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Abstract

Negative linear compressibility (NLC) describes the relative increase or decrease in a material’s linear
dimension when subjected to an increase or decrease in external pressure, or a decrease or increase
in internal pressure, respectively. This is a rare material property found in only a few naturally existing
materials. These materials are not only limited by their availability but also by the range, strength, and
stability of NLC behavior. This limitation can be addressed through the design of NLC metamaterials,
which are engineered materials composed of repeating architectures or material layouts on the micro-
scopic scale, known as base or unit cells. These cells define the macroscopic properties of the material.
In this case, negative linear compressibility.

While there are different methods for designing NLC metamaterials, none of them involve the use
of topology optimization (TO), which serves as a powerful tool for designing optimized metamaterial
structures. Materials can be designed for different parameters such as base material and pressure
applied, while also considering different constraints that may be application-specific.

This study aims to create isotropic NLC metamaterials by designing NLC metamaterial unit cells using
a systematic design methodology. We achieve this goal using a density-based TO approach, incorpo-
rating different constraints and selecting appropriate parameters to obtain different metamaterial unit
cells that exhibit NLC behavior in both two and three dimensions.

The resulting 2D designs exhibited an NLC value of -2.370 %/bar and -3.367 %/bar. While the 3D
designs exhibited an NLC value of -2.212 %/bar and -3.534 %/bar. The obtained NLC value and the ef-
ficacy of the design method are validated through numerical analysis and experimental testing, with the
experimental design showing a maximum deviation of 26.099% from the NLC value obtained through
TO. Finally, comparative and parameter studies helped better elucidate the advantages, limitations,
and areas for improvement of the methodology used to obtain these designs.
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1
Introduction

1.1. Background
Historically, there has always been an impetus to increase the capabilities of naturally occurring ma-
terials. While creating novel alloys and composites represent two significant methods to achieve this
objective, a more recent approach (in the last two decades) involves the design of metamaterials. Meta-
materials are artificially engineered materials that can be designed to exhibit exceptional properties usu-
ally not seen in nature. These materials, on the microscopic scale, consist of repeating architectures
or material layouts known as base or unit cells that dictate the effective macroscopic properties of the
material. Their unique or exceptional properties have been proven beneficial for various applications
and have pushed the limits of traditional designs, leading to their increased popularity in recent years
[1].

Figure 1.1: Schematic representation of different structural metamaterial behaviors. Negative Poisson’s ratio (NPR) metamate-
rials expand/contract laterally when a tensile/compressive force is applied. Similarly, negative coefficient of thermal expansion
(NTE) metamaterials contracts/dilates when heat is applied/removed from the metamaterial. Finally, negative linear compressibil-
ity metamaterials contract/expand when the external pressure is decreased/increased. Most naturally existing materials exhibit
the behaviors of their positive counterparts, positive Poisson’s ratio (PPR), positive coefficient of thermal expansion (PTE), and
positive linear compressibility (PLC), respectively [2, 3].

Negative Linear Compressibility (NLC) is one such exceptional property that can be engineered through
the design of mechanical metamaterials, which are a subset of metamaterials focused on manipulating
the mechanical properties of the overall material. NLC, along with negative Poisson’s ratio (NPR) and
negative coefficient of thermal expansion (NTE), are three of the most studied properties in structural
metamaterials [3]. While several publications concerning the design of NPR [4, 5] and NTE [6] exist,
the development of NLC metamaterials is still in the early exploratory phases [7, 8]. The behavior of
materials with these three mechanical properties and their positive counterparts are illustrated in Fig.
1.1.

1



1.2. Negative Linear Compressibility 2

1.2. Negative Linear Compressibility
Compressibility is a broader physical property of a material that is defined as the relative change in
dimensions of that material under a change in external pressure. This can further be specified as
either volume compressibility, area compressibility, or linear compressibility; where the definition de-
scribes the relative change in volume, area, or length of the material respectively. Negative volume
compressibility is observed when the volume of the material either increases/decreases when there is
an increase/decrease in external pressure. It is important to note that negative volume compressibility
does not guarantee NLC along all three axes. A material may have a large NLC along one axis but
may show small positive linear compressibility values along the other two axes leading to an overall
negative volume compressibility of the material. This can better understood through Fig. 1.2.

Figure 1.2: Schematic representation of different area compressibility (AC) cases. Dotted line describes the shape after external
pressure is applied. (a)Negative ACwith NLC in the two directions. (b)Positive ACwith NLC in one direction and PLC in the other.
(c) Negative AC with NLC in one direction and PLC in the other. Similar cases can be observed for volume compressibilities.

In this study, the focus will be on designing NLC metamaterials that exhibit isotropic compressibil-
ity; thereby demonstrating equal NLC along all three axes. Consequently, an NLC metamaterial with
isotropic linear compressibility would imply that the material also possesses negative volume and neg-
ative area compressibility values. It is also important to note that the definition of NLC in metamaterials
differs from the normal definition. Since NLC metamaterials are made up of base cells, their length-
/area/volume is defined in terms of effective length/area/volume. This is illustrated in Fig. 1.3, where
the area of the highlighted unit cell is defined in terms of its side length while the effective area is defined
in terms of its side length and the thickness of the base material.

Figure 1.3: Schematic representation of the difference between effective area and area. Similarly, effective length and effective
volume can be defined.

Mathematically, the compressibilities are defined as [9]:
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KL = − 1
L

(
dL
dP

)
T

KA = − 1
A

(
dA
dP

)
T

KV = − 1
V

(
dV
dP

)
T

 , (1.1)

where KL denotes linear compressibility along one axis of length L, KA, the areal compressibility
across a face of area A, and KV , the volume compressibility of the volume V ; all when exposed to a
change in pressure dP at a constant temperature T . Variables dL, dA, and dV denote the change in
length, area, and volume, respectively.1

1.3. Negative Linear Compressibility Materials
NLC is a rare material property that was first observed in tellurium [10]. However, further reviews, first
by Baughman et al. [9] and later by Cairns and Goodwin [11], listed 13 and 30 materials, respectively,
that showed some level of NLC behavior. A more recent study by Miller et al. [12] presented 38
materials that show NLC behavior, including some common materials like polyvinyl chloride (PVC) and
paper, which seemingly solved the problem of the availability of NLC materials. However, they are
still limited by their inherent range, strength, and stability of compressibility and tend to be impractical
when it comes to use in most engineering applications. This has led to a focus on developing NLC
metamaterials that can be tuned and optimized to overcome the disadvantages of naturally existing
NLC materials. Lim [13] compiled existing NLC metamaterial designs and broadly classified them
into three types of systems: cellular, bi-material strip, and interconnected membrane. While some
methods show NLC along only one direction, others are capable of showing NAC and even NLC along
multiple orthogonal directions. While there exist a number of different NLC architectures, which can
be select according to specific application requirements, the designs are still limiting, and a systematic
methodology is required to design NLC metamaterial that are tailored to their intended application.

1.4. Metamaterial Design
NLC metamaterials belong to a class of metamaterials known as structural metamaterials [3]. A struc-
tural metamaterial at its core is made up of repetitive base cells in the microscopic scale. These cells
can be made up of a structure or a solid mechanism that determines the overall structural properties of
the metamaterial [14]. While many past base cell designs have relied on the intuition and experience
of scientists and engineers, a systematic design approach is imperative when it comes to taking full
advantage of metamaterials. There are different systematic design approaches that can be used to de-
sign these base cell structures or mechanisms. However, compliant mechanism (CM) design proves
to be a better design approach when compared to traditional rigid body mechanism design [15]. This
is because CMs possess the following advantages:

1. They do not require assembly: CMs that are fully flexible (obtaining all their motion from flexible
components) do not require assembly, this is beneficial for metamaterials for two reasons. First,
the unit cells of metamaterials are on the microscopic scale which makes the assembly difficult.
Second, metamaterials consist of repetitive unit cells, making the assembly process tedious.

2. Possibility of monolithic designs: This makes it easy to manufacture with different microscopic
scale manufacturing techniques, which is important when it comes to manufacturing metamateri-
als.

3. They are wear free: They eliminate friction as there are no contact surfaces between two parts,
this leads to larger motion cycles and an overall larger life cycle.

4. They are precise: CMs are wear free, friction free and backlash free which leads to highly precise
motion which is important in metamaterials to prevent any errors which could build up due to the
large number unit cells.

CM design involves many different methods and techniques. Gallego and Herder [16] enlisted different
CM synthesis techniques that could be used to design metamaterials. A chart of the different synthesis

1 For metamaterials, the length, area and volume in the compressibility equation will be replaced with effective length, area and
volume.
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techniques is illustrated in Fig. 1.4.

Figure 1.4: Chart of different CM synthesis methods [16].

Structural optimization, more specifically TO proves to be a suitable design method because of the
systematic approach and great design freedom it possesses. This is particularly helpful when it comes
to designing metamaterials, the reasons behind it are:

1. Maximizing or minimizing the objective: TO is able to provide either the highest or lowest possible
index value. For example, maximizing the Poisson’s ratio for PPR metamaterials or minimizing
the linear compressibility value for NLC metamaterials.

2. Obtaining symmetry: Different TO techniques and/or constraints can be used to obtain symmetric
results which could be used to obtain isotropic metamaterials.

3. Manufacturing limitations: Manufacturing limitations can be taken into account using constraints
including adding passive regions and by complying to a minimum length scale. This is important
for metamaterials as the base cells are designed for the microscopic scale and the manufacturing
techniques in the microscopic scale have a lot of limitations.

4. Failure criteria: Constraints can be added to ensure that the design satisfies a predefined failure
criteria, which is obtained from the type of material used, the loading condition experienced and
the application it is used for. Typically, most metamaterials are required to undergo plenty motion
cycles and are thereby required to have a high fatigue-resistance.

5. Optimizing for material: Designs obtained through TO are dependent on material properties and
therefore every material possess a unique design which is optimized for its properties.

1.5. Topology Optimization
Pioneered by Bendsøe and Kikuchi [17] through a homogenization based approach, TO is a mathe-
matical method through which the material distribution in a design space can be optimized, for either a
specific performance or property value (also known as the objective function). This is achieved by ap-
plying specified loads, boundary conditions and constraints. Most algorithms use a finite element (FE)
method to calculate the objective function and this step is repeated till the desired objective function
value is achieved. The material layout differs in every step, and changes according to an optimization
algorithm. The optimality criteria (OC) method and the method of moving asymptotes (MMA) are two
such optimization algorithms that help push the current material layout towards the optimized layout.
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A popular approach to TO is density-based TO, which uses the elemental densities as the design
variables and aims to achieve a material density layout that minimizes the objective function while
satisfying all the constraints. The material space in a density-based TO is discretized into elements
each of which have an initial density value. The density value in these elements are linked to a certain
material property of their respective elements. These densities change through an iterative penalization
method that penalizes the material properties in each element, till the optimal material layout is obtained
[18]. This iterative change in density values can be observed in Fig. 1.5. Simplified isotropic material
with penalization (SIMP) approach is a common material interpolation and penalization method used
in many structural optimization problems, as it relates the design variables to the elemental elasticity
modulus Ee. The equation for Ee in terms of elemental density ρe can be written as:

Ee(ρe) = Emin + ργe (E0 − Emin), (1.2)

where E0 is the Young’s modulus of solid material, Emin is the Young’s modulus of the void material and
γ is the penalization factor.

