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Abstract

A lot of research is been being done on Visible Light Communication (VLC),
which has shown to be of interest for many applications, such as localization.
Since localization based on VLC requires active modulation of light sources,
this limits the amount of light sources that can be used for localization.
Furthermore, in some situations there might not even be a controllable light
source present (for example outdoors). To extend the use of light-based
localization schemes, this thesis looks into a way to achieve the same result as
current VLC localization methods in a passive manner, i.e. without control
of the light sources.

Previous work has been done on passive ambient light-based localization
[38]: objects are equipped with unique barcodes, that reflect ambient light
in a distinct manner. The reflected light is received by photosensors, from
which their ID is obtained. However, this work has focused on identifying
large-sized objects in one dimension. Using the same principle for localiza-
tion of small-sized objects, and in two dimensions, are open challenges that
this thesis addresses.

The work presented here forms a proof-of-concept of a passive light-based
localization system for two-dimensional, real-time tracking of small-sized ob-
jects. In order to achieve this, a special enclosure has been designed, giving
simple photosensors the ability to distinguish small-sized objects without
compromising their FOV. With this enclosure, a single photosensor can de-
tect barcodes down to 7 cm in size in the test set-up, while distinguishing
up to three different IDs. A particle filter has been implemented to combine
detections from different photosensors into a single estimate of an object’s
location. The localization system is designed around the robots developed
by [33]. By moving these robots at a speed of 15.4 cm/s in a straight line
through the test set-up, a localization error of 4.8 cm is obtained. The dis-
tance between the robots and the sensor equals 20 cm.
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Chapter 1

Introduction

1.1 Motivation

GPS is currently seen as the standard localization method for road trans-
port, aviation and smart phones. Under an open sky, a device with GPS
compatibility can typically find its location within a 5 m radius [37]. When
measuring the location near buildings, GPS signals can suffer from unwanted
reflections before reaching the user. This especially occurs in dense urban
areas, and it drastically degrades the accuracy of the location estimate.
In indoor or underground environments, the signals can even be blocked
entirely, rendering GPS useless. Besides this accuracy problem, it has a
relatively high cost and energy consumption. Moreover, it is based on radio
waves, while the radio spectrum is becoming increasingly crowded.

Alternatives are for example based on Wi-Fi, currently with a 2 m accur-
acy [7]. This accuracy can be brought down to submeter level if combined
with other techniques, at the cost of high environment dependency and de-
ployment costs. Other examples use Ultra Wide Band (UWB), with an
accuracy of 25 cm [34]. These methods have the same drawbacks as GPS
regarding cost, energy-consumption and radio-based nature. In short, new
localization methods need to be found for applications requiring accurate,
energy-efficient, yet cheap localization, that can operate both outdoors and
indoors.

We believe that visible light offers a solution. The combination of indoor
lighting infrastructure, street lanterns and the sun can often provide almost
continuous illumination. Using these infrastructures for localization means
a simpler and cheaper implementation process. Many studies have already
been done to exploit visible light to localize objects. These methods often
rely on modulation of a light source, which is commonly known as Visible
Light Communication (VLC) [30], [27]. The general concept of this is shown
in Figure 1.1a. An LED is toggled on and off in a specific pattern, with a
frequency high enough to make the flickering invisible to the human eye.
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(a) (b)

Figure 1.1: Two examples of how visible light can be used to localize objects,
in an active (left) and passive (right) manner. The black and dotted boxes
indicate photosensors and a reflective tag, respectively.

Objects with a photosensor and processing power can use such light sources
as anchor points to compute their relative location. Since light sources are
being controlled, this is called active visible light localization. This method
is usually used for self-localization of objects; if some central entity desires
to know where such an object is, an uplink communication path from the
object is required.

In some situations there is no light source that can be toggled, e.g. if the
sun is the only light source present. In such situations, a passive localization
method is needed, an example of which is shown in Figure 1.1b. Ambient
light shines on an object covered with a tag that reflects light in a distinct
manner. When this object moves under a photosensor this unique reflection
pattern is observed, which can be used as information on the identity and
location of the object. Instead of a modulating light source, it is now the
object that encodes data. A central server computes the location of the
object, and a downlink channel would be needed to let the object know
where it is if desired. The concept described here has already been studied
by [38], but only for one-dimensional tracking of large-sized objects. Earlier
studies on active visible light indoor positioning such as [41] and [14] already
achieved an accuracy of less than 10 cm. An open challenge is to achieve
this accuracy in a passive manner, especially in two-dimensions, for small
objects.

One application that could benefit from having a passive, ambient-light
based tracking mechanism, is a robot swarm: a group of relatively simple
robots interacting autonomously, showing a desired collective behaviour [32].
They are currently a hot topic in research [9], [19], [17], and will become
increasingly popular in our daily lives. An often crucial step for their task is
localization. Since swarm robots often have limited resources, such as energy
and computational power, localization methods should be straightforward
and energy-efficient. The robots are usually small in size, so centimeter level
accuracy is desired. At the Embedded Software group of Delft University
of Technology, a small solar-powered wheeled robot has been developed by
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Figure 1.2: The basic concept of this thesis. Two robots and two photo-
sensors are shown.

Koen Schaper for his MSc thesis. The focus of his work was on making
the robots transiently powered, harvesting energy from light [33]. Several
instances of these robots could be used to form a swarm, which due to the
solar-powering, could be self-sustainable. A missing link in making these
robots perform tasks in a self-sustainable manner is the localization, which
has not been implemented yet. This open problem can be solved while
simultaneously tackling the open challenge of passive localization: ambient
light reflections can be used for energy-efficient, inexpensive localization of
the small robots in a two-dimensional area. Making such a mechanism is
what this thesis aims to achieve.

1.2 Research goal

Exploit ambient visible light to localize and identify small objects in a two-
dimensional area, and have a server track their paths real-time, without
control of the light source and with only minimal infrastructure, i.e. using
simple photosensors.

Figure 1.2 shows the basic concept of this localization system. Several
(small) objects move around on a surface, illuminated by some arbitrary
light source. The objects considered here are the robots from [33]. The aim
is to add simple sensors somewhere in the environment and supply these
robots with a unique, reflective tag, and be able to track the trajectory of
these objects. Ambient light is reflected from the tags, which modulate this
light to encode the identification (ID) of the object. Whenever the reflected
light is received by a photosensor, this detection can be combined with that
from several sensors to localize the object. The sensors, the tags and the
software combining the measurements form the three research parts of this
thesis. The desired accuracy of this uplink localization system is in the order
of a few centimetres.
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1.3 Contributions

To the best of our knowledge no system has been developed before to provide
two-dimensional localization based on passive exploitation of ambient light.
The main contributions of this project are:

1. Design of a new mechanical enclosure to give simple photosensors the
ability to detect small-sized objects while maintaining the outer bound
of their field of view.

2. Analysis of different encoding schemes to facilitate the embedding of
distinct reflective patterns on the external surface of objects. These
unique reflective patterns provide identification information.

3. Implementation of a localization algorithm that takes as input the
reflective patterns detected by photosensors and provides as output
the ID and location of the robot for linear movements.

1.4 Thesis outline

The next chapter will provide background information and discuss relevant
papers. Chapter 3 describes the test set-up and main challenges of this
project. Chapter 4, 5 and 6 discuss each of the three main components of
the research: the sensor, the tag and the algorithm, respectively. Chapter 7
presents the conclusion and topics for future work.
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Chapter 2

Related work

This chapter covers required background information (Section 2.1) and dis-
cusses work that has been published in related areas: visible light localization
methods (Section 2.2) and localization of robot swarms (Section 2.3).

2.1 Background

For this thesis it is important to know how light reflects from surfaces. There
are several ways in which reflection can occur, and the difference between
them is important for proper design of a reflective tag.

2.1.1 Light reflection

There are three ways in which light can be reflected from a surface. Each
of these reflection types is discussed below, and shown in Figure 2.1.

• Specular reflection: a light ray hitting a surface with an angle θ
compared to the surface normal, is reflected with the same angle on
the opposite side of the surface normal. This reflection occurs on very
smooth surfaces, such as mirrors or still water.

• Retro-reflection: a light ray hitting a surface is reflected back along
the same direction where it came from. Retro-reflection is actually
a form of specular reflection in which several specular surfaces are
combined in such a manner that the net effect of the surfaces is retro-
reflection. Such surfaces are found in the reflective tags of safety vests
and bicycle lights for example.

• Diffuse reflection: a light ray hitting a surface is reflected into of
range of directions, due to the unevenness of the surface. Examples of
such surfaces are paper, cardboard and asphalt.

5



Each reflection type each has its own use in different applications. In
Figure 2.1a, an observer aligned with the light blue ray will detect a high
signal. Light is completely reflected to the observer, ensuring all the energy is
detected. However, if this observer moves to a different location, no light will
be observed. The area in which an observer can be located to detect a given
signal is small. A retro-reflective surface is useful when the light source and
the observer are placed at the same angle. In visible light communications
this is useful if an object contains both a transmitter (LED light) and a
receiver (photosensor). With a diffuse surface as in Figure 2.1c, a reflected
light signal can be observed from various angles, mitigating the need to
accurately align the surface and the observer. However, the received signal
strength is significantly less, since the light energy is spread over various
angles.

(a) Specular reflection (b) Retro-reflection (c) Diffuse reflection

Figure 2.1: Different types of reflection.

