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a b s t r a c t 

Percutaneous coronary intervention is a minimally invasive procedure that is usually performed under 

image guidance using X-ray angiograms in which coronary arteries are opacified with contrast agent. In 

X-ray images, 3D objects are projected on a 2D plane, generating semi-transparent layers that overlap 

each other. The overlapping of structures makes robust automatic information processing of the X-ray 

images, such as vessel extraction which is highly relevant to support smart image guidance, challenging. 

In this paper, we propose an automatic online layer separation approach that robustly separates inter- 

ventional X-ray angiograms into three layers: a breathing layer, a quasi-static layer and a vessel layer 

that contains information of coronary arteries and medical instruments. The method uses morphological 

closing and an online robust PCA algorithm to separate the three layers. The proposed layer separation 

method ran fast and was demonstrated to significantly improve the vessel visibility in clinical X-ray im- 

ages and showed better performance than other related online or prospective approaches. The potential 

of the proposed approach was demonstrated by enhancing contrast of vessels in X-ray images with low 

vessel contrast, which would facilitate the use of reduced amount of contrast agent to prevent contrast- 

induced side effects. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

Percutaneous coronary intervention (PCI) is a minimally inva-

ive procedure for patients with advanced coronary artery disease.

n this procedure, a stent pre-mounted on a delivery catheter is

dvanced over a guide-wire and through a guiding catheter at the

ite of narrowing in a patient’s coronary arteries. Once the lesion

ite is reached, the delivery balloon is inflated and the stent is de-

loyed against the coronary wall, assuring optimal patency of the

rtery. As there is no direct eyesight on the target area, these pro-

edures are commonly performed under image guidance using X-

ay angiography (XA), where coronary arteries are visualized with

-ray contrast agent. During the intervention, clinicians use XA im-

ges to navigate catheters and guidewires inside the patients. 
∗ Corresponding author. 
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As XA images contain useful information on anatomy and in-

trument position, many works have been published on extracting

elevant information to improve the image guidance for cardiac in-

erventions. For example, Panayiotou et al. (2014) have developed

 retrospective motion gating technique of interventional X-ray im-

ges through vessel extraction. Also using the information of ves-

els, pre/intra-operative information fusion between CT angiogra-

hy and XA have been reported in Baka et al. (2013) and Rivest-

enault et al. (2012) . Apart from vessels in XA, there is interest

o track structures such as the lungs, catheters and guidewires.

hechter et al. (2005) have used the position of diaphragm as an

ndicator of respiratory phase and constructed a patient specific

oronary motion model based on that. In Baka et al. (2015) , the

osition of guiding catheter tip has been related to the combina-

ion of respiratory and cardiac motion. 

Since X-ray images are projections of 3D structures on a 2D

lane, the image content can be interpreted as a composition of

everal opaque or semi-transparent structures, which have dif-

erent appearances and motion patterns. The overlapping nature

f the structures makes automatic analysis of XA challenging.

http://dx.doi.org/10.1016/j.media.2017.04.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.04.011&domain=pdf
mailto:h.ma@erasmusmc.nl
http://dx.doi.org/10.1016/j.media.2017.04.011
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Separating the structures from each other enables visualizing and

analyzing different structures independently, which would, there-

fore, potentially facilitate the information processing of XA. For ex-

ample, vessel extraction using Hessian-based filtering method in

XA is often hampered by non-vascular structures, such as guid-

ing catheters, diaphragm border and vertebral body edges, because

of their tubular or curvi-linear appearance in XA. Separating non-

vascular structures would improve the visibility of vessels and pro-

mote automatic vessel extraction that would ultimately facilitate

the image guidance during interventions. 

In the context of this work, we interpret the process of sep-

arating those structures in XA images as a separation of a set of

additive 2D layer images which add up to the original image, and

each of them has different structures. The purpose of this work is

to develop and evaluate a fast method that can run prospectively

for the effective and efficient separation of the structures on differ-

ent layers for XA sequences. Following the terminology from ear-

lier works (in Section 1.2 ), we adopt the term “layer separation” to

refer to the separation of structures and putting them in different

layers. 

1.2. Related works 

Existing methods for layer separation for X-ray fluoroscopic se-

quences can be categorized into two approaches: motion-based

and motion-free. 

Motion-based layer separation methods treat each frame of an

X-ray fluoroscopic sequence as the outcome of the motion of each

layer. Hence, the key part of obtaining the layers in these methods

is estimating the motion of every layer. Various assumptions on

the type of motion have been proposed. For instance, Close et al.

(2001) have estimated translation, rotation and scaling for each

layer in a region of interest. The layers are computed by trans-

forming each frame with the estimated motion and averaging the

transformed frames. This method computed a total of four layers

for a sequence. Zhu et al. (2009) have proposed a two-layer sep-

aration scheme. They have developed a Bayesian framework that

combines dense motion estimation, uncertainty propagation and

statistical fusion to achieve layer separation. In a three-layer sep-

aration approach proposed by Zhang et al. (2009) , a multi-scale

framework has been developed based on different motion patterns

for the static background, lung and vessels. In this work, a dense

motion field of each layer has been constructed using thin plate

splines. Fischer et al. (2015) have further extended this method by

introducing a regularization term for layers with a Bayesian model

to aid layer separation. In particular, they have proposed to use a

robust data term and edge-preserving regularization. In the work

of Auvray et al. (2009) , a joint layer segmentation and paramet-

ric motion estimation scheme has been proposed for transparent

image sequences. Similarly, Preston et al. (2013) jointly estimated

layers and their corresponding smooth deformation to model the

non-smooth motion observed in a fluoroscopic sequence. A total

variation based regularization was used to encourage sparsity of

gradients within and across the layer images. 

Unlike motion-based methods, motion-free approaches do not

require estimating the motion of layers. Instead, they directly

model the background layer or/and foreground (vessel) layer of

an image sequence under certain hypotheses. One of the simplest

ways of modeling the background of XA is computing the median

of several frames in a sequence, and obtaining the foreground by

subtracting the median image from the original frames (see Baka

et al., 2014 ). This method worked well for the background that is

entirely static, but generates artefacts when there are moving ob-

jects in the background, e.g. diaphragm in XA. A more advanced

method has been proposed by Tang et al. (2012) in which they as-

sumed that the vessel and the backgrounds generate independent
ignals that are mixed in a sequence, so that the vessel-background

eparation becomes a blind source separation problem that is com-

only solved by independent component analysis (ICA, Hyvärinen

t al., 2004 ). 

Apart from ICA, robust principal component analysis (RPCA)

s also a common approach for source decomposition. One of

he most popular RPCA methods, principal component pursuit

PCP, Candès et al., 2011 ), splits a data matrix into a low-rank

omponent and a sparse component. It has been used for back-

round modeling or foreground detection for surveillance videos

 Bouwmans and Zahzah, 2014 ). In the field of medical image anal-

sis, it found applications in reconstruction ( Otazo et al., 2015 ) and

otion correction ( Hamy et al., 2014 ) in dynamic MRI. On the topic

f layer separation for X-ray images, Ma et al. (2015) have used

orphological closing to remove breathing structures from the im-

ges and adopted RPCA to separate a quasi-static layer and a ves-

el layer from XA. This method could only be used in a retrospec-

ive setting, since it requires all frames of a sequence. Volpi et al.

2015) have developed a method that worked in a prospective set-

ing. The method used vesselness filtering ( Frangi et al., 1998 ) and

PCA to separate a foreground that contains interventional devices.

hey have implemented the foreground separation by solving RPCA

ith a mini-batch of data: for each new coming mini-batch, the

verage of the low-rank component was estimated and used as the

ackground for the next mini-batch. The limitation of this method

s that the foreground separation of a mini-batch is delayed by the

rocessing of the previous complete block of data. 

Online robust PCA (OR-PCA) is an online extension of the orig-

nal RPCA method, proposed by Feng et al. (2013) . OR-PCA over-

omes the limitation of RPCA-based methods by reformulating the

uclear norm in the RPCA formulation as an explicit low-rank fac-

orization, so that it does not require to “see” the complete dataset

r a mini-batch of data, but can process each single data sample

ne at a time. This setting enables online processing of stream-

ng data. In Song et al. (2015) , a closed-form solution for the sub-

pace basis update in OR-PCA has been proposed and shown to

chieve better performance in image alignment tasks. OR-PCA has

een used in computer vision tasks, such as background subtrac-

ion ( Javed et al., 2015 ) and foreground detection ( Javed et al.,

014 ), but its application in the field of medical imaging has not

een investigated yet. 

.3. Overview and contributions 

In this work we extended the method in Ma et al. (2015) that

nly worked in a retrospective or “off-line” setting. To this end,

e developed and evaluated an automatic motion-free online layer

eparation method for X-ray angiograms. The method robustly sep-

rates the layer that contains vessels and catheter tip from a

quasi) static background, while ignoring large-scale motion such

s diaphragm movement. Our contributions are: 

(a) We integrated OR-PCA in the layer separation scheme, en-

abling online layer separation for XA, which is a key ingre-

dient for its potential application in a clinical workflow. 