Figure 1.5: The design evolution for a compliance minimization problem using density-based TO. The first design is the initial
material space and the final design is the optimized design.

1.6. Research Goal and Motivation
The goal of this research is to establish a systematic design methodology using TO for the design
of NLC unit cells. The established method should be capable of creating tailored NLC metamaterial
designs, that can be used in various applications.

The motivation behind this research is to advance the development of NLC metamaterials, given their
numerous existing and potential applications. For example:

1. NLC metamaterials can be implemented similarly to NPR metamaterials, creating programmable
metamaterials and active mechanical metamaterials [19, 20].

2. A combination of NLC and PLC can be used to create superior hybrid metamaterials [21] or
even provide actuation. An example of actuation that could be achieved with NLC and PLC
metamaterials is a soft robotic arm.

3. There are also applications that solely utilize the NLC property exhibited by these metamaterials,
such as pressure sensors and actuators [9].

4. Lastly, materials exhibiting both NLC and NPR behavior are exceptionally suited for damping
mechanisms, including soundproofing, protective devices (car bumpers, seismic protection), and
biomedical applications (stents, skin grafts, smart dressings, and implants) [22].
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1.7. Outline
The initial focus of this report, Section 2, will be a comprehensive literature review, beginning with
an exploration of the currently established NLC metamaterial designs. This will be followed by an
examination of two methods of metamaterial design using TO. The final part of the literature review
will focus on the various TO methods that can tackle design-dependent pressure loads2. The literature
review will elucidate the rationale behind using TO as an NLC metamaterial design process, the most
suitable method of metamaterial design using TO for NLC metamaterials, and an optimal approach for
addressing design-dependent pressure loads.

These insights will then inform the subsequent section, Section 3, the methodology, which will include
a detailed explanation of the design process and its validation methods namely, numerical analysis and
experimental analysis.

Section 4, the results and discussion, will present and explain the designs obtained from the method-
ology. The section will also provide a relative difference between the NLC values obtained from TO
and the NLC values obtained through the validation methods. The section concludes with a parameter
study comparing the influence of certain TO design parameters on the final NLC value. It also includes
two comparative studies: one testing whether the NLC behavior of the obtained design is superior to a
state of the art design, and the other evaluating the importance of the pressure load application method
in a design-independent context.

Finally, Section 5, the conclusion and future scope, will summarize the results, detail the findings, de-
scribe the importance of the findings, and discuss the future scope of the study, including areas of
research that would help better understand and establish the design methodology.

2 Pressure loading in TO is tricky as the pressure boundary where the load is applied can change as the design evolves, this
means that the pressure load is design-dependent.



2
Literature Review

2.1. Negative Compressibility Metamaterials
Compressibility can be defined in terms of linear, area and volume compressibility, as denoted in Eq.1.1.
This equation can be used to find the three linear compressibilities [13], as shown in Eq. 2.1.

α1 = −
(
ε11 + ε21 + ε31

dp

)
T

α2 = −
(
ε12 + ε22 + ε32

dp

)
T

α3 = −
(
ε13 + ε23 + ε33

dp

)
T


, (2.1)

where the linear compressibility is denoted by α while the linear strain corresponding to the change
in pressure dp under constant temperature T is denoted by ε. The subscripts denote the direction of
strain and the superscript denotes the direction of load application. The three directions correspond to
the three orthogonal directions along the coordinate axes. The change in pressure dp is equal to the
applied stress σ in the orthogonal directions denoted by the superscript.

σ1 = σ2 = σ3 = dp, (2.2)

Negative volume compressibility does not guarantee negative area compressibility along all three or-
thogonal planes nor does it guarantee NLC along all three orthogonal directions. Therefore, the def-
inition of a negative compressibility (NC) metamaterial is broad and can be used for a material that
shows either negative compressibility linearly along at least one direction or areally along one of the
orthogonal planes defined by two directions, or in terms of the volume of the metamaterial. Lim [13]
compiled different negative compressibility metamaterials that exhibit either negative linear, area or vol-
ume compressibilty and broadly classified them into three types of systems: cellular, bi-material strip,
and interconnected membrane. Most of these metamaterials are porous in nature and allow fluid to
easily pass through the system, thereby applying pressure evenly on all surfaces. Note: The pressur-
ized fluid passes through and the metamaterial system but not through the base material, for enclosed
holes in the 2D case, fluid is allowed to pass over the material bounding it and into the empty space.
However, enclosed voids in the 3D case do not allow fluid to pass through.

2.1.1. Cellular System
The metamaterial designs put forth by Grima et al. [23, 24, 25, 26], Attard et al. [27], Zhou et al. [28,
29], Ma et al. [30], Dudek et al. [31], and Grima-Cornish et al. [32] fall into the category of cellular
systems. The change in unit cell dimensions of these metamaterials is defined by either the amount of
stretching or rotation the rib of the unit cell undergoes. Sometimes it is also a function of both stretching

7



2.1. Negative Compressibility Metamaterials 8

and rotation. These three cases are visualised in Figs. 2.1, 2.2, and 2.3. The unit cells can be defined
as [13]:

X1 = X1 (l1, l2, . . . , lm, θ1, θ2, . . . , θn)

X2 = X2 (l1, l2, . . . , lm, θ1, θ2, . . . , θn)

X3 = X3 (l1, l2, . . . , lm, θ1, θ2, . . . , θn)

 , (2.3)

which is a function of rib lengths l and inclination angles θ. m and n define the total number of ribs and
inclination angles, respectively. The linear compressibilities of the cellular NC metamaterial systems
can be derived by calculating the individual strains from Eq.2.3 which can then be used to derive the
linear compressibilities as done in Eq.2.1. Cellular systems can further be divided into three categories
depending on the major cause of deformation in the metamaterial.

Rib Stretching Mode
These are cellular systems where the strain is solely a function of the rib lengths. They are designed
as either a network of rods/ribs joined at the junctions with pin joints, to allow free rotation about the
hinges without incurring bending moment, or as a network of rods/ribs joined at connectors that permit
only sliding translational motion. As a result, the equation for the strains is simplified and can be noted
as:

ε11 =
1

X1

(
∂X1

∂l1
dl11 +

∂X1

∂l2
dl12 + . . .+

∂X1

∂lm
dl1m

)
ε12 =

1

X2

(
∂X2

∂l1
dl11 +

∂X2

∂l2
dl12 + . . .+

∂X2

∂lm
dl1m

)
ε13 =

1

X3

(
∂X3

∂l1
dl11 +

∂X3

∂l2
dl12 + . . .+

∂X3

∂lm
dl1m

)
ε21 =

1

X1

(
∂X1

∂l1
dl21 +

∂X1

∂l2
dl22 + . . .+

∂X1

∂lm
dl2m

)
ε22 =

1

X2

(
∂X2

∂l1
dl21 +

∂X2

∂l2
dl22 + . . .+

∂X2

∂lm
dl2m

)
ε23 =

1

X3

(
∂X3

∂l1
dl21 +

∂X3

∂l2
dl22 + . . .+

∂X3

∂lm
dl2m

)
ε31 =

1

X1

(
∂X1

∂l1
dl31 +

∂X1

∂l2
dl32 + . . .+

∂X1

∂lm
dl3m

)
ε32 =

1

X2

(
∂X2

∂l1
dl31 +

∂X2

∂l2
dl32 + . . .+

∂X2

∂lm
dl3m

)
ε33 =

1

X3

(
∂X3

∂l1
dl31 +

∂X3

∂l2
dl32 + . . .+

∂X3

∂lm
dl3m

)



. (2.4)

The Greek letter ε denotes the different strains induced in the direction denoted by the subscript due to
a load in the direction denoted by the superscript. The strains are a function of the unit cell dimension
X and the rib lengths l. Finally, m denotes the total number of ribs.

Fig. 2.1 describes an example of a 2D system exhibiting NLC as a result of rib stretching. This system
displays NLC behavior in one of the two orthogonal directions when the external pressure is reduced.
This system is porous and allows fluid to pass through the system. The system in the figure experiences
NLC behavior in the Ox1 direction but positive linear compressibility in the Ox2 direction.

Rotational Mode
The strain of rotational cellular systems are only a function of the inclination angles. The deformation
of these systems are caused by the rotation of rigid ribs or the rotation of rigid units. Similar to the
rib-stretching mode, the equation for the strains can simplified as:
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Figure 2.1: An example of a 2D metamaterial system with NLC (in one direction), made of two base materials [23].

ε11 =
1

X1

(
∂X1

∂θ
dθ1 +

∂X1

∂θ2
dθ12 + . . .+

∂X1

∂θn
dθ1n

)
ε12 =

1

X2

(
∂X2

∂θ1
dθ11 +

∂X2

∂θ2
dθ12 + . . .+

∂X2

∂θn
dθ1n

)
ε13 =

1

X3

(
∂X3

∂θ1
dθ11 +

∂X3

∂θ2
dθ12 + . . .+

∂X3

∂θn
dθ1n

)
ε21 =

1

X1

(
∂X1

∂θ1
dθ21 +

∂X1

∂θ2
dθ22 + . . .+

∂X1

∂θn
dθ2n

)
ε22 =

1

X2

(
∂X2

∂θ1
dθ21 +

∂X2

∂θ2
dθ22 + . . .+

∂X2

∂θn
dθ2n

)
ε23 =

1

X3

(
∂X3

∂θ1
dθ21 +

∂X3

∂θ2
dθ22 + . . .+

∂X3

∂θn
dθ2n

)
ε31 =

1

X1

(
∂X1

∂θ1
dθ31 +

∂X1

∂θ2
dθ32 + . . .+

∂X1

∂θn
dθ3n

)
ε32 =

1

X2

(
∂X2

∂θ1
dθ31 +

∂X2

∂θ2
dθ32 + . . .+

∂X2

∂θn
dθ3n

)
ε33 =

1

X3

(
∂X3

∂θ1
dθ31 +

∂X3

∂θ2
dθ32 + . . .+

∂X3

∂θn
dθ3n

)



. (2.5)

The Greek letter ε denotes the different strains induced in the direction denoted by the subscript due to
a load in the direction denoted by the superscript. The strains are a function of the unit cell dimension
X and the inclination angles θ. Finally, n denotes the total number of ribs.

Fig. 2.2 describes an example of a 2D system exhibiting NLC as a result of rib rotation. This system
displays NLC behavior in one of the two orthogonal directions when the external pressure is reduced.
This system is porous and allows fluid to pass through the system. The system in the figure experiences
NLC behavior in the Ox2 direction but positive linear compressibility in the Ox1 direction.
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Figure 2.2: An example of an NC system with a rotational constraint exhibiting NLC [13, 26].

