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Abstract—This paper develops an efficient solution for super-
resolution two-dimensional (2D) harmonic retrieval from multiple
measurement vectors (MMYV). Given the sample covariance
matrix constructed from the MMYV, a gridless compressed sensing
approach is proposed based on the atomic norm minimization
(ANM). In the approach, our key step is to perform a redundancy
reduction (RR) transformation that effectively reduces the large
problem size at hand, without loss of useful frequency informa-
tion. For uncorrelated sources, the transformed 2D covariance
matrices in the RR domain retain a salient structure, which
permits a sparse representation over a matrix-form atom set
with decoupled 1D frequency components. Accordingly, the
decoupled ANM (D-ANM) framework can be applied for super-
resolution 2D frequency estimation. Moreover, the resulting RR-
enabled D-ANM technique, termed RR-D-ANM, further allows
an efficient relaxation under certain conditions, which leads to
low computational complexity of the same order as the 1D case.
Simulation results verify the advantages of our solutions over
benchmark methods, in terms of higher computational efficiency
and detectability for 2D harmonic retrieval.

Index Terms—Super-resolution, 2D harmonic retrieval, MMYV,
RR transformation, D-ANM.

I. INTRODUCTION

Two-dimensional (2D) harmonic retrieval has broad appli-
cations in speech processing [2], wireless communications
[3], radar systems [4], [5], etc. A number of classical high-
resolution methods have been developed, mostly based on
statistical analysis of the sample covariance [6]-[12]. These
methods usually require a large number of measurements in
order to well approximate the desired statistics, which may
not work effectively in modern applications of a large problem
size and limited sampling resources such as short sensing time
and compressive measurements. In recent decades, compressed
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sensing (CS) based techniques that utilize signal sparsity have
attracted much interest and have been widely applied for
signal recovery from compressive measurements, based on
either a single measurement vector (SMV) [13], [14] or mul-
tiple measurement vectors (MMYV) [15]-[20]. The CS based
methods with MMV are further classified into two categories:
sample-based methods (where the observed signals are directly
adopted as the multiple inputs to CS techniques) [15], [16], and
covariance-based methods (where the covariance matrix of the
observed signals is calculated and then fed into subsequent CS
recovery operations) [17]-[19]. While the former work well
for a single or few snapshots, the latter are computationally
much more efficient when the number of MMV is large.
Compared with the classical subspace methods [8], [9], the CS
approaches with MMV exhibit several advantages: robustness
to noise, no requirement on the known number of sources a
priori, and high sample efficiency.

However, the traditional CS approaches critically hinge on
an on-grid assumption that the signal frequency components
reside exactly on some predefined grid in the spectral domain.
Such on-grid CS solutions offer limited frequency resolution
and may suffer from severe performance degradation due to
the basis mismatch [21]. To circumvent this issue, a super-
resolution technology based on the atomic norm minimization
(ANM) principle has been developed for line spectral esti-
mation from compressive measurements [22], [23], for both
the SMV and MMV cases [24]-[27]. These ANM techniques
utilize the Vandermonde structure of a uniform geometry by
enforcing a Toeplitz structure in a semidefinite programming
(SDP) based convex optimization problem, which allows
super-resolution harmonic retrieval via Vandermonde decom-
position. When the number of MMV is large, an alternative
covariance-based gridless technique, termed low-rank struc-
tured covariance reconstruction (LRSCR), was proposed for
the 1D case [27], which builds on the sample covariance
matrix, at computational complexity that is independent of
the number of measurement vectors. It is worth noting that
the LRSCR jointly incorporates two important properties, i.e.,
the low-rankness and the Toeplitz structure of the covariance
matrix. In contrast, classical structured covariance estimation
techniques do not explicitly impose low-rankness [28], [29].

The goal of this paper is to bring the benefits of ANM
to 2D harmonic retrieval problems in the presence of MMV,
when the problem size is large yet sampling resources are
limited. Along this line, the ANM techniques originally de-
veloped for 1D scenarios have been extended to 2D scenarios
[30]. In vectorization-based ANM (V-ANM), the main idea
is to vectorize the 2D data matrix and then cast the two-
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level Vandermonde structure of the data into a proper SDP
formulation under the ANM objective. This technique has
been further extended to higher-dimensional harmonic retrieval
through generalized Vandermonde decomposition on multi-
level Toeplitz matrices [31], and applies to both the SMV and
MMV scenarios [32]. Unfortunately, the computational com-
plexity of V-ANM scales exponentially with the dimensional-
ity, and increases drastically as the number of MMV grows.
In contrast, the decoupled atomic norm minimization (D-
ANM) algorithm [33], by virtue of its frequency decoupling
strategy, effectively reduces the computational complexity to
be comparable to that of a 1D ANM solution, without loss
of optimality. The advantage in computation comes with a
stricter yet still mild conditions on the frequency separation
and the number of identifiable frequencies [34]. However, D-
ANM only applies to the SMV case [33], [34]. To the best of
our knowledge, there is still a lack of computationally efficient
gridless 2D harmonic retrieval techniques for MMV problems.

To fill this gap, this paper aims at developing decoupling-

based 2D harmonic retrieval techniques for the MMV case,
by exploiting the structural information of the sample covari-
ance matrix effectively and efficiently. The sample covariance
encompasses useful information of all MMV, and can be
converted to an SMV form through vectorization. However,
it is quite challenging to directly solve this straightforward
but naive vectorization-based ANM problem, because the
large problem size in the 2D scenario results in unacceptably
huge computational complexity. In addition, the frequency
resolution would remain the same as that of the SMV case,
even in the presence of MMV. To overcome these challenges,
we propose an efficient super-resolution 2D harmonic re-
trieval method with MMV, termed redundancy-reduction (RR)
transformation based D-ANM-Relaxation (RR-D-ANM-R). In
doing so, our contributions are summarized as follows.

e For 2D harmonic retrieval, given the inherent two-level
Toeplitz structure of the covariance matrix in the uncorre-
lated case, we propose a RR transformation to concisely
express the vectorized covariance matrix as a RR vector
of much reduced length via linear projection. This RR
vector can be sparsely represented by a decoupled atom
set, which facilitates its efficient decomposition for 2D
harmonic retrieval with a much reduced problem size.

o Based on the RR transformation, we propose a novel
formulation for gridless 2D harmonic retrieval with MMV
via a customized D-ANM (RR-D-ANM). Further, to
make the problem tractable, we equivalently reformulate
the original formulation as a solvable convex form based
on the existence and uniqueness of the generalized Van-
dermonde decomposition of the covariance matrix.

o Capitalizing on the strong structured constraint intro-
duced by the RR-enabled D-ANM framework, the RR-
D-ANM further allows efficient relaxation as RR-D-
ANM-R, which is guaranteed by our theoretical analysis
for noise-free and noisy cases. It leads to considerable
reduction of complexity at a negligible loss in estimation
performance, compared with the RR-D-ANM.

o Based on several structured matrices recovered by our
gridless 2D MMV techniques, we design three harmonic

retrieval methods for different practical implementation
needs. Also, for the noisy case, we provide the con-
struction of a noise-tolerance constraint for the proposed
formulations, when the number of MMV is adequately
large and the noise statistics are unavailable in practice.

The rest of this paper is organized as follows. Section II
first presents the signal model and problem formulation for 2D
harmonic retrieval with MMV, and then reviews the relevant
prior work on V-ANM, D-ANM and LRSCR. Section III
proposes an efficient gridless 2D harmonic retrieval framework
based on the RR transformation, under which the RR-enabled
D-ANM solutions are developed in the transformed domain.
Section IV discusses related design issues. Section V presents
simulation results, followed by conclusions in Section VI.

Notations: a, a, A, A and \A denote a scalar, a vector, a
matrix, a set and the complement of the set A. ()T, (-)*, and
() are the transpose, conjugate, and conjugate transpose of
a vector or matrix. conv(A) means the convex hull of a set
A. Real(a) and |a| denote the real value and the absolute
value of a, respectively. The sign of a is defined as sign(a) =
exp(jo(a)) where ¢(a) denotes the phase of a. |lal|,, |la|,
and ||al|, are the 4o, ¢; and {5 norms of a. diag(a) generates
a diagonal matrix with the diagonal elements constructed from
a. vec(+) stacks all the columns of a matrix into a vector and
vecd(A) returns a vector consisting of the diagonal elements
of A only. vec™!(-) is the inverse operation of vec(-). e, is
the vector with only the a-th element being one and zeros
elsewhere. I, is an a-size identity matrix. S(A) indicates a
unique mapping from A to a two-level Toeplitz matrix T, .
||A|l#, Tr(A), Rank(A) are the Frobenius norm, the trace and
the rank of A. ® is the Kronecker product. ® is the Khatri-
Rao product. d;; € {1,0} is the Dirac delta function. E{-}
denotes expectation.