(b) Inspired by the work of Mairal et al. (2010) , we proposed

and analyzed three ways to downweight past information

that is able to improve the layer separation performance us-

ing the original OR-PCA algorithm. 

(c) We compared the proposed method with other related

background-removal approaches and evaluated the results

visually and quantitatively on real patient XA data. 

(d) We investigated the potential of improving the contrast

of vessels in a low-contrast scenario using the proposed

method with synthetic low-contrast XA sequences and real
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Fig. 1. The overview of online layer separation for an XA frame. 

Fig. 2. Morphological closing operation applied on an XA frame: (a) original frame, 

(b) image processed with morphological closing, (c) difference image (DI) (a-b). 
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sequences acquired in a pig experiment in which various

contrast levels were used. 

. Method 

.1. Overview 

The proposed method treats the intensity of an XA frame as

he sum of three layers, i.e., a “breathing” layer, a quasi-static layer

nd a layer that contains vessels. The method consists of two main

teps: first, large-scale breathing structures, e.g. diaphragm, are

eparated and removed from the original XA frame, and second,

maller moving structures, e.g. vessels and guiding catheters, are

eparated from a quasi-static background using online robust PCA

OR-PCA). Fig. 1 provides an overview of the complete method, de-

ails are described in the remainder of Section 2 . 

.2. Separation of breathing structures 

To prevent artefacts remaining in the vessel layer due to respi-

atory motion, the layer that contains large-scale breathing struc-

ures, such as diaphragm, is removed from the original XA images

n the first step. 

The layer of breathing structures was obtained by removing

small” objects from the original X-ray angiographic frame. De-

ending on the field of view, those objects could include vessels,

uiding catheters, guide wires, stitches and vertebral bodies. Fol-

owing the approach of Ma et al. (2015) , as a preprocessing step,

e applied a morphological closing operation to the XA image

ith a circular structuring element of 8.5 mm in diameter, in order

o remove any tubular and curvilinear structures smaller than that

ize. An example of a resulting image is shown in Fig. 2 b, where

he guiding catheter and vessels are removed and vertebral con-

ours are blurred, while structures that are susceptible to breathing
otion remain in the image (diaphragm and lung tissue are shown

s the white area in the upper left part of the image). The resulting

mage is referred to as the “breathing layer” in this paper and was

ext subtracted from the original image to obtain the difference

mage (DI, Fig. 2 c) of the XA frame for further processing. 

.3. Separation of vessel layer via OR-PCA 

In this section, we briefly review the formulation of the online

obust PCA method proposed by Feng et al. (2013) and different

ubspace basis update strategies for solving the OR-PCA problem

 Feng et al., 2013; Song et al., 2015 ). Then we propose three dif-

erent ways of coping with previous frames to improve on these

ethods. 

.3.1. Notation 

Bold letters are used to denote vectors. With the difference im-

ge (DI) of an XA frame represented with a k × k matrix, we con-

atenated all pixels in this matrix to form a single column vec-

or z ∈ R 

p , where p = k 2 is the dimension of the observed sam-

le. Likewise, we use x ∈ R 

p to denote the quasi-static background

f the XA frame and e ∈ R 

p represents the foreground. Hence,

 = x + e . Let n denote the number of frames in a sequence, t be

he index of the sample/time instance of a frame and r denote the

ntrinsic dimension of the subspace underlying { x i | i = 1 , 2 , . . . n } . 
Matrices are denoted by capital letters in the following sections.

n particular, Z ∈ R 

p×n is the matrix of a complete sequence of dif-

erence images (DIs), where its column z i represents the i th DI.

ikewise, X and E are the background and the foreground matrices

ith x i and e i the vector for the i th background and the i th fore-

round. For an arbitrary real matrix M , let || M|| 1 = 

∑ 

i, j | M i, j | de-

ote the L 1 -norm of M , || M || F denotes the Frobenius norm || M|| F =
 ∑ 

i, j | M i, j | 2 , and || M || ∗ = 

∑ 

i σi (M ) denotes the nuclear norm,

.e., the sum of its singular values. Tr ( M ) denotes the trace of a

atrix. 

.3.2. Online robust PCA 

Robust PCA (RPCA) aims at estimating the subspace underlying

he observed samples. Among many popular RPCA methods, Prin-

ipal Component Pursuit (PCP, Candès et al., 2011 ) has been pro-

osed to solve the RPCA problem by approximating the data matrix

s the sum of a low-rank matrix and a sparse matrix. The concepts

f low-rank and sparsity have been implemented using the nuclear

orm and the L 1 -norm of matrix respectively. This formulation is

uitable for the separation of the vessel layer from the DI of an XA

rame, since the background has merely minor changes, which can
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Algorithm 1. Stochastic optimization for OR-PCA ( Feng et al., 

2013 ). 

Require: { z 1 , . . . , z T } (sequentially revealed data samples), λ1 , λ2 ∈ 

R (regularization parameters), L 0 ∈ R 

p×r , r 0 ∈ R 

r , e 0 ∈ R 

p , A 0 = 

0 r×r , B 0 = 0 p×r (initial solution), T (number of samples). 

1: for t = 1 to T do 

2: Reveal the sample z t . 

3: Given L t−1 , project the new sample: 

{ r t , e t } = argmin 

r , e 

1 

2 

|| z t − L t−1 r − e || 2 2 + 

λ1 

2 

|| r || 2 2 + λ2 || e || 1 
(7) 

4: A t ← A t−1 + r t r 
T 
t , B t ← B t−1 + ( z t − e t ) r 

T 
t 

5: Update the basis L t 

L t 
� = argmin 

L 

1 

2 

T r[ L T L (A t + λ1 I)] − T r(L T B t ) (8) 

6: end for 

7: return X T = L T R 
T 
T (the low-rank matrix), E T (the sparse ma- 

trix). 
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T

be modeled as a low-rank matrix. In addition, the fact that vessels

and guiding catheters take up only a small portion of the complete

image content fits the requirement of sparsity. 

2.3.2.1. The OR-PCA formulation. Different from the classical formu-

lation in Candès et al. (2011) , PCP can be reformulated as follows

( Feng et al., 2013 ): 

min 

X,E 

1 

2 

|| Z − X − E|| 2 F + λ1 || X || ∗ + λ2 || E|| 1 (1)

where λ1 and λ2 are regularization coefficients. Through minimiz-

ing the cost function (1) that contains the nuclear norm of the

background X and the L 1 -norm (sparsity) of the foreground E , the

RPCA algorithm aims at obtaining the background ( X ) and fore-

ground ( E ) that best approximate the XA sequence ( Z ). Because the

nuclear norm couples all samples tightly, typical methods to solve

Eq. (1) , such as Augmented Lagrangian Multiplier (ALM, Lin et al.,

2011 ), are often implemented in a batch manner, which limits its

application in scenarios that deal with streaming data, e.g. X-ray

cine angiography data during coronary interventions. 

To overcome this problem, Feng et al. (2013) have proposed to

use an equivalent form of the nuclear norm: 

|| X || ∗ = in f 
L,R 

{ 

1 

2 

|| L || 2 F + 

1 

2 

|| R || 2 F : X = LR 

T 
} 

(2)

where inf denotes the greatest lower bound of a subset of a par-

tially ordered set, L ∈ R 

p×r is the basis of the low-dimensional sub-

space and R ∈ R 

n ×r can be seen as the samples’ coefficient with re-

spect to the basis. Substituting Eq. (2) into (1) , the RPCA problem

can be reformulated as (3) : 

min 

L,R,E 

1 

2 

|| Z − LR 

T − E|| 2 F + 

λ1 

2 

(|| L || 2 F + || R || 2 F ) + λ2 || E|| 1 (3)

Following Feng et al. (2013) , solving Eq. (3) is equivalent to

minimizing the following empirical cost function given a sequence

Z consisting of n samples [ z 1 . . . z n ] : 

f n (L ) 
� = 

1 

n 

n ∑ 

i =1 

l(z i , L ) + 

λ1 

2 n 

|| L || 2 F (4)

where the loss function l ( z , L ) for each sample is defined as: 

l(z , L ) 
� = min 

r , e 

1 

2 

|| z i − L r − e || 2 2 + 

λ1 

2 

|| r || 2 2 + λ2 || e || 1 (5)

Note that Eq. (4) enables the possibility of updating the basis

L based on each individual sample. To handle streaming data in

practice, in Feng et al. (2013) , the estimation of basis L t is obtained

through minimizing the following surrogate function of (4) with

respect to L for the t th time instance: 

g t (L ) 
� = 

1 

t 

t ∑ 

i =1 

(
1 

2 

|| z i − L r i − e i || 2 2 + 

λ1 

2 

|| r i || 2 2 + λ2 || e i || 1 
)

+ 

λ1 

2 t 
|| L || 2 F (6)

Also observe that the loss function (5) optimizes r (the coeffi-

cient of z i on the basis L ) and e (the sparse component of z i ) to

minimize the cost given a fixed basis. Through an alternating opti-

mization of r, e and L , Eq. (4) can be solved in an online manner.

