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Abstract

Brachytherapy (BT) is an essential component in the treatment of cervical cancer as it allows for
locally delivering a high dose to the tumour with minimal trauma to surrounding tissues and
organs at risk (OARs). However, in advanced cervical cancer patients commercially available BT
applicators are particularly ill-adapted and therefore result in suboptimal local control and
frequent occurrence of substantial tissue morbidity. Additionally, cervical cancer BT is associated
with large dosimetric uncertainty which has been shown to significantly impact the delivered dose
and the occurrence of normal tissue complications. The clinical outcomes of treatment may be
improved through combined efforts in sophisticated applicator design and robust treatment
optimisation. Patient-tailored BT applicators have been introduced to improve dose conformity,
but currently rely on manual indication of needle channels. Automated needle channel planning
software for this purpose exists, but does not account for OAR dose constraints or uncertainty in
the planning environment. Robust treatment optimisation, on the other hand, potentially
improves the dose conformity of plans in the presence of uncertainty, but relies on the questionable
presumption that optimisation of dwell times can fully correct for suboptimal dwell positions. In
this thesis, the freedom of source placement that 3D-printed applicators allow and the principle of
robust treatment optimisation are leveraged to develop robust needle channel planning software
for personalised applicators. This thesis was accordingly divided into three parts.

The aims of this study were threefold. This thesis first aimed to: (i) classify and quantify
dosimetric uncertainty components in cervical cancer BT, (ii) assess their impact on the clinical
outcome, and (iii) cast these outcomes into a mathematical optimisation problem suited for
motion planning (MP). Secondly, this thesis aimed to: (iv) develop a general tool to aid the
selection process of a MP class given this heuristic problem description, and (v) use this for the
selection of a robust MP class for BT. Lastly, this thesis aimed to: (vi) develop robust motion
planners capable of generating needle channels in complex environments under uncertainty, and
(vii) implement and evaluate their performance in a simulated patient case.

In the first part, literature was reviewed to establish the dosimetric uncertainty budget and
evaluate geometric uncertainty of OARs. Inter and intra-fraction uncertainty are likely the
greatest contributors to the uncertainty budget, possibly increasing the delivered dose to OARs
with up to 4.0 ± 20% (k = 1). Using dose-response models it was established that this may
realistically increase the occurrence of moderate to severe morbidity of the bladder or rectum by
1.5 and 3.7% respectively. The BT needle channel planning problem under uncertainty was
accordingly defined as the problem of computing multiple feasible, non-intersecting curvature-
constrained channels under probabilistic or bounded spatial uncertainty of OARs. In the second
part, a tool termed motion-planning quality function deployment (MP-QFD) was developed to
select a suitable motion planning class. Using the results from a pilot study among nine medical
specialists, this tool substantiated the preferred choice for an incremental sampling-based motion
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planning algorithm. In the last part, robust variants of sampling-based planners were introduced
that are capable of computing trajectories for non-holonomic agents in environments under
uncertainty. In a two-dimensional simulated patient case, it was shown that these planners were
able to generate near-optimal trajectories that (probabilistically) guaranteed not exceeding OAR
dose constraints. Subsequent dose-based optimisation showed that (robust) trajectory planning
could theoretically yield treatment plans with improved dose conformity over those generated for
conventional applicators. Due to modelling assumptions, robust motion planning did not result in
improved dose conformity over a nominal motion planning approach in a worst-case scenario.
Future work should therefore focus on improving our understanding of OAR movement in and
during BT treatment and validating this theoretical work in a patient case series.
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0. Preliminaries

0.1 Nomenclature in BT
α/β Radiosensitivity coefficient ratio

∆ Dosimetric variation

Φan 1D anisotropy function

γ50 Normalised dose-response gradient
at 50% response

Λ Dose-rate constant in water

Σ SD of systematic error

σ Group random error

σσ SD of random error

σp Overall random error

BED Biologically effective dose

capd Constraint function for the ath
structure at dose calculation point
pd

d (Nominal) Dose per fraction

d̄ Actual dose delivered per fraction

ḋ Dose rate

dpd Dose to calculation point pd
D Total delivered dose over treatment

DV Dose received by at least partial
volume V

EQDX Equieffective dose

EUD Equivalent uniform dose

FL 2D anisotropy function

G Repair function

GL Geometry function for line source

gL Radial dose function for line source

GP Geometry function for point source

L Length of the BT source

M Group systematic error (Mean of
means)

Ma Penalty weight for the ath structure
the ath structure

Mp Overall mean error

N Number of fractions

NTCP Average normal tissue complication
probability with uncertainty

NTCP Normal tissue complication
probability

r Distance from a point of interest to
the centre of the BT source

SK Air kerma strength of the BT source

TCD50 Dose required for 50% response

TCP Tumour control probability

TCP Average tumour control probability
with uncertainty

VD Volume receiving a dose of at least
D

wapd Penalty function for the ath
structure at dose calculation point
pd

0.2 Nomenclature in MP
∨ Map from Lie algebra to Real space

∧ Map from Real space to Lie algebra

exp Exponential map

log Logarithmic map

A Agent

C Configuration space

Cobs Set of configurations in collision

E Entry region

I Stay-in region

N Candidate set of dwell segments

N (µ, Pc) Multivariate normal distribution
with mean µ and covariance matrix
Pc

Nfree Set of feasible dwell segments

O Obstacle space

S Set of optimal dwell segments

T Tumour region

U Control space

W World

X State space

Xfree Set of states in the free space

Xj,t jth Obstacle (OAR) at time t

Xm Set of planned needles

Xobs Set of states in collision

Y Set of dwell segments in collision

Y Set of non-feasible dwell segments
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P Probability

RPn Real projective space

Rn Euclidean space

Sn Spherical space

C Cost criterion

E List of edges

G Graph

I(ε) Coverable points

L Length of agent

Mq(ε) Set of dwell segments that covers
point q

N Number of samples

O Order of complexity

Pc Covariance matrix of the jth OAR

Qnear Set of near neighbours

Sj Bounded uncertainty set of the jth
OAR

se(2) Lie algebra with dimension n

SE(n) Special Euclidean group with
dimension n

SO(n) Special orthogonal group with
dimension n

V List of vertices

Xt Pose at time t

Xchildren Set of children nodes

αl User weight for the lth cost function
component

∆ Trajectory-wise risk threshold

δ Step duration

∆t Stepwise risk threshold

ε Dose coverage radius

ηcj Deterministic constraint tightening
parameter for the jth obstacle

κ̄ Upper bound to curvature

κt Curvature at time t

ξ Velocity twist of rigid body

λ̄ Maximum step size

λt Step size at time t

ψp Joint tolerated risk level

ψs Stepwise tolerated risk level

ρ Distance metric

τ Path

τq Dose calculation point

cj Uncertain translation of the jth
OAR

e Edge

fj Bounded displacement interval

p Point in Euclidean space

p/q/xsamp Sampled point / configuration /
state

q Configuration

q/xnearest Nearest configuration / state
according to cost metric

q/xnear Nearest configuration / state
according to distance metric

q/xnew New configuration / state

q/xparent Parent configuration / state

u Control input

v Vertex

xi0 Initial state of the ith agent

xiT Terminal state of the ith agent at
time T

xit State of the ith agent at time t

x̃ Trajectory

fl Cost function component

rD,j Dose constraint radius for the jth
OAR

si Individual dwell segment

tzip Dwell time for dwell position zip
v̄t Upper bound to tangential velocity

vt Tangential velocity at time t

w Width of agent

zip Dwell position in the ith source
channel

0.3 Nomenclature in QFD
γlj Correlation between lth and jth

HOW

H Cumulative index vector

U Binary index vector

Am Technical alternative

Ai Attractive WHAT

Bi Basic WHAT

Co Competitor

di Final importance of WHAT

DIi Dissatisfaction index

E Technical matrix

emj Degree of attainment of jth HOW
for mth alternative

gi Relative importance of WHAT

Hj Technical attribute / HOW

Ii Indifferent WHAT
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IRi Improvement ratio of WHAT

k Kano category coefficient

L Ordinal scale level

Oi One-dimensional WHAT

R Relationship matrix

rij Correlation coefficient between ith
WHAT and jth HOW

S Overall user satisfaction

SIi Satisfaction index

Tj Indicator function of WHAT
prioritisation

Wi User weight / WHAT

wj Weight of prioritisation of jth
technical attribute

xio Attainment of ith WHAT of oth
competitor

yi Degree of fulfillment of WHAT
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Part I
Evaluation and specification of uncertainty in

cervical cancer brachytherapy

This part provides an overview of dosimetric uncertainties and their clinical impact on
brachytherapy for cervical cancer, and makes a case for the implementation of robust planning
software in the development of patient-tailored brachytherapy applicators. Advances in treatment
modalities leading to the development of these patient-tailored brachytherapy applicators and
dose planning concepts are described in Chapter 1. Moreover, the problem of uncertainty in
cervical cancer brachytherapy is introduced and current solutions explored. In Chapter 2
dosimetric uncertainty components in cervical cancer brachytherapy are structured and their
magnitude and impact on the clinical outcome of patients are assessed. Geometric inter and
intra-fraction uncertainty are further investigated in Chapter 3. The brachytherapy needle channel
planning problem under uncertainty is then mathematically formulated in Chapter 4, which lies at
the basis for the planning software developed in this thesis.

Illustration: Impact of dosimetric uncertainty on the predicted occurrence of rectal complications
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1. Clinical introduction

1.1 Cervical cancer: epidemiology, diagnosis and treatment
Cancer of the cervix, or cervical cancer, is the fourth most commonly occurring form of cancer and
cancer-related mortality among women worldwide, with an estimated 570,000 patients newly
diagnosed and accountable for an estimated 311,365 deaths in 2018 [1]. The human papillomavirus
(HPV) is the (virtually) necessary cause of cervical cancer. Advances in screening and systematic
vaccination have drastically decreased the incidence and mortality of cervical cancer in particular
for developed countries [2–4]. For women who develop cervical cancer, the treatment modality is
among others dependent on the stage of cancer including tumour size, local extension and nodal
involvement. These are typically characterised using the International Federation of Gynaecology
and Obstetrics (FIGO) staging system and TNM Classification. Next to tumour related factors,
the choice of treatment strategy is influenced by: (i) patient factors: including age, desire to
preserve fertility, overall health, body habitus and presence of comorbidity, (ii) physician’s
preference or expertise, (iii) institutional traditions and (iv) resource availability amongst other
factors [5].

Brachytherapy (BT) encompasses all temporary or permanent techniques of placing radiation
sources in close proximity to or within the tumour. It allows for locally delivering a (additional)
high cervical and para-cervical equieffective dosage to the tumour, due to the characteristic rapid
absorbed-dose fall-off in the direction orthogonal to the source, which obeys an inverse square law.
This would not be possible with external beam radiation therapy (EBRT) alone, without
significant side effects to organs at risk (OARs) or surrounding normal tissues (Figure 1.1) [6–9].
Therefore, it is an essential component of radiotherapy and plays an important role in the
treatment of cervical cancer in general. Surgery has been the standard treatment method in early
stage disease (FIGO stages IA-IB1 or TMN stages T1a-T1b), although radiotherapy possibly
including brachytherapy (BT) could be used in the case of unfavourable prognosis as well.
Combination therapy generally involving external beam radiation therapy (EBRT) and
brachytherapy with or without concurrent cisplatin chemotherapy is especially recommended for
patients with locally advanced carcinomas (stages IB2-IVA or T1b2-T4) [7, 10–12].

1.2 Basic concepts in brachytherapy
This section provides a comprehensive overview of basic concepts in brachytherapy to arrive at a
uniform and reliable terminology.

1.2.1 Treatment modality
Low, pulsed and high-dose-rate brachytherapy
Within brachytherapy treatment different categories can be distinguished based on the delivered
dose rate. As its definitions have changed throughout time, the result of ‘new’ clinical insights,
confusion may arise when reviewing older literature. The classification described below is somewhat
arbitrary as rather than what these strict dose rate boundaries may indicate, biological effects change
gradually with dose.

Definition 1.2.1. Low-dose-rate brachytherapy: Low-dose-rate brachytherapy (LDR-BT)
has been previously defined as brachytherapy with an absorbed dose rate of 0.4–2 Gray per
hour (Gy/h) [13], and more recently with an absorbed dose rate of <1 Gy/h [7];
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Figure 1.1: Dose distribution profiles of EBRT (blue ) and BT (gold ). The dose-distance profile
orthogonal to the BT source’s longitudinal direction follows an inverse square law. Therefore, the geometry
function that is used to approximate the behaviour of the spatial distribution can be written as Gp(r) = 1/r2,
with r the distance of a point orthogonal to the source. Figure adapted from Ref. [7].

Definition 1.2.2. High-dose-rate brachytherapy: High-dose-rate brachytherapy (HDR-
BT) is defined as brachytherapy with an absorbed dose rate of >12 Gy/h [7, 13];

Definition 1.2.3. Pulsed-dose-rate brachytherapy: Pulsed-dose-rate brachytherapy
(PDR-BT) is defined as brachytherapy with a constant or varying dose per pulse, i.e.
irradiation of a shorter duration than the time required for complete recovery of the tissue.
Typically, its absorbed dose rate is between 0.5-1 Gy/h (with one pulse per hour) [7].

Sometimes also medium-dose-rate (MDR) brachytherapy is distinguished, with an hourly absorbed
dose of 2-12 Gy/h [13], or 1-12 Gy/h [7]. However, its use in clinical practice is limited. Traditionally,
cervical carcinoma has been treated using continuous LDR-BT, but a shift towards continuous
HDR-BT and PDR-BT has occurred during the past few decades [7, 14]. Advantages of HDR-BT
over LDR-BT are manifold, including shorter treatment time, less applicator movement and lower
radiation exposure to hospital staff. Although clinical outcomes and toxicities are roughly similar
for all techniques [14–18], for these reasons this thesis will focus on HDR-BT.

Brachytherapy dose delivery schedule

Definition 1.2.4. Fraction: A fraction is a continuous period of irradiation, with specified
absorbed dose.

Definition 1.2.5. Application: An application is a single insertion of the brachytherapy
applicator.

HDR brachytherapy is typically applied in the last 2-3 weeks after 5 weeks of (chemo-) radiotherapy,
with both modalities optimally accounting for approximately half the resulting absorbed dose [7, 19].
A typical image-guided adaptive HDR brachytherapy schedule with curative intent includes four
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Figure 1.2: A typical treatment schedule for cervical cancer including image-guide radiotherapy (IGRT)
(each blue bar representing an EBRT fractions of 2 Gy), concomitant weekly chemotherapy (each grey bar

representing a course of cisplatin (Cis) 40 mg m−2), and brachytherapy (each yellow bar representing a
HDR brachytherapy fraction of 7 Gy). Imaging sessions and brachytherapy applicator insertions are marked
with bright green and dark green bars respectively. A week prior to treatment a pre-BT image is
taken with applicator in situ for treatment planning. Four fractions of brachytherapy are applied with two
insertions where the applicator is left in place overnight. Time frames in which uncertainties could occur
during treatment are marked with black arrows. Figure adapted from Ref. [7].

fractions, e.g. of 7 Gy planning-aim dose to the high risk clinical target volume each, delivered over
two weeks in two applications (Figure 1.2). This is known as a hypofractionated, i.e. more than 2.2
Gy delivered per fraction, accelerated, i.e. more than 10 Gy per week, schedule.

1.2.2 Brachytherapy dose definitions and calculations
The definitions given in this subsection are obtained from the recommended reporting levels by the
International Commission on Radiation Units and Measurements (ICRU) Report 89 [7].

Definition 1.2.6. Planning-aim dose: The planning-aim dose is the dose in Gy that is the
goal for treatment and is defined prior to treatment planning.

Definition 1.2.7. Prescribed dose: The prescribed dose is the dose in Gy derived from the
treatment planning (optimisation) process and after approval of the operating oncologist.

Definition 1.2.8. Delivered dose: The delivered dose is the actual dose in Gy administered
to the patient during the treatment.

Definition 1.2.9. Absorbed dose: The absorbed dose is the planned or delivered dose in
Gy to a specific area of the tissue or any other medium.

In practice, the definition of ‘absorbed dose’ only marginally differs from that of ‘delivered dose’,
as absorbed dose is often used in the context of treatment planning, e.g. as in ‘prescribed absorbed
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dose’, losing its meaning. However, the term ‘absorbed’ may still be used to differentiate between
purely the irradiated energy and its effects. An absorbed dose may result in different biological
effects or clinical outcome for a patient depending on treatment modality (including dose rate,
fraction size and duration), therapeutic interventions, heterogeneities, patient-related factors, and
tumour-related factors among others [7]. Therefore, a transformation of the absorbed dose to
biologically (equi)effective dose is required.

Biologically effective dose (BED)

Definition 1.2.10. Biologically effective dose: The biologically effective dose (BED) in
Gy is a predictor of the biological effect as a function of the delivered dose.

Adopted from external beam radiation therapy (EBRT), the linear-quadratic (LQ) model is the
most commonly implemented tool for HDR brachytherapy to model the biologically effective dose
(BED) for different time-dose-rate-fractionation schemes [7, 20]. Moreover, it serves an important
role as a tool for calculating the cumulative dose from EBRT and BT. In this model, the
radiosensitivity of the treated cells, i.e. BED, to changes in dose, e.g. per fraction or dose rate, is
represented by the respective linear and quadratic coefficients α ([α] = Gy−1) and β ([β] = Gy−2),
and their ratio α/β ([α/β] = Gy):

BEDα/β = Nd

(
1 +G

d

α/β

)
(1.1)

With, N the amount of fractions, d the dose per fraction in Gy, and G the repair function which
is G = 1 for HDR-BT [21]. Typically, ratios of α/β = 10 Gy for the target volume and α/β = 3
Gy for organs at risk or normal tissues are assumed, as also recommended by the Gynaecological
GEC-ESTRO Working Group [22]. For clarity, these ratios are indicated by a subscript for dose
reporting, e.g. BEDα/β=10. A brief overview of alternative models is given in Appendix A.2.

Equieffective dose

Definition 1.2.11. Equieffective dose: The equieffective dose (EQDX) is the dose in Gy
that when delivered under a different condition, produces an equivalent effect or outcome as
when delivered under fractions of X gray.

The EQD2, i.e. where the reference treatment delivers 2 Gy per fraction, is recommended and
typically used for reporting [7]. This technique assumes the LQ-model to hold true, which has been
more elaborately discussed in Appendix A.2. The equieffective dose at 2 Gy reference fractions is
calculated via (see for a derivation Appendix A.2):

EQD2α/β =
BEDα/β(
2G
α/β + 1

) (1.2)

The EQD2 formalism allows for the simple addition of the doses delivered by EBRT and BT to
study the combined effects of both modalities.

Dose-volume parameters

Definition 1.2.12. Dose volume histogram: A dose volume histogram (DVH) relates the
irradiated volume to the absorbed dose of that volume.
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The dose volume histogram is typically used in its cumulative form, of which single parameters can
be extracted to predict biological effects or treatment outcome [7]. In general, a DVH may be used
as a tool for quantifying the dose level in the target volume or organs at risk, may possibly be used
as an indicator for hot and cold spots, and may be the input for dose-response models [23]. The
dose and volume parameters that are extracted from DVHs, are mathematically defined as:

DV = {D(v) | v ≥ V } (1.3)

VD = {V (D) | D ≥ D} (1.4)

Here, D(v) marks the dose as a function of volume v and V (D) the volume as a function of the dose
D. Simply stated, DV is the dose in Gy received by at least a volume V , where [V ] = % or cm3.
VD is the partial volume in % or cm3 receiving doses of at least D, which may be the absorbed
dose, EQD2, or a percentage of a specified dose [7]. The following list of dose-volume parameters is
recommended for reporting or includes often used parameters in literature [7, 22]: (i) D98%, D90%,
and D50% for the high risk clinical target volume, (ii) D98% and D90% for the intermediate risk
clinical target volume, (iii) D98% and D90% for the gross tumour volume, and (iv) D0.1cm3 and
D2cm3 for organs at risk (e.g. bladder, rectum, and sigmoid). The main limitation of this model
is that it reduces spatial dosimetric information into two-dimensional dose-volume relations [7], see
also Appendix A.2.

Dose distribution calculations

Definition 1.2.13. TG-43 formalism: Dose calculations are most often performed using
the American Association of Physicists in Medicine (AAPM) TG-43 formalism [24], enabling
the calculation of a two-dimensional dose distribution around axially symmetric cylindrical
sources.

The two-dimensional dose rate equation according to this formalism is the following [24]:

ḋ(r, θ) = SK · Λ ·
GL(r, θ)

GL(r0, θ0)
· gL(r) · FL(r, θ) (1.5)

where,
-

-
-
-
-
-
-

ḋ(r, θ)

SK
Λ
GL(r, θ)
{r0, θ0}
gL(r)
FL(r, θ)

is the dose rate (in cGy h−1) in water at a distance r (in cm) and polar angle θ
(in rad) measured from a point of interest to the centre of the source;
is the air kerma strength of the BT source (in U = µGy m2h−1 = cGy cm2h−1);
is the dose-rate constant in water (in cm−2);
is the geometry function (in cm−2);
are the reference distance and angle, usually 1 cm and π/2 rad respectively;
is the radial dose function, i.e. perpendicular to source axis (dimensionless);
is the 2D anisotropy function (dimensionless);

For more detailed information on these parameters and a discussion on the uncertainties thereof the
reader is referred to Refs. [24, 25]. Some of these values -i.e. SK , Λ- can directly be obtained from
data sheets or treatment planning systems. The calculation of radial dose and anisotropy functions
is usually based on table lookup via linear interpolation. The geometry function for a line source is
the following:

GL(r, θ) =

{
β

L r sin (θ) if θ 6= 0
1

r2−L2/4
if θ = 0

(1.6)

where, L is the active length (in cm) of the line source. β is the angle (in rad) subtended to the
outer points of the source from the point of interest. Although other conventions have been used
to compute this angle, the following expression is the most common:
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(a) Contour plot showing isodose-rate lines of the mHDR-v2 model. (b) mHDR-v2 source.

Figure 1.3: Spatial dosimetric distribution and geometry of the mHDR-v2 source model used in this thesis.

β = arctan

(
r cos (θ) + L/2

r sin (θ)

)
− arctan

(
r cos (θ)− L/2

r sin (θ)

)
(1.7)

In this thesis the HDR microselectron v2 (mHDR-v2, Elekta, Stockholm, Sweden) 192Ir model is
used (Figure 1.3b), of which dose distribution data is available online [26]. The contour-plot
showing the dose-rate distribution for the mHDR-v2 model, as computed with MATLAB (MATLAB
R2020a, MathWorks, Natick, MA, USA) Script A.1.1, is shown in Figure 1.3a.

The isodose curves shown in Figure 1.3a illustrate the anisotropy of the dosimetric distribution,
captured by the function FL(r, θ). A separate function exists for one-dimensional point sources,
which results in a radially symmetrical dose distribution.

1.2.3 Clinical outcome parameters and morbidity

Definition 1.2.14. Local control: Local control (LC) is the absence of progressive or
recurrent disease, known as progression free survival, in central and non-central pelvis at a
specified time from the end of treatment [27].

The local control rate is often the primary endpoint to express the efficacy of brachytherapy or
other radiotherapy treatment modalities. Related endpoints are complete remission,
progression-free survival for the whole pelvis, and overall survival and cancer specific survival [28].
It may seem trivial that methods that lead to higher local control rates also increase the likelihood
of overall survival. Recurrent cervical cancer was for example found to be the common cause of
death in a multi-institutional cohort of locally advanced cervical cancer patients treated with
EBRT and BT with or without concomitant chemotherapy [29]. With the advances in the
reduction of local control, distant relapses may become the predominant sites of failure [28].

Definition 1.2.15. Treatment-related morbidity: Radiation-induced morbidity, or
treatment-related morbidity, of irradiated volumes, i.e. organs at risk or normal tissues, is
a side effect of treatment.
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It is common to grade the severity of morbidity using the ‘Common Terminology Criteria for Adverse
Events’ (CTCAE) on a five-point scale. Treatment-related morbidity of any grade is associated with
user-reported impairment on the quality of life [30]. Any treatment strategy must therefore account
for both the curative potential of the treatment modality, e.g. the local control, and the likelihood
of side effects, e.g. the morbidity and quality of life [7].

1.2.4 Dose-response relationships

Definition 1.2.16. Tumour control probability: Tumour control probability (TCP) is
formally defined as the probability that no clonogenic cell survives the treatment.

Typically, TCP models relate clinical outcome, which is predominantly local control, to the
survival fraction predicted by the linear quadratic model, using Poissonian or logistic modelling
[31]. Whereas the former has a more mechanistic character, the latter is on an empirical basis [32].
Moreover, the dose-response curves of logistic models tend to be more applicable to describe the
heterogeneous populations, whilst the former is more suited to describe individual tumours
[33, 34]. Although both are used almost equally throughout literature on the topic [31], a trend
towards logistic models may be distinguished [35], and therefore only this type of model is treated.

The general form of the logistic dose–response model is the following:

P =
exp (a0 + a1D + a2Dd+ ...)

(1 + exp (a0 + a1D + a2Dd+ ...)
(1.8)

Here, P is the probability of an event occurring, based on the LQ-model, with D and d the total
dose and dose per fraction respectively. The coefficients of this model, a0, a1, ..., are estimated
by logistic regression, where the ratio a1/a2 is an estimate of the α/β ratio [32, 35]. This model
may be parameterised in terms of the dose required for 50% response, TCD50, and the normalised
dose-response gradient, γ [35–37]:

TCP =
1

(1 + exp (4 · γ50(1−D/TCD50)))
(1.9)

Here, TCP is the tumour control probability and γ50 the normalised dose-response gradient at
50% response.

Definition 1.2.17. Normal tissue complication probability: Normal tissue complication
probability (NTCP) is defined as the probability that a complication of the irradiated normal
tissue occurs.

Similar to the TCP, it is assumed that this dose-response function for the NTCP can be sufficiently
approximated by a sigmoidal shape, which generally provides a good fit to clinical data but does
not necessarily have a mechanistic basis. In theory, the logistic model from Eq. 1.9 may therefore
be used directly to calculate the NTCP and in practice this is indeed sometimes performed [35, 38].
Alternative formulations are summarised in Appendix A.2.

1.3 Advances in brachytherapy techniques and systems

1.3.1 Evolution of brachytherapy techniques
Two-dimensional approaches to brachytherapy
As introduced in the 1950s the brachytherapy dose has been historically mainly prescribed to
a predefined point relative to the (intracavitary) applicator, point A, which was thought to be
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an indicator of the average location of an extension of a tumour. To date, the use of point A
for reporting, treatment planning and new applicator development is still common [7, 19]. The
exact definition of the location of point A changed between different brachytherapy dosimetric
systems. Although it has been shown that this is a fairly good representation for capturing the
extension of an average carcinoma, point A dose description: (i) underestimates the absorbed dose
for large tumours and overestimates that of small tumours, (ii) does not necessarily correlate with
an anatomical point/structure, (iii) cannot be used for (combined) interstitial applicators, and (iv)
is a poor surrogate for evaluating the dose in the time-dependent tumour volume (also known
as a 4-dimensional or 4D target) throughout treatment [7, 19, 39, 40]. Dose-point calculations
for organs at risk (OARs) using reference points introduced in the late 1970s and standardised
in 1985 were performed based on two-dimensional (2D) orthogonal radiographs [13]. Although
these reference points were later shown to correlate well with high-dosed OAR partial volumes
that are linked to tissue morbidity, these possibly underestimate the doses to these partial volumes
[41, 42]. Therefore, two-dimensional treatment planning approaches resulted in high local/regional
relapse rates, especially for locally advanced tumours with parametrial involvement, as well as high
occurrence of tissue morbidity or other complications [18].

Volume-based approaches and related concepts

With progress in advanced 3D volumetric-imaging tools, including computed tomography (CT)
and the increasingly used magnetic resonance imaging (MRI), and treatment planning systems a
shift towards 3D treatment planning and optimisation has taken place in recent years [7]. The
development of BT target volumes, as introduced by the Gynaecological Groupe Européen de
Curiethérapie and the European Society for Therapeutic Radiology and Oncology (GYN
EC-ESTRO) working group, have been instrumental to support this shift towards image-guided
BT (IGBT) [12, 19, 22]. The current recommended basis of treatment prescription and planning,
according to International Commission on Radiation Units and Measurements (ICRU) Report 89,
is the primary gross tumour volume GTV-T, which is at the initialisation of brachytherapy
denoted as GTV-Tres. For convenience, the ‘-T’ indicating the primary tumour is often dropped.
The clinical target volume, CTV, is the region to be treated to control microscopic disease and
includes the GTVres, but also the whole cervix and the presumed extracervical tumour extension
(see also Figure 1.4) [7]. Based on the risk of occurrence, a high risk CTVHR and intermediate risk
CTVIR are distinguished (Figure 1.4). It is recommended that the prescribed D90% of the CTVHR

amounts to ≥84-87 Gy EQD2α/β=10 to obtain high local control rates [43–47]. Additionally, a
planning target volume, PTV, can be defined that includes the CTV with additional margins that
account for organ motion or delivery-related inaccuracies, known as the internal margin, and
geometrical uncertainty as a result of radiotherapy technique, known as the set-up margin.

Organs at risk (OARs) are a set of tissues that could suffer morbidity after irradiation and hence
these should be spared during treatment. In specific, radiosensitive organs or organs closely residing
to radiation sources such as the rectum, bladder, small bowel and sigmoid have been distinguished
as OARs in cervical BT guidelines [7, 22, 49]. Sometimes also the vagina and ureter are considered
as OARs in treatment planning. Dose volume constraints are of vital importance for OAR sparing,
commonly using D2cm3 ≤70 Gy EQD2α/β=3 for the rectum, sigmoid and bowel and D2cm3 ≤90 Gy
for the bladder [22]. Increasing evidence shows that to reduce the probability of morbidity for the
rectum and bladder dose constraints should be lowered to D2cm3 ≤65 Gy and D2cm3 ≤80 Gy for
these OARs respectively [50].
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(a) Sagittal view. (b) Coronal view. (c) Transversal view.

Figure 1.4: Delineations of volumes of interest on T2-weighted MRI views: GTVres (light green ),
CTVHR (bright green ), CTVIR (dark green ), bladder (gold ), rectum (blue ), and sigmoid (purple

). Figure adapted from Ref. [48].

Adaptive brachytherapy treatment planning

Motivated by tumour volume regression, especially during the first weeks of EBRT treatment and
to a minor extent during brachytherapy, and other anatomical changes such as internal organ
movement, adaptive/time-dependent treatment planning has gradually been introduced [7, 19]. In
image-guide adaptive BT (IGABT) the use of repeated volumetric imaging allows for dose
adaptation and escalation based on tumour response, whilst conforming the dose to OARs to set
constraints [19, 28, 29]. Using IGABT, several multicentre studies as well as mono-institutional
studies have demonstrated that excellent local control is achievable for small and well-responding
tumours, i.e. stage IB1-IIB or typically 20-50 mm in diameter, with (estimated) local control rates
ranging approximately between 86-98% at 3 years [28, 29, 51–53], and 91-98% at 5 years [29, 54].
Also for locally advanced carcinomas IGABT shows promising outcomes, e.g. 77%–82%
(estimated) local control at 3 years for FIGO-stage IIIB patients [28, 29, 52]. Severe tissue
morbidity actuarial rates, i.e. G3-5, of OARs for IGABT after three years are nevertheless low
and range between 2-12% [28, 29, 55, 56]. Both retrospective and more scarce prospective analyses
indicate a major improvement in outcome for these (adaptive) volume-based approaches over
conventionally used two-dimensional treatment planning methods [28, 29, 53, 57, 58].

However, in the case of even more challenging carcinomas typically characterised by: (i) high
FIGO-stage (FIGO ≥IIIA), (ii) large size (diameter >50-70 mm or volume >30 cm3), (iii)
extensive (para)vaginal or parametrial involvement, and/or (iv) limited response to EBRT, the
ability to achieve a high dose conformity of treatment planning alone with standard intracavitary
applicators is limited. The incidence of these especially challenging carcinomas is unknown, but
possibly concerns up to a coarsely estimated 20% of all patient cases treated with BT. In the study
by Schmid et al. parametrial remnants were present in the majority (77%) of parametrial spaces
investigated of patients with FIGO stage IIB or IIIB at the time of BT [59]. Residual tumour
(GTVres) was still present at BT in 45% of the cases of patients with tumours initially extending
to the outer third of the parametrial space. In the study by Jastaniyah et al., residual distal
disease or disease extending to the pelvic side wall was present at the time of BT in 16% of the
patients staged IIB or IIIB [60]. In the case of these locally advanced or challenging carcinomas
the local control rate of IGABT is slightly lower and around 75-79% at 2-3 years or 72-76% at 5
years with standard intracavitary applicators [29, 52, 57, 61, 62]. These findings must be
cautiously interpreted as in these studies different treatment approaches (not all of these include
adaptive planning), treatment modalities, applicator types, treatment schedules, follow-up time,
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adjuvant treatment, and treatment planning related parameters such as prescription volumes or
dosimetric constraints among others have been considered. Nevertheless, in a mono-institutional
study the only prognostic factors significantly affecting local control in multivariate regression
were tumour size, FIGO-stage and whether volume-based treatment planning was used [63].

Although IGABT limits the occurrence of severe morbidity, a high occurrence of low to moderate
morbidity grades, i.e. G1-G2, is still observed with current treatment plans and modalities, including
forms of vaginal morbidity (around 75% incidence of grade ≥1, and 22% of grade ≥2 at 2 years),
and urinary morbidity (40% incidence of G1, and 10% incidence of G2 at 3 years) [30, 64]. The
occurrence of this mild to moderate tissue morbidity should not be neglected, as it has shown to
impact the patients’ quality of life several years after treatment [65].

