
Graph Convolution Reinforcement Learning for Active Wake Control in
Windfarms

Application of a Multi-Agent Reinforcement Learning Algorithm

Jefferson Yeh1

Supervisor(s): Mathijs de Weerdt1, Greg Neustroev1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Jefferson Yeh
Final project course: CSE3000 Research Project
Thesis committee: Mathijs de Weerdt, Greg Neustroev, Przemysław Pawełczak

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Wind energy, generated by windfarms, is playing
an increasingly critical role in meeting current and
future energy demands. windfarms, however, face a
challenge due to the inherent flaw of wake-induced
power losses when turbines are located in close
proximity. Wakes, characterized by regions of tur-
bulence and lower wind speed, are created as air
passes through the rotors, reducing the efficiency
of downstream turbines. Wake losses can be re-
duced by yawing upstream turbines to steer the
wake away from downstream turbines. While there
are power losses associated with turning turbines
off-wind, the gains in the subsequent turbines can
outweigh these losses. Yawing turbines to increase
overall power output is known as Active Wake Con-
trol, and the literature shows that single-agent rein-
forcement learning algorithms can be used to learn
such control policies. However, these approaches
are limited to a small number of turbines and do
not scale well to larger windfarms. Multi agent re-
inforcement learning algorithms do scale to larger
windfarms and this paper investigates the appli-
cation of the DGN algorithm for windfarm active
wake control. DGN is a fully cooperative algo-
rithm that utilizes a graph representation of agents
to encourage collaboration among neighboring tur-
bines. The use of DGN is particularly interest-
ing because windfarms naturally have a topological
structure, and depending on the modeling choices,
graphs can capture a significant amount of informa-
tion. This paper demonstrates that DGN can learn
useful policies for wake control. Although it does
not outperform the DQN single-agent algorithm on
small windfarms, its advantage becomes apparent
in larger windfarms, where its performance remains
consistent while DQN’s performance deteriorates.

1 Introduction
Nowadays, energy production is rapidly shifting away from
fossil fuels towards renewable alternatives. The urgent need
to reduce greenhouse gas emissions is driving technological
advancements in renewable energy production to meet the
projected global contribution target of 77% by 2050, as set by
the Intergovernmental Panel on Climate Change (IPCC) [1].
Wind energy emerges as a serious solution in both the short-
term and especially in the long-term, where it is projected
to contribute 20% of total energy demand [2]. This can be
achieved through the use of individual turbines or windfarms,
consisting of a collection of turbines. Due to the infrastruc-
tural requirements of turbines, windfarms are more suitable
for large-scale energy production. Consequently, it is relevant
and important to study techniques that improve windfarm en-
ergy production.

1.1 Wake Problem
A significant issue with windfarms is the interaction between
turbines in close proximity to each other. When wind passes

through a turbine, it creates a wake behind it, which is a re-
gion of high turbulence and low wind speed. These condi-
tions have a negative impact on the efficiency of subsequent
turbines, diminishing the windfarm’s overall output by up to
13% [3]. Turbines experience minimal wake effects when
they are sufficiently spaced apart. This, however, induces
additional costs and logistical challenges, such as acquiring
more land and installing transmission lines. Consequently,
turbines are usually placed within wake vicinities of each
other [3]. Considering the importance of windfarms to global
energy production, wake induced energy loss is a pressing
and relevant problem.

Currently employed solutions can be categorized as pas-
sive or active. Passive solutions utilize historical wind data to
customize turbine setups for specific locations [3]. The lat-
ter, and more efficient, approach is known as Active Wake
Control (AWC). By controlling the yaw angle of a turbine, as
demonstrated in Figure 1, it is possible to adjust the direction
of its wake, thereby reducing wake losses on subsequent tur-
bines. This method improves the overall output of the wind-
farm by sacrificing the production of some turbines to benefit
those downstream [4].

Figure 1: Turbine wake interaction with and without AWC. Figure
obtained from Dong [5].

1.2 Existing Solutions
Numerous control techniques have been employed for AWC
including classical control and reinforcement learning (RL)
methods [6]. Model-based algorithms rely on an internal rep-
resentation of the system to make control decisions based on
its modelled dynamics and behaviour. Various classical con-
trol algorithms, such as model predictive control [7], employ
feedback loop techniques that combine the observed system
state, system model, and other control rules into a decision.
Although these techniques have demonstrated performance
improvements of up to 15% [6], the model-based approach
also has its limitations. It depends on accurate system mod-
els to produce control policies that be equally effective on the
actual system. Discrepancies often arise between simulation
and deployment performances, due to the inherent challenge
of accurately capturing the highly complex intricacies of tur-
bine aerodynamics [6].

Model-free RL is a category of RL algorithms where a
control policy is learned based on data from interactions
with the environment. This is advantageous over the pre-
viously discussed model-based methods because it removes



the reliance on complex dynamics modelling and its asso-
ciated limitations [5]. Existing research on applying RL to
the AWC problem predominantly focuses on Single Agent
RL (SARL) algorithms [6]. The SARL approach treats the
entire windfarm as a single entity, considering all turbines
together for learning and making control decisions. Ap-
plying SARL to AWC, which inherently involves multiple
agents, has demonstrated performance improvements in small
scale windfarms containing a limited number of turbines [8;
9]. The SARL paradigm, however, does not scale to larger
windfarms with a higher number of turbines due to the com-
binatorial explosion of possible turbine actions and states.

1.3 Research Focus
This paper proposes model-free Multi Agent RL (MARL) al-
gorithms as a promising alternative for AWC. Unlike SARL,
each agent in MARL learns and makes control decisions in-
dependently of others [10]. This means that adding agents
leads to a linear increases in the state and action spaces, rather
than an exponential increase. Existing MARL algorithms can
be categorized into different classes, each being suitable for
different applications. The specific class of fully cooperative
MARL algorithms with a fully observable critic appears to be
suitable for AWC in windfarms. Agents in this class of algo-
rithms work towards a common goal while sharing the same
global reward [11]. This aligns well with the nature wind-
farms, where all turbines collaborate to collectively maximize
the overall power output.