Combined Mode
The combined mode of cellular NC metamaterial system uses a combination of both rib stretching and
rotation to achieve its deformation. The strains of these systems are a function of both the rib length
and the inclination angles. The equation of strains is merely an addition from both the components in
Eq.2.4 and Eq.2.5. A couple of porous 2D metamaterial systems that exhibit NLC behavior are shown
in Fig. 2.3.

Figure 2.3: Schematics of (a) a hexagonal honeycomb and (b) a wine-rack model undergoing deformation due to increasing
external pressure [24]. The hexagonal honeycomb model only exhibits NLC behavior in the Ox2 direction while the wine-rack
model only exhibits NLC behavior in the Ox1 direction.

2.1.2. Bi-material Strip System
The porous bi-material strip system put forward by Gatt and Grima [7], exploits the difference in com-
pressibility values of two materials that are attached together. This difference in compressibility values
leads to the bending of linkages, which ultimately leads to a change in unit cell dimensions. This is
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ilustrated in Fig. 2.4. The resulting system is symmetric and therefore exhibits NLC in both orthogonal
directions, along with an overall NAC behavior.

Figure 2.4: Schematic representation of (a) a porous bi-material unit cell that exhibits an overall NAC behavior and NLC behavior
along the two orthogonal axes and (b) the same unit cell deforming under change in pressure [7, 13].

2.1.3. Interconnected Membrane System
Finally, interconnected membrane systems are systems where specific shapes of a particular material
are attached together in groups of four (square array) or six (hexagonal array). They take advantage
of the fact that when external pressure is applied to these shapes, they tend to decrease in area and
form another shape. This change in shape ultimately leads to an increase in the effective area/volume
of the unit cell when external pressure is increased, leading to NLC behavior [13]. The metamaterials
of interconnected membrane systems are 2D and porous in nature, showing negative area compress-
ibility and equal NLC in the two orthogonal directions. An example of a square array interconnected
membrane systemmade up of octagonal shapes is illustrated in Fig. 2.5. Under an increase in external
pressure, the octagonal shapes deform towards a more square shape which ultimately leads to overall
unit cell showing NAC and NLC behavior.

Figure 2.5: Schematic representation of an interconnected membrane system unit cell that consists of a material (shaded blue)
in the shape of an octagon that under pressure deforms to a more square shape leading to negative area compressibility (left).
The square array is made up of four such cells (right) [13].
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2.2. 3D Isotropic Negative Linear Compressibility Metamaterials
Qu et al. [33] proposed a 3D metamaterial design that is isotropic and exhibits NLC. Each unit cell
consists of eight hollow crosses connected to each other with thin lever arms. The warping of the thin
membranes in the hollow crosses leads to the rotation of the thin lever arms. This ultimately leads to
an overall decrease in volume when external pressure is increased and vice versa. This is illustrated
in Fig.2.6.

Figure 2.6: (a) Unit cell of the 3D metamaterial design proposed by Qu et al. made up of 8 hollow crosses. (b) The same unit
cell expanding in volume under applied external pressure [33]. a is the unit cell side length.

Qu et al. [8] further improved this design to achieve a linear compressibility of -4.7%/bar under pressure
control. This value is six times larger than the compressibility obtained in the initial design shown in Fig.
2.6. Each unit cell consists of one hollow cube with four connectors attached on each face. Similar
to the initial design, the deformation of the inner cube rotates the four connectors attached to it which
ultimately leads to a change in length of the overall unit cell. This is illustrated in Fig.2.7.

Figure 2.7: (a) Improved unit cell of the 3D metamaterial design proposed by Qu et al. (b) Cross-section of the unit cell that
shows the internal design (right) [8]. a,l,d,r,c,b and t are dkmensional design parameters of the unit cell.

2.3. Metamaterial Design using Topology Optimization
Two methods are identified for the design of a mechanical metamaterial using TO. The first method is
through the inverse homogenization method and the second one is by a CM design formulation. These
two methods are desribed in Fig. 2.8.

In the homogenization method, a base cell that forms the repetitive unit of a periodic material is used
to derive the effective properties of the periodic material through a number of FE analysis test cases.
However, in the inverse homogenizationmethod, the desiredmaterial properties are first defined and an
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optimal material layout (for the base cell) satisfying those properties is then derived through a number
of FE analysis tests. This method has been used and proven to deliver mechanical metamaterials,
particularly NPR metamaterials [34].

Metamaterials can also be designed through a CM formulation, where every unit cell is a CM [35, 36].
These CMs can be designed using TO [37, 38, 39]. This CM forms the basis of the metamaterial (base
cell) and the macroscopic properties of the material can be defined based on the output displacement
of the CM given a certain input displacement/load.

Figure 2.8: (a) The inverse homogenization design process outputs a material (right) that fulfills the required material properties
EH

ijkl by designing the optimal micro-structural topology (center) [34]. (b) The CM formulation outputs the required material
layout (right) by designing the optimal CM (center) that forms the base cell of this material. The CM design is decided by the
input load/displacement u and the output displacement v.

2.3.1. Inverse Homegenization
Developed from the homogenization method, which involved taking a small repetitive unit (base cell)
consisting of one or more materials and running a number of FE analysis tests on it to derive the
properties of the unit cell, inverse homogenization involves defining the value of these properties and
then finding the material distribution of each unit cell that would contribute to those overall properties.
Sigmund [40] laid out a blueprint for the design of metamaterials through the inverse homogenization
method and formulated the optimization problem as follows:

min
ρ

: Φ(C∗
ijkl(ρ))

s.t. :

N∑
e=1

veρe/V0 ≤ f

: gi(C
∗
ijkl(ρ)) ≤ g∗i , i = 1, · · · ,M

: K(ρ)ui = Fi, i = 1, · · · ,m
: 0 ≤ ρ ≤ 1


, (2.6)

where Φ(C∗
ijkl(ρ)) is the function of the homogenized material that needs to be minimized; ve, ρe, V0

and f are the elemental volume, elemental density, total design space volume and chosen volume
fraction, respectively; gi(C∗

ijkl(ρ)) are the constraints and g∗i are the limiting values of those constraints
that are chosen. K(ρ)ui = Fi is the linear FE equation used to calculate the homogenized property
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values of the unit cell. Finally, M , m and N denote the total number of constraints, test loads and
elements, respectively.

Larsen et al. [41] used inverse homegenization to find metamaterial structures with negative Poisson’s
ratios, through a least-squares optimization problem where the objective function was defined as:

min : Φ = (EH
ijkl −E∗

ijkl)
2. (2.7)

EH
ijkl is the desired elasticity tensor of the unit cell and E∗

ijkl is the elasticity of the unit cell after opti-
mization. This value is obtained through homogenization process which solves a FE problem of the
design to obtain the property values. This is further illustrated in Fig.2.9.

Figure 2.9: A discretized base cell with two by two elements.Test unit strains are applied to corner nodes in three FE cases as
ε = {1 0 0} (left), ε = {0 1 0} (center) and ε = {0 0 1} (right).

2.3.2. Compliant Mechanism Formulation
CM synthesis using TO can be a viable method of metamaterial design, specifically for metamaterial
properties that involve displacements, such as NPR and NLC metamaterials. As illustrated in Fig 2.10,
these metamaterial can be designed using CM synthesis because these properties are a result of a
distinct input load that results in a distinct displacement, both of which can be easily defined for the CM
synthesis problem.

Figure 2.10: Example of a possible 2D NLC metamaterial design using the CM formulation. Initial material space (left) along
with the required initial load points (black dots) and desired displacement points (white dots). Optimized CM (center) that forms
the base cell. Base cell deformed under load, pressure load in this case (right). The required displacement/change in length can
be observed as the side length L increases to L+x.

The foundation of CM synthesis using TO was first put forward by Ananthasuresh et al. [37], Sigmund
[38], and Ananthasuresh et al. [39]. This led to two main approaches: one put forward by Sigmund
[42], where the output load was defined as a spring force, and the second put forward by Frecker et al.
[43], which is a multi-criteria approach based on two mutual energies. The two methods are illustrated
in Fig. 2.11.
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Figure 2.11: (a) First approach where the output load is defined as a spring force [18]. (b) Second approach where the optimiza-
tion criteria not only depends on the flexibility of the mechanism but also on its stiffness [43].

2.4. Density-based Topology Optimization for Pressure Loads
TO for NLC metamaterials involve the application of pressure loads. These loads pose an added
difficulty, as they are design-dependent and have a changing load boundary. This means that the
direction and location of the loads depends on the shape and topology of the design. This problem
was first addressed by Hammer and Olhoff [44], who tackled this through the use of iso-density curves
and surfaces to determine the application curve or surface of the pressure load. However, boundary
identification proved to be cumbersome and challenging. The steps followed by this design method
are illustrated in Fig. 2.12. Some of these problems were mitigated in subsequent research works
[45, 46, 47, 48, 49]. These boundary identification methods also failed to account for pressure load
sensitivities. These load sensitivities strongly contribute towards finding the most optimal pressure-
actuated CM (PaCM). Therefore, it is important to find an inexpensive way to calculate them.

Figure 2.12: The parameterization of a load bearing surface based on (a) a non-uniform and discontinuous density distribution.
(b) Identified equal density points.(c) The Bézier curve that fits these points. (d) Identified pressure loading curve and pressure
distribution. (e) The curve crossing through an element is approximated as a line passing through it and the intersection points
(x1, y1, x2, y2) help determine the consistent nodal forces acting on the element [44].
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Another school of thought [50, 51, 52, 53, 54, 55] emerged that sought to steer clear of boundary
identification methods completely, using physical fields or phases. The load boundaries are implicitly
obtained through the formulation in these methods. For example, Sigmund and Clausen [50] put for-
ward a mixed formulation approach which didn’t require surface load parametrizations. In this method,
the standard FE displacement formulations is replaced with a mixed form that includes pressure as an-
other separate variable. A “void” phase is also defined, that acts as a hydrostatic incompressible fluid,
allowing for the transfer of pressure forces through it. Finally, to prevent the optimizer from exploiting
this incompressibility, another phase called “fluid” phase is introduced. This leads to a three-phase TO
method. While these methods were able to skip the cumbersome boundary identification step, they
didn’t take into account load sensitivities.

To tackle this issue, Kumar et al. [56] proposed a method that utilizes Darcy’s Law to implicitly identify
the pressure boundary. This is realized through the clever use of a drainage term, wherein only the
surfaces in contact with the pressure experience the pressure load. This method also allows for the
analytical calculation of the load sensitivities with respect to the design variables through the adjoint-
variable method. This method is used to find the optimal PaCMs [57], which makes it a great tool
to design the unit cells of NLC metamaterials. Fig. 2.13 graphically represents the steps taken to
calculate the consistent nodal forces resulting from the pressure applied and Fig. 2.14, illustrates a
design-dependent problem that utilizes Darcy’s Law to find the changing pressure boundary.

Figure 2.13: Graphical representation of the steps taken to calculate the consistent nodal forces resulting from the pressure
applied. Where dx, dy, K(ρe), H(ρe), q, Qdrain, p, b, and F are the element’s dimension in x, dimension in y, flow coefficient,
drainage coefficient, flux flowing through it, volumetric drainage per second, pressure applied, equivalent body force experienced,
consistent nodal forces experienced, respectively [56].