1.3.2 Evolution of brachytherapy applicators
Intracavitary applicators
Temporary intracavitary (IC) applicators (Figure 1.5a) have long been the most common tool for
placing radioactive sources in proximity of the tumour and are inserted in the vaginal or uterine
cavity. Several commercially available types can be distinguished including tandem and ring (T/R),
tandem and ovoid (T/O) and tandem and cylinder applicators [7]. The choice of applicator is mainly
dependent on the patient’s anatomy and the topography of the tumour. As modelling has shown
for interstitial applicators, the centrally located tandem is essential to deliver adequate dose to
the central region of the tumour, to additionally provide dose to the parametria and to extend
the dose superiorly to the applicator [66, 67]. In general T/O applicators likely result in higher
OAR doses and larger treated volume than T/R applicators [68], but short term toxicities are
found to be similar for both types [69]. However, as mentioned, the ability of these applicators to
treat challenging tumours whilst sparing OARs is limited. Tumour modelling has shown that T/R
applicators enable an adequate coverage for 60% of the tumours [70].

Interstitial applicators
Interstitial (IS) templates (Figure 1.5b) can guide needles that are afterloaded in a parallel or oblique
direction into tumour tissue [74]. Previously, this concerned standardised templates such as the
MUPIT, Syed-Neblett and more recently the Benidorm template for locally advanced carcinomas,
whereas personalised interstitial templates are under development. In a recent systematic review,
the local control rate, 79%, with median follow-up ranging between 14-55 months, and occurrence
of G3-G4 toxicity, 12%, were found to be similar for IS templates to that of IC applicators [74].
The advantage of the higher freedom of source placement with IS templates than with commercially
available IC applicators has been illustrated in computer simulation and patient studies, showing
better target coverage in the parametrial, paravaginal or paraurethral regions of large advanced
tumours with similar or better sparing of the OARs as long as a central tandem is still provided
[66, 67, 75]. Commonly cited disadvantages of IS techniques include loss of dose conformity due to
possible needle deflection or other inaccuracies in source placement, comfort of the patient during
treatment as they are largely bed-bound, and the required experience for the procedure [10, 76, 77].

Hybrid intracavitary/interstitial applicators
In order to treat tumours with an unfavourable topography including parametrial extension or
asymmetry by enabling greater freedom of source placement, combined intracavitary/interstitial
(IC/IS) applicators have been introduced [78]. The first of this type of hybrid applicators were
standard IC applicators which included holes in the ring such that needles could be inserted in
a direction parallel to the tandem, e.g. the Vienna applicator [79], or ovoids, e.g. the Utrecht
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(a) Standard CT/MR tandem-ovoid IC applicator (Elekta,
Stockholm, Sweden). Figure adapted from Ref. [71].

(b) Martinez Universal Perineal
Interstitial Template (MUPIT,
Elekta, Stockholm, Sweden).
Figure adapted from Ref. [72].

(c) Utrecht IC/IS CT/MR Applicator (Elekta, Stockholm,
Sweden). Figure adapted from Ref. [73].

(d) Customised 3D printed
prototype IC/IS ARCHITECT
applicator. Figure adapted from
Ref. [48].

Figure 1.5: Developments in brachytherapy applicators for the treatment of cervical cancer.

applicator [51]. To further increase the span of the high isodose volume, oblique needle paths were
later introduced in T/R or T/O applicators [80, 81]. Most of the needles are inserted through
the latero-posterior positions [51, 82], which corresponds to common infiltration patterns [59, 83].
Whereas the planning-aim isodose volume of IC applicators at the height of point A typically extends
to around 25 mm from the tandem, oblique needle IC/IS applicators enable extension up to 45 mm
covering up the full parametrial space [7, 79, 80, 82]. With simplified computer models it has been
suggested that with IS needles in a hybrid applicator the planning-aim isodose volume could be
increased to sufficiently cover the target region in almost all patient cases [70, 84]. Accordingly, in
challenging cases IC/IS applicators can increase the dose to the CTV-THR [51, 81, 85], and result
in high local control rates (76-92% at 3 years or 72-87% at 5 years) [78, 83].

Patient-tailored applicator design
Despite that commercially available applicators are able to achieve high dose coverage of the
tumour in the majority of patient cases, these still lack the adaptability to achieve high dose
conformity in all patients as these are confined to positioning the BT sources in standard
configurations. Therefore, recently personalised applicators have been developed. To adapt



Page 30 1. CLINICAL INTRODUCTION

applicators to an individual’s anatomy, pioneering work was based on the vaginal mould technique
[86]. Recent developments for cervical cancer BT applicators have been in the field of 3D printing
(Figure 1.5d), including: (i) channelled applicators shaped to fit the vaginal cavity [48, 87–90], (ii)
individualised cylindrical applicators [91, 92], (iii) customised templates for IC/IS applicators
[93–95], and (iv) 3D-printed shielding [96]. The benefits of these personalised applicators include
among others: (i) increased dose conformity [87, 93, 95, 97], (ii) reliable and comfortable
placement without requiring vaginal packing even for patients with irregular vaults [86], (iii)
improved needle guidance and minimisation of the number of needles, and (iv) adaptability to the
changing anatomy throughout treatment.

The current procedure of the ARCHITECT personalised BT applicator is described in the article
by Laan et al. [48], and involves: (1) imaging and segmentation of the anatomy possibly with a
‘dummy’ applicator in place, (2) constructing the applicators outer surface from segmentation of
the vaginal vault, (3) manually indicating and interpolating needle channels, and (4) including
additional structures for reconstruction or a central ‘tandem’ channel (Figure 1.6). The needle
channel planning process is currently performed manually, and is therefore highly dependent on
the oncologist’s experience, is time-consuming, and might result in kinematically infeasible or
non-optimal channels. Moreover, this procedure is separated from treatment planning, such that
simultaneous optimisation of the applicator design and treatment plan cannot be performed.
Automated needle channel planning is needed to enable optimal patient-tailored plans and is
therefore crucial in the development of these personalised applicator designs.

1.4 Uncertainty in cervical cancer BT

1.4.1 Sources and magnitude of uncertainty
A general overview in which uncertainty components in brachytherapy are identified and their
magnitude estimated has only recently been presented in the articles by Kirisits et al. [98], and
Tanderup et al. [99], focusing on gynaecological cancer IGABT specifically.

For cervical cancer BT, total uncertainties of 12% and 21–26% (k = 1) in the delivered dose for a
single fraction were estimated for the CTVHR and OARs, respectively [98, 99]. This uncertainty
budget was composed of uncertainty in: (i) source strength, (ii) dose and DVH calculation (i.e.
treatment planning), (iii) dose delivery including applicator reconstruction and source positioning,

(a) Step 1: Segmentation
of CTVHR, OARs and
vaginal cavity.

(b) Step 2: Applicator
surface generation from
concatenated contours.

(c) Step 3: Manual
channel indication and
interpolation.

(d) Step 4: Addition of
other structures such as
central tandem.

Figure 1.6: Process steps in generating the personalised 3D-printed ARCHITECT applicator. Shown are:
CTVHR (bright green ), bladder (gold ), rectum (blue ), applicator outline (pink ), source channels
(black ), and sources (gold dots ). Figure adapted from Ref. [48].



1. CLINICAL INTRODUCTION Page 31

(iv) DVH addition across fractions, (v) contouring, and (vi) inter- and intra-fraction changes
including applicator movement and anatomical changes. In the editorial by Tanderup et al., it was
argued that the uncertainty budget of the target volume is dominated by contouring uncertainty
(SD = 9%, k = 1), whereas the major contributors to the total dosimetric uncertainty of the
OARs are intra- and inter-fraction uncertainties (SD = 20 – 25%, k = 1) [9]. Reduction of these
dosimetric uncertainties was thought to improve clinical outcome of treatment. Therefore,
Nesvacil et al. investigated the clinical impact of different types of uncertainty components and
the magnitude [38]. The simulated local control of the target volume subject to the
aforementioned levels of uncertainty decreased only marginally, i.e. <1%. For OARs, the clinical
impact of dosimetric uncertainty on the simulated tissue complication probability may be larger,
i.e. <5%, as was demonstrated for the rectum at typical prescription doses.

1.4.2 Current strategies in brachytherapy in reducing the impact of uncertainty

Several strategies to reduce the dosimetric variation in radiotherapy and brachytherapy include
margin-based planning, stochastic treatment planning optimisation and robust treatment planning
optimisation [100]. In radiotherapy, margin-based approaches where the clinical target volume is
extended by a -often isotropic- safety margin to obtain the planning target volume are still the
standard [7, 101]. However, population-based margins can be ill-suited at the individual patient
level, and for that reason patient-specific or adaptive margins have been proposed [102, 103].
Whereas such an approach is suitable for radiotherapy, in brachytherapy only margins along the
tandem direction of an applicator may be implemented to compensate for uncertainty due to the
dose gradient [39]. Nonetheless, 3D-printed applicators, which have more freedom in the dwell
position placement than conventional applicators, could possibly open up a new field in
determining BT margins to partially account for uncertainty, but this is as of yet unfeasible.

Rather than ‘hard’ constraints that are established when using margins, several articles in
radiotherapy have modelled uncertainty using an a priori known or partially known probability
distribution and optimised the treatment plan, conventionally known as stochastic or probabilistic
treatment planning optimisation [100]. In this type of planning, the effect of dosimetric
uncertainties is directly included in the optimisation, for example by implementing probabilistic
objective functions [104]. Although it has been demonstrated that such plans can achieve greater
conformity, one limitation of probabilistic treatment planning optimisation is that the underlying
probability distributions have to be known [100, 102]. Moreover, with stochastic programming the
computation may quickly become intractable, known as the ‘curse of dimensionality’ which
depends on the number of constraints and the formulation of the objective function [100]. A
stochastic optimisation method has not yet been implemented for brachytherapy. Robust
optimisation1 is an alternative to stochastic optimisation, where rather than representing the
uncertainty by a probability distribution, a set of - typically worst-case - values for the uncertainty
is selected and only robustly feasible solutions are sought [100]. Although worst-case robust
optimisation does not require a priori probability distributions to be known, and is generally more
computationally tractable than stochastic optimisation, the solution is often overly conservative
[100]. Therefore, approaches to reduce this conservatism have frequently been the topic of
investigation.

1‘Robust’ optimisation is in the definition in radiotherapy often synonymous with (possibly ‘worst-case’) optimisation
where uncertainty parameters reside in a (non-probabilistic) bounded uncertainty set. Note that ‘robust’ in general
means that a method is relatively unaffected by changes in parameters.
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(a) Frequency of obtaining a specific planning-aim
CTV dose under delineation uncertainty with either
a margin approach or worst-case robust optimisation
for a single patient. Figure adapted from Ref. [100].

(b) Dose volume histograms for the CTVHR with
either a manual treatment plan or as obtained using
worst-case robust optimisation. Figure adapted from
Ref. [109].

Figure 1.7: Schematic illustrations of the benefits of worst-case robust treatment planning for
brachytherapy over conventional treatment planning techniques in the presence of uncertainty.

As of yet, to the best of the author’s knowledge, three groups have applied worst-case robust
optimisation to treatment planning for brachytherapy. In the article by Balvert et al., and in the
preceding work in their group done by Gorissen et al. [105], worst-case robust optimisation was
used to account for delineation uncertainties in prostate brachytherapy [100]. These authors found
that worst-case robust optimisation led to an improved target coverage compared with a margin
approach under delineation uncertainty (Figure 1.7a), whereas the risk of overdosing the rectum
was reduced [100]. In the recent manuscript by Jo et al., worst-case robust optimisation was
shown to maintain a sufficient target dose with improved OAR sparing in comparison with manual
or inverse optimisation plans under applicator positioning uncertainty [106]. In addition, the
bandwidth of the DVH diagram decreased for the worst-case robust approach, i.e. the range of
DVH variation, in comparison with manual treatment planning (Figure 1.7b). Lastly, van der
Meer and colleagues performed robust multi-objective optimisation with an evolutionary
algorithm to account for both catheter displacements as well as organ reconstruction uncertainty
in two separate decision phases: (1) catheter position planning, and (2) dwell time planning
[107, 108]. These authors showed that their algorithm, combining worst-case robust optimisation
over organ reconstructions and catheter positions, was capable of replicating the optimisation
front using dwell time optimisation alone, thereby illustrating the feasibility of
combined/simultaneous catheter and dwell time planning.

These examples present likely evidence that robust treatment optimisation is able to lower the
dosimetric and clinical impact of inter-fraction and contouring uncertainties. However, in most cases
this type of treatment planning optimisation is still restricted to a finite fixed set of dwell positions,
and rather is only able to modify the dwell times. In this case, the necessary precondition to enable
full compensation of dosimetric uncertainty is that the placement of these dwell positions is optimal,
as treatment planning itself may never be able to fully correct for non-ideal source placement [110].
For example, as illustrated by van der Meer et al. although for a few patients, treatment optimisation
only considering dwell time planning may result in plans with lower conformity compared to those
with optimised catheter positions [107, 108]. Moreover, these authors showed that worst-case robust
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optimisation of catheters and dwell times can be used to generate realistic dosimetric plans, i.e.
representative for those generated in the stage of dwell time optimisation, already in an early
treatment stage [108]. Robust optimisation, in the form of worst-case optimisation or stochastic
optimisation, of BT source channels may therefore be considered in the applicator development
stage to enable accurate plans in the dwell-time planning phase.

1.5 Rationale for robust applicator design and treatment planning

With current commercially available BT applicators the ability to optimise the dose conformity is
limited for cervical cancer patients with advanced tumours [48]. In these patients current
image-guided therapy results in suboptimal local control and tissue morbidity. Additionally,
despite that systematic dosimetric variation of OARs is limited to < 5%, large random variations
(SD = 20-30%, k = 1) have been shown to impact the delivered dose to OARs [98, 99, 111], and
the predicted occurrence of normal tissue complications [38]. The clinical outcome of BT may be
improved through more sophisticated applicator design and robust treatment optimisation. The
former requires automated needle channel planning software, for which currently only non-robust
variants have been introduced. The latter, although shown to be able to improve the dose
conformity and robustness against the dose delivery errors, relies on the precondition that dose
optimisation is fully able to correct for suboptimal dwell positions. It is likely that this is not
always possible [110]. In this thesis, the freedom of source placement that 3D-printed applicators
allow and the principle of robust treatment optimisation are leveraged to develop robust needle
channel planning software for personalised applicators. This new type of applicators is expected to
improve the dose conformity and clinical outcome of treatment.

1.6 Thesis structure

This thesis is structured in three parts reflecting the three major aims of this study:

1. Part I: This part provides an overview of dosimetric uncertainties, estimates their clinical
impact on brachytherapy for cervical cancer, and accordingly makes a case for the
implementation of robust planning software in the development of patient-tailored
brachytherapy applicators. The following research questions were therefore formulated:

(i) What are the magnitudes of individual dosimetric uncertainty components in cervical
cancer BT?

(ii) What is the impact of different types of dosimetric uncertainty on the clinical outcome
of treatment?

(iii) How can these clinical outcomes be cast into a mathematical optimisation problem suited
for motion planning (MP)?

2. Part II: The selection of an applicable MP algorithm from the myriad of options available
given this heuristic or mathematical problem formulation is generally difficult for one
unfamiliar with MP. Therefore this part aims to answer the research questions:

(iv) How can we support the decision-making process of a user in the selection of a single
alternative from a set of viable alternatives given a trivial problem formulation and a set
of requirements?

(v) What robust MP algorithm class could potentially achieve the highest user satisfaction
and conformance to the BT needle channel planning problem?
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3. Part III: In the final part, several robust MP algorithms from the selected MP class are
developed, implemented and evaluated for the BT needle channel planning problem under
uncertainty. The following research were treated in this part:

(vi) Which variants in the selected MP class have been introduced and how can their operating
principles and implementations be leveraged to establish planners that are suitable for
the MP of needle channels subject to uncertainty?

(vii) How can we implement these MP algorithms in a simulated patient case study and
what are the potential benefits of (robust) MP for patient-tailored BT applicators over
conventional BT applicators?

Additionally, this thesis aims to stimulate communication between the different disciplines that are
involved in brachytherapy. A uniform terminology has therefore been introduced for several of the
topics, including brachytherapy (Section 1.2), uncertainty (Appendix A.3), and motion planning
(Section 4.1). Used symbols throughout this thesis are shown in Section 0.1-0.3. Figures adapted
from literature have been recoloured for consistency. As to encourage readers to reproduce the
author’s computer-generated figures, several MATLAB (MATLAB R2020a, MathWorks, Natick, MA,
USA) scripts are provided in Appendix A.1.
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2. The impact of uncertainties in
cervical cancer BT

2.1 Background

Only in recent years the interest in the identification and analysis of uncertainties in BT burgeoned,
opposed to EBRT where uncertainties have been investigated and addressed over the past several
decades [99]. It may be postulated that this is the consequence of uncertainties being smaller
in BT than EBRT as a result of the proximity of the sources in the former [98], and due to
lesser tumour regression occurring during the course of treatment [112, 113]. However, due to
the steep dose gradient in BT, even the slightest inaccuracies may lead to (clinically) significant
dosimetric uncertainties [99]. Moreover, the assumption that a BT intracavitary applicator and
tumour, possibly combined with the surrounding organs and normal tissues, constitute a stable
system when an appropriate implant is used [114], has only recently been questioned. Lastly, in BT
the dose distributions are non-uniform in the target region, and therefore are profoundly different
from the ones generated by EBRT [39, 111]. Hence, considerations and approaches used for EBRT
to reduce uncertainties may not be applicable to the field of BT. Therefore, this chapter provides an
overview of the uncertainty components and their magnitude in the field of BT, the clinical impact
of these uncertainties and strategies to reduce uncertainty in the procedure. Relevant general
terminology for this chapter regarding uncertainty is for conciseness given in Appendix A.3.

2.2 Methods

2.2.1 Classifying uncertainty components in brachytherapy

Previous work in uncertainty component classification

In several works, classifications for uncertainty components in brachytherapy and radiotherapy
have been provided. In the review by Kirisits et al. [98], and the related work by Tanderup et al.
[99], uncertainty components were identified through expert consensus and quantified through a
review of literature for brachytherapy in general and for cervix cancer IGABT respectively. In
these two articles, uncertainty components were distinguished based on the steps of the
brachytherapy procedure from calibration to delivery, being: (i) source strength, (ii) dose and
DVH calculation (i.e. treatment planning), (iii) dose delivery including applicator reconstruction
and source positioning, (iv) DVH addition across fractions, (v) contouring, and (vi) inter- and
intra-fraction changes including applicator movement and anatomical changes [98, 99]. An even
more elaborate example of uncertainties that may be distinguished in brachytherapy per step can
be found in Table 11.5 in Ref. [115]. Although the articles by Kirisits et al. and Tanderup et al.
provide clear overviews of the dosimetric uncertainty budget in brachytherapy, due to the
aforementioned advances in brachytherapy, imaging, and treatment planning in recent years this
review of the magnitudes of uncertainty must be updated. Additionally, only dosimetric variation
as the result of random errors is considered in these two articles, possibly as dosimetric
uncertainty from systematic errors was found to be of a smaller magnitude than that of random
errors in a preceding multicentre study [111]1. However there are indications that the clinical
impact of systematic and random components is different [38], similar to radiotherapy for which

1An alternative reason might lie in terminology, as when defining uncertainty as the dispersion of measurements
quantified using standard deviations, variation from systematic errors is not classified as uncertainty per se.



Page 36 2. THE IMPACT OF UNCERTAINTIES IN CERVICAL CANCER BT

this has been demonstrated [35, 101]. For this purpose, next to the classification based on nature
of the uncertainties, a further distinction between systematic and random components of
uncertainty is proposed based on the underlying error type. This enables a calculation of the
clinical impact of uncertainties, similar to the methodology used in the work by Nesvacil et al.
[38], and a report by the IAEA [35]. Lastly, the development and implementation of personalised
applicators additionally brings about other uncertainty considerations which are discussed in this
chapter.

Some other classifications have been proposed. Nesvacil et al. distinguish between technological
uncertainties, and uncertainties related to the workflow and anatomy of the patient [38]. Similarly,
a joint working group differentiate accuracy requirements in numerical, physical and clinical dose
delivery accuracy [116]. Although these are theoretically useful, in practice these components
are intertwined and do not allow this separation [117]. A distinction between uncertainty in: (i)
dosimetry, expressed in absorbed dose in Gy, EQD2 or a percentage of the dose, and (ii) geometry,
typically expressed in mm, is often made in radiotherapy [35, 118]. In brachytherapy however,
translating geometric errors to dosimetric impact is difficult. Although Tanderup et al. showed that
applicator reconstruction uncertainty in translation in all directions and rotation in the transversal
plane linearly influenced DVH parameters [119], this may not be the case when also accounting for
other rotational directions for the CTVHR and some other OARs [120]. Similarly, little is known
about the clinical effect of these geometrical uncertainties [35]. For that reason, this work will focus
on dosimetric uncertainty directly instead of deriving this from geometric uncertainty estimates.

Uncertainty from systematic and random errors

In radiotherapy, systematic errors are the errors that influence all treatment fractions of the
radiotherapy course in a systematic, i.e. a similar, way, hence are often referred to as treatment
preparation errors [121]. Random errors, or treatment execution errors, signify day-to-day
variations or between sessions. This classification is useful, as in radiotherapy these two error
components have a different effect on the absorbed dose [35, 101, 121]. In brachytherapy a similar
definition is used, where systematic uncertainty -i.e. stemming from systematic errors- is of similar
magnitude and direction throughout all treatment fractions, and random uncertainty -i.e.
stemming from random errors- differ between fractions [98, 111]. Typically, in brachytherapy
systematic and random errors are approximated as the average mean, Mp, and standard deviation
(SD), σp, of a sample population’s differences in dose or spatial location between time points, e.g.
between fractions, respectively [111], in a so-called two-parameter model [122]. This is different
from common practice in radiotherapy, where in a four-parameter model: (i) the group systematic
error, M , is calculated via the mean of the means, i.e. mean-of-means, of individual patients’ error
statistics over multiple time points, (ii) SD of the systematic error due to inter-patient differences,
Σ, is estimated as the standard deviation of the means of individual patients’ error statistics, and
(iii) the SD of the random error in between fractions, σ, is estimated from the root-mean-square
(RMS) of the SDs of individual patients’ statistics [101, 122]2. Additionally, the SD of the SDs of
patients’ errors can be computed, σσ, which is a measure of the intra-fraction variability of σ
[123], although in practice this cannot be estimated in this way as this requires numerous fractions
per patient [124]. A two-parameter model is appropriate if used to describe the error
characteristics for the entire population, whereas the four-parameter model allows for individual
patient describing information [122].

2RMS is used as the number of measurements per patient is finite and thus a residual error persists [101].
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Table 2.1: Example calculation of statistical parameters describing the random an systematic errors from
a set of patient data for several fractions. MATLAB code for this calculation is given in Script A.1.5. Note
that the data in this table represents geometric errors, but the calculation is the same for different types of
variables. Adapted from van Herk [101].

Patient 1 Patient 2 Patient 3

x
(mm)

y
(mm)

x
(mm)

y
(mm)

x
(mm)

y
(mm)

Fraction 1 2 3 1 0 -2 -3

Fraction 2 3 3 2 0 -2 -2

Fraction 3 2 2 0 2 -1 -3

Fraction 4 3 2 -1 1 -2 -2 Statistics

Mean 2.50 2.50 0.50 0.75 -1.75 -2.5 Mx = 0.42 My = 0.25

Σx = 2.13 Σy = 2.54

SD 0.58 0.58 1.29 0.96 0.50 0.58 RMSx = 0.87 RMSy = 0.73

σσ,x = 0.44 σσ,x = 0.22

Figure 2.1: Illustration of error components from the data in Table 2.1. The MATLAB script for generating
this figure is given in Script A.1.5. The group systematic error M is equivalent with the ‘systematic error’
in brachytherapy literature. However, this only describes the mean of the group systematic error, as the
result of a consistent setup error. Due to patient heterogeneity in the sample this group systematic error is
distributed with Σ. The group random error does not have a zero mean for a finite number of fractions, and
is therefore described with a mean, σ, and standard deviation σσ. The ‘random’ error in brachytherapy is a
measure of the total spread within the sample. Adapted from Ref. [101, 125]. n.s. = not shown.

In previous works in brachytherapy the term ‘systematic uncertainty’ corresponds to the effects
of the group systematic error M . The ‘random uncertainty’ in brachytherapy literature does not
have such an equivalent in radiotherapy, other than that it represents the total spread of the data.
Its underlying random error is called the ‘overall random error’ in the remainder of this work3. In
Figure 2.1 and Table 2.1 it is shown that by deeming the group systematic error M equivalent to the
systematic error, as is done in brachytherapy literature, one neglects the presence of inter-patient
differences. Indeed, in Figure 2.1 it may be seen how two of the patients (patient 1 and 3) have a
significant bias as measured from the origin, but that this is cancelled out when taking the mean

3One may relate this overall random error to the other mentioned components via: σp =
√

Σ2 + σ2 [122].
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of the three individual systematic errors. The overall random error in BT literature overestimates
the spread of values around the individual patient mean. Use of the four-parameter model in BT
uncertainty reporting would be helpful for improving the accuracy of treatment. Whether the four-
parameter model may be used for brachytherapy, e.g. with three imaging sessions, has not been
investigated properly. For example, Hellebust et al. showed the effect of repetitive imaging on
the inter-fraction variation [126], where for a limited number of fractions a large residual persists,
i.e. non-zero mean, dominating the random error. Such a model may possibly be only accurately
applied for an arbitrarily set bound of N ≥ 4 fractions [98].

Intra-fraction, inter-fraction and inter-application uncertainty
In radiotherapy, inter-fraction and intra-fraction uncertainty are often distinguished, whereas in
brachytherapy this may be confusing as also inter-application uncertainty is acknowledged, which
corresponds to the concept of inter-fraction uncertainty in radiotherapy [45]. Inter-application
overall random uncertainty, as assessed based on imaging between two insertions, has been found
to be of larger magnitude than intra-application uncertainty [111]. This may be explained by
the difficulty in replicating the applicator’s position, which significantly affects the surrounding
tissues’ topography [22]. Furthermore, the tumour regression in between applications may be larger
than when measured between fractions [112]. Moreover, in the case of a IC/IS applicator the
applicator’s geometry is not reproducible between two insertions, and hence for each insertion of
a IC/IS applicator it is recommended to generate a new image set and use this for treatment
planning [7]. The minimisation of this type of uncertainty through a change of planning schedule
has been the subject of multiple studies [79, 127–129]. In previous uncertainty budget analyses
inter-application uncertainty is not included [98, 99]. For the development of patient-tailored BT
applicators estimating the changes between two insertions is of importance. The applicator design is
generated based on imaging of a different insertion/application than the imaging used for treatment
delivery, with a dummy applicator or only gauze packing.

Proposed classification of uncertainty components
In this work rather than calculating a value representing the ‘total’ uncertainty, only the
magnitude of individual uncertainty components is assessed. The usual model to depict the effect
of uncertainty components in radiotherapy is the ‘chain of radiotherapy’, a serial construct which
is based on the presumption that its weakest link determines the total accuracy [130, 131].
However, such an analogy does not include the complex interplay of uncertainty components, nor
does it include the possibly unequal contribution of components on the clinical impact.
Furthermore, uncertainty at some stages may be mitigated through correction, such as image
guidance, or other strategies. Software capable of propagating uncertainty for more complicated
‘what-if’ scenarios has been developed for radiotherapy [115]. Uncertainty propagation models for
brachytherapy do not exist as of yet.

Consider a single brachytherapy applicator insertion, with one imaging session and two delivered
fractions, whereas the full brachytherapy treatment delivers four fractions over two insertions and
imaging sessions (see Figure 1.2). Possible sources of dosimetric variation in chronological order of
occurrence, mainly based on the works by Kirisits et al. and van Dyk et al. [98, 115], are
illustrated in Figure 2.2. Although this list contains redundancy due to the interwoven character
of the uncertainty components, it provides a simple basis for uncertainty analysis.

The classification of uncertainty in Figure 2.2 is based on the treatment schedule as depicted in
Figure 1.2. In a fully image-guided adaptive BT approach, such as proposed by ICRU report 89
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Figure 2.2: Classification of sources of variation and their components in cervical cancer brachytherapy
for the treatment schedule in Figure 1.2 as used in this study. Based on previous overviews by Kirisits et al.
and van Dyk et al. [98, 115].

and in several institutes practised [7], the uncertainties that are distinguished to have a systematic
impact would rather be equivalent to the ones classified as having a random impact. For example,
at the Erasmus MC hospital in Rotterdam the common practice is to deliver BT over three (or
four) fractions spread over three weeks, each preceded with an applicator insertion and a MRI or
CT imaging session. In such a schedule, for example contouring errors elicit a random impact on
each fraction, opposed to a systematic impact when using one imaging session per two fractions in
succession. However, the influence of random errors becomes greater when using three fractions
opposed to four, i.e. by factor

√
4/
√

3. The effects of the treatment schedule on the delivered dose
subject to uncertainty are therefore also investigated briefly in this thesis.

In this chapter uncertainty is analysed for the high-risk tumour volume (CTVHR), bladder, rectum
and sigmoid. Dosimetric uncertainty in this thesis refers to the uncertainty of the D90% for the
tumour and D2cm3 for the OARs respectively as these are standard for reporting [7]. Although
the ARCHITECT applicator may allow for combined intracavitary and interstitial use, most of
the analyses in this chapter focus on intracavitary applicators for the reason of data availability.
Interstitial use of the applicator may be associated with greater uncertainty in the source positioning
than described for intracavitary applicators, e.g. through needle deflection or errors in insertion
depth [80, 81, 132]. Contrarily, a hybrid configuration is generally more stable [133].

2.2.2 Clinical impact modelling
Delivered dose and response modelling
In order to simulate the clinical impact of dosimetric uncertainty components, the models introduced
in Subsection 1.2.4 are used. The implementation of other basic models has been briefly discussed in
Appendix A.3.7. First, the delivered dose per fraction, d̃, as a function of the nominal planning-aim
dose per fraction, d, and dosimetric variation, ∆ may be described as:

d̃i,j = d+ ∆i,j (2.1)

for i = {1, 2} insertions and j = {1, 2} fractions, assuming that the planning-aim dose per fraction
is constant throughout treatment. Let us for simplicity assume that the first and second insertion
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are independent, i.e. uncorrelated, events4. Additionally, the two fractions within an insertion are
assumed to be uncorrelated events. Moreover, the systematic and random uncertainty are assumed
to be normally distributed. The systematic uncertainty then persist for two subsequent fractions.
Once per insertion a number is drawn from a normal distribution, with relative group mean and
overall random error as defined using the two-parameter model, and is multiplied with the prescribed
dose d. Due to the independence of the two insertions, the dosimetric variation due to systematic
uncertainty may be expressed for each application via:

∆i,sys ∼ N (Mp · d/100, (σp · d/100)2) (2.2)

Here, Mp is the relative group systematic error and σp the relative overall random error in the
two-parameter model, both expressed as a percentage. Using the assumption that all fractions are
uncorrelated events, the random dosimetric error would for each fraction be drawn from the normal
distribution:

∆i,j,ran ∼ N (Mp · d/100, (σp · d/100)2) (2.3)

Note that this mathematical formulation of dosimetric uncertainty uses the two-parameter model
which does not include patient specific parameters.

The delivered dose from all fractions containing either a random or systematic error for a single
patient is converted to EQD2 dose, the dose from 25 fractions of 1.8 Gy from EBRT are added, and
the clinical impact of dosimetric uncertainty or the probability of an event, either local control or
tissue morbidity, is calculated using the logit-model as described in Subsection 1.2.4. In order to
establish whether an event occurs, a sample is drawn from a set containing 0 (indicating no event)
and 1 (indicating that an event occurs) with the probabilities calculated in the logit-model. Next,
logistic regression is applied in order to determine the curve that predicts the ‘actual’ dose-response
relationship under uncertainty, and the curve that resembles the dose-response relationship without
uncertainty. The built-in MATLAB function mnrfit is used for this purpose. Data was also fitted
to Eq. 1.9 using non-linear least-square regression with lsqcurvefit, but both methods produced
similar results (results not shown). This process is repeated to include 1,000 patients per uncertainty
type. Both the mean of the resulting dose-response relationship curves and the spread of curves of
individual patients are computed. A scheme illustrating the workflow is shown in Figure 2.3.

Model parameters
The radiosensitivity coefficient ratio α/β may vary for different tumour histologies or tissue types
(see Appendix A.2), but in accordance with ICRU report 89 constant ratios of α/β = 3 Gy for
OARs and α/β = 10 Gy for the CTVHR throughout treatment are assumed [7]. The parameters
for the logit-model are: γ50, the normalised dose-response gradient at 50% response, and TCD50,
the dose for 50% response. In their 2016 work, Nesvacil et al. derived γ50 = 0.47 and TCD50 =
36.0 Gy for the CTVHR from the data of a large multi-institutional patient study [38]. However, it
is known that larger inter-patient variability in data will cause the overall population
dose-response curve to be less steep, i.e. decreasing γ50, than the case for a more stratified
population [35]. Therefore, the value of γ50 as used by Nesvacil et al. for the CTVHR

dose-response relationship may result in an estimated lower clinical impact of the dosimetric
uncertainty than would be at patient level or for a more stratified population. Indeed, in other
studies the dose-response gradient γ50 was found to lie around 0.5-2.1 for cervical cancer, with a
TCD50 of around 25-60 Gy providing a good fit to clinical data [36, 44, 134]. Values of γ50 = 1.0
and TCD50 = 60.0 Gy, which are in accordance with the findings by Dimopoulos et al. [44], are

4This is a heavy simplification, for example neglecting the possible presence of patient-specific errors.
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therefore implemented as well in this study for comparison with the results obtained using γ50 =
0.47 and TCD50 = 36.0 Gy.