2.2 Light-based localization techniques

Various papers have already proposed light-based localization techniques,
which can broadly be split into two categories. One category is active loc-
alization, which in this thesis is considered to be all techniques that require
an active light source such as an LED or a transmitter sending a modu-
lated light beacon. The second category is passive localization, which are
techniques where light sources are not controlled; but the rest of the system
(e.g. the object to be tracked) can have active electronic components. As
stated before, this thesis aims to achieve passive localization with ambient
light. The following sections give an overview of current research in light-
based localization techniques, to see how the system proposed in this thesis
relates to the state of the art.

2.2.1 Active localization

Visible light based localization often relies on VLC. Philips Lighting ob-
tained an accuracy of 30 cm for indoor positioning in retail stores with VLC
[23]. These stores are illuminated with LED lights sending out modulated
light signals. Customers in these stores can capture the light signals with
their smartphones. Using a special app on their smartphones, the received
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data can help customers find their way in the store or get location-based
promotions and notifications. Methods such as [41] and [14] achieved a
localization accuracy below 10 cm in VLC test set-ups.

An example of an active light localization method used for robots similar
as the ones used in this thesis is [4]. This work presents a way of powering
microbots with solar cells, and simultaneously exploit these solar cells to act
as an integrated GPS. The microbots are part of a project called Alice, and
are developed by [6]. The localization done by [4] has a projector as active
light source, which projects a series of images onto the surface on which
these microbots are situated. The pattern received at a particular location
in this area is unique to this spot, so the pattern that the robots observe
indicates their position and orientation within the area.

The Zooids [22] have a similar example of light-based localization for
swarm robots. Zooids is an open-source and open-hardware swarm robot
interface for autonomous table-top robots, that can interact with humans.
The wheeled robots are 2.6 cm in diameter, and are currently localized using
a large overhead projector that displays a sequence of gray-coded patterns
onto the surface on which the Zooids are located. The Zooids detect these
patterns using photodiodes and use these patterns to compute their location
and orientation. For both [4] and [22] the locations that the robots compute
are sent to a radio base station by RF signals.

The system proposed in this thesis would provide a projector-less alternat-
ive for both robot platforms, if combined with a downlink channel (a channel
from the central server to the robots).

2.2.2 Passive localization

An example of passive light-based localization is LocaLight [21], which is a
battery-free system for uplink indoor localization. By having light bulbs at
particular locations on the ceiling, and RFID sensor tags with photodiodes
on the floor, the shadow of objects is used to determine the position of the
object. The authors have obtained an accuracy of 50 cm. It removes the
requirement of controlling a light source, but the location of both the light
sources and sensor tags must be known.

Another approach is to let users in an indoor environment measure the
spectrum of the light they receive, which is then assumed to be unique
for different positions throughout the indoor environment, as done by [25].
Comparing the measured color spectrum with a predetermined database
indicates where the user is mostly likely situated. However, this is not robust
to changes in the lighting infrastructure, and the time of day at which the
positioning is performed. If something in the environment changes, a new
database is required.

The paper that is the most relevant to this thesis, and where the work
presented here builds upon, is [38]. It presents a system for passive com-
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Figure 2.2: The concept of a passive light-based system for identifying an
object, figure taken from [38].

munication in illuminated areas. The concept is shown in Figure 2.2. Light
from either the sun or an existing lighting infrastructure is reflected from
unique reflecting surfaces that can be placed on mobile nodes. In this work,
cars were used as mobile nodes and barcodes as reflective surfaces. The re-
flective surfaces encode the data in a passive manner. When such an object
moves, a distinct pattern of reflected light is sensed by a simple photodiode.
This unique pattern is decoded into the received data. The system is used
to identify objects, while they pass through the sensor’s field of view (FOV).
As far as the author knows, no research has been done using such a passive
method for two dimensions or for smaller scale objects, where the encoding
of reflective surfaces is less stable. This thesis aims to fill this gap.

2.3 Tracking robot swarms

Now that the current state of the art regarding (passive) light-based localiz-
ation has been discussed, it is important to look how these localization tech-
niques fit into robot swarm localization. There is no absolute standard when
it comes to (indoor) localization of small-sized robots. The most extensively
studied type of localization for robot swarms is downlink: self-localization.
This can roughly be divided into two parts: sensing and computing. It
gathers data from its environment or from its own behaviour (odometry),
and subsequently computes its location based on whatever has been sensed
and what was known beforehand (such as an initial location or a map of the
environment).

2.3.1 Sensing

Sensing mechanisms used for robot swarm localization are usually based
on GPS. Common alternative methods are based on vision [2], [8], [35],
radio signals [12], [31] or inertial sensors (gyroscope and accelerometer data).
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Other common techniques use the magnetic field, or ranging with ultrasound
[5] or lasers [16]. Besides the localization methods for the Zooids and the
Alice robot mentioned in the previous section, not many light-based sensing
methods have been found for robot swarms as far as the author knows (not
including the use of expensive and energy-consuming cameras).

2.3.2 Computing

After sensing has been done, the robot computes its location. This can
either be based on a known map, or it has to determine the map from its
measurements. If the map is unknown, a common algorithm to be used is
Simultaneous Localization and Mapping (SLAM) [11]. By visually scanning
the environment a map can be made of the surroundings of the robot, while
localizing itself in it.

If a map is known, the computation of the location is often based on
the robot’s distance to anchor nodes: a technique known as trilateration.
Another technique is fingerprinting, where a variable (such as the Received
Signal Strength Indicator (RSSI) of Wi-Fi access points) has been measured
beforehand at various locations in a known environment and stored in a
database. When a robot performs a measurement of this variable, the given
value can be compared to the values in the database, indicating what the
most likely location is for the robot [26]. A different approach is dead reck-
oning, where a robot uses its own movement and a known initial position
to compute its new position. Software techniques such as particle filters
or Kalman filters can be used to enhance the location estimates described
above.

The system in this thesis will estimate the location of objects on a central
server. The nodes themselves are not aware of their location; the commu-
nication from this server to the nodes is left for future work.
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Chapter 3

Methods

This chapter covers the test set-up (Section 3.1), the system requirements
(Section 3.2) and the main challenges for each component of this thesis
(Section 3.3).

3.1 Test set-up

As described, the system consists of a light source, simple photosensors, and
reflective tags that will be placed on objects. The basic set-up for which
the tracking system is designed is shown in Figure 3.1. The light source
from the concept shown in Figure 1.2 is in this case a 60×60 cm LED light
panel to have a more controlled environment. This results in a relatively
uniform and constant light source, for easier testing of the system. The final
system should of course also work with other, non-constant light sources.
The square light panel is placed at a height of 20 cm above a table, facing
down towards the table surface. A grid of photosensors is placed on the
illuminating side of the LED panel, which is indicated by the grey dots in
Figure 3.1.

Figure 3.1: The basic set-up of this project: a light source, several objects
and a grid of photosensors (depicted by the grey circles) connected to a PC.

11



(a) (b)

Figure 3.2: The set-up as used in the laboratory, and the robot developed
by [33].

The robots are equipped with a tag, and move on the table surface. They
are depicted by the blue boxes in Figure 3.1. The table surface is covered
with black paper, to obtain a higher contrast with an object.

Each photosensor is connected to an Arduino Nano, with an ATmega328
microcontroller. The microcontroller is connected to a PC, and sends the
voltages measured by each sensor to the PC. Using Python software on the
PC, these voltages are converted to a path estimate of objects located under
the LED panel. The real-life set-up is shown in Figure 3.2a.

3.1.1 Robot

The localization system in this thesis is designed around the transiently-
powered battery-free robot designed by [33], which is shown in Figure 3.2b.
It is 3.5 by 4 cm in size, which imposes the requirement on the tracking
system that it should be able to detect objects with sizes down to 3 to
4 cm. Energy is harvested from light using a solar cell, and this energy
is temporarily stored on a 22 mF/4.5 V supercapacitor. Since the available
light is not always sufficient, the energy from the supercapacitor is not always
enough for continuous locomotion of the robot. Therefore, the robot is made
to operate intermittently, having as little error in the final trajectory as
possible. For this project, the robot is used with a battery, to avoid waiting
time during experiments.

3.1.2 Light source

The LED panel is bought from [1] and is an SRPL 60×60 cm 40 W square
LED panel with a Sharplumi LED driver, with an illuminating area of
55×55 cm. The spectrum of the emitted light has a strong, narrow peak
around 450 nm and a less strong, but broader distribution around 550 nm.

Although the light intensity from the LED panel seems to be uniform
throughout the square area, the intensity is expected to be the highest in the
center. This should be quantified, since the light intensity can influence the
tests. A scheme has been devised where an SFH203P Osram photodiode is
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(a) (b)

Figure 3.3: The left image shows how the measurements were taken: the
diode moves to different locations and measures the light intensity at each
point. The right image shows the location under the panel versus the amount
of light measured from that location. The detected light intensity is 1.74×
stronger in the center compared to the edges.

placed on the LED panel, able to shift in two directions across the panel. The
diode is moved across every cm2 under the panel, while the light intensity
is measured for each location. This set-up is shown in Figure 3.3a for one
direction. The field of view of the photodiode (PD) is limited by a cap,
due to which light directly from the LED panel to the PD is blocked. The
measured light is the reflected light from the table, without any material
on it. The results are shown in Figure 3.3b. The intensity measured in the
center is higher than the intensity at the edges, by a factor of 1.74. This
plot explains why results differ for different locations under the panel later
on (Chapter 4).