II. SIGNAL MODEL AND PRIOR ART

This section presents the signal model and problem state-
ment of 2D harmonic retrieval with MMV. A brief review of
related prior works is provided to highlight their limitations.

A. Signal Model

Consider a 2D harmonic retrieval problem where the signal
of interest (¢) € CN™M is a linear mixture of K 2D sinusoidal
components in the form of

z(t) =

K .
Z Si(t)azD (fz)

K
Z si(t)lan(f1:) ® an(f2,)]
1,...,L, (D

t=

)

where s;(t) is the complex amplitude of the i-th source,
I = [fri f2,]" € (=%, 3] consists of its digital frequen-
cies along the two orthogonal dimensions, and L 1is the
number of measurement vectors. The 2D manifold vector

a,,(f) = an(f1;) ® ap(f2;) is made of Vandermonde-
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structured manifold vectors an (f1;) and aps(f2,;) of size N
and M, respectively:!

an(fii) =1 exp(j2n i), ... exp(j2r(N—1)f1:)]"
an(fa,i)=[1,exp(j27 fai), - - -, exp(j2m(M—1) fa ;)]

Further, s(t) = [s1(t),...,sx®)]T, fn = [fa1s s fox]T
forn = 1,2, Ay = An(f1) = [an(f1.1),-- - an(f1,5)]
and AM = A]\/[(fg) = [ajvj(fg,l),...,a]\/[(fQ,K)]. In a
matrix form, (1) becomes X =(AN®Ap)S, where X =
[2(1),...,2(L)]eCNM*L G =[s(1),...,s(L)] e CE*L,
Note that the signal vector () may arise from the vector-
ization of a matrix X (t) € CM*¥ via & = vec(X), where

)

K
X()=3 siOar(foi)ak(f1.) = Andiag(s(t) AG. (3)
i=1
For instance, X (t) can be the samples collected from an M x
N rectangular array at the ¢-th snapshot, when K plane-wave
signals impinge on the array. The equivalence between (1) and
(3) derives from the properties of Kronecker and Khatri-Rao
products for a diagonal S,

vec(ASB) = (BT @ A)vec(S) = (BT ® A)vecd(S). (4)

In many applications, x(t) is not observed directly, but
through subsampling or linear compression via a measurement
matrix J € CM'*NM with M/<NM, such as in bistatic
multiple-input and multiple-output (MIMO) radar systems
with sparse linear array [5] and in hybrid millimeter-wave
massive MIMO systems [20], [37]-[39]. Inflicted by an
additive noise n(t), the SMV data y(t) € CM’ is given by

y(t) = Jz(t) + n(t). (5)

Collecting all y(t)’s and n(t)’s to form matrices Y7, and N,
respectively, the MMV model is

YLZJXL+NL=J(AN®AA{)SL+NL. (6)

Given random s(t), the desired frequency information lies
in the covariance of y(t), defined by

R, =E{y()y()"} = JR,J" + R, )

where R, and R, are the covariance of x(t) and n(t),
respectively. Denoting R, = E{s(t)s(t)"}, we have

R, =E{x(t)x(t)}=(An ©® Ay )R, (AN © Apx). (8)

This paper considers uncorrelated signal sources, that is,

E{sz(t)s;‘(t)} =105, V1 < 4,7 < K. Since r; > 0, Vi, R,
is a positive semidefinite (PSD) diagonal matrix:

R, = diag(r) = 0, where r = [rq,.. .,T‘K]T >0. (9

In practice, R, is approximated by its sample covariance

- 1

R, = ZYLYLH. (10)
The goal of 2D harmonic retrieval is to recover the unknown
frequency pairs {f'}; from either Y, or R,, corresponding
to the sample-based or the covariance-based approach.

'When non-ideal geometries are encountered, e.g. antenna systems with
perturbation, array manifold separation can be applied to retrieve the Vander-
monde structure through a Bessel or Fourier approximation [35], [36].

3

B. Prior Art

We now review existing approaches for 2D harmonic re-
trieval, with focus on gridless CS techniques. The limitations
of these techniques for the MMV case motivate this work.

1) Statistical subspace methods: The 2D frequency esti-
mates can be jointly acquired from the signal subspace of R,
by utilizing the two-level Vandermonde structure exhibited in
R, in (8) [10]-[12]. However, traditional subspace methods
require L to be large in order to accurately estimate the sought
covariance via sample averaging. For instance, to approximate
R, in (7) by (10), it requires L > M’ in the worst case when
K (<M’) is unknown a priori. Besides, they may suffer from
degraded estimation accuracy in the presence of subsampling
or compression, i.e., M’ < NM. This means that both the
number of MMV L and the compressive sample vector length
M’ have to be sufficiently large. Hence, traditional subspace
methods usually experience low sample efficiency.

2) Sample-based Vectorized 2D ANM (V-ANM): Gridless
CS builds on the tenet that the signal of interest can be
concisely expressed as a linear combination of a few simple
atoms over a known atom set, and atomic norm minimiza-
tion (ANM) is able to reveal the atomic composition under
some conditions. In V-ANM, the signal of interest is x(t)
in the SMV case or X, in the MMV case. Based on (1), a
vectorization-based atom set is defined as [30], [31]

1
A, = {\/WG’ZD(f) IVf=1[f1, " € (-3, 3 } (11)
Accordingly, the atomic norm of x (to replace x(t) hereafter)
over the atom set A, is defined as

2|l 4, =inf{l > 0: 2 € lconv(A,)}, (12)

which seeks the sparsest (under the ¢;-norm measure) de-
composition of x over A,. If the frequencies are adequately
separated to meet the separation condition [30], [31], then the
atomic decomposition yields the true signal structure in (1),
through the following V-ANM formulation

& = argmin||z| 4, st ly — Jz||3 < u, (13)

where p is a user-specified parameter for error tolerance.

Calculation of the atomic norm is difficult, particularly when
the atom set is of infinite size. Fortunately, A, possesses a
special structure indicated by the Vandermonde vectors in (2),
which leads to a SDP reformulation of V-ANM for computa-
tionally tractable solutions. Provided that X' < min{N, M} in
addition to the separation condition, the SDP-based V-ANM
for both SMV (L = 1) and MMV is [30]-[32]

{1y, V. Xy} =arg min_ = (Tr (T, (u,,)) + Te(V)

UZD’V’XL
TzD(uzD) X,
1Yz = IX L7 < pe
(14)

e CNMxNM s 3 Hermitian two-level

€ C2NM—(N+M)+1

Here T,,(u,,)
Toeplitz matrix parameterized by u,,
which consists of the distinct entries (the conjugate entries
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are not included) in its first M columns [30]. Once u,, is
acquired from (14), the 2D frequencies can be extracted from
T,, (u,,) via generalized Vandermonde decomposition [31].
Alternatively, traditional 2D subspace methods can be adopted
for accurate frequency estimation from the well-conditioned
T,, (u,,) in lieu of the unknown R,.

Note that the V-ANM is a sample-based approach, building
on Yy. Moreover, T, (u,,,) can be constructed even when
strong compression is present with M’ < NM, and for few
snapshots L < N M. Hence, V-ANM enjoys high sample effi-
ciency. However, its computational cost scales exponentially in
the signal dimensionality, because of the multi-level Toeplitz
matrix involved. The PSD matrix in the first constraint of (14)
is of size (NM+L)x (N M+L), which results in a complexity
order of O((NM + L)*5L?) in SDP implementation [40].

Furthermore, the exact equivalence between the SDP for-
mula in (14) and the original ANM entails an extra condition,
that is, Rank(T,, (u,,)) < min{N,M}. This results from
the fact that the equivalence between the PSD property of the
two-level Toeplitz matrices and the existence and uniqueness
of their generalized Vandermonde decomposition only holds
under such a condition [31]. Since this constraint cannot be
explicitly imposed in the SDP, some checking mechanism has
to be applied to the solution of (14), which incurs extra opera-
tions [31], [41]. Overall, V-ANM is applicable to problems of
small size only, because of its very high computational cost.

3) Sample-based Decoupled 2D ANM (D-ANM): The
disadvantage of V-ANM is overcome by a D-ANM ap-
proach [33], [34], which operates on the matrix-form signal
X (t) = vec (=x(t)) in (3). Accordingly, it introduces a
matrix-form atom set

A= {an(f)al(£)|Vf = [f1, )T € (-4, 12}, (15

Similar to (13), under a certain separation condition [34], the
true frequency components of X (to replace X (¢) hereafter)
correspond to its sparsest decomposition, and can be found by
calculating || X[| o, via the following D-ANM [33], [34]:

X = argmin| X[l st [y - Jvee(X)|2 < p. (16)
Utilizing the inherent Vandermonde structure, (16) is equiv-
alent to the following SDP when K < min{N, M} [33], [34]

{u1, uq, XV}:arg min

1
o™ 2V NI (Tr(T(wy))+Tr(T(us)))

useCM
T(UQ) X
—
ly — Jvec(X)|3 < u,

a7

where T(u,), n = 1,2, forms a one-level Hermitian Toeplitz
matrix with w,, being its first column. Following (17), f,, can
be extracted from the estimated T(w,,) individually, n = 1,2,
via standard 1D Vandermonde decomposition. While the sep-
aration condition of D-ANM is more restrictive than that of V-
ANM, D-ANM reduces the complexity order to be comparable
to a 1D problem at O(N2M?(N + M)*®), noting that the
PSD constraint in (17) is of size (N + M) x (N + M) only.