Figure 2.14: Evolution of the pressure boundaries (initial input Γp, output Γp0 and evolving Γpb ) in a design optimization problem
that utilizes Darcy’s Law to map the pressure field and the evolving pressure boundary, where Ω and Ωm indicate the design
domain and the solid region respectively. Ωp and Ωv indicate the pressurized and pressurized void regions respectively. Finally,
Γu and ρ indicate the fixed displacement boundary and the material density, respectively[56].
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2.5. Design Method
Based on the state of the art, there are numerous options available when selecting the most appropriate
design methodology for NLC metamaterials.

1. Type of mechanism: From section 1.4 it is clear that CMs possess several advantages that make
them better suited for the design of NLC metamaterials, as compared to rigid body mechanisms.

2. CM synthesis method: Structural optimization is the best CM synthesis method when it comes
to engineering NLC metamaterials because it not only fulfills many requirements that are desired
when it comes to designing NLC metamaterials, but also provides additional advantages over
other CM synthesis methods. These reasons are elucidated in section 1.4.

3. Method of optimization: There are different methods that can be used for structural optimization.
However, the versatility of density-based TO to solve a large variety of problems, coupled with
the extensive literature on different topics, make it one of the easiest implementable methods.

4. Metamaterial design method: As mentioned in section 2.3, there are twomain methods of tackling
a metamaterial design problem using density-based TO. Based on the task of NLC metamaterial
design, the CM formulation seems to be the better method as the inverse homegenization method
doesn’t have any flexibility for the implementation of design-dependent loads. It is also quite
restrictive as compared to a CM formulation.1

5. Application of pressure load: The “Darcy’s Method” of pressure load application put forward by
Kumar et al. [56] is better suited for metamaterial design using the CM formulation. This is
because the “Darcy Method”2 takes pressure load sensitivities into account which leads to better
optimized CM results [56, 58].

These are the reasons why this report will tackle the problem of NLC metamaterial design by designing
the metamaterial unit cell as a PaCM that will be designed using density-based TO. Finally, the pressure
loads in this problem will be applied using the “Darcy Method” put forward by Kumar et al. [56].

1 In the CM formulation, we can choose the location and number of output points.
2 The pressure force application method put forward by Kumar et al. [56] that uses Darcy’s Law to map the pressure field is

hereby referred to as “Darcy Method”.



3
Methodology

3.1. Design Method
For the design of an NLC unit cell, the density-based TO formulation was used and the modified SIMP
approach was employed to relate the elemental stiffness matrix of its design variable as shown in Eq.
1.2. The optimization problem of a density-based TO formulation can be written as:

min
ρ

: Φ(ρ)

s.t. : Ai(ρ)xi = Bi, i = 1, · · · ,M
: fi(ρ) = f∗

i , i = 1, · · · , N
: gi(ρ) ≤ g∗i , i = 1, · · · , L
: 0 ≤ ρ ≤ 1


, (3.1)

where linear set of equations Ai(ρ)xi = Bi are the different state equations that are used to calculate
the state variables. Functions fi(ρ) are limited by f∗

i and are also called equality constraints, functions
gi(ρ) are limited by g∗i and are called inequality constraints. M , N and L signify the number of state
equations, equality constraints and inequality constraints, respectively.

Figure 3.1: Flowchart of density-based TO method using method of moving asymptotes.
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The optimization process begins by initializing a density layout. The objective function relating to that
density layout is calculated using the related state equations. The density layout is updated based
on an optimization scheme. The optimization scheme used for this problem is the method of moving
asymptotes (MMA). This method introduced by Svanberg [59] is preferred for its computation speed
and versatility in handling multi-constraint problems. The optimization scheme uses design sensitivities
that are based on the objective, state and constraint equations to change the density layout towards an
optimized layout. This iteration process continues until an optimized density layout is obtained. Lastly,
other regularization tools and techniques like filtering, passive elements, and symmetric sensitivity
averaging can be used to obtain desirable results based on the design problem and errors faced [18].
The process can be visualized in Fig. 3.1.

3.1.1. Design Space
For a 2D and 3D NLC metamaterial unit cell design, the design space is modeled as a square and
cubic domain that is discretized into equal number of square and cubic elements in all two and three
orthogonal directions, respectively. This helps obtain symmetric designs with isotropic material proper-
ties. The domain in the 2D and 3D case represents one-fourth and one-eighth of the total metamaterial
unit cell, respectively. This is shown in Fig. 3.2.

Figure 3.2: (a) Design space (dark gray) and overall 2D unit cell (light gray). (b)Design space (dark gray) and overall 3D unit
cell (light gray).

Each element consists of eight nodes and every node is associated to three displacement and one
pressure degrees of freedom. Every element is associated to a particular density value that is updated
after every iteration, until an optimized value is obtained. The global nomenclature of the elements
and nodes and the local nomenclature of an element’s associated degrees of freedom and density is
illustrated in Fig. 3.3. For the 2D case one can refer to [60].

Figure 3.3: (a) Mesh grid nomenclature: Global format. Illustrating the element numbers (white) and their node numbers
(black). (b) Nomenclature for element i: Local format. Illustrating the nodes; their displacement degrees of freedom in their
three orthogonal directions (u, v and w); and pressure degrees of freedom (p). ρi represents the design variable of element i.
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3.1.2. Objective Function
As discussed in Section 2.5, the NLC metamaterial design is generated using a CM formulation. A
flexibility-stiffness based multi-criteria formulation developed by Saxena and Ananthasuresh [61] and
Frecker et al. [43] is implemented in this case. This can ensure that the obtained CM is not only
stiff enough to handle the actuating loads, but can also provide the desired deformation. The function
driving the stiffness is the strain energy (SE) or compliance, which is minimized, whereas the function
that is driving the output deformation is the mutual strain energy (MSE). The objective function can
therefore be written as [61]:

Φ(u, v,ρ) = −MSE(u, v,ρ)
2SE(u,ρ) = −vTKu

uTKu ,
(3.2)

where u, v, and K are the global displacement vector, output deformation vector and the global stiffness
matrix, respectively. It is important to note that in this CM formulation an output stiffness kss is added
at the output location, which represents the work piece stiffness.

3.1.3. State Equations
State equations help us find the required state variable given a certain value of the design variable,
which in turn is required to calculate the objective function. As seen in Eq. 3.2, the state variables that
influence the CM objective function are u and v. The first state equation is straightforward and comes
from the CM formulation put forward by Saxena and Ananthasuresh [61].

N∑
e=1

Ee(ρe)keve = Kv = Fd, (3.3)

where Ee(ρe) is the density-dependent elemental Young’s modulus as shown in Eq. 1.2. ke and ve are
the elemental stiffness matrix and elemental output deformation vector. N denotes the total number of
elements in the design space and Fd is a unit dummy force vector that is in the same direction as that
of the output deformation.

The second state equation can be found through the FE equation relating the global displacement
vector to the global force vector.

N∑
e=1

Ee(ρe)keue = Ku = F, (3.4)

where ue is the elemental displacement vector and F is the global force vector. While the calculation
of the global stiffness matrix K is straightforward, the global force vector F is constantly changing and
isn’t easy to calculate. Additional state equations are required to firstly map the pressure points and
secondly to relate the pressure points to nodal forces. This can be done using the “Darcy Method”.

Figure 3.4: Behavior of a 1D pressure field (thick dash-dotted lines/curves) when using Darcy’s law on a porous material of
three elements. (a) pin, pout,

∑
F and A are the input pressure, output pressure, total force on the boundary and cross-section

sectional area, respectively [56]. To visualize these cases, one may refer to [60].
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Darcy’s Law defines the ability of a fluid to flow through porous media, such as rock, soil, or sandstone.
It states that the fluid flow through a unit area is directly proportional to the pressure drop per unit length
and inversely proportional to the resistance of the porous medium to the flow [62].

q = −κ

µ
∇p = −K(ρe)∇p, (3.5)

where q, κ, µ, and ∇p represent the flux (ms-1), permeability (ms2), fluid viscosity (Nm-2s) and pres-
sure gradient (Nm-3), respectively. Further, K (m4N-1s-1) is termed herein as a flow coefficient which
expresses the ability of a fluid to flow through a porous medium. The flow coefficient of each element is
related to its density ρe. This equation not only allows to map the pressure field over the design space
but is also a function of the design variable (ρe). K(ρe) is modelled using a smooth Heaviside function
[56] as:

K(ρe) = kv − kvs
tanh(βkηk) + tanh(βk(ρe − ηk))

tanh(βkηk) + tanh(βk(1− ηk))
, (3.6)

where kvs = (kv−ks) and kv and ks are the flow coefficients for void (ρe = 0) and solid (ρe = 1) elements,
respectively. The value of ηk and βk are adjustable parameters that control the position of the step and
slope of the Heaviside function. The flow coefficient ks << kv, resulting in a greater drop in pressure
when passing through a solid elements, as the value of K(ρe) = ks in a solid element (ρe = 1), and
K(ρe) = kv in a void element (ρe = 0).

Figure 3.5: (a) A Heaviside function used to represent the density-dependent flow coefficient K(ρe). For the plot, ηk = 0.4 and
βk = 10 have been used. It can be observed that when ηk > ρe, K(ρe) = kv and when ηk < ρe, K(ρe) = ks. (b) A Heaviside
function used to represent the drainage coefficient H(ρe) using the Heaviside parameters ηk = 0.6 and βk = 10. Herein, r = 0.1,
∆s = 2 mm and kd = 10-10m4N−1s−1 are considered to find hs in Eq. 3.9, which is used for evaluating H(ρe) in Eq. 3.8. It can
be seen that when ηh > ρe, H(ρe) → 0 and when ηh < ρe, H(ρe) → hs [56].

However, pressure fields mapped through this equation alone lead to a more gradual drop in pressure.
This leads to forces (due to pressure) being applied on the internal walls. These walls are not in contact
with the pressurized fluid and should not experience any force acting on them. As depicted in Fig. 3.4,
there should be a sudden drop in pressure over the first solid boundary and this can be achieved by
coupling the Darcy’s Law equation with an additional drainage term [56]. This can be mathematically
written as:

Qdrain = −H(ρe)(p− pout), (3.7)

where Qdrain denotes volumetric drainage per second in a unit volume (s-1). H, p, pout are the drainage
coefficient (m2N-1s-1), the continuous pressure field (Nm-2), and the external pressure (Nm-2), respec-
tively. H is modeled as a smooth Heaviside function [56] that is dependent on the elemental density:
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H(ρe) = hs
tanh(βhηh) + tanh(βh(ρe − ηh))

tanh(βhηh) + tanh(βh(1− ηh))
. (3.8)

Similar to βk and ηk, βh and ηh are adjustable parameters. The drainage coefficient of solid hs is used
to control the thickness of the pressure-penetration layer. It is related to ks as:

hs =

(
ln r
∆s

)2

ks, (3.9)

where r is the ratio of input pressure (pin) at depth ∆s, i.e., p|∆s = rpin. Furthermore, ∆s is the pene-
tration depth of pressure, which can be set to the width or height of few elements [56].