3.2 System requirements

The requirements of the localization system are as follows:

1. The system should track small size (3×3 cm) objects with centimeter
level accuracy.

2. Only ambient light should be used for localization, without control
of the light source(s). The user cannot control any parameter of the
light, such as the intensity or the direction.

3. The system should be energy-efficient and simple, due to the limited
energy and computational resources of the robot.

As future work, one could make the tag active, using for example an LC
shutter. This is a glass-like material that can switch between opaque and
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transparent, based on a voltage that is applied to this material. The addition
of such a shutter to the tag would enable an object to autonomously change
its ID if desired.

3.3 Challenges

The design of each of the three main components (sensor, tag and algorithm)
of the set-up has its own challenge, which is discussed in this section.

3.3.1 The sensor

As discussed in Chapter 2, the system from [38] localizes objects by placing
barcode-like reflective surfaces on objects, and detecting patterns resulting
from these surfaces. The two open challenges in using such a system for this
project are to detect small-sized object, and to localize in two dimensions.

Challenge 1: small-sized objects

The reflective surface from [38] is a barcode with a 10 cm symbol width.
Several symbols are needed to distinguish a significant amount of objects,
resulting in almost meter-sized barcodes. Since the goal of this thesis is to
localize small-sized objects, such barcodes would not be feasible. Decreasing
the size of the barcode and keeping the rest of the system as is, makes the
barcode fit on the object, but also results in inter-symbol interference (ISI).

This trade-off is shown in Figure 3.4. Photodiodes only measure one value
for all light received within their FOV, so if the full barcode is in this FOV
only a single value will be measured. This is shown on the left. There will
be no way of distinguishing the individual bits of the barcode. In Figure 3.4
on the right, the FOV is decreased to match the size of a single barcode bit.
The barcode can be detected while it crosses the FOV of the sensor, but the
coverage of this sensor is severely compromised. A simple photodiode will
only be able to either cover a significant area, or distinguish the individual
constituents of the barcode.

As stated in Section 3.1.1, the barcode size should not be much larger than
3 cm. To distinguish a pattern within a 3 cm sized barcode, the field of view
(FOV) should be less than the smallest part of the barcode that should be
distinguishable. This thesis proposes a method where both properties can
be achieved, while still only using a simple sensor.

Challenge 2: two-dimensional localization

The second challenge is based on the fact that the system of [38] is able
to localize objects in one dimension, where the object to be localized has a
fixed path and will always cross the sensor’s FOV. The aim of this thesis is
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Figure 3.4: A sensor with large coverage, resulting in ISI (left) and a sensor
with smaller coverage, without ISI (right).

(a) (b)

Figure 3.5: The blue circles indicate the area in which a photosensor can
detect an object (its field of view). An object moves through a path indicated
by the blue line. On the left, a cost- and energy efficient system that often
misses the object. On the right, an expensive system where the object is
(almost) continuously tracked.

to expand this to tracking in two dimensions, where an object has a variable
path and might not always be in the FOV of the sensor.

One way of doing this, is to place many sensors to increase the coverage
and thereby increase the probability that the object crosses the sensor, as
shown in Figure 3.5. The black dots in these images indicate the location of
photosensors, and a narrow FOV is assumed for these sensors to overcome
the ISI problem. The left image shows four of these photosensors. An
object moving in a path as given by the red arrow will rarely cross FOV of
a photodiode, and its location will therefore often be uncertain.

On the right image, there is an increased chance of an object being detec-
ted by a sensor. This increases the accuracy of the localization. However,
the larger number of sensors is not energy- nor cost-efficient Moreover, in
many situations it is not possible to use more than a certain number of
sensors. We could use fewer sensors and compensate for the limited cov-
erage by having software-based estimation methods of the location, such
as particle filters or Kalman filters. Therefore, this results in a trade-off
between the number of sensors and the computational complexity.
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These two challenges form the core of the thesis, and the solutions will be
discussed thoroughly in the following chapters.

3.3.2 The tag

The second part of the system is the identification part: the tag. Encoding
and ID via light reflections on such a tag can be done in multiple ways. The
work discussed in the previous section assumes a black and white barcode
to identify an object, as was done by [38]. Such a barcode is an example
of modulating the intensity of the light. Besides the intensity, other light
properties can be exploited too for this purpose, such as the polarization or
the color (frequency). A tag can be encoded via differently colored blocks,
specific combinations of polarization sheets or different types of shapes that
reflect light in different directions.

For this project, polarization, color and intensity were considered as meth-
ods of identification. The possibilities of the identification should be matched
with the requirements of the system. Besides this method, it is necessary to
think of an encoding scheme, how many objects can be identified, and how
to convert a detected light pattern to an object ID. The chosen method here
is intensity (Chapter 5).

3.3.3 Algorithm for path estimation

Section 3.3.1 discussed the trade-off between the number of sensors and
the computational complexity. Since the system will not be able to have
continuous coverage of the objects, the sensors only give sparse information.
When two subsequent measurements are done at different sensors, a filter
is needed to derive what path the object has taken in the mean time, in a
real-time fashion. The trajectory of the robots can be unpredictable and
is most likely non-linear. Several objects need to be tracked at once, and
multiple properties of these objects need to be tracked (position, orientation
and velocity). Filters such as a Kalman filter, or the variations Unscented
or Extended Kalman filter, do not perform optimally for such a situation
[20]. Particle filters are the most suitable for multivariate (i.e. tracking
multiple quantities), multimodal (i.e. possibly tracking multiple objects)
and non-linear systems, as is the case in the set-up of this project [18].

This filter is discussed more in-depth in Chapter 6. The resulting al-
gorithm recognizes the tags from the voltages measured by the sensor, and
displays the trajectory of the objects that are being tracked.
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Chapter 4

The sensor

This chapter proposes a solution to overcome the FOV versus coverage trade-
off (Section 4.1), for which a model has been designed (Section 4.2). The
chapter concludes with a description of the final photosensor chosen for the
tracking system (Section 4.4).

4.1 Field of view versus coverage

The proposed solution in this project to achieve a large coverage area for a
photosensor, while having the ability to observe small-sized objects without
intersymbol interference, is to not use the full FOV of a sensor as in Figure
4.1a, but to partially block out the FOV as in Figure 4.1c. Instead of a cirle,
the FOV is a thin ring. If this ring is made thin enough, a single point on
this ring is narrow enough to distinguish small elements of the tag. When
a unique tag moves in or out of this ring, smaller objects can be observed
without intersymbol interference.

(a) (b) (c)

Figure 4.1: The figures show a cut-through depiction of delimited sensors,
and their resulting FOV.

In contrast to a strongly focused FOV covering a small area, there is not
only a single point, but a collection of points where this can be observed. The
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Figure 4.2: A cut-through of an aperture blocking the photosensor, and its
resulting FOV. The two diagonal lines depict the fraction of light that is
reflected from the table surface onto the photosensor. Only the light rays
on the left side of this two-dimensional figure are shown for simplicity.

resulting FOV has the same outer boundary as in Figure 4.1a, but a much
smaller tag element can be distinguished. As a result, the coverage can still
be significant, while small sized tag elements can be observed throughout
the covered area. Several of these rings could be combined or overlapped to
track nodes within a larger area. By combining measurements from different
sensors, a cheap and efficient way can be found to estimate the location of
the object.

4.2 Aperture model

Both the radius and the width of the ring FOV are determined by the
dimensions of the obstruction that is placed in front of the photosensor. It
is useful to make a model of the effect of a particular obstruction size on
the FOV. For this purpose, we use the concept of a circular aperture as as
shown in Figure 4.2. We use a TEMD5510FX01 Vishay photodiode. The
model will be used to compute optimal dimensions of an aperture to achieve
the desired FOV ring.

The photosensor is placed facing downwards. A hollow cylinder determ-
ines the outer boundary of the FOV. The length and radius of this cylinder
are from now on referred to as the aperture length la and aperture outer
radius roa. The obstruction is placed below the photosensor, at a distance

18



Value Advantages Disadvantages

la Smaller object size More intrusive sensor

roa Larger coverage Signal loss due to angular sensitivity
Smaller object size More intrusive sensor

wf Easier fabrication Larger object size
Higher received signal

Table 4.1: (Dis)advantages of increasing different parameters of the aperture
model.

equal to la. The radius of this obstruction will be called the inner aperture
radius ria. Photosensors are usually less sensitive to light arriving from lar-
ger angles, meaning that this radius should not be too wide. The height of
the sensor above the table/ground surface is fixed.

From the aperture parameters, both the FOV radius rf and FOV width
wf can be computed. From Equations 4.1 and 4.2 the inner and outer FOV
radii are obtained, whose difference equals wf . The formulae are discussed
in more detail in Appendix A.

rif =
ria −

wp

2

la − tp − ta
· (h− tp) +

wp
2
. (4.1)

rof =
roa +

wp

2

la − tp
· (h− tp) −

wp
2
. (4.2)

With this model, one can optimize the aperture to result in a particular
FOV, given a few constraints. Table 4.2 provides an overview of all paramet-
ers and constraints within the model, given the test set-up. The aperture
slit, which is the difference between the outer and inner radii of the aperture,
roa − ria, is denoted by wa. Table 4.1 shows the influence of an increase in
different parameters of the model, as can be derived from Equations 4.1 and
4.2. A smaller FOV width means that a smaller object can be detected by
the photosensor. A larger FOV radius means a larger area is covered by the
sensor.