Graph Convolutional RL (DGN) is the algorithm of inter-
est. It models agents as a graph and utilizes this representa-
tion to promote collaboration among nearest neighbors [12].
Moreover, the structure of windfarms naturally lends itself to
graph modelling. When considering characteristics such as
wake area and wind direction, representations have the po-
tential for a variety of modeling approaches.

This paper focuses on the central question: How can DGN
be efficiently applied to the Active Wake Control of wind-
farms? This question inspires the following sub-questions:

1. How does the learning rate influence the performance of
DGN when applied to the AWC of windfarms?

2. How does the performance of DGN scale with increas-
ing windfarm sizes?

3. How can the modelling of directionality in windfarm
topological features be exploited by DGN to improve the
windfarm performance?

The aim of the sub-questions, in chronological order, is to
first establish a proof of concept for DGN before exploring
potential improvements through modelling techniques.

This paper first formulates the AWC problem for MARL
and the DGN algorithm. Second, it thoroughly motivates and
describes the design and setup of the experiments. Finally,
the results are presented, discussed and concluded.

2 DGN for Active Wake Control
2.1 Active Wake Control as a Multi Agent Problem
Multi agent RL for AWC problem can be modelled as
a fully cooperative Markov Game, formally defined as

(
N ,

{
Si

}
i∈N ,

{
Ai

}
i∈N ,P,R

)
[10]. Here, N represents

the set of agents, with each agent representing a turbine in the
windfarm. Si and Ai denote the state space observation and
action space for each agent i ∈ N . For the experiments con-
ducted in this paper, the state space contains the yaw angle of
the turbine, wind speed and wind direction. The action space
for each turbine consists of reachable yaw angles, where the
maximum clock and counterclockwise movement is defined
by an angular rate of 1 deg per time step of 1 second. These
angles are mapped to a range of [-1, 1] [8]. P is the transition
probability from the current state to the next state, given the
actions taken by all agents. Finally, the reward, denoted by
R, represents the windfarm power output at the specific time
step. In cooperative MARL paradigm, each agent learns its
own actions individually, but all agents share the same reward
as they work towards a common goal [10].

The system wiwth which the agents interact is a windfarm
simulator [8; 13]. It takes actions as inputs and determines
the next state and reward. The turbines are simulated in dis-
crete time steps, transitioning from one steady state to the
next according to the inputted turbine actions. First, the yaws
of the turbines are adjusted, then the wake aerodynamics and
turbine power outputs are computed using the FLORIS [14]
framework. Additionally, the windfarm simulator can sim-
ulate wind behaviour from stochastic processes [8]. For the
scope of the paper, the wind profile will be static with speed
20 [m/s] and direction from West to East.

2.2 DGN Algorithm
The Graph Convolutional RL, also known as DGN, is a Q-
learning based MARL algorithm. As its name suggests, DGN
uses a graph representation to model agents in the environ-
ment. The algorithm makes use of edge traversals to incen-
tivize each agent to collaborate with its nearest neighbours.
The architecture of DGN, depicted in Figure 2, comprises
of an Encoder, Convolutional layers, and a Q network for
each agent. The Encoder layer is a Multi-Layer Perceptrons
(MLP) that encodes the state of each agent into its respec-
tive feature vector [12]. The subsequent Convolutional lay-
ers extract latent features out of the encoded features. By
utilizing an adjacency matrix graph representation, this layer
ensures that agents only share information with their neigh-
bouring agents. In the graph, agents are modelled by nodes,
and edges exist only between agents that share information.
The adjacency matrix enables the dynamic updating of agent
graph representations to reflect non-static behaviour in real
life scenarios [12]. Figure 2 illustrates two Convolutional lay-
ers, but more layers can be used. Each additional layer facil-
itates information flow through an additional edge traversal.
Agents only have direct access to neighbouring agents but,
additional Convolutional layers enables them to receive in-
formation from non-neighbouring agents through intermedi-
ate agents. Additionally, “higher order relation representation
can be extracted, which effectively capture the interplay be-
tween agents and greatly help to make cooperative decision”
[12]. Lastly, the latent features are fed into the Q-networks to
learn action Q-values for each agent [12].

The implementation of the algorithm [15] uses discrete ac-



Figure 2: Diagram of the DGN architecture, obtained from Jiang
[12].

tion spaces. Since the turbine yaw angle is continuous, the
action values are mapped to three discrete values: station-
ary, clockwise rotation at maximum speed, and counterclock-
wise rotation at maximum speed. During the training pro-
cess, DGN explores the action space in two ways: randomly
and by selecting the highest Q valued action. These meth-
ods are randomly selected using epsilon-greedy exploration.
Initially, random actions are chosen with higher probabil-
ity to encourage exploration. This probability gradually de-
creases as training progresses. DGN is trained episodically,
where each episode contains a fixed number of steps or in-
teractions with the environment. The learning takes place of-
fline after the complete of environment interactions in each
episode. Gradient descent is performed in batches over mul-
tiple epochs. At the start of the training process, learning is
delayed by a predetermined number of episodes to ensure the
replay buffer is sufficiently populated. Similar to other RL al-
gorithms, DGN also includes several hyperparameters, some
of which will be explored and tuned.

3 Windfarm Graph Representation
Inter-agent interaction in DGN is governed by the graph rep-
resentation of the underlying agents [12]. In the used ad-
jacency matrix representation, agent pairs that can directly
communicate with each other are connected by an edge. Dif-
ferent graphs can therefore alter the information accessible to
each agent within a single edge traversal, thereby influencing
the overall performance of the algorithm. This section de-
scribes the different models that have been explored, referred
to as undirected and directed, based on their respective repre-
sentations of agent information exchanges.