4

Remarkably, the decoupling in computation not only retains
performance optimality, but also facilitates frequency pairing,
because w; and ue are jointly recovered from the SMV data
y. However, the D-ANM framework in (17) only works for
the SMV case with « collected from a single snapshot. It is
not straightforward to directly extend (17) to the MMV case.

4) Covariance-based LRSCR: For harmonic retrieval, the
essence of the ANM approach is to construct a structured
matrix T,,(u,,) from the data set Y7 that possesses the
desired properties of the idealized signal covariance R,
including being low rank, PSD, and two-level Hermitian
Toeplitz. Alternative to sample-based V-ANM, R, with these
properties can be extracted from the sample covariance IA%y,
through an LRSCR formulation [42] as follows:

ﬁ; =arg Tr (R;)

min
R:=T,p (uyp)

(18)

~ 2
st ||R, - JRxJH“F <y

R, = 0,

where p’ is similarly defined as p. Note that the LRSCR in
(18) permits a SDP reformulation, similar to the form of (14).
For both (18) and its SDP counterpart, the size of any PSD
constraint involved is independent of L, which dictates the
complexity order of the LRSCR to be O((NM)*?). This is
lower than that of the V-ANM when L is large, but still quite
high for practical use in large-size problems when N and/or
M go large.

In summary, the aforementioned super-resolution schemes
for the MMV case encounter major limitations in terms
of either sample efficiency or computational efficiency. The
existing D-ANM is efficient in both accounts, but is only
applicable to the SMV case and subject to stricter frequency
separation conditions. In large-scale problems such as spatial
frequency estimation in massive MIMO systems [43], [44], the
number of samples is limited due to both real-time processing
constraints and sampling costs. Meanwhile, the complexity
order has to be amenable for affordable implementation.
Therefore, our goal in this work is to develop new efficient
super-resolution harmonic retrieval techniques for MMV, by
exploiting the mechanism of D-ANM in a covariance-based
manner. Moreover, in the existing 2D harmonic retrieval
based on the generalized Vandermonde decomposition of the
covariance matrix, the number of identifiable sources is limited
to be K < min{M, N}, which is too conservative, considering
the extra information that MMV can provide beyond SMV.
Accordingly, we aim to loosen the conservative conditions
for guaranteeing exact 2D solutions in the MMV case, by
effectively capitalizing on the inherent structure of covariance
matrices.

III. REDUNDANCY-REDUCTION TRANSFORMATION BASED
DECOUPLED ATOMIC NORM MINIMIZATION

This section develops a super-resolution 2D frequency esti-
mation scheme based on the D-ANM scheme, in the presence
of MMV. Redundancy-reduction transformation of the signal
covariance is introduced, which effectively reduces the com-
putational cost to be comparable to that of a 1D problem.
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A. Redundancy-Reduction Transformation

To take advantage of the low complexity of the D-ANM
for the SMV case, we turn to r, = vec(R,) € CNM)? 4
the structured signal vector of interest. This vector can be
approximated by vec (+ X X '), which retains the useful 2D
frequency information in all the columns of X . Hence, an
MMV problem based on X, can be alternatively solved as an
SMV problem based on 7,,, which is amenable to the D-ANM.

However, the benefit of adopting r, as the signal of interest
comes at the expense of a much enlarged signal length of
(NM)?, which incurs a high computational cost when N
and/or M go large. To circumvent this issue, we propose a RR
transformation to concisely express r,, by removing the redun-
dancy in the entries of r,. The basic idea is to establish a linear
mapping that projects the vectorized covariance matrix r, with
repeated entries onto an RR vector z with no repeated entries.
A similar thought can be found in our previous work on
1D problems where we establish the linear mapping between
the covariance matrices in the compressed and uncompressed
domains for compressive cyclic feature detection [45], [46]
and DOA estimation [47]. In this work, the RR transformation
for the 2D case is much more involved, and critically hinges
on the underlying multi-level Vandermonde structures of the
manifold vectors that have not been studied under the context
of RR, as derived next.

The inherent redundancy in 7, is due to the uncorrelated
sources, which yields R, = diag(r) with only K nonzero
entries. By vectorizing both sides of (8), it follows that

K
rz:ZTi (an(fr)@an(f2,:) @ (an(fri)@an(f2:)) -
i=1
19)
Concerning each summand in (19), an equality arises:

(an(fii) ® an(f2.))” @ (an(fii) ® an(f2.i))
=W(ay(f1i) @ ajy(f24)),

where ay (f1,;) €C*N~! and a/y;(f2,;) € C*~! are given by

(20)

, | ]
al(fr,0)= [Nl

a/IW(fQ-,i): [e—j27r(M—1)f2,¢7. CT)

1. @O D)
) b b ) 21
L T R

In (20), the matrix ¥ = (Iy @ E ® Iy)(Gy ®
Gy)€ RV M*x(@N-1)2M-1) s the redundancy-reduction
(RR) transformation matrix that is determined by N and M
only, where E = Z;Vil(ejT ® Iy ® e;) € RVMXNM g the
commutation matrix, Gy is defined as

Gy = [Gh.,...,Gh )" eRVXCND (2
with the i-th block matrix G ; = [Onx(Nv—i), IN, Onx (i—1)]»
i=1,...,N, and G € RM**(2MD) ig defined similarly as
(22). The derivation of (20) is provided in Appendix A.

By defining the Kronecker product term in the right hand
side of (20) as

al (f") =a\(fi,;) @ aylfoi), (23)

5

(19) can be rewritten as

K
r, = Wz, where z:Zria;D (fH=(Ay ® A))r 29
i=1

where Ay = AN(f1) = [ay(fi1),...,aNx(f1,x)] and
Ay = Ay (f2) = lay(f21),---,al(fo,x)], and r =
vecd(Ry). It follows from (4) that

z=(A\©A),)vecd(R,) =vec(A) R,AY)=vec(Z) (25)

where Z = A, R AL
Moreover, z can be observed through the vectorized version
of R, in (7) by noting

ry = vec(R,) = vec(JR,J? + R,))= (J* @ J)ry + 7,
=lJ"'@J)¥z+r,=Tz+r,
(26)

where T' = (J*®@J)® € CM**¢ with ¢ = (2N —1)(2M —1),
and r, = vec(R,,) is the noise term.

It is worth noting the importance of (24) and (26) as the
equivalent signal and measurement models in the RR domain.
According to (21) and (25), the RR vector z, or its matrix
form Z, contains all the harmonic information. Further, z
1S covariance-based constructed from MMV, but it takes on
an SMV form that is crucial for ensuing low-complexity
algorithm design. It is the RR transformation matrix ¥ that
linearly maps the original r, of a large size N2M? to a much
smaller vector z of size (2N — 1)(2M — 1), without loss of
any useful information. Further, the dimensionality is reduced
as well. As indicated by (19), r, in the original domain is
structurally complex consisting of four nested Vandermonde
vectors, which is difficult to tackle. In contract, the RR vector
z is modeled to retain the two-level Vandermonde structure
in its manifold vector a/ (f*) of (23), parameterized by the
unknown frequencies of interest. More importantly, compared
with (2), (21) suggests two enlarged virtual samplers of length
(2N —1) and (2M —1) respectively. In this sense, the unknown
frequency pairs can be retrieved through the decomposition of
the estimated z or Z, at enhanced frequency resolution. With
(26), the MMV Y7, is capsulated by the transformed SMV
7, = vec(R,) = vec(+ YY), which is linearly related to
the RR vector z. Now, the task boils down to reconstructing
the 2D structure of z or Z in the RR domain from 7.

B. RR-based 2D MMV via Customized D-ANM

In the RR domain, the covariance-based z in (24) bears
a similar form as that of « in (1), and hence can be math-
ematically treated as a single sample vector. An intricate
difference is that the coefficients » = [ry,...,7x|T in z
are nonnegative as indicated by (9), whereas & has complex-
valued coefficients. Hence, all the sample-based gridless CS
techniques for the simple SMV case, including the 2D V-ANM
and D-ANM reviewed in Section II-B, can be applied, with
extra care on the nonnegativeness of 7.