The description of the parameters involved in the prediction of tissue complications for the
bladder, rectum and sigmoid from the planning-aim D2cm3 using a logit NTCP model are scarce.
In contrast, parameter data for other models such as the LKB probit-model [135], or the relative
seriality model [136], and other treatment modalities have been well-described. Nesvacil and
colleagues have used γ50 = 2.0 and TCD50 = 110 Gy to relate the occurrence of late rectal side
effects to the D2cm3 in a logit-model [38]. However, these authors did not generate dose-response
relationships under uncertainty for other OARs. In order to provide a reasonable estimate of the
parameters for other OARs, the logit-model in Eq. 1.9 was fitted to the probit-model with data by
Burman et al. [135], such that the following approximate results are established: (i) γ50 = 4.0 and
TCD50 = 80 Gy for the bladder, (ii) γ50 = 3.0 and TCD50 = 80 Gy for the rectum, and (iii) γ50 =
2.5 and TCD50 = 55 Gy for the sigmoid. Note that these parameters are very rough estimates and
have no direct implication, e.g. incontinence or dysuria, as the data by Burman et al. were
established: (i) based on expert consensus, (ii) using radiotherapy alone, (iii) when
two-dimensional imaging and treatment was common, (iv) for specific (severe) end-points, and (v)
mostly assuming whole organ irradiation without regarding different functional or structural
organisation or the effects of hot spots. These parameters were therefore further tuned to yield
more accurate dose-response relationships. With these parameters the occurrence of bladder
complications was likely overestimated, such that the parameters were adjusted γ50 = 1.5 and
TCD50 = 120 Gy for the bladder based upon the findings of Dale et al. [137]. Similarly, the use of
these parameters would result in overestimating the occurrence of sigmoid bowel complications,
and the parameters were adjusted to γ50 = 2.5 and TCD50 = 150 Gy. The resulting NTCP
models and the magnitude of the NTCP at common planning-aim dose values were in line with
the ≥G2 complication rate in cervical cancer brachytherapy studies [28, 55, 138].
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Figure 2.3: Schematic representation of the workflow for generating the dose-response relationships under uncertainty, and the reference curve
without uncertainty. The accompanying MATLAB script that is used for generating these relationships can be found in Script A.1.6.
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2.3 Results

2.3.1 Literature review of uncertainty components

Application: insertion of the applicator

Direct estimates of the dosimetric uncertainty associated with the reproducibility of inserting the
applicator are lacking, and instead must be derived indirectly, e.g. from the differences between
inter and intra-application data. That the procedure of intracavitary applicator insertion is
associated with dosimetric uncertainty, may be deduced from the study by Nesvacil et al., where
the overall random uncertainty was found to be greater for inter-application than for intra-
application data [111], although this might be explained by other factors such as the greater time
in between measurements. Both geometric variation [139–143], and resulting dosimetric variation
[129, 144, 145], have been documented to occur between intracavitary applicator insertions.
Placement variation between two consecutive insertions seems to be depending on: (i) the
applicator type [144], although no differences between applicator types were found in the
comparison by Nesvacil et al. [111], (ii) tumour size or stage [139, 146], and (iii)
operator-dependent procedures and tools including the application of vaginal packing and external
fixation [139, 141, 143, 144]. Jamema et al. calculated the inter-application dosimetric variation as
the difference in dose between a treatment plan that is obtained from the first imaging session
after the first application and applied to the second image after the second application, and the
treatment plan developed specifically based on this second image [145]. The group systematic
error was found to be small for the rectum and bladder D2cm3 (0.6-0.9% of the planning-aim dose
per BT fraction), but large for the sigmoid D2cm3 (11.9%). The overall random error was found to
vary between 13.1-15.1% (k = 1) of the planning-aim dose per BT fraction for the bladder and
rectum, to 37.5% for the sigmoid (k = 1), likely as the sigmoid has a higher mobility than the
rectum and bladder. Similar findings have been reported by Lang et al. [129], and in the
multicentre comparison by Nesvacil et al. [111]. However, inter-application variation cannot be
equated with the variation associated with the insertion only, as the former inherently includes
organ movement effects, tumour shrinkage, and contouring uncertainty. Inter-application variation
in these studies is presumably dominated by organ mobility, which has an estimated overall
random uncertainty of 20-25% [99], and not by variation associated with the insertion.

It has been long known that implantation of IC applicators is frequently not ideal, which has been
distinguished as an important factor for local control if no treatment optimisation is used
[146–148]. Treatment optimisation however may partially be able to account for suboptimal
insertion and placement of the applicator. Viswanathan et al., and Petric et al. mentioned that
poor/suboptimal applicator placement cannot be corrected for using treatment optimisation alone
[10, 110], but did not present direct evidence for this claim. Kissel et al. conversely noted that in
their patient study suboptimal placement could be resolved in half of the patients through
dosimetric optimisation and therefore did not result in lower dose to the target volume [147].
Rangarajan established no significant differences in the relevant DVH parameters if suboptimal
applicator placement was adjusted to an optimal position in ten patients [68].

In the recent study by Rigaud et al. dosimetric variation due to insertion was estimated using
deformable image registration, but analysis was based on a pre-planning CT without an applicator
inserted (Figure 2.4) [149]. As a conservative estimate for the variation between consecutive
insertions, the data from the multicentre study by Nesvacil et al. may be used [111]. This study
presented the data of three centres analysing dose parameters during one applicator insertion, and
three centres analysing data from subsequent applications. Assuming similar workflows for each
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(a) Pre-BT CT without applicator. (b) MRI at time of BT with applicator.

Figure 2.4: CT/MR images showing the deformations induced by applicator insertion for a single patient.
Between two insertions the difference in the displacement of organs would be less pronounced. Shown are:
cervix (dark green ), bladder (gold ), rectum (blue ), and vaginal cavity (pink ). Figure adapted
from Ref. [149].

centre, equal delivered dose in each of the fractions and no time effects -such as tumour regression-
among others, one may argue that the differences between inter-application uncertainty and
intra-application uncertainty are solely due to uncertainty associated with the additional insertion.
This results in a relative dosimetric overall random error of 10.6%, 11.7%, 10.0% and 19.0%
(k = 1) for the CTVHR, bladder, rectum and sigmoid respectively. These random error
magnitudes correspond to significant applicator shifts of several millimetres5. Systematic
variations were in this study not found to be significantly different for inter and intra-application
uncertainty [111], and hence the group systematic error is set equal to zero in this analysis. It is
unknown to what extent treatment optimisation is fully able to compensate for differences of this
magnitude. The effects of dosimetric variation associated with consecutive insertions are therefore
modelled in a worst-case scenario where it is assumed that treatment optimisation is insufficient in
compensating for this geometric variation.

After insertion of the applicator, the patient must be transferred for 3D imaging, which is
included in the insertion uncertainty estimate. Previously, mean shifts of 1-5 mm have been
reported for intracavitary applicators during transfer [151–153]. In a recent work, even when using
external fixation, mean shifts of 1.9, 3.0, and 9.5 mm were reported in the lateral, longitudinal and
anteroposterior directions respectively [154]. To simulate the corresponding dosimetric impact, the
authors of this study applied 5 mm anterior virtual shifts of the applicator in treatment planning
software. This decreased the rectum and sigmoid D2cm3 by 19.4 and 12.2% respectively, but
increased that of the bladder by 36.5%. However, in reality OARs would move with shifts of the
applicator, filling the ‘vacancy’ left by the applicator, rendering such results unreliable [154].

Imaging: applicator reconstruction

Several uncertainty components may be distinguished within the category of imaging variation,
which may be summarised under: (i) applicator reconstruction, and (ii) organ and tumour
contouring. Both are dependent on several factors including the imaging modality, resolution of
images, patient or applicator-related artefacts, image fusion and operator experience [155]. One
may note that these two components are often included in estimates of other forms of uncertainty.

5For example an estimated 5-6 mm for the CTVHR based on applicator displacement/dosimetric impact data [119, 150].
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For example, organ motion variation may not be assessed separately from contouring variations in
estimates of the inter-fraction uncertainty, whereas applicator reconstruction variation cannot be
separated from treatment planning dose variation [98]. By assessing the magnitude of these
imaging related uncertainties, also more accurate uncertainty estimates can be made for
non-imaging related aspects.

The magnitude of reconstruction uncertainty is for BT applicators limited. The preferred imaging
modality for cervical cancer BT is MRI [7, 22], due to its ability to discriminate soft tissue and its
multiplanar capability [132, 155]. However, reconstruction of brachytherapy applicators is more
challenging for MRI than for CT imaging due to lack of contrast in the former [119, 155].
Although the use of alternative imaging modalities for the reconstruction has been proposed, it is
advisable to use the same imaging set as for the contouring [156, 157]. When basing the
reconstruction of the applicator on the contrast, errors from imaging artifacts, orientation of the
imaging planes and the intervals between these planes may arise [158]. In the inter-observer
studies by Haack et al. whom reconstructed the applicator using the artefact signal and MR
markers, and Petit et al. whom used a 3D SPGR scan, geometric reconstruction mean errors of
smaller than 1 mm for both plastic and titanium applicators were measured using a 1.5 T MR
scanner [159, 160]. To minimise observer dependence and other direct imaging effects, recently
automatic reconstruction algorithms using library-based reconstruction have been developed for
MRI, which in one study shows equivalent or lower variability than the measured inter-observer
variability, and has geometric errors within one millimetre [161]. However any library-based
approach requires an accurate representation of the applicator in the library, which would
otherwise result in a systematic error over treatment [156]. For conventional applicators it was
found that models in a common library were accurate within 0.4 mm [162]. As it may be difficult
to perform verification of the accuracy of a 3D-printed applicator and its corresponding
CAD-model, for now direct imaging seems to be more appropriate. In the article describing the
development of the ARCHITECT patient-tailored applicator, channels were envisioned that would
provide anchor points for reconstruction [48].

Another recent development is the introduction of 3.0 T scanners, which when using T2-weighted
images may result in significant artefacts for titanium applicators, corresponding to geometric
reconstruction errors of several millimetres [163]. For a plastic applicator, image distortions using
a 3.0 T MRI scanner have been established to be well below 1 mm [164]. Additionally, geometric
variability in the longitudinal direction has been associated with finite slice thickness [159], and for
that reason the use of multiplanar or 3D imaging is recommended [156]. In order to establish the
dosimetric consequences of these geometric variations, studies have virtually shifted applicators in
treatment planning software and compared DVH parameters of shifted and nominal plans
[119, 150]. For the bladder and rectum in the study by Tanderup et al., DVH parameters varied
with 5–6% per mm applicator displacement in the anteroposterior direction, and for other organs
this dosimetric variation was established to be around 4% per mm (see Figure 2.5) [119]. When
systematic errors are avoided through quality control, the dosimetric uncertainty corresponding to
applicator reconstruction uncertainty is limited to 5-10% for the CTVHR and OARs [119].
Systematic errors, however, may not entirely be eliminated. Schindel et al. showed that the
applicator must not displace more than 1.5 mm during reconstruction, which would otherwise
result in 10% dosimetric differences in DVH parameters [150]. In the study by Berger et al., only
the D2cm3 of the rectum was significantly affected by direct reconstruction variations, with a dose
difference compared to a reference plan of 0.2 ± 0.3 Gy for a prescription dose of 7 Gy [157]. As a
rough ‘best-case’ estimate, in this study a geometric error of 0.3 ± 0.1 mm is assumed in a general
direction, in accordance with the data by van Heerden et al. for 3.0 T MR imaging for a plastic
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Figure 2.5: Dosimetric gradient (in % dose per mm) associated with virtual intracavitary applicator shifts
for the target and several OARs in several directions. Figure adapted from Ref. [119].

applicator [164]. Using the gradient data by Tanderup et al. in Figure 2.5 [119], this corresponds
to relative dosimetric variations per fraction of -0.45 ± 0.15% for the CTVHR D90%, and 1.5 ±
0.5%, 1.5 ± 0.5%, and 0.6 ± 0.2% for the bladder, rectum and sigmoid D2cm3 respectively (k = 1).
Rotations have not been considered, as generally these have a lower impact [119, 154].

Imaging: contouring of target and organs at risk
Contouring (Figure 2.6) is one of the main contributors to the uncertainty budget [99]. For that
reason, several publications have addressed quantification of the variations in target and organ
delineation. In the research by Petric et al., the delineations of ten experienced observers for six
cases were compared on geometric properties such as the volume, volume conformity and
descriptive distances to two reference delineations, based on expert consensus or using an
expectation–maximisation algorithm [165]. However, this does not directly translate to dosimetric
impact calculations. Therefore using the same data set, Hellebust et al. determined the dosimetric
impact of inter-observer uncertainty as the mean of the relative standard deviations for DVH
parameters corresponding to the delineations of the six cases [166]. For the reference contour
generated based on expert consensus or the expectation–maximisation algorithm respectively, the
established mean relative SDs were 9.1/10.0% for the CTVHR, and 5.3/5.4%, 7.5/7.5%, and
11.2/11.3% for the bladder, rectum and sigmoid D2cm3 (k = 1). Image acquisition was done using
0.2 T and 1.5 T MRI systems. Lower inter-observer conformity than in the previous studies was
found in a study using 3.0 T MRI, although this might have been caused by the more complex
treated cases and the larger number of participating clinicians [167]. Good concordance between
observers was reported in another study using 3.0 T MRI, but the mean relative SDs were high,
e.g. 27 to 28% for the CTVHR D90% [168]. For CT-based delineation slightly higher dosimetric
impact has been reported than found by Hellebust et al., likely due to the lower visibility of target
and organ tissues on CT [169]. PET-CT may aid in improving the interobserver conformity [165].
Commonly recommended to minimise contouring uncertainties are adequate training and standard
delineation guidelines [165]. For example, the largest inter-observer differences have been
documented for the sigmoid in several reports [166, 169], indicating problems with the
interpretation of this organ and marking an area of possible improvement. Indeed, several
institutes were noted to deviate from Gyn GEC-ESTRO recommended delineation protocols
regarding the sigmoid [158].
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(a) Axial (left) and sagittal (right) CTVHR

delineation for patient case 2.
(b) Axial (left) and sagittal (right) CTVHR

delineation for patient case 3.

Figure 2.6: Illustration of contouring variation of the CTVHR on MRI for two patient cases with individual
observer’s (gold ) and consensus contours (blue ). Figure adapted from Ref. [167].

Dosimetric impact of systematic errors, for example caused by the imaging modality, inaccurate
delineation guidelines or procedures have not been described in literature. There are hints that for
example the use of 3.0 T MRI may result in underestimation of possible residual disease whereas
CT may overestimate the volume in advanced tumours with parametrial extension [167]. However,
such systematic deviations must be further researched. Systematic inter-observer deviations may
be inferred by comparing reference delineations from expert consensus and that by the
expectation–maximisation algorithm which tries to establish the hidden true segmentation and
could be used as ground truth. Those variations related to the imaging modality may be
established by comparing different treatment modalities, although no gold standard is available.

Treatment planning: dose and DVH calculation
Commercial treatment planning systems (TPS) have commonly implemented the Task-group 43
(TG-43) formalism, of which best-practice uncertainties have been presented by DeWerd et al.
[25]. The dosimetric uncertainty in dose calculation -composed of aspects related to source
description, measurement of the dose, Monte Carlo simulations and dose interpolation- at 1 cm
distance on the BT source transverse plane was evaluated to be 3.4% (k = 1) for high-energy
sources, i.e. HDR-BT. Over time, the source description has been modified, which is reflected in
updates of the total uncertainty, e.g. to 3.8% (k = 1) [98, 170, 171]. However, this uncertainty
may be greater at smaller distances from the source or at far larger distances [98].

Several variations may be associated with the calculation of DVHs, including but not limited to: (i)
volume calculation accuracy, (ii) dose calculation accuracy, (iii) resolution of the dose grid, (iv) DVH
dose sampling and spatial location, and (v) DVH dose bin width [172, 173]. In a somewhat older
work, Kirisits et al. reviewed seven planning systems in a phantom setup and found dosimetric
differences between the TPSs of up to 12% from the mean [174]. The planning systems mainly
deviated in the way the volume was constructed from the finite thickness slices, especially at the
outer contours, and the resolution thereof. Nevertheless, the mean SD of the D2cm3 for the phantom
organs was only 1-5% (k = 1). The overall accuracy of DVHs generated by TPSs compared with
analytic calculations has also been investigated. Gossman et al. compared TPS-generated DVHs
for two types of HDR sources adjacent to a contoured cuboid structure with hand calculations
[175]. The authors found an average disagreement of 0.4% between hand calculations and the TPS,
ranging up to 1.0%. Nelms et al. compared two DVH calculation algorithms with analytically
calculated DVHs, and found mean differences mostly within 1% [172]. The influence of increasing
the amount of dose calculation points has been evaluated for prostate brachytherapy at the expense
of computation time, and plans within 1% accuracy were achievable [170]. Lastly, the dose bin
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width of cumulative DVHs impacts the uncertainty in dosimetric parameters, however the extent
of this effect has not been properly reported. The uncertainty as the result of the aforementioned
components may therefore be composed of 3.8% dosimetric deviation for the HDR dose calculation,
1% TPS volume calculation accuracy, 1% TPS dose calculation accuracy, and 1% contribution of
the resolution and sampling of the dose grid, to a combined 4.2% uncertainty (k = 1). For an
elaborate recent review of literature on the topic, the reader is referred to the work by Kanani et
al. [173]. No data or indications are available on the presence of systematic variations.

Treatment planning: heterogeneities

In the TG-43 formalism several assumptions are made which may affect the dose and are classified
as medium heterogeneities, among which are source shielding effects, patient tissue heterogeneities
and patient anatomical boundaries or scattering effects [24, 98]. The dosimetric impact of these
assumptions has been estimated for cervical cancer brachytherapy through the use of advanced
model-based software, known as model-based dose calculation algorithms (MBDCA) [176–181].
Solely including the effects of a solid unshielded titanium applicator, differences with the TG-43
formalism and Acuros (Acuros BV, Varian Medical Systems, Charlotte, NC) -a grid-based
Boltzmann solver (GBSS)- of less than 5% in dosimetric parameters were found [176]. For a
shielded applicator, DVH parameters were found to be significantly lower for the GBBS than for
the TG-43 formalism, with a mean difference of -3.4 to -6.2% for OARs [177]. Dosimetric
differences between TG-43 and GBSS calculations were found to be greater for metal BT
applicators (>1%) than plastic ones (∼0.5%) in a phantom study by Hofbauer et al. due to
shielding effects in the former [178]. These authors reported relative dosimetric differences of –0.47
± 0.33 % for the CTVHR D90%, and –0.87 ± 0.25, –2.14 ± 0.63, –1.69 ± 0.81 (k = 1) for the
D2cm3 of the bladder, rectum and sigmoid respectively between model-based and conventional
calculations in a patient study. Similarly, in other studies relative dosimetric differences <5%
between TG-43 and MBDCAs were noted [179, 180]. In the study by Hofbauer et al. no specific
effects of rectal filling or packing were found, in contrast to the study by Abe et al. where large
differences (>10%) were found when the rectum was modelled to fully consist of air in a
worst-case assumption to simulate rectal filling [181].

The applicator models for these computations require accurate representations of the geometry
and material. Task group 186 (TG-186) has recommended that the geometry must be verified by
an independent investigator, and if not available, the responsibility of verification lies with the end
user [182]. However performing such a verification for each 3D-printed BT applicator is tedious.
Instead, computer-aided drawing (CAD) files may be imported directly in a MBDCA,
acknowledging that its validity may not be fully assured.

The TG-43 formalism results in a systematic overestimation of the doses to organs and the target.
The measurements obtained by Hofbauer et al. are used in this study to estimate the biological
effects of neglecting heterogeneities in the TG-43 formalism [178], assuming that the TG-43 is still
used in regulatory practice.

Treatment planning: DVH addition

In order to calculate the cumulative dose to the target or organs at risk after several fractions, it is
assumed that the same volume is irradiated to the highest absorbed dose in each fraction,
sometimes erroneously termed as a ‘worst-case assumption’, but more recently as the practice of
‘DVH parameter addition’ (see Figure 2.7) [7, 183]. Nevertheless, the assumption that the D2cm3

remains located in one part of the organ may result in an overestimation of the actual absorbed
dose [98]. This is among others dependent on the mobility of the organ and the applicator. For
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Figure 2.7: Inter-fraction variation of the spatial dose distribution of a single patient for the bladder and
rectum. Contrary to the DVH parameter addition assumption, the D2cm3 (brightest colour gold or blue)
does not remain on the same location. Figure adapted from Ref. [185].

example in the study by Jamema et al. the overlap of D2cm3 volumes between applications was
>50% in the majority of patients for the more static rectum, 10-50% for the bladder, and <10%
for the sigmoid [145]. Therefore for the sigmoid the validity of the DVH addition assumption was
questioned. For the purpose of evaluating the variation caused by this assumption, several studies
have compared the dose for a volume as calculated via DVH addition with a dose calculated for a
specific volume tracked with deformable image registration (DIR) [183–187]. DVH addition was
found to overestimate the D2cm3 of the bladder with a mean relative difference of 1.5 ± 1.8%, with
all doses calculated in EQD2, for PDR cervix cancer brachytherapy [183]. In the study by
Kobayashi et al., addition of DVH parameters for an additional HDR-BT fraction was associated
with a relative mean difference of 2.8 ± 8.0% and 0.7 ± 3.4% for the bladder and rectum D2cm3

respectively (k = 1), with doses calculated in EQD2 [185]. These variations may be explained by
the lack of a bladder filling protocol used in the study. Similar figures were described by Jamema
et al., who reported relative EQD2 dose differences of 5.7 ± 5.7% and 1.4 ± 2.1% for the bladder
and rectum D2cm3 per BT fraction (k = 1) [188]. Note that these relative dosimetric uncertainties
would likely be lower when expressed in relative absorbed dose and not in equieffective dose, but
that translation of these findings is difficult due to the lack of full data in articles. Greater
variation between DVH addition and DIR plans was found for the sigmoid in one study for the full
BT+EBRT treatment plan [186], but in general little has been reported about the dosimetric
impact of the DVH addition assumption on the sigmoid [98, 189]. For a recent overview of
literature, the reader is referred to Jamema et al. [189]. It must be noted that DIR algorithms
may cause additional uncertainty as deformations in cervix cancer are difficult to model, and
therefore their routine use is not yet recommended [7, 189]. Still its figures give some indication of
the inaccuracies associated with DVH parameter addition. The variability of the D2cm3 of OARs
due to the DVH assumption is in this study coarsely estimated based on relative EQD2 data.

The impact of the uniform dose assumption on the target volume is likely negligible [99], since the
applicator and tumour constitute a stable system. Only one study was found in which the DVH
assumption for the CTVHR was evaluated. Over the full treatment dose, no significant differences
between the D90% of the CTVHR estimated from DVH addition and DIR were documented [187].
As this topic is ill-investigated for a single BT fraction, it is for now assumed that no variations
arise in the D90% of the CTVHR due to DVH addition.
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(a) Axial MRI image of fractions 1 (left) and 2 (right)
for the first BT insertion.

(b) Axial MRI image of fractions 1 (left) and 2 (right)
for the second BT insertion.

Figure 2.8: MRI images illustrating inter-fraction anatomical variations of the CTVHR (bright green ),
bladder (gold ) and rectum (blue ) for a single patient. Figure adapted from Ref. [129].

Clinical dose delivery: applicator movement

Applicator movement can also be present during the treatment. The applicator and tumour
constitute a relatively stable system when an appropriate implant and vaginal packing is used.
Still, Tanderup et al. found a mean SD of displacement of 1.2, 1.2, and 0.9 mm in the lateral,
longitudinal and anteroposterior direction respectively during PDR-BT relative to a rectum probe
[190]. For intracavitary applicators without IS needle insertion, the mean displacement was found
to be -0.7 ± 0.9 mm, which was significant, during HDR-BT fractions [133]. This corresponded
with a dosimetric increase of 1.6 ± 2.6% per fraction for the D90% of the CTVHR (k = 1). For
combined IC/IS treatment, the mean displacement was not found to be significant. Cooper et al.
noted that near the tip of the tandem the displacement relative to the uterus may be greater than
near the base, i.e. ring, of the applicator [191]. As no other data was found to be available
describing the dosimetric impact of movement of the applicator relative to the target volume, the
data by Karlsson et al. is used in this thesis [133].

Clinical dose delivery: anatomical changes

Anatomical variations, e.g. positional and volumetric changes of organs or tissue, influence the
absorbed dose between insertions and fractions and also during the delivery of fractions (see
Figure 2.8). Such anatomical changes that may impact DVH parameters likely originate from
bladder filling status and possibly from rectal filling status [126, 192–195], patient positioning
[196], and variations in vaginal gauze packing or other systems to displace OARs [197]. For
simplicity, only intra-application anatomical changes are considered here, i.e. inter-fraction and
intra-fraction changes. In their pooled analysis of the results of six institutions, Nesvacil and
colleagues observed intra-application variation of -2.5 ± 10.8% for the CTVHR D90%, and 1.3 ±
17.7%, 3.8 ± 20.5% and -2.3 ± 23.5% for the bladder, rectum and sigmoid D2cm3 respectively
(k = 1) [111]. These percentages do not only constitute of dosimetric differences due to anatomical
changes, but also include contouring and reconstruction uncertainties. As these contribute up to
around 9.5% of the random error on the CTVHR, Nesvacil et al. concluded that the
applicator-target is a stable system [111]. The difference between the dosimetric uncertainties for
the D2cm3 of the OARs and earlier stated contouring/reconstruction uncertainties is attributed to
anatomical changes of the organs relative to the applicator [111]. Additionally, these individual
institutes differed in the used treatment modality, protocols and applicator type, and time in
between procedures among others. In one of the studies in this pooled analysis it was concluded
that if a constant bladder filling was to be ensured, geometric variations between two fractions for
the same insertion 16-20 hours apart are of little influence on the dose [129]. However, despite
adherence to BT protocols, major dosimetric differences may occur due to shape variations [198].
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It would be of interest to further decompose intra-application uncertainty into contributions of
individual components that can be directly quantified, such as the movement that caused the
variation. Using rigid image registration, Chakraborty et al., estimated that 47% and 19% of the
variation in the rectal and bladder dose respectively could be explained by applicator movement
opposed to organ movement or volumetric changes [198]. Some articles describe the centre of
volume (COV) location of partial volumes relative to the applicator and relate this for example to
bladder/rectal filling and packing [199, 200]. The resulting dosimetric impact of spatial
uncertainty on the dose in the highest irradiated subvolumes, e.g. D2cm3 , is often found to be
minimal [126, 145, 199, 200]. However, dosimetric indices for small partial volumes do not have a
fixed location and therefore cannot be used to accurately model the dosimetric impact of spatial
uncertainty for the fully treated organ. Deformable image registration techniques have been used
for more accurate dose accumulation calculations, but additionally may be used to track/predict
and quantify inter-fraction organ motion and its impact. The complexity of this problem, e.g.
caused by the rigid applicator and sliding between tissues [189], and the dependence on accurate
delineations, implies that these motion models suffer from significant uncertainties as well.

Intra-fraction motion during cervical cancer BT has been described in multiple works [201–203]. In
a study where a personalised vaginal mould was used as an applicator for PDR-BT, a significant
systematic increase in the rectum was noticed, of 6% ± 5.3% in relative EQD2 dose, likely caused
by rectal filling, whereas this was not the case for the bladder or the sigmoid [201]. Similarly,
although intra-fraction rectal dose differences are not always found to be significant, in individual
cases outliers occur where rectal dose increased [203]. Using DIR, Miyasaka et al. however found the
rectal dose to become significantly lower during treatment, i.e. -2.3 ± 9.9% relative dose to D2cm3

(k = 1), which opposes the previous findings [204]. This however may be explained by an increase in
bladder filling as catheters were not consistently used, pushing the rectum in the posterior direction.
Bladder filling could also explain the increase of the bladder D2cm3 of 2.4 ± 8.8% (k = 1), which
moved superiorly in this study. In another study in intrafraction variation, only the sigmoid D2cm3

was influenced significantly, with relative dosimetric differences of 0.6 ± 0.6 Gy (corresponding with
8.7 ± 8.6 % for a 7 Gy fraction (k = 1)) [202]. This reflects the high mobility of the sigmoid, but
also possibly the greater uncertainty in the contouring procedure of this organ. Although studies
show mixed results, intra-fraction organ motion seems to be a large contributor to the inter-fraction
variation, despite the limited time span in which these variations may occur.

Technical dose delivery: source strength

Source strength variation influences the brachytherapy treatment process from planning and up to
delivery [98]. Therefore, it has been the subject of multiple studies and reviews. Task group 138
(TG-138) calculated an uncertainty in the source strength of 1.5% for a HDR source (k = 1) [25].
For simplicity it is assumed that all organs and the target are equally affected by this uncertainty,
although these dosimetric points have a different spatial location and orientation to the source6.

Technical dose delivery: source position

Despite the use of automatic remote afterloaders, source positioning is still subject to errors.
Typically, a geometrical uncertainty of ± 1 mm (k = 1) is well-achievable with these afterloaders
through straight applicators [205]. Recently, in a study evaluating the source positioning accuracy
of an afterloader using length verification average deviations were found of less than 1 mm for

6In reality the dose surrounding the longitudinal axis of the source is not uniform, and variations of 2-20% have been
reported [25].
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several commercially available curved and straight applicators [206]. For applicators of higher
curvature, such as ring applicators, these average deviations amount to 2.5-5.5 mm [98, 206]. Such
high curvatures, e.g. radii of 13 mm in some ring applicators, are not achievable for interstitial
needles used in 3D printed IC/IS applicators where the radius is limited to 35 mm due to friction
[48], and hence deviations will likely be less7. Although systematic errors in the source position
relative to the applicator due to afterloader inaccuracy may be decreased through quality
assessment with commercial applicators [98], these errors still likely persist for highly curved
applicators and result in significant point dose differences [207]. Similarly, Humer et al. simulated
the impact of rotation of the loading pattern and found that differences of 2.5 mm resulted in
dosimetric uncertainty <3% for the D2cm3 of OARs and <2% for the D90% of the CTVHR.
However, as the rectum D2cm3 had a larger systematic dosimetric error than the other evaluated
volumes, from linear interpolation the authors concluded that dosimetric differences <2% for the
target, bladder and sigmoid are possible and <5% for the rectum when containing the source
positional accuracy within 2 mm as is commonly recommended [208]. Source path verification
may not be feasible for each personalised applicator, such that systematic errors may persist in all
of the fractions. The use of simple source verification methods prior to treatment or improvements
in afterloader accuracy may aid in reducing this error. Temporal inaccuracies in source position
are generally almost negligible, amounting to ≤0.5% dosimetric impact (k = 1) [35, 98]. Lastly
differences in source orientation within the applicator may occur [98]. The channel diameter of the
ARCHITECT applicator is currently 2.6 mm [48], whereas conventional hollow needles are around
2.2 mm in diameter. This play of 0.2 mm will likely not result in significant dosimetric differences.

Post-delivery: target and organ response

Time-dependent effects, including tumour and organ response, such as oedema, can influence the
absorbed dose in subsequent fractions and are inherently included in inter-fraction and
inter-application uncertainty estimates. For interstitial applicators, it has been established that
these two factors influence needle and template displacements and deformations [77, 209]. For
PDR-BT such changes have been described by Morgia et al. [210]. In their study, the tumour
volume increased significantly over the brachytherapy fractions resulting in a relative reduction of
the total BT+EBRT EQD2 D90% dose of -6.1 ± 7.3%, and -7.5 ± 7.2% over two days. Also the
estimated rectal D2cm3 dose increased significantly, albeit that this may be due to rectal filling,
and not necessarily oedema, which was an effect previously noticed for PDR-BT as well [201].
However, evidence for HDR brachytherapy shows that rather the tumour regresses over fractions
[112, 113, 211–213], which means that in some individual cases the treatment planning must be
adapted in order to ensure OAR dose constraints. Regression due to brachytherapy may not be as
pronounced as described in the frequently cited study by Dimopoulos et al. who showed a
regression of the target volume from 16 cm3 to 8 cm3 in four fractions, as in this case
brachytherapy is initiated during EBRT treatment [112]. Rather, the treatment volume likely
remains largely constant over the course of brachytherapy [113]. Therefore, despite not
investigated, the dosimetric impact of possible tumour regression would likely be small.

Post-delivery: fractionated treatment

Random errors have a zero mean by definition. For this reason, for a number of fractions N , random
errors within a fraction tend to level out via a factor 1/

√
N [35]. This implies that treatment with

an increased amount of fractions is more forgiving, whereas in brachytherapy with four fractions
the uncertainty from random errors is half of what has been reported previously.

7The effect of multiple bends in succession on the positioning accuracy is unknown, which may possible increase the
positioning error.
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2.3.2 Uncertainty budget for cervical cancer BT
Based on the previous literature analysis of sources of uncertainty, an uncertainty budget for
cervical cancer HDR brachytherapy using an intracavitary applicator with the treatment schedule
illustrated in Figure 1.2 is shown in Table 2.2. For convenience and as this table contains rough
estimates, values above 1.0% were rounded to the nearest halves. All figures are expressed relative
to the planning-aim absorbed dose in Gy for a single BT fraction. Both the mean and standard
deviations of relative dosimetric variations are given, which is not to be confused with systematic
and random uncertainty components. For example, for a source of uncertainty having a systematic
impact over two fractions succeeding one imaging session, such as contouring variation, a
dosimetric error which is obtained from a normal distribution, characterised by mean and SD,
influences both fractions the same. In the case of an uncertainty having a random impact, the
dosimetric error for each fraction individually would be drawn from a normal distribution.