3.1 Undirected Representation
Undirected, indicating bidirectional communication, is a
naive representation achieved by assigning nodes represent
turbines and adding an undirected unweighted edge between
two turbines that share a wake interaction. Wake loss be-
comes negligible when turbines are sufficiently spaced, with
a distance of at least 10 rotor diameter lengths apart [3]. Thus,
an edge is included when the euclidean distance between two
turbines does not satisfy the aforementioned condition. In-
tuitively, both turbines should exchange information since a

turbine should be aware of the turbines it affects, and the
downstream turbines should learn about the behaviour of up-
stream turbine(s). This relationship is captured by an undi-
rected graph and its unweighted adjacency matrix. Figure 3
illustrates the graph representation of a 3×2 grid layout and
its corresponding adjacency matrix.

(a) Nodes and undirected edges (b) Adjacency matrix

Figure 3: Undirected graph representation of a 3×2 grid windfarm
layout.

3.2 Directed Representation
DGN involves a trade-off between the cost of inter-agent
communication capabilities and inter-agent cooperation [12].
However, this trade-off is not considered in the previous undi-
rected representation, as it includes edges for turbine pairs
that are oriented perpendicular to the wind and wake direc-
tion. Since the undirected representation still allows for a
large number of edges, communication can be further reduced
by incorporating directional information transfer based on the
wind direction. This includes communication either in the up-
stream or downstream direction between turbines. Upstream
directionality enables turbines to learn about the downstream
turbines they affect, while downstream directionality allows
downstream turbines to learn about the behaviour of their up-
stream counterparts. For both representations, turbine pairs
that are neither downstream nor upstream of each other do not
have an edge connection, even if they satisfy the distance con-
dition. Figure 4 illustrates both directional modelling meth-
ods on a 3×2 windfarm layout.

4 Experiments
This section aims to investigate the research questions posed
by the paper. It begins by presenting the setup up of hyperpa-
rameters and baselines employed in the experiments. Subse-
quently, each sub-research question is addressed by describ-
ing the experimental design, presenting the results, and con-
ducting an analysis. These sub-research questions investigate
the effects of the learning rate, the scalability of DGN, and the
influence of different windfarm graph modelling techniques.

Each graph presented in this section plots the mean and
90th percentile and 10th percentile error bands of the ex-
periment, each lasting 10,000 episodes and repeated three
times. In every experiment, the training and evaluation re-
wards as well as training loss, were logged every 10 episodes.
This data is aggregated as described and a centered sim-
ple moving average filter with window size five was ap-



(a) Upstream: Nodes and directed
edges

(b) Upstream: Adjacency
matrix

(c) Downstream: Nodes and directed
edges

(d) Downstream: Adja-
cency matrix

Figure 4: Directed graph representation of a 3×2 grid windfarm
layout .

plied. The filter calculates the mean of the values at episodes
(E − 20, E − 10, E,E + 10, E + 20) , for E ∈ [20, 9980].

4.1 Experimental Setup
The following subsections describe the setup used in the sub-
sequent experiments. They outline the hyperparameter values
used and present the baselines that will be used to evaluate the
performance of DGN.

Hyperparameter Tuning
RL algorithm performance can be highly dependent on the
values of hyperparameters used [16]. DGN encompasses a
wide range of hyperparameters, with the most performance-
sensitive ones being the learning rate (LR), batch size and ep-
silon. Please refer to Appendix C for the complete list hyper-
parameters. The LR significantly impacts performance as it
controls the step size during gradient descent [17]. Addition-
ally, the influence of batch size is closely related to the LR.
Andrychowicz [17] argues that the LR and batch size should
be tuned together, whereas Smith [18] claims that increasing
batch size, instead of further decreasing LR, can yield im-
provements. Finally, the epsilon parameter in epsilon-greedy
exploration influences the probability of exploring random
actions, thereby expanding the exploration of the action space
and diversifying the agent’s learning experiences [19]. More-
over, Hariharan [19] highlights the impact of action space
sampling schemes on learning performance, emphasizing the
importance of providing the agent with a diverse collection of
state and action combinations. Although this section summa-
rized some potentially influential parameters, only the LR is
tuned in the experiments conducted due to time constraints.
All other hyperparameters will use the default values listed in
Appendix C.

Baselines
The performance of DGN will be benchmarked against three
different reference control methods: Static Yaw, FLORIS,
and DQN. These references will provide insights into the suit-
ability of applying DGN to the AWC problem. The values of
these baselines are presented in Appendix B and will be used
in the subsequent plots and analysis, where appropriate.
Static Yaw The static baseline is a non-active wake con-
trol methodology that aligns all the turbines to face the wind,
where each turbine greedily maximizes its own power output.
This baseline will be used to evaluate the policy learned by
DGN in comparison to taking no yawing action. Policies that
perform worse or comparably to this baseline may indicate an
unsuitability for the AWC problem.
FLORIS This baseline uses FLORIS [14], a framework for
wind turbine wake modelling and control. As mentioned in
Section 2.1, FLORIS is employed by the windfarm environ-
ment to simulate airflow dynamics and power outputs. In
this case, FLORIS is used to computationally determine an
optimal yaw configuration per turbine using the Sequential
Quadratic Programming method [20]. It is important to note
that this method provides a good approximation but does not
guarantee finding the global maximum. Therefore, achieving
performances comparable to or exceeding the FLORIS base-
line is an indication of a useful policy. FLORIS, however, is
limited in its applicability to windfarms with a larger number
of turbines, as it also suffers from the combinatorial increase
in the search space, which impedes its convergence to a solu-
tion [20].
Deep Q-Network The final baseline is the SARL Deep Q-
Network (DQN) algorithm [21; 22] trained on the windfarm.
Since DGN utilizes Q-Networks, DQN serves as a compara-
ble SARL algorithm that learns q-values in a similar manner.
This comparison will be used to assess whether this particu-
lar MARL approach outperforms the SARL approach. The
hyperparameter tuning and values used can be found in Ap-
pendix A.

