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Abstract—In recent years, the electric vehicle (EV) industry
has experienced significant advancements, simultaneously driving
substantial progress in battery technology. The evolution of
battery systems necessitates enhancements in charging infrastruc-
ture to attain elevated power levels during the charging process,
thereby minimizing charging time. Various algorithms have been
developed for driving battery charging; however, these algorithms
necessitate the creation of diverse controllers to generate precise
trigger signals for the semiconductors within the various power
converters utilized in charging stations. This work presents the
design of an innovative model-free control system for Type I
impedance network Partial Power Converter (PPC) in which
a Deep Reinforcement Learning (DRL) agent generates control
signals during the different charging stages. Particularly, a Twin-
Delayed Deep Deterministic Policy Gradient (TD3) algorithm is
used to substitute the inner control loop of traditional control
systems. To this end, different agents were designed, trained, and
tested inside a built simulation environment. It is worth noting
that TD3-based control allows for the optimal functionality of a
type I impedance network PPC within the context of EV battery
charging applications, according to the specified CC-CV charging
algorithm. Empirical results revealed that the battery system
reached an 80% state of charge in under 8 minutes starting
from an initial 20%.

Index Terms—neural network, deep reinforcement learning,
electric vehicles, partial power converter, artificial intelligence

I. INTRODUCTION

NE of the main worldwide challenges is related to reduc-
ing the levels of greenhouse gas emissions, particularly
Carbon Dioxide (CO3). The transportation industry accounts
for 16% of CO5 emissions due to the burning of fossil fuels
in Internal Combustion Engines (ICE) [1], [2]. In the last
years, the Electric Vehicle (EV) sector has emerged as a highly
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promising field, aiming to substitute ICE with fully electric-
powered engines [3]. However, a significant challenge in this
industry evolution has been battery capacity and operating
range [4]. Consequently, advancements in battery technology
over the past ten years have led to increased battery capacities
and decreased costs [5].

Alongside advances in battery technology, the need for more
efficient chargers has become essential, leading to extensive
research on different AC-DC and DC-DC converter topolo-
gies [6]-[9]. Fig. 1 illustrates the general configuration of an
off-board charging station, where all components involved in
the charging process, except the battery, are located outside the
EV. The charging process is divided into two stages: an initial
AC-DC rectifier stage, followed by a DC-DC conversion stage.
Galvanic isolation can be implemented in two ways. The first
architecture, depicted in Fig. 1 a), involves a low-frequency
tranformer at the AC grid side. The second architecture, shown
in Fig. 1 b), conisders galvanic isolation in the DC-DC stage
using a high-frequency transformer. Regarding the DC-DC
conversion stage, numerous converters have been designed
featuring different topologies [6], [8], [10], among which,
Partial Power Converters (PPC) have become a viable option
for the DC-DC conversion stage in charging systems [11],
[12]. By handling only a portion of the total power, they
reduce converter-associated losses, thus improving the overall
efficiency of the system.

To perform the charging process for EV batteries, numerous
algorithms have been developed. These aim to minimize the
charging time and extend the life cycle. To achieve this,
some of these algorithms take into account factors such as
temperature, state of health, current injection rate, and various
physical and chemical phenomena that impact the battery over
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Fig. 1. General structure of an EV battery charger with: a)
Low frequency isolation, b) High frequency isolation.

time and with repeated charge-discharge cycles [13]-[15]. For
example, the Constant Current and Constant Voltage (CC-
CV) charging algorithm [16] is the most commonly used in
EV battery charging applications. This algorithm consists of
two operating stages. In the initial CC stage, the battery is
charged with a constant current, the maximum value of which
is primarily set by the battery manufacturer and the charger
capacity; the second CV stage, avoids overcharging the battery
by limiting the current flowing into it, enabling the battery to
achieve a full 100% State of Charge (SoC) in a regulated way.
Another algorithm used for battery charging is to consider the
pulsed profile, where the battery receives periodic pulses of
current with varying amplitude and frequency [17]. A third
charging algorithm described in the literature involves the use
of multiple stages of constant current. This method aims to
minimize the charging time by identifying the optimal current
value to be supplied to the battery based on its SoC at each
stage, thereby avoiding excessive temperature rise throughout
the charging process [18], [19].