Considering the computational efficiency of D-ANM over
V-ANM, we aim to develop a D-ANM solution to extract the

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt%://www.ieee.or%/fublicationsfstandards/}:)ublications/ri hts/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on March 01,2022 at 11:07:

UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3150964, IEEE

Transactions on Signal Processing

structural information of the RR vector z. To this end, we
inspect its matrix form Z in (295):

K K
Z =vec ' (z) = Y _riahy(fai)a (fri) = > _riA(f7)
i=1 1=1

where A/(‘fl) = a'M(fg,i)a'ﬁ(fl)i) S CEM-1)x(@2N-1) 1t jg
easy to find that Z has a sparse linear atomic representation
over the following matrix-form atom set of infinite size:

L= A, VFe (R4,
Accordingly, we introduce a new matrix-form atomic norm

121 %, = (28)

inf {Z Tk
k

Note that this norm of (28) differs from || - || 4, in (16) of the
standard D-ANM [33], [34], because of the extra constraint
r > 0.

Given Z, it is possible to retrieve the components {rz, f¥}
of its sparest representation by calculating its atomic norm,
which leads to line spectrum estimation. In the presence of
noise-inflicted SMYV, it boils down to

27

> A (fF), A(FF) € Ay > 0>Vk} :
K

> . + 2
Z = argmzlnHZHA,d st. |lry —=Tvec(Z)[|; < B, (29)

where [ indicates the noise tolerance threshold. This is a
customized D-ANM defined on the norm || - ||, , in lieu of
| - [|.47, used in the D-ANM formula in (16). To {llustrate the
intricate difference, we rewrite (29) in an equivalent form:

min Zl| 4 = |Ir 30a
omin 2] = el (300
st |ry—Tvec(Z)[l; < 8 (30b)

Z = Ay (f2)diag(r) AN (f1) (30c)

r>0. (30d)

Here (30a) and (30b) are in the same form as (16), (30c) is
implicit in the objective function of both (16) and (29), but
becomes an explicit constraint because of the new nonnegative
constraint (30d). Without (30d), the SDP implementation of
the D-ANM in (17) can be used to reformulate (30) into a
convex problem. However, due to the extra constraint on 7 in
(30d), this problem becomes intractable. This is because 7 is
intertwined with the other variable Z in the form of (30c).

To solve (30) in a tractable manner, we seek to reformulate
r > 0 to an equivalent form with respect to Z. To this end,
we note from (24) that Z = vec!(z) in the RR domain is
linearly related to R, = vec™!(r,), via

R, = vec !(r,) = vec ! (¥2) = vec ! (Pvec(Z)). (31)

When there exists a unique generalized Vandermonde decom-
position of R,, it holds that » > 0 if and only if R, > 0.
Fortunately, the desired decomposition property of R, can be
guaranteed, thanks to its connection to Z via (31) and the
specific structure of Z in (30c). Specifically, according to D-
ANM theory [34], the decomposition of Z in (30c) is unique
when K < 2min{N, M} — 2. Here, R, represented in the

6

form of (31) is a two-level Toeplitz matrix that is uniquely
determined by Z through the proposed RR transformation as
a one-to-one mapping between R, and Z. Thus, R, has a
unique generalized Vandermonde decomposition.

Moreover, R, >~ 0 can be expressed by the following PSD
constraint parameterized by Z:

vec ! (Wvec(Z)) = 0. (32)

Replacing (30d) by (32), and reformulating (30a)-(30c) into a
decoupled SDP form as in (17) [34], we reach the following
equivalent SDP formula for (29) when K < 2min{N, M}—2:

(Z, an, )

1
—arg , min o2 (Tr(T(u) + Tr(T(ua)) - (330
T(’u,]w) Z
s.t. { ZH T(uy) } =0, (33b)
’ vec(R,) — I‘vec(Z)Hz <8, (33c)
vec H(Wvec(Z)) = 0. (33d)

Eq. (33) is the SDP-based D-ANM solution for the MMV
case in the RR domain, which we term as RR-D-ANM.
It lumps all the measurements Y7 into a single vector 7
in a covariance-based manner, and decouples the frequency-
dependent variables into two 1D terms without loss of optimal-
ity by utilizing the specific structure of Z through D-ANM.
Remark 1: Note that the virtual manifold vectors uy and
w)s have enlarged sizes of 2N — 1 and 2M — 1, compared
with the sizes N and M for V-ANM and D-ANM in Section
II-B. As a result, (33) can operate under the condition K <
2min{N, M} — 2, which is twice looser than that in [31],
[41]. Thus, when min{N, M} —1 < K < 2min{N, M} — 2,
the extra checking mechanisms applied in [31], [41] can be
skipped if using (33). ]

It is worth noting that although the PSD matrix in (33b) is of
size 2(N+M —1) x2(N+M —1), which is on the same order
of size (N+ M) x (N + M) of D-ANM for the SMV case in
(17), the extra PSD constraint in (33d) is still of size M N x
M N. As aresult, the overall complexity order of the proposed
RR-D-ANM remains to be comparable to that of the V-ANM
and the LRSCR. Next, to reduce the computational complexity,
an efficient relaxation of the proposed method is proposed to
balance the computational cost and estimation performance.

C. Efficient Relaxation

Since the PSD constraint in (33d) contributes to most of the
computational cost, an efficient relaxation of (33) is to drop
(33d), which results in the following RR-D-ANM-Relaxation
(RR-D-ANM-R)

{Z", uy uj}

1
= arg . Ln]\}IzM 27\/6 (TI‘(T(’U,N)) + TI‘(T(’U,M))) (348.)
T(’U,]V[) Z
s.t. { ZH T(uy) } =0, (34b)
Hvec(Ry) - I‘VCC(Z)Hz <B. (34c¢)
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Next, we will show that, under certain conditions, the solution
Z* obtained through RR-D-ANM-R reaches the ground truth
in the noise-free case, and asymptotically approaches the
ground truth in the noisy case with high probability.

1) Noise-free case: We start from the ideal noise-free case
in the absence of any additive noise or finite sample error.
According to (26), we have

vec(R,) = I'vec(Z). (35)

By replacing the error tolerance inequality (34c) with the
equality constraint in (35), we have the RR-D-ANM-R for the
noise-free case. For this problem, we can state the following
theorem providing the fundamental limits of RR-D-ANM-R
on sample efficiency when M = N.

Theorem 1: Let T' € CN'*N=1" yyith 2N —1 > 1024 be
a random matrix with rows v’ chosen independently from a
distribution obeying the isotropy and incoherence properties’

2 2N-1)?

1
E(vv) = —1I; sup|(al, (f),v)]* < ¢ (0)
f

TN
for some fixed ¢ > 1. Assume that the signs sign(r;) of
the complex coefficients 7; € C of the unknown vec(Z) =
ZiKzl rial, (f'), defined as sign(r;) = r;/|r;|, are randomly
located on the complex unit circle with its phase ¢(r;) being
symmetrically distributed around 0 between [—m,7]. Also

assume that all the frequency pairs f' = [f1,, f2.]7 obey
the minimum separation condition
min|f——f-|>i min\f-—f—>i 37)
oy 1,4 1,51 = N’ it 2, 2,51 = N’

Then, the RR-D-ANM-R? returns the true Z with a probability
at least 1 — 4, as long as

N’ > C¢K log?((2N —1)/4), (38)

with C' being a constant.

Proof: A sketch of proof is provided in Appendix B, which
is similar to the proofs of Theorem 1 in [48] and Theorem 6.1
in [34]. O

Theorem 1 provides a design guideline of isotropic and in-
coherent subsampling matrices. Specifically, the measurement
vector length N’, which dictates the allowable compression, is
lower bounded by a function of N and ¢ in (38). To construct
T that satisfies (36), we note the definition of I in (26):

T=(J ®J)¥ e CM*xEN-DEM-1) (39)

Suppose that a random selection matrix is adopted for subsam-
pling in (6) as J = I (where I is generated by randomly
keeping only M’ rows of In,s with the indices from 2 C
{1,2,...,NM}). Then, T is also a random selection matrix
but with some repeated rows. Let IV € CN'x(2N-1(2M-1)

2In [48], the authors claim that the assumption 2N — 1 > 1024 is made
merely for convenience, and that it can be dropped at the cost of a slightly
higher constant in the minimum-separation condition.

3In the original RR-D-ANM, the coefficients r; are constrained to be
positive real numbers as in (9), which is a special case of the symmetry
assumption by viewing the distribution of ¢(r;) as a delta function centered
at 0. Hence, Theorem 1 developed for the RR-D-ANM-R also applies to the
RR-D-ANM as a special case, even though the bound (38) can be loose.

with N < M’? be a submatrix of I' by keeping only the
N’ distinct rows of T'. Then TV satisfies the isotropy and
incoherence properties in (36). If N’ is chosen to further
satisfy (38), then we are able to build I' in (39) through an
appropriate choice of J, which allows RR-D-ANM-R to return
the ground truth Z with a probability at least 1 — § in the
noise-free case.