As can be seen in Table 2.2, the largest individual contributors to uncertainty in the BT
treatment are contouring uncertainties for the CTVHR D90% and anatomical changes for the
OARs D2cm3 . The latter follows from subtracting the SDs of contouring, reconstruction, and
applicator movement uncertainties from the inter-fraction SD via the root sum of squares. For
individual uncertainty components, the SDs describing the systematic or random uncertainty are
in general <10% for the CTVHR and <15% for the OARs (k = 1). However, the SD of the total
uncertainty may amount up to <12% and <25% for the CTVHR and OARs respectively. Of the
OARs, the SD of the delivered dose to the bladder is in general the smallest, whereas the delivered
dose to the sigmoid is subject to the largest uncertainty.

The largest values of the mean of dosimetric variation are found for the DVH addition assumption,
which overestimates the dose to the OARs, and for inter-fraction changes, where organ motion and
anatomical changes have predicted patterns throughout treatment and hence influence the dose to
the CTVHR and OARs systematically. Bias in the delivered dose is in general <4%.

2.3.3 Clinical impact of dosimetric uncertainty
Clinical impact at planning-aim dose
The basic model used to calculate the clinical impact of dosimetric uncertainty and generate the
figures in this part, is given in Script A.1.6. For all components in Table 2.2, the: (i) event
probability of the population average delivered dose with uncertainty, (N)TCP , (ii) standard
deviation of this population average event probability, SD((N)TCP ), and (iii) the error between
the population average event probability and the event probability of the planning-aim dose,
(N)TCP − (N)TCP , at the dose constraint level8 are given in Table 2.3.

As can be observed in Table 2.3, for the general population the error between the calculated event
probability for the logit-model with and without uncertainty, i.e. the clinical impact of uncertainty
components, is small at the planning-aim dose level and smaller than what may be expected from
the magnitudes of the dosimetric uncertainties in Table 2.2. Local control, which is modelled to be
around 94.5% without uncertainty at the planning-aim dose level, is at most decreased by 0.4
percentage points due to inter-fraction changes. The simulated occurrence of tissue morbidity is
around 12.3%, 8.2%, and 0.6% for the bladder, rectum and sigmoid respectively. Inter-fraction
changes, mainly anatomical changes, are the greatest contributors to variation in this predicted
tissue morbidity and increase the occurrence by 1.5%, 3.7% and 0.5% respectively.

8 These planning dose constraints are >90 Gy for CTVHR, <80 Gy for bladder, <65 Gy for rectum, and <70 Gy for
sigmoid [50].
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Table 2.2: Uncertainty budget for a single fraction of cervical cancer HDR brachytherapy using an intracavitary applicator, with the classification
from Figure 2.2. Percentages express the relative dosimetric variation to the planning-aim absorbed dose in Gy.

CTVHR D90% Bladder D2cm3 Rectum D2cm3 Sigmoid D2cm3

Uncertainty components Mean
(%)

SD
(%)

Mean
(%)

SD
(%)

Mean
(%)

SD
(%)

Mean
(%)

SD
(%)

Systematic impact on delivered dose

1. Application: insertion of the applicator (including
contouring and registration)a

0 10.5 0 11.5 0 10.0 0 19.0

2. Imaging: reconstructionb -0.5 0.2 1.5 0.5 1.5 0.5 0.6 0.2

Imaging: contouringc 0 9.5 0 5.5 0 7.5 0 11.0

Imaging: anatomical changesd 0 3.0 0 6.0 0 8.0 0 7.0

3. Treatment planning: dose and DVH calculationc 0 4.0 0 4.0 0 4.0 0 4.0

Treatment planning: heterogeneitiese -0.5 0.3 -1.0 0.3 -2.0 0.6 -1.5 0.8

Treatment planning: DVH additionf 0 0 2.0 6.0 1.0 3.5 4.0 8.0

Random impact on delivered dose

4. Clinical dose delivery: applicator movement 1.5 2.5 0 0 0 0 0 0

Clinical dose delivery: inter-fraction changes (including
contouring, registration, tissue response, applicator
movement and intra-fraction variation)g

-2.5 11.0 1.5 17.5 4.0 20.5 -2.5 23.5

5. Technical dose delivery: source strength 0 1.5 0 1.5 0 1.5 0 1.5

Technical dose delivery: source positionh 0 2.0 0 2.0 2.0 3.0 0 2.0

aNo data available of variability due to insertion. The random error is estimated as the difference between inter-application and intra-application data
by Nesvacil et al. [111]. Systematic error is set to zero. Worst-case scenario only relevant for patient-tailored designs, when not able to compensate
for geometric differences between pre-planning and at time of treatment via treatment planning.
bEstimated using the gradient data in % dose per mm by Tanderup et al. [119], and with a displacement of 0.3 ± 0.1 mm [164].
cNo data available for the systematic variation.
dRough estimates based on dosimetric differences between treatment plans after pre-planning and pre-treatment scans by Nomden et al. [203], and
Anderson et al. [214].
eAssuming that the TG-43 formalism is used in the TPS and as such heterogeneities are neglected.
fNo data available for the CTVHR. Other data is coarsely estimated based on relative EQD2 differences between DVH addition and DIR-based
calculation. Accuracy of DIR algorithms is limited for large deformations and displacements.
gData by Nesvacil et al. [111].
hAssuming an error of 2 mm in source positioning for a ring applicator [208]. Systematic rectum error corresponds to 2 mm clockwise deviation of
source positions.
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Table 2.3: Clinical impact of the dosimetric uncertainty described in Table 2.2 for a treatment schedule illustrated in Figure 1.2. Population
average event probability calculated using a logit-model with uncertainty, (N)TCP , standard deviation of the event probability calculated using a
logit-model with uncertainty, SD, and the error between the population average event probability from a logit-model with and without uncertainty,
(N)TCP − (N)TCP , are given at the planning-aim dose values8. All the values are given as percentages (%).

CTVHR D90% Bladder D2cm3 Rectum D2cm3 Sigmoid D2cm3

Uncertainty components TCP ±
SD

TCP -
TCP

NTCP ±
SD

NTCP -
NTCP

NTCP ±
SD

NTCP -
NTCP

NTCP ±
SD

NTCP -
NTCP

Systematic impact on delivered dose

1. Application: insertion of the applicator
(including contouring and registration)

94.4±3.8 -0.3 11.9±5.3 0.6 8.9± 6.3 0.8 1.3±1.2 0.7

2. Imaging: reconstruction 94.4±3.8 -0.2 11.4±5.7 0.0 8.4±6.5 0.1 0.7±0.9 0.0

Imaging: contouring 94.4±3.7 0.1 11.3±5.5 0.0 8.5±6.6 -0.2 0.9±1.0 0.3

Imaging: anatomical changes 94.5±3.7 0.3 11.8±5.4 0.3 8.5±6.7 0.2 0.7±1.0 0.1

3. Treatment planning: dose and DVH
calculation

94.4±3.8 -0.1 11.4±5.6 -0.1 8.2±6.5 -0.4 0.7±0.9 0.1

Treatment planning: heterogeneities 94.4±3.6 0.2 11.0±5.3 -0.3 7.3±5.7 -1.3 0.6±0.9 0.0

Treatment planning: DVH addition 94.3±3.8 -0.1 12.2±5.7 0.5 8.5±6.7 0.3 0.8±1.0 0.2

Random impact on delivered dose

4. Clinical dose delivery: applicator movement 94.8±3.5 0.2 11.5±5.6 0.1 8.0±6.2 -0.1 0.7±0.9 0.1

Clinical dose delivery: inter-fraction
changes (including contouring, registration,
tissue response, applicator movement and
intra-fraction variation)

94.0±3.8 -0.4 12.8±5.9 1.5 11.7±7.8 3.7 1.1±1.1 0.5

5. Technical dose delivery: source strength 94.7±3.6 0.2 11.5±5.5 0.0 8.4±6.4 0.5 0.6±0.8 0.0

Technical dose delivery: source position 94.6±3.8 0.2 11.4±5.5 0.3 8.4±6.7 -0.1 0.6±0.9 0.0
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Interestingly, despite the large standard deviation of the error that may be associated with inserting
the applicator and the contouring error, only a small clinical impact is established for these two
errors, likely as these errors are cancelled out over the population and partially over two imaging
sessions. Only uncertainty components with a non-zero mean in Table 2.2 seem to affect the event
probabilities at planning-aim dose levels.

Effect of uncertainty components on event probability
To demonstrate how event probabilities are impacted by different magnitudes and types of
uncertainty, a simulation is shown in Figure 2.9 using Script A.1.7. As can be seen, the effects of
systematic and random components for the simulated population are similar as both are
stochastic variables, and for individual patients the systematic or random effects level out over two
insertions or over four separate fractions respectively. For a greater group mean error the slope of
the dose-response curve increases, similar to what is noticed by Nesvacil et al. [38]. However, the
shift of the curve for greater positive systematic uncertainty towards lower doses as denoted by
the aforementioned authors was not established in this study. This may be explained by the
inherent characteristics of the logistic regression used in order to derive the dose-response
relationships; increasing the steepness of the dose-response curve in general has a similar effect in
providing an improved fit for greater positive systematic uncertainty as shifting the dose-response
curve to the left. When simulating the effects of the magnitude of the standard deviation, it can
be seen that the differences between the curves at different uncertainty levels is minor, although a
flattening of the curve may be seen for greater values as has been previously reported [35, 38].
This stems from the non-linearity of the LQ-model used for converting the absorbed dose to
equieffective dose in 2 Gy fractions (EQD2).

Dose-response curves under uncertainty
Impact of dosimetric uncertainty on simulated local control
Dose-response curves for inter-fraction changes, as these are the main contributors to the
uncertainty budget, are illustrated in Figure 2.10. Dosimetric uncertainty in brachytherapy seems
to only marginally affect the local control rate for the general population at the planning-aim dose
level of 90 Gy as the results from the simulation in Table 2.3 and dose-response curve in
Figure 2.10a suggest. In the latter a decrease of 0.4% in local control is barely noticeable. In fact,
most of the error between the TCP models with and without uncertainty seems to be the
consequence of model inaccuracies such as the limited simulated population size. However, as can
be observed in Figure 2.10a, the discrepancy between the dose-response curves with and without
uncertainty becomes somewhat greater at lower dose prescription levels. This is caused by a slight
decrease in the slope at 50% dose response (outside of the range of the graph). An additional
benefit of escalating the dose to the high-risk tumour volume is therefore that the impact of
dosimetric uncertainty becomes less according to this model.

Impact of dosimetric uncertainty on simulated tissue morbidity occurrence
Figure 2.10b, 2.10c, and 2.10d show the predicted tissue morbidity - dose responses with and without
inter-fraction changes for the bladder, rectum and sigmoid respectively. The combination of the
dose-response gradient and the dose for 50% occurrence, results in a greater predicted occurrence
of tissue morbidity of the rectum at lower doses than predicted for the other two organs at risk.
In combination with the large mean error in dose due to inter-fraction changes, in this model the
rectum is clearly the organ that is affected most by uncertainty at the dose constraint level. In all
of the OARs the inter-fraction uncertainty seems to increase the occurrence of tissue morbidity at
the displayed dose ranges, which is undesired.
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(a) Influence of the mean of systematic uncertainty components. (b) Influence of the SD of systematic uncertainty components.

(c) Influence of the mean of random uncertainty components. (d) Influence of the SD of random uncertainty components.

Figure 2.9: Illustrations of the influence of different types of uncertainty components and their magnitude. For the CTVHR it is preferred
that the event probability, or TCP at the planning-aim dose (∼90 Gy) is as high as possible. For OARs on the other hand it would be
preferred that the event probability, or NTCP , at dose constraints (65-80 Gy) is as low as possible. Simulations performed for the CTVHR,
with γ50 = 0.47 and TCD50 = 36.0 Gy for Npat = 200 patients per uncertainty level. MATLAB code is provided in Script A.1.7.
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(a) Dose-response curves for the CTVHR. (b) Dose-response curves for the bladder.

(c) Dose-response curves for the rectum. (d) Dose-response curves for the sigmoid.

Figure 2.10: Simulated dose-response curves: (i) with inter-fraction uncertainty (gold ), which is modelled as having a random impact
with Mp and σp derived from Table 2.2, and (ii) without uncertainty (blue ) for the CTVHR, bladder, rectum and sigmoid. The dotted
black line ( ) indicates the planning-aim dose/dose constraints. MATLAB code is provided in Script A.1.6.
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2.4 Discussion

The purpose of this chapter was to establish the magnitude of uncertainty components in cervical
cancer BT and to assess their clinical impact on the tumour and organs at risk. First, BT
literature concerning dosimetric uncertainty was reviewed and an uncertainty budget was
composed. As it was complex to strictly dissect uncertainty in individual uncertainty components,
major contributors -sometimes comprised of multiple sources of uncertainty- were sought and
established. Due to this complex interplay of uncertainty components it was decided not to
calculate the total dose uncertainty using the simple method of taking the square root of the sum
of these components in quadrature, as was done in previous works [98, 99]. Moreover, the
uncertainty components were quantified with the two-parameter model as per standard in BT
literature instead of a four-parameter model. For individual patients, therefore, the mean error
over treatment fractions will likely be larger and the standard deviation smaller.

From the example uncertainty budget with one imaging session per two brachytherapy fractions
and a total of four fractions, it is clear that for individual patients the systematic dosimetric
impact on the delivered dose can be substantial. For example, by basing the applicator design on
a possible poor insertion and a ‘snapshot’ image of the patient’s topographic anatomy, in a
worst-case scenario where treatment optimisation cannot be used to compensate for these
dosimetric differences the resulting systematic error over two fractions may detriment the dose to
the tumour and increase the dose received by OARs by >10%. For this reason the applicator
design should be evaluated prior to the treatment delivery, and re-evaluated after the first two BT
fractions or ideally after each fraction. Nevertheless, when the clinical workflow does not permit
frequent imaging the applicator design should be robust against these uncertainties over multiple
fractions. Similarly, contouring uncertainties and anatomical changes during imaging are
substantial, with SDs of 3-11%, and only partially cancel out over two insertions in a single
patient case.

The main contributor to uncertainty in the delivered dose to the CTVHR in the uncertainty
budget is seemingly contouring uncertainty, as was established previously [98, 130]. For organs at
risk, the main uncertainty seems to stem from inter-fraction changes and in particular organ
movement or volume changes relative to the applicator, as also acknowledged in previous work
[98]. Additionally, the overestimation of the dose to the organs at risk as the consequence of DVH
addition may be significant, especially for the sigmoid. In general however the clinical impact of
this overestimation of OAR dose is limited; it merely implies that the delivered dose to the
tumour may be escalated safely without exceeding OAR dose limits. Moreover, discrepancies
between different deformable image registration algorithms and their failure to model large
deformations indicate that estimations of the magnitude of this error are not accurate. Systematic
errors in source positioning may not be accounted for when using personalised applicators as
validation for each applicator design is intractable, but in general the dosimetric effects of this
type of variation are limited.

Next, the clinical impact -defined as the simulated event probability- of dosimetric uncertainty
components was investigated. For the general population the clinical impact of dosimetric
uncertainty for all investigated components is small at the planning-aim dose level (Table 2.3) and
perhaps smaller than expected from the magnitudes of the dosimetric uncertainties in Table 2.2.
Even inter-fraction changes, which have an especially unfavourable impact on the (N)TCP due to
the combination of a negative (/positive) mean dosimetric uncertainty and a large SD, only show
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Figure 2.11: Illustration of the impact of dosimetric uncertainty of 5 Gy on the local control and morbidity
tissue morbidity. At lower dose levels along the TCP curve, the impact of dosimetric uncertainty becomes
greater. At higher dose levels of the NTCP curve the impact of uncertainty in the dose becomes greater.
Figure adapted from Ref. [99].

a marginal effect on the (N)TCP in Table 2.3. Nesvacil et al. obtained similar results; 20%
random uncertainty had negligible effects on the TCP with the same dose-response parameters as
used in this study and >2–3% on the modelled NTCP of the rectum with different parameters
[38]. If the simulation used in this study was re-ran with the same rectum morbidity parameters
as used by Nesvacil et al. an impact of 1% was found on the NTCP for 20% random uncertainty
on a single BT fraction dose. Systematic uncertainty components were in their study modelled to
persist over four BT fractions, but for the overall population the results are found to be similar; in
their study a 3% positive systematic bias in the dose per fraction led to an increase of the TCP by
approximately 0.7%, whereas a 3% positive sytematic bias increased the NTCP of their rectum
model by approximately 0.3 percentage points at planning-aim dose/dose constraint levels.

Several reasons may explain the finding that in this analysis the clinical impact of dosimetric
uncertainty is small. First, as both the systematic and random uncertainty components are
stochastic variables drawn from normal distributions, the dosimetric error levels out to the group
mean for the simulated population and for a single patient over the amount of fractions [35].
Therefore, the clinical impact of a greater SD in the delivered dose due to random or systematic
uncertainty components is minimal when evaluated for a large population. The magnitude of the
mean error affects the event probability more significantly than the SD, but is <4% as reviewed in
Table 2.2. Secondly, the clinical impact of dosimetric uncertainty is dependent on the dose level
(Figure 2.11) [99], and planning-aim dose values are not necessarily achieved in clinical practice.
For the CTVHR the clinical impact of uncertainty is lower at higher dose levels, such as the 90 Gy
used for generating the data in Table 2.3. With a planning-aim dose to the D90% of the CTVHR of
85, 80 or 75 Gy, the clinical impact of inter-fraction changes is determined at -0.5%, -0.6% and
-0.8% respectively opposed to -0.4% for a planning-aim dose of 90 Gy. In similar fashion, in
individual patients the dose levels to the OARs may exceed the dosimetric constraints, which
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result in a greater impact of the dosimetric uncertainty. For example, a delivered dose of 90 Gy to
the bladder -which was a previous Gyn GEC ESTRO dose constraint and is still commonly used-
leads to an inter-fraction impact of 1.9% opposed to 1.5% for a dose of 80 Gy. When considering
delivered doses of 75 Gy for the rectum and sigmoid, opposed to 65 and 70 Gy respectively, the
impact on the simulated NTCP of inter-fraction dosimetric uncertainty increases to 9.1%, and
0.6%. Despite that the sigmoid is the most mobile organ, which is reflected in the largest SD of
the inter-fraction error, the event probability does not change substantially with this error.
Possibly, this is due to the negative mean inter-fraction error as obtained from the data by
Nesvacil et al. [111]. Such a negative dosimetric impact on the sigmoid D2cm3 is associated, for
example, with bladder distension over several fractions. In some studies the data support such a
conclusion [202], or do not mark a significant dosimetric bias [214]. However, also a positive mean
inter-fraction error for the sigmoid has been reported [145]. Simulations with a zero mean for the
sigmoid inter-fraction error did not yield any clinically different results as at the dose constraint
level the predicted occurrence of tissue morbidity at the sigmoid is low in general. Although the
exact implications of the tissue morbidity models are deliberately left unspecified, i.e. as not to
focus on a specific type of complication, these roughly correspond to events with severity scores
≥G2 based on their occurrence at planning-aim doses. The frequency of lower severity side-effects
is far greater and would be more susceptible to dosimetric uncertainty in absolute percentages.
Lastly, although evaluated for a great number of patients, the figures in Table 2.3 are not stable
and may change upon reproduction. For a greater number of simulated patients, e.g. 3,000 or
10,000, this issue still persists to some extent.

Additionally, as uncertainty components may have a more pronounced negative impact on the
modelled local control and tissue morbidity than the simulation suggests, the behaviour of
dose-response curves (Figure 2.10) was further investigated by altering model parameters. The
parameters used in the logit-model for predicting local control were derived from a relatively
heterogeneous population in a multi-centre study [111]. With an increased dose-response gradient,
γ50 = 1, but subsequently higher dose for 50% response, TCD50 = 60.0 Gy to still yield credible
results in the local control, the simulation for inter-fraction changes was re-ran. This resulted in a
loss of the simulated local control of 1.5%, higher than the 0.4% earlier reported. For individual
patients, the effects of uncertainty deviates from this population average. In order to illustrate
such patient-specific effects, the dose-response gradient γ50 for an individual patient can be
modelled to be higher than that of the average population as has been done previously [215, 216],
but this practice is inherently flawed9 despite perhaps useful for illustration purposes. Even when
condoning this practice by increasing the ‘individual’ patient’s γ50 and TCD50, the impact of
inter-fraction uncertainty may be reduced at high planning-aim doses, e.g. 90 Gy, but drastically
increase at lower dose levels, e.g. 80 Gy, such that it is difficult to draw any conclusion. Also for
the NTCP-dose relationship the clinical impact of uncertainties may be different for individual
patient cases than what the population model might suggest. Several authors have noticed large
differences in D2cm3 doses due to inter or intra-fraction changes for individual patients
[202, 203, 214], reflected in the large standard deviations (20-30%) of this type of uncertainty
[111]. Again however, despite that both individual and population-based dose-response models
can be parameterised by the same kind of variables and can be linked, a reliable derivation of
patient-specific values for these parameters is difficult. In summary, the magnitude of individual
patients’ data pairs, {γ50,TCD50}, cannot be accurately estimated from population-based data

9For example, for an individual patient the theoretical dose-response relationship is a step function, which has an
infinite slope and thus an individual patient’s TCP cannot be obtained from clinical data.
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due to inter-patient heterogeneity [217], and therefore the clinical impact of uncertainty on an
individual patient may not be inferred from the presented data.

In theory, using three opposed to four BT fractions and compensating this with dose escalation to
8-10 Gy per fraction, as also performed in the Erasmus MC in Rotterdam, would increase the
clinical impact of random errors as a larger residual persists. Therefore, another simulation study
was carried out in which the consequence on the local control or tissue morbidity of random
uncertainty with standard deviations of 12% for the target and 25% for the OARs was computed
for a treatment with three fractions (MATLAB script not provided). At the planning-aim dose level
of 90 Gy, it was found that this fractionation schedule resulted in no differences in simulated local
control for the population in comparison with one with four fractions. This is in accordance with
the negligible differences found in the study by Nesvacil et al. when the fractionation schedule is
changed [38]. For this random uncertainty an increase from 3.1% to 3.3% in predicted rectal tissue
morbidity was simulated for a four or three fraction treatment schedule, similar to the changes
reported by Nesvacil et al. [38].

There are some limitations to the models used in this study. As argued in 1.2.4, the simplified logit-
models used are not mechanistic but rather are fits to a clinical data set and have therefore limited
predictive power [32]. Moreover, a uniform dose is assumed in the irradiated structures, whereas
in BT the dose distribution is heterogeneous. Lastly, the dependence on the modelling parameters
γ50, TCD50}, α/β may alter results, although previous studies have found that the model is robust
against small variations in these values [38, 134].

2.5 Conclusions and future work
In this study dosimetric uncertainties in cervical cancer BT were reviewed and their clinical impact
on the predicted local control and tissue morbidity were assessed. Inter-fraction uncertainty is likely
the greatest contributor to the uncertainty budget and the dominant factor affecting the clinical
impact. It is comprised mainly of dosimetric variation due to changes of the anatomy relative to
the applicator and contouring uncertainty. Inter-fraction uncertainty negatively affects the delivered
dose applied to the tumour volume with a relative dosimetric difference of -2.5 ± 11.0% per BT
fraction (k = 1). The delivered dose to organs at risk may be increased with up to around 4.0 ± 20%
(k = 1) due to this type of uncertainty. Nevertheless, the clinical impact of dosimetric uncertainty
components in general is found to be limited when simulated over a large population with the simple
model used in this study. The data generated in this study indicates that, when it is assured that the
target region receives a high dose (>85 Gy), the probability of local control is rather robust against
the reviewed uncertainties (<1.0% decrease). Also for OARs the impact of dosimetric uncertainty
on the occurrence of tissue morbidity is for most types of uncertainty <1.0% for the simulated
population. Inter-fraction changes are however able to substantially affect the clinical outcome for
OARs. Inter-fraction changes may realistically increase the occurrence of more severe complications
of the bladder or rectum by 1.5 and 3.7% respectively. Potentially, at higher absorbed doses, these
changes are associated with a potential increase in occurrence of 2.0 and 9.0%. Moreover, for
individual patients the effects of dosimetric uncertainty may even be more pronounced than this
analysis indicates. However, the used model was not able to accurately predict these effects. For
future work, it may be interesting to perturb individual patients’ DVHs with dosimetric uncertainty
and evaluate the effects on clinical outcome with predictive dose-response models. In particular,
models that are able to account for the dose heterogeneity in BT, such as EUD-based models, are
of interest for this purpose. Moreover, in order to more accurately assess the impact of dosimetric
uncertainty on clinical outcome at the individual patient level and to guide quality assurance, future
work could focus on characterising uncertainties with the four-parameter model.
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3. Inter and intra-fraction uncertainty
in cervical cancer BT

3.1 Background
Organs in the pelvic cavity naturally change their position and volume over time, partially
influenced by organ filling status. Due to the steep dose gradient of BT, even the slightest
geometric changes of organs with respect to the implant may lead to dosimetric deviations of
around 20-25% (1 SD, including contouring variations) [99], and possibly adverse effects on the
treatment outcome. In the previous chapter it was shown that inter-fraction uncertainty, in
particular anatomical changes of organs relative to the BT applicator during or in between
fractions, can have a significant impact on the predicted tissue morbidity of OARs. For individual
patients the dosimetric differences due to inter-fraction uncertainty may even be greater [98], as
pelvic organ motions seem to be patient-specific [218]. Although the high standard deviations of
the dosimetric uncertainty established in the previous chapter partially indicate the unpredictable
nature of the movement of organs and individual patient heterogeneity, the non-zero mean
dosimetric errors also indicate general population motion patterns. Rather than that
displacements or deformations are fully random, for several reasons it would make sense that
organs follow directional motion patterns in the case of cervical cancer BT. First, the BT
applicator (along with vaginal packing) and surrounding bony anatomy are rigid and therefore
provide boundary conditions for the movement of organs [219]. Moreover, movement in the lateral
directions of organs at risk is limited by broad ligaments, whereas motions in the other directions
or rotations are permitted [220]. Furthermore, in the case that no strict filling/emptying protocols
are used, the volume of the hollow organs may increase systematically during treatment [111].
Additionally, over the course of BT treatment, minor tumour regression may be expected
[112, 113], possibly influencing the position of surrounding organs. Lastly, motion of the organs
may not entirely be independent of each other, although evidence on this is mixed [220]. For
example, it is mentioned that the peritoneum allows almost independent movement of the bladder,
cervix-uterus, and rectum-sigmoid [221]. Supporting this finding is that in some studies only weak
correlations between intra-fraction organ motions are found [204, 214]. Knowledge of the motion
and volumetric patterns of organs, random or directional, can aid in determining dwell position
locations robust against these changes. For this reason, a review of inter and intra-fraction
geometric uncertainty is required and in this chapter presented.

Jadon et al. have systematically reviewed literature on inter and intra-fraction pelvic organ motion
during EBRT [218]. However, these findings are not directly applicable to BT. First, as mentioned,
the BT applicator influences the movement of the organs surrounding it. Secondly, the length of
both types of treatment is different and preparation protocols, e.g. of the bladder and bowel, are
used more frequently for BT [149]. More importantly, as the applicator can move several millimetres
relative to bony marks, rather than expressing changes with respect to the bony anatomy as is often
done for EBRT, changes of organs must be expressed relative to the applicator [7, 198]. A review
that is specifically focused on inter and intra-fraction uncertainty in brachytherapy does not exist.

3.2 Materials and methods
A brief review of literature was carried out where peer-reviewed full-text articles and conference
papers were sought. No restrictions relating to the publication status were applied. This review
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included: (i) a systematic search using keywords related to cervical cancer, brachytherapy, OAR
movement and time-span (e.g. inter-fraction), (ii) a search of articles using image registration
techniques based on the recent review by Jamema et al. [189], and (iii) a manual search based on
the reference lists and forward citations of these articles.

A list of exclusion criteria was developed to obtain relevant articles. As the focus of this study is
on brachytherapy, other radiotherapy studies not incorporating brachytherapy were excluded. Also
literature regarding brachytherapy with interstitial applicators without an intracavitary implant
were excluded. The study had to report geometric variations of one or more OARs -i.e. bladder,
rectum or sigmoid- and preferably these deviations had to be relative to the applicator or CTVHR

and not any other reference frame, e.g. bony anatomy. If volumetric changes of OARs were reported,
then the article was automatically included, regardless of the reference frame selected.

3.3 Results and discussion

3.3.1 Inter-fraction changes
Ten studies were identified in this review which reported inter-fraction volumetric or positional
changes for one or more OARs. The findings of these studies are summarised in Table A.1. In
these studies, inter-fraction changes were measured over different applicator insertions, spanning
from a single day up to a week apart. Regarding volumetric changes, all studies that catheterised
the bladder, e.g. through a Foley catheter, or used a uniform bladder filling protocol did not find
significant changes in the bladder volume over treatment [68, 145, 198, 210]. In the study by
Hellebust et al., where no such a protocol was used, the bladder volume decreased significantly
over the treatment duration, likely due to radiation-induced irritation [126]. Additional analyses
summarised in Table A.3 showed that induced bladder distension is capable of these large
volumetric and positional changes of OARs. Despite that a rather constant volume throughout
treatment can be achieved by adhering to bladder protocols, shape changes of the bladder may
still influence dosimetry [198]. Relative inter-fraction rectum variations were in some studies found
to be greater than that of the bladder [126, 210], but in others not [145, 198], and may be
minimised through bowel preparation [145]. Inter-fraction sigmoid volumetric changes are likely
small [145], and may be attributed to contouring difficulties [166, 169].

A limited amount of studies describe inter-fraction positional changes of OARs relative to the BT
applicator and no data was found regarding inter-fraction centre of mass/volume changes of full
organs. Liao et al. describe centre of mass changes of the 2cm3 volume receiving the highest
dose, which were found to be greatest for the sigmoid and less for the bladder and rectum [222],
corresponding to the permitted motion freedom of these organs. However, the displacement of these
highly irradiated volumes is not much of interest as these do not have fixed locations on the organs.
The displacement of OARs may be several millimetres of magnitude based on the average of the
distance between two contours [223]. None of the reviewed studies specified preferred directions of
motion of OARs, indicating that this may well be stochastic. Inter-fraction motion patterns have
been described for ICRU or other OAR points relative to bony anatomy [224–228]. The results
of these studies are mixed possibly reflecting differences in clinical practice among institutes, with
mean Euclidean displacements ranging anywhere from 4 to 28 mm, and limited population sizes.
Nevertheless, some general observations may be done based on this data. No evidence was found
that would indicate preferred motion directions of OARs, contrary to the review for radiotherapy by
Jadon et al. where it was observed that lateral movement is less than the motion in other directions
[218]. However, this may be explained by the presence of vaginal packing in BT treatment which
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could limit anteroposterior and superoinferior motion and allow for lateral movement of OARs. The
mean vector displacements of organs relative to bony anatomy found in these studies seemed to be
greater, i.e. >10 mm, than those identified in studies relative to the applicator, often <10 mm.
This would possibly indicate that these organs move along with the motion of the applicator, but
concrete evidence for this is lacking. Moreover, the measured OAR displacements in these studies
generally show large standard deviations and presence of outliers, reflecting patient heterogeneity.
Lastly, due to the large dosimetric and possible clinical impact of this geometric uncertainty, it is
recommended to perform image acquisition and to optimise treatment plans for each BT fraction.

3.3.2 Intra-fraction changes
Despite the relatively short duration of the delivery of a brachytherapy fraction, significant
intra-fraction variations in dosimetry have been reported previously (see Subsection 2.3.1).
Contrarily, little has been published on the magnitude of volumetric or positional changes of
OARs during treatment delivery, and this has been summarised in Table A.2. Relatively small
increases in the volume of bladder, rectum and sigmoid were reported by Simha and colleagues for
treatment with a short duration and with the use of filling protocols [202]. In the study by
Anderson et al. larger changes in the volume of organs occurred, but also with a longer treatment
time and these changes were not found to be significant [214]. In individual patients, however,
large variations in the volumetric changes were observed. Interestingly, these authors found no
correlation between the treatment duration and OAR movement, noting that this would imply
that “OAR movement is stochastic”. However, in this article it is not described how OAR
movement is assessed and this conclusion is likely drawn based upon group aggregate data.
Significant intra-fraction changes in bladder and rectal volume occurred in the study by Miyasaka
et al., likely as the bladder filling protocol was not used consistently [204], which stresses the
importance of adhering to BT guidelines as also illustrated in Table A.3.

In the identified studies describing intra-fraction positional changes, the average variations were
found to be small and below 3 mm in all directions for the bladder and rectum. Miyasaka et
al. observed larger systematic changes (>3 mm) in the position of the bladder in superior-inferior
direction in some individuals, likely due to the absence of bladder catheters [204]. Expansion of the
rectal wall in anteroposterior direction was also observed in some individuals, likely due to the build-
up of gas which may occur even after bowel preparation. Similar observations were done in other
studies [201, 229]. Counteracting rectal filling may be done through rectal catheters (Figure 3.1)
[203], but in general rectal filling is difficult to prevent completely and in many institutes not part
of regulatory practice. Sigmoid movement was not observed to be larger than that of the bladder or
rectum, nor predictable in the study by Mazeron et al. [230]. However, Phillips and colleagues found
intra-fraction movement of the sigmoid to be greater than that of the bladder and rectum [231],
which would correspond with the freedom of motion that the topography allows. In conclusion,
intra-fraction displacement of OARs may be several millimetres of magnitude in all directions,
but may assumed to be random when adhered to BT protocols and when reviewed over a large
population. There are indications that in general the rectum progressively fills during treatment
and systematically expands in the anteroposterior direction. For individual patients volume and
positional variations may be up to an order magnitude larger, but specific motion patterns are
not precisely described. Intra-fraction uncertainty is difficult to address -opposed to inter-fraction
uncertainty when imaging facilities are available- and hence almost inherent to treatment. Therefore,
as a first step robust applicator design could focus on determining dwell positions robustly against
these intra-fraction changes.
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(a) MRI before
treatment.