In the CC-CV charging algorithm, a cascade control system
utilizing Proportional-Integral (PI) controllers is commonly
used. In [20] a converter is presented that uses a non-linear
input-output feedback linearization controller.

On the other hand, data-driven control systems are advanced
control systems that determine the dynamics of power con-
verter through simulated and experimental data [21]. Recently,
Deep Reinforcement Learning (DRL) agents have gained more
attention due to their high adaptability and robustness to
disturbances and mismatched parameters, enabling the devel-
opment of model-free adaptive control systems [22], [23].
Different DRL agents have been proposed as control strategies
for different power converters. Two application fields lead
the current approaches: (i) DC-DC [24]-[27] and (ii) DC-
AC [28]-[33]. Continuous control actions in DC-DC power
converters enable the use of actor-critic DRL agents, such as
the Proximal Policy Gradient (PPG) [24], Deep Deterministic
Policy Gradient (DDPG) [25] and Twin-Delayed Deep De-
terministic Policy Gradient (TD3) [26]. On the other hand, a
value-based DRL algorithm, called Deep Q-network (DQN) is

Diode
_ _ fullbridge
. ’ nl »l ‘| L - .
i | L] Ll ZL 7
3 , e 2
oo RNy +
| — — === ==x
Sdek SRk o
o LI
V;Zn: 1 :Ll I+ 1 ;: Vo
| 1 1
' il
'Sylmkx Sqlazx ' C2 ) Acink
Nl A7) network
N = /Active
- full bridge -

Fig. 2. Type I PPC. [11]

proposed in [27]. Due to the structure of DQN, the proposed
approach reduces the required neural networks.

Here, an innovative artificial intelligent control system based
on a TD3 algorithm is introduced to control the charging
process of EV battery using a type I impedance network
PPC which as been proposed in [11]. The proposed approach
replaces the internal current controller within a traditional
cascade configuration, thus facilitating the regulation of the
EV battery charging process based on the CC-CV charging
algorithm. The main idea is to replace the traditional inner
current control loop with an action-critic DRL agent, while
maintaining the PI control as the external loop. The proposed
control system is trained using a simulated environment to
avoid potential damage or risks to the power converter struc-
ture. In addition, the behavior of the TD3-based control is
evaluated under variation in control constants of the external
control loop and the load system parameters. The remainder
of this work is organized as follows. Section II delineates the
basic principles associated with the type I impedance network
PPC used for the charging process. Section III reviews the
mathematical formulation of the TD3-based control system
and presents the design of the TD3-agent. Section IV shows
the main simulation findings derived from the charging process
and the training of the TD3-agent. Finally, Section V details
the conclusions of this work.

II. TYPE I IMPEDANCE NETWORK PPC

The behavior of a data-driven control system based on the
TD3 algorithm is assessed in a Type I impedance network
PPC [11]. Fig. 2 illustrates the power converter topology.
Note that the power converter consists of an active full
bridge connected to a diode full bridge through an impedance
network, which includes the inductor L1 and the capacitors C
and C5. This topology generates a series DC voltage between
the input voltage V;,, of the DC-DC converter and the battery.

Moreover, the switching signals S,, Sy, Sc, and Sy are
generated using the phase shift modulation strategy (PSM).
This approach enables a phase shift in the voltage produced
by each leg of the active full bridge. According to [11], the
shift value or displacement factor o ranges from 0O to 0.5. The
voltage across the output inductor L is described as follows:
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where Z denotes the average value of any signal x during a

switching period T'. ¢; denotes the current flowing through
the inductor L.

. . . dig
Assuming the system is in steady-state, i.e., — = 0, the

input-to-output transfer function of the system can be derived
as follows,

‘70
Vi
as shown in 2, the output voltage of the power converter is
directly dependent on «, allowing an voltage increase between
1.5 and 2 (for more information, see [11]).