With this model, the aperture dimensions for a desired FOV radius and
width are determined. Given the size of the test-set-up, the aim for the FOV
radius is 15 cm. The FOV width is aimed at below 3 cm, which means that
the smallest distuinguishable element of a reflective surface is also less than
3 cm. This ensures that a reflective tag of a few centimetres is achieved. The
following sections describe what aperture dimensions are needed to obtain
these FOV parameters.
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4.2.1 FOV ring radius

Figure 4.3 shows what rof is for different pairs of la and roa, computed with
Equation 4.2. All other parameters in the equation are fixed. The values in
Figure 4.3 are plotted within the constraints given in Table 4.2. The lines
in the figure indicate the set of (la, r

o
a) pairs that result in a FOV radius

as indicated by the labels. Since a FOV radius of 15 cm would be desirable
for the test set-up, all la and roa combinations on or near the 15 cm line in
Figure 4.3 form a valid set of aperture parameters.

Figure 4.3: The lines in this figure show all combinations of la and roa that
result in a FOV radius as described by the label of the contour.

4.2.2 FOV ring width

From the set of (la,r
o
a) values that result in a FOV radius of 15 cm as shown

in the previous section, we want those values that also result in the desired
FOV width. By subtracting Equations 4.1 and 4.2, wf is computed. This
equation requires a value for ria, which is assumed to be 1 mm, which is
the smallest possible size given the fabrication method that will eventually
be used for the aperture (3D printing). Figure 4.4 shows what wf is for
different pairs of la and roa. The values of la and roa are again bounded by
the constraints given in Table 4.2.

4.2.3 Chosen aperture parameters

The (la,r
o
a) combination that satisfies both rof = 15 cm and wf = 3 cm is

found by combining the lines in Figures 4.3 and 4.4, which is shown in
Figure 4.5. The aperture parameters located on or near the red dot, result
in (approximately) rof = 15 cm and wf = 3 cm. The final aperture is chosen
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Figure 4.4: Each combination of la and roa results in a FOV width indicated
in cm by the labels of the contours.

as la = 2 cm, roa = 1.5 cm (with wa = 1 mm), which results in a FOV of rof
= 16.5 cm and wf = 3 cm

With these values, the angle of incidence of the light is in the range of
θ = [35,37]◦. The TEMD5510FX01 photodiode for which the aperture has
been optimized has a sensitivity of 90% at these angles, meaning that the
signal loss due to the angle is not a concern.

Figure 4.5: This figure shows pairs of (la,r
o
a) that result in wf = 3 cm in

blue, and pairs that result in rof = 15 cm in green.

4.3 Performance of the designed aperture

Two shapes of apertures with parameters as computed in the previous sec-
tion are compared, to find the optimal aperture. These shapes result in a
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circular or square FOV.

4.3.1 Circular FOV

A cylinder-shaped aperture results in a circular FOV. The image shown in
Figure 4.2 holds in all directions throughout this cylinder. Of course a real
aperture would not result in a hard boundary of the FOV, due to reflections
within the aperture and inaccuracies in the fabrication and orientation of the
aperture. The expected ring is somewhat noisy, like a hard ring convolved
with Gaussian distributed noise.

The circular aperture with the obtained parameters is 3D printed in black
PETG filament, resulting in the aperture in Figure 4.6. The bottom part of
the design is shown on the left and has four ’arms’ that are used to attach
the aperture onto the ceiling. The photosensor is glued onto the center of
this part. The middle image shows the cylinder part with four arms to hold
the obstruction in place, which are kept as small as possible.

Figure 4.6: The left and middle figures show the bottom and cylinder parts
of the aperture. The right most figure shows the resulting sensor, where the
opening for the light rays is emphasized with the green lines.

A 3x3 cm square of wrinkled aluminium foil, which effectively functions
as a diffuse reflector, is moved under the LED panel to consecutively cover
every squared centimetre under the panel. For every location, the light
intensity is measured by the sensor. This indicates what the FOV of the
sensor is. The result of these measurements is shown in Figure 4.7a, where
the ring-shaped FOV is visible. Each value is an average of 100 samples.

There are several things that can be noted from the ring-shaped FOV of
Figure 4.7a. First of all, there is a strong peak in the middle. This peak
is caused by inner reflections of the sensor. Light rays from directly below
the sensor are reflected in such an angle within the aperture, that they
reach the photosensor. This point is supported by the fact that the inner
peak is not seen when a non-reflecting material is used for fabrication of the
aperture. Figure 4.7b shows the resulting FOV from an aperture made out
of cardboard, again measured with a 3x3 wrinkled aluminium foil. There
is clearly no strong center peak in this image, while all other circumstances
were kept constant. The inner peak is relatively thin, and can therefore
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(a) 3D printed aperture (b) Cardboard aperture

Figure 4.7: The left image shows the FOV measured by moving a 3x3 cm
wrinkled aluminium foil under the circular aperture. The red circles show
where the ’arms’ of the obstruction block the incoming light. The right
images shows the same measurement done with a cardboard aperture instead
of a 3D printed one. The center peak is not visible here. The colorbar
indicates the voltage (in Volt) that is measured by the photodiode.

function as an extra point of detection, and will therefore be used as an
extra detection area to enhance localization accuracy.

Secondly, the ring is not uniform. This is due to the non-uniformity of the
LED panel (Figure 3.3b), since the sensor was not placed in the center of
the panel. Lastly, the ’arms’ that keep the obstruction in place can be seen
in the image as well, locally diminishing the sensitivity at these locations.

The average FOV width in Figure 4.7a is 5.5 cm and the average FOV ra-
dius 13.5 cm. The FOV is computed here as all locations where the measured
light intensity is five times higher than the standard deviation of the noise -
meaning a 99.977% chance that the measured light intensity is actual signal
and not noise. Since these measurements can of course not be performed
with an infinitesimally small object, the FOV shown in the image is the sum
of the object width and the actual FOV. To obtain the actual FOV width of
the aperture, without the effect of the non-zero size of the aluminium foil,
the foil size should be subtracted from the 5.5 cm. This makes the final FOV
ring width and radius 2.5 and 13.5 cm for the photodiode. This is quite close
to the modelled 3 cm and 15 cm.

4.3.2 Square FOV

A circular shape has the advantage that points throughout the ring all have
approximately the same distance towards the sensor, so they all contribute
the same to the total amount of light measured. Other shapes might not
have this advantage, but they do have other advantages. Square shapes
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could for example be combined in a compact way, in which each square area
of the table surface can be covered by a specific aperture.

A square aperture has been 3D printed as well, with the same wa, la and
roa as the circular aperture. The expected FOV shape is shown in Figure
4.8a, and the measured FOV in Figure 4.8b. A FOV square has a length
and width of 28 cm. The strength of center peak due to inner reflections is
less high for this shape, but it is more spread out. This means that there is
quite a large area under the photosensor where objects will result in a signal
measured by the sensor, which due to the broad size of this center peak
will suffer from intersymbol interference. Therefore, the circular aperture is
chosen instead of the square.

(a) (b)

Figure 4.8: The square aperture (left) and the resulting FOV (right), meas-
ured in the same manner as Figure 4.7a.

4.4 The final photosensor

4.4.1 Photodiode versus phototransistor

Several photosensor specifications were compared on several criteria, such as
the spectral sensitivity (which should match with the spectrum of the LED
panel for a high detected signal), price, angle of half sensitivity θ (which
should be high enough to use the photosensor with an aperture blocking its
FOV) and switching speed (which should be fast enough to detect a small
robot passing by). Initially, the TEMD5510FX01 Vishay photodiode was
chosen, based on these criteria. The aperture optimization described here,
has been done using this diode. However, for later stages of the experi-
ments, a more accurate detection method was required. For this purpose, a
TEMT6000X01 Vishay phototransistor was chosen instead of this photodi-
ode, due to the lower amount of noise encoutered when using a phototran-
sistor [3].

Both sensors have a sensitivity spectrum that matches the panel light,
they have large enough angles of sensitivity (θPD = ±65◦ and θPT = ±60◦)
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Figure 4.9: Profile of a 3x3 cm wrinkled aluminium foil crossing the full FOV
of the sensor (the circular aperture in combination with the TEMT6000X01
phototransistor). The three peaks indicate the foil entering the FOV ring,
crossing the center, and leaving the ring, respectively. The FOV width and
radius can be derived from this profile.

and at the time of writing they were available for e1.26 and e0.86, respect-
ively. The switching speeds are not mentioned in the data sheets, but similar
diodes from the same manufacturer have switching speeds of 100 ns; it is
reasonable to believe these have similar speeds. This means a switching fre-
quency up to 10 MHz is achievable, which is much higher than the maximum
sampling rate of the Arduino (10 kHz). Therefore, the switching speed does
not form a bottleneck.

From this point onwards, the phototransistor is meant whenever photo-
sensor is written. Since the detection area of the phototransistor is smaller
compared to the photodiode, this results in a smaller FOV ring width when
used with the same aperture. According to the model, this same aperture
can be used in combination with the TEMT6000X01 phototransistor to res-
ult in a FOV width and radius of 0.78 cm and 15.5 cm, due to the smaller
detecting area of the transistor. To verify this, a profile of the 3x3 cm alu-
minium foil is made with the phototransistor and the circular aperture. This
foil is moved throughout the FOV, while the sensor measures the light in-
tensity for each location. The result is shown in Figure 4.9. The detected
ring widths are 4.0 and 3.8 cm, which without the foil width results in an
actual FOV width of 0.9 cm for the phototransistor. The FOV ra-
dius is 17.3 cm on average. The combination of the phototransistor with
this circular aperture is chosen as the final sensor.