(b) MRI after 4h prior to
irradiation.

(c) MRI after insertion
of rectal catheter.

(d) MRI post-
irradiation.

Figure 3.1: MR images showing the deformations due to rectal filling occurring prior to and during
treatment. When not counteracted, the rectal wall expands in anteroposterior direction and becomes more
proximal to the implant. After insertion of the rectal catheter (c, just prior to irradiation), the rectum
stabilises through the use of rectal catheters (d, just after irradiation). Shown are: target volume (bright
green ), bladder (gold ), rectum (blue ), and sigmoid (purple ). Figure adapted from Ref. [232].

3.4 From population analysis to patient-specific planning

The motions of pelvic organs are likely patient-specific [218], reflected in the observation that
intra-fraction dosimetric differences show great heterogeneity [201–203]. As such, no distinct
motion patterns have been identified in the literature review and independent stochastic rigid
body translations based on population data are assumed for the BT needle channel planning
problem as more elaborately described in Section 4.3. However, organ motion is comprised of a
series of complex interactions and deformations with a higher dimensionality, which may not be
accurately reflected in these population statistical rigid motion models [233]. Therefore, the use of
population-based models, e.g. from literature analysis or population analysis, to develop
patient-specific robust applicators would only have limited effectiveness. The acquisition of
patient-specific data, e.g. via serial images, however is time intensive and in many cases not
possible. One important development to enable individualised predictions of OAR motions or
deformations from population analysis is principal component analysis (PCA), which mainly has
been used for prostate cancer radiotherapy [233–235], and only recently and in lesser extent for
cervical cancer [236, 237]. Tilly et al. formulated a population statistical shape model (SSM) of
the cervix, bladder and rectum from a set of patients from whom multiple images were obtained
[237]. Seven dominating eigenmodes were needed to explain the variance in organ motions of
patients. This SSM could then be tailored to an individual patient using three image series with
sufficient accuracy, corresponding to obtaining two deformation vector fields per patient. Rigaud
et al. also built a SSM based on a training set of patients, but generated potential anatomies for
an individual patient based on a single scan [236]. From leave-one-patient-out validation again a
sufficient accuracy in the prediction of motions of the cervix-uterus and bladder seems to be
achieved, which translated into better dose conformity of these modelled plans in comparison with
classical library-based plans. However, such algorithms have not been applied previously to
cervical cancer brachytherapy, nor to more mobile organs such as the sigmoid. The modelling of
these more complex situations has recently been the topic of research [238]. These algorithms
currently still have limited predictive power, and must be improved further for clinical use.
Ideally, a SSM would be derived from principal component analysis for cervical cancer
brachytherapy, such that based on the pre-planning MRI organ motion or deformations may be
predicted for individual patients such that robust patient-tailored applicators can be developed.
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4. The BT needle channel planning
problem under uncertainty

4.1 Terminology and concepts in motion planning

In this chapter, the BT needle channel planning problem under uncertainty is introduced, which
is a typical motion planning (MP) problem. Therefore, first some basic terminology and concepts
in the field of motion planning are introduced. The terminology in this section has mainly been
adopted as used in the popular book by LaValle [239], and a previous unpublished literature study
on the topic of motion planning under uncertainty [240].

4.1.1 Topological spaces

Configuration space

Definition 4.1.1. The configuration space C (C-space) is the set of all configurations q ∈ C
of a system/agent A in world W [239].

A configuration is a set of parameters which defines the position and orientation of a system. In
order to describe a configuration q, translations are represented by Cartesian coordinates with
values in Euclidean space Rn (n indicating the dimension), and rotations are expressed in angular
coordinates with values in the special orthogonal group SO(n), which is the set of n × n rotation
matrices. A rigid body in three-dimensional (3D) space (n = 3) which is allowed to rotate and
translate is represented with the set SE(3): C = R3×RP3, which is a six-dimensional differentiable
manifold. Such a differentiable manifold is also known as a Lie group. Usually, a configuration
in 3D-space is parameterised with (x, y, z)T for translation, and for example Euler angles (φ, θ, ψ)T

for rotation. In a two-dimensional world (n = 2) the set of configurations which can be attained by
the system is expressed as C = R2 × S1, or SE(2). This manifold is homeomorphic to R2 ×RP2. A
system’s configuration is then commonly parameterised with generalised coordinates q = (x, y, θ)T .
When time is explicitly incorporated as an additional dimension, the combined space is sometimes
referred to as configuration-time space CT .

State space

Definition 4.1.2. The state space X is the set of all possible states x ∈ X of a system/agent
A in world W [239].

A state usually encompasses the agent’s configuration and velocity: x = (q, q̇)T . This implies
that the state space is of a higher dimension than the configuration space. When time is explicitly
incorporated, the combined space is sometimes referred to as state-time space XT .

Obstacle space

Definition 4.1.3. The obstacle spaceO is the set of all possible configurations, then denoted
as Cobs ⊂ C, or states, Xobs ⊂ X , at which the system is in intersection with obstacle region
O ⊂ W, which is the union of individual obstacles [239].

The set of configurations or states where the agent is in collision can then mathematically be
formulated respectively as Cobs = {q ∈ C | A(q) ∩ O 6= ∅}, and Xobs = {x ∈ X | A(q) ∩ O 6= ∅}
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Figure 4.1: The basic path planning problem, known as the Piano mover’s problem, where a collision-free
path from qI to qG in Cfree must be found. Image adapted from [239].

although other definitions of the obstacle state space are possible (e.g. inevitable collision states).
Individual obstacle regions can then with slight abuse of notation be abbreviated to Cj,t or Xj,t with
subscript t indicating their possible time dependence.

Free space

Definition 4.1.4. The free space Cfree or Xfree is the complement of the obstacle space:
Cfree = C\Cobs or Xfree = X\Xobs.

The free space is generally an open set. One may want to be able to compute semi-free paths/
trajectories as well, which requires closing the set: cl(Cfree) or cl(Xfree).

4.1.2 Motion planning definitions
The terms motion, path and trajectory planning are often used interchangeably, but are in this
work strictly defined. The following definitions are introduced for this purpose:

Path planning

Definition 4.1.5. In path planning a collision-free geometric curve τ : [0, 1] → Cfree is
sought from an initial point τ(0) = qI ∈ Cfree to a target point τ(1) = qG ∈ Cfree.

This basic problem formulation only considering geometrical planning aspects is known as the Piano
mover’s problem, illustrated in Figure 4.1.

Trajectory planning

Definition 4.1.6. In trajectory planning time information is included along a path, and
the velocity or acceleration along the path satisfies the differential constraints of the agent. In
this type of planning, most often a trajectory x̃ : [0, T ]→ Xfree is sought from an initial state
x̃(0) = xI ∈ Xfree to a target region x̃(T ) ∈ XG ⊂ Xfree.
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Trajectory planning is a type of motion planning under differential constraints. These
constraints are a set of differential equations used to limit the velocities and in some cases
accelerations of the system, representing mechanical limitations of the system [239]. Differential
constraints may be formulated either implicitly, gi(q, q̇) = 0 or parametrically, ẋ = f(q,u), where
the latter is used more frequently due to its simplicity. The trajectory planning equivalent of the
Piano mover’s problem is known as the differentially-constrained mover’s problem [241].

The two main trajectory planning approaches are a coupled or a decoupled approach (Figure 4.2)
[239], although also hierarchical and reactive approaches may be considered [242]. The later two,
however, require obtaining local information, i.e. local sensing, which is not useful in this study. In
the coupled approach, also known as direct planning, a solution of the path and velocity/acceleration
profile -satisfying the system’s kinodynamic constraints- is searched simultaneously and directly in
the state space X or state-time space XT [239]. In some studies [243], this approach is referred
to trajectory planning itself, but this term is reserved for planning under differential constraints
in general. In a decoupled or decomposition approach, a trajectory is generated in a multi-step
approach separating spatial and temporal planning. This approach usually consists of some of the
following steps:

• Computing a collision-free path (path planning): τ : [0, 1]→ Cfree;
• Transforming the path such that it satisfies differential constraints: σ : [0, 1]→ S;

• Reparameterising the trajectory with a timing function or time scaling, s : [0, T ] → [0, 1], to
deal with a possible time-changing environment. The convolution of the path and time scaling,
σ ◦ s, gives the time-parameterised path in configuration space: σ(s(t)) : [0, T ]→ Cfree. Now
fulfilling the differential constraints for all time t, the state trajectory is denoted as x̃(t);

Various ways to combine these individual modules exist [239]. Especially in more recent approaches,
trajectory optimisation is performed directly over seed paths that have been obtained with a different
motion planning algorithm.

Motion planning

Definition 4.1.7. In this work, motion planning (MP) encompasses both path planning as
well as trajectory planning.

4.1.3 Computational or operational criteria of motion planning algorithms
Important computational and operational properties of motion planning algorithms are formalised
in the following definitions [241, 244, 245]. The used symbols in these formulations correspond to
those defined for trajectory planning, but the definitions hold for path planning as well when x̃ and
X are replaced with τ and C.

Optimality

Definition 4.1.8. Optimal motion planning concerns finding a feasible plan that is optimised
out of a set of plans Σ in accordance to some monotonic, bounded criterion C : ΣXfeasible → R≥0

in addition to arriving at the goal state in finite time: C(x̃∗) = arg min
x̃∈ΣXfeasible

C(x̃) [246]. Here,

the asterisk character ∗ is used to optimality.

Optimality may be global or local, depending on whether a global or local minimum of the cost
function is found. A weaker definition of optimality is that of asymptotic optimality, which
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Figure 4.2: Schematic examples of a: (a) decoupled approach, and (b) coupled approach, where the
first two (planning in Cfree) or three (planning in Xfree) modules of the decoupled approach are combined.
Note that this scheme only presents example representations, for example in a path-constrained trajectory
planning approach, such as described in Chapter 14 in LaValle (2006) [239], the second and third modules
of the decoupled approach are combined. In this case, the time scaling function s(t) is substituted in the
equations of motion, i.e. differential constraints, such that the control actions may be obtained. Within
motion planning, a distinction is made in this work in path planning (in gold ) and trajectory planning (in
blue ) approaches.

states that the algorithm converges to the optimal solution after infinite time or iterations.
Consider a criterion C : ΣXfeasible → R≥0, which is 0 if the trajectory is optimal: C(x̃∗) = 0. The
algorithm is assumed to converge to a minimum cost trajectory x̃n at iteration n, such that the
limit limn→∞(C(x̃n)) exists. Then asymptotic optimality can be defined as [246]:
P ({limn→∞(supC(x̃n) = C(x̃∗))}) = 1. For a plan to be feasible in trajectory planning, the
planned motion must satisfy the differential constraints, other constraints such as starting in the
initial point and finish in the target region in finite time, and lie entirely in Xfree:
ΣXfeasible = ΣXfree ∩ΣXstart−goal ∩ΣXsteer [247]. For path planning, ΣXfeasible = ΣXfree ∩ΣXstart−goal .

Completeness

Definition 4.1.9. If the algorithm is able in finite time or iterations to find a solution if
a feasible solution exists, i.e. ΣXfeasible 6= ∅, or report failure otherwise, this is known as
completeness.

Many motion planners sacrifice completeness for the weaker notions of: (i) probabilistic
completeness: the probability that a feasible solution is found if one exists approaches 1 if
infinite time is allowed, or (ii) resolution completeness: a feasible solution is found if one exists
if the resolution is increased beyond some (unknown) level. Resolution completeness is a
deterministic property and hence stronger than probabilistic completeness which is a stochastic
property. Both properties however do not imply that the planner is able to return failure when no
solution exists and hence may run for infinite time. Note that completeness and optimality are
intimately related; a necessary precondition for finding an optimal trajectory is that a solution is
found if one exists.
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Computational complexity

Definition 4.1.10. The computational complexity of an algorithm is the running time
of that algorithm and is generally, when not indicated otherwise, characterised with an upper
bound or worst-case complexity O(·).

This big-O notation O(f(N)) with function f(N) indicates that this upper bound on the run time
is at most c · f(N) for an input N > k where c and k are finite constants. The input N may be the
dimension, number of samples, resolution size, etc. Additionally, computational complexity of MP
problems may be classified in P, NP, PSPACE and EXPTIME of which definitions can be found
in Chapter 6 in LaValle (2006) [239]. For example, computing optimal (shortest) paths in a 3D
environment was shown to be NP-hard [239].

Dimension scalability

Definition 4.1.11. Dimensional scalability is in this study defined as an ordinal variable
indicating how the complexity or difficulty of implementation of an algorithm increases with
an increase in the dimension of the problem (e.g. of the workspace or the amount of obstacles).

An algorithm is said to have a ‘low’ dimensional scalability in this thesis if the algorithm scales
exponentially in worst-case computational complexity with an increase in the dimension, if certain
formulations have not been implemented previously in higher dimensions (e.g. a 3D workspace), or if
the algorithm cannot be extended to higher dimensions. Contrarily, the algorithm is said to possess
‘high’ dimensional scalability if an algorithm has a low additional computational cost associated
to an increase in the dimension of the problem, and has been implemented or is extendable to
higher dimensions. ‘Medium’ scalability is assigned to algorithms combining aspects of both other
categories.

Anytime

Definition 4.1.12. An algorithm is said to be anytime if it is efficiently able to find a feasible
solution, of which the quality is iteratively improved.

The anytime property is desirable as a valid solution is generated even when the process is
interrupted.

Soundness

Definition 4.1.13. Soundness is an property which ensures that the planner returns a
feasible solution allowing for guaranteed successful traversal despite uncertainty being present.

Probabilistic soundness is a weaker property, where the planner guarantees safety of the motion
up to a probability threshold.

Topologically informed

Definition 4.1.14. A planner is in this work said to be topologically informed if it uses
topological information of the workspace to guide the planning.

Consider two topological spaces X and Y and continuous maps between these two spaces f, g : X →
Y . These functions are then called homotopic if f ∼= g, if there exists a continuous function
h : X × [0, 1] → Y satisfying h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ X. Informally, two
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functions are homotopic if one can be deformed continuously into the other without intersecting
infeasible regions [248]. Homology is closely related to homotopy, and despite subtle differences
may be used as a practical analogue [248].

4.2 The use of motion planning for BT needle channel planning

4.2.1 Previous work in needle channel planning algorithms
Three articles have discussed the development of needle channel planning algorithms for
patient-tailored BT applicators [88–90], all using variations of standard MP algorithms. Garg et
al. developed a rapidly-exploring random tree (RRT) algorithm capable of sequentially planning
collision-free curvature-constrained channels in SE(3) from a priori determined target points back
to the entry region (Figure 4.3a) [88]. After a needle channel was planned, this was set as an
obstacle in the remaining process. Target points were determined from the set of linear segments
that maximised dose coverage of the discretised tumour volume in a pencil-packing problem.

Duan et al. formulated a constrained, non-convex optimisation problem and used a trajectory
optimisation algorithm (TrajOpt) for locally optimising discretised curvature-constrained needle
channel sections in SE(3) from näıve straight line initialisation or perturbed versions of previous
solutions [90]. The objective function considered both trajectory length and twist minimisation.
In comparison with the RRT algorithm by Garg et al. [88], the trajectory optimisation procedure
resulted in a higher success rate in generating feasible plans, whereas trajectory length and twist
are decreased. However, this planner is only able to: (i) generate locally -and not globally-
optimal trajectories, (ii) generate plans that are highly dependent, e.g. homotopy class-bound
(Figure 4.3c and 4.3d), on the seed path used for warm-starting the optimisation [249, 250], (iii)
generate trajectories with a stop-and-turn strategy that results in a non-continuous torsion, and
(iv) simultaneously plan three needle channels at maximum due to the computation time required.

Patil et al. proposed a two-stage planning algorithm for simultaneously computing multiple
curvature and torsion-constrained ensembles of channels called ribbons in SE(3) (Figure 4.3b)
[89]. To initialise the algorithm by generating feasible ribbon candidates, a RRT algorithm is used.
These candidates are then locally optimised using sequential quadratic programming, based on
cumulative torsion and twist. By warm-starting the optimisation with RRT-generated paths
rather than näıve seed paths, although the planner is computationally expensive in comparison
with RRT, trajectories can more likely be found that have minimum/zero torsion and twist.
Ribbons could additionally improve the coverage of the plans, as more channels could be
generated in close proximity of each other than in the case of single-channel arrangements.
However, the planner is: (i) unable to find feasible solutions in narrow passages, and (ii) only able
to return suboptimal / locally optimal trajectories that are highly dependent on the quality and
the homotopy class of the solutions returned by the RRT (Figure 4.3c and 4.3d).

Although these algorithms have a great potential for planning needle channels in BT, some
improvements must be done in order to incorporate these into practice. In all of these algorithms,
straight dwell segments generated based on tumour coverage are used as a starting point, not
taking into account OAR dose constraints or the possibility of positioning dwell locations along
curved trajectories. Moreover, the simplified kinematic model used only takes into account the
minimum radius of curvature, whereas due to the complex bending of the trajectories needle
mechanics models may be required. Lastly, in the case of an uncertain environment where
obstacle, i.e. OAR, position or volume might be altered, these algorithms could potentially plan
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(a) Garg et al. [88]. (b) Patil et al. [89].

(c) Initial solutions in a different homotopy
class.

(d) Initial solutions in the same homotopy
class.

Figure 4.3: Previous needle channel planners for personalised intracavitary BT applicators depicted by:
(a) Garg et al. [88], and (b) Patil et al. [89]. In (c) it is shown that when the initial path generated by RRT
is in a different homotopy class, trajectory optimisation is able to compute an optimal path whereas this is
not possible when the initial solution is in the same homotopy class (figure adapted from Ref. [89]). Target
volumes are coloured in peach , channels are in violet , dwell segments containing multiple dwell points
are coloured in dark blue , and obstacles are marked in red .

Figure 4.4: Taxonomy for decomposing a motion planning problem into a list of practical considerations.

appropriate dwell locations along the curved trajectories. First, the trajectories returned by these
planners may become unusable as dwell locations along these trajectories could exceed OAR dose
constraints. Moreover, as these planners are often homotopy-bound, these planners could fail to
produce solutions in the narrow environment cluttered with needle channels under uncertainty
[251–254]. Moreover, especially plans that are optimised, e.g. with respect to shortest length, can
be highly sensitive to changes in the environment [255]. Therefore, in this chapter aspects of
motion planning relevant to BT needle channel planning in an uncertain environment are
elaborated and the BT needle channel planning problem under uncertainty is formulated.

4.2.2 Decomposing a motion planning problem

Motion planning problems may be decomposed into simple building blocks as is done in MP
planning libraries. However, this refractoring approach remains on an abstract level, which is not
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comprehensible to a layman. In a previous (unpublished) literature review, motion planning
algorithms were dissected based on a simple taxonomy shown in Figure 4.4, based on more
tangible practical considerations [240]. This taxonomy is an adaptation of the WRIT taxonomy
[256], replacing the component ‘information’ for ‘uncertainty representation’ in order to stress the
importance of taking into account uncertainty in planning.

4.3 Formulation of the BT needle channel planning problem under
uncertainty

BT treatment planning in which the dose distribution is optimised can be formulated as a
mathematical optimisation problem [257]. In this section, therefore, the previous clinical notions
are converted into mathematical concepts and organised using the taxonomy for motion planning
in Figure 4.4. For consistency, when concerning robust MP the notation is used as introduced in
the works by Luders et al. [258, 259], whereas the notation by Patil et al. is used for needle
planning aspects [89]. Nevertheless, the problem formulation in this chapter is described in general
terms and is therefore applicable to and solvable by multiple types of MP algorithms.

4.3.1 Agent representation

Number of agents

For the BT needle channel planning problem multiple needle trajectories must be planned, which can
be either simultaneously or sequentially. Simultaneous computation of multiple needle trajectories
has been previously described [89, 90, 260]. Although this strategy improves the likelihood of finding
feasible and optimal trajectories it is computationally intensive. Sequential planning, where after
completion a computed trajectory is subsequently considered as an obstacle and added to the set
Xm, is simple and sufficient for this thesis. The state of the needle tip is denoted as xit for i = 1, ..., nx
needle channels.

Geometric representation

A typically used 192Ir source for HDR-BT can be approximated by a cylinder with a diameter of
0.9 mm, and length L = 5 mm (Figure 1.3b). A corresponding plastic BT catheter (6F Pro-Guide
sharp needle, Elekta, Stockholm, Sweden) has an outer diameter of 2.0 mm, such that the
minimum channel width is set at w = 2.6 mm. The length of the source is used to limit the
maximum step size λ̄ = L = 5 mm, which also corresponds with the commonly used intervals
between dwell points in BT.

Considering that obstacle regions, i.e. OARs, are not necessarily occupying the stay-in region of
the source positions, the physical geometry of the BT source is only important for avoiding collision
with other needle channels. Of more relevance to the needle channel planning problem is the spatial
dose distribution of the BT sources, which has been briefly described along the TG-43 formalism
in Subsection 1.2.2. From the dose rate per fraction ḋ(r, θ) in Eq. 1.5, conventionally the total
dose per fraction from a set of dwell points along catheter i to a calculation point pd (with polar
coordinates [pr, pθ]) in treatment planning software is obtained via:

dpd =

nx∑
i=1

nid∑
zip=1

ḋ izp(pr, pθ) · tzip (4.1)
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where, dpd denotes the total dose at point pd, z
i
p = 1, ..., nid indicates a dwell point and tzip the

corresponding dwell time. However, incorporating such a model already in the motion planning
stage adds a high computational complexity and is out of scope for this thesis. For that reason,
simplifications of this dose distribution model and DVH-based optimisation are required. First,
the dwell time can be fixed to a constant value in the motion planning phase, which places equal
importance on each of the dwell points. A consequence of this assumption is for example that
dwell positions for which conventionally the dwell time would be set to zero, i.e. positions that are
distant from the tumour and likely proximal to OARs, are conservatively placed to avoid exceeding
OAR dose constraints. Contrarily, possibly more dwell positions or needles may be placed in the
tumour region than required to obtain sufficient dosimetric coverage [108], which would normally
be resolved by increasing the dwell time. Such issues may be resolved by adding constraints on
the active length of the needle paths. Moreover, the dose distribution in Eq. 1.5 is simplified to a
rotational symmetric distribution. This is performed by replacing the geometry function GL(r, θ)
in Eq. 1.6 by GP (r, θ) = 1/r2, and substituting in the 1D anisotropy function Φan(r) for the
2D anisotropy function F (r, θ) [24]. The circular isodose, dr, at a radius r from the centre of an
individual dwell source can then be computed via:

dr = ḋ(r) · tzp = SK · Λ ·
GL(r, θ0)

GL(r0, θ0)
· gL(r) · Φan · tzp (4.2)

where,

Φan(r) =

∫ π
0 ḋ(r, θ) sin (θ) dθ

2ḋ(r, θ0)
(4.3)

and the other parameters are as previously specified. Data for the 1D anisotropy function is
scarce, and therefore Φan(r) is coarsely estimated from Figure 5 in the article by Sabariego et al.
[261]. Motion planning algorithms can leverage this simplification to a spherical symmetric BT
dose distribution in several ways. First, the orientation of the agent is no longer of importance for
the collision detection algorithm, speeding up the computation. Moreover, the spherical
distribution is convex, opposed to the anisotropic distribution which is non-convex, implying that
expressions for the intersection with or distance to other convex shapes are in some cases available
in closed form. Lastly, this allows for a reduction of the computational complexity by a priori
‘inflating’ obstacles with a specified radius of the dose distribution, i.e. isodose constraint lines on
OARs, for example using Minkowski addition [244], or tightening state constraints [262]. The
radius corresponding to a certain dosimetric constraint of an OAR, dC , is henceforth denoted as
rD,j = {r | dr = dC}. This dosimetric constraint is expressed as the maximum dose that may be
received per dwell point, which can be justified as the total dose is a linear sum of doses from
individual dwell points (Eq. 4.1).

4.3.2 Workspace representation

Dimension of the workspace

3D image-guided BT is the current standard of practice and therefore needle trajectories must be
planned in a three-dimensional environment. However, in this thesis a simplified two-dimensional
problem is treated. Since the geometric uncertainty of OARs is likely smallest in the lateral direction
(Section 3.3), the problem is restricted to the sagittal plane. Nevertheless, the mathematics and
concepts in planning in this thesis can to a certain extent directly carry over to the three-dimensional
case, and for several other instances the required modifications for higher dimensional spaces are
mentioned briefly.
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(a) Segmented contours. (b) Convexification of structures. (c) Addition of uncertainty.

Figure 4.5: Steps in the definition of the workspace. (a) segmented contours, (b) polygonal representation
and convexification of structures using MATLAB Script A.1.9, and (c) addition of probabilistic uncertainty
(ellipses) or bounded uncertainty (dotted lines). Regions of interest are: target volume (bright green ),
bladder (gold ), rectum (blue ), sigmoid (purple ), and stay-in region (pink ). Figure adapted from
Ref. [48]. The original image is extrapolated in order to visualise the entry region; the anatomy of the OARs,
except for the rectum which is extended slightly as this was cut off on the original image, and target volume
is left unaltered.

Geometric representation of workspace / obstacles

Prior to treatment, the clinical target volume and OARs are delineated as structure sets, which
can be exported in Digital Imaging and Communications in Medicine (DICOM) RT format1

containing point-lists per region of interest (ROI). Structures can then be extracted and the data
transformed via a convex hull algorithm into three-dimensional volumes, i.e. convex polyhedra, if
desired. Such a convex formulation is often required for computational tractability associated with
solving the optimisation problem. In the 2D problem treated in this thesis, the data points of the
structure set lying on the sagittal plane must be extracted per structure and used for interpolation
between imaging slices to obtain closed curves. The extracted intersection curve on the sagittal
plane is preferably convex and a simplification of the complex outline, to limit the amount of
computation required for motion planning algorithms, despite not being anatomically accurate. If
the structure is a convex polytope in R3, the intersection curve in R2 is also convex. However,
ROIs in BT are not necessarily convex and therefore a simple MATLAB algorithm capable of
converting ROIs from DICOM-RT files into simplified convex shapes in the sagittal plane is
presented in Script A.1.8. The result of this operation is a set of closed convex polygons
conservatively bounding the structures.

An alternative, when only two-dimensional images are available and not DICOM-RT files, is to
trace the outlines of structures and to create a convex hull around these outlines for OARs or other
anatomical regions. This is the method used in this work and can be seen in Figure 4.5. From this
polygonal representation, conversions to any of the representations used for MP described by Hwang
and Ahuja are possible [263]. The boundary of the potential volume which may be reached by the
intracavitary catheters is arbitrarily drawn -roughly indicating the vaginal cavity- in Figure 4.5b in
pink, and defines the stay-in region: I ⊂ Rn [264]. This set can be defined as the conjunction of
linear inequality constraints (Figure 4.6a):

1DICOM RT files are those which have a SOP class defined by the unique identifier (UID)
1.2.840.10008.5.1.4.1.1.481.3.
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(a) Convex polytopic stay-in region I, represented
by a conjunction of linear inequalities. The agent
must avoid the blue region.

(b) Convex polytopic obstacle region Xj,t,
represented by a disjunction of linear inequalities.
The agent must avoid the blue region.

Figure 4.6: Representation of the stay-in region and an obstacle using linear inequalities. Figure adapted
from Ref. [264].

I = {xit | A0x
i
t ≤ b0} ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.4)

I =

nI∧
k=1

aTk xit ≤ bk ∀t ∈ Z0,T , ∀i ∈ Z1,nx (4.5)

Organs at risk are considered as obstacles as these must be avoided by the catheters directly as well
as by the high isodose lines irradiating from the sources. These are denoted as Xj,t ⊂ Rn,∀j ∈ Z1,no

for no convex polytopic obstacles. The subscript t is used to indicate their possible time dependence.
It follows that the j th polytopic obstacle can be defined through the conjunction of nj linear
inequalities (Figure 4.6b) [265]:

Xj,t = {xit | Ajxit ≤ bjt} ∀t ∈ Z0,T , ∀i ∈ Z1,nx (4.6)

Xj,t =

nj∧
k=1

aTjkx
i
t ≤ bjk ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.7)

As the needles must avoid collision with each of the no obstacles, this can be represented by the
following disjunction:

nj∨
k=1

aTjkx
i
t ≥ bjk ∀t ∈ Z0,T ,∀j ∈ Z1,no ,∀i ∈ Z1,nx (4.8)

The coefficients bjk can be used to tighten the state constraints, and include the dose constraint
radius rD,j to ensure sufficient distance to OARs.

Time dependence
A static environment is assumed due to the lack of detailed information on intra-fraction motion.
For this reason, the subscript t is dropped for the obstacle regions. With the advances in real-time
imaging used in BT and the possibility for 4D (compliant) BT applicators, it may be of interest to
introduce time-dependency of the environment in a later stage.
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Initial and target considerations
Previous BT needle channel planners first compute straight dwell segments, for example by solving
a pencil packing problem to cover a discretised tumour region, consisting of dwell points at 5 mm
intervals [88–90]. Using these dwell segments as starting poses, these planners then compute a
trajectory back to the entry region E of the implant I as this is less constrained [88]. Similarly, in
related fields, such as inspection planning, the problem is separated into two sub-problems [266]:
(1) a coverage planning problem, such as the art-gallery problem, where points are established that
sufficiently cover a region, and (2) a motion planning problem where one or multiple agents must
visit or approach the found points, such as a travelling or covering salesman problem. Ideally,
these two steps would be integrated into a single integrated planning problem where both sufficient
tumour coverage and OAR avoidance is assured. However, as both the coverage and motion planning
problems are in general cases NP-hard, and this is further complicated by considering multiple non-
holonomic agents under environmental uncertainty in this work, solving an integrated problem is
typically only tractable through approximate techniques. Several planning algorithms are able to
solve integrated problems similar to the one considered in this thesis [266–268], but only consider
some of the aforementioned aspects relevant to the BT needle channel problem. Hence, a two-stage
approach is used in this work similar to that by Garg et al. [88], where from the coverage planning
stage a set of fixed starting poses at the end of straight dwell segments in the target region xi0 ∈ T
is specified. From these poses, robust curvature-constrained trajectories are planned towards the
entry region which is reached at final time T , i.e. xiT ∈ E . Several assumptions are therefore made:

• For simplicity it is assumed that the entire stay-in region for the curvature-constrained
trajectory planning is contained within the implant, and the set I also marks the boundaries
of the implant;

• The straight dwell sections are therefore reached interstitially, without any tissue deflections
and in a direction tangentially from exiting the implant;

• As the coverage from the interstitial needles may not be sufficient for the CTVHR, additionally
dwell points in the implant are present;

• In order to generate feasible trajectories in the second stage, the planner in the first stage
must account for worst-case realisations of OAR movement;

• It is assumed that the geometry obtained by optimising spatial coverage of the tumour
corresponds with the geometry required for an optimal dosimetric plan; e.g. hot or cold
spots within the target region are not accounted for;

• The dwell time of interstitial dwell positions is generally around 10-20% of the total dwell
times in IC/IS applicators, such that most of the dose is applied via the tandem and
ring/ovoids [51, 269]. However, in the current implementation, a tandem is not necessarily
present, and therefore to assure sufficient dose in the target region equal dwell times are
assumed in interstitial and intracavitary region;

• This entire process is decoupled from dwell time optimisation, and instead dwell time is set
as a constant.

The first problem is therefore to minimise the amount of straight skew dwell segments required to
sufficiently cover the tumour region, but simultaneously conservatively avoid OARs. The needle
planning by integer program (NPIP) algorithm by Siauw et al. is for this reason slightly modified
and transformed to a two-dimensional case [270]. The first step is to generate a candidate set of
dwell segments N . In NPIP an entry and target region are defined on two parallel planes in 3D
space and skew lines are randomly generated between points on these planes, and are truncated
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such that the last dwell point is inside of the tumour region. In this work however, the baseline of
the convexified polygonal tumour region is chosen as this ‘entry region’, and a candidate set of
lines is generated from points on the contour of the tumour region (see Figure 4.8). To avoid
discretisation issues points are randomly sampled on these contour lines with probability
proportional to the length of these contours.

The second step is to find a set of dwell segments S ⊂ Nfree, which is comprised of individual
dwell segments si ∈ Nfree, that: (i) sufficiently cover the target region, (ii) are feasible, i.e.
non-intersecting and not colliding with OAR worst-case realisations at least at the boundary of
the implant, (iii) minimises the amount of dwell segments required, and (iv) conforms to
constraints on the angle at the baseline. In order to assess the coverage of a set of dwell segments,
the definition of coverage is first formalised. The convex polygonal tumour region is divided in
evenly spaced points τq ∈ T using a uniform grid. Assuming a spherical dose distribution, such as
given in Eq. 4.2, a dwell point zip ∈ si is said to cover the tumour point τq if the latter lies within
a ball of radius ε centred at zip. Therefore, an individual dwell segment si covers τq, if:
∃zip ∈ si : ‖zip − τq‖2 ≤ ε. Here, ε is referred to as the dose coverage radius, and is an important
parameter to assure dose conformity. In the work by Siauw et al. ε is set between 25 and 50% of
the radius of an equivalent sphere encapsulating the prostate volume in 5% increments, where ε =
35 or 40% enabled dosimetric constraints to be met for all tested patients [270]. Similarly, in this
study the effect of varying the dose coverage radius is investigated. The dwell times tzip can then
be adjusted to accordingly set the isodose radius equal to the coverage radius.