The complete stochastic optimization scheme for solving the OR-

PCA problem is described in Algorithm 1 . 

Note that the right-hand side of Eq. (7) in Algorithm 1 is equiv-

alent to the loss function (5) for the t th sample. To solve it, Feng

et al. (2013) give a closed-form solution to alternatively update r

and e until a convergence criterion is met. The update of L t in Eq.

(8) is discussed in the next section. 
.3.2.2. Update the subspace basis L t . To minimize the function

6) with respect to L , note that the term 

λ1 
2 || r i || 2 2 

and λ2 || e i || 1 can

e discarded, we then derived the following expression for L t from

6) : 

 t 
� = argmin 

L 

1 

2 

T r 

[ 

L T L 

t ∑ 

i =1 

(
r i r 

T 
i + 

λ1 

t 
I 

)] 

− T r 

( 

L T 
t ∑ 

i =1 

(( z i − e i ) r 
T 
i ) 

)

(9)

Using the two intermediate variables A t and B t that accumu-

ate information of past frames, Eq. (9) is equivalent to (8) in

lgorithm 1 . Eq. (8) is then solved by the block-coordinate descent

ethod, i.e., each column of the basis L is updated sequentially

hile fixing the other columns (see Algorithm 2 ). 

lgorithm 2. The basis update using block-coordinate descent

 Feng et al., 2013 ). 

equire: L = [ l 1 , . . . , l r ] ∈ R 

p×r , A = [ a 1 , . . . , a r ] ∈ R 

r×r , B = 

[ b 1 , . . . , b r ] ∈ R 

p×r . ˜ A ← A + λ1 I. 

1: for j = 1 to r do 

2: Update the jth column of L . 

l j ← 

1 

˜ A j, j 

(b j − L ̃ a j ) + l j . (10)

3: end for 

4: return L . 

Another way of solving Eq. (8) is to derive a closed-form solu-

ion. Let the derivative of the right-hand side of (8) with respect

o L be zero, we obtain 

1 

2 

L (A t + λ1 I) 
T + 

1 

2 

L (A t + λ1 I) − B t = 0 (11)

here A t = A t−1 + r t r 
T 
t , B t = B t−1 + ( z t − e t ) r 

T 
t . As (A t + λ1 I) is

ymmetrical, a simple closed-form solution of (8) can be derived

s 

 t = B t (A t + λ1 I) 
−1 . (12)

his is equivalent to the form given in Song et al. (2015) . 
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.3.3. Downweighting the past information 

The previous solutions for the subspace basis update treat all

amples equally, which works well for scenarios where samples

re independently drawn. For stream video data, however, adja-

ent frames have higher correlation than “distant” frames. Thus,

t may be possible to improve the basis update by treating past

rames with different weights, giving close-by frames higher im-

act to the result than the distant frames. Inspired by the work of

airal et al. (2010) who has reported several possibilities to han-

le past data in an online dictionary learning problem, we propose

hree approaches to downweight past information for the OR-PCA

lgorithm. In Algorithm 1 , as A t and B t contain information of past

rames, variations can be made to replace the following equation

et on line 4 in Algorithm 1 : 

 t ← A t−1 + r t r 
T 
t 

 t ← B t−1 + ( z t − e t ) r T t 

(13) 

A logical choice is to apply an exponential decay (ED) to “for-

et” past information as in (11) : 

 t ← (1 − ε) A t−1 + r t r 
T 
t 

 t ← (1 − ε) B t−1 + ( z t − e t ) r T t 

(14) 

here ε is the decay rate and 0 < ε < 1. So for the t th time in-

tance, the weight for the i th sample is (1 − ε) t−i . 

Similar to Mairal et al. (2010) , as a second option we consider

upra-linear decay (SLD) approach: 

 t ← 

(
1 − 1 

t 

)ρ

A t−1 + r t r 
T 
t 

 t ← 

(
1 − 1 

t 

)ρ

B t−1 + ( z t − e t ) r T t 

(15) 

here ρ is a tunable decay parameter and ρ ≥ 0. At the t th time

nstance, the weight for the i th sample becomes 
(

i 
t 

)ρ
. Note that:

hen ρ = 0 , (15) turns into (13) ; when ρ = 1 , (15) degrades to a

inear decay. 

Apart from ED and SLD that scale the past data, it is also an

ption to focus only on adjacent frames in a fixed-size window, so

hat frames within the sliding window are treated equally, whereas

he frames outside the window from the earlier times are not con-

idered for the basis update, as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A t ← r t r 
T 
t 

B t ← ( z t − e t ) r T t 

, t 0 = 1 

A t ← A t−1 + r t r 
T 
t 

B t ← B t−1 + ( z t − e t ) r 
T 
t 

, t 0 > 1 and t � t 0 

A t ← A t−1 + r t r 
T 
t − r t−t 0 r 

T 
t−t 0 

B t ← B t−1 + ( z t − e t ) r T t − ( z t−t 0 − e t−t 0 ) r 
T 
t−t 0 

, else 

(16) 

here t 0 is the window size (number of frames within the win-

ow). This approach is referred to as “sliding-window (SW)”. 

.4. Summary 

The proposed online layer separation method consists of the

ollowing steps, as shown in Fig. 1 . 

(a) Breathing layer separation . When a new XA frame is ob-

tained, the breathing layer is firstly extracted by apply-

ing morphological closing on that frame, as described in

Section 2.2 . Subsequently, the breathing layer is subtracted

from the original frame to obtain the DI. 
(b) Quasi-static layer and vessel layer separation . Transform

the DI from a matrix to vector by concatenating each col-

umn of the matrix one after another. This vector is then sep-

arated into two components by the OR-PCA method, as de-

scribed in Section 2.3 . The sparse component is reshaped to

form the vessel layer, the other component is constructed as

the quasi-static layer. 

Finally, as pixels belonging to contrast agent always have nega-

ive value in the vessel layer, pixels with positive value in the ves-

el layer are heuristically set to zero to suppress artefacts. 

. Experiments 

.1. Image data 

In this work, we used three types of data for evaluation: clin-

cal X-ray angiograms, synthetic low-contrast XA and X-ray angio-

raphic data of pigs with variations in contrast concentration. 

.1.1. Clinical X-ray angiographic data 

Imaging data from clinical routine that were anonymized were

sed for our experiments. The data were acquired under standard

linical protocol from the Department of Cardiology at Erasmus

C in Rotterdam, the Netherlands. The 42 XA sequences are from

1 patients who underwent a PCI procedure and were acquired

ith Siemens AXIOM-Artis biplane system. The frame rate of all

equences is 15 frames per second (fps). The number of frames per

equence varies from 46 to 244. All 42 XA sequences have in total

886 frames. 22 sequences have 512 × 512 pixels, 12 have 600 ×
00 pixels, 2 have 776 × 776 and 6 have 1024 × 1024. Their cor-

esponding pixel sizes are 0.216 × 0.216 or 0.279 × 0.279, 0.184

0.184, 0.184 × 0.184 and 0.139 × 0.139 mm 

2 , respectively. In all

equences, inflow and wash-out of contrast agent can be observed.

.1.2. Synthetic low-contrast XA 

The synthetic image data was used to simulate the condition

hat a reduced amount (50%) of contrast agent is administered, for

he purpose of testing our online layer separation method on low-

ontrast XA. To create these synthetic XA sequences from the real

nes, we used the off-line layer separation method in Ma et al.

2015) . The idea is that the real clinical XA sequence was firstly

eparated into three layers. The intensity of the vessel layer was

hen halved and added back to the other two layers to generate a

ew XA sequence that has half the amount of intensity compared

o the original one, as shown in Eq. (17) : 

 synthetic = α I ∗v essel + I ∗static + I ∗breathing (17)

here I synthetic denotes the synthetic XA sequence, I ∗v essel 
, I ∗

static 
and

 

∗
breathing 

are the vessel layer, quasi-static layer and breathing layer

eparated using the method in Ma et al. (2015) , respectively, and

= 0 . 5 . The synthetic sequence has the same number of frames,

ame image size and resolution as its original in the clinical

ataset. An example of a synthetic low-contrast XA is shown in

ig. 3 b. Note that the vessels have less contrast to the background

han the original image in Fig. 3 a. We created a low-contrast XA

equence from each clinical XA described in Section 3.1.1 , which

esults in 42 synthetic XA sequences in total. 