Figure 3.6: A schematic diagram for in- and outflow through an infinitesimal element with volume dV = dxdydz. Qdrain is the
volumetric drainage term [63].

The pressure field can be calculated through the state equilibrium equation for the incompressible fluid
flow through an element. This is visualised in Fig. 3.6 and is written as [63]:

∇ · q −Qdrain = 0. (3.10)

The weak form of Eq. 3.10 within an element e gives:

∫
Ωe

(
KBT

pBp +HNT
pNp

)
dΩe︸ ︷︷ ︸

Ae

pe =

∫
Ωe

HNT
ppout dΩe −

∫
Γe

NT
pqΓ · ne dΓe︸ ︷︷ ︸

fe

,
(3.11)

where Np = [N1, N2, N3, . . ., N8] are the shape functions for the trilinear hexahedral elements and pe

= [p1, p2, p3, . . ., p8]T is the elemental nodal pressure vector. The function is integrated over a volume
element Ωe. The matrix Bp is equal to the gradient of the shape functions Np and ne is the boundary
normal on surface Γe that has a flux of qΓ passing through it. Globally, this leads to the third state
equation,
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Ap = f, (3.12)

where A is the global flow matrix, p and f are the global pressure and loading vectors, respectively.
When pout = 0 and qΓ = 0, the right hand side of the equation equals to zero and the state equation
can be rewritten as Ap = 0 [63].

Figure 3.7: A schematic diagram for the body force vector b of an infinitesimal element with volume dV = dxdydz. p is the
uniform pressure load acting on the area perpendicular to the gray arrows [63].

To relate the pressure field to consistent nodal forces, we can express the force resulting from the
pressure field in terms of an equivalent body force, as shown in Fig. 3.7. This is mathematically written
as [56]:

bdV = −∇pdV, (3.13)

where b is the body force vector. The elemental nodal forces can be written as:

Fe = −
∫
Ωe

NT
u∇pdΩe = −

∫
Ωe

NT
uBpdΩe︸ ︷︷ ︸
He

pe, (3.14)

where Fe and He are the elemental force and global conversion matrix, respectively. Nu = [N1I, N2I,
N3I, . . ., N8I] with I being the identity matrix in coordinate space R3. Globally, the last state equation
relating the pressure field to consistent nodal forces is obtained. Mathematically,

F = −Hp, (3.15)

where the pressure vector p is related to the force vector F through a global conversion matrix H. Eqs.
3.3, 3.5, 3.12, 3.15 are the four state equations that are required to solve the optimization problem.
This can further be reduced to three state equations by combining Eqs. 3.5 and 3.15 to obtain:

Ku = −Hp. (3.16)
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3.1.4. Constraints
In the density-based TO approach, a volume constraint inequality is applied on the design space [64].
Mathematically,

V (ρ)

V0
≤ f, (3.17)

where V (ρ) and V0 are the material volume and design domain volume respectively, and f is the pre-
scribed volume fraction.

3.1.5. Design Sensitivity
For gradient-based optimizers like MMA, design sensitivities of the objective function and constraints
need to be calculated. The adjoint-variable method can be employed to calculate the objective function
sensitivity. This method uses a performance function L that is described in terms of the objective
function and state equations as:

L(u, v,ρ) = Φ(u, v,ρ) + λT1(Ku+ Hp) + λT2(Ap) + λT3(Kv+ Fd), (3.18)

where λ1, λ2 and λ3, are the Lagrange multipliers. Mathematically [63],

λT1 = −∂Φ(u, v,ρ)
∂u K−1, λT2 = −λT1HA

−1, λT3 = −∂Φ(u, v,ρ)
∂v K−1. (3.19)

For the objective function written in Eq. 3.2, the calculated Lagrange multipliers are:

λT1 = −
(

v
2SE

+ uTMSE

SE

)
, λT2 =

(
v

2SE
+ uTMSE

SE

)
HA−1, λT3 =

uT
2SE

. (3.20)

The objective sensitivities can then be written as:

dΦ

dρ
=

∂Φ

∂ρ
+ λT1

∂K
∂ρ

u+ λT2
∂A
∂ρ

p+ λT3
∂K
∂ρ

v. (3.21)

Combining Eq. 3.20 and Eq. 3.21

dΦ

dρ
=

MSE

(2SE)2

(
−uT ∂K

∂ρ
u
)
+

1

2SE

(
uT ∂K

∂ρ
v
)
+

MSE

2(SE)2

(
uTHA−1 ∂A

∂ρ
p
)
− 1

2SE

(
vTHA−1 ∂A

∂ρ
p
)

︸ ︷︷ ︸
Load sensitivities

.

(3.22)

Load sensitivities depend on the pressure load and are important to include in CM optimization prob-
lems. The constraint sensitivity for the volume constraint is straightforward and can be written as:

∂V

∂ρ
= 1. (3.23)

3.1.6. Regularizations
Different regularizations tools or techniques are used to ensure feasible results. A common one is
filtering, which prevents checkerboard designs [65, 66, 67]. The classical density filter [68, 69] helps
prevent this error. The filtered design variable ρ̃e for element e is the weighted average of the design
variable ρj and is determined as:

ρ̃e =
ΣNe

j=1vjw(x)
ΣNe

j=1w(x)
ρj , (3.24)
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where Ne represents the total number of elements that lie within the filter radius Rfill for the eth element,
vj is the volume of the the jth element and w(x), the weight function, is defined as:

w(x) = max
(
0, 1− ||xi − xj ||

Rfill

)
, (3.25)

where ||xi-xj || is the Euclidean distance between the eth and jth elements. xi and xj indicate the center
coordinates of the eth and jth elements, respectively. The derivative of filtered density with respect to
the design variable can be evaluated as:

∂ρ̃i
∂ρj

=
ΣNe

j=1vjw(x)
ΣNe

j=1w(x)
. (3.26)

The values of vj and w(x) do not change with iterations and can therefore be stored in a vector Hs.
Post filtering, the old design vector ρ is replaced by the new design vector ρ̃. Every element has a
filtered density value ρ̃e and every density dependent function is now dependent on the filtered density
value. The derivative or sensitivities of any such function C can be determined through the chain rule
as:

dC
dρ

=
dC
dρ̃

dρ̃
dρ

. (3.27)

Another tool that is used to ensure symmetric designs in the design space, is symmetric sensitivity
averaging. By symmetrically averaging the sensitivities it is possible to obtain symmetric results about
planes, lines, or a point [70]. Mathematically,

Se =
Σi∈Ae

Si

N
, (3.28)

where Se denoted the sensitivity value of element e andAe is a set of element numbers that is symmetric
to element e. It is important to note that i ∈ Ae. For the 3D case, the elements are chosen symmetrically
to a point as shown in Fig. 3.8.

Figure 3.8: A schematic representation of the symmetry applied in the 3D case. Three symmetric planes (blue, red and green)
are applied altogether giving it a symmetry about the diagonal passing from the origin to the diagonally opposite point.

To find the symmetric elements for this case, the x, y and z coordinates of each element are calculated
and every combination of those values belongs to one set. Mathematically,
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Aeijk = {eijk, eikj , ejik, ekij , ejki, ekji}, (3.29)

where i, j and k denote the x, y and z coordinates of element e. Examples of some related elements
are visualized in Fig. 3.9.

Figure 3.9: Schematic representation of different symmetric element examples using the method described in Eq. 3.29. The
elements with the same colors belong to one symmetric set.

Passive elements are chosen depending on the case. The density of these elements does not change
after any iterations. All the elements touching the face of the output nodes, except the elements con-
taining the output nodes, are chosen as passive void elements (ρ = 0) while the elements containing
the output nodes are chosen as passive solid elements (ρ = 1). The passive solid elements are created
to ensure connectivity with the other unit cells, while the passive void elements are created to minimize
parasitic motion and to avoid any contact after deformation. This is further illustrated in Fig. 3.10

Figure 3.10: (a) Passive elements for every 2D cell. (b) Passive elements required for every 3D unit cell. Dark gray elements
are passive solid elements while light gray elements are passive void elements.

3.2. Optimization Problem
The optimization problem required for the NLC metamaterial design case can be written by taking into
account the objective equation (Eq. 3.2), the state equations (Eqs. 3.3, 3.12, 3.16) and the constraints
(Eq. 3.17). Mathematically,
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min
ρ̃

: −MSE(u, v, ρ̃)
2SE(u, ρ̃)

s.t. : Ap = 0

: Ku = F = −Hp

:
V (ρ̃)

V0f
≤ 1

: 0 ≤ ρ̃ ≤ 1


. (3.30)

Note, ρ is replaced by ρ̃ as the design variable, since density filtering is applied to these design prob-
lems. This optimization problem is consistent for all the design cases discussed in this thesis. In 2D
cases, however, the state equations have to be slightly adapted. The calculation of these equations
are detailed in Kumar et al. [56].

3.3. Design-independent Isotropic NLC Unit Square
The simplest design case for an NLC unit cell is a 2D design-independent1 unit square. Due to symme-
try, one quarter of the total unit square is selected as the TO design domain, this is indicated in Fig. 3.2.
The design layout consists of a passive void square, in the bottom-left corner of the design space that
is completely enclosed by solid passive elements. This passive void square contains the pressurized
fluid which exerts a pressure force on the passive solid boundary enclosing it. This pressure boundary
is design-independent and does not change as the design evolves. The boundary conditions are de-
picted in Fig. 3.11. An input pressure (pin) is applied along the left and bottom sides of the passive void
square and a non-pressurized boundary condition (p = pout = 0) is applied to the right and top side of
the design domain. Symmetric boundary conditions that prevent displacement in the direction normal
to the boundary are applied on the left and bottom sides of the design domain. The nodes correspond-
ing to the top-left and bottom-right corners of the design domain are chosen as output points. Finally,
additional passive regions are chosen similar to Fig. 3.10.

Figure 3.11: Schematic representation of the design-independent isotropic NLC unit square. Illustrating input (red) and non-
pressure (blue) boundaries. The symmetric displacement pressure boundary is labeled as roller constraints. Lastly, the passive
solid (black), void regions (white), and the output points (red dot) in the design domain (gray) are illustrated.

Table 3.1 details the various parameter values for this design case.

1 The term design-independent has been used to indicate that the pressure boundary is design-independent.
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Domain Parameters Values Boundary Parameters Values

Side length of domain (L) 100 mm Modulus of solid material (E0) 1650 MPa

Elements along one axis 100 Poisson’s ratio of material (ν) 0.35

Thickness of square (Ts)2 1 mm Modulus of void material (Emin) 1650 × 10-6 MPa

Passive square length (Sc) 50 mm Penalization (γ) 3

Passive square thickness (St) 2 mm Output spring stiffness (kss) 0.1 Nmm

Density filter radius (Rfill) 2 mm Input pressure (pin) 0.3 MPa

Volume fraction (f ) 0.1 Output pressure (pout) 0 MPa

Optimization Parameters Values Darcy Parameters Values

MMA constant a0 1 Flow coefficient of void (kv) 1 mm4N-1s-1

MMA constant ai 0 Flow coefficient of solid (ks) 1 × 10-7 mm4N-1s-1

MMA constant ci 1000 Pressure drop ratio (r) 0.1

MMA constant di 0 Penetration depth (∆s) 2 mm

Density move limit (∆ρ)3 0.1 Heaviside slope parameter (βk/βh) 10

Maximum iterations 500 Heaviside step parameter (ηk/ηh) 0.1

Normalization scalar4 1000 Initial pressure (pinitial)5 1 × 10-5 MPa

Table 3.1: Input parameters for the density-based optimization of a design-independent isotropic NLC unit cube.