It is desirable if a point in the tumour region can be covered by at least one dwell point, an
assumption which neglects hot spots. The indices, q, of the tumour points that can be covered by
a dwell segment can be expressed as:

I(ε) = {q | ∃si ∈ Nfree : ‖zip − τq‖2 ≤ ε, zip ∈ si} (4.9)

This index function ideally includes all points of the gridded tumour region, but is used in case
that some points are not reachable by any dwell segment. The set of dwell segments that covers a
specific tumour point q is denoted as:

Mq(ε) = {i : ‖zp − τq‖2 ≤ ε, zp ∈ si} (4.10)

The second aspect of the coverage problem is to constrain any intersection of multiple dwell
segments, which is done by defining the set Y as all the pair of segments (si, so) which are within
a distance of a multiple of w (channel diameter) of each other and formulating a restriction that
only one of the pair can be chosen. To restrict exceeding OAR dose constraints, a convex hull
around OARs with worst-case uncertainty is computed and intersection of the segment with a
circle of radius rD,j , corresponding to the OAR isodose constraint, is checked only at the
intersection of the dwell segment with the intracavitary implant. The set Z defines the segments
si that are in collision with one of the nj OAR boundaries or segments that have a too steep angle
at the baseline, and limits the segments that may be selected: Nfree = N − Z, with − denoting
set subtraction. This implies that at any other position in T the OAR dose constraints may be
sacrificed to ensure sufficient target coverage. Lastly, the goal is to minimise the amount of dwell
segments in the set S, which is the objective function of the binary integer problem (BIP). The
binary variable xi ∈ {0, 1} is used to indicate whether a segment is selected in the set S:

xi =

{
1 if xi is selected
0 else

(4.11)

The resulting BIP is shown in Subsection 4.3.5.
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4.3.3 Uncertainty Representation

Sources

In literature commonly a division of uncertainty in motion planning problems is made in: (i)
uncertainty in configuration sensing, (ii) uncertainty in configuration predictability, (iii)
environment sensing, and (iv) environment predictability [271, 272]. To avoid confusion in how
information of the environment is obtained, the term ‘sensing’ is replaced by knowledge instead.
The former two are sometimes jointly referred to as internal uncertainty and the latter two as
external uncertainty [259]. Intra-fraction uncertainty is an example of uncertainty in
environmental knowledge. To the best of the author’s knowledge, for needle trajectory planning
this type of uncertainty has not been considered previously. Contrarily, numerous articles have
described needle planning under uncertainty in configuration knowledge and predictability, in
particular to complex needle/tissue interactions and uncertainty in the position of the needle from
sensing modalities [273–275]. Although the extension to uncertainty in configuration knowledge is
generally quite simple for standardised problems, i.e. Gaussian uncertainty and linear time-
invariant systems, this type of uncertainty is not considered in this work due to the limited clinical
impact of configuration uncertainties in BT (e.g. source position, strength, etc.).

Mathematical formulation

Uncertainty in MP can be classified in non-deterministic and probabilistic uncertainty [239], and
similarly robustness can be interpreted in a non-deterministic or probabilistic sense. Equivalent are
the terms of bounded uncertainty and probabilistic uncertainty [259], and the concepts of worst-
case robust optimisation and stochastic programming as for example used in radiotherapy planning
[105]. In case of the former type, no probability distribution is required, but rather a bounded
uncertainty set is specified in which feasibility is guaranteed for all realisations. The benefit of
such an approach is that no underlying probability distribution must be known and that this may
take on any shape. Moreover, the use of non-deterministic uncertainty avoids the complexity of
computing multi-dimensional probability integrals, which makes probabilistic uncertainty problems
in many cases computationally intractable. However, this usually leads to conservative solutions
or in the worst case rules out finding any feasible solution. Probabilistic approaches compute and
optimise the likelihood or expectation of feasibility and ensure that this does not exceed a pre-
set threshold. Such a method is particularly useful as it allows for sophisticated analysis of the
conservatism versus the success rate of generating feasible paths [276]. Moreover, in several cases,
probability distributions can better or more naturally describe the uncertainty than set boundaries
or are readily available, e.g. as provided by (extended) Kalman filters [277]. As both methods have
distinct benefits, it was decided to implement and review both for BT needle channel planning in
this thesis.

Uncertainty handling

The uncertainty handling method is of great importance on several performance guarantees, which
commonly involves a trade-off between feasibility and soundness on one hand, and computational
tractability and scalability to more complex situations on the other. Motion planning algorithms
may handle probabilistic uncertainty analytically or use approximation techniques, such as (Monte
Carlo) sampling or numeric integration [278]. Similarly, for set-bounded uncertainty, analytical
results may be possible, but also tractable reformulations/approximations have been proposed [279].
Although analytic techniques are preferred for the BT problem due to their performance guarantees,
approximate techniques are more flexible and generally computationally faster.
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Environmental uncertainty model
Uncertainty in the environment can be modelled implicitly or explicitly [239]. In this thesis, a static
environment is assumed, with explicitly defined spatial and geometric uncertainty of organs at risk
corresponding with the analyses in Chapter 3. Several conclusions may be drawn from this analysis
and translated into modelling:

• Volumetric changes of OARs are likely to be limited when protocols are strictly adhered.
Therefore, the shape of obstacles Xj is assumed to be constant;

• Rotational movement of OARs is constrained and has limited impact, and hence only
translational movement needs to be modelled;

• Movement of OARs is likely independent and is therefore modelled as uncorrelated;

• No specific motion patterns are observed and therefore the translational movement of OARs
may be modelled to be stochastic, i.e. Gaussian with equal eigenvalues of the covariance
matrix, or bounded with equal values in all directions;

• Variation of the sigmoid is greater than that of the bladder and rectum;

• Expansion of the rectum in the anteroposterior direction may be stochastically modelled
by increasing the eigenvalue of the corresponding eigenvector, or non-deterministically by
increasing the bound in the anterior direction;

OARs are therefore modelled as obstacles with an uncertain position, but known shape and
orientation, leveraging the framework provided in the articles by Luders et al. [259, 265]:

Xj = Xj,0 + cj ∀j ∈ Z1,no (4.12)

where, the + operator is used to denote a set translation which is represented by cj ∈ Rn as follows:{
cj ∼ N (0, Pcj ) ∀j ∈ Z1,no (probabilistic formulation)
cj ∈ Sj ∀j ∈ Z1,no (bounded formulation)

(4.13)

In the probabilistic formulation, the distribution of the translation is therefore a zero-mean
Gaussian with covariance matrix Σj = Pcj . For the bounded uncertainty formulation, the
translation is contained in a set, of which there are several possibilities. For example, as used in
the bounded uncertainty formulation by Luders and How, the (convex) polytopic set Sj , with
worst-case realisations is written as the conjunction of linear inequalities: Sj = {cj | Ejcj ≤ fj}
[259]. Alternatively, the bounded formulation may be based on the popular moment-based
ambiguity sets. These methods -similar to probabilistic approaches- require a mean and
covariance of the uncertainty, but from an unknown underlying distribution. Collision avoidance
constraints are enforced under the worst-case distribution drawn from the ambiguity set W [280].
In this case the following formulation would be used:

cj ∼W c
j ∈ Wc

j ∀j ∈ Z1,no (bounded moment-based formulation) (4.14)

For non-deterministic planning approaches the bounded set Sj may be any type of uncertainty set,
e.g. a funnel or reachable set, and is deliberately not elaborated further in this section in order to
limit the loss of generality.

With the specification of the environmental uncertainty, the disjunction in Eq. 4.8 can now be
expressed via:

nj∨
k=1

aTjkx
i
t ≥ bjk ⇐⇒

nj∨
k=1

aTjkx
i
t ≥ aTjkCjk + rD,j ∀t ∈ Z0,T ,∀j ∈ Z1,no ,∀i ∈ Z1,nx (4.15)
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where, Cjk = ĉjk + cj . In this formulation, ĉjk is a point on the kth constraint line of obstacle j
when no uncertainty is present. rD,j is the radius of the isodose constraint line for the j th OAR.
Conforming the findings in the literature review, the following parameters are coarsely estimated:

Pcbladder =

[
9 0
0 9

]
mm2; Pcrectum =

[
16 0
0 9

]
mm2; Pcsigmoid

=

[
16 0
0 16

]
mm2; (4.16)

fx,y,bladder = fy,rectum ∈ [−6, 6] mm; fx,rectum =∈ [−6, 8] mm; fx,y,sigmoid ∈ [−8, 8] mm; (4.17)

Here, fj is used to describe the bounded displacement interval and subscripts x,y are used to indicate
the direction of displacement. An illustration of the probabilistic and bounded uncertainty scenario
is shown in Figure 4.5c.

Information availability
Information on the environment is obtained in the pre-planning imaging session and imaging sessions
prior to treatment delivery, such that motion planning is performed ‘offline’ with an invariable
information set.

Risk aversion strategy
Decision-making under uncertainty has been studied in numerous fields, in which utility functions
have been commonly used. With regard to motion planning, the notions from utility theory may be
lend (e.g. see Ref. [281]), and risk-aversion approaches may be divided in absolute and relative risk
approaches. With slight abuse of the definitions in utility theory, absolute risk aversion methods are
defined as approaches that guarantee absolute safety with no concessions; for example, the agent
must remain in a bounded set at all time. Relative risk aversion methods on the other hand are
defined as to allow for a certain risk, most often expressed via a threshold ∆, or as to minimise
the risk via an optimisation approach along with other variables. Therefore, this often concerns
calculating and constraining the collision probability function. Examples of both risk aversion
strategies are respectively:{

xit /∈ Xj , ∀cj ∈ Sj (absolute risk aversion)
P(xit /∈ Xj) ≥ 1−∆, ∀cj ∼ N (0, Pcj ) (relative risk aversion)

(4.18)

That the absolute risk aversion and relative risk aversion approach in this example lend themselves to
bounded uncertainty and probabilistic uncertainty formulations, then known as chance constraints,
respectively is not coincidental. However, relative risk aversion has many manifestations with
different gradations, and therefore such a binary representation does not necessarily have to be
the case. For example, even within the category of relative risk aversion, absolute safety may be
guaranteed -but up to a threshold- whether other approaches only consider the likelihood of collision.
In a moment-based formulation the relative risk aversion strategy is common. For the BT needle
channel planning problem, no preference for one of the two approaches in particular exists.

4.3.4 Planning execution
Objective
Criteria as used in the objective function of existing needle planning algorithms have included: (i)
path length or duration [90, 282, 283], (ii) clearance to obstacles [90, 282–284], (iii) curvature and
torsion (corresponding to the required bending energy) [89, 90, 283, 284], and (iv) likelihood of
collision or cost of traversal through a cost map or weighted regions [284]. In robust treatment
planning optimisation of brachytherapy, coverage (e.g. V100), dose conformity (e.g. |d − dC |), and
variation in conformity (e.g. SD(|d − dC |)) have been incorporated previously in the objective
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function [100, 106, 108]. The objective function evaluated per needle channel is preferably a linear
user-weighted function of these aspects in the BT needle channel problem:

min
Ui

C(U i,X i, E i, α) = min
U i

nc∑
l=1

αl ·
fl(xiT , E i) +

T i−1∑
t=0

fl(u
i
t,x

i
t)

 (4.19)

where, αl is a user-defined weight (αl ≥ 0) corresponding to cost function fl(u
i
t,x

i
t, E i). The latter

may for example represent: (i) trajectory length (fl = δ · vix,t), (ii) curvature (fl = κit), or (iii)
accumulated risk (fl = ∆i

t). If the cost function contains stochastic components, the performance
of the system can be judged based upon the expected value instead: E(C(U i,X i, E i, α)). Specific
MP algorithms may place requirements on the objective function, such convexity, monotonicity,
(Lipschitz) continuity, and additivity to guarantee certain performance criteria. No such
requirements are however formulated on the objective function at this stage.

Differential constraints
BT needle channel planning algorithms insofar have directly implemented kinematics-based
models used for steerable needles, assuming that in a channel the needle can be forced to behave
similarly. These models typically incorporate non-holonomic constraints on the needle motion,
limiting movement and rotations to and around the tangential direction. In a planar case, this
corresponds to analogies of a Dubins’ or Reeds-Shepp’s car, which are curvature-constrained
shortest trajectory models [285]. In a 3D environment steerable needle algorithms often use the
analogy of planning curvature-constrained trajectories for unmanned aerial vehicles (UAVs), which
is a natural extension of Dubins’ car in 3D [286]. Non-holonomic constraints, however, can make
finding optimal solutions complex, as this requires solving two-point boundary value problems
(BVPs) for the steering function from one state to another [239]. As an alternative interpolation
or approximation techniques may be used to post-process rectilinear paths, avoiding the
complexity of accounting for differential constraints during planning, but these methods sacrifice
several performance guarantees such as completeness and generally are inefficient. For that reason,
incorporating non-holonomic constraints directly during planning is considered in this work.

System model
Consider the two-dimensional variant of the non-holonomic unicycle model commonly used for
steerable needles as described in Webster III et al. [287]. It is assumed that these equations hold
for smooth motion of channelled needles as well. These kinematic equations can be written as:

ẋ(t) = v(t) cos (θ(t)) (4.20a)

ẏ(t) = v(t) sin (θ(t)) (4.20b)

θ̇(t) = ω(t) (4.20c)

Here, x(t), y(t) ∈ R2 indicate the needle tip position, θ(t) is the heading, and v(t) and ω(t) denote
the longitudinal velocity and rate of change of the heading respectively (Figure 4.7a). These are also
the control inputs of the needle: u(t) = [v(t), ω(t)]T . However, the use of generalised coordinates
-especially in higher dimensions- is prone to singularities, and hence for steerable needles coordinate-
free representations are often used. The configuration of a unicycle-type system can be represented
as an element of the Lie group SE(n). The rigid transformation between the stationary world frame
an a body-fixed frame oriented according to the Frenet–Serret frame -i.e. a pose in n-dimensional
Euclidean space with the x-axis pointing in the direction of motion- is described with the following
transformation:
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(a) Needle kinematic according to the unicycle
model. Figure adapted from Ref. [287].

(b) Reachable region when initial location p0 =
[0, 0]T , initial heading θ = 0, and −1 ≤ κ ≤ 1.

Figure 4.7: Unicycle model as used to model needle kinematics. The MATLAB script for this model
provided in script A.1.10.

Xt =

[
Rt p̃t
0 1

]
∈ SE(n) (4.21)

where, Rt ∈ SO(n) denotes the n× n rotation matrix, and p̃t ∈ Rn the translation vector between
the two frames. For convenience, to indicate time-dependence the parenthesis notation is dropped
and subscripts are used. For the description of Lie groups and algebra and their use in higher
dimensional workspaces, the reader is referred to Murray et al. [288]. For the two-dimensional case,
n = 2, Eq. 4.21 simply reduces to p̃t = [x̃t, ỹt]

T , and a rotation of θ:

Xt =

cos (θt) − sin (θt) x̃t
sin (θt) cos (θt) ỹt

0 0 1

 ∈ SE(2) (4.22)

The pose of a needle propagates on SE(2) with the following left-invariant kinematics:

Ẋt = Xtξ̂t (4.23)

where, ξ̂t ∈ se(2) represents a velocity twist of the rigid body and is an element of the Lie algebra
se(2). The hat (or wedge) operator is used to map this velocity vector ξt = (vx,t, vy,t, φt)

T into its
corresponding skew-symmetric matrix:

ξ̂t =

[
φ̂t vt
0 0

]
=

 0 −φt vx,t
φt 0 vy,t
0 0 1

 (4.24)

For ξ̂t constant for a duration δ, Eq. 4.23, this is simply an ordinary differential equation (ODE)
with solution:

Xt+δ = Xt exp(δξ̂t) (4.25)

The exponential map, exp : se(2) 7→ SE(2), is then well-defined, surjective, and of the closed form
[289]:

exp(δξ̂t) = δeξ̂t = δ

[
eφ̂t V2vt
0 1

]
(4.26)
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where,

eφ̂t =

[
cos (φt) − sin (φt)
sin (φt) cos (φt)

]
, V2 = I2 +

1− cos (φt)

φ2
t

φ̂t +
φt − sin (φt)

φ3
t

φ̂2
t (4.27)

which follows from writing out the Taylor series expansion. Expanding Eq. 4.26 further:

eδξ̂t = δ

cos (φt) − sin (φt)
vx,t
φt

sin (φt)− vy,t
φt

(1− cos (φt))

sin (φt) cos (φt)
vy,t
φt

sin (φt) +
vx,t
φt

(1− cos (φt))

0 0 1

 (4.28)

Observing the kinematic equations of the unicycle in Eq. 4.20, the following substitutions can be
done: (i) vx,t = vt, vy,t = 0 (preventing sideways displacement), (ii) pt = 0T (the tip is at the origin
at t), and (iii) φt = ωt = κtvt (where κt is the curvature). For the pose of the needle after time δ
and control input ut therefore a fully analytic expression exists after combining Eq. 4.25 and Eq.
4.28. This pose can be converted back to the generalised coordinates xt = (xt, yt, θt) by noting that
the two upper right entries mark the position and the angle of rotation is obtained by taking the
inverse tangent of the two upper left entries (see Eq. 4.22). Formally, this is denoted via:

xt+δ = (log (Xt+δ))
∨ (4.29)

making use of the log-map, log : SE(2) 7→ se(2), and vee-operator (∨) (inverse action of the
wedge-operator). The control inputs become: ut = [vt, κt]

T , where vt ∈ [0, 1] and κ = {R | κt 6= 0}.
One problem occurs when the degenerative case of κt = 0, a fully straight motion, is encountered,
and for that reason a small perturbation to κt is in that case applied [89]. To limit the distance
travelled per time step δ one may simply set a constant velocity vt and step duration δ. The
reachable region of a needle according to this model is shown in Figure 4.7b.

The curvature constraint of the needle channels is dependent on the geometrical and mechanical
properties of the BT source and catheter, for which a value of κ̄ = 1.0 cm−1 has been used previously
based on the geometry of the source [88–90]. This is similar to the curvature limits for the source
and cables as reported for various afterloaders, which is around 1.3-1.5 cm (κ̄ = 0.66− 0.76 cm−1).
However, in the research by Laan et al. a minimum radius of 35 mm, corresponding to a curvature
of κ̄ = 0.28 cm−1, was found to be practically attainable for interstitial needles based on insertion
force analysis [48]. Although it is in this work assumed that the sources are contained within the
implant and therefore higher curvatures may be achieved, the practical limit to the curvature as
reported by Laan and colleagues is used as a first estimate.

Task constraints
The simple curvature-constrained kinematic model as previously introduced is not able to model
more complex needle behaviour, especially in the case of multiple bends with non-constant radii of
curvature in succession, which in tissue requires mechanics-based models [290]. As in BT implants
the needles are forced through the channels, accounting for mechanical properties of the needle may
be of greater importance, but this investigation is left for future work. Additionally, interstitial
deflections of the catheters after exiting the implant are not considered in this work. Other types of
constraints to include may for example be related to the visibility of catheters on the used imaging
modality, or sparing of healthy tissues that are not segmented, all of which are not further explored.

Policy generation
For trajectory planning of non-holonomic systems it is common to use open-loop prediction, where
control uit is selected from discretisation or sampling of the control set U i or one-step optimisation
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[291]. Feedback is especially of importance under uncertainty in configuration knowledge or
predictability to limit the covariance of the system [258]. As deterministic system kinematics are
used in this thesis, closed-loop planning is therefore not of relevance.

4.3.5 Problem definition
The BT needle channel planning problem under uncertainty can heuristically be defined as the
problem of computing multiple feasible, non-intersecting curvature-constrained channels under
probabilistic uncertainty or bounded uncertainty of the environment such that the dose to the
tumour is sufficient, and dose to the OARs and other trajectory costs are minimised. The starting
point of this problem is target coverage planning, where the number of straight dwell segments is
minimised whilst assuring sufficient coverage of the tumour. Problem (1.A) shows the BIP that is
adapted from Siauw et al. [270]. The output of this problem is a set of dwell segments that are
used as starting poses for computing the needle channels. The second part of this problem can
therefore be mathematically described as either one of the two standard optimisation programs:
(i) combining a bounded uncertainty formulation with an absolute risk aversion strategy in
Problem (2.A), and (ii) probabilistic uncertainty formulation with a relative risk aversion strategy
in Problem (2.B).

The following inputs are provided in order to solve the coverage problem or the optimal control
problems:

• A physical description of the needles: width w, and length L;

• A fixed dwell time tzp for all dwell locations, based on the coverage radius ε to sufficiently
cover the target region and fulfil dosimetric constraints;

• A set of dose constraints for each of the three OARs (bladder, rectum and sigmoid): dC ;

• Polygonal description of the stay-in region I for the intracavitary needles;

• Convex polygonal description of the OARs Xj , along with a covariance matrix Pcj , or bounded
set Sj to describe translation uncertainty;

• Convex polygonal description of the target region T , along with a discretised representation
in tumour points τq and selected baseline;

• A candidate set of possible interstitial dwell segments N in tumour region T extending to the
baseline;

• A description of the entry region E which represents the goal region of needle channels;

• A set of user-defined weights for the objective function α, and a user-set allowable risk
parameter ∆ if a probabilistic uncertainty formulation is used;

• A set of allowable control inputs U , limited by constraints on the curvature κ̄ and velocity v̄t;

A schematic illustration of the two problems is given in Figure 4.8 and Figure 4.9.

Problem (1.A): Target coverage planning problem

min
xi

∑
i

xi (4.30a)

s.t.
∑

i∈Mq(ε)

xi ≥ 1 ∀q ∈ I(ε) (4.30b)

xi + xo ≤ 1 ∀(i, o) ∈ Y (4.30c)

xi ∈ {0, 1} ∀i (4.30d)
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Problem (2.A): Bounded uncertainty needle channel planning with absolute
risk aversion

min
U i

nc∑
l=1

αl ·
fl(xiT , E i) +

T i−1∑
t=0

fl(u
i
t,x

i
t)

 (4.31a)

s.t. xit+1 =
(

log
(
x̂it exp(δξ̂it)

))∨
, ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.31b)

ξit = f(uti)

xi0 ∈ T , xiT ∈ E i ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.31c)

uit ∈ U i ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.31d)

xit ∈ I ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.31e)

xit /∈ Xm ∀t ∈ Z0,T ,∀i,m ∈ Z1,nx , i 6= m (4.31f)

xit /∈ Xj ∀cj ∈ Sj , ∀t ∈ Z0,T ,∀j ∈ Z1,no ,∀i ∈ Z1,nx (4.31g)

Xj = Xj,0 + cj ∀cj ∈ Sj , ∀j ∈ Z1,no (4.31h)

Problem (2.B): Probabilistic uncertainty needle channel planning with relative
risk aversion

min
U i

nc∑
l=1

αl ·
fl(xiT , E i) +

T i−1∑
t=0

fl(u
i
t,x

i
t)

 (4.32a)

s.t. xit+1 =
(

log
(
x̂it exp(δξ̂it)

))∨
, ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.32b)

ξit = f(uti)

xi0 ∈ T , xiT ∈ E i ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.32c)

uit ∈ U i ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.32d)

xit ∈ I ∀t ∈ Z0,T ,∀i ∈ Z1,nx (4.32e)

xit /∈ Xm ∀t ∈ Z0,T ,∀i,m ∈ Z1,nx , i 6= m (4.32f)

P(xit /∈ Xj) ≥ 1−∆ ∀cj ∼ N (0, Pcj ), ∀t ∈ Z0,T ,∀j ∈ Z1,no , (4.32g)

∀i ∈ Z1,nx

Xj = Xj,0 + cj ∀cj ∼ N (0, Pcj ), ∀j ∈ Z1,no (4.32h)
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Figure 4.8: Schematic two-dimensional illustration of the target coverage planning problem as considered
in this study. The number of straight interstitial dwell segments selected from a candidate set must be
minimised, whilst providing sufficient coverage of the tumour region and adhering to other constraints.

Figure 4.9: Schematic two-dimensional illustration of the needle trajectory planning problem under
uncertainty as considered in this study. Trajectories are planned from fixed starting poses towards the
entry region, minimising a cost function and adhering to other constraints. The obstacles are modelled as
either having probabilistic or bounded spatial uncertainty.



Part II
Development of a tool for aiding the

decision-making process between motion
planning algorithms

In this part, a tool termed motion-planning quality function deployment (MP-QFD) is developed
in order to aid the selection process between motion planning classes and to establish an algorithm
which is able to provide solutions to the mathematically formulated BT needle channel planning
problem in the previous chapter. First, a conventional approach in selecting a motion planning
algorithm is discussed. Next, quality function deployment is introduced as a decision-making tool
between alternatives and methodological issues are discussed. The step-by-step implementation of
a simple extension to this approach, MP-QFD, is then described for the BT needle channel planning
problem. This is used as a guideline and validation for the selection of a robust motion planning
class.

Illustration: Schematic illustration of the tool used for the selection between motion planning classes
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5. Development of a tool for the
selection of motion planning
algorithms

5.1 Selection of robust motion planning algorithms

5.1.1 Algorithm classes

Motion planning (MP) may involve the planning of a collision-free: (i) path, i.e. where the only
constraints are geometrical, or (ii) trajectory, i.e. where the system additionally obeys differential
constraints, as has been described in Section 4.1. Assuming that in almost any case kinematically
infeasible paths can be transformed such that these become traversable for systems with differential
constraints, both path and trajectory planning algorithms are of interest for this thesis. In numerous
surveys and textbooks MP techniques in a deterministic environment have been classified and
reviewed [239, 241, 263, 292–295]. Contrarily, little work has been done in reviewing MP methods
under uncertainty [272, 296, 297]. Dadkhah and colleagues provide a useful overview of MP methods
under uncertainty [272], but only consider trajectory planning techniques. Moreover, their section
on planning under uncertainty in environment knowledge is mainly focused on partially known or
unknown dynamic environments which is mostly applicable to vehicles with on-board sensing. For
that reason, in a previous review of literature, a taxonomy has been developed for both robust path
and trajectory planning approaches under uncertainty in environment knowledge [240]. The robust
motion planning classes in this taxonomy share similar computational and operational properties
(see Subsection 4.1.3), and have similar forms of implementation (Figure 4.4). From the 37 reviewed
studies in this literature study, the MP algorithms were categorised in 14 classes of which impressions
are shown in Figure 5.1. A brief description of the working mechanisms of these MP classes is given
in Appendix A.5. A reader familiar with MP may observe that these classes of planners acting under
environmental uncertainty are similar to that of their counterparts in deterministic environments,
indicating that the extension to robust planning can be relatively straightforward.

5.1.2 Previous work in aiding selection of MP algorithms

Little work has been devoted into aiding the decision-making process of selecting a MP algorithm
from the myriad of options available given a heuristic problem description and a set of user
requirements. Especially for non-software engineers for whom motion planning may be of interest
in a practical application, selection may be a difficult process. The barrier for implementation by
novice end users is increasingly lowered with the development and increased use of planning
libraries and tools, such as Open Motion Planning Library (OMPL) [298], and MoveIt! [299].
Motion planning libraries may in some cases give indications on what algorithms to select. For
example, benchmark tests may indicate which motion planner performs best on similar problems
of interest [300]. Although helpful, the number of motion planners of which results are available in
benchmark tests is still limited. Contrarily, an opposing movement may also be distinguished in
which MP algorithms are first developed and applications are thereafter sought, i.e. technology
push. For example, the effectiveness of TrajOpt was illustrated through application to various
example motion planning problems, including needle steering and BT needle channel planning
[286].
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(a) Image from MRI-scan (b) Approximate cell
decomposition

(c) Potential-based methods

(d) Topology-based methods (e) Probabilistic roadmap (f) Rapidly-exploring random
trees

(g) Stochastic continuous-time
optimisation

(h) Stochastic optimal control (i) Backward stochastic
reachability

Figure 5.1: Schematic 2D impressions of the solutions to the needle channel planning problem in BT
produced by classes of motion planners as distinguished in a previous review [240]. The gold dot ( ) marks
the starting location in the tumour region T of the planned motion, and the grey dot ( ) the target location
inside the entry region E . OARs (bladder, rectum and sigmoid) are represented as obstacle regions (Cobs),
with various types of uncertainty representations. Illustrations (b)-(f) concern path planning classes, (g)-(j)
coupled trajectory planning classes. Brief descriptions of the algorithm classes are given in Appendix A.5.
Continues on next page.
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(j) Reachability tree (k) Incremental sampling with
chance constraints

(l) Incremental sampling with
particle expansion

(m) Virtual potential field (n) Warm-started trajectory
optimisation

(o) Plan and transform

Figure 5.1: (continued) Schematic 2D impressions of the solutions to the needle channel planning problem
in BT produced by classes of motion planners as distinguished in a previous review [240]. The gold dot ( )
marks the starting location in the tumour region T of the planned motion, and the grey dot ( ) the target
location inside the entry region E . OARs (bladder, rectum and sigmoid) are represented as obstacle regions
(Cobs), with various types of uncertainty representations. Illustrations (j)-(o) concern coupled trajectory
planning classes, and (n)-(o) decoupled trajectory planning classes. Brief descriptions of the algorithm
classes are given in Appendix A.5.

In general, the process of selecting a motion planner is based on a set of requirements, which
usually are performance criteria. Coenen formulated a set of performance requirements that can
serve as a guideline for selecting a suitable motion planner [292]. Lunenburg and colleagues
present a series of flowcharts that aid in the selection of a combination of motion planners [301].
However, in both of these cases a practitioner unaware of the implications of algorithm properties
may not be able to find a suitable planner. For example, such an inexperienced practitioner may
not a priori know whether a single or multi-query approach would be more appropriate, what the
consequences are of completeness, or whether a heuristic is possibly available. In other words,
technical parameters of these algorithms do not directly coincide with the users’ requirements.
Furthermore, such a straightforward scheme may (incorrectly) suggest that an ideal algorithm
class or solution is in any case available, whereas in reality multiple algorithms, or none, may be
able to produce appropriate solutions. Therefore, a need exists for an approach that aids the
selection process of MP algorithms.



5. DEVELOPMENT OF A TOOL FOR THE SELECTION OF MOTION PLANNING
ALGORITHMS Page 93

5.2 Quality Function Deployment

5.2.1 An introduction and methodological evaluation of QFD

The problem of selecting an alternative based on a set of requirements is known as a multi-criteria
decision-making (MCDM) problem, for which numerous potentially viable methods exist [302].
However, in several of these methods a focus on the demands of the user is lacking. Therefore, it is
turned to the related fields of axiomatic design (AD) and quality function deployment (QFD)
[303], where user-based requirements are central and are related via some kind of transformation
to technical attributes. Quality Function Deployment, for which many guides have been written
[304, 305], is a methodology for the development of products with a focus on achieving customer
satisfaction by better conforming to the users’ requirements. Moreover, it serves as a platform for
communication between designers, engineers, market researchers and all other involved in product
planning. Although QFD is not necessarily a decision-making tool between alternatives itself, it
has been implemented as one or combined with other MCDM techniques successfully in numerous
works in various fields [306–310]. QFD has also been successfully introduced for non-tangible
products such as in the software engineering domain [311, 312]. The use of QFD for software
selection on the other hand is a novelty. In order to select between motion planning classes,
motion planning QFD (or MP-QFD) is in this chapter introduced.

Quality function deployment in its essence is a multi-phase process, which is driven by the customer
demands -known as the voice of the customer (VOC)- at each of the product development stages
[313]. The central component throughout these phases is a matrix diagram relating the objectives
(WHATs) and responses (HOWs) of the product. In the often used four-phase QFD model, the
first of these four matrix ‘houses’, is known as the house of quality (HOQ). Although following
matrix houses continue to emphasise the voice of the customer, the fundamental significance of the
HOQ means that it is often used as a standalone method for product development [313, 314]. The
house of quality (Figure 5.2) is elaborated in the next subsections1 and links user requirements to
technical attributes to provide a prioritisation of these technical attributes. For a more in depth
discussion of the house of quality, the reader is referred to Appendix A.6.

(A) User requirements

The first step in QFD -after identification and selection of a representative sample of customers or
users- is the definition of user requirements. The collection of user requirements may be through
surveys, individual interviews, focus groups among others. These user requirements are descriptions
of the needs, wants and expectations to be fulfilled by the product and usually are expressed in
the user’s own words [315]. Processing and clustering can be difficult, as there is a risk of losing
the original meaning of the VOC [305, 313, 316]. To facilitate analysis and further processing,
individual user requirements may be structured in clusters, via methods such as affinity diagrams
or hierarchical cluster analysis [305, 313, 315]. The result is generally an ordered list of 5-10 primary
user requirements, which are denoted here as Wi for i ∈ Z1,I and I the amount of user requirements.

(B) Prioritisation of user requirements

The next phase involves the prioritisation of user requirements, which aims at establishing the
importance of individual requirements. This step is of major importance, since this directly affects
the product development and eventually its success [317]. Many methods have been developed for

1The symbols used in this chapter differ in their expression from previous chapters and an overview of the relevant
nomenclature is given in Section 0.3.
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Figure 5.2: General quantitative model of a house of quality (HOQ) used as a selection method between
alternatives. The relevant nomenclature is given in Section 0.3.

the purpose of defining relative importance ratings (RIRs), including [317–319]: (i) point direct
scoring (PDS), (ii) analytic hierarchy process (AHP), (iii) analytic network process (ANP), (iv)
outranking methods, (v) Kano’s model, and (vi) preference ordering. Moreover, as the assessment
of the importance of user requirements by individuals may be imprecise, incomplete or uncertain,
many more complicated prioritisation techniques have been developed, such as: (vii) fuzzy variants
[320], (viii) rough set based methods [321], (ix) preference graph [319], and (x) generalised Yager’s
method [318]. Additionally, the user sample may be heterogeneous, in which case a hierarchical
importance ranking of users may be included [318, 321]. There is no gold standard among these
methods, for a brief discussion see also Appendix A.6. In this study, the relative importance rating
of a user requirement, gi, is established from the average (or median) of responses on a self-stated
importance questionnaire (PDS):

gi =
K∑
k=1

gik/K (5.1)

In this method, users are asked to indicate the importance ratings of WHATs on an ordinal response
scale. This requires little user effort, does not require a large sample size and is simple to analyse.
The raw importance weighting may possibly be normalised, i.e.