.1.3. X-ray angiograms of pigs 

Additionally, in vivo XA data were acquired during a pig experi-

ent performed at the Erasmus MC in Rotterdam, the Netherlands.

 XA sequences with different contrast concentration levels were

btained from 1 FBM (familiar-hypercholesteremia Bretonchelles

eishan) pig which underwent a catheterization procedure after

4 months of high-fat diet. The XA sequences were acquired us-

ng a Siemens AXIOM-Artis monoplane system. The frame rate of
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Fig. 3. An example frame of real clinical XA sequences and synthetic low-contrast 

XA sequences: (a) the real image, (b) the synthetic XA frame with 50% vessel con- 

trast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Examples of masks that are used for defining foreground and background 

in assessing the contrast of vessels. The first row shows the masks, the second row 

exhibits the overlay of masks on the corresponding original XA frame indicated by 

colors. (a) the foreground (blue), (b) the global background (red), (c) the local back- 

ground (red). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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all sequences is 15 frames per second. The number of frames per

sequence varies from 48 to 79. The 4 XA sequences have in total

238 frames. All sequences have 776 × 776 pixels corresponding to

a pixel size of 0.184 × 0.184 mm 

2 . In all images, the inflow of con-

trast agent can be observed. The XA images were made during a

manual injection of isoosmolar X-ray contrast medium (Visipaque

320, GE Healthcare, Buckinghamshire, U.K), delivered through the

guide catheter. The full-contrast images were acquired with a con-

trast concentration of 320 g/mL. For the 25%, 50% and 75% con-

trast concentration images, the contrast agent was diluted accord-

ingly with a 0.9% sodium-chloride solution (saline). Prior to image

acquisition, the guide catheter was flushed with the right concen-

tration of the contrast agent. 

In practice, the full-contrast sequence had lower visual contrast

than the images with 75% contrast. This might be due to incom-

plete flushing of the guiding catheter so that the contrast agent

from the previous injection dilutes the current contrast agent. 

3.2. Experiment 1: parameter tuning for OR-PCA 

OR-PCA has three parameters: the intrinsic rank of the subspace

basis r and the regularization parameters λ1 and λ2 . In Feng et al.

(2013) and Song et al. (2015) , both λ1 and λ2 were set to 1 / 
√ 

p ,

where p is the dimension of data. This value had been proposed

by Candès et al. (2011) as a general rule of thumb, but it can be

slightly adjusted to achieve the best possible result. Javed et al.

(2014) , for example, have empirically selected different values for

λ1 and λ2 instead of 1 / 
√ 

p . Unlike the rule for choosing λ1 and λ2 ,

the choice for r depends more on specific applications. 

In order to find the optimal parameter setting for the layer sep-

aration application on the clinical XA data, we used the following

way to quantify the outcome of layer separation with a certain set

of parameters. 

3.2.1. The definition of foreground and background 

We firstly defined the “foreground” and the “background” for

the objective of optimization in Section 3.2.2 . It is worth noticing

that the foreground and the background here are merely defined

for computing the vessel contrast and thus should not be confused

with the foreground and background’s definition coming from the

layer separation scheme described in the previous sections. 

We used masks to define the foreground and background. A

1 mm wide area around manually-labeled vessel centerlines was

considered as the foreground (shown as the dark area in the mask

in Fig. 4 a). This area falls entirely within the vessel, and thus is a

good representative of pixels belonging to vessels. For background,

we adopted two different masks for measuring “global” and “local”

contrast. The first one highlights all pixels outside a 4 mm wide

area around the vessel centerlines (the white area in the mask in
ig. 4 b). This mask can quantify the effect of the removal of di-

phragm, guiding catheters, etc. and can be used in a global mea-

urement of contrast. The local background is defined as a 3 mm

ide neighborhood area around the dark area in the global mask

the white area in the mask in Fig. 4 c). 

For each clinical XA sequence, we randomly selected 8–15

rames for mask generation and contrast evaluation. The number

f selected frames depends on the sequence length. As the ves-

el contrast is of main interest in this paper and in practice, only

he frames with contrast agent were selected. This way we also

voided choosing non-contrast frames from the beginning of a se-

uence where the online algorithm has not converged yet. In total,

 4 4 frames were chosen from 42 sequences. 

We also created the masks for the four pig XA sequences. From

ach pig XA data, we randomly chose 8–12 frames. In total, 38

rames were chosen for the mask creation. These masks are only

sed for evaluation of the contrast level in pig data, not for pa-

ameter optimization. 

.2.2. The objective for parameter optimization 

Metrics that have previously been used to measure vessel visi-

ility include contrast-to-noise ratio (CNR), as the work in Ma et al.

2015) , and the Jeffries–Matusita distance (JMD) ( Zhu et al., 2009;

hang et al., 2009 ). These metrics evaluate the contrast of pixels

rom two groups, e.g. foreground and background. However, when

uning parameters of OR-PCA using either of these two measures

s the objective for optimization, the optimal parameters are those

hat yield a very small standard deviation of the background, thus

n almost constant background, and a flawed separation of vessel

ayer that loses much intensity of the vessel pixels. These would

esult in a large CNR or JMD, but do not lead to good foreground

nd background separation. 

To avoid the problem, the objective for OR-PCA parameter op-

imization should also consider the information loss in the vessel

ayer in addition to the vessel contrast. In this work, we integrated

he difference between the original XA image and the sum of its

hree layers separated by OR-PCA method in the objective, such

hat losing too much information in the vessel layer would result

n a large difference between the original XA and the sum of layer

mages. With this consideration, we used a corrected CNR (cCNR)
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1 λ was fixed to 3 × 10 −3 in their papers. To adapt to different image sizes, we 

set λ to 1 . 5 / 
√ 

p . This value is equivalent to 3 × 10 −3 for images of size 512 × 512. 
s the objective to optimize the OR-PCA parameters: 

CNR = 

| μF − μB | √ 

σ 2 
B 

+ MSE V 
(18) 

here μF and μB are the mean of the pixel intensity value in the

oreground and the background that were defined in Section 3.2.1 ,

B is the standard deviation of the pixel intensity in the back-

round. MSE V , the mean square error in the vessel area, which

erves as a penalty term in Eq. (18) to prevent too much infor-

ation loss in the vessel layer, is defined as follows: 

SE V = 

∑ 

x,y (I V 
original 

(x, y ) − I V 
3 −layer 

(x, y )) 2 

| I V 
original 

| (19) 

here I V 
(� ) 

denotes the operation that takes only pixels in the ves-

el area (defined by the dark region in the mask in Fig. 4 b) into

onsideration for image I ( � ) . The reason to focus only on the ves-

el area is that the information loss of vessel pixels only occurs in

his region. I original ( x, y ) and I 3 −layer (x, y ) are the pixel values of the

osition ( x, y ) in the original XA and the 3-layer sum image: 

 3 −layer = I v essel + I static + I breathing (20)

here I vessel , I static and I breathing are the vessel layer, quasi-static

ayer and breathing layer, respectively. | I V 
original 

| denotes the num-

er of pixels in the vessel area in the frame. 

According to (16) , MSE V indicates how well the original image

an be reconstructed from the layer separation result. An unde-

irable reconstruction with pixel intensity loss in the vessel layer

ould result in a large MSE V and, further, a small cCNR. 

The cCNR for a complete sequence is defined as the average

CNR over all selected XA frames from the sequence. Global and

ocal cCNR are computed respectively using the masks in Fig. 4 b

nd c. 

.2.3. Parameter optimization 

The parameters of OR-PCA for both subspace basis update

ethods were optimized by exhaustively searching the optimal pa-

ameter set that maximizes the previously defined objective cCNR

ithin a discrete set of parameters. First, cCNR was computed for

very possible parameter combination ( λ1 , λ2 , r ) within the pa-

ameter range for each clinical XA sequence. Then, the optimal pa-

ameters were obtained by searching for the parameter set that

aximizes the average local cCNR over the 42 XA sequences. This

ptimization was performed for the two different basis update

ethods in Section 2.3.2.2 respectively. 

The range for the intrinsic rank r was chosen as the integers

n [2, 20]. The regularization parameter λ1 and λ2 were set to the

ame value as in Feng et al. (2013) and Song et al. (2015) both

et λ1, 2 to 1 / 
√ 

p . To search for the optimal λ1, 2 , we explored the

alues in [0 . 1 / 
√ 

p , 10 / 
√ 

p ] with a search step 0 . 1 / 
√ 

p . 