4.2 Performance Impact of Learning Rate
The focus of this section is to investigate the influence of
LR on the behaviour of DGN and, thereby, address the first
sub-research question. This experiment explores a range of
LR values, specifically 10−4, 10−5, 10−6, 10−7, and 10−8,
which are chosen to provide a range that is a factor and di-
visor of 100 from the default LR value of 10−6. The models
corresponding to each LR value are denoted as T1, T2, T3,
T4, and T5, respectively. The chosen range is hypothesized
to showcase the impact of different LR values, where values
that are too large can prevent convergence, while excessively
small step sizes can converge to a local minimum too quickly.
Large LR values may prevent the algorithm from learning any
policy at all, and low LR values may learn a meaningless pol-
icy without much exploration. All other parameters in DGN
and windfarm environment are kept constant. The models are
trained on a basic 3×1 wind tunnel windfarm layout with an
undirected graph representation.

The results of the experiments, including the training, eval-
uation, and loss curves, are presented in Figure 5. Analyzing



(a) Training reward. (b) Evaluation reward. (c) Training loss.

Figure 5: Training DGN on various learning rates.

the training and evaluation reward curves in Figure 5a and
Figure 5b, it is immediately clear that only models T4 and
T5, which use LRs of 10−7 and 10−8 respectively, converge.
The loss curve of T5 in Figure 5c shows that it remains in its
local minimum and gradually converges to the corresponding
minimum due to its small LR. Interestingly, the converged
reward value of T5 is comparable to the Static Yaw base-
line (0.001107, Appendix B), which coincides with the ini-
tial state of the windfarm environment. T4, on the other hand,
learns a more useful policy, and this can be observed in its loss
curve as well. Initially, it follows a shallow decrease, but once
it discovers a better policy, it quickly converges and remains
stable. Contrastingly, the LRs used by models T1 and T2 are
too large, as evidenced by the considerable noise, spikes and
non-convergence in the reward curves. More convincingly,
the oscillations present in their loss curves are characteris-
tic of the overshooting and undershooting caused by exces-
sively large LR values. Although the reward curve of T3 also
does not converge within the specified episodes, the peaks
and troughs in its loss curve are less pronounced, suggesting
some inclination towards learning. Based on the results ob-
tained with different LR values, it appears that the model can
learn effectively within the range of [10−6, 10−8], with a LR
of 10−7 demonstrating the best performance. This LR value
will be used in the subsequent experiments.

The conclusions drawn from the LR experiments align with
the hypothesis, demonstrating the significant influences of LR
on the learning behaviour of the algorithm and its ability to
converge to a useful policy. When the LR is too large, the re-
ward curve contains noisy fluctuations and fails to converge
to a policy. This is consistent with the behaviour of large gra-
dient descent steps, which tend to overshoot and undershoot
the local minimum. As the LR decreases, the oscillations in
the loss curve dampen out as the model adopts more appro-
priate step sizes. As expected, an appropriate LR enables the
algorithm to learn a useful policy. However, further decreas-
ing the LR prevents the exploration of different policies since
the gradient descent step becomes insufficient to escape the
immediate local minimum.

4.3 Performance Impact of Windfarm Size
The purpose of this section is to investigate the scalability
of DGN in comparison to the SARL baseline, specifically in

terms of increasing windfarm sizes. This aligns with the ob-
jectives of the second sub-research question. The experiment
aims to explore windfarms of varying sizes, ranging from
three turbines to six, nine, and up to a 16 turbine windfarm.
These layouts are selected to gradually incorporate more tur-
bines while maintaining wake interactions. The layout transi-
tions from a simplified wind tunnel to a grid windfarm. The
layouts are further explained below and visualized in Figure
6. The hypothesis posits that as windfarm size grows, the
complexity of the optimal control rule also increases. Con-
sequently, the SARL baseline is expected to significantly de-
teriorate, whereas DGN is anticipated to maintain its perfor-
mance relative to the baselines.

Wind Tunnel: The 3×1 wind tunnel setup fea-
tures three turbines in a row, resulting in down-
stream turbines being in the wake of upstream tur-
bines, as visualized in Figure 6a. This configuration
allows for a small number of wind turbines while
maximizing wake interactions.

Grids: The windfarm layout is further expanded
by adding additional rows, resulting in grid config-
urations of 3×2 (Figure 6b), 3×3 (Figure 6c) and
4×4 (Figure 6d) turbines. This gradual increase
in the number of turbines introduces comparable
wake effects, allowing for a gradual comparison be-
tween MARL and SARL scalability to larger wind-
farms.

For these experiments, the layouts are modelled using undi-
rected graphs. The windfarm environment settings and al-
gorithm parameters for DGN and the other baseline meth-
ods are kept constant and outlined in Appendix A, B, and C.
Since the windfarm power outputs cannot be directly com-
pared across different layouts, the rewards are rescaled to
enable direct comparison. In this rescaling, the Static base-
line is assigned a value of zero, the FLORIS baseline is as-
signed a value of one, and all other reward curves are scaled
accordingly. This rescaling facilitates the direct comparison
and analysis of trends between different windfarm layouts.

The evaluation performance results for this experiment are
presented in Figure 7, with the windfarm sizes increasing
from left to right. The non-scaled results can also be found in
Appendix D. Looking at the smallest windfarm in Figure 7a,



(a) 3×1 layout

(b) 3×2 layout

(c) 3×3 layout (d) 4×4 layout

Figure 6: Windfarm layout renders generated using the windfarm simulator [13].

(a) 3x1 windfarm layout. (b) 3x2 windfarm layout. (c) 3x3 windfarm layout. (d) 4x4 windfarm layout.

Figure 7: DGN and baseline performances on increasing windfarm sizes.

it is evident that DGN does not outperform FLORIS or DQN.
In this case, DQN achieves higher performance more quickly
and even approaches the FLORIS baseline. Regardless, this
result still demonstrates that DGN learns a useful policy that
outperforms the Static baseline.