∑I
i=1 gi = 1. In general for QFD,

the user requirements must be independent from each other [322], which is an assumption that must
be a priori validated.



5. DEVELOPMENT OF A TOOL FOR THE SELECTION OF MOTION PLANNING
ALGORITHMS Page 95

(C) Competitive analysis and final importance ratings
In the third step a competitive analysis is performed, where the performance of a company’s
product is evaluated on the user requirements against competitors’ similar products [313]. This
enables the company to set strategic goals and create a value proposition. The information for this
step is usually acquired by asking users to rate the performance in terms of satisfaction of the
products by company and competitors per WHAT [316]. A company may then decide on a
strategy to set goals per user requirement such as to improve, hold or copy its product’s
performance against that of competitors [313]. One obvious problem arises in the case when
competitors are non-existent, when targets are not initially obvious or when it may not be possible
to rate the satisfaction in using the product, such as in the case of developing new products
[312, 322–324].

Methods that have been developed to determine competitive priority ratings, such as the
improvement ratio (IR), sales point and entropy method, generally assume a linear or
one-dimensional relation between performance on a user requirement and perceived satisfaction by
the user [319]. However, this assumption neglects that users may perceive the importance of
certain user requirements in a different way; i.e. as evidenced by Kano this relation may be
non-linear or multi-dimensional [325]. In the Kano model, user requirements may be classified as:
(i) type B; basic or must-be attributes, (ii) type O; one-dimensional attributes, and (iii) type A;
attractive or excitement attributes [325]. Detailed descriptions of these categories have been given
in Matzler and Hinterhuber [326]. Several modifications have been proposed to the original
classification, including the addition of: (iv) type I; indifferent attributes, (v) type R; reverse
attributes and (vi) type Q; questionable attributes (Figure 5.3a) [327]. Such a classification of user
requirements into Kano categories is not a static one, where specifically attractive attributes may
become one-dimensional and eventually basic over time [328]. Other modifications have therefore
been introduced, with a possibly increased accuracy in establishing the importance of improving
user requirements, but at the cost of complicating the original model. For an overview of some of
these modifications see the work by Shahin et al. [329].

For the classification into Kano categories, usually a questionnaire is administered in a face-to-face
interview containing a functional and dysfunctional question per user requirement [327]. The
standard form of these two questions is performance-based, e.g.: ‘If the performance of the
product on this user requirement is good, how would you feel?’, and ‘If the performance of the
product on this user requirement is poor, how would you feel?’. The respondents should then
indicate their answers on a five-level scale. From the answers to the functional and dysfunctional
questions for a user requirement the corresponding Kano category can be obtained using an
evaluation table (Figure 5.3b). Some alternatives have been proposed for classifying user
requirements in Kano’s categories of which a concise overview is given in Appendix A.6.

Several publications have described integration of Kano’s model in QFD (for a brief overview see
Appendix A.6, or the book chapter by Violante et al. [330]). One convenient way that avoids the
use of the mode statistic to classify requirements in Kano’s categories, is the use of satisfaction
and dissatisfaction indices. These indicate how the fulfillment or provision of a requirement would
influence user satisfaction or dissatisfaction and would better preserve information on the
distribution of answers [327]:

SIi =
Ai +Oi

Ai +Oi +Bi + Ii
; DIi = − Bi +Oi

Ai +Oi +Bi + Ii
(5.2)

Here, SIi and DIi denote the satisfaction and dissatisfaction indices, and the other parameters are
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(a) Schematic illustration of Kano’s model. (b) Kano’s evaluation table.

Figure 5.3: Illustrations of the categories and the classification method in Kano’s model [325]. Brief
descriptions of the Kano categories: Attractive = provides satisfaction if fulfilled but absence does not
cause dissatisfaction; One-dimensional = results in satisfaction when fulfilled and dissatisfaction when
not fulfilled; Basic = is taken for granted when fulfilled and causes dissatisfaction when not fulfilled;
Indifferent = satisfaction is not influenced by fulfillment; Reverse = results in dissatisfaction when fulfilled
and satisfaction when not fulfilled; Questionable = stems from contradiction in answers.

the counts of the Kano attributes. One may then directly integrate these indices in QFD to compute
the RIRs of user requirements [323], or couple these to the outcome of the competitive analysis,
e.g. to compute an adjusted improvement ratio IRadj,i [324]. The absolute final importance di is
then calculated by multiplying the raw importance gi from Eq. 5.1 for a user requirement with the
adjusted improvement ratio in (e.g. in Eq. A.25) [324]:

di = gi · IRadj,i (5.3)

The overall user satisfaction can then be modelled as a linear additive value function [322]:

S =
I∑
i=1

diyi (5.4)

Here, yi is the degree of fulfillment of the ith user requirement.

(D) Technical attributes
Technical attributes, or HOWs, are objective measures of the product’s technical requirements,
characteristics or parameters which are known as design specifications, substitute quality
characteristics or engineering characteristics (ECs) [313]. As these are specified by the
manufacturer or designer, these are said to express the voice of the engineer (VOE). A common
way of establishing these technical attributes is by performing cause-and-effect relations between
the HOWs and WHATs, which is a complex operation that requires knowledge of the developed
product and experience in how this brings satisfaction to users. Similar to the process of
establishing user requirements, it is common to establish a hierarchy of primary, secondary and
tertiary ECs, where the primary ECs are the first-order causes for the WHATs. The jth technical
attribute, where j ∈ Z1,J , is denoted by Hj and its degree of attainment by ej . According to
conventional QFD theory, each EC should be defined as having a unit and a direction of
improvement; i.e. these must be measurable [313]. However, the value of an EC, ej , may not be in
all cases be a continuous and unbounded variable, but is possibly discrete and bounded [331, 332],
or must even be derived from a qualitative expression. This does not necessarily limit the
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applicability of QFD theory and can in many cases straightforwardly be implemented. For
example, one may set ej as an indicator variable which is 1 if the feature is provided or at a
certain threshold in performance, and 0 otherwise. However, one must be aware that such methods
typically act on a different scale level than the preferred ratio scale for quantitative analysis.

(E) Technical correlation matrix
The technical correlation matrix captures the inter-relations between HOWs and their magnitude
and is placed in the ‘roof’ of the HOQ [313]. The technical correlation matrix allows the designer
to trade-off the attainment of technical attributes and thereby allocate the budget in improving
the attainment of HOWs. These inter-correlations are denoted as γlj , capturing the correlation
between the lth and jth technical attribute. Usually, the magnitude of the correlation is expressed
from qualitative reasoning in the HOQ on a five-point ordinal scale, ranging from strongly negative
to positive, or using the same scale as used in the relationship matrix. These are then converted
to a numerical scale such that these can be used quantitatively. Some work has been devoted in
automating this procedure by detecting similarities between HOWs and how they influence WHATs
in the relationship matrix [333]. This is however out of scope for this thesis, and it is assumed that
the correlations can be established from qualitative reasoning.

(F) Relationship matrix
The relationship matrix is the main element of the HOQ, containing the degree of relationship
between WHATs and HOWs and therefore indicates how technical attributes affect the satisfaction
of user requirements. Traditionally, and still the most common approach, the relations are obtained
by expert consensus and rely mostly on experiences and in some cases on statistical analysis [305].
The relationship value between WHAT Wi and HOW Hj is usually expressed in a semi-quantitative
manner through a correlation coefficient rij :

R =


H1 H2 · · · HJ

W1 r11 r12 · · · r1J

W2 r21 r22 · · · r2J
...

...
...

. . .
...

WI rI1 rI2 · · · rIJ


I×J

(5.5)

The correlation coefficient rij couples the degree of attainment of a user requirement and the
corresponding technical attributes according to a linear additive relation:

yi =
J∑
j=1

rijej (5.6)

One may link the overall satisfaction S as a function of the fulfillment of technical attributes ej by
substituting Eq. 5.6 into Eq. 5.4 or A.26. In the general QFD approach, for this the importance
weights of user requirements are translated into prioritising technical attributes via a method known
as the independent scoring method (ISM) [322]:

wj =
I∑
i=1

dirij (5.7)

Here, wj is the weight given to the prioritisation of the jth technical attribute, which is a linear
additive function of the importance of user requirements (e.g. see Eq. 5.3) and the (normalised)
correlation coefficients rij . The overall satisfaction may then be found via (combining Eq. 5.4, 5.6,
and 5.7) [322]:
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S =
I∑
i=1

diyi =
I∑
i=1

J∑
j=1

dirijej =
J∑
j=1

wjej (5.8)

The technical attributes with the highest weights wj would therefore increase satisfaction the most
at constant effort, and should therefore possibly receive most of the focus in the product
development. The relationship coefficient rij is typically defined as one of four levels (on an
ordinal scale): strong ( ), medium ( ), weak ( ), or nonexistent (<blank>). Commonly suggested
weights are: {9,3,1,0}, {5,3,1,0}, or {4,2,1,0} for strong, medium, weak or no relations respectively.
A general recommendation is that these weights should be non-negative. Several considerations
must be taken into account when establishing this relationship matrix, which are highlighted in
Appendix A.6 (see also the work by van de Poel [322]), and can be summarised under:

• Introducing the possibility of negative and non-constant weights;

• Correcting for the amount of relations between WHATs and HOWs through normalisation
and for correlations between HOWs;

• Scaling of relationship coefficients and avoiding rank reversal;

• Establishing these relationships for novel products, in the case of incomplete or uncertain
information, or by an inexperienced practitioner.

The general message in any of the quantitative approaches to establish the priority ratings from
the relationship matrix in QFD is that calculated weights wj are determined based on subjective or
arbitrary choices, are inevitably flawed by assumptions in the methodology and hence may lead to
questionable outcomes [314, 334]. Correctness of an order of product alternatives that is determined
based on these weights cannot be guaranteed and drawing direct conclusions on orderings should
therefore be avoided. The quantitative approach to QFD can still be a powerful tool as it allows
for incorporating more information than just conceptual mapping. A qualitative approach has the
benefits of making the process less subjective and more intuitive [335], but this lacks the flexibility
of accounting for factors such as Kano’s categories, competitive analysis or correlations between
technical attributes. An example of such an approach, is the ordinal approach by Francheschini et
al. [335]. In this method, technical attributes are prioritised according to the function [335]:

w′′j = min
i∈Z1,I

(
max {neg(gi), r

′′
ij}
)

(5.9)

Here, gi and r′′ij are defined on an ordinal level scale and neg(·) is the negation operator [335]. To
further refine the ordering the following indicator function is proposed [335]:

Tj = dim (Wi | r′′ij > w′′j ) (5.10)

In this indicator function the technical attributes with a stronger relation to user requirements
receive a higher scoring of Tj , which are argued to be of greater importance.

(G) Technical matrix
Technical matrix in conventional QFD
The technical matrix has several different manifestations depending on the purpose of the QFD
approach. In conventional QFD, the technical matrix determines the final prioritisation of
technical attributes. The inputs in this matrix are the relative weights wj of the technical
attributes, most often inferred from the ISM in Eq. 5.7. The second step may be to perform a
technical competitive analysis, where products of the competitors are benchmarked against the
company’s own product on their technical performance [313]. Based on this analysis, typically
performance targets, sales points, constraints on the budget, and probability factors are set [313].
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These enable calculation of a final importance weighting of technical attributes that guides the
following phases of product development. One of the main problems in this technical matrix is
that it is not directly clear how one can set targets in a logical and unequivocal way. Firstly,
target values are usually set based on experience and intuition of the design team and can
therefore be subjective and non-optimal. Moreover, the problem is that ej is typically defined on a
quotient scale and therefore becomes independent of the absolute values; e.g. an improvement of
ej from 0.6 to 1.0 or 0.4 to 0.8 has the same effect on the modelled user satisfaction S in Eq. 5.8
[322]. It is for these reasons not uncommon that companies terminate the house of quality after
establishing the relative weights wj .

Technical matrix in QFD-based selection approaches
The technical matrix serves a slightly different role in QFD-based selection methods. Considering
a set of alternatives A = (A1, ...AM ), a decision matrix may be established in which the levels of
attainment per technical attribute emj are graded for alternative Am and preferably normalised:

E =


H1 H2 · · · HJ

A1 e11 e12 · · · e1J

A2 e21 e22 · · · e2J
...

...
...

. . .
...

AM eM1 eM2 · · · eMJ


M×J

(5.11)

The simplest approach is to neglect the technical competitive analysis, use a point direct scoring
method to establish the levels of attainment emj , and directly compute an overall score for each of
the alternatives [306]. Overall user satisfaction (Eq. 5.8) may preferably be used as the overall
score for consistency and to keep the approach user-centred, but any type of function may be
implemented. Other QFD-based selection approaches typically integrate MCDM methods, such as
AHP or ANP, with QFD to rate alternatives after a technical competitive analysis [310].

In an ordinal QFD approach, after having obtained an importance ordering of technical attributes,
one must use an ordinal method to obtain a ranking of the alternatives. There are many multi-
criteria decision making methods that use ordinal ranking of alternatives per criterion and convert
this to cardinal data such as Borda count or pairwise comparisons [336]. One interesting strictly
ordinal approach is MCDM-ORCA by Mazurek which also allows for an ordinal ranking of criteria
[337]. The technical attributes are assumed to be (weakly) ordered according to their importance
as follows: H1 � H2 � ...HJ , but may be tied. Per criterion the alternatives are ranked from the
one achieving the highest attainment to the one with worst attainment. This method is based on
index vectors; the first being the binary index vector:

UAm,An = (u1, ..., uJ) (5.12)

Where, uj = 1 if emj > enj , uj = 0.5 if emj = enj , and uj = 0 otherwise. The second type of index
vector is the cumulative index vector and its counterpart:

HAm,An = (h1, ..., hJ), HAn,Am = (h′1, ..., h
′
J) (5.13)

Where, HAm,An = (u1,
∑2

j=1 uj , ...,
∑J

j=1 uj). An alternative Am is then said to dominate An,
Am � An, iff hj ≥ h′j ∀j ∈ Z1,J and at least one of the inequality relations is strict. For more
details, the reader is referred to the paper by Mazurek [337]. The main advantage of this approach
is that it does not require any numerical judgements, and therefore is convenient in the case of
technical attributes that are not directly measurable. Additionally, the approach does not violate
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some of Arrow’s impossibility theorem conditions, such as independence of irrelevant alternatives,
which other similar methods do. Disadvantages of this method include that it may be indecisive
and produce irrational outcomes as it does not rely on counts. For example, if alternative A1 only
performs better than alternative A2 on the most important technical attribute H1, but performs
worse on every other attribute H2, ...,HJ , the method is indecisive. An alternative approach would
be to implement the ordinal method used for establishing a relationship matrix by Franceschini et
al. [335]. In this case, the HOWs represent the decision criteria and are used to obtain an ordering
alternatives. This can be done by replacing gi and r′′ij in Eq. 5.9 by T ′′j and emj respectively.

Recommendations for QFD-based selection approaches

In Appendix A.6 and in previous sections, some of the methodological issues with QFD in general
and some alternative approaches have been discussed. It is important to note that some of these
methodological flaws and particular the ones that stem from Arrow’s impossibility theorem are
subject to frequent discussion and highly dependent on the assumptions of the used QFD model.
Moreover, despite methodological issues, these methods may still be useful as long as information
is carefully processed and conclusions are derived from consensus based on experience, intuition
and common sense along with the results of QFD. Two options to use QFD in a meaningful and
viable way as a selection method can to the author’s opinion be distinguished based on the rules
and recommendations by Burke et al. [334]:

• A quantitative ratio scale based approach. One may try to select an option from a set
of user requirements, technical attributes and alternatives by:

(i) Ensuring that the raw importance ratings gi or -if applicable- final importance ratings
di are expressed on a ratio scale (otherwise an interval scale), and checking unimodality
and independence of user requirements;

(ii) Establishing a set of measurable technical attributes and expressing correlations between
technical attributes γlj on a ratio scale;

(iii) Expressing the relationship coefficients rij between user requirements and technical
attributes on a reasonable ratio scale;

(iv) Normalising the coefficients rij (preferably according to Eq. A.29 and not via
Wassermann normalisation) and checking whether irrational rank reversals occur;

(v) Selecting an appropriate satisfaction model; proposed are Eq. 5.4 or Eq. A.26, combined
with or without Kano’s model or competitive analysis;

(vi) Expressing attainment of the technical attributes ej for different alternatives Am on a
ratio or interval scale;

(vii) Calculating the predicted overall satisfaction or score for each of the alternatives;
(viii) Testing different relationship scales, such as {9,3,1,0}, {5,3,1,0} or {4,2,1,0}, for rank

reversals;
(ix) Interpreting the satisfaction or overall scores as guidelines in conjunction with experience

and common sense to make a decision.

• A qualitative ordinal scale based approach. One may try to select an option from a set
of user requirements, technical attributes and alternatives by:

(i) Expressing the raw importance ratings gi or -if applicable- final importance ratings di on
an ordinal scale;

(ii) Establishing a set of measurable technical attributes;
(iii) Expressing the relationship coefficients rij between user requirements and technical

attributes preferably on the same level ordinal scale;
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(iv) Calculating the weights and importance ordering of the technical attributes via an ordinal
method, e.g. from Eq. 5.9 and 5.10;

(v) Expressing a rank ordering of the alternatives Am or scoring on an ordinal scale per
technical attribute;

(vi) Using an ordinal technique, such as MCDM-ORCA, to obtain dominance relations for
each pair of alternatives (Eq. 5.12 and 5.13) and extract a rank ordering of alternatives
based on the rank ordering per technical attribute;

(vii) Interpreting these final rankings as guidelines in conjunction with experience and common
sense to make a decision.

In general, for the development of novel products the qualitative ordinal scale based approach is the
recommended option as has been argued previously. For improving existing products, the analysis
would benefit from taking into account more complex information and a quantitative approach
would be the preferred option.

5.3 Description and step-by-step application of MP-QFD

In this section, motion-planning QFD (MP-QFD) is introduced as a new method for motion planning
class selection. A pilot study was performed to establish the relative importance ratings of user
requirements for the selection and development of brachytherapy needle channel planning software.
This section is written in the form of a step-by-step case example in order to guide readers through
this process. In this case example, the selection of a suitable robust MP class for solving the BT
needle channel planning problem is treated. A qualitative ordinal approach is selected, since this
concerns a novel product with no current competitors. Additionally, technical attributes and user
satisfaction are not directly measurable or verifiable in software engineering applications [312].

5.3.1 Formulation and prioritisation of user requirements
The first step in the MP-QFD method is the formulation of a set of user requirements. Although
ideally these are collected through surveys or individual interviews, in this example the set of user
requirements (Table 5.1) is derived from a review of literature [338, 339], technical reports and
brochures of radiotherapy planning software. No further division in primary, secondary or tertiary
requirements has been made as the list of requirements is concise enough for analysis. In order
to prioritise these requirements, a pilot study was carried out. This study was approved by the
Human Research Ethics Committee (HREC) of the TU Delft. Nine specialists in radiotherapy (5
radiation therapists, 3 medical physicists, and 1 radiation oncologist) from the Erasmus University
Medical Center (Rotterdam, The Netherlands) were asked to participate in this study and written
consent was obtained. The mean experience of the participants in their current function was 14
years (±7.5 years). A digital questionnaire, consisting of twenty-two questions, was developed in
which participants were asked to:

• Indicate the importance ratings of the software requirements according to a common self-
stated importance questionnaire (point direct scoring method);

• Assign these requirements into Kano categories via direct classification.

The full questionnaire was written in Dutch and is shown in Appendix A.7. Prior to these two
parts, a brief introduction was given to ensure that the respondents were made aware of robust
motion planning software for BT. For the self-stated importance questionnaire, the participants
had to rate the importance of the provision of user requirements on a seven-point Likert scale with
labels ranging from “(1) very unimportant” to “(7) very important”. This format has been
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Table 5.1: User requirements for the BT needle channel planning problem.

WHAT Brief description Elaborate description

W1 Robust placement with
respect to tumour

The MP guarantees robust optimal placement of sources
with respect to tumour even in the case of anatomic changes

W2 Robust placement with
respect to OARs

The MP guarantees robust optimal placement of sources
with respect to OARs even in the case of anatomic changes

W3 Three-dimensional
visualisation

The MP is able to visualise and position source locations in
three-dimensions

W4 Real-time adaptability The MP is able to perform modifications in source locations
and obtain results in real-time

W5 Manual indication of
waypoints

The MP is able to manually define waypoints as a
starting/routing point for needle channel optimisation

W6 Computational time The MP requires brief computation time for source
placement calculations

W7 Resolution of anatomy and
trajectories

The MP implements a high resolution of the anatomy and
trajectories for visualisation and planning

W8 Success rate in generating
channels

The MP is able to generate plans with a high success rate

W9 Reproducibility of the
generated channels

The MP is able to generate channels that can be accurately
reached by the afterloader in a 3D-printed applicator

W10 Robust assessment of the risk
levels

The MP is able to accurately estimate the risks of exceeding
dose constraints even in the case of anatomic changes

commonly recommended [340], and can both be reviewed as an ordinal or interval scale method
(the former being the preferred option). The results of this questionnaire are shown in Table 5.2.
‘Reproducibility of the generated channels’ (W9) was generally thought to be the most important
user requirement, followed by the ‘success rate in generating channels’ (W8) and ‘real-time
adaptability’ (W4) / ‘robust placement with respect to tumour’ (W1). The majority of the
participants moreover indicated that the time for generating the catheter trajectories should be
within an order of magnitude of seconds (data not shown). As can be seen in Table 5.2, the
overall median score of the questionnaire was 6 (corresponding to “important”), and respondents’
answers ranged from “(4) neutral” to “(7) very important”. A median importance rating of “6”
for all user requirements was found, except for the attributes ‘manual indication of waypoints’
(W5, “(5) moderately important”) and ‘reproducibility of the generated channels’ (W9, “(7) very
important”). Along with the comments by participants, these findings may indicate that all of the
items in the questionnaire were deemed important for BT software. However, due to the high
median scores the questionnaire’s internal consistency was checked via Cronbach’s α, assuming
that the scale can be interpreted as an interval scale. Cronbach’s α was evaluated to be
α = −0.14, which indicates that the reliability of the results is questionable.

A direct classification technique was used in this pilot study to establish Kano’s categories [341],
where respondents were briefly instructed in Kano’s model and then asked to select appropriate
Kano’s categories. Both formal and informal descriptions of these categories in Dutch were given to
ensure that participants would understand the model. The results of this questionnaire are shown in
Table 5.3. Most of the respondents classified the requirements as must-be attributes, and according
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Table 5.2: Results of the prioritisation of the user requirements in Table 5.1 for the BT needle channel
planning problem by the nine respondents.

Frequencies W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

(7) Very important 3 3 1 4 0 2 0 4 7 2

(6) Important 5 3 5 2 4 6 5 5 1 4

(5) Moderately important 0 3 1 3 1 0 3 0 1 2

(4) Neutral 1 0 2 0 4 1 1 0 0 1

Statistics W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Median 6 6 6 6 5 6 6 6 7 6

Mean 6.11 6.00 5.56 6.11 5.00 6.00 5.44 6.44 6.67 5.78

Variance 0.77 0.67 0.91 0.77 0.89 0.67 0.47 0.25 0.44 0.84

Overall statistics Value Consistency Value

Overall median score 6 Sum of item variances 6.67

Overall mean score 5.91 Variance of total scores 5.88

Cronbach’s α -0.15

Figure 5.4: Absolute dissatisfaction-satisfaction (|DI|, |SI|) plot of the user requirements in the case
example.

to the statistical mode only two of the qualities were classified as attractive attributes (with one
partially attractive, partially must-be), and two as one-dimensional attributes (both partially must-
be, partially one-dimensional). Similarly, from the (|DI|, |SI|)-plot in Figure 5.4 it can be seen that
all of the requirements fall in the quadrants of one-dimensional and must-be qualities. The inter-
rater reliability was assessed using Krippendorff’s α [342], which was calculated to be α = 0.12. This
indicates a low reliability, as a value of 0.8 is generally recommended. Therefore, equal importance
ratings are henceforth assumed for the user requirements.
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Table 5.3: Results of the Kano’s questionnaire in which respondents where asked to directly classify the
user requirements in Table 5.1 for the BT needle channel planning problem in Kano categories.

Frequencies W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

A. Attractive 0 2 4 1 1 1 4 2 0 2

M. Must-be 5 5 3 4 5 4 4 5 7 4

O. One-dimensional 4 2 2 4 3 4 1 2 2 3

I. Indifferent 0 0 0 0 0 0 0 0 0 0

Statistics W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Mode M M A M/O M M/O A/M M M M

SI 0.44 0.44 0.67 0.56 0.44 0.56 0.56 0.44 0.22 0.56

DI -1.00 -0.78 -0.56 -0.89 -0.89 -0.89 -0.56 -0.78 -1.00 -0.78

Overall statistics Value

Mode M

Krippendorff’s α 0.12

5.3.2 Formulation of technical attributes and technical correlations

For MP-QFD, a list of technical attributes must be composed that are characteristics of MP
algorithms and able to realise the user requirements. Logically, this includes a set of
computational or operational criteria of motion planning algorithms (see Subsection 4.1.3).
Additionally, one may select more tangible technical attributes, for example commonly used
parameters from benchmark studies -e.g. time, success rate, or path length- that are integrated in
motion planning libraries. However, as not all the MP classes that are considered as alternatives in
this study are represented in these libraries, this is not yet feasible. Instead, practical aspects that
must be considered for the implementation of a MP algorithm (see Figure 4.4) to conform to the
problem at hand are added to the list of technical attributes. In this example only the categories
and not the individual practical considerations are included in the list of technical attributes:

• Agent representation: How able are algorithms in the MP class to handle multiple agents
simultaneously?

• Workspace representation: How able are algorithms in the MP class to deal with three-
dimensional obstacles and operate in a narrow cluttered environment?

• Uncertainty representation: How able are algorithms in the MP class to accurately handle
spatial uncertainty of obstacles?

• Planning execution: How flexible are algorithms in the MP class to include (differential)
constraints or different cost functions?

The attainment of these technical attributes is made measurable for a MP alternative by
investigating implementations in literature. For example, it can be verified whether approximate
cell decomposition techniques have been associated with multi-agent systems, and accordingly a
rating can be assigned. In such an approach, it would be most appropriate to use a simple ordinal
scale (e.g. ‘applicable’, ‘partially applicable’, and ‘not applicable’).

Correlations between technical attributes cannot directly be accounted for using the ordinal method.
However, it is still useful to set up such a technical correlation matrix, since it can potentially benefit
analysis. The strength of the correlations among HOWs is coarsely estimated on the same seven-
level ordinal scale as is introduced for the relationship matrix.
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Table 5.4: Correspondence map between raw importance ratings gi and relationship coefficients rij ,
expressed on a 7-level ordinal scale. Adapted from Ref. [335]

Scale
level

Linguistic interpretation of gi Importance
value

Linguistic interpretation of
rij

Symbol

L1 Very unimportant 1 No relationship <blank>

L2 Unimportant 2 Weak relationship

L3 Moderately unimportant 3 Moderately weak relationship

L4 Neutral 4 Medium relationship

L5 Moderately important 5 Moderately strong relationship

L6 Important 6 Strong relationship

L7 Very important 7 Very strong relationship

5.3.3 Generation of relationship matrix
For the ordinal scale approach by Fransceschini et al. [335], first a correspondence map (Table 5.4)
is constructed on a seven-level ordinal scale as was used for the prioritisation of user requirements.
This relationship matrix is established by the author of this thesis and the transformed relationship
matrix using the correspondence map is illustrated in Table 5.5.

5.3.4 Ranking of a set of alternatives
For the selection of an option from a set of alternatives using the MCDM-ORCA method, one of
the inputs is an importance ordering of technical alternatives. The weights and T -indicators are
first calculated via Eq. 5.9 and 5.10 respectively. For example, one would obtain the weight w′′1 of
technical attribute H1 from Table 5.5 in the following manner [335]:

w′′1 = min
i=1...10

(
max {neg(gi), r

′′
i1}
)

= min
(

max {neg(g1), r′′11},max {neg(g2), r′′21},max {neg(g3), r′′31},max {neg(g4), r′′41},
max {neg(g5), r′′51},max {neg(g6), r′′61},max {neg(g7), r′′71},
max {neg(g8), r′′81},max {neg(g9), r′′91},max {neg(g10), r′′10,1}

)
= min

(
max {L2, L6},max {L2, L6},max {L2, L1},max {L2, L2},max {L2, L4},
max {L2, L2},max {L2, L1},max {L2, L1},max {L2, L4},max {L2, L1}

)
= min

(
L6, L6, L2, L2, L4, L2, L2, L2, L4, L2)

)
= L2

When calculating these weights for the case example, the same importance rating was found for
for all attributes: w′′j = 2, ∀j ∈ Z1,10, i.e. H1 ≈ H2 ≈ . . . H10. The T -indicator to differentiate
between the ECs for the first technical attribute H1 is computed as follows (Eq. 5.10):

T1 = dim (Wi | r′′i1 > w′′1) = dim ({W1,W2,W5,W9}) = 4

This establishes the following importance ordering of technical attributes:

(H3 ≈ H11) � (H1 ≈ H10) � (H2 ≈ H6 ≈ H7 ≈ H8) � (H4 ≈ H5 ≈ H9)

Having established an importance ordering of the technical attributes, all the alternatives must be
ranked for each of the technical attributes. Since the selected list of technical attributes based on
performance criteria ({H1, . . . H7} is valid, operational and practicable for any type of MP class or
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Table 5.5: Transformed relationship matrix based on the seven-level ordinal scale correspondence map for
the BT needle channel planning problem.
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Performance criteria Practical aspects

User requirements (WHATs) ↓ gi H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11

W1 Robust placement with respect to tumour L6 L6 L2 L1 L1 L1 L2 L4 L4 L2 L6 L4

W2 Robust placement with respect to OARs L6 L6 L2 L1 L1 L1 L4 L6 L6 L2 L6 L4

W3 Three-dimensional visualisation L6 L1 L1 L4 L6 L1 L1 L1 L1 L6 L1 L1

W4 Real-time adaptability L6 L2 L4 L6 L1 L6 L1 L1 L1 L1 L1 L1

W5 Manual indication of waypoints L6 L4 L2 L1 L1 L1 L1 L1 L1 L2 L1 L1

W6 Computational time L6 L2 L4 L7 L2 L4 L2 L1 L4 L2 L4 L4

W7 Resolution of anatomy and trajectories L6 L1 L1 L4 L4 L1 L1 L1 L1 L6 L1 L4

W8 Success rate in generating channels L6 L1 L6 L2 L1 L1 L4 L4 L2 L1 L2 L2

W9 Reproducibility of the generated channels L6 L4 L1 L4 L2 L1 L2 L1 L2 L1 L1 L7

W10 Robust assessment of the risk levels L6 L1 L1 L2 L1 L1 L6 L2 L1 L2 L7 L1

Table 5.6: Ranking of a set of robust trajectory planning classes. Ties are allowed between alternatives.
The numbers in the table represent the rank of an alternative (lowest number indicates the highest rank).
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Performance criteria Practical aspects

Trajectory planning alternatives ↓ H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11

A1 Stochastic continuous-time optimisation 2 4 4 2 1 2 2 2 1 2 2

A2 Stochastic optimal control 3 2 3 2 2 1 2 1 1 1 1

A3 Backward stochastic reachability 3 2 5 3 2 2 2 2 2 2 1

A4 Reachability tree 4 2 3 3 2 2 2 3 3 2 1

A5 Incremental sampling with chance constraints 3 3 2 1 1 1 2 1 1 1 1

A6 Incremental sampling with particle expansion 4 4 2 1 1 1 2 1 1 2 1

A7 Virtual potential field 5 1 1 1 2 2 2 1 3 3 1

A8 Warm-started trajectory optimisations 1 4 4 2 1 2 1 2 2 2 1

A9 Plan and transform 5 4 1 2 2 2 2 3 2 3 3
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algorithm, and not only the robust motion planners considered in this thesis, such a decision
matrix only needs to be established once and can then be applied to various MP problems. The
measurability of technical attributes based on practical aspects ({H8, . . . H11}) has been discussed
previously and may be more problem-dependent. The author of this thesis established weak
orderings for the performance per criterion of the robust path and trajectory planning approaches
under uncertainty in environment knowledge. The ranking for trajectory planning approaches is
for illustration purposes shown in Table 5.6.