.3. Experiment 2: downweighting the past data in OR-PCA, influence

f the parameters 

Once the optimal parameter settings of OR-PCA had been ob-

ained from the previous experiment, we used this setting and

tudy the influence of history parameters that were introduced in

ection 2.3.3 for downweighting the past data on the performance

f OR-PCA. The search spaces for exponential decay (ED), supra-

inear decay (SLD) and sliding-window (SW) are: 

ε ∈ { 0 . 01 , 0 . 3 , 0 . 6 , 0 . 9 , 0 . 99 , 0 . 9968 , 0 . 999 , 0 . 9997 , 1 − 10 

−4 , 

1 − 10 

−5 , 1 − 10 

−6 , 1 − 10 

−7 } , 
ρ ∈ { 0 . 5 , 1 , 1 . 5 , 2 , 2 . 5 , 3 , 6 , 9 , . . . , 36 , 39 , 42 } , 
 0 ∈ [1 , 15] and t 0 ∈ N . 
In the experiments, we combined these three approaches with

he two methods that update the subspace basis L that were men-

ioned in Section 2.3.2.2 , i.e., block-coordinate descent (BCD) and

he closed-form solution (CF). In this paper, for example, the OR-

CA method using exponential decay to downweight past data and

sing closed-form solution to update L is referred to as OR-PCA

ED+CF), or (ED+CF) as a short form. 

As the OR-PCA parameters λ1,2 and r tuned with cCNR as-

ure a reliable layer separation, and tuning the parameters of ED,

LD and SW does not create the previously-mentioned undesirable

ayer separation, therefore, we evaluated the results for this experi-

ent using the direct measure of vessel contrast in an image CNR,

hich were used in Ma et al. (2015) , with the same masks from

ection 3.2.1 . In the evaluation, RPCA was used as a reference for

he comparison purpose. Its regularization parameter λ had been

ptimized the same way as in Section 3.2.3 and was set to the op-

imal value 1 . 5 / 
√ 

p from the search space [0 . 1 / 
√ 

p , 10 / 
√ 

p ] with a

earch step 0 . 1 / 
√ 

p . The experiments were carried out with the 42

linical XA sequences. 

.4. Experiment 3: comparison with other methods 

We compared the proposed approaches to several other related

ethods that can be used for prospective or online layer separa-

ion. The off-line method with the batch version of robust PCA in

a et al. (2015) was used as a “benchmark” to show how close

rospective or online methods can achieve to the performance of

he off-line layer separation. The same way in Section 3.3 , the reg-

larization parameter λ of RPCA was set to 1 . 5 / 
√ 

p to achieve opti-

al performance. This method is referred to as RPCA . The follow-

ng methods were tested in the experiment. 

(a) Median-subtraction In Baka et al. (2014) , static background

has been suppressed by subtracting the median of the first

10 frames from each frame in the sequence. This method is

referred to as MS . 

(b) Morphological-closing + median-subtraction This ad- 

vanced version of median subtraction method removes the

breathing layer via morphological closing and then subtract-

ing the median of the first 10 frames. This method is re-

ferred to as MC+MS . 

(c) Robust PCA with a sliding window As mentioned in

Section 1.2 , Volpi et al. (2015) and Brosig et al. (2015) solved

RPCA within a sliding window that consists of a few frames

to enable prospective foreground separation. We adopted

this idea of solving RPCA for our experiment. Different from

their methods using Frangi filtering to preprocess images, to

adapt to our application, we applied morphological closing

to remove the breathing layer and then separate the other

two layers from the difference images by solving RPCA with

a sliding window. We used two sets of parameters for this

method. The first one was used by Volpi et al. (2015) and

Brosig et al. (2015) : the window size was set to 4 and the

regularization parameter λ was set to 1 . 5 / 
√ 

p 1 . This one is

referred to as RPCA (SW) . The second set of parameters was

optimized the same way as in Section 3.2.3 . The window

size was set to 7 from the search space [2, 10] and the reg-

ularization parameter λ was set to 0 . 5 / 
√ 

p from the search

space [0 . 1 / 
√ 

p , 10 / 
√ 

p ] with a search step 0 . 1 / 
√ 

p . This one

is referred to as RPCA (SW) ∗. 

These methods were compared with the OR-PCA approaches

sing CNR as the evaluation metric with the same masks from
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Table 1 

The optimal parameter settings of OR-PCA for differ- 

ent subspace basis update methods. p is the dimen- 

sion of the data, i.e. the number of pixels in a frame. 

Basis Update Method λ1, 2 r 

Block-coordinate Descent (BCD) 2 . 3 / 
√ 

p 14 

Closed-form Solution (CF) 2 . 1 / 
√ 

p 5 
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Section 3.2.1 . The CNR of OR-PCA approaches were computed in a

leave-one-out (LOO) manner. In each LOO loop, firstly, the OR-PCA

parameters λ1, 2 and r were optimized on the training sequences

using the method in Section 3.2 . Next, using the trained OR-PCA

parameters, the history parameters were trained on the same set

of sequences with local CNR using the approach in Section 3.3 .

Lastly, the optimal parameters obtained from the previous two

steps were applied to compute CNR for the left-out data. The over-

all CNR was then computed as the average CNR over all LOO ses-

sions. The LOO experiment was carried out with the 42 clinical XA

sequences. 

In addition to CNR as an evaluation metric of vessel contrast,

to gain insight into how accurate the layers obtained with each

method can reconstruct the original XA image, the reconstruction

error was evaluated. It was computed as follows: 

E recon = 

∑ 

x,y | I original (x, y ) − I 3 −layer (x, y ) | ∑ 

x,y I original (x, y ) 
(21)

where E recon denotes the reconstruction error, I original and I 3 −layer 

are defined in the same way as Eq. (16) . The layer separation pa-

rameters used for computing E recon were the same that were ob-

tained during each LOO loop in the last paragraph. For each clin-

ical XA sequence, the reconstruction error was computed for the

frames that had been selected for mask generation in Section 3.2.1 .

The average error over all selected frames from a sequence was

used as the empirical reconstruction error for this sequence. This

error indicates the relative absolute difference between the pixel

intensity of the reconstruction image and that of the original im-

age with respect to the pixel intensity of the original image. 

3.5. Experiment 4: vessel enhancement in low-contrast XA 

One possible application of layer separation is vessel enhance-

ment. This can be achieved through enhancing the vessel layer and

adding it back to the original image. To demonstrate this concept,

we conducted experiments to enhance vessels in low-contrast XA

using the online layer separation approaches. 

The data we used are synthetic human XA data and real XA

data acquired from pigs, as introduced in Sections 3.1.2 and 3.1.3 .

We first separated the three layers, then enhanced the vessel layer

by multiplying it by an enhancement factor β > 0. Finally, the

vessel-enhanced image I enhanced equals the enhanced vessel layer

plus the original XA image, as shown in Eq. (22) : 

I enhanced = β I v essel + I original (22)

The results were evaluated using CNR. The layer separation method

we used in this Section is OR-PCA (SW + CF). 

For synthetic XA data, we used the parameters obtained from

the leave-one-out evaluation in Section 3.4 for each synthetic data.

For the pig XA data, the parameter set (λ1 , 2 , r, t 0 ) = (2 . 1 , 5 , 3) was

used. 

3.6. Implementation 

All algorithms were implemented in MATLAB (The MathWorks,

Inc.). In particular, the computation time of layer separation was

recorded in MATLAB 2014a on an Intel Core i7-4800MQ 2.70 GHz

computer with 16GB RAM running Windows 7. 

4. Results 

4.1. Optimal parameters for OR-PCA 

The parameters of OR-PCA optimized over the whole XA dataset

for the two different basis update methods are shown in Table 1 .

Here both λ and λ are set to the same value. Comparing the two
1 2 
ethods, the λ1, 2 have similar values, while the intrinsic ranks r

f the subspace are very different. 

Using block-coordinate descent with the optimal parameter set-

ing, an example of online layer separation of an XA sequence (512

512, 55 frames) is shown in Fig. 5 . Note that the layer separa-

ion result for the first frame shows strong artefacts (e.g. the ver-

ebral shape in the vessel layer) due to random initialization of the

ubspace basis. As time proceeds, the layer separation improves

uickly. The 10 th frame already has a good layer separation. 

.2. Influence of the history parameters 

With the optimal parameter setting of OR-PCA, we quan-

itatively assessed how the history parameters mentioned in

ections 2.3.3 and 3.3 influence the layer separation performance.

epending on the image content, the influence of the history pa-

ameters on each individual sequence may vary from sequence to

equence (see Figs. 1–3 in Supplementary Material). The average

easures over the whole dataset are shown in Fig. 6 where the

NR values are normalized by dividing CNR by the CNR value ob-

ained from the RPCA method (so RPCA has a constant value 1). 

Compared to the original OR-PCA method (OR-PCA (BCD)) and

R-PCA (CF), the history parameters ε, ρ and t 0 all resulted in

verall higher average local and global CNR. This improvement was

ore prominent in the case of global CNR compared to local CNR.

t is also worth noticing that the combination of the history pa-

ameters with the CF method generally performed better than the

history parameter + BCD) option, which could be especially seen

n the sliding-window case. 