Moving on to the next windfarm, the 3×2 layout shown
in Figure 6b clearly show that both DGN and DQN do not
learn particularly useful policies when compared to FLORIS,
but they do outperform the Static baseline. Towards the end
of the training process at 10,000 episodes, the performance
of both RL algorithms is comparable, with the upper band
of DQN overlapping the lower band of DGN suggesting that
the MARL algorithm may be slightly better. The result in-
dicates that expanding the windfarm with an additional row
of turbines brings the performances of DGN and DQN closer
together. Additionally, the results show that DGN learns its
policy earlier, at around 4,500 episodes, as opposed to DQN’s
gradual increase at 8,000 episodes. However,this is only an
indication, as the dip in DGN’s performance towards the end
suggests that it may not have converged yet.

The results of the 3×3 windfarm layout shown in Figure
7c provide the first clear differentiation between the scala-
bility of DGN to larger windfarms compared to the SARL
method. The performance of DQN is comparable to the
Static baseline, whereas the performance of DGN is at a level
roughly halfway between FLORIS and the Static baselines.
This same differentiation is also evident in the results of the
largest windfarm layout in Figure 7d. Once again, this plot
highlights the differences between MARL and SARL algo-
rithms at scale. DGN learns a policy which is better than the
Static baseline, albeit only slightly better. It is still a relatively
useful policy compared to remaining stationary. In contrast,
DQN learns a disadvantageous policy that consistently under-

performs the Static baseline.
Analyzing the performance trends for increasing windfarm

sizes further demonstrates the differences between MARL
and SARL limitations. DQN produced an extremely useful
policy in the smallest windfarm that was comparable to the
numerical solution from FLORIS. However, as the windfarm
sizes increase, DQN’s performance degrades dramatically. In
the six turbine windfarm, the performance fluctuates around
the Static baseline before exhibiting a slight upwards trend at
8,000 episodes. Increasing the size by three again causes the
performance to oscillate at the Static baseline for the entire
duration. Finally, in the 16 turbine windfarm, DQN learns a
policy worse than the Static baseline, further solidifying the
limitations of SARL. On the other hand, DGN shows a com-
pletely different trend. Although it does not learn a policy as
useful as DQN in the three turbine windfarm, its performance
relative to the FLORIS and Static baseline remains stable as
the windfarm size increases. While its performance appears
to decrease slightly, the overall trend clearly demonstrates the
ability of DGN as a MARL algorithm to scale with larger
windfarms by maintaining the quality of its learned policy.

4.4 Performance Impact of Directionality in
Windfarm Graph Representation

The goal of this section is to answer the third and final sub-
research question by investigating the effects of the different
windfarm graph representation techniques described in Sec-
tion 3. Three models are considered: DGN for the undirected
representation, DGN-U for the upstream directed representa-
tion, and DGN-D for the downstream directed representation.
These models are tested on the layouts specified in Section
4.3, with the exception of the 4×4 layout, which is omit-
ted due to time constraints of the lengthy training duration.



(a) 3x1 windfarm layout. (b) 3x2 windfarm layout. (c) 3x3 windfarm layout.

Figure 8: Performance of DGN using different directionality in windfarm graph modelling on various windfarm layouts.

The windfarm environment settings and algorithm parame-
ters for DGN and the other baseline methods are outlined in
Appendix A, B, and C. Additionally, the rewards in the graphs
presented in this section are rescaled, as previously defined,
to enable comparisons across different windfarm layouts. The
non-scaled results can be found in Appendix E.

The results of these experiments can be found in Figure
8, which displays the performance of all control methods for
the specified windfarm layouts in increasing size from left
to right. For the smallest windfarm configuration in Figure
8a, the performance of DGN and DGN-D reaches compa-
rable levels with a large overlap between their error bands.
However, the power output of DGN-D appears to slope down-
wards from around 7,000 episodes, indicating that it has not
yet converged. On the other hand, DGN-U learns a policy
that is comparable to the Static baseline. Analyzing the en-
tire training process, the reward curve of DGN-D and DGN-U
contain more peaks and troughs. This uncertainty could be at-
tributed to the reduced communication between agents. The
graph suggests that transferring information downstream con-
veys more informative data for wake control than upstream
communication.

The behavior observed in the smaller three turbine wind-
farm contradicts the behavior displayed in the six turbine
windfarm. In Figure 8b, DGN-U converges to a level com-
parable to DGN, and it appears to perform better between the
range of 2,000 and 7,000 episodes, where DGN eventually
reaches the same level. Contrarily, DGN-D converges to a
level comparable to DQN but drops slightly below it in the
last 1,000 episodes. However, DGN-D does still perform bet-
ter than the the Static baseline. Similar patterns are observed
in the nine turbine windfarm in Figure 8c, where DGN-U per-
forms equally well as DGN and DGN-D with DQN. On this
layout, the differences between the two pairs are even more
distinguishable.

These results demonstrate a discrepancy in the perfor-
mance between DGN-D and DGN-U depending on the size of
the windfarm. In smaller windfarms, modelling downstream
directionality is more performant than upstream directional-
ity and vice versa for the larger windfarms. Across all three

windfarm sizes, the most optimal directional representations
for each size performs comparably to the corresponding per-
formance of DGN.

5 Discussion
This section serves to discuss the methodology and results of
all the experiments conducted in Section 4, focusing on the
learning rate, windfarm size and windfarm graph representa-
tion experiments. These will be discussed in the following
order.