4.4.2 Schematic of the photosensor

Figure 4.10a shows the schematic that was used for the photodiode. The
cathode side of the diode is connected to an input voltage (for Arduino, this
is 5V). When light reaches the diode, a current will flow towards the anode.
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(a) TEMD5510FX01
(b) TEMT6000X01

Figure 4.10: The photosensor schematics for the photodiode (left) and the
phototransistor (right).

This current flows through a biasing resistor of 680 kΩ. The voltage over
this resistor is amplified with an OpAmp by a factor of 69×Ȧ low-pass filter
with a cut-off frequency of 10.6 Hz is added after the OpAmp. Finally, two
decoupling capacitors are added to decrease the noise. The resulting voltage
serves as an indicator of the light level, and is sent to the ADC input of the
Arduino, which samples the measured voltage with a 10-bit range.

For the phototransistor, the OpAmp is not required. The schematic cor-
responding to this sensor is shown in Figure 4.10b. A biasing resistor with
a low-pass filter suffices for the purpose of this research.
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Chapter 5

The reflective tag

This chapter describes how to encode data on the reflective tag (Section 5.1),
and what encoding scheme is used for this purpose (Sections 5.2).

5.1 Encoding data with light reflections

The reflective surface that is placed on objects can be passive (invariant over
time) or active (having the ability to actively modulate reflected light). A
passive tag should be a sequence of elements that reflect light in different
ways, as for example in Figure 5.1. Only a single light value is detected at
a time by the sensor, so only when an object is moving in and out of the
FOV, a change in the intensity is observed. The detected pattern received
by the sensor from such a tag moving through the FOV is a sequence of
valleys and peaks in the measured light intensity.

Figure 5.1: Two situations where a barcode, which passively encodes an
ID, moves through the FOV on a sensor. The yellow bundles indicates the
incoming and reflected light. A sensor observing this barcode will receive
a different amount of light based on whatever element moves through the
FOV. On the left, a high intensity is detected, while on the right almost no
light is reflected to the sensor.

An active tag on the other hand, modulates itself in a certain way result-
ing in a varying intensity measured by the sensor. In this case, the sensor
can also detect an object’s ID when this object is standing still within the
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sensor’s FOV. Since one of the main goals of this thesis is to achieve iden-
tification and localization in a manner that is as energy-efficient as possible
(Section 3.2), a passive tag would be the most straightforward solution.

Since ambient light is used as a medium to transfer an object ID towards
a sensor, we need to look at the different properties of light that can be
exploited for this purpose. The light properties discussed here are the po-
larization, the color and the intensity.

5.1.1 Polarization

The polarization of ambient light reflecting on the tag can be modulated with
polarization sheets. A sequence of small pieces of polarization sheets with
different axes, as shown in Figure 5.2, encodes a pattern in the ambient light
that is reflected from this sequence. A sensor equipped with a polarization
filter will detect a high or low amount of light, depending on whether the
polarization of the incoming light matches the axis of the polarization filter.

Since polarization is invisible to the human eye, this forms a non-invasive
method and also adds a layer of security: humans can not see the ID of
objects. The drawback is that every sheet diminishes the light intensity
(with 50% if the incoming light is unpolarized) and that the detected pat-
tern depends on the orientation of the tag compared to the sensor. There
are ways to overcome the latter, as done by the PIXEL indoor localization
system [40], but this significantly adds to the complexity and cost of the sys-
tem. Moreover, while sunlight is unpolarized, this light can become partially
polarized after being scattered in the atmosphere [13]. This might make it
difficult for a polarization-based system to give the same results indoors and
outdoors.

Figure 5.2: Two situations in which a sequence of reflecting polarization
filters move through the FOV of a sensor. The arrows on the tags indicate
the polarization axis of that element, and the yellow bundles indicate the
incoming and reflected light. The sensor is equipped with a polarization
filter as well, whose axis is shown with the arrow. In the situation on the
left, the sensor is receiving light, while the sensor on the right does not.
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5.1.2 Color

Color based encoding schemes have already been adopted, for example by
KarTrak to passively encode an ID on trains [28]. The advantage of color
based encoding schemes is that a single bit can have numerous values, leading
to a higher data density. The disadvantage is the uncontrollability of the
color of the ambient light sources. A color based encoding scheme would
result in different values under different lighting conditions and no certainty
can be drawn from the decoded data. Moreover, single sensors would not
be sufficient to detect color, making RGB sensors necessary.

5.1.3 Intensity

A material with different reflectivities or different shades across its length
can be used to encode data, as shown in Figure 5.1. As done in [38], a simple
barcode with black and white stripes can be used for this purpose. Another
possibility is for an object to modulate its shape in such a way that light
is reflected into different directions. The data density might be less than
for color-based encoding schemes, but the encoding does not depend on the
orientation of the object nor the color of the ambient light.

5.1.4 Conclusion

A sequence of reflective and absorbing elements is seen as the most robust
way to encode data for this thesis, due to the low dependency on the en-
vironment. The reflective elements should be diffuse reflectors, to observe
these elements from a broad range of angles (as explained in Chapter 2).
The reflectivity of various materials has been compared to figure out what
the most suitable material is for such a tag. A sequence of black and white
elements (as in [38]) is chosen as the way to encode object IDs, which in this
case are made from paper.

5.2 Passive encoding schemes

The naming convention as is used in this thesis is as follows. A barcode
constists of consecutive bits of black and white paper. Either a bit or a
group of bits can be used to encode a data element. The (group of) bit(s)
that encodes a data element, forms a symbol. A white bit is regarded as a
high bit, and a black bit as a low bit.

5.2.1 Single bit

First, it is important to see what the effect is of a single bit on the light
detected by a sensor. A white piece of paper is used as a single bit, being
in high contrast with the black table surface.
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Channel response

Figure 5.3: A high bit (i.e.
a white tag element) moves
through a FOV ring segment.
The displacement ∆d is a
measure of location compared
to the ring.

The channel response of a sensor describes
what the effect is of a reflective material
moving into the FOV of this sensor. First,
only a segment of a sensor’s FOV ring will
be considered, shown in Figure 5.3. By
moving the bit in such a manner, the ef-
fect of this element on the measured light
intensity is obtained. A high bit with size
s (smaller than the FOV ring width wf )
is moved across the FOV, perpendicular to
the ring. The light intensity measured by
the sensor, as a result from the high bit
moving throughout the FOV segment, is
found to be of a Gaussian shape. This is
also found by [3]. A modelled response is
shown in Figure 5.4a, where the detected
light intensity is plotted versus the displace-
ment of the bit compared to some reference value. This image does not
include any noise, which of course would occur in a real measurement. The
sum of wf and s determines the standard deviation of the Gaussian shape
that is observed.

If a bit is larger in size than the FOV ring, the detected signal will be
as shown in Figure 5.4b: as soon as the object covers the entire length of
the FOV segment, a maximum value is reached. Only when the bit starts
leaving the FOV again, the light intensity starts to decrease. In this case, the
slope of the rising and falling edges of the detected shape are determined by
the FOV ring width. The width of the flat part of the signal is determined
by the difference between s and wf .

Each reflective surface that crosses the FOV, will individually result in
a shape as seen in Figure 5.4. When multiple bits consecutively cross the
FOV, the observed signal will be the sum of the individual Gaussians: taking
into account the offset in distance between the bits. This distance between
the bits, in combination with the FOV ring width, will determine what the
detected signal looks like. Take for example a barcode consisting of two
white bits, with a black bit in the middle. Each white bit results in a
Gaussian measured by the sensor. The black bit will have no (significant)
impact, since in this case the background is a similar shade of black. If
the bits are enough apart, only a single bit will be in the FOV at a single
time and two distinct peaks will be detected, see Figure 5.5a. When the
bits are too close, inter-symbol interference will occur: both bits will be in
the FOV simultaneously when the barcode crosses the FOV. The resulting
observation at the sensor is then a single peak, as shown in Figure 5.5c. If
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(a) s ≤ wf (b) s > wf

Figure 5.4: Modelled values for the light intensity measured by a sensor as
a result from a single high bit moving across a point in the FOV.

the distance between the bits is somewhere in between, a peak as shown in
Figure 5.5b is detected. From this image it becomes clear that two high bits
can overlap a bit within the FOV, as long as the individual peaks are still
distinguishable.

(a) (b) (c)

Figure 5.5: Each image shows the detected signal from a barcode with two
high bits, separated by a low bit, crossing through the FOV ring, shown in
green. The signals are broken down into the responses of each individual
bit, which are given by the blue and orange lines. The distance between the
high bits is decreased from left to right.

Objects are not only observed by the FOV rings, but also by the FOV
center. When an object moves through the complete FOV, three stages of
detection take place, as shown in Figure 5.6. An object enters the ring,
which results in a detection. It then proceeds onto the center of the ring,
and is detected here again. A detection in the center results in a higher
signal, as one might recall from Figure 4.7a. The object then continues, and
is observed a last time upon leaving the ring. If one makes a profile of a
single high bit traversing the full FOV, it will look like the model in Figure
5.7a. The distances between the peaks are equal to the FOV ring radius. If,
instead of a simple bit, a white-black-white barcode crosses the FOV in this
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Figure 5.6: The three points at which a barcode is detected when moving
in a straight line through the FOV of a sensor. The FOV of the sensor is
depicted in light blue; both the ring and center points are shown.