In addition to the overall comparisons of the three approaches,

ach of them presented a certain trend of CNR as the history

arameter changed. For exponential decay ( Fig. 6 a and b), as

log(1 − ε) increases, the CNR values firstly increased fast; once

hey reached an optimal value when −log(1 − ε) is between 0.5

nd 2.5 (except for OR-PCA (ED + CF)), the CNRs dropped down

lowly to reach a constant. In the case of supra-linear decay ( Fig. 6 c

nd d), the CNRs increased as ρ increases, but did not change

uch when ρ is larger than 15. For the sliding-window approach

 Fig. 6 e and f), although in general the CNRs dropped when the

indow size becomes larger, OR-PCA (SW + BCD) reached its opti-

um when t 0 equals 2, whereas OR-PCA (SW + CF) had an optimal

 0 between 3 and 5. Finally, as −log(1 − ε) and ρ kept increasing

decreasing the weights of all past frames), the CNR curves of ED

r SLD converged to where the CNR curves of SW started (only

reserve information of the new frame). 

.3. Comparison with other methods 

The optimal parameter sets for the methods based on OR-PCA

hat were obtained during the leave-one-out evaluation are listed

n Table 2 . In general, the methods that use closed-form solution

CF) had a smaller r than methods with BCD, but needed more in-

ormation from the past data (lower ε and ρ , higher t 0 ) to achieve

he best performance. 

Table 2 also shows the counts of the optimal parameter sets

hat each LOO session generated for each method. For methods
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Fig. 5. An example of online layer separation of an XA sequence using OR-PCA with the optimal parameter settings as listed in Table 1 . The subspace basis update method 

used here is block-coordinate descent (BCD). Rows 1–4 show the original frames, the breathing layer, the quasi-static layer and the vessel layer, respectively. Columns 1–6 

are 6 frames taken from the sequence in a chronological order and their layer separation outcomes. The frame ordinals from left to right are 1 st , 5 th , 10 th , 15 th , 20 th , 25 th . 

w  

t  

S  

d  

(  

h

 

q  

p  

p  

m  

t  

C  

n  

t  

m  

(  

t  

T  

p  

O  

a  

n  

c  

O

 

t  

F  

s  

f  

z  

e  

i  

s  

T  

R

 

F  

a  

t  

t  

g  

P  

t

ithout history parameters (BCD and CF), the optimal parame-

er set with the largest count were identical to the results in

ection 4.1 . Most of the methods with a history parameter had a

ominant optimal parameter set from LOO, except for the method

SW + CF) where the two most dominant optimal parameter sets

ad almost equal counts. 

Table 3 lists the average CNR values for the original XA se-

uences and the vessel layers obtained with each method. Com-

ared to the original XA, all methods achieved a substantial im-

rovement on the CNR values in the vessel layer. Compared to

ethod MS, MC + MS, RPCA (SW) and RPCA (SW) ∗, the methods

hat use OR-PCA (from BCD to SW + CF in Table 3 ) had higher

NR. The CNR values of the two types of methods (using or

ot using OR-PCA) were statistically significantly different with

he two-sided Wilcoxon signed-rank test (see Table 1 in Supple-

entary Materials). The methods that downweight the past data

from ED + BCD to SW + CF) were able to improve the vessel con-

rast over the methods without history parameters (BCD and CF).

he improvement was statistically significant (see Table 2 in Sup-

lementary Materials). Among all the methods that are based on

R-PCA, ED + CF, SLD + CF and SW + CF showed similar or better

verage local CNR than RPCA, although without statistical sig-
ificance. The performance of all OR-PCA based methods was

loser to the off-line benchmark RPCA than those not using

R-PCA. 

Table 3 also shows the average reconstruction error between

he original image and the three-layer sum image for each method.

or MS, MC + MS and the RPCA (SW) methods, the foreground (ves-

el layer) were obtained via subtraction of the background. there-

ore these methods, by definition, have a reconstruction error of

ero. The methods based on OR-PCA made minor reconstruction

rrors (less than 3% of the average pixel intensity of the original

mages). The history downweighting techniques reduced the recon-

truction errors of BCD and CF for about 17% and 26% respectively.

hese errors are about three times larger than the one made by

PCA. 

The comparison between different methods is illustrated in

ig. 7 , where the CNR values were normalized in the same way

s in Fig. 6 . Similarly, the methods that use OR-PCA outperformed

he other methods on both local and global CNR. The improvement

hat results from downweighting history was more substantial in

lobal CNR than local CNR. For the methods that are based on OR-

CA, those that use the closed-form solution achieved slightly bet-

er normalized CNR values than the ones with BCD. 
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Fig. 6. The influence of history parameters ε, ρ and the sliding-window size t 0 on local and global CNR. All values are normalized using RPCA method as the reference. In 

(a), (c) and (e), the local CNR for OR-PCA (BCD) and OR-PCA (CF) are very close that the two lines almost overlap. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 8 presents examples of results of five representative

prospective or online layer separation methods and original im-

ages on four XA sequences: MC + MS, RPCA (SW), OR-PCA (CF), OR-

PCA (SW + CF) and RPCA. All methods improved the visibility of

vessels in the image, but MC + MS generated strong artefacts near
he guiding catheters. RPCA (SW) shows slightly better results than

C + MS, but still presents some motion artefacts near the guiding

atheters. OR-PCA (CF) achieved good layer separation, while OR-

CA (SW + CF) was able to produce “cleaner” background (row 1

olumns 4 and 5, the left part of the images) and still maintained
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Fig. 7. The boxplot that compares various methods on their performance of layer separation. In these diagrams, the CNR values of the mentioned methods are normalized 

by dividing their CNR by the CNR obtained with the RPCA method. 

Fig. 8. Comparison of five different layer separation methods on four example XA sequences. One representative frame is selected from each sequence to visualize the 

results. Rows 1–4 show four sequences. Column 1 is original XA, columns 2–6 are the separated foreground (vessel layer) obtained from MC+MS, RPCA (SW), OR-PCA (CF), 

OR-PCA (SW+CF) and RPCA. 
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Table 2 

Counts of the optimal parameter sets obtained during 

the leave-one-out evaluation for each OR-PCA method. 

As 42 sequences are used, that yields 42 leave-one-out 

sessions and 42 optimal parameter sets in total. 

Method λ1, 2 r History Counts 

(1 / 
√ 

p ) Parameter 

BCD 2.3 14 39 

2.4 17 2 

3.3 19 1 

CF 2.1 5 31 

2.3 7 11 

ED + BCD 2.3 14 ε = 0 . 9 39 

2.4 17 ε = 0 . 9 2 

3.3 19 ε = 0 . 9 1 

ED + CF 2.1 5 ε = 0 . 6 31 

2.3 7 ε = 0 . 6 8 

2.3 7 ε = 0 . 3 3 

SLD + BCD 2.3 14 ρ = 42 39 

2.4 17 ρ = 18 2 

3.3 19 ρ = 9 1 

SLD + CF 2.1 5 ρ = 36 29 

2.3 7 ρ = 36 11 

2.1 5 ρ = 15 2 

SW + BCD 2.3 14 t 0 = 2 38 

2.4 17 t 0 = 2 2 

2.3 14 t 0 = 1 1 

3.3 19 t 0 = 2 1 

SW + CF 2.1 5 t 0 = 3 17 

2.1 5 t 0 = 5 14 

2.3 7 t 0 = 5 11 

Table 3 

The average local CNR, global CNR and reconstruction error E recon 

(mean value ± standard deviation) for the original XA and all meth- 

ods. 

Method Local CNR Global CNR E recon 

Original XA 0.991 ± 0.330 0.507 ± 0.305 

MS 1.811 ± 0.490 2.211 ± 0.648 0 

MC + MS 2.396 ± 0.635 3.210 ± 0.869 0 

RPCA (SW) 2.134 ± 0.511 2.278 ± 0.676 0 

RPCA (SW) ∗ 2.170 ± 0.578 1.881 ± 0.623 0 

(BCD) 3.010 ± 1.065 3.453 ± 1.223 0.026 ± 0.005 

(CF) 3.010 ± 1.088 3.509 ± 1.204 0.030 ± 0.007 

(ED + BCD) 3.209 ± 1.192 4.257 ± 1.316 0.021 ± 0.006 

(ED + CF) 3.226 ± 1.263 4.422 ± 1.466 0.023 ± 0.007 

(SLD + BCD) 3.169 ± 1.172 4.085 ± 1.282 0.022 ± 0.006 

(SLD + CF) 3.246 ± 1.224 4.500 ± 1.393 0.022 ± 0.006 

(SW + BCD) 3.170 ± 1.161 4.150 ± 1.295 0.022 ± 0.006 

(SW + CF) 3.281 ± 1.290 4.602 ± 1.465 0.022 ± 0.007 

RPCA 3.227 ± 1.301 5.176 ± 2.004 0.007 ± 0.002 

 

 

 

 

 

 

 

 

 

Table 4 

The average local and global CNR (mean value ±
standard deviation) for the synthetic XA data, the 

vessel layers separated from the synthetic data using 

OR-PCA (SW+CF), and the vessel-enhanced XA se- 

quences ( β = 1 ). The two-sided Wilcoxon sign-rank 

test indicates statistically significantly difference in 

local and global CNR between the synthetic data and 

the vessel-enhanced images ( p < 0.01). 