The LR experiments clearly demonstrated a correlation be-
tween the ability to learn and the LR. The chosen range of LR
values was appropriate as it was able to showcase both ex-
treme behaviors. In the lower range of the LR values, where
the model converged immediately, the performance was com-
parable to the Static baseline, where all turbines face the
wind. Considering that this is also the starting state of the
windfarm environment, it could indicate an ineffective ini-
tial random action exploration methodology. The discretized
actions of clockwise, counterclockwise, and no movement,
sampled uniformly at each time step, result in a random walk
behavior. The expectation of the turbine angle is to remain
stationary, corresponding to the initial conditions. At each
time step, random walk trinomially distributes the turbine po-
sitions around the starting position [23], which populates the
replay buffer. Since RL algorithms learn from past experi-
ences, having variety in the experiences helps explore a larger
state space. The current exploration scheme restricts the ex-
ploration as all experience are centered around the starting
position, which negatively impacts the learning process re-
gardless of the chosen LR. Therefore, employing a different,
more advantageous action sampling scheme could potentially
improve the time to converge and quality of the learned pol-
icy.

The windfarm size experiments concretely demonstrate
that DGN is capable of learning useful policies on all the
tested windfarms. Although DGN’s performance never
reaches the FLORIS baseline, it performs consistently across
all windfarm sizes whereas DQN only performs well on the
three turbine windfarm. From an algorithmic perspective,



DQN, as an SARL algorithm, decides on turbine actions by
using all available state information and learns a policy by
taking all turbines into consideration. On the contrary, agents
in DGN do not have access to all the information, and each
agent learns its own policy independently. It is, therefore,
explainable that on a scale where the state and action combi-
nations are still manageable by the SARL algorithm, it yields
better performance simply due to the access to information
and centralized decision making. However, as windfarm sizes
increase, there are simply too many turbine state combina-
tions for the SARL algorithm to explore in a reasonable time.
Since the SARL performances on large windfarms were com-
parable to the Static baseline, the previously discussed limi-
tation of the action space exploration method could have fur-
thered hindered its ability to explore. Nonetheless, DGN still
demonstrates a useful policy despite utilizing the same inef-
fective sampling technique. It could still be a factor that pre-
vented DGN from yielding better performance. Moreover,
the lack of extensive hyperparamter tuning could have also
suppressed the algorithm’s true capabilities. Regardless, the
experiments were sufficient to demonstrate DGN’s scalabil-
ity to larger windfarms and highlight the differences between
DGN and DQN. The chosen windfarm sizes and layouts were
appropriate as they revealed the performance trend in relation
to windfarm size.

The windfarm modelling experiments showed that, with
the current setup, the additional communication supported by
undirected edge modelling does not appear to result in perfor-
mance benefits over directed edges, as both approaches yield
similar results. Since the undirected representations allows
for more inter-agent communication, it suggests that the ad-
ditional information transferred are not be significantly more
useful for learning a policy. Surprisingly, the differences be-
tween upstream and downstream communication for AWC
are inconclusive and requires further experiments, as out-
comes are contradictory. Intuitively, one could argue that up-
stream communication should outperform downstream com-
munication because a turbine should only steer its wake when
there are downstream turbines. If there are no downstream
turbines, it would always face the wind to maximize out-
put. This knowledge is only achievable by communicating
upstream. The results for larger windfarm sizes seem to sup-
port this intuition, however, at smaller sizes, the opposite be-
haviour is observed. Possible explanations could involve a re-
lationship between the size and complexity of the windfarm
and directionality of communication. Further investigation is
required to draw further conclusions.

6 Conclusions and Future Work
Single agent RL algorithms have been successfully applied to
the active wake control problem in windfarms with a limited
number of turbines. However, these methods face challenges
when scaling to real-life windfarms with a significantly larger
number of turbines. The exponential growth in size of the
state and action spaces makes it difficult for agents to learn
useful policies within a reasonable time frame. Multi agent
RL algorithms provide a solution to this problem by allowing
each agent to learn its own actions independently. This pa-

per presented DGN as a potential MARL algorithm suitable
for AWC application for windfarms. It demonstrated that on
small windfarms, DGN can be used for AWC but does not
outperform DQN, the SARL benchmark. However, as the
windfarm sizes increase, the results clearly show that DGN
performance remains stable and outperforms the SARL algo-
rithm, which suffers from scalability issues. Lastly, this paper
explored the use of directional graph modelling of the wind-
farms. It was found that directed graphs perform comparably
to undirected graphs, but the differences between upstream
and downstream directionality are still unclear and require
further experimentation.

The results establish DGN as a viable algorithm for AWC
in windfarms. While it outperforms certain baselines, DGN
doess not learn policies that are comparable to FLORIS nu-
merical solutions. The setup of the experiments focused on
tuning the learning rate to tailor the algorithm for AWC, but
other influential factors such as epsilon-greedy exploration
parameters and batch size were not explored. Further investi-
gation into these hyperparameters, as well as potentially ad-
ditional ones, could reveal the full capabilities of DGN. Ad-
ditionally, the learning behavior of DGN could be studied by
addressing the issue of the uniform random action space sam-
pling scheme mentioned in Section 5. Alternative exploration
schemes could be devised to generate states with diverse com-
binations of turbine angles. Approaches such as yawing tur-
bines back and forth at different frequencies and directions to
cover a wider range of turbine angle combinations. Further-
more, with more time budget, experiments should be repeated
more times for reliability. Moreover, experiments should be
run with more episodes as larger windfarm layouts may re-
quire more episodes to converge to a policy.

To further research the application of DGN to AWC in
windfarms, experiments can be conducted using more re-
alistic wind conditions and windfarm layouts. The experi-
ments in this paper utilized grid layouts and static wind con-
ditions to simplify the problem and focus on applying DGN.
However, incorporating stochastic wind models that include
variations in wind speed and direction would introduce more
complexity to the state space and required policy, making it
more representative of real-world windfarm conditions. Fur-
thermore, grid layouts are seldomly employed in practice, as
they inherently induce high wake interaction. Turbines are
instead positioned using specialized optimization techniques
[24]. It would be valuable to conduct experiments using
layouts based on real-life windfarms, either using the entire
windfarm or subsets of it. These extensions further test the
viability of DGN for real world AWC deployment. Lastly,
there are numerous possibilities for further investigation in
windfarm graph modeling. These include exploring differ-
ent approaches to graph modeling, such as the directionality
graph modeling proposed in this paper, or dynamically up-
dating graph representations to reflect changes in turbine and
wind conditions. These avenues of research have the poten-
tial to enhance the understanding and capabilities of DGN in
the context of active wake control in windfarms.