(a) High bit (b) Barcode

Figure 5.7: A modelled profile of an object traversing the complete FOV
of a sensor. The three peaks represent the ring, center and ring detections,
respectively.

manner, a profile as shown in Figure 5.7b is observed.

The center has a wider detection area compared to the ring, as can again
be recalled from Figure 4.7a. Since a center detection has a larger standard
deviation, it is harder to distinguish individual peaks in this area.

Minimum bit size

The minimum width of the barcodes depends on both the minimum bit size
and the minimum distances between two high bits. For simplicity, these two
sizes are chosen to be equal, making the black bits have the same size as
high bits. Barcodes with different bit sizes are individually moved through
the FOV in the same manner as shown in Figure 5.6. The barcodes have a
value of 10101, where a 1 indicates a white (high) bit and a 0 a black (low)
bit. Bit sizes of 0.6 cm, 0.8 cm, 1.0 cm, 1.2 cm and 1.5 cm are considered,
resulting in barcodes of 3 to 7.5 cm. Figure 5.8 shows the profiles for each
size.

The experiments were performed with the circular aperture as described
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(a) 0.6 cm (b) 0.8 cm (c) 1.0 cm

(d) 1.2 cm (e) 1.4 cm

Figure 5.8: Profiles for a sequence of alternating high and low bits, with bit
sizes as given in the captions.

in Section 4.2 in combination with the TEMT6000X01 phototransistor. The
right side of the profile corresponds to a ring segment further away from the
center of the LED panel than the left side. Therefore, the right side has a
much lower amplitude. Secondly, the measurement results turned out to be
quite dependent on the run due to noise. This can be seen in Figure 5.8c,
where the right side is not detectable very well. Based on these images, a bit
size of 0.8 cm is chosen as a suitable minimum. Smaller bit sizes might be
detectable as well when they are moving perpendicularly across the FOV,
but when more noise or a rotational offset is introduced the detected peaks
might not be decodable anymore.

As described in Chapter 4, the FOV ring width determines the minimum
size of a tag element to be distinguishable by the ring. However, if the center
point of the FOV is used as well, a larger bit size is required. According to
Figure 5.8, a barcode with bit sizes of at least 1.2 cm would be needed to
detect with the center as well. In the rest of this chapter, the experiments
are carried out for a 0.8 cm bit size, focussing only on ring detections.

5.2.2 Encoding schemes

Constraints

There are several constraints on encoding schemes that can be used in the
given set-up. The ambient light level is assumed to be unknown, so an
encoding scheme cannot be purely based on the absolute light level of a
detection. Secondly, the speed of the objects is unknown and can vary per
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object. Therefore, there is no simple way for the barcode and the sensor to
be synchronized. This means that encoding should not be based on absolute
time intervals. If two high bits are located directly next to each other, the
sensor will have no way of telling whether the resulting peak is a single long
bit or the result of two or more short bits close to each other.

Comparison

The modalities of the barcode that are considered to encode data, are the
length of the barcode elements and the number of these elements that encode
a symbol. The list below gives an overview of some encoding schemes. The
high and low symbol values of these schemes are shown in Figure 5.9.

• Number of peaks: In binary encoding schemes each bit represents
a symbol, which leads to a high information density. However, since
black bits at the edges of a barcode are not detected in the test set-up
due to the black table background, N bits can encode only 2N/4 IDs.
Multiple consecutive bits of the same value cannot easily be decoded
since the speed is unknown, so even fewer feasible possibilities are left.
The remaining options effectively encode an ID with the number of
peaks. This encoding scheme scales with O(N), instead of O(2N ) as
compared to a ’regular’ binary encoding scheme. For example, with
three bits, there are two distinct IDs possible. One of them has one
peak (a barcode of 001, 011, 100 etc.), the other has two (101).

• Manchester-like encoding: By implementing an encoding scheme
inspired on Manchester encoding, each symbol has a length of two bits.
If consecutive symbols have the same value, there is still a change in
the light intensity measured. However, both of the barcodes shown in
Figure 5.10 would result in two observed peaks for example. Without
knowing the speed of the object or the symbol length of the barcode
these would not be distinguishable.

• Relative peak height: The absolute light levels are not reliable for
decoding, but the relative light levels of peaks can be compared to one
another (assuming the ambient light level will not change significantly
within the time that the object crosses the FOV). With symbols as
shown in Figure 5.9, a thinner and lower peak would indicate a low
symbol value, and a wider and higher peak a high value. Each barcode
should contain at least one of each symbol value for comparison of the
peak heights. The symbol length is up to three times higher than
the encoding, but is more scalable than encoding with the number of
peaks.
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(a) Peaks (b) Manchester (c) Relative peak height

Figure 5.9: The high and low symbols for the discussed encoding schemes.
The rows indicate the light levels detected from each bit by a sensor, which
symbol is encoded and the barcode layout, respectively. The Manchester
standard shown here is the IEEE 802.3 standard.

(a) (b)

Figure 5.10: Problems with the Manchester encoding scheme: both barcodes
will cause two peaks in the light intensity measured by the sensor. In Figure
5.10a these are two narrower and lower peaks. In Figure 5.10b these are
wider and higher peaks (there are two white bits causing the peaks here
instead of one). Without any synchronisation or known barcode length
there is no way of telling these two barcodes apart from the detected light
patterns.

Conclusion

While encoding with the relative peak height as described above might be
scalable, there are some practical problem when implementing this in the test
set-up. Figure 5.11b shows profiles obtained of the barcodes in Figure 5.11a,
which encode four IDs using the relative peak height. For these experiments
a bit size of 0.8 cm. Clearly, the peak heights relative to each other are not
as expected. The 01 and 11 barcodes become indistinguishable in the left
ring part for example. This is most likely due to some non-uniformity within
the FOV ring. In Figure 4.9, such a non-uniformity can be seen especially
in the left-most peak of the profile: a side-lobe is visible on the peak.

Therefore, encoding based on the number of peaks is used for now, as
shown in Figure 5.12a. It is less scalable, as shown in Figure 5.12b, but in
the current set-up there are not many robots used anyway and it overcomes
the practical issues.
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(a)

(b)

Figure 5.11: The four barcodes shown on the left encode four IDs (from top
to bottom: 00, 01, 10, 11). When these barcodes move in a straight line
through a sensor’s FOV (as shown in Figure 5.6), the profiles are obtained
as shown on the right.

(a)

(b)

Figure 5.12: The left image shows the chosen barcodes, consisting of five bits
which encode three distinct IDs. Barcodes with ID 1 and 2 are broadened
to match the barcode size of ID 3. Barcodes with ID 4 or higher are made
by adding a single black and white bit to the barcode with ID 3. The right
image shows the number of distinct IDs that can be encoded this way with
n bits, compared to encoding with relative peak heights.
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5.2.3 Measurement results of the chosen encoding scheme

Detection pattern

The reflected light pattern that the sensor receives when a certain barcode
moves through its FOV is measured for the final encoding scheme as shown
in Figure 5.12a. Barcodes with an ID of 1, 2 and 3 are considered here, and
are moved through the FOV as in Figure 5.3. A bit size of 0.8 cm is used,
and a barcode width of 1 cm. The patterns that are observed when each
barcode moves through the sensor’s full FOV, are plotted in Figure 5.13. As
can be seen in these profiles, the ring segment on the right of these images is
less sensitive. This is a result of the sensor’s FOV not being centered under
the LED panel. Instead, this right FOV ring segment receives less light from
the panel, and therefore the light that is reflected by a barcode crossing this
segment, is less as well.

(a) ID 1 (b) ID 2 (c) ID 3

Figure 5.13: Profiles of the three unique barcodes chosen as final IDs.

Influence of rotational offset

When an object does not enter the FOV perpendicularly but under a rota-
tional offset, the peaks with which the ID is encoded might interfere with
each other. Figure 5.14 shows a barcode encoding an ID of 4, while cross-
ing a FOV ring segment under different angles. The bit size is 0.8 cm. The
measurements were taken for every 0.3 cm of displacement, where each value
is an average of 100 samples. The peaks in the figures show to be readily
decodable up to an offset of ±30◦. For higher rotational offsets it becomes
difficult to properly decode the peaks. Just as was seen for the PWM bar-
codes, the peak heights in Figure 5.14 are not constant. The first peak is
consistently the highest, and the last consistently the lowest. Again, this
seems to be an effect of non-uniformities in the FOV ring.

Influence of speed

Another aspect that needs to be taken into account is the speed of the
object. To determine the impact of the speed, a barcode with ID 3 is
attached to the robot of [33]. The robot is moved in a straight line through a
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(a) 0◦ (b) 10◦ (c) 20◦

(d) 30◦ (e) 40◦ (f) 45◦

Figure 5.14: A barcode encoding an ID of 4, for different rotational offsets
as indicated in the captions.

sensor’s full FOV, for different speeds. Figure 5.15 shows the profile that the
sensor detects for each of these speeds. The sampling frequency during these
experiments was Fs = 1833 Hz, with four sensors being sampled (only the
data from one sensor was used for generating the plots). With Fs = 1833 Hz
and the current set-up, a barcode moving at speed 17 cm/s is still properly
detectable. At a speed of 32 cm/s, not enough samples can be taken to
properly get the pattern.

The standard speed of the robot is around 20 cm/s. Figure 5.16a shows
a profile of the robot with an ID 3 barcode attached to it with bit size
0.8 cm, moving at this speed. The presence of the robot causes some extra
disturbances in the signal as can be seen, but in the ring segments the ID
is still decodable. The center part of the FOV only occasionally detects the
ID. With a minimal barcode size in mind, the 0.8 cm bit size barcode is
feasible, and results in a barcode of 4 cm for systems to distinguish three
different objects.