2) Noisy case: We now analyze the performance bound
for the estimate of Z under the finite sample effect and the
additive white Gaussian noise in (6) satisfying N(0, 02I). The
noise tolerance constraint in (34c) has to be imposed in RR-
D-ANM-R, which can be rewritten equivalently as (c.f. our
recent work in [49]):

2
|, —gs2)07 | <5, (40)
where S(-) defines the mapping R, = S(Z). Adopting J =
I, (40) can be further rewritten as

R 2
Iiy-—‘SQ(ZZ)HF < B,

(41)

where Sq(Z) = IqaS(Z)Iq denotes the submatrix sampled
from S(Z) with the index set €.

To provide theoretical analysis on the error bound for the
estimate of Z, we reformulate the RR-D-ANM-R into a
Lagrangian form as

. 2

mZinTHZH_A;-I-%HRy—SQ(Z)—&QIQHF, 42)
where 7 > 0 is the regularization parameter and the noise
estimate 62 is obtained as the smallest eigenvalue* of Ry Note
that (42) is equivalent to the original RR-D-ANM-R with the
constraint of (41) in the absence of 62 I, since their solutions
are the same for all possible choices of the regularization
parameters [15]. The introduction of the noise estimate 621 is
to deduce that the solution of (42) can asymptotically approach
the ground truth, as stated by the following theorem.

Theorem 2: Let Z*, o2 be the ground truth, and Z be the
optimal solution to (42), respectively. Set

InL

7> 2(C1Tr(Sq(Z*)) + Cac®) M4/ 7

for some constant C; and Cs. If €2 is a complete sparse ruler
such that the unobserved entries of S(Z) can be deduced from
the observed ones, then with probability at least 1 — 5L, the
solution Z to (42) satisfies

(43)

. 1
Z-Z"|| <7t(8K+ —). 44
H F ( + M’ ) “@4)
Proof: The proof is provided in Appendix C. (]

Note in Theorem 2 that the observation set €2 is determin-
istic for a given J = Iq, and that 8K is much larger than
J\},. Our algorithm yields reliable estimate of the RR matrix
Z as long as the number of measurement vectors L is on the
order of (Tr(Sq(Z*))+0?)2M'?K?. The mean squared error
(MSE) in (44) diminishes as L increases, and as L — oo,

the ground truth Z* can be exactly recovered, which means

4The noise power can be well estimated as the smallest eigenvalue of the
observed sample covariance, especially when L is large [50].
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the estimate Z of the proposed RR-D-ANM-R is statistically
consistent in L. Moreover, since the frequency pair estimates
{ f'l}l can be uniquely determined by the optimal solution
of the proposed RR-D-ANM-R (which will be introduced in
the next subsection), the estimates { fl}l is also statistically
consistent in L. In fact, simulation results will show that even
with a relatively small number of MMV, the slight perfor-
mance loss of the RR-D-ANM-R is acceptable considering its
huge complexity reduction, which will be evaluated through
complexity analysis and comparison in Section IV-B. Hence,
the RR-D-ANM-R offers a nice tradeoff between accuracy and
complexity.

Remark 2: There are guidelines on the choice of the noise
tolerance threshold (. If the Gaussian noise n(t) in (5) is
colored with known distribution N(0, diag(o?)), then 3 in
(33c) and (34c) can be set as 3 = \||o?||;, where the scalar
A is chosen such that the inequality constraint (33c) or (34c)
holds with high probability [50], [51]. Further, if the number
of MMV L is sufficient and Y in (6) is a full or partial
observation of X, ie., J=Inp or J=Iq, then 8 can be
set using the covariance matrix sparse representation method
in Proposition 1 of [18]. |
Remark 3: Although the separation and sampling conditions
introduced for RR-D-ANM-R are more restrictive than those
of RR-D-ANM, V-ANM and LRSCR, RR-D-ANM-R is the
most computationally efficient. Moreover, when the separation
and sampling conditions are too strict, the reweighted ANM
techniques [51], [52] can be employed in RR-D-ANM-R to
enhance the sparsity and resolution. Note in this context that
the separation conditions for gridless CS methods are usually
more restrictive than those of classical statistical subspace
methods, while the former are more sample efficient than the
latter. |

D. Harmonic Retrieval

Given the estimate of Z by solving (33) or (34), the desired
R, can be sequentially estimated from (31). Then, the 2D
harmonics can be retrieved from R, using the Matrix Pencil
and Pairing (MaPP) method [31], which is computationally
expensive due to the high dimension of R,.

To overcome this problem, we note that both (33) and (34)
yield the estimates of not only Z, but also T(wy/) and T(uy).
These estimates form an augmented matrix in the form of

ZH T(’LLN)

Next, we develop three efficient harmonic retrieval methods
based on T(uys) and T(ups), Z, and R 4, respectively.

1) Vandermonde Decomposition based Harmonic Retrieval:
Since T(ups) and T(uy) contain the unknown frequencies,
the Vandermonde decomposition based methods such as MU-
SIC, ESPRIT [53]-[55] can be employed for 1D harmonic
retrieval in each dimension. Subsequently, a pairing operation
needs to be done to obtain the frequency pairs [33], [34].

2) Z-based Harmonic Retrieval: Based on (30c), Z can
be regarded as a cross-correlation matrix collected from an
array with A,, A% and diag(r) being the two manifold

Ry = (45)

8

matrices and signal correlation matrix respectively. Hence,
conventional 2D DOA estimation algorithms based on cross-
correlation [56] can be crafted with the proposed RR-D-ANM
solutions for harmonic retrieval. In this paper, we adopt the
joint-SVD algorithm [56] in simulations.

3) R a-based Harmonic Retrieval: According to the decou-
pled atomic norm theory [33], [34], we have

RA _ |: T(UI]}/[) Z :|
Z T(UN)
_ { VIN — 14},
T | V2M — 1A%
= HR.,H",

V2N — 14},

" (a6)
V2M — 1A%,

|

where H = [2N — 1AL, V2M —1AH)T and R, =
ﬁRS. Note that R 4 in (46) can be regarded as a covariance
matrix with H and R being its manifold matrix and sig-
nal correlation matrix respectively. Then, some conventional
covariance-based 2D DOA estimation algorithms such as 2D-
ESPRIT for L-shaped arrays [8], can be incorporated into the
proposed RR-D-ANM solutions.
Remark 4: All the reconstructed matrices in (33) and (34)
are low rank, and their rank values are equal to the number
of frequency pairs. In the three proposed harmonic retrieval
methods, either an eigenvalue decomposition (EVD) or sin-
gular value decomposition (SVD) is taken on these low-rank
matrices. Note that these harmonic retrieval methods are not
directly applicable to the original data of interest. It is the
main contribution of this work to construct these structured
matrices from the original data by the proposed RR-D-ANM
or RR-D-ANM-R. Further, from these low-rank matrices,
we can determine the number of frequency pairs. This is
a standard model order selection problem, for which some
mature techniques are available, such as Akaike information
criterion (AIC), minimum description length (MDL), etc. A
simple strategy is to count the number of eigenvalues or
singular values that are larger than a predefined threshold,
while a suggested threshold is 0.05\,,,4, [50], where A4 1S
the maximum value of the eigenvalues or the singular values.
In this sense, the proposed methods can be carried out without
prior knowledge of the number of frequency pairs. ]
Remark 5: Note that the three proposed harmonic retrieval
methods have different behaviors in terms of estimation
accuracy and computational complexity. The Vandermonde
decomposition-based method is computationally efficient, but
requires an extra pairing operation. The R 4-based method is
computational expensive relative to the other two. In contrast,
the Z-based method is not only computationally efficient, but
also can achieve automatic pairing. |
In all, the proposed RR-D-ANM-R is not only computation-
ally efficient, but also amenable to broad applications.

IV. DISCUSSIONS

This section discusses two issues: one is the choice of the
error tolerance parameter and the other is the computational
complexity analysis for the proposed techniques.
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A. Alternative Error Tolerance Constraint for Sufficient MMV

When noise is present, the noise tolerance constraint in
(33c) and (34c), parameterized by a threshold 3, needs to
be chosen properly for performance guarantee. Remark 2
provides guidelines when the noise statistics is known, and the
measurements are collected either in full (J=1 ) or through
random selection (J=Igq). However, when J represents other
forms of samplers and the noise statistics are unavailable or
unreliable in practice, it becomes difficult to choose the value
of 8. To address this challenge, we next design an alternative
error tolerance constraint to replace that of (33c) and (34c),
where an alternative user-specified parameter for bounding the
observation errors can be set for any form of J and without
knowing the noise statistics.