=2-a, ©)

III. INTELLIGENT CONTROL SYSTEM DESIGN

A TD3 agent is an off-policy, model-free DRL technique
that consists of policy, reward function, action-value function,
and environment [34]. This work presents a data-driven control
system based on TD3 algorithm, following the guidelines
described in [35]. Fig. 3 illustrates the methodology used in
this work. The data-driven control system will be referred to
as the TD3-based control for the remainder of this work. The
TD3-based control can be summarized as follows.

o The action and observation spaces are built based on the
power converter control philosophy. The observations, x;,
consist of output load inductor current iy, the current
error e;,, the integral of the error, and the voltage
error in the battery ey, . The action space comprises the
displacement factor «. To guarantee the stability of V,
the TD3 agent is trained using a PI control that computes
the current reference ¢7,.

e The TD3 algorithm consists of two critic networks and
one actor network, as shown in Fig. 3. To avoid vanishing
and exploding gradient problems related to large neural
networks, this work employs a single hidden layer actor
network with 100 neurons. Since a has a continuous
behavior, a hyperbolic tangent activation function is se-
lected. To reduce the exploration process of the TD3
agent, a scaling stage is added that modifies the range of
a form [—1,1] to [0, 0.5]. Finally, a PSM is implemented
using the guidelines described in [11]. On the other hand,
critic networks consist of two hidden layers, each with
100 neurons. They are also equipped with rectified linear
unit (RELU) activation functions. All neural networks are
designed using Deep Network Designer toolbox.

o The agent must first be trained in a controlled and safe
simulation environment to ensure the convergence of the
TD3-based control system and to reduce the potential
damages in the power converter or battery system. Thus,
a simulation environment is created using MATLAB
2023/Simulink, which emulates the behavior of the power
converter, battery system, and measurement system. Dur-
ing the training, the environment modifies the reference
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Fig. 3. Proposed control scheme for the battery charging
application.

voltage in the battery V" for four different values between
610 V and 790 V. The TD3 agent is created using the
Reinforcement Learning Toolbox and is trained and tested
using a computer (Intel(R) Core(TM) i7-10700F proces-
sor running at 2.90GHz, with eight cores). Furthermore,
the computer has an NVIDIA GeForce RTX 3070 GPU
and 32 GB of RAM.

o The fundamental concept behind TD3 is associated with
the reward hypothesis, which states that all objectives
and purposes can be framed as maximizing the expected
cumulative reward. To this end, we propose a reward
function that minimizes e;,, ey,, and the control effort
using the previous time step action ay_;. The candidate
reward function for each time step is defined as follows:

re = — (Qu iy — il + Q2 [V — Vil + Qs lax—1]).

3)

where (1 = @2 = 20, and Q3 = 5 are constants,
empirically determined.

o After training the agent, the control system is adapted to
follow the CC-CV charging algorithm described in [11].
Due to the independence between the TD3 agent and
the constants of the external PI controller, it is possible
to tune control parameters without re-training the agent.
The battery charging process consists of two main stages.
First, in the CC stage, the converter is driven by a
single current-loop control system, i.e., the reference for
the internal current controller is set to a constant value
indicated by the BMS. During this stage, the ey, is set
to zero. Once the battery voltage reaches a SoC of 80%,
a bypass-control strategy autonomously commutes to a
cascade control system in the CV stage. In other words,
the ey, is connected to an external PI voltage controller.
The external PI controller generates the current reference
to ensure the battery system reaches a full SoC in a
controlled manner.

IV. SIMULATION RESULTS

This section analyses the performance of TD3-based control
for driving a Type I impedance network PPC.
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Fig. 4. Performance of trained TD3 agent under variation in
kp and k;: a) Load inductor current. b) Voltage in the
DC-link. ¢) Displacement factor.

A. Training of TD3-agent

The TD3 agent designed in Section III is trained using the
Reinforcement Learning Toolbox. To ensure proper conver-
gence, the TD3 agent is trained using a sampling time of 20 us
over 20 episodes, each lasting 2 s, with the agent frequency
set at 50 kHz. For the sake of this analysis, we also use a
10 © as a load during the training stage. According to [35], the
performance of the TD3 agent does not depend on proportional
and integral gains (kp and ki). Here, kp and ki are set to
reasonable values, one and ten, during the training stage. The
empirical findings revealed that the agent converges after 325
minutes.