Using the ranking of alternatives and importance ordering of the criteria, the binary and cumulative
index vector are computed. For example, for the pairwise comparison of alternatives A1 and A2 in
the case example, one would compute via Eq. 5.12 and Table 5.6:

UA1,A2 =
(H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11

1 0 0 0.5 1 0 0.5 0 0.5 0 0
)

Subsequently, from the importance ordering of technical attributes, one could sum these scores and
derive the index vector:

UA1,A2 =
(H3,11 H1,10 H2,6,7,8 H4,5,9

0 1 0.5 2
)

Next, the cumulative index vector and its counterpart are derived according to Eq. 5.13. For the
pairwise comparison of alternatives A1 and A2 these are:

HA1,A2 =
(H3,11 H1,10 H2,6,7,8 H4,5,9

0 1 1.5 3.5
)
, HA2,A1 =

(H3,11 H1,10 H2,6,7,8 H4,5,9

2 3 6.5 7.5
)

Since each entry hj in HA1,A2 is less or equal than h′j in HA1,A2 and at least one of these inequalities
is strict, alternative A2 is said to dominate A1: A2 � A1. Performing such pairwise comparisons for
each of the possible combinations of trajectory planning classes gave the following set of ordering
equations:

A5 � A2 � A8 � A1 � A3 � A9; A5 � A2 � A4 � A9

A5 � A6 � A8 � A1 � A3 � A9; A6 � A4; A7 � A1 � A9

As can be seen from these equations, due to the incomparability of some of the alternatives
(especially A4, A6, A7), a definite ranking cannot be established. From this information, one could
already for example obtain that alternative A5 is generally ranked best (although A7 might be
better) and A1 � A3 � A9 are ranked worst. Nevertheless, a final overall ranking may be
estimated based on the possible combinations that can be constructed whilst obeying these
ranking constraints. A total of 44 different rankings remain possible in this case example. If one
desires to establish a more ‘definite’ ranking, Borda count can be used to obtain which ranking is
the most persistent [336]. For the case example, using Borda count would result in the following
preference ordering:

A5 � (A2 ≈ A6) � A7 � A8 � A4 � A1 � A3 � A9

5.3.5 Selection of a motion planning class

The full house of quality of MP-QFD associated with the case example is illustrated in Figure 5.5.
From the previous analyses the following rankings of trajectory and path planning classes could be
respectively obtained:
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{
A5 � (A2 ≈ A6) � A7 � A8 � A4 � A1 � A3 � A9 Trajectory planning
(A2 ≈ A5) � A1 � A3 � A4 Path planning

This implies that the three highest performing robust trajectory planning classes for the BT needle
channel planning problem according to MP-QFD analysis are:

• Incremental sampling approaches with analytic chance constraints (A5);

• Incremental sampling approaches with particle expansion (A6);

• Stochastic optimal control (A2).

The three highest performing robust path planning classes are:

• Potential-based methods (A2);

• Rapidly-exploring random trees (A5);

• Approximate cell decomposition (A1).

From the house of quality in Figure 5.5, one may also visually infer which classes of robust motion
planners are most suitable for this problem. The first step in such an approach is selecting the ‘depth’
of analysis; for example one could only look at strong relations for simplicity. When users prioritise
the user requirement ‘robust optimal placement with respect to the tumour’ (W1), the central
part of the diagram shows that one must regard motion planners that rank high on the criteria
optimality (H1), i.e. methods that are (asymptotically) optimal, and uncertainty representation
(H10), i.e. methods that are capable of analytically handling spatial uncertainty. As such, when next
observing the technical (alternative ranking) matrix, the selected trajectory planning approaches
could be warm-started trajectory optimisation (A8) and stochastic continuous-time optimisation
(A1)2. Additionally, one could use the technical correlation matrix to further differentiate between
alternatives. For example, one could obtain that uncertainty representation (H10) is strongly linked
to soundness (H6) in the roof of the matrix. However as both warm-started trajectory optimisation
and stochastic continuous-time optimisation are generally not able to generate sound trajectories,
i.e. rank equally on soundness, in this case this does not allow for further differentiation. Now
proceeding with such an approach for the most important user requirements one could quickly
derive a set of applicable motion planning classes.

2Warm-started trajectory optimisation (A8) is from the set of alternatives best able to generate (globally) optimal
trajectories (H1) and ranks second regarding uncertainty representation (H10). Stochastic continuous-time
optimisation (A1) ranks second on both of these technical attributes.
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Figure 5.5: House of quality of MP-QFD for the case example of selecting a robust MP class
suited for the BT needle channel planning problem.
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5.4 Discussion and future work

The conceptual MP-QFD approach proposed in this chapter can be a useful tool in aiding the
selection of a motion planning class, and has been successfully applied for developing
brachytherapy software using the results from a pilot study. However, the results of this pilot
study should be re-evaluated in a future study. A negative Cronbach’s α was calculated for the
questionnaire aiming to establish the prioritisation of user requirements. This indicates that the
variance between respondents is low in comparison with the variation in individual respondents’
answers. Several factors were hypothesised to explain this finding. First, the participants in this
study were possibly not familiar with robust planning software3 and may have experienced
difficulties in understanding the formulated user requirements for a non-existing product.
Moreover, the importance ratings of requirements may be conflicted by several biases, including a
concavity bias as only requirements are included that are known to be of importance to users of
the software [343], and response style bias. Furthermore, the negative Cronbach’s α is possibly a
consequence of the small number of participants included in this pilot study [344]. Indeed, simple
power calculations with reasonable requirements (1− β = 0.8, a = 0.05, c = 0) indicate that around
twenty participants would be required for α = 0.7 (acceptable consistency), but this is heavily
dependent on the value of c and the planning value of α in this analysis [345]. The reliability of
the labelled seven-point Likert scale used in this pilot study has moreover been criticised in some
works. For example, this type of Likert scale may trouble the interval assumption, and the use of
labels can perhaps influence the participants’ understanding of the reference level for each item
[340, 346]. Furthermore, rather than that the Likert scale ranges from ‘not important’ to ‘very
important’, the negative connotation associated with the word ‘unimportant’ may have influenced
the participants’ choices. For future studies, preference ordering techniques in an ordinal approach
are recommended over direct scoring methods. These would perhaps be more natural to the
respondent and would enforce respondents to differentiate between the importance of user
requirements. Moreover, for quantitative QFD it would be more consistent to not use a Likert
scale (interval) in value assessment, but instead to use a ratio scale approach. For example, ratio
scale pairwise comparison methods (e.g. AHP) would partially avoid such inconsistencies [334],
although this form of judgement may not be natural or convenient for respondents [318].

Kano’s categories were in this study established through direct classification to further
differentiate between user requirements. Surprisingly, the respondents classified most of the user
requirements as must-be attributes. This finding was unexpected since most of the respondents
were likely not aware of the existence of (robust) automatic needle channel planning software nor
its capabilities. These findings may additionally hint that direct classification through a digital
questionnaire is not a suitable approach for Kano’s model, as proper understanding by the
respondents of user requirements and the product at hand as well as that of Kano’s model cannot
be validated as well as in a face-to-face interview which is the recommended procedure [347].
Understanding of Kano’s model has been noted to be essential for a direct classification approach
[341, 348]. In this study, the inter-rater reliability assessed using Krippendorff’s α was low. In the
study by Witell et al. it was shown that direct classification responses led to greater frequency of
attributes in the one-dimensional quadrant opposed to other Kano classification methods,
similarly to what is observed in this study [348]. Moreover, users are usually not aware of the
satisfaction that attractive attributes will generate, and hence do not classify these as such [348].
As the vast majority of reviewed attributes was classified as must-be attributes and the statistical

3The data of this study does not directly support such a conclusion, but some respondents indicated that they were
unfamiliar with the use of ‘robust’ in this context.
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mode was not found to be appropriate for other attributes, differentiation into Kano categories
does not make sense and hence the proposed model described by Wang and Ji could not be
accurately applied to this data [349]. Respondents clearly considered all criteria to be very
important. Both tests indicated that ratings were too close together to produce a reliable ranking.
Therefore, equal importance ratings were assigned to all criteria.

Rather than the user-centred approach which MP-QFD generally aims to be, this implied that the
ranking of technical attributes (HOWs) was obtained based solely on the strength and the number
of relations in the relationship matrix for a technical attribute. This may give false impressions,
e.g. in the example a technical attribute with many moderately weak relations scores higher than
one with only a few strong relations. With the resulting importance ratings, technical attributes
were ranked. However, although a seven-point ordinal scale was used for this purpose, only four
levels in the importance ordering of technical were obtained. This flattening effect occurs naturally
with the ordinal method used [335], but is strengthened as all raw importance ratings gi are set to
be of equal weight in the case example. For example, one would obtain the following ranking if
g5 = L5, g9 = L7 and gi = L6 otherwise (which are the median importance ratings that were found
in the pilot study): (H3 ≈ H11) � H1 � (H6 ≈ H8) � H4 � H9 � H2 � H10 � H7 � H5. The
effect of this rating on the outcome ranking of alternatives was not investigated.

The MP-QFD approach has several advantages over conventional selection techniques. First, the
approach has a strong user focus opposed to previous guidelines to select motion planning
algorithms, which enables the selection of an alternative that potentially maximises user
satisfaction. Second, the approach systematically establishes and conveniently illustrates the
relations between user requirements and product parameters, which stimulates communication
between users of the product and engineers, and can be established from collaborative effort.
Furthermore, QFD is a flexible approach, which allows the addition of several modules such as
Kano’s model, (technical) competitive analysis, correlations between WHATs and HOWs, and
fuzzy classification, all of which have been briefly discussed in this work. Owing to its simple
structure, QFD is suited for implementation in a software application. For the selection of motion
planning software, integration with planning libraries seems to be a logical step for future work.
Lastly, after being established, the tool enables users to set the depth of analysis, e.g. as to
prioritise alternatives based only the important user requirements.

There are however some inherent drawbacks in the methodology presented. The main drawback of
the presented approach is that although MP-QFD was introduced for knowledge alleviation of a
practitioner interested in motion planning, establishing the relationship matrix may still be
complex. Both a practitioner inexperienced in motion planning but familiar with the user
requirements, i.e. the medical specialist in this case example, or a practitioner experienced in
motion planning but unfamiliar to the requirements of the eventual users, i.e. a software engineer,
may struggle to accurately assess these relations themselves. Fuzzy theory (introduced in
Appendix A.6) may aid in capturing uncertainty in decision-making and therefore would be of
interest to include in an ordinal QFD approach in future work. For example for this purpose, an
interesting integration into QFD would be ordinal-based intuitionistic membership grades [350].
Additionally, it is envisioned that MP-QFD as a communicative tool may bring both the
communities of software engineers and practitioners desiring to implement MP together to find an
effective solution by collaboratively establishing the relationship matrix and providing inputs.
This is in line with the widely cited purpose of QFD: “quality function deployment focuses and
coordinates skills within an organization...” [351].
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Moreover, a user expecting a definite outcome of the tool may be disappointed in finding out
that the tool only gives guidelines for the selection of alternatives. Despite that the ratings of
alternatives in a quantitative approach may suggest a definite ranking, these ratings are the result of
assumptions, subjectivity and arbitrariness. In a qualitative approach, the presence of incomparable
relations results in the possibility of not being able to derive a definite ranking for all alternatives, as
instead a set of rankings is given. The outcome does not say anything about the ‘distance’ between
alternatives. A method to enable a final ranking of all alternatives in the qualitative approach has
its own disadvantages. For example, the proposed Borda count is not a Condorcet method, and also
violates the independence of irrelevant alternatives condition from Arrow’s impossibility theorem
[322, 336]. To illustrate the violation of Arrowian principles, one may drop alternative A7. In this
case, one would obtain that the order of all alternatives remains the same, with the exception that
A8 ≈ A4. Nonetheless, the algorithm was quite robust in this case example to such changes due to
the generally relatively large differences between the counts of the evaluated alternatives. In future
work, aggregating these rankings in a way that does not require cardinal data would be of interest.
Lastly, one must note that QFD is an inherent simplification of reality. Alleviating assumptions of
QFD, for example through Kano’s model, market segmentation or demand modelling [322], could
be an interesting subject of research in the further development of MP-QFD.

5.5 Conclusion

In this chapter, motion-planning QFD (MP-QFD) has been developed in order to aid the selection
process of motion planning algorithms. This tool is an extension of QFD and similar to previously
developed QFD-based selection approaches. Both a full quantitative and qualitative approach
have been introduced and discussed, and a case example where the latter is implemented is
provided. The main novelties of this work in contrast to previous QFD-based selection approaches
is that a fully ordinal selection method has been proposed by combining the previous works by
Franceschini et al. [335], and Mazurek [337]. This qualitative ordinal method is able to overcome
several problems, such as the promotion of ordinal data into cardinal, interval or ratio data which
violates conditions of Arrow’s impossibility theorem. Moreover, as (technical) competitive
analyses are left out, subjectivity and arbitrariness are minimised and the method can be more
rightfully applied to the development of novel products.

The medical specialists that participated in this study indicated in the questionnaire and their
comments that the most important user requirements for the software are reproducibility of the
generated channels (W9), success rate in generating the channels (W8), and real-time adaptability
(W4). This substantiates the author’s preferred choice for the selection of an incremental sampling
approach with chance constraints (A5), for which the mathematical formulation of the BT needle
channel problem in the previous chapter is ideal. Therefore, in the next part of this thesis, chance
constrained RRT is further developed and applied to the BT problem.



Part III
Robust brachytherapy needle channel

planning under uncertainty

In this part, robust motion planning algorithms are proposed and implemented for solving the BT
needle channel planning problem under uncertainty. Sampling-based motion planners were in the
previous part found to possess the most favourable characteristics for solving this problem.
Therefore, variants in this class of motion planners are introduced in Chapter 6. The main
contribution of this chapter is the development of bounded uncertainty and probabilistic variants
of sampling-based planners suitable for the trajectory planning of non-holonomic agents. In
Chapter 7, first the coverage planning problem is solved to compute the optimal configuration of
interstitial dwell segments for a simulated two-dimensional patient case. The resulting
configuration is evaluated using dose-based optimisation and compared with standard treatment
modalities. These configurations are then used to initialise trajectory planning. Three types of
motion planners are implemented and evaluated for brachytherapy needle channel planning
subject to probabilistic and bounded uncertainty.

Illustration: Schematic illustration of chance constrained planning for a non-holonomic agent
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6. Implementation of robust motion
planning algorithms

6.1 An introduction in sampling-based planers
The concept of sampling-based planners has long been used for both path and trajectory planning
[297]. These approaches avoid the explicit construction of feasible regions by instead probing the
configuration or state space with sampled points to construct the connectivity of Cfree or Xfree
[239]. A collection detection module separates the geometric model of the workspace and the motion
planner (Figure 6.1). By building upon an implicit representation of the workspace independent
of the actual geometric models, the complexity of deterministic motion planning is avoided. Any
sampling-based motion planner can be decomposed into a set of primitives [239, 297]:

• Sampling: Through a sampling technique the configuration or state space is sampled. Several
choices can be made here, including whether the sampling is performed: (i) deterministically
or randomly, and (ii) uniformly or non-uniformly;

• Metric: A cost metric must be defined on the configuration or state space, which returns a
cost between two configurations or states. Although such a metric is often simple to define
for path planning, e.g. distance, in state space this becomes more difficult;

• Nearest Neighbour: To find the ‘closest’ point to the sampled point, a nearest neighbour
or selection algorithm is required;

• Steering function: In order to connect the two configurations or states, a steering function
must be computed for the system. Whereas in path planning this may simply be a straight
line, for systems with differential constraints this may require solving a two-point boundary
value problem (BVP);

• Collision detection: Collision detection typically using a Boolean function involves
determination not only whether a configuration or state lies in the free space, but also
whether the path or trajectory in between is in free space.

For a general overview of sampling-based motion planners see the review by Elbanhawi et al.
[297]. Sampling-based planning may separate pre-processing of the workspace to generate an
interconnected graph and then implement a graph search algorithm in a multi-query approach, or
integrate exploration of the configuration or state space with path/trajectory searching in a
single-query approach [239]. The two most well-known examples of these sampling-based planning
methods are the multi-query probabilistic roadmap (PRM) approach [352], and the single-query
rapidly exploring random tree (RRT) approach [353]. The ability of RRT approaches to effectively
incorporate differential constraints by construction at low computational complexity makes this
class of algorithms ideal for the BT needle channel planning problem formulated in
Subsection 4.3.5.

Figure 6.1: General model for sampling-based motion planning, where a collision detection model separates
the workspace representation from the motion planning algorithm. Figure adapted from Ref. [239].
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6.1.1 Basic rapidly-exploring random tree
Possibly the most commonly known and implemented sampling-based algorithm class in recent
history is that of rapidly exploring dense trees (RDTs), of which most work has been focused on
the subgroup of rapidly-exploring random trees (RRTs), originally developed by LaValle [353].
The former is a generalisation which may use deterministic or random sampling, whereas the
latter subgroup is characterised by using a random sampling strategy. As previous research has
predominantly focused on random sampling strategies, this thesis is limited to rapidly-exploring
random trees. In RRTs, a unidirectional search tree is generated by randomly sampling the
configuration or state space and interconnecting these configurations or states with a tree-like
structure until the goal region is reached [239]. Although initially intended for kinodynamic
planning [353], RRTs have acquired a huge popularity not only for trajectory planning, but also
for path planning due to the simplicity and efficiency of the approach. Pseudocode of the basic
RRT algorithm for path planning is shown in Algorithm 1. In Figure 6.2a and 6.2b the
functioning of the algorithm is illustrated (see MATLAB Script A.1.11 for a working example).

Let us denote the graph or tree generated by RRT as G = (V,E), comprised of the set of vertices
v ∈ V and edges e ∈ E and follow the notation by Karaman and Frazzoli [354]. Moreover, denote
initial and target configurations by qI and qG respectively. In the first step, using the function
Sample, a sample qsamp is randomly drawn from the configuration space C or the free
configuration space Cfree. If this configuration is feasible, i.e. does not lie in Cobs, the Extend

procedure is called which consists of the following steps. Firstly, the nearest neighbour qnear to
this sampled configuration is sought in the already established tree G using the function Nearest

based on the distance metric (line 5 in Algorithm 1). Typically in path planning this concerns an
Euclidean distance metric, i.e. Nearest(G,qsamp) = arg minv∈V ‖qsamp − v‖. Next, the algorithm
tries to connect the two configurations directly by using the Steer procedure. This returns a
configuration qnew that is mathematically ‘closer’, based on the cost metric, to qsamp than qnear
(line 6). This new node qnew is set: (i) equal to the sampled configuration, qsamp, if this
configuration is directly reachable, (ii) at a specified distance from qnear along the edge connecting
these two configurations, or (iii) at another feasible location on this edge. This is followed by
feasibility checks of both the resulting edge and vertex through the procedure Collision free

(line 7), which is a Boolean function returning TRUE if no collision is detected. The goal
configuration qG may be included as a sampled node periodically, to check whether a feasible
connection between the start and goal configuration is possible. If the goal configuration has been
reached successfully (line 10), the vertices and edges are appended to the tree G and the process is
terminated. The algorithm is also terminated when exceeding a maximum number of iterations K.

(a) Illustration of the basic RRT Extend procedure. (b) Basic RRT in a standard environment.

Figure 6.2: Illustrations of the tree expansion and path finding of the basic RRT algorithm outlined in
Algorithm 1. In MATLAB Script A.1.11, the code is provided to generate figure (b).
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Algorithm 1: Basic RRT algorithm [353]

1 V ← qI ; E ← ∅; k ← 0;
2 for k = 1 to K do
3 G← (V,E);
4 qsamp ← Sample() ;

5 qnear ← Nearest(G,qsamp);

6 qnew ← Steer(qnear,qsamp)

7 if Collision free(qnear,qnew) then
8 V ← V ∪ {qnew};
9 E ← E ∪ {qnear,qnew};

10 if qnew = qG then
11 G← (V,E) ;
12 return G

13 else
14 continue;
15 end

16 end

17 end
18 return failure

Probabilistic completeness was shown to be guaranteed for the basic RRT algorithm [355]. Due to
its ability to handle systems with complex dynamics and high-dimensional environments with low
added complexity, it has been widely applied in such environments and for (nonlinear) systems with
differential constraints, such as non-holonomic systems. To enhance the properties of basic RRT,
many different modifications to the vanilla algorithm have been proposed.

6.1.2 Asymptotically optimal rapidly-exploring random tree

As can also be observed in Figure 6.2b, the basic RRT algorithm lacks optimality; in fact, it has
been shown to almost surely converge to a sub-optimal solution [354]. Therefore, several
modifications have been proposed to achieve asymptotic optimality. RRT∗ is the most well-known
asymptotically optimal variant of RRT [354]. Its operation is two-fold. First, it links a newly
generated vertex, qnew, to the vertex in its neighbourhood that ensures that qnew is reached with
minimum accumulated cost. Additionally, this algorithm rewires segments in the tree in favour of
paths of lower cost branching from qnew. The pseudocode of RRT∗ is shown in Algorithm 2.

The first rather subtle difference for RRT∗ in comparison with RRT is that the Nearest-procedure
is used to compute a configuration termed qnearest, opposed to qnear. Although the configuration
qnear identified typically based on a distance metric may be ‘closest’ to the newly added node
qnew, this does not imply that this point ensures the lowest accumulated cost to qnew. Instead,
a node in the neighbourhood of qnew is sought that incurs this lowest cumulative cost according
to a different cost metric (Figure 6.3). First, the set of vertices in the neighbourhood of qnew are
found using the Near procedure (line 9 in Algorithm 2). This set is defined as all vertices in the
current unidirectional graph G = (V,E) that lie within a closed ball of variable radius r|V |, which
is a function of the number of nodes |V |, and is centred at qnew:

Qnear =

{
V ′ ⊆ V

∣∣∣∣∣ v ∈ V,norm(v− qnew) < r|V | = min

{(
γ

ξd

log (|V |)
|V |

)1/d

, δx

}}
(6.1)



6. IMPLEMENTATION OF ROBUST MOTION PLANNING ALGORITHMS Page 117

Algorithm 2: RRT∗ algorithm [354]

1 V ← qI ; E ← ∅; k ← 0;
2 for k = 1 to K do
3 G← (V,E);
4 qsamp ← Sample() ;

5 qnearest ← Nearest(G,qsamp);

6 qnew ← Steer(qnearest,qsamp)

7 if Collision free(qnearest,qnew) then
8 qmin ← qnearest;
9 Qnear ← Near(G,qnew, |V |);

10 for all qnear ∈ Qnear do
11 if Collision free(qnear,qnew) then
12 C ′ ← Cost(qnear)+ C(qnear,qnew);
13 if C ′ < Cost(qnew) then
14 qmin ← qnear;
15 end

16 end

17 end
18 V ← V ∪ {qnew};
19 E ← E ∪ {qmin,qnew};
20 for all qnear ∈ Qnear \ {qmin} do
21 if Collision free(qnew,qnear) and Cost(qnear) > Cost(qnew) +

C(qnew,qnear) then
22 qparent ← Parent(qnear);

23 E ← E \ {qparent,qnear};
24 E ← E ∪ {qnew,qnear};
25 end

26 end

27 end

28 end
29 return G

Here, δx is a predefined maximum radius based on the step size in the Steer-procedure
(δx = δ · v̄t) , d is the dimension of the planning space, ξd the volume of the unit ball in dimension
d, and γ a constant for which γ > 2d(1 + 1/d)µ(Cfree), where µ(Cfree) is used to denote the
volume of the free space. From this formulation one may observe that the radius decreases with
the number of vertices in the tree with factor log(|V |)/|V |. This rate of decrease in the radius is
linked to the reduction of dispersion when uniformly sampling with a sampling-based planner.
Effectively, the planner ensures that each iteration a number of connections proportional to
log(|V |) are attempted [246]. Now define Cost(q) as the total accumulated cost for reaching q,
and C(qi,qj) the cost of traversing the edge between qi and qj . In lines 10-17 using these
procedures, a feasible connection between a node qnear in set Qnear and qnew is sought that
reaches qnew with a lower cost than qnearest. In line 18 the new configuration is added to the list
of vertices, and in line 19 the edge connecting qmin and qnew is added to the list of edges.

In the second step of RRT∗ (lines 20-26) minimum-cost connections from qnew to vertices in the
set Qnear are attempted. The procedure Parent(q) finds the parent of the node q. When a
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(a) Identifying Qnear using Near. (b) Finding minimum cost path. (c) Connecting the new edge.

Figure 6.3: Illustrations of RRT∗ trying to connect qnew to the existing tree along a minimum cost path.

(a) Finding minimum cost path. (b) Removing old edge. (c) Connecting the new edge.

Figure 6.4: Illustrations of RRT∗ rewiring the tree by branching from qnew and replacing redundant edges.

(a) RRT∗ in a standard environment withK = 1000. (b) RRT∗ in a standard environment with K = 3,000.

Figure 6.5: Illustrations of path finding using the RRT∗ algorithm outlined in Algorithm 2. In MATLAB
Script A.1.11, the code is provided to generate these figures.

feasible lower-cost path has been found from qnew to any of the vertices in qnear ∈ Qnear, the
current edge connecting qnear and its parent is deleted (line 23) to maintain the acyclic graph
structure, and the new edge connecting qnew and qnear is added (line 24), see also Figure 6.4. In
Figure 6.5 a demonstration of RRT∗ is shown (based on MATLAB Script A.1.11).

Opposed to RRT, asymptotic optimality is guaranteed for the RRT∗ algorithm, which comes at the
expense of per-iteration computational complexity that is within a constant factor [354]. However,
the convergence of this algorithm may still be slow, especially in the case of high-dimensional or
constrained systems. For systems with differential constraints, finding an optimal solution may
require solving a two-point boundary value problem (BVP). This can be computationally intricate
and for many kinodynamic systems no analytical solutions exist [356, 357].
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6.2 RRT variants for MP of non-holonomic systems
Over the next subsections, a brief overview and illustrations are given of strategies and heuristics
to enhance the performance of RRT and RRT∗-based algorithms. The focus of this overview is on
RRT variants suitable for robust MP of non-holonomic systems in an uncertain environment, such
as the channeled BT needle. Therefore, the focus is shifted from configuration space towards state
space and the corresponding notation is used (see Section 4.1) when applicable.

6.2.1 Sampling strategies
The standard sampling strategy for RRT is a random one, where samples are drawn from a
uniform spatial distribution [358]. Such a scheme allows the planner to explore the free space
through a property known as Voronoi bias and attempts to reduce the dispersion [359]. However,
uniform sampling may waste computational time on non-viable regions. It has been an ongoing
debate whether non-uniform sampling may be beneficial in increasing the convergence of the
algorithm [297]. Two types of non-uniform sampling include importance sampling and adaptive
sampling [360]. In importance sampling strategies the sampling scheme remains fixed during
planning, opposed to adaptive sampling strategies where this scheme is altered based on changes
encountered in the planning. Goal biasing, in which expansion of the tree towards the target point
or region is promoted, is one of the most common forms of importance sampling [358]. A similar
strategy is to try to connect the existing tree greedily to the target point or region. Although this
is not necessarily a sampling strategy, this scheme is generally recommended in order to increase
convergence as long as randomisation can be maintained [297]. Other typically used importance
sampling strategies include: (i) obstacle-biased sampling, e.g. medial axis (away from obstacles) or
boundary and Gaussian (around obstacles) bias, (ii) region-based sampling, e.g.
heuristically-guided bias (in the low-cost direction), (iii) narrow-region sampling, e.g. bridge test
(mid-way bias in a narrow tunnel region), (iv) path-biased sampling, e.g path-biasing (based on
previously planned paths), and (v) their equivalents for uncertain environments
[297, 358, 361, 362]. An interesting path-biasing approach is used in RRT∗-Smart, where an
optimised path is established by interconnecting directly visible nodes once a path is found [363].
This optimised path is then used to define bias points for intelligent sampling as to increase the
rate of convergence of RRT∗.

Adaptive sampling has been implemented especially for algorithms that aim to achieve asymptotic
optimality through rewiring, such as RRT∗, or algorithms dealing with dynamical systems. As an
example of the former, in order to increase the rate of convergence one may actively reduce the
search space during the planning [358]. In Informed RRT∗, after an initial solution has been
found, the sampling is focused on an ellipsoidal domain generated around this initial solution
[362]. The size of this sampling domain, i.e. ellipsoid, is reduced upon improving the solution.
However, due to its difficulty in scaling to higher dimensions and reliance on RRT∗, this sampling
technique may not be applicable for the planning of non-holonomic systems. Other informed
sampling based variants such as BIT∗, which instead of decreasing the sampling domain gradually
increases this domain, may improve on its performance [364]. For systems with differential
constraints, a modified adaptive sampling strategy is used in Reachability-Guided RRT
(RG-RRT) [365]. This algorithm limits the set of nodes that need to be evaluated for the
nearest-neighbour pairing to the nodes from which the sample is actually reachable. A sampled
node is then only added to the tree if it is closer to the nearest point in the reachable set than to
the nearest node in the tree. By confining this search to a small region of the configuration space
and maintaining a sparse tree structure, the rate of convergence is increased.
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In the case of a holonomic agent, which is constrained to move in a straight line, exploration of
the search space can be made more efficient by growing a tree from the target configuration or
state as well, known as bi-directional RRT [239]. However, attempting to connect these trees for a
differentially constrained system requires solving the two-point BVP [297], and therefore for these
systems growing a unidirectional RRT is usually more appropriate.

Sampling may be performed in state space X for trajectory planning, i.e. as to directly sample a
needle pose. However Patil et al. argue that for non-holonomic systems such as a steerable needle
it works better in practice to sample in Euclidean space, Rn, instead [89].

6.2.2 Metric

The selection of an accurate metric is a difficult process, but of utmost importance for the
appropriateness of the solutions and performance of the algorithm [366]. For holonomic systems,
typically the weighted Euclidean distance metric is used. For non-holonomic systems, the
Euclidean distance metric may be misleading as nodes that are physically closest based on
Euclidean distance may actually be inconvenient to reach [366]. On the other hand, calculating
the actual cost-to-go for these systems may be too computationally intensive, especially since the
metric function is frequently evaluated. For steerable needles with non-holonomic constraints, the
following reachability-guided distance measure has been proposed to define nearest neighbours
(see also Figure 4.7) [367]:

ρ =

{
(θt+δ − θt)/κt, if κt = {R | |κt| < κ̄, κt 6= 0}
∞, else

(6.2)

The reasoning behind this metric, similar to that of RG-RRT, is to only evaluate nearest
neighbours from which the sampled node is reachable. During the step of duration δ the curvature
of the trajectory is assumed to remain constant. As the sampling for a non-holonomic agent is
preferably done in Euclidean space, conversion from a stationary world frame to the body-fixed
Frenet–Serret frame is required to evaluate κt and θt+δ from a sampled point. This expression can
be solved fully analytically.

In order to evaluate the quality of a motion of the non-holonomic agent in an adverse environment, an
appropriate cost functional f(·) must be constructed. An admissible cost-functional for evaluating
the quality of a path or trajectory in an asymptotically optimal approach must be a function that
maps a configuration or state into a non-negative real number and satisfies monotonicity, additivity
and Lipschitz continuity [262]. Denote the accumulated cost of motion from the start to a certain
state or node xitN at time tN for the ith agent as [262]:

C[xitN ] =

tN∑
t=0

f(uit,x
i
t) (6.3)

This function up to state xitN may be recursively constructed as follows:

C[xitN ] = C[xitN−δ] + f(uitN−δ,x
i
tN−δ) (6.4)

Here, C[xitN−δ] denotes the accumulated cost of the parent state of xitN , and f(uitN−δ,x
i
tN−δ) the

cost for applying control action uitN−δ when at state xitN−δ.
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6.2.3 Nearest neighbour

Establishing the nearest neighbours can be a computational bottleneck in RRT variants or other
sampling-based MP algorithms [368]. Selection of the nearest neighbour can be done through
establishing the node in the existing tree that is ‘closest’ to the sampled point according to the
reachability-guided distance measure in Eq. 6.2. However, in a brute force approach this requires
checking all the neighbours, a procedure taking O(cN) time for N nodes where c is the constant
finite time used for the distance computation [354]. Sub-linear nearest neighbour algorithms have
been introduced [354], such as k-d trees, which are potentially able to reduce this worst-case
complexity to O(c log (N)), with c a constant. However, these may scale exponentially with the
dimension of the workspace [354], and may be more expensive than the naive algorithm when
bounding boxes must be computed around reachability sets [357]. Approximate nearest neighbour
algorithms are computationally cheaper, but may limit exploration of the search space and have
not been implemented with reachability-guided distance metrics.

Another option is not to select a single nearest neighbour, but instead allow the algorithm to seek
connections with the k-nearest neighbours in the Nearest procedure, and search from these parent
vertices the optimal one to branch from. The drawback of such an approach is computational
overhead [297]. The k-nearest neighbours algorithm may also be used for the Near procedure in
RRT∗ instead of the radius-based formulation in Eq. 6.1. To achieve asymptotic optimality, k, a
positive integer, is defined as a function of the cardinality of the list of vertices V [246]. This means
that Qnear is of the order O(kRRG log(|V |)), where kRRG is a constant, such that the same amount of
calls are made to the local steering method and collision checker [369]. Alleviating this complexity
by trading asymptotic optimality for near asymptotic optimality has been proposed [369].

6.2.4 Steering function

For a non-holonomic system, computing the steering function between two states requires solving
a two-point Boundary Value Problem (BVP). For many differential-constrained systems finding an
optimal trajectory is not trivial and closed-form solutions are only available for specific systems
[356, 357]. For example, Kinodynamic RRT* has been proposed for systems with differential
constraints and preserves asymptotic optimality guarantees [357], but this is only suitable for
systems with linearised dynamics. Similarly, LQR-RRT∗ relies on locally linearising the system’s
dynamics [370]. Some other works construct an approximate steering function, which inevitably
lead to non-optimal solutions as the rewiring operation of RRT∗ cannot be directly implemented.
A common approach for non-holonomic steerable needles is to first determine from which near
states xnear the sampled point xsamp is reachable. Then, the control inputs u = [vt, κ]T are
(randomly) sampled and it is establish which of these controls -when applied from a near state
xnear- leads to a state closest, i.e. in terms of Euclidean distance, to xsamp [89]. Opposed to
random sampling, selection from a fixed set has also been suggested [371]. Jeon et al. use a
shooting method in combination with a bisection algorithm to determine the control input that
brings the new state in proximity of the sampled node [356]. However, this approach may also be
computationally cumbersome.

The main problem when approximating the steering function