Let us express the noise n(t) in the compressive measure-
ment as n(t) = Jng(t) for any J, where ng(t) € CVMx1 jg
the front-end noise prior to compression and can be modeled as
circular Gaussian noise with distribution N(0, diag(o'2)). This
model subsumes the noncompression case with J=Iyps. Ac-
cordingly, we have Y7 = J X, ,, in (6) and R, = JRQMJH
in (7), where X,, = X, + Ny and R, = R, + diag(a3).
Then, similar to (10), we have Rm’n = %Xan given L
MMV. We seek to quantify the residual error Rmﬁn -R,,
caused by both additive noise and finite samples. According to
the covariance matrix fitting criterion [29], when the complex
amplitude vector s(¢) in (1) is a circular Gaussian random
variable with zero mean, the vectorization form of this residual
error follows an asymptotic normal (AsN) distribution:

- 1

vec(Ry., — Ry.n) « AsN(O, ZRin ® Ryp). 47)
Accordingly, Vec(fly — R,), with Ry given in (10), obeys

an AsN distribution as well, in the form of vec(R,—R,)

AsN(0, 1 R! ® R,). Per the definition of asymptotic Chi-

square (Asx“) distributions, we have
2

~ Asy2(M'?).
2

1. . 1 -
(BT @ R bvec(, - ) 8)

Thus, the following inequality holds with probability 1 — p:
2

<,
2

1

H(LRg ® R,) ?vec(R, — R,) (49)

where the user-specified parameter 7, can be uniquely deter-
mined from (48) by the degrees of freedom M’ “anda prefixed
allowable deviation probability p < 1, independent of noise
variance 3.

Adopting (49) as an alternative error tolerance constraint
to replace (33c) and (34c), and replacing R, in (49) by
vec }(Tvec(Z) + (J* @ J)vec(diag(a3))), the proposed RR-
D-ANM and RR-D-ANM-R can be implemented without
knowing the noise statistics. In fact, this alternative formu-
lation allows to estimate the noise variance as a byproduct, at
the cost of introducing another unknown variable 0'8 into (33)
and (34).

B. Computational Complexity

9

TABLE I: Complexity order of 2D-MMV gridless CS methods

Solution Complexity (N#M) Complexity (N=M)
V-ANM (14) O((NM+L)*3L?) O(NYL®%)
LRSCR (18) O((NM)%?) O(N9)

RR-D-ANM (33) O((NM)*5) O(N?9)
RR-D-ANMR (34) | O((NM)Z(N+M)?-?) O(N®%)

We now analyze the computational complexity of the pro-
posed techniques, compared with other existing 2D gridless
methods with MMV. In SDP-based solutions [40], the com-
putational complexity is dictated by the number of decision
variables and the sizes of PSD matrices. Specifically, if there
are a total of ny variables and the size of the PSD matrix is
ng X ng, then the SDP can be solved in O(n?n3-%) flops in the
worst case [57]. Accordingly, the computational complexity
for solving the SDP formulation (14) of the V-ANM is
O((NM+L)*5L?). In contrast, the computational complexity
of solving our RR-D-ANM (33) is O((NM)*®), which is
much lower than that of (14) especially for a large number
of snapshots L. Note that the complexity of our RR-D-ANM
remains the same as that of the LRSCR of (18), because
the largest PSD constraint of each formula has a comparable
size, i.e., T,, (uz2p) = 0 in (18) and vec™! (¥vec(Z)) = 0
in (33). Nevertheless, the proposed RR-D-ANM can adopt
more efficient frequency-retrieval options such as the Z-based
method developed in Section III-D, whereas the LRSCR has
to be followed by MaPP applied on the large-size R, [31].

Further, the LRSCR in (18) critically replies on the single
PSD constraint T,,, (uzp) = 0 to guarantee the desired struc-
ture of its solution, and hence cannot remove this constraint
that dominates the computational complexity. In contrast, the
D-ANM component already enforces the strong structure of
the covariance matrix, so that the larger-size PSD constraint
(33d) can be omitted to balance computational complexity
with performance, leading to the RR-D-ANM-R in (34).
With the remaining smaller-size PSD constraint (34b), the
computational complexity of the RR-D-ANM-R drops down to
O((NM)?(N+M)?5), which is 2.5 orders lower than that of
the RR-D-ANM and LRSCR, when N=M. A comprehensive
comparison of the computational complexity among different
2D gridless CS solutions with MMV is summarized in Table I.

Moreover, all the aforementioned methods can be imple-
mented via fast algorithms such as the alternating direction
method of multipliers (ADMM) [58] or the iterative Vander-
monde decomposition and shrinkage thresholding (IVDST)
[59] techniques, to further reduce the computational complex-
ity in algorithm implementation.

V. SIMULATIONS

This section presents numerical results of the proposed
gridless 2D harmonic retrieval techniques in MMV scenarios.
Existing methods such as conventional MUSIC [60] and the
LRSCR of (18) [42] incorporated with the MaPP algorithm for
frequency estimation and pairing [31], as well as the Cramer-
Rao bound (CRB) under full observations [61] are also sim-
ulated as benchmarks. In the conventional MUSIC, the peak
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searching step is set to be 0.01. In contrast, both the Z-based
algorithm designed in Section III-D and the MaPP algorithm
can be employed for auto-paring the harmonic retrieval for the
proposed RR-D-ANM and its relaxation version RR-D-ANM-
R. Note that the sample-based ANM has poorer performance
than the covariance-based LRSCR, while the LRSCR is more
computation-efficient in MMV scenarios since its complexity
is independent of the number of MMV [27]. Hence, we only
run and compare the LRSCR as the benchmark in simulations
and omit the computation-heavy V-ANM. Unless specifically
stated, in simulations, we consider the scenarios where the
number of MMV is sufficient, the separation and sampling
conditions are satisfied for all gridless methods and the number
of source signals is known a priori. With sufficient MMV,
all optimization-based methods apply the alternative error
tolerance constraint presented in Section IV-A, thanks to its
applicability in the absence of known noise statistics.

In each trial of the Monte Carlo simulations, the MMV
data Y7 is obtained through (6), where the measurement
matrix J is a random matrix, the frequencies f are ran-
domly generated under the separation condition, the source
signals s(t) are assumed to have same amplitude, and the
noise n(t) = Jng(t) is circular Gaussian noise with (%)
satisfying N(0, 02T ). Then, the sample covariance is cal-
culated through (10) as the input to the covariance-based
solutions, including MUSIC, LRSCR, RR-D-ANM, and RR-
D-ANM-R. The root mean squared error (RMSE) measures
the estimation accuracy of 2D harmonic retrieval as 1RMSE =

1L vK 1 N~Me oo 2. (Fr 2y 2

+ 0 (3 (TP (3= 300%) . where
My, fI',, and fJ', denote the number of Monte-Carlo trials,
and the estimates of f}', and fI', in the n-th experiment.

A. Efficient Relaxation

First, we evaluate the effectiveness of the proposed RR-D-
ANM-R as an efficient relaxation of the original RR-D-ANM.
For the noise-free case, we examine the phase transition of
the proposed RR-D-ANM-R with respect to the number of
compressive measurements and the number of sources. In the
simulations, we apply I' in (39) as a random selection matrix
and randomly generate the 2D frequencies. For each Monte
Carlo trial, it is considered to be a successful recovery of Z
from (34), if the normalized mean squared error (NMSE) of
the solution Z* has || Z* — Z*||2/ || Z*||, < 1075. As shown
in Fig. 1, RR-D-ANM-R works well and retrieves the ground
truth Z* with high probability under the satisfied separation
and sampling conditions, where the phase transition border
corresponds to the fundamental limits of RR-D-ANM-R on
sample efficiency revealed by Theorem 1.

For the noisy case, Fig. 2 shows that the proposed RR-D-
ANM outperforms its relaxation RR-D-ANM-R, which indi-
cates the role of the PSD constraint of the covariance in en-
hancing the estimation performance. Further, the performance
gap between RR-D-ANM and RR-D-ANM-R diminishes as
the number of measurements M’ goes large, which reveals a
desired tradeoff between accuracy and complexity that can be
achieved by RR-D-ANM-R. Classical MUSIC is also tested
and always provides the worst estimation performance, which
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Fig. 1: Phase transition of the proposed RR-D-ANM-R with
respect to the number of compressive measurements and the
number of sources when M = N = 7.

——RR-D-ANM-R+Z-based
-©- RR-D-ANM+Z-based
< MUSIC

I T T T R

s
Fig. 2: RMSE vs M’ for MUSIC, RR-D-ANM and RR-D-
ANM-R, when M =N=5, L=200, K=3 and SNR=5dB.

reflects the limitation of classical MUSIC in sample efficiency
when M’'<NDM. Moreover, Fig. 3 presents the RMSE of
these approaches for different numbers of insufficient MMV. In
this simulation, instead of using the alternative error tolerance
constraint proposed for sufficient MMV, we consider that the
noise statistics are known a priori, and then the Lagrangian
formulations of the proposed RR-D-ANM and RR-D-ANM-R
with the regularization parameters set according to Theorem 2
are employed to generate the curves in Fig. 3. It shows similar
trends as in Fig. 2 and RR-D-ANM-R can obtain a comparable
performance (the gap is less than 0.01) to RR-D-ANM when
L > 9, which means the RR-D-ANM-R can be a good
alternative even for small L.

