2021, no. 3,
pp. 677–707, Jul. 2021.

[16] T. O’Malley et al., “Keras Tuner,” 2019. https://github.com/keras-team/
keras-tuner

[17] L. Wu et al., “On the attack evaluation and the generalization ability in profiling
side-channel analysis,” Cryptology ePrint Archive, Report 2020/899, 2020.

[18] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for the
analysis of side-channel key recovery attacks,” in Advances in Cryptology
- EUROCRYPT 2009, A. Joux Ed., Berlin, Germany: Springer, 2009,
pp. 443–461.

[19] M. Pelikan et al., “BOA: The bayesian optimization algorithm,” in Proc.
Genet. Evol. Comput. Conf., 1999, pp. 525–532.

[20] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 2951–2959.

[21] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture
search system,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2019, pp. 1946–1956.

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the mul-
tiarmed bandit problem,” Mach. Learn., vol. 47, no. 2/3, pp. 235–256,
May 2002.

[23] P. I. Frazier, “A tutorial on Bayesian optimization,” 2018, arXiv:1807.02811.
[24] L. Lerman, S. F. Medeiros, G. Bontempi, and O. Markowitch, “A machine

learning approach against a masked AES,” in CARDIS, Lecture Notes in
Computer Science, Berlin, Germany: Springer, 2013.

[25] A. Heuser and M. Zohner, “Intelligent machine homicide - breaking cryp-
tographic devices using support vector machines,” in COSADE, ser.
LNCS, W. Schindler and S. A. Huss Eds., vol. 7275, Berlin, Germany:
Springer, 2012, pp. 249–264.

[26] O. Choudary and M. G. Kuhn, “Efficient template attacks,” in Smart Card
Research and Advanced Applications, A. Francillon and P. Rohatgi Eds.,
Berlin, Germany: Springer, 2014, pp. 253–270.

[27] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks with
data augmentation against jitter-based countermeasures,” in Cryptographic
Hardware and Embedded Systems – CHES 2017, W. Fischer and N.
Homma Eds., Berlin, Germany: Springer, 2017, pp. 45–68.

[28] Z. Martinasek, J. Hajny, and L. Malina, “Optimization of power analysis
using neural network,” in Smart Card Research and Advanced Applica-
tions, A. Francillon and P. Rohatgi Eds., Berlin, Germany: Springer, 2014,
pp. 94–107.

[29] S. Yang, Y. Zhou, J. Liu, and D. Chen, “Back propagation neural network
based leakage characterization for practical security analysis of crypto-
graphic implementations,” in Information Security and Cryptology, H.
Kim, Ed, Berlin, Germany: Springer, 2012, pp. 169–185.

[30] L. Weissbart, “Performance analysis of multilayer perceptron in profiling
side-channel analysis,” in Proc. Appl. Cryptography Netw. Secur. Work-
shops, 2020, pp. 198–216.

[31] H. Li, M. Kr�cek, and G. Perin, “A comparison of weight initializers in deep
learning-based side-channel analysis,” in Proc. Appl. Cryptography Netw.
Secur. Workshops, 2020, pp. 126–143.

[32] G. Perin, L. Wu, and S. Picek, “Exploring feature selection scenarios for
deep learning-based side-channel analysis,” Cryptology ePrint Archive,
Report 2021/1414, 2021.

LICHAO WU received the bachelor’s degree with
Northwestern Polytechnical University, in 2015
and the master’s degree in microelectronic with the
Delft University of Technology, in 2017. He is cur-
rently working toward the PhD degree in the cyber-
security research group with the Delft University of
Technology. His main research interests are at the
intersection of implementation attacks, cryptogra-
phy, and machine learning.

GUILHERME PERIN received the graduated
degree in electrical engineering from the Federal
University of Santa Maria, in 2008, the master’s
degree in Informatics from the Federal University
of Santa Maria, in 2011, and the PhD degree in
microelectronics and automated systems with the
University of Montpellier, in 2014. He is a postdoc-
toral researcher with the Delft University of Tech-
nology. His research areas include hardware
security, cryptography, optimization algorithms,
and machine learning.

STJEPAN PICEK received the PhD degree, in
2015, and from 2015 to 2017. He is an associate pro-
fessor with Radboud University, The Netherlands.
He was a postdoctoral researcher with KU Leuven,
Belgium and MIT, USA. From 2017 to 2021, he
was an assistant professor at the Delft University of
Technology, The Netherlands. His research interests
include cryptography, machine learning, and evolu-
tionary algorithms.

VOLUME 12, NO. 2, APRIL-JUNE 2024 557

Picek et al.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-Based Side-Channel Analysis

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:33:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