Most of the domain parameter values, maximum iterations, and boundary parameter values are se-
lected arbitrarily. In contrast, the optimization parameter values, such as density filter radius Rfill, the
“Darcy Method” parameter values, penalization, and output stiffness kss are selected based on litera-
ture, considering the design resolution and dimensions [63, 60, 18, 61, 59]. Finally, a convergence
limit of 0.01 is also specified. This means that the optimizer will stop iterating either if the maximum
absolute difference between the old and updated design variables falls below the convergence limit or
if the maximum number of iterations is reached.

3.4. Design-independent Isotropic NLC Unit Cube
This design case is the 3D equivalent of the design-independent NLC unit square. Due to symmetry,
one-eighth of the total unit cube is selected as the TO design domain, this is indicated in Fig. 3.2. The
passive void square is replaced by a passive void cube that is enclosed by a passive solid region. The
pressurized fluid is contained in the void region and applies a pressure force on the inner walls of the
solid region.

Input pressure is applied on the walls of the void region that touches the front, left, and bottom face of the
design domain and the right, top, and back faces of the design space are selected as non-pressurized
boundary faces with additional passive regions being applied around it, similar to Fig. 3.10. The faces
mentioned above are labeled in Fig. 3.12.

Symmetric boundary conditions that prevent displacement in the direction normal to the boundary are
applied on the left, front, and bottom faces of the design domain. Finally, the output points are selected
as the nodes corresponding to the top-front-left, the bottom-front-right, and the bottom-back-left corners
of the design space. The passive regions, pressure faces and output points are indicated in Fig. 3.13.
Note: Sensitivity averaging is used in the 3D case, as visualized in Fig. 3.8.

2 Thickness required for the plane stress case.
3 This is an MMA parameter that defines the change in density in each optimization iteration.
4 This scalar is multiplied to the objective, constraint and sensitivity values to prevent early convergence.
5 This is the initial nodal pressure, set before any iterations to prevent singularity problems.
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Figure 3.12: (a) Discretized design domain of the an NLC unit cube. (b) The 3D design domain and its different faces labeled.

Figure 3.13: (a) Schematic representation of passive solid (dark gray and translucent) and the passive void (light gray) regions.
(b) Schematic representation of the input pressure (red), non-pressurized faces (blue), and output points (black dot).

Most of the parameters, including the convergence criteria, are maintained the same as in Table 3.1.
The different/additional parameters are given in Table 3.2.

Domain Parameters Values Boundary Parameters Values

Side length of domain (L) 50 mm Modulus of solid material (E0) 3000 MPa

Elements along one axis 50 Poisson’s ratio of material (ν) 0.4

Elemental side length (D) 1 mm Modulus of void material (Emin) 3000 × 10-6 MPa

Volume fraction (f ) 0.1 Output spring stiffness (kss) 10 Nmm

Density filter radius (Rfill) 1.5 mm Input pressure (pin) 0.1 MPa

Optimization Parameters Values Darcy Parameters Values

MMA constant ci 10000 Initial pressure (pinitial) 1 × 10-4 MPa

Table 3.2: Input parameters for the density-based optimization of a design-independent isotropic NLC unit cube.

The side length of the passive void region and the thickness of the passive solid region encompassing it
are selected as 35 mm and 2 mm, respectively. These values, along with the side length of the domain
and the material parameters, are chosen to match the dimensions and material used in the design by
Qu et al. [8], as the design obtained in this study will be compared to theirs. The reasoning behind the
values of the other parameters is similar to that used in the equivalent 2D case.



3.5. Isotropic NLC Unit Square 30

3.5. Isotropic NLC Unit Square
The pressure loads in the isotropic NLC unit square case are design-dependent. No predetermined
passive regions enclosing the fluid have been set, allowing the optimizer to create its own topology to
enclose the pressurized fluid, hereby referred to as the pressurized shell.

Apart from the absence of a passive void square and its enclosing passive solid region, the only dif-
ference between the design-independent and design-dependent isotropic NLC unit squares is the def-
inition of their input pressure boundaries. In this case, the input pressure boundary is defined as the
bottom and left sides of the design domain. This is visualized in Fig. 3.14.

Figure 3.14: Schematic representation of the isotropic NLC unit square. Illustrating input (red) and non-pressure (blue) bound-
aries. The symmetric displacement pressure boundary is labeled as roller constraints. Lastly, the passive solid (black), void
regions (white), and output points (red dot) in the design domain (gray) are illustrated.

All the required parameters are defined in Table 3.1 and a convergence limit of 0.01 is also specified.

3.6. Isotropic NLC Unit Cube
This design case is the 3D equivalent of the design-independent NLC unit square, similar to the design-
independent NLC unit square the pressure loads are design-independent. No predetermined passive
regions enclosing the fluid have been set, allowing the optimizer to create its own pressurized shell.
This statement is not entirely true however. An inlet region has to be set to allow pressure to flow
through the system and give feasible results.

This region does influence the shape of the final pressurized shell. In this case, circular inlet regions
have been selected.6 Each inlet region consists of a circular quadrant, centered at the front-bottom-left
corner of the design domain. There are three quadrants in total: one along the bottom face, another
along the left face, and the last one along the front face. These quadrants form the input pressure faces
of the design. The output pressure faces remain the same as in the design-independent case. This is
further illustrated in Fig. 3.15.

6 The circular shape has been chosen as it is symmetric.
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Figure 3.15: Schematic representation of the input pressure region (red) and the non-pressurized faces (blue) of the isotropic
NLC unit cube.

To prevent the inlet face from changing, an element thick passive void region is placed above every inlet
face. These void regions are further enclosed by passive solid regions. This along with the additional
passive region (Fig 3.10) is further illustrated in Fig. 3.16.

Figure 3.16: Schematic representation of the passive elements of the isotropic NLC unit cube. The passive void elements
(beige) and the passive solid elements (black).

Lastly, most of the required parameter values remain the same as in the design-independent case. New
material parameter values for the modulus of solid materialE0, Poisson’s ratio of the material ν, and the
modulus of void material Emin are selected as 75 MPa, 0.38 and 75 × 10-6 MPa, respectively. These
parameters are chosen based on the material used for manufacturing. A similar convergence limit is
set, and sensitivity averaging is implemented. The radius of the passive quadrant is 25 mm, while the
thickness of the solid region enclosing it is set to 2 mm, these dimensions are selected arbitarily.

3.7. Design Validation Method
The isotropic NLC unit cube design is validated using a FE simulation software called COMSOL and an
experimental setup that measures the displacement of the output under an increase in internal pressure.
The obtained results are converted to an stereolithography (STL) file made up of iso-surface facets with
a density threshold of 0.5.
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3.7.1. COMSOL Study
For the numerical study in COMSOL, the design obtained from TO is divided along the planes of sym-
metry to ensure faster and easier computation. Symmetric boundary conditions are applied on these
planes, that prevent any displacement in the direction normal to the plane. The other planes of sym-
metry, that were defined in the TO problem also have a similar boundary condition imposed on them.
These are the planes that divide the entire unit cube into eight part. Finally, a uniform pressure force
of 0.1 MPa is applied internally along the walls that contain the pressurized fluid.

A stationary solid mechanics study is chosen and the domain is discretized into elements. The Young’s
modulus and Poisson’s ratio are maintained similar to the material parameters chosen in the optimiza-
tion study. These match the properties of the material used to manufacture the design for experimental
testing.

3.7.2. Experimental Setup
The overall unit cell is manufactured using selective laser sintering and flexible TPU is chosen as the
material due to its flexible nature. The material parameters in the optimization are chosen to match the
material properties of this material. Three laser interferometers are placed to measure the displace-
ments in the x, y, and z direction. The stage is designed according to the obtained design as it needs
to hold the unit cell in place without restricting the movement of the end points. Finally, an internal
pressure of 0.1 MPa is applied through a pneumatic push-in connector that is attached to the unit cell
through a threaded hole in the part of the design that experiences the pressure loads. The setup is
shown in Fig. 3.17.

Figure 3.17: Experimental setup with stage and sensors. The blue pneumatic pipe is connected to a push-in connector that
helps supply air which leads to an increase in pressure within the unit cell.



4
Results and Discussions

4.1. Design-independent Isotropic NLC Unit Square Design
The first result obtained was for the design-independent isotropic NLC unit square case. The design
reached its convergence limit and stopped iterating after 327 iterations. The obtained design, along
with the deformed (not to scale) design under an internal pressure of 0.3 MPa, are observed in Fig. 4.1.

Figure 4.1: (a) Undeformed design-independent isotropic NLC unit square design. (b) Deformed design-independent isotropic
NLC unit square design under an internal pressure of 0.3 MPa. Note: The deformation is not to scale.

From the deformed result it can be observed that the inflation of the passive square region rotates
the arms towards the corner of the square due to the large bending displacement in the middle of the
square region. Ultimately leading to a negative displacement along both both the axis at the output
points. The length of the design is 100 mm and it is optimized for an internal pressure of 0.3 MPa.
Applying this pressure condition results in a displacement of -7.112 mm and a linear compressibility
value of:

KL = − 1

L

(
dL

dP

)
T

= − 1

100

(
−7.112

−0.3

)
T

= −0.237 MPa−1 = −2.370 %/bar. (4.1)

The design exhibits a decent NLC value; however, it is important to note that this NLC value differs and
is larger than the NLC value exhibited by the overall metamaterial composed of an array of similar unit
cells.

33
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4.2. Design-independent Isotropic NLC Unit Cube Design
The second result obtained was for the design-independent isotropic NLC unit cube case. The design
didn’t reach its convergence limit but ended after reaching the maximum iteration value, 500 iterations1.
However, a feasible result2 for the design-independent NLC unit cube design is obtained. This result
can be visualized in Fig. 4.2.

Figure 4.2: Different views of the obtained design-independent isotropic NLC cube design.

The pressurized fluid is within in the passive cube that inflates when pressure is applied. This leads
to the arms being pushed towards the corner of the cube. This is caused due to the uneven bending
displacement of the cubic walls, Ultimately leading to an overall compression of the unit cell. This
deformation can clearly be observed in Fig. 4.3.

Figure 4.3: (a) Undeformed design-independent isotropic NLC design. (b) Deformed design-independent isotropic NLC design
after an application of 0.1 MPa. Note: The deformation is not to scale.