B. Estimation Accuracy

In this subsection, the estimation performance of the pro-
posed methods is evaluated. We first present the RMSE
performance of the aforementioned methods with varying
number of harmonics. For the LRSCR, when the conserva-
tive condition on the number of sources is unsatisfied, i.e.,
K > min{N, M} — 1, the extra checking mechanism is used
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Fig. 3: RMSE vs (insufficient) MMV for MUSIC, RR-D-

ANM and RR-D-ANM-R, when M=N=5, M’'=15, K=3 and

SNR=10dB.
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Fig. 4: RMSE vs K for RR-D-ANM, RR-D-ANM-R and
LRSCR, when M=N=5, M'=15, SNR=5dB, L=200.

as proposed in [31]. In Fig. 4, for the curve of LRSCR, after
K goes larger than 4, it no longer plots reasonable results of
RMSE, given the fact that it cannot be computed sometimes.
This is because the checking mechanism outputs the “false”
status, which indicates it judges that the generalized Van-
dermonde decomposition of the estimated covariance matrix
from the LRSCR does not exist. Meanwhile, the RR-D-ANM
and RR-D-ANM-R both work properly without using an extra
checking mechanism as long as K < 2min{N, M} — 2.
Next, we focus on the case when the conservative condition
on the number of sources of the LRSCR is satisfied, i.e.,
K <min{N, M} — 1. As shown in Fig. 5, again, the RR-D-
ANM outperforms the RR-D-ANM-R, and the gap becomes
small as the SNR increases. Moreover, the LRSCR (which
always uses MaPP) obtains a better performance than the RR-
D-ANM plus Z-based method, but this gap disappears when
RR-D-ANM plus MaPP is used, as shown by the overlapping
square and triangle marks in Fig. 5. In other words, the
LRSCR and the RR-D-ANM lead to the same solutions when
the generalized Vandermonde decomposition of the solutions
exists. On the other hand, the harmonic retrieval method via
MaPP results in a higher computational cost than the Z-
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Fig. 5: RMSE vs SNR for RR-D-ANM, RR-D-ANM-R and
LRSCR with M=N=5, M'=15, K=3 and L=200.
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Fig. 6: RMSE vs (sufficient) MMV for RR-D-ANM, RR-D-
ANM-R and LRSCR with M = N =5 M' =15, K =3
and SNR = 10dB.

based method especially as M and N go large. In addition,
the gap between the RR-D-ANM-R plus MaPP and RR-D-
ANM plus MaPP methods is much smaller than that between
the RR-D-ANM-R plus Z-based and RR-D-ANM plus Z-
based methods in Fig. 5. This reflects a tradeoff between the
accuracy and complexity of specific 2D harmonic retrieval
algorithms, and it can be used as a guideline for the choice
among different 2D harmonic retrieval algorithms, thanks to
the widely applicability of our proposed methods. In fact, the
trivial gap between the two curves of RR-D-ANM-R and RR-
D-ANM observed in both Fig. 2 and Fig. 3 will diminish
when the MaPP method is employed for harmonic retrieval.
The CRB under full observations, i.e., J = Iy, is also
provided as the optimal benchmark for the noncompression
case. Note that the gaps between the CRB and the gridless
CS methods become small as the signal-to-noise ratio (SNR)
increases, which verifies the sample efficiency of the gridless
CS methods. Fig. 6 presents the RMSE performance of these
approaches for different numbers of sufficient MMV, which
shows similar trends as in Fig. 5.
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Fig. 7: Computational complexity of RR-D-ANM, RR-D-
ANM-R and LRSCR in terms of runtime with L=200,
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C. Computational Complexity

The computational complexity of the proposed methods and
the benchmark methods is tested and compared in this subsec-
tion, where all methods use an off-the-shelf SDP-based solver
[62]. As shown in Fig. 7, the complexity in terms of runtime’
of the proposed RR-D-ANM is almost the same as that of
the LRSCR. Meanwhile, the complexity of the RR-D-ANM-R
stays much lower than the others. These results verify the anal-
ysis on complexity order of the different methods presented
in Section IV-B. Thus, 1) RR-D-ANM is a nice alternative
to the LRSCR when min{N, M} — I<K<2min{N, M} — 2
with small N and M; 2) RR-D-ANM-R offers a good tradeoff
between accuracy and complexity as N and M go large
regardless of L.

VI. CONCLUSION

In this paper, a gridless framework based on the D-ANM
technique is proposed to efficiently achieve super-resolution
2D harmonic estimation with MMV. Given the sample co-
variance matrix collected from MMV, we first establish an
RR transformation to linearly map the originally large-size
covariance matrix to a small-size RR vector, whose sparse
representation enables to reformulate the complex 2D MMV
harmonic retrieval as an RR-based D-ANM problem that can
be resolved efficiently. In addition, we analyze the com-
putational complexity of the proposed techniques compared
with other gridless methods. Simulation results indicate the
advantages of our solutions over the existing ones with wider
applicability at lower complexity.

SAll simulations are conducted in Matlab 2013b on a computer with a
4-core Intel i7-6500U 2.50 GHz CPU and 8 GB memory.
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APPENDIX A
DERIVATION OF (20)

Each summand of (19) can be written as

(an(fri) @ an(foi))” ® (an(fii) @ an(f2,i))
=ay(f1,:) @ (ap(f2,:) @ an(f1,:)) ® an(f2,i)
=(Inay(f1,) @ (E(an(f1,)) ® aj;(f2,))) © am(f2,i)
=(In ® E® In)((Gnay(f1,4) @ (Gualhy(f2))
=(INn Q@ E®Iy)(Gy @ Gur)(ay(f1,i) @ ah(f2,i))

:W(a?v(fl,i) & aﬁu (f2,i))a
(50)

where the second equation applies the property a®b = K (b®
a),Ya € CN*1 b € CM*1, and the third equation applies

a’(flea(f) = Ga'(f).

APPENDIX B
PROOF SKETCH OF THEOREM 1

The proof of Theorem 1 is similar to the proof of Theorem 1
in [48]. The road map of this proof is to guarantee that the
dual polynomial of the compression case is close to that of
the noncompression case. We first apply the principle of dual
polynomial constructions and then prove the existence of their
dual certificates. Specifically, we will first characterize proper-
ties of a dual polynomial that suffices to certify the optimality
and uniqueness of the solutions to the noncompression case
and the compression case, and then present a dual construction
scheme for these two cases. For the compression case, the
dual construction scheme produces a polynomial based on
the dual polynomial constructed for the noncompression case.
Finally, we provide in Lemma 1 the sufficient conditions on
the compressed measurement matrix I in (26) for guaranteeing
the existence of the dual certificate, which concludes the proof
of Theorem 1.

A. Optimality Conditions for Dual Polynomial
For the noncompression case, the primal problem of D-
ANM can be expressed as

minHZH st. Z =2, (51)
7 1704,

where Z = AR ;AL € C’*7 with J = 2N — 1. Define
the dual norm of ”'”A; as

Ql%, = sw (@.2) =

V4 <1
121 41,

sup
A'(f)eA,

(A'(f), Z)r , (52)

where the real inner product is defined as (Q,Z), =
Real((Q, Z)) with the inner product being defined as
(Q.Z) =Tr(ZHQ) = vec! (Z)vec(Q). Then, following the
standard Lagrangian procedure as in [22], we can obtain the
dual problem of D-ANM as

maax<§,Z>R s.t. Héﬂzégl. (53)

For the noncompression case, the optimization problem (51)
has a trivial solution, but we can still apply duality to certify
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the optimality of a particular decomposition. Following stan-
dard analysis (see [23], [24]), the optimal solution of (51) is
unique if there exists a dual polynomial in the form of

Q(f) =(Q, A'(f)) = a3h(£)4,

with complex coefficients § = vec(Q) € C/ * satisfying the
following set of conditions

Q(f") =sign(r:), Vf' €S

QIAI<L, VfES,
where S = {f!,..., fX} denotes the unknown set of true
frequencies. Moreover, we will construct a dual polynomial
satisfying above conditions in the next subsection.