Fig. 4 shows the main results of the trained agent at different
values of kp and ki for five different V. It is worth noting
that once the agent is trained, it is robust enough to vary
in the voltage control system. Although iy, and V, can be
controlled in three analyzed scenarios, the prediction « is poor
to proportional control (see cyan continuous lines in Fig. 4c.)

TABLE I
SIMULATION PARAMETERS

Parameters Value
Input Voltage 400 V
CC mode 100 A
Output inductor 1 mH
L1 inductor 1 mH
C1 and Cy capacitors | 200 uF
Switching frequency 20 kHz
1001
CC CV
mode mode (a)
= 50f
=
0 1 1 1 1 1 1
10 20 30 40 50 60
Time [min]
Battery nominal voltage~,
790 e
— 7701
>
= (b)
> 7501
CcC CV
730 mode mode
710

10 20 30 40 50 60
Time [min]

Fig. 5. Battery charger simulation results: a) Output

converter current. b) Battery voltage.

On the other hand, it is possible to see that the setting time
of iy, is less than 0.5 s (see Fig. 4a), which is sufficient for
the charging battery process. Finally, the output current ripple
decreases with the « increase.

B. Battery charger results

To verify the proposed control method, the type I PPC is
evaluated in an EV battery charging scenario, utilizing the
converter parameters listed in Table I. To simulate the charging
process, a battery model with a 60 kWh capacity and a nominal
voltage of 790 V is utilized. Initially, the battery state of charge
(SoC) is 20%, and it is charged to 100% using the CC-CV
charging algorithm.

The simulation results of the complete charging procedure
are illustrated in Fig. 5. The behavior of the charging algorithm
is illustrated in Fig. 5 a), where the output current of the
converter is depicted, showing that during the CC charging
stage, a constant current of 100 A is supplied to the battery. In
this phase, the intelligent controller receives a constant current
reference until the battery reaches 80% of its SoC. At this
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Fig. 6. Main waveforms of the converter observed during the
battery charging simulation: a) S, and S.. b) C; capacitor
voltage. ¢) Cy capacitor voltage. d) ir..

point, the smart controller ceases to receive a constant current
reference, transitioning to the CV charging stage. During this
stage, an external PI voltage controller is tasked to provide
the current reference. Initially, this signal matches the constant
current reference from the previous phase until around minute
10, after which the current gradually decreases as the SoC

approaches 100%. Fig. 5 b) illustrates the voltage behavior in
the battery throughout the entire charging process. It indicates
that the battery reaches 80% SoC when it reaches a voltage
of 775 'V, at which point it switches to the CV charging stage.
During this stage, the voltage continues to increase until it
reaches the nominal value of the battery. At approximately
the 10-minute mark, as the charging current diminishes, the
voltage ascends more gradually, ultimately achieving full
charge in a controlled manner within an estimated duration
of 60 min.

In steady state, during the CC charging mode, the voltage
waveforms across the impedance network capacitors, as well
as the current through the output inductor ¢y, over three
switching cycles, are shown in Fig. 6. As illustrated in
Fig. 6 a), at this instant, the displacement factor « is equal
to 0.147, where T denotes a switching period. As depicted
in Fig. 6 b) and c), the voltage across the capacitors in the
impedance network in mean value is equal to the input voltage,
remaining constant regardless of the output voltage of the
converter. Fig. 6 d) shows the output current waveform of
the converter, which shows a ripple of 2% at a current value
of 100 A.

V. CONCLUSIONS

This work presented an innovative TD3-based control for
a type I impedance network PPC. Different TD3 algorithms
were designed, trained, and tested in a simulated environment.
The simulation demonstrates that the proposed controller could
successfully charge a battery on the basis of the CC-CV
charging protocol. The battery SoC increased from 20% to
80% in approximately 8 minutes. This test was carried out
using a 60 kWh battery model and simulated a 79 kW charger.
The simulation results also revealed that the adaptability of the
strategy to the Type I impedance network PPC enables it to
handle uncertainties, variations, and nonlinearities associated
with the converter, resulting in improved performance and
stability.
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