7 Responsible Research

The focus of the research in this paper was the investigation
of applying a specific method, namely the DGN MARL algo-
rithm, to the AWC problem in windfarms. The goal of AWC
is to improve the power efficiency and output of windfarms
as a whole. From an AI perspective, the research of a crucial
renewable energy source can be considered ethical for the po-
tential societal benefits that stem from it. Especially, in this
case, which is the use of RL to control a system where on-
site human operation and maintenance are phasing out into
monitoring roles [25]. However, ethical considerations still
arise from the potential implications of such technologies.
Increased autonomy raises a concern for the loss of human
decision making. Although most ethical issues concern di-
rect human interaction, the inherent black box nature of ML
gives rise to risk in the explainability of decision making and
its reliability in various potentially adversarial situations [26].

To ensure the reproducibility of the research, many con-
siderations have been taken. Firstly, all the algorithm im-
plementations and frameworks that have been used for the
experiments are open source and have been referenced. The
implementation for the experiments in this paper is also open
sourced in Github1. Standardization in implementation is the
first step towards achieving reproducibility. Given the same
implementations, hyperparameters and seeds can drastically
alter results. As previously discussed in Section 4.1, with
the exception of tuning LR, all hyperparameters are kept con-
stant for all experiments. These are also documented such
that the exact model configurations can be reproduced. Seeds,
on the other hand, control the aspects involving randomness
in the experiments. An example of this is agent random ac-
tion space exploration which can influence the policies that
are ultimately learned. Although fixing the seed removes
the stochasticity in random sampling, the sensitivity of seeds
can negatively or positively skew the results and lead to po-
tentially misleading conclusions [27]. Consequently, results
presented in this paper are the mean over multiple random
seeds such that they can be reproducible in the average case.
Finally, all the methodology and results used for the exper-
iments have been truthfully and fully reported so that con-
clusions drawn in this paper can also be reached in a repro-
ducible manner.

A Deep Q-Network Hyperparameters

Tuning the learning rate involved comparing performance of
five values ranging from 10−4 to 10−8. Experiments were
repeated 3 times and the 10th and 90th percentile are used for
error bands.

1https://github.com/JeffersonYeh/DGN-awc-windfarm

(a) Training Reward

(b) Evaluation Reward

(c) Training Loss

Figure 9: Tuning DQN on various learning rates.

https://github.com/JeffersonYeh/DGN-awc-windfarm


The final setup of hyperparameters used are the following
in Table 1.

Parameter Value
ϵstart 0.9
ϵend 0.05
ϵdecay 1000
learning rate 10−4

batch size 128
replay buffer size 10000
γ 0.99
τ 0.005
training episodes 10000
training steps per episode 100
evaluation steps per episode 100
windfarm action representa-
tion

yaw

action discretization step size 1

Table 1: DQN Hyperparameters

B Baseline Performance

The baseline performances of FLORIS, Static Yaw, and DQN
for all the layouts used in the experiments.

Windfarm Layout Static Yaw FLORIS
3×1 wind tunnel 0.001107 0.001298

3×2 grid 0.002214 0.002603
3×3 grid 0.003322 0.003909
4×4 grid 0.005471 0.006817

Table 2: Control method baseline reward per time step

(a) 3×1 windfarm layout.

(b) 3×2 windfarm layout.

(c) 3×3 windfarm layout.

(d) 4×4 windfarm layout.

Figure 10: Baseline performance on various windfarm layouts



C DGN Hyperparameters

The final setup of hyperparameters used for DGN are sum-
marized in Table 3.

Parameter Value
ϵstart 0.9
ϵend 0.05
ϵstep -0.0004
learning rate 10−7

batch size 128
replay buffer size 1000000
epoch 25
γ 0.99
hidden layer dimension 64
training episodes 10000
training steps per episode 100
evaluation steps per episode 100
learning start episode 100
windfarm action representa-
tion

yaw

action discretization step size 1

Table 3: DGN Hyperparameters

D Windfarm Size Experiments

(a) 3×1 windfarm layout.

(b) 3×2 windfarm layout.

(c) 3×3 windfarm layout.

(d) 4×4 windfarm layout.

Figure 11: Non-scaled DGN and baseline performances on changing
windfarm sizes.



E Windfarm Graph Representation
Experiments

(a) 3×1 windfarm layout.

(b) 3×2 windfarm layout.

(c) 3×3 windfarm layout.

Figure 12: Non-scaled performance of DGN using different direc-
tionality in windfarm graph modelling on various windfarm layouts.

References
[1] O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Sey-

both, and et al., “Summary for policymakers,” Renew-
able Energy Sources and Climate Change Mitigation:
Special Report of the Intergovernmental Panel on Cli-
mate Change, p. 3–26, 2011.

[2] R. Wiser, Z. Yang, M. Hand, O. Hohmeyer, D. Infield,
P. H. Jensen, V. Nikolaev, M. O’Malley, G. Sinden,
A. Zervos, and et al., “Wind energy,” Renewable Energy
Sources and Climate Change Mitigation: Special Re-
port of the Intergovernmental Panel on Climate Change,
p. 535–608, 2011.

[3] M. F. Howland, S. K. Lele, and J. O. Dabiri, “Wind
farm power optimization through wake steering,” Pro-
ceedings of the National Academy of Sciences, vol. 116,
pp. 14 495–14 500, 7 2019.

[4] P. Stanfel, K. Johnson, C. J. Bay, and J. King, “Proof-
of-concept of a reinforcement learning framework for
wind farm energy capture maximization in time-varying
wind,” Journal of Renewable and Sustainable Energy,
vol. 13, p. 043305, 7 2021.