However, when the center peaks are desired to be detected as well, a
barcode with bit size 1.4 cm is more suitable. A profile of this is shown
in Figure 5.16b. For localization of the robot, which will be described in
the next chapter, the center point of the FOV provides an enhancement of
the accuracy, and therefore the barcode with bit size 1.4 cm is used as final
barcode. Besides the extra detection point, the maximum rotational offset
and speed are higher as well compared to the 0.8 cm bit size barcode.
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(a) 3 cm/s (b) 4 cm/s (c) 7 cm/s

(d) 11 cm/s (e) 17 cm/s (f) 32 cm/s

Figure 5.15: Profiles for a barcode with ID 3 attached to the robot, mov-
ing under a sensor with different speeds. The speed of the robot used in
experiments is around 20 cm/s.

(a) Profile of the robot with a 0.8 cm
barcode and 0.8 km/h speed.

(b) Profile of the robot with a 1.4 cm
barcode and 0.8 km/h speed.
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Chapter 6

The algorithm for robot path
estimation

This chapter describes the software used to track the robots’ paths. After
a description of the purpose of the algorithm (Section 6.1), its two main
building blocks are discussed: identification of barcodes (Section 6.2) and
localization of these barcodes using particle filters (Section 6.3). Lastly, the
results are shown (Section 6.4).

6.1 Objective of the robot path estimation

The tracking system has a trade-off between the number of sensors used
and the computational complexity needed to estimate the path of objects,
as mentioned in Chapter 3. The test set-up has four photosensors, whose
FOVs cover the area as indicated in Figure 6.1. Robots are given a barcode
as shown in Figure 5.12a, with a bit size of 1.4 cm, encoding up to three
different IDs. The total barcode is 7 cm long. The robots move through the
illuminated area. To estimate the location of the robots when they are not
in a sensor’s FOV, an algorithm is needed. The purpose of this software is to
read voltages measured by the photosensors in the test set-up, and output
a display showing the estimated real-time location of detected objects (i.e.
robots).

The algorithm consists of two parts. The first part is detection and iden-
tification of (an object with) a barcode crossing the sensor’s FOV. Each
detection indicates what barcode has been detected by what sensor and
when. The speed from the detected barcode can be derived as well. The
second part of the software uses the combination of these IDs, timestamps,
speeds and sensors to estimate the barcode location with particle filters.
The following sections describe these two components in detail.
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Figure 6.1: A top view of the table surface used for the test set-up. The black
dotted box indicates the size of the LED panel above the table surface. The
four rings and circles represent the FOV of the four photosensors pointed
to the table surface. An object with a barcode moving on the surface will
cross multiple FOVs.

6.2 Barcode identification

The identification algorithm converts a stream of voltages measured by a
sensor to the list of detected barcodes, with corresponding timestamps and
speeds.

6.2.1 Barcode detection algorithm

Filtering the measurements

The first step in the algorithm is removing noise from the signal. For this
purpose, the raw data received on the PC is filtered real-time using a moving
average over k = 15 samples. Subsequently a 30 Hz lowpass-filter of order
80 further smooths the signal. Figure 6.2 shows the raw and filtered signal
of a measurement. The measurement is a robot passing through the FOV
of a sensor, with the an ID 3 barcode attached to it. As stated before, this
barcode has a bit size of 1.4 cm, and total length of 7 cm.

Clustering peaks

The second step is to detect and group peaks within the smoothed signal.
Detection of peaks is done with the peak detection algorithm from [10].
From the resulting list of peak values, the algorithm looks for peaks that
’belong together’ and are the result of a single barcode. For this purpose,
the time distance between the peaks is considered. If the distance from a
certain peak A to its neighbour B is significantly smaller than the distance
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Figure 6.2: The raw and filtered signal received by the phototransistor en-
closed with the aperture from Chapter 4 in the test set-up, while a robot
with an ID 3 barcode crosses the FOV with a 15 cm/s speed.

from this neighbour B to its next neighbour C, peak A and B probably
belong together. C is most likely the start of a new barcode. On the other
hand, if the distance between A and B is much larger than the distance
between B and C, it is more likely that B and C belong to a barcode that
did not cause peak A. If instead similar distances are found, A, B and C are
assumed to belong together. With this reasoning, peaks are clustered into
groups that each represent a barcode.

Whenever the time difference between two peaks exceeds a threshold,
the peaks are assumed to not belong together. This threshold is computed
as 1.5 times the expected time difference between peaks for a given average
speed of the object. If for example the robots move with an average speed of
15 cm/s, and the barcode bits are 1.4 cm in size, the expected time difference
between peaks is 2 × 1.4/15 = 187 ms.

Computing the speed of the barcode

The last step is to compute the speed of a barcode from the time difference
between the detected peaks. Since both the bit sequence of a particular ID
and the bit size are known for the given system, not only the temporal but
also the spatial distance between the peaks is known. Dividing the distance
by the time difference, the speed of the object is calculated. This will only
not work for ID 1, since there is only peak and no difference between peaks
can be computed.

For every detected barcode, the ID, timestamp, speed and sensor number
is stored. If a barcode has already been detected before, the ‘history’ of this
barcode object is updated with the new info.
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6.3 Location estimation with particle filters

By (not) detecting a barcode at a particular sensor, information is gained
about whether the barcode is likely to be in or out of this sensor’s FOV. To
obtain an estimate of the location of such a barcode based on this informa-
tion from several sensors, particle filters are used.

6.3.1 Particle filters

Particle filters, also known as Sequential Monte Carlo methods, are a set of
filters that are widely used in applications requiring tracking of some non-
linear value [39], [15], [24]. The basic structure of a particle filter starts with
randomly generating a large amount of virtual ’particles’ and giving each of
them an equal weight. These particles represent the attribute or the object
that is being tracked. In case of localization, many particles are for example
distributed on a known map. Each of these points has a position, velocity
and orientation, referred to as their state. The value of these parameters are
drawn from some initial distribution.

After obtaining this initial distribution, an iterative process follows. This
process predicts for all particles a new state (position, velocity and orienta-
tion), based on the old parameters and the expected movement of the object
that is being tracked. The set of equations indicating the expected move-
ment of the object is called the motion model. Some noise is always added
to the predicted values, in case the motion model is flawed. This prevents
the particles from converging to an incorrect value. After the prediction,
the process updates the weights of the particles, depending on how well they
match the measurement.

After the update, the particles are resampled if needed. Resampling means
that particles with a weight that is too low are discarded and new particles
are placed instead. There are various ways to do resampling and to choose
which particles to choose in their place.

6.3.2 Implementation

In this thesis, each object is modelled by 4000 particles that have an x and
y position, an orientation θ and a speed v. Initially, the particles are given
a random position across the ’map’, which is the square area from Figure
6.1. Their speeds are set to an initial guess vavg, which is assumed to be
the average speed of the object, plus Gaussian noise. Here, the robot is set
to move with a speed around 15 cm/s, so this will be taken as an initial
guess. Note that this is a favorable choice, the system should be tested with
outlying initial conditions as well. The orientations assigned to the particles
are randomly chosen between 0 and 360◦.
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The motion model, which is used to predict the next state of the particles,
is defined as follows:

vnew = vcurrent + σvR, (6.1)

θnew = (θcurrent + σθR) mod 360, (6.2)

xnew = xcurrent + v cos(θ)δt, (6.3)

ynew = ycurrent + v sin(θ)δt. (6.4)

In Equations 6.1-6.4, R denotes a random number from the standard
normal distribution, and σv and σθ the standard deviation of the speed and
orientation, respectively, and δt the amount of time passed since the last
predict step.

With the current set-up of four sensors, the sampling frequency is Fs =
1884 Hz. The particle filter is not updated on each sample, but instead every
120 samples, so with a frequency of approximately 16 Hz. The values of the
standard deviations have been estimated by measuring the standard devi-
ation of the orientation and speed of a robot moving in a straight line. The
values have been fine-tuned empirically, and optimal tracking was observed
for σv = 0.05 and σθ = 20.

After prediction the next state of the particles, their weights are updated
based on the measurement. Whenever an object is detected by a certain
sensor, the weights of all particles within the FOV of this sensor are mul-
tiplied by a factor of seven, which was again determined empirically. If an
object is not detected by any sensor, the weight of all particles that are not
in the FOV of any sensor are multiplied by a factor of 1.05. The chosen
resampling method is multinomial resampling, and is taken from [20].

6.4 Results

6.4.1 Barcode identification

To quantify the accuracy of detecting a barcode, a robot is moved eight
times in a straight line through a full FOV of a circular aperture with the
phototransistor. The robot is equipped with a barcode encoding the value
3, and moves at different speeds (15.4 cm/s and 17.1 cm/s). Table 6.1 shows
how often the barcode is detected correctly, in the center and both ring
segments that are traversed by the robot. Ring segment A indicates the
ring segment of the sensors that is the closest to the center of the panel.
Ring segment B denotes the opposing segment, the furthest from the center
of the panel.
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v (cm/s) Ring side A center Ring side B vest (cm/s)

15.4 87.5% 100% 37.5% 15.6
17.1 100% 87.5% 50% 17.6

Table 6.1: Detection accuracy of barcode 3 throughout five different runs,
with the object moving at different speeds v. The speed estimated by the
detection algorithm is indicated by vest.