Image types Local CNR Global CNR 

Synthetic XA 0.592 ± 0.236 0.338 ± 0.245 

Vessel Layer 3.170 ± 1.290 4.048 ± 1.592 

Enhanced 0.875 ± 0.312 0.452 ± 0.285 
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the vessel information (columns 4 and 5). The vessel layer sepa-

rated using OR-PCA (SW + CF) had more similar appearances to the

ones produced by RPCA (columns 5 and 6) than other methods. 

4.4. Vessel enhancement in low-contrast XA 

The results of vessel-enhancement on synthetic low-contrast XA

and real pig XA data are shown in this section. 

4.4.1. Synthetic low-contrast XA 

Table 4 shows the average CNR values for vessel enhancement

in synthetic XA sequences. With enhancement factor β = 1 , the

vessel-enhanced XA showed better local and global CNR than the

synthetic XA with statistical significance. Compared to the origi-

nal XA in Table 3 , the CNR values of the vessel-enhanced XA was

slightly lower, but these CNR values could be improved with a

larger enhancement factor β . 
A few examples of vessel-enhancement on synthetic XA data

re shown in Fig. 9 . Compared to the original images (the first

ow), the synthetic XA (the second row) had poorer vessel contrast.

he proposed layer separation method (SW + CF) was still able to

xtracted the vessel layer (the third row), while maintaining a ma-

ority of the information, and enhance the vessel contrast (the last

ow) to the visually similar level of the original images. 

.4.2. Real XA of pigs 

We show the CNR values for vessel enhancement experiment

ith pig XA data in Table 5 . In the table, since the full-contrast

equence showed lower visual contrast (see Section 3.1.3 ), the four

equences were sorted by their local CNR values in an ascending

rder. With enhancement factor β = 2 , the vessel layers and the

nhanced sequences showed an improvement on local and global

NR. This improvement increased as the local CNR of the sequence

ecame higher. 

Similar observation could be found in Fig. 10 , where represen-

ative frames from each pig XA sequence are shown. For example,

he proposed method was able to increase the vessel contrast in

he image of 25% contrast to the similar level as in the image of

0% contrast (see Fig. 10 i and b). The vessel contrast in the en-

anced image of 50% contrast ( Fig. 10 j) had better contrast than

he image of full contrast ( Fig. 10 c) and 75% contrast ( Fig. 10 d). It

s also observed that, in Fig. 10 from left to right, the false posi-

ive enhancement of non-vessel structures (e.g. the dark spots in

he right part of the images) decreased as the visual contrast in-

reased. 

.5. Computation time 

The computation time of layer separation for each frame is

hown in Fig. 11 . In this figure, the box plots of per-frame pro-

essing time for each method that is based on OR-PCA is illus-

rated. The processing times of these methods ranged from 0.15 to

.60 s per frame. The methods that use a closed-form solution to

pdate L were approximately two times faster than the ones that

se block-coordinate descent. The methods which use ED and SLD

o treat past information were slightly faster than their counter-

arts that do not weight past data, while the methods with SW

eeded slightly longer time to process one frame than their corre-

ponding methods BCD and CF. The “outliers” shown as red marks

n Fig. 11 are from images of larger size. 

The average computation time per image size is shown in

able 6 . Generally, the table shows that images of larger size

eeded longer processing time per frame. On XA images of com-

on size in clinics (512 × 512, 600 × 600 and 776 × 776), it is

ossible to achieve a processing rate of 3–6 frames per second (fps)

ith the proposed methods on our hardware. 

Compared to MS and MC + MS, OR-PCA based methods showed

uch better layer separation performance (see Table 3 and Fig. 7 ),
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Fig. 9. Five examples of vessel enhancement on synthetic low-contrast XA images (Columns 1–5). 

Table 5 

The local and global CNR of the 4 XA sequences obtained from pigs, the separated vessel layer and their 

vessel-enhanced sequence ( β = 2 ). The 4 sequences are sorted by their local CNR values in an ascending 

order. 

Contrast Concentration 25% 50% 100% 75% 

Metric (CNR) local global local global local global local global 

Original 0.307 0.164 0.490 0.340 0.523 0.395 0.690 0.569 

Vessel Layer 2.546 0.682 5.156 0.830 5.175 2.759 6.835 5.473 

Enhanced 0.488 0.262 0.954 0.562 1.041 0.729 1.528 1.147 
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hile the processing time of the fastest one (ED + CF) is only about

0% slower than MC + MS. 

The processing time for RPCA (SW) is also shown in Table 6 .

n RPCA (SW), the foreground separation of a frame is delayed by

he processing of its previous data block, therefore, we computed

he average per frame processing time of all blocks in a sequence.

s  
ompared to RPCA (SW), the methods that use OR-PCA perform

aster with a factor up to 3. 

. Discussion and conclusion 

We have presented a fast automatic online method to robustly

eparate cardiac interventional X-ray angiograms into three image
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Fig. 10. Vessel enhancement on pig XA sequences with different level of contrast agent. From left to right, the contrast concentration used for the sequence are 25%, 50%, 

100% and 75%, respectively, while the local CNR increases. Row 1: the original pig XA sequences. Row 2: the separated vessel layer. Row 3: the vessel-enhanced images 

( β = 2 ). 
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layers: a breathing layer, a quasi-static layer and finally a vessel

layer that contains information of moving thin structures, such

as coronary arteries. The method relied on morphological closing

and online robust PCA and we investigated different possibilities

for downweighting information from previous frames for further

improving layer separation. The parameters of OR-PCA were opti-

mized on 42 clinical XA sequences. In addition, a pilot study was

performed on synthetic XA sequences and pig data to show the

potential of the proposed method for vessel enhancement in XA. 

The integration of OR-PCA algorithm into layer separation en-

ables online processing XA images from the beginning of the se-

quence. The mechanism behind this is that OR-PCA only needs

to be “fed” one frame each time, but is able to update the sub-

space basis of the low-rank component based on the new informa-

tion. This is an important difference from the method in Ma et al.
2015) which worked “off-line” and needed the complete sequence

s input. The proposed approach is also different from the method

n Volpi et al. (2015) , where the online implementation needed

everal frames to solve RPCA in a mini-batch manner, and hence,

esulting in a delay in processing for each following mini-batch. Al-

hough the layer separation results of our proposed method might

uffer from random initialization at the beginning, the algorithm

onverges fast and obtain reasonable layer separation after a few

rames (see an example in Fig. 5 ). 

In addition to the advantage of online processing, the methods

hat use OR-PCA show good performance on layer separation. It

ignificantly improves the vessel visibility of the original XA im-

ges with minor reconstruction errors: the background structures

ere removed and the vessel contrast was visually and quantita-

ively enhanced. Compared to those methods that model a total
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Fig. 11. The processing time that each method that uses OR-PCA needs for layer 

separation. The per frame processing time (second) of every single frame in the 

whole dataset is shown as box plots. (For interpretation of the references to color 

in the text, the reader is referred to the web version of this article.) 

Table 6 

The average processing time (seconds/frame) for each layer separation 

method on XA sequences of different frame size. The bold numbers indicate 

processing time that the fastest OR-PCA based method needs for a certain 

frame size. 

Method 512 × 512 600 × 600 776 × 776 1024 × 1024 

BCD 0.36 0.51 0.69 1.14 

CF 0.20 0.30 0.36 0.58 

ED + BCD 0.30 0.41 0.63 1.02 

ED + CF 0.16 0.21 0.34 0.57 

SLD + BCD 0.30 0.42 0.63 1.02 

SLD + CF 0.17 0.22 0.34 0.57 

SW + BCD 0.36 0.50 0.75 1.27 

SW + CF 0.22 0.31 0.46 0.77 

RPCA (SW) 0.37 0.53 0.85 1.50 

RPCA (SW) ∗ 0.46 0.68 1.10 1.97 

MS 0.02 0.03 0.05 0.11 

MC + MS 0.11 0.15 0.25 0.45 
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tatic background, e.g. MS and MC + MS, the approaches that are

ased on OR-PCA are superior because they are able to model a

ynamic scene, therefore can adapt to small dynamic changes in

he background. The method that separates layers by solving RPCA

ith a mini-batch of data suffers from motion artefacts that re-

ain around vessels and catheters. This might be because it uses

he frames in the previous block to infer the background for the

urrent block of images, which might fall behind the background

hange. Furthermore, it uses the same background for all images

n the block to compute their vessel layers, which ignores the pos-

ible small background change within the block. OR-PCA updates L

rame by frame to keep up the background change and has a “cus-

omized” background for each individual frame. 