[5] H. Dong, J. Zhang, and X. Zhao, “Intelligent wind
farm control via deep reinforcement learning and high-
fidelity simulations,” Applied Energy, vol. 292, p.
116928, 6 2021.

[6] H. Dong, J. Xie, and X. Zhao, “Wind farm control tech-
nologies: from classical control to reinforcement learn-
ing,” Progress in Energy, vol. 4, p. 032006, 7 2022.

[7] B. M. Doekemeijer, D. van der Hoek, and J.-W. van
Wingerden, “Closed-loop model-based wind farm con-
trol using floris under time-varying inflow conditions,”
Renewable Energy, vol. 156, pp. 719–730, 2020.

[8] G. Neustroev, S. P. Andringa, R. A. Verzijlbergh, and
M. M. De Weerdt, “Deep reinforcement learning for ac-
tive wake control,” in Proceedings of the 21st Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems, 2022, pp. 944–953.

[9] P. Stanfel, K. Johnson, C. J. Bay, and J. King, “A dis-
tributed reinforcement learning yaw control approach
for wind farm energy capture maximization,” in 2020
American Control Conference (ACC), 2020, pp. 4065–
4070.

[10] K. Zhang, Z. Yang, and T. Başar, Multi-Agent Rein-
forcement Learning: A Selective Overview of Theories
and Algorithms. Cham: Springer International Pub-
lishing, 2021, pp. 321–384.

[11] A. Oroojlooy and D. Hajinezhad, “A review of cooper-
ative multi-agent deep reinforcement learning,” Applied
Intelligence, 2022.

[12] J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph convo-
lutional reinforcement learning,” 8th International Con-
ference on Learning Representations, ICLR 2020, 2020.

[13] G. Neustroev, M. de Weerdt, R. Verzijbergh, and
S. Andringa, “Source code and data for the experiments



presented in deep reinforcement learning for active
wake control,” 2022. [Online]. Available: https:
//data.4tu.nl/articles/ /19107257/1

[14] NREL, “Floris wake modeling and wind farm controls
software,” v2.4. [Online]. Available: https://github.
com/nrel/floris

[15] J. Jiang, “pytorch dgn,” 2021. [Online]. Available:
https://github.com/jiechuanjiang/pytorch DGN

[16] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma,
and J. Bergstra, “Benchmarking reinforcement learning
algorithms on real-world robots,” in Proceedings of The
2nd Conference on Robot Learning, ser. Proceedings
of Machine Learning Research, A. Billard, A. Dragan,
J. Peters, and J. Morimoto, Eds., vol. 87. PMLR, 29–31
Oct 2018, pp. 561–591.

[17] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini,
S. Girgin, R. Marinier, L. Hussenot, M. Geist,
O. Pietquin, M. Michalski, S. Gelly, and O. Bachem,
“What matters in on-policy reinforcement learning? a
large-scale empirical study,” arXiv, 2020.

[18] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le,
“Don’t decay the learning rate, increase the batch size,”
arXiv, 2018.

[19] H. N and P. A. G, “A brief study of deep reinforcement
learning with epsilon-greedy exploration,” International
Journal of Computing and Digital Systems, vol. 11, pp.
541–551, 1 2022.

[20] P. A. Fleming, A. P. J. Stanley, C. J. Bay, J. King,
E. Simley, B. M. Doekemeijer, and R. Mudafort,
“Serial-refine method for fast wake-steering yaw opti-
mization,” Journal of Physics: Conference Series, vol.
2265, p. 032109, 5 2022.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” arXiv, 2013.

[22] PyTorch, “Reinforcement q learning.” [Online]. Avail-
able: https://github.com/pytorch/tutorials/blob/main/
intermediate source/reinforcement q learning.py

[23] P. Consul, “On some probability distributions associ-
ated with random walks,” Communications in Statistics
- Theory and Methods, vol. 23, no. 11, pp. 3241–3255,
1994.

[24] N. Charhouni, M. Sallaou, and K. Mansouri, “Realis-
tic wind farm design layout optimization with different
wind turbines types,” International Journal of Energy
and Environmental Engineering, vol. 10, pp. 307–318,
2019.

[25] X. Chen, M. A. Eder, A. Shihavuddin, and D. Zheng, “A
human-cyber-physical system toward intelligent wind
turbine operation and maintenance,” Sustainability,
vol. 13, no. 2, 2021.

[26] S. L. Piano, “Ethical principles in machine learning and
artificial intelligence: cases from the field and possible
ways forward,” Humanities and Social Sciences Com-
munications, vol. 7, p. 9, 6 2020.

[27] S. Bethard, “We need to talk about random seeds,”
arXiv, 2022.

https://data.4tu.nl/articles/_/19107257/1
https://data.4tu.nl/articles/_/19107257/1
https://github.com/nrel/floris
https://github.com/nrel/floris
https://github.com/jiechuanjiang/pytorch_DGN
https://github.com/pytorch/tutorials/blob/main/intermediate_source/reinforcement_q_learning.py
https://github.com/pytorch/tutorials/blob/main/intermediate_source/reinforcement_q_learning.py

	Introduction
	Wake Problem
	Existing Solutions
	Research Focus

	DGN for Active Wake Control
	Active Wake Control as a Multi Agent Problem
	DGN Algorithm

	Windfarm Graph Representation
	Undirected Representation
	Directed Representation

	Experiments
	Experimental Setup
	Hyperparameter Tuning
	Baselines

	Performance Impact of Learning Rate
	Performance Impact of Windfarm Size
	Performance Impact of Directionality in Windfarm Graph Representation

	Discussion
	Conclusions and Future Work
	Responsible Research
	Deep Q-Network Hyperparameters
	Baseline Performance
	DGN Hyperparameters
	Windfarm Size Experiments
	Windfarm Graph Representation Experiments