Next, we consider the compression case which can be
written in the form

(54)

(55)

mZin ||ZHAQ s.t. vec(Ry) = I'vec(Z). (56)

Then, the dual problem of (56) can be achieved via the
standard lagrangian procedure [22] as

mgx(Q,RQR s.t. ||Vec*1(I‘Hvec(Q))H;:1§1. (57)

Moreover, following a similar analysis as in [23], [24], we
have that Z is the unique optimal solution of (56) if there
exists a dual polynomial in the form of

Q(f) = (vec ! (Tvec(Q)), A'(f))
= (T"q,ayp(f)) = aip (/)T q,

with complex coefficients ¢ = vec(Q) € CN' satisfying the
following set of conditions

Q(f') =sign(r;), Vf' €S
QUAI <1, VfES.

Thus, to prove Theorem 1, we now need to show that such a
dual certificate exists under appropriate conditions and this is
the subject of the next subsection.

(58)

(59)

B. Construction of Dual Polynomial

To construct such a dual polynomial satisfying (55), note
that Q(f) is required to be a 2D-trigonometric polynomial,
and based on the analysis in [30], [48], the dual polynomial
of (54) takes the form

K
o) =S @G - )+ > Bua (- £7)
=1 =1
X (60)
+ ZB%@(OD(]‘ ),
=1

where @;, B,;, 3, are coefficients chosen such that Q(f)
interpolates the points sign(r;) at the f;. G(f) is the 2D
Fejér’s kernel defined as

G(f) = K(f1)K(f2),
where K (f) is the squared Fejér kernel defined as

(61)

([ sin(Rrf) 4_ 1 & ok
K(f):= (Rsm(wf)) - Ek:z—:ngeﬂ R (62)
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with R := §+1,J:2P+1, and coefficients
s k—s
(1= 1)) (1“ 7 ) 63)

éimzz( f) is the partial derivative of G(f) given by
— (11172 _ 8‘18‘20(]3)
G = B

Inspired by the construction of (), we now design a dual
polynomial for the compression case. Specifically, following
the analysis in [48], we propose to construct the dual polyno-
mial of (58) as

min(k+R,R)

1
gk:E Z

s=max(k—R,—R)

K K
Q(f) = Z%‘G(oo)(f, )+ ZﬂuG(m)(fa )

i=1 i=1

p (64)
+ ) B2iGony(f, £7),
i=1
where G, (f, ) = (THTgm(f%),abp(f)) with m =
(mimg) € {0,1}% g(f) = g((f1,f2)) = g'(f1) ®
g'(f2) with g'(f) = Flg-_pe’** D, gper™P/|T and
Im(f) = Gmims) (1, f2) = G, (f1) ® gy, (f2) being the
partial derivative of g(f).

Now, with the constructed dual polynomials in (60) for the
noncompression case and in (64) for the compression case, we
are ready to state the following lemma to conclude the proof
of Theorem 1.

Lemma 1: Let S = {f',..., fX} be an arbitrary set of
points obeying the minimum separation condition (37). Let
u = [sign(ry),...,sign(rg)]T be a random vector, whose
entries are chosen independently from symmetric distributions
on the complex unit circle. Pick § > 0, and let I" be a random
matrix that obeys the concentration inequality

p |<(1“HFfI)gm(fi),a’2’b(f)>|> 1 <ol
KClmtnl = /Tog(%) = s

(65)
for all fi f € [-0.5,0.5)% all m,n € {0,1}*> with
[l [l < 2.

Here, al% (f) represents the partial derivative of abp(f)
and K€ = / |K®2)(0)] = 4/ %. Moreover, suppose that
for f* € [~0.5,0.5)2, there is a constant ¢ such that

i / ¢ o J

m > < —,

P fe[—O%},{ObP ’<F9(oo)(f )aFG‘ZD(f)>| = KL ] =3
(66)

Then, with probability at least 1 —J, there exists a trigonomet-
ric polynomial in (58), with complex coefficients g obeying
the conditions in (59).

Proof: The proof of Lemma 1 follows similar steps as
proposed in the proof of Lemma 1 in [48]. We omit the details
here and only list the key steps as follows:

1) We show that under the minimum separation condition
in (37), there exists a choice of coefficients ai,Bli and
Bsy; such that Q(f) satisfies the conditions in (55).

2) We show that, with probability at least 1 — g, there

exists a choice of coefficients «;, ($1; and [2; such
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that Q(f) = sign(r;) and the derivative w.rt. f°
VQ(f') = 0 for all f¢ € S under the minimum
separation condition in (37).
3) Finally, we conclude the proof by showing that with the
chosen coefficients with probability at least 1 — 3, Q(f)
is close to Q(f) for all f € [—-0.5,0.5)%\S, which in
turn implies the polynomial Q(f) obeys |Q(f)| < 1
uniformly for all f € [-0.5,0.5)%\S with probability
at least 1 — g
According to the union bound, the two events in the above 2)
and 3) happen simultaneously with a probability at least 1 — 4.
That is, the dual certificate in (59) holds with a probability at
least 1 — §, which concludes the proof of Lemma 1. O

Moreover, following the analysis in Section IV-B in [48],
we can also show that under the fundamental limits on sample
efficiency in (38), the isotropy and incoherence conditions in
(36) imply the conditions in (65) and (66) of Lemma 1, which
in turn implies the existence of an appropriate dual certificate
satisfying the conditions in (59) and then concludes the proof
of Theorem 1.

APPENDIX C
PROOF OF THEOREM 2

To prove Theorem 2, we introduce the following lemma.

Lemma 2: Suppose that z(t) is a Gaussian random pro-
cess with zero mean and covariance matrix Y. Let X =
1/L Zthl z(1)zH (1) be the sampled covariance matrix and
A, and \; be the eigenvalue of 3 and ¥, respectively. Then
with probability at least 1 — 5L~!, we have

InL

1%L -2 < QCTT(E)\/T7
N /[In L
‘/\k—>\k|§TI‘(E) 7nL ,

for all & and some constant C.
Proof: The proof of Lemma 2 can be found in [63]. O
Then, we can state that
.

<| &) - sa(z") - o*1a| +|o*Ia - #°Ial| .

<2CTe(So(Z*) + 0219)\/? + o — & |V M
< (C1Tx(Sa(Z%)) + 0202) \/ %

is satisfied with probability at least 1 — 5L, where RL =
fiy — 6%Iq, the first inequality is based on the triangle
inequality, and the second and the third inequality is based
on Lemma 2. Moreover, denote the model subspace of Z*
spanned by its column and row spaces U and V as M (U, V)
(using M hereafter for notational simplicity), and its orthog-
onal complement as M-* [64]. Decompose the error term
Z - 7% = H, + H, into two terms satisfying H; € M

(67)

R, — So(Z*) - &2IQHF - HRL — Sa(Z*)

R, — 80(2*) — 0*Ig + 0*Iq — 5—2IQHF

(68)
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with Rank(H;) < K and Hy, € M [64]. Defining 7 2
2(C1Te(Sa(Z*)) + Coo?) M’ /2L, we have

*

r 2o Ry - Sa(2)|, = 2| Re - Sa(2)]| - 69

Then, applying Lemma 1 of [64], we have
”HQHAjj <3 ||H1||A;1 . (70)
Further, by the triangle inequality,

121, = | 2" - 2 + 2|

L (71)
o os

+|4]
4, 4,

and by the optimality of Z,

R 2
T ‘

1 ~ ~
Z fHR —80(Z
A;l+2 L Q( )F

. ) (72)
<12+ 5 [ B = Sa(2Y)||

which gives
. .12 R 2
e L
F F

. (73)
< 2T(Hz* - Z’

A;)'
Moreover, since
| - a2
- HRL ~8a(Z") + 8a(Z") — Sa(Z) E«“

(74)

L= SQ(Z*)Hi +[$a(2*) = Sa(2) ‘i,
+2(Ry —Sa(Z7).50(27) = Sal(2))_.
we obtain

|$0(2) ~ 02|

. A 12 ~ 2
=|Re - sa2)|, - [Re - Saz)|,

_9 <RL —8a(Z7),80(Z") — SQ(Z)>R

Aé)

+2 HRL —Sa(Z7)

oo (|72

(75)

|, |[$a(2) - sa(2)

’

.

T ~
SST ”Hl”A:z + M SQ(Z) — SQ(Z*)

T 5 *
<T8K || Hy o + 17 ||Sa(2) = Sa(Z7)|
~ T ~
< KHZ—Z* T 80(2) - Sa(z* ‘ ,
<78 -t Sa(Z) — Sal )F

where the first inequality is from (73) and the Cauchy-
Schwartz inequality, the second inequality is from (69) and
(70), and the third inequality is based on |Hq|| a, <
K ||H, || following the definition of D-ANM. Considering
that €2 is a complete sparse ruler such that the unobserved
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entries of S(Z) can be deduced from the observed ones, we

“Z—Z* < "851(2)—852(2*) ‘F. (76)
Hence, substituting (76) into (75), we have
N 1

Z-7Z*| < 8K + — 77

H P ( + M’) ’ 77

which concludes the proof.
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