6.4.2 Localization estimation

Tracking an object moving in a straight line

To show the performance of the resulting system, first only one robot with
ID 3 is moved several times through the area with a speed of 15.4 cm/s in
a straight line from points 1 to 2, as indicated in Figure 6.3a. An example
of the estimated location is shown in Figure 6.3b. The average error in
the real and estimated location for various runs of this same path, is 4.8 cm.
When the experiment is repeated for a similar path, but for example between
sensors A and C, instead of D and B, show similar results.

Tracking an object with non-linear trajectories

To further evaluate the performance of the tracking system, it is important
to test the localization error for different trajectories, such as a circle or
a random walk. However, a consistent problem that arose during these
experiments, if that an object will cross the FOV too often with a rotational
offset that prevents the ID to be detected. Instead, a single peak is seen,
from which no direct conclusion can be drawn about the actual ID. A similar
problem occurs where an object moves through the edge of the FOV center,
leading to a detection of a single peak as well. Section 7.2 discusses several
pointers on how this problem can be overcome in future work.

The algorithm is written in Python and can be found on [36].
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(a) (b)

Figure 6.3: The left image shows the path of the ID 3 barcode through the
FOVs, indicated by the red arrow. The right image shows both the real and
an estimated path, shown by the continuous and dotted line, respectively.
The red dots indicated the starting and ending points of the path.
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Chapter 7

Conclusion and future work

7.1 Conclusion

This thesis shows a proof-of-concept of a passive light-based localization
system for two-dimensional, real-time tracking of small-sized objects. Based
on the concept of [38], objects are equipped with a unique reflective tag (a
barcode), from which ambient light is reflected in a distinct manner. These
light reflections are detected by simple photosensors, from which the object
ID and an estimate of the location are obtained.

Whereas previous work on ambient passive light localization methods did
not focus on small-sized objects and two-dimensional tracking, this thesis
addressed two challenges to overcome these open problems. Tackling the
first challenge requires detection of small-sized objects. For this purpose, a
physical enclosure is designed for the photosensors that modifies the FOV in
such a way that a small object can be resolved, without compromising the
outer boundary of the FOV. The apertures have been designed such that
the smallest distinguishable size of an object in the test set-up is 0.8 cm.

This size corresponds to the minimum bit size that a barcode crossing
the FOV can have. This means that small barcodes can be used for distin-
guishing a modest group of objects. Several encoding schemes have been
compared, after which an encoding scheme is chosen where up to three IDs
can be distinguished with 4 cm barcodes, if the aim is to keep the barcode
size as small as possible. If a 1.4 cm bit size is used, the barcode sizes for
3 IDs becomes 7 cm, but the full FOV of the photosensor can then be used
for detecting this barcode.

The second challenge requires a software filter to combine measurements
from different sensors, and make an estimate of the location of an object.
Particle filters have been implemented and tested with barcodes with a bit
size of 1.4 cm, and a total size of 7 cm. Four photosensors are placed in the
illuminated test environment. The robots from [33] are provided with the
barcodes, and move through the FOVs. With the robots moving at a speed
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of 15.4 cm/s in a straight line through the test set-up, a localization error
of 4.8 cm is obtained if the objects cross through the centers of the FOVs.
When objects only partially cross the FOV, the tracking error increases.
Some limitations were encoutered due to which other trajectories are not
properly localized. As a result, the system can localize objects with a one-
dimensional movement, however, this movement can have various angles in
a two-dimensional area.

7.2 Future work

Several topics of interest can be studied further, to improve or extend the
tracking system proposed in this thesis.

7.2.1 Tracking more complex movement of objects

To track different types of movements of the robots, besides a straight line,
some changes need to be made to the algorithm or the sensor. The main lim-
itation in the current set-up that prevented trackign of non-linear movement
is the detection. When an object does not enter a FOV ring perpendicu-
larly, but instead parallel to the ring, or under a large rotational offset, the
reflection pattern from the object is often detected as a single peak. This
can (partially) be solved by for example a different types of apertures such
as the one shown in Figure 7.1. Figure 7.1b has the advantage that if each
detection point is small enough to observe only a single barcode element,
there is no rotational dependency on the detected signal, at the cost of a
significantly lower coverage area. Figure 7.1c would be able to detect bar-
codes moving in perpendicular directions, but is much less sensitive to signal
at the edges of the cross compared to the center. Another idea would be
to make the algorithm ’smarter’, and find a way to reason whether a single
detected peak is a barcode with ID 1 or an unresolved barcode with other ID
(e.g. if shortly before or after an ID 3 is detected in a neighbouring sensor,
while no ID 1 was observed in that area).

7.2.2 Increase distance between objects and sensor

In order to use the described set-up in a real-life environment, the distance
between the sensor and the objects needs to be increased significantly. How-
ever, when the height is increased, not only a much lower light intensity is
received, but a small FOV ring width becomes more challenging as well.
And with this, a small barcode size cannot be maintained. With the current
aperture, a thinner aperture slit is not easily manufacturable. Instead, an
aperture could be made by lasercutting instead, or a lens could be added
to still focus on a small FOV. In any case, the received signal should be
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(a) (b) (c)

Figure 7.1: These images show the FOV of possible sensors. The left FOV is
the sensors as discussed in this thesis, the other two images show FOVs that
have a potential to improve the detection, but at the expense of a smaller
coverage.

amplified and careful removal of noise sources in the environment is needed
to make such a system work.

7.2.3 Active tag encoding

In contrast to a passive tag, an active tag can enable an object to change
its ID when desired (e.g. when encountering something in the environ-
ment). Moreover, an object actively sending out its ID can be detected
while standing still, and the small FOV width constraint can be lifted. For
some applications, these points may outweigh the increased energy usage
and infrastructure.

A suitable material for active encoding is a liquid crystal (LC) shutter.
Essentially, such a shutter is a glass plate plate that switches between trans-
parent and opaque states on the application of a voltage. The working of
such a shutter is shown in Figure 7.2. It consists of two polarizing sheets,
with a perpendicular polarization axes. They are separated by a thin layer of
liquid crystal, which turns the polarization of incoming light by 90◦, unless a
voltage is applied. Unpolarized light entering an LC shutter is filtered by the
first polarization sheet, and only light oscillating parallel to the polarization
axes is transmitted. Then, depending on the voltage over the liquid crystal,
the polarization of the transmitted light is rotated or not. Then these light
rays continue onto the second filter, which either blocks or transmits them,
depending on whether they match its polarization axis. These shutters are
used in for example LCD screens, but can also have useful applications in
light-based communication [40].

Currently, work is being done at the Embedded Software group of Delft
University of Technology, where LC shutters are tested for the purpose of
setting up a sunlight-based communication system [29]. Some initial re-
search has been done in this thesis, based on the initial research done by
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Figure 7.2: An LC shutter: transparent (left) and opaque (right).

[29], regarding the feasibility of using the shutters in combination with the
robot from [?]. The refresh rate was found to be high enough for different
encoding schemes, and the energy used by the shutter is low enough to fit
in the energy budget of the robot. The results of the energy measurements
are shown in ??, and are dependent on the operating frequency. If the tog-
gling frequency is increased, the consumed energy will increase too. The
total consumption of the robot is in the range of [29,52] mA , of which the
motors use between [27,50] mA. The round shutter flickering at 60 Hz with
3.3V voltage swing would consume only 0.12% of the robot’s total energy
budget if placed on the robot, and switches fast enough to encode an ID
in reasonable time. From this we can conclude that energy consumption
will not be a bottleneck for implementation of an LC shutter as active ID
encoder. Combining the shutter and the robot has not been done for this
project, but based on results from [29] this can be done as future work.

Frequency (Hz) Current (µA) Current (µA)
Round shutter Rectangular shutter

8 5.9 3.3
20 12.9 7.7
60 34.4 22.6

Table 7.1: Current drawn with 50% PWM signal at 3.3V.

7.2.4 Other directions

Other topics that form interesting related research are for example improv-
ing the scalability of the tag and collision detection (when multiple object
simultaneously cross the FOV). Another topic is detection whenever an ob-
ject is standing still. Currently, if the light reflected from such a object is
high enough, this results in continuous peak detection and therefore incor-
rect decoding to barcode values.
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Appendix A

Aperture model

This section describes how an aperture influences the FOV of a photosensor.
From a given set of aperture parameters, the FOV width and radius can be
computed. The aperture is shown in Figure 4.2. The FOV on the sur-
face is assumed to be delimited by the two light rays shown. The distance
between these lines and the center of the FOV ring, right under the sensor,
is computed using similar triangles.

The similar triangle used to compute the inner FOV radius is depicted
in green in Figure A.1. The corresponding formula is shown in Equation
A.1. The subscript i is used to denote an inner radius, the subscript o is
used for an outer radius. The subscripts f , a and p indicate whether a
quantity belongs to the FOV, the aperture or the photosensor respectively.
Furthermore, the symbols w, l and t denote the width, length and thickness.
The sensor height is shown as h.

rif =
ria −

wp

2

la − lp − ta
· (h− lp) +

wp
2
. (A.1)

The outer radius of the FOV is computed analogously, using the similar
triangles as depicted in blue in Figure A.2, as is described by Equation A.2.

rof =
roa +

wp

2

la − lp
· (h− lp) −

wp
2
. (A.2)

The difference between the outer and inner radii of the FOV equals the
FOV width.
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Figure A.1: The two similar triangles used to compute the inner radius of
the FOV, shown in green.

Figure A.2: The two similar triangles used to compute the outer radius of
the FOV, shown in blue.
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