The length of the design is 50 mm and it is optimized for an internal pressure of 0.1 MPa. Applying this
1 A higher iteration limit is computationally expensive and time consuming.
2 Feasible can be checked using a measure of non-discreteness. The lower the percentage the more discrete (black and white)

the result. The measure of non-discreteness for this design is is 6.926%, indicating a discrete result [71].
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pressure condition results in a displacement of -1.106 mm and a linear compressibility value of:

KL = − 1

L

(
dL

dP

)
T

= − 1

50

(
−1.106

−0.1

)
T

= −0.221 MPa−1 = −2.212 %/bar. (4.2)

The obtained result has a decent NLC value, similar to its 2D counterpart and just like the 2D case, this
NLC value differs and is larger than the NLC value exhibited by the overall metamaterial.

4.3. Isotropic NLC Unit Square Design
The third result obtained was for the isotropic NLC unit square case. The design reached its conver-
gence limit and stopped iterating after 306 iterations. The obtained design, along with the deformed
(not to scale) design under an internal pressure of 0.3 MPa, is observed in Fig. 4.4.

Figure 4.4: (a) Undeformed isotropic NLC unit square design. (b) Deformed isotropic NLC unit square design under an internal
pressure of 0.3 MPa. Note: The deformation is not to scale.

It is a symmetric design with a circular pressurized shell that is thinnest in the middle. The thinnest part
of the shell forms a hinge connecting the two output points. The rotation of this thin hinge upon inflation
leads to an inward rotation of the thicker part of the shell, ultimately leading to a negative displacement.
The length of the design is 100 mm and it is optimized for an internal pressure of 0.3 MPa. Applying
this pressure condition results in a displacement of -10.104 mm and a linear compressibility value of:

KL = − 1

L

(
dL

dP

)
T

= − 1

100

(
−10.104

−0.1

)
T

= −0.337 MPa−1 = −3.367 %/bar. (4.3)

The obtained result has a higher NLC value when compared to the design-independent case. Just like
the design-independent case, this NLC value differs and is larger than the NLC value exhibited by the
overall metamaterial.

4.4. Isotropic NLC Unit Cube Design
The second result obtained were for the design-independent isotropic NLC unit cube case. The design
didn’t reach its convergence limit but ended after reaching the maximum iteration value, 500 iterations.
However, a feasible result3 for the design-independent NLC unit cube design is obtained. This result
can be visualized in Fig. 4.5.

It can be observed that the preset passive solid region forms a spherical pressurized shell that traps
the pressure and inflates. The output displacement is not caused entirely due to the inflation of this
spherical shell but rather through the pressure acting on the bulge in the middle. This bulge is thin in

3 Measure of non-discreteness is 9.697%, indicating a discrete result [71].
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Figure 4.5: Different views of the obtained isotropic NLC cube design.

thickness and forms a cavity in the circular shell. The deformation in this bulge pushes the back of the
unit cell, which connects all six arms together. This leads to the equal rotation of the six arms into the
middle of the unit cell, ultimately leading to an equal negative displacement in all three directions which
results in isotropic NLC behavior. The design under deformation can be observed in Fig. 4.6.

Figure 4.6: (a) Undeformed isotropic NLC design. (b) Deformed isotropic NLC design after an application of 0.1 MPa. Note:
The deformation is not to scale.

The length of the design is 50 mm and it is optimized for an internal pressure of 0.1 MPa. Therefore,
applying this pressure condition results in a displacement of -1.761 mm and a linear compressibility
value of:

KL = − 1

L

(
dL

dP

)
T

= − 1

50

(
−1.761

−0.1

)
= −0.353 MPa−1 = −3.534 %/bar. (4.4)

The obtained result has a higher NLC value when compared to the design-independent case and a
value similar its 2D counterpart. Just like the design-independent and 2D case, this NLC value differs
and is larger than the NLC value exhibited by the overall metamaterial.
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4.5. Parameter Study
Some of the TO parameters were selected arbitrarily, therefore a parameter study is performed on some
of the arbitrarily selected TO parameters. This study is performed on the 2D case as a parameter study
on the 3D case is computationally expensive.

The first parameter study was conducted on three parameters in the design-dependent 2D case. The
parameters chosen were volume fraction f, output spring stiffness kss, and input pressure pin. The
obtained NLC results along with the parameter values are illustrated in Fig. 4.7.

Figure 4.7: Heatmaps of NLC Values for different pressure input.

The second parameter study was conducted on three parameters in the design-independent 2D case.
All three parameters are related to the passive region that encloses the fluid. The first one is the shape
of the region; quadrant, square or triangle4. The second parameter is the defining length of the shape.
For the square it is the side length, radius for the circle and side length (not the hypotenuse) for the
triangle. The last parameter is the thickness of the passive solid region enclosing it. The shapes and
parameters can be better visualized in Fig. 4.8.

Figure 4.8: Initial design domain for the different passive region shapes: (a) Square. b Triangle. (c) Quadrant.

4 The triangle passive region forms a 45 degrees-rotated square when all symmetric quarters of the unit cell are assembled
together.
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The obtained NLC results along with the parameter values are illustrated in Fig. 4.9.

Figure 4.9: Heatmaps of NLC Values for different passive shape.

From the first parameter study it is observed that in general a greater NLC value is obtained with a lower
volume fraction, a lower output stiffness and a higher input pressure value. Among the 64 combination
the best NLC value is obtained for a design with a volume fraction of 0.2, an output stiffness of 0.1 Nmm,
and an input pressure of 0.4 MPa. From the second parameter study it is observed that in general a
greater NLC value is obtained with a square shape, a higher defining length and a lower thicknes svalue.
Among the 27 combination the best NLC value is obtained for a design with a square passive region
with a defining length of 75 mm, and an thickness of 1 mm.

4.6. Comparative Study
4.6.1. Darcy Method Comparison
Although the “Darcymethod” is clearly advantageous over other pressure load applicationmethods, due
to the inclusion of load sensitivities [56], we want to test whether a simplistic pressure load application
approach can be implemented for a design-independent problem.

Figure 4.10: (a) Design-independent isotropic NLC unit square design resulting from the “Darcy Method”. (b) Design-
independent isotropic NLC unit square design resulting from the standard method.
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This can be explored by a comparative study between the “Darcy Method” and a standard method;
i.e., a standard CM synthesis problem [61], where boundary forces are applied at the start on every
node perpendicularly to the direction of the pressure boundary. The magnitude of each individual force
vector can be determined by dividing the product of the total area and pressure with the total number
of nodes on that surface. As observed in Fig. 4.10, the two designs are similar.

The standard method design has an output displacement value of -7.1525mmwhile the “Darcy Method”
design has an output displacement value of -7.112 mm when a pressure of 0.3 MPa is applied. There-
fore, a claim can be made to implement the standard approach for design-independent problems as it
is computationally inexpensive and easier to implement.

4.6.2. State of the Art Comparison
The closest existing designs (visualized in Figs. 2.6 and 2.7) to an isotropic NLC unit cube are the
designs put forward by Qu et al. [8, 33]. The metamaterial exhibiting the higher NLC value (visualized
in Fig. 2.7) between the two designs, has a volume compressibility value of -4.70 %/bar and a linear
compressibility of -1.567 %/bar5 [8]. This unit cell is however, designed either through intuition or
through a trial and error approach. The TO methodology on the other hand, is systematic and capable
of handling multiple complex restrictions while optimizing for various design parameters. Through this
comparative study, we aim to demonstrate that it is possible to design a metamaterial unit cell with an
NLC value greater than that of existing designs.

Qu et al. [8] provided the possibility of increasing the NLC value in the design, by changing dimensional
parameters like the inner cube wall thickness, unit cell length, and inner cube length6. However, the
fabrication of a thin wall is restricted by manufacturing limitations. It is difficult to identify the exact
value of thickness that limits the design. However, the manufactured design by Qu et al.[8] has an
inner wall thickness of 1.246 µm, a unit side length of 75 µm and an inner cube length of 52.5 µm. This
is assumed to be the manufacturing limitation that limits the NLC value of the design and to ensure a
fair comparison, the same dimensional limitations are taken into account for the TO methodology.

The output displacement value of the “existing design”7 is computed using COMSOL. This is done
by taking one-eighth of the total unit cell, applying a symmetric boundary condition on the planes of
symmetry (the cell is divided similar to Fig. 3.2), and a uniform pressure load of 0.1 MPa on the walls
of the inner cube. The deformation can be visualized in Fig. 4.11.

Figure 4.11: Contour plot of the deformed unit cell (Designed by Qu et al. [8]) and the wireframe plot describing the same unit
cell when undeformed. The legend relates the contour colors to the deformation in the y direction, in millimeters.

5 The volume compressibility of an isotropic material is three times its linear compressibility.
6 The inner cube wall thickness, unit cell length, and inner cube length are labelled as t, a, and l in Fig. 2.7, respectively.
7 The design put manufactured by Qu et al. [8] is referred to as the “existing design” to ensure brevity of the report.
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For an input pressure of 0.1 the simulated design has an output displacement of -0.922 mm. It should
be noted that the design is simulated in the millimeter scale instead of the micrometer scale. This is
done for a better comparison with the design obtained through TO8. Scaling the design does not have
any affect on the compressibility values9. Using Eq. 1.1, the calculated linear compressibility is:

KL = − 1

L

(
dL

dP

)
T

= − 1

37.5

(
−0.922

−0.1

)
T

= −0.246 MPa−1 = −2.459 %/bar. (4.5)

The length L is 37.5 mm because the unit cell is divided into eight parts, resulting in a length that
is equal to half of the side length. It is also important to note that the linear compressibility value of
-2.459 %/bar differs from the value of -1.567 %/bar stated by Qu et al. [8]. This is because the value
put forward by Qu et al. is the linear compressibility exhibited by a four by four array constiting of the
“existing design” unit cells. This is numerical simulated and can visualized in Fig. 4.12. The simulated
array exhibits a total length increase of 0.461 mm and a thereby a linear compressibility of 1.537 %/bar
for an array length of 300 mm and a input internal pressure of 0.1 MPa which is similar to the values
put forward by Qu et al. [8].

Figure 4.12: Contour plot of the deformed array (Designed by Qu et al. [8]). The legend relates the contour colors to the
deformation in the y direction, in millimeters.

Asmentioned in Section 3.4, the dimensional parameters for the TO-derived design were chosen based
on the comparative study. The side length of the domain, the passive cube thickness, the passive cube
length are chosen to be 50 mm, 2 mm, and 35 mm, respectively. As previously stated, scale does not
affect the value of the linear compressibility. Uniform scaling down by a factor of 0.75 leads to a side half-
length10 of 37.5 mm and an inner cube half-length of 26.25 mm which is same as that of the simulated
“existing design”. The scaled inner cube wall thickness is 1.5 mm which is similar but not equal to the
inner cube wall thickness of the “existing design”.11 As derived in Section 4.2, the design obtained

8 The computer-aided design (CAD)model of the “existing design” is easily scalable as compared to the design obtained through
TO, which is complex (it contains many STL facets due to the large number of elements in the design space).