It is also worth noticing the advantage of removing breathing

tructures prior to the separation of the other two layers with

R-PCA. If the original XA image is directly “fed” to the OR-PCA

ethod, the breathing structures should stay in the same layer
ith the static structures in order to obtain a reasonable vessel

ayer, because OR-PCA decomposes a source image into only two

omponents. Due to breathing motion, this background layer will

ontain more variation than a layer that only contains quasi-static

tructures, which might require a much higher r parameter of OR-

CA to allow reasonable convergence of the algorithm. However,

t is often inevitable to observe strong breathing motion artefacts

n the output vessel layer. Fig. 12 provides an example that illus-

rates the cases without removing breathing structures prior to the

R-PCA computation. In Fig. 12 c, the image still contains a large

mount of noise and a static dark band on the left. In Fig. 12 d,

R-PCA has a better convergence with a higher r , less noise and

o dark band is observed, but a stronger artefact of diaphragm re-

ains. 

The parameters of OR-PCA used in this work were optimized

ased on our image data, instead of being assigned the “rule of

humb” value 1 / 
√ 

p as in the works of Song et al. (2015) and Javed

t al. (2014) . The optimum of λ1, 2 for method BCD and CF are sim-

lar and the values are close to 1 / 
√ 

p . The optimal intrinsic rank

 for BCD and CF are different. A possible explanation is that CF

omputes the quasi-static subspace basis L in one step, whereas

CD updates L column-wisely and thus needs more variations to

chieve the same accuracy as CF. 

The performance of layer separation using OR-PCA can be im-

roved by downweighting the past frames. In this work, we have

roposed three different ways: exponential decay (ED) and supra-

inear decay (SLD) are methods to scale all past data, and the

liding-window approach (SW) only preserve the information of

he few most recent frames, which could be interpreted as “bi-

ary” scaling. The results on vessel visibility and reconstruction er-

or showed that all three ways improve the overall layer separation

y giving recent frames higher weight than earlier frames. This

uggest that not all past information is necessary for best infer-

ing the current status in the scenario of online learning. A possible

xplanation of this finding is that using the downweighting tech-

iques in the online learning algorithm promotes faster conver-

ence ( Mairal et al., 2010 ). Although the improvement might vary

etween sequences, depending on specific image content, most of

hem present an improvement with history parameters (see sup-

lementary material). 

The optimized history parameters show that only the most re-

ent 2–5 frames are needed to update the subspace basis L , which

eems too “few”. The reasons might be two-fold. First, since L is

he subspace basis of the quasi-static layer which does not contain

uch variation, it should not need information from a large num-

er of frames to update L . Second, for the case of BCD, note that in

q. (10), the update of L still partly relies on its previous version,

ot solely on A and B . This means that every version of L can in-

erit information from its previous version and thus is a compact

epresentation of all past information, but updating L needs only

he very recent frames. 

The combination of the subspace basis update methods and the

ast information downweighting techniques yields 8 different OR-

CA variants, while in practice one might choose one of them for

 layer separation task. In terms of the performance on improving

essel visibility, (SW + CF) might be the best choice, as it gives the

ighest CNR value. On the other hand, if speed is of great concern,

ED + CF) is a good option, since it runs the fastest among the eight

nd the performance on CNR is not much worse than (SW + CF). In

ddition, the implementation of (ED + CF) is easier than (SW + CF),

n that it does not explicitly store a few past values of A and B , but

oes the scaling implicitly. 

In terms of computational efficiency, the methods that use OR-

CA run fast. For 512 × 512 frames, OR-PCA with CF was able

o achieve a 5–6 fps processing rate on standard PC; for 1024 ×
024 frames, the proposed methods could reach at highest about
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Fig. 12. An example that compares the cases without removing breathing layer before the OR-PCA operation to the one resulted from the proposed method: (a) original 

image; (b) the vessel layer obtained with OR-PCA (BCD) using the proposed method and parameters; (c) the vessel layer obtained without the separation of breathing layer 

using OR-PCA (BCD) with the same parameters as the case in (b); (d) the vessel layer obtained without removing breathing structures using a higher r value ( r = 50 ) for 

OR-PCA (BCD). Strong artefacts due to breathing motion can be observed in (c) and (d). 
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2 fps. This is faster than RPCA (SW) based approaches either from

the result of our experiment (see Table 6 ) or the literature, e.g.

Volpi et al. (2015) who reported about 1 fps for frame size in the

range of 824 × 1024 to 1024 × 1024, and Brosig et al. (2015) who

achieved 3 fps for 512 × 512 images. According to Feng et al.

(2013) , the computation complexity for batch RPCA is O ( np 2 ) and

for OR-PCA is O ( pr 2 ). Since p � r and normally also p � r 2 , OR-

PCA runs much faster than RPCA. We also notice that OR-PCA with

CF ran faster than BCD, this is because the computation complex-

ity of both methods is O ( pr 2 ), and in our experiments, the r for CF

was smaller than the r for BCD. The methods with history down-

weighting schemes are faster than BCD and CF. This might be due

to the faster convergence of OR-PCA when downweighting the past

information. Finally, it is worth noticing that the timing reported in

this paper were based on a MATLAB implementation that ran on a

single CPU core. A parallelized version of the method may achieve

real-time processing rate (about 15 fps) for clinical applications. 

One of the potential direct clinical applications of the proposed

method is to enhance vessels in X-ray images with low vessel

contrast, which suffer from poor diagnostic quality. X-ray contrast

agent used for angiography may have side effects including al-

lergic reaction which can be life-threatening, and nephrotoxicity

(contrast-induced nephropathy, CIN) which can result in chronic

renal failure with all its sequelae ( Andreucci et al., 2014; Tepel

et al., 2006 ). Thus, it is clinically relevant to limit the use of X-

ray contrast agent during interventions. The method we proposed

in this paper provides a possibility to use X-ray contrast of lower

concentrations. In the experiments, we have evaluated whether it

is possible to achieve better vessel visibility on low-contrast im-

ages by enhancing vessels using the methods based on OR-PCA.

We have used synthetic 50%-contrast XA images and 4 real pig

XA sequences with different contrast concentrations for the test.

The results showed a good improvement on the vessel visibility on

both kinds of images, implying a potential application for coronary

interventions. 

The proposed layer separation methods are based on some as-

sumptions. First, the morphological closing operation with a cir-

cular structuring element of 8.5 mm in diameter worked well for

small vessels, such as coronary arteries. However, for other kinds

of interventions that operate on large vessels, such as aorta or

pulmonary arteries, the structuring element of the proposed size

is not large enough. In those cases, one might consider using a

larger structuring element for morphological closing and adjust-

ing the parameters of OR-PCA for a reasonable layer separation.

Another important assumption underlying the methods that use

OR-PCA is that there is dynamic change in the foreground, and

it detects the dynamic change. This assumption holds true most

f

f the time because coronary arteries always move together with

eartbeat. However, in the case that the guiding catheter tip seg-

ent moves together with heartbeat, the proposed layer separa-

ion method cannot separate this moving catheter segment from

essels. The method also requires a certain amount of contrast

gent, i.e. the signal of the vessels should not be too weak. As

he methods based on OR-PCA assumes a sparse foreground, when

he contrast of vessel is not strong enough, the proposed methods

ight enhance noise or detect other non-vessel structures in the

oreground, as can be seen in Fig. 10 . 

In the future, it is of great interest to investigate the potential of

he proposed method. One important direction would be to eval-

ate the clinical potential, e.g. how the proposed layer separation

ethod would work under different contrast concentration levels

n a larger dataset. One could also think of improving the visibil-

ty of instruments, such as catheters or guidewires for other car-

iac applications. From a methodological point of view, it might

e interesting to unify the steps in the proposed method into

ne optimization problem, for example, incorporating the heuris-

ic post-processing into the OR-PCA algorithm with an additional

on-positive constraint on the sparse component. 

In conclusion, we have presented a fast automatic online layer

eparation method for robust vessel enhancement in X-ray an-

iograms. The method separated an XA frame into three layers:

 breathing layer, a quasi-static layer and a vessel layer. We pro-

osed three ways to improve the layer separation outcome by

ownweighting the past frames. The proposed method significantly

mproved the vessel visibility and outperformed other related

rospective or online layer separation approaches. The method

oes not need much computation time, making it potentially appli-

able for clinical practice without the necessity of using advanced

ardware, opening the way for relevant clinical applications, such

s improving the vessel visibility under conditions of low contrast

oncentrations, so as to allow a reduced amount of contrast agent

sage to prevent contrast-induced side effects. 
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