9 A numerical simulation of the design in the micrometer scale, using COMSOL, delivers the same NLC value.
10 It is denoted as half-length because it is half of the total length of the side length/inner cube length as the design is one-eighth

of the total unit cell.
11 This is the closest value possible, as the discretization of the design domain limits us from selecting a thickness equal to that

in the “existing design”.
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using the TO methodology displays an output displacement of -1.106 mm for an internal pressure of
0.1 MPa. Thus, exhibiting a linear compressibility value of -2.212 %/bar, which is similar but not more
than the NLC value obtained from the “existing design”. However, TO possess several tools that can
help further increase this displacement value. One of them is through a constraint on the overall strain
energy SE [58]. The new optimization problem can be written as:

min
ρ̃

: −uout = −lTu

s.t. : Ap = 0

: Ku = F = −Hp

:
V (ρ̃)

V0f
≤ 1

:
SE(ρ̃)

SE0k
≤ 1

: 0 ≤ ρ̃ ≤ 1


, (4.6)

where k is the strain energy fraction that is a user-defined input that can be set to obtain higher output
displacement values. SE0 is the strain energy of the initial optimization stage and l is a vector with all
zeros except the entry corresponding to the output degree of freedom, which is set to one. The value of
k is chosen as 0.9 and constraint sensitivity is similar to the volume sensitivity [58]. The new objective
sensitivity is as follows:

dΦ

dρ̃
= −lTK−1 ∂K

∂ρ̃
u+ lTK−1HA−1 ∂A

∂ρ̃
p︸ ︷︷ ︸

Load sensitivities

.
(4.7)

By constraining the SE, the optimizer is able to solely optimize the output displacement instead of the
multi-criteria approach where the optimizer tries to find a balance between the MSE and SE value.
The resulting design can be visualized in Fig. 4.13.

Figure 4.13: Strain energy constrained, design-independent NLC cube design.
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The improved design has an output displacement value is -2.303 mm and linear compressibility value
of:

KL = − 1

L

(
dL

dP

)
T

= − 1

50

(
−2.303

−0.1

)
T

= −0.461 MPa−1 = −4.606 %/bar. (4.8)

Therefore, our design exhibits a larger NLC value compared to the design by Qu et al. [8], which
has a linear compressibility value of -2.459 %/bar (the linear compressibility of the unit cell, not the
metamaterial/array). This proves that the TO-driven methodology used in this study is not only a sys-
tematic design approach for NLC metamaterials but is also capable of achieving higher NLC values
when compared to the state of the art designs.

4.7. Result Validation
The results from the COMSOL study show a linear displacement of -1.437 mm which is similar to the
displacement value obtained in the optimization study. This can be visualized in Fig. 4.14.

Figure 4.14: Contour plot of the deformed isotropic unit cell section along with the wireframe representation of its undeformed
state. The legend relates the contour colors to the deformation in the x direction, in millimeters.

Th difference in value arises from the small changes in overall design while creating the STL. Setting
of density threshold, changes in compliant hinges and addition of material to ensure continuity12 are
responsible for some of the discrepancies between simulations.

The results from the experimental setup (shown in Fig. 4.15) show a linear displacement of -1.350 mm
and -1.253 mm in the horizontal directions while a displacement of -0.847 mm in the vertical direction.
The two horizontal directions are similar to each other and the negligible difference between them
can be related to either small inaccuracies in manufacturing, the human error in setting up the sensors
(perpendicular to the output face) or unwanted rigid body motions, as the stage does not clamp the part
but instead loosely holds it in place. There is, however, a larger difference between the displacements
in the vertical and horizontal direction. This is due to the stage design for the experimental setup. The
stage holds the design from the bottom and slightly prevents the proper inflation of the shell, even
pushing it up a little bit. However, this is an experimental limitation and when rotated, the previously
vertical output point (now along the horizontal direction) shows a displacement similar to the previously
obtained horizontal displacement values. Therefore, it can be concluded that the design obtained is
almost isotropic in nature exhibiting the same displacement along all the output points.

12STL conversions lead to planar surfaces being converted into non-planar surfaces. These have to be reconstructed to ensure
that the symmetric planes are maintained.
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Figure 4.15: Step functions indicating the change in distance between each output point and their respective sensors, when
a pressure of 0.1 MPa is internally applied. The difference between the lower and upper step limit is the total displacement
occurred by the output face in the direction normal to it. The upper and lower limit of the step function was found using k-means
clustering to divide the distance data into two groups [72].

The relative difference in values between the different design models are calculated and noted in Table
4.1.

Value
Relative difference to

Topology optimization

Relative difference to

COMSOL study

Displacement obtained through

topology optimization
-1.761 mm — —

Displacement obtained through

COMSOL study
-1.437 mm 18.399% —

Displacement obtained through

experimental setup 13
-1.301 mm 26.099% 9.436%

Table 4.1: Displacement values and their relative differences.

The main inference drawn from Table 4.1, is that a significant difference is observed between the
displacement value found in TO and the displacement found through the COMSOL study. This is
largely due to two main reasons. First, the density threshold selected while translating the TO-obtained
design to an STL file. In the TO problem, the displacement value depends on all the elements in the
design space, with each element contributing according to its modulus of elasticity, which is related
to its elemental density. However, setting a threshold causes the influence of elements below the
threshold to be lost while magnifying the influence of elements above the threshold. Second, the iso-
curves created by the STL file results in a smoothed representation of the design. This smoothing can
cause the loss of topological features or the creation of additional features, which affects the overall
displacement value.

13Average displacement of the horizontal displacements.



5
Conclusion and Future Scope

5.1. Conclusion
Through this study, a new systematic approach to the design of NLCmetamaterials using density-based
TO, is established. It can be easily implemented with the following steps:

1. Selecting the appropriate TO parameters, that depend on the unit cell size, its resolution, the
material requirements and the boundary conditions.

2. Making appropriate design domain choices, that suits the application and satisfies the manufac-
turing process requirements. This includes selecting passive regions, planes of symmetry and
location of output points.

3. Selecting an appropriate method to define pressure forces. The “Darcy Method” works for all
cases, but one could also use the standard approach in design-independent cases for its ease of
implementation and computation speed.

4. Selecting constraints, not only to satisfy application and manufacturing constraints, but also to
focus on achieving or improving a certain aspect of the design, e.g., output displacement and
stiffness.

Using TO with a CM formulation one is able to achieve isotropic NLC metamaterials, in two and three
dimensions, both of which have been showcased through this study. This study shows that TO can
not only take into account various constraints, such as volume fraction and strain energy but can also
define passive regions/fixed topologies. Existing NLC design methodologies cannot accommodate
these constraints and passive layouts that may be required by applications or manufacturing processes.
These constraints, can also be used to achieve higher NLC values as shown in Section 4.6.2.

This study has also shown that through the CM formulation feasible results can be achieved, provided
the correct regularization techniques are used and the right parameter values are selected. The “Darcy
Method” has demonstrated its effectiveness when it comes to tackling pressure load problems in TO.
While past literature has proven the “Darcy Method” to be superior to other existing pressure load ap-
plication [56] method, a more simplistic approach of pressure load application can be used to tackle
problems that are design-independent. This method is preferred because it is computationally inex-
pensive and easy to implement. This is inferred from the comparative study undertaken in Section
4.6.1.

The parameter study in Section 4.5 shows how certain TO parameters, such as volume fraction f, output
spring stiffness kss, input pressure pin and some passive region parameters including shape, defining
length, and thickness, affect the final NLC value of the design. This demonstrates that a parameter
study can help further optimize our design and advance the development of metamaterials with higher
NLC values.

Lastly, the study proves that it is possible to translate this design to a CAD and real-world model without
losing its NLC behavior. The relative difference between the design obtained using TO and the man-

44



5.2. Future Scope 45

ufactured design model is 26.099%, while the relative difference between the design obtained using
TO and the CAD design model is 18.399% (these difference are observed in for the isotropic NLC unit
cube design). There is scope for improvement in translating the TO-obtained design into CAD and
real-world models, through better design-to-CAD translation and improved manufacturing techniques.

5.2. Future Scope
While this study has established TO as a foundational design process for engineering of NLC metama-
terial unit cells, there remains room for further development. For instance:

1. A better understanding of how different TO parameters affect the final design. The parameter
study in this research was limited a few parameters in the 2D case. This is because a parameter
study involving more TO parameters or a 3D case study is computationally expensive.

2. Exploring the possibilities of porous designs in two and three dimensions. These designs are
easier to manufacture, because they do not contain any enclosed parts that trap the fluid.1

3. Implementing geometric non-linearity, path following outputs and fixed output displacement val-
ues. These objectives could lead to better designs with larger NLC values and eliminate unwanted
displacements, such as those in the x and y directions for an output point primarily moving along
the z axis. These displacements can lead to twists in the metamaterial and undesired anisotropy
in NLC values.

4. Exploring the implementation of different constraints tailored to real-world requirements, such
as constraints on failure criteria, particularly fatigue. This constraint is crucial for ensuring the
durability of metamaterials over multiple load cycles.

5. Developing anisotropic NLC designs is also a direction that can be explored. With the right con-
straints, objective functions and output stiffness, anisotropic designs could be achieved. One
could also create an anisotropic design to compensate for the self weight induced load acting
along the vertical axis thereby creating a more practical isotropic NLC metamaterial.

There is also future scope in the testing and manufacturing of the NLC unit cell designs obtained.

1. Array testing: While the unit cell designs display NLC behavior, an array of these unit cells is
yet to be tested. The designs obtained through TO are complex and have limited the testing
of these unit cells in an arrays. Better design translation techniques and/or a simplification of
the designs obtained through TO can get rid of this limitation. Array testing is important as it
helps us better understand how these unit cells interact with each other and also gives us a more
realistic NLC value for the overall metamaterial.2 If experimentally tested, it could also show us
how manufacturing errors or inaccuracies could lead to problems or changes in NLC values as
these errors are multiplied and more pronounced in an array.

2. Manufacturing on the microscopic scale: The unit cells of metamaterials are designed to be man-
ufactured at the microscopic scale.3 The scale does not affect the design or its NLC value, and
the designs obtained in this study can be scaled down. However, manufacturing the obtained
NLC unit cells at the microscopic scale poses challenges due to their complex shapes and the
scale of manufacturing. Therefore, investigating various micro-scale manufacturing techniques
capable of fabricating these unit cells is essential.

Overall, the complex NLC unit cell designs obtained coupled with the lack of research in suitable micro-
scopic techniques limits our research to the design and testing of unit cells in the macroscopic scale.
Although testing unit cells manufactured at the macroscopic level allows us to fairly accurately predict
the overall metamaterial NLC behavior, the most accurate test would involve a large array of unit cells
manufactured at the microscopic level.

1 Enclosed parts, such as the pressurized shell in the design-dependent case and the inner cube in the design-independent
case, are difficult to manufacture using additive techniques, as they trap support material.

2 Section 4.6.2 shows us how the NLC value in a unit cell differs from that of an array.
3 Note: It is only possible to test the metamaterial at the macroscopic scale if its unit cells are manufactured in the microscopic

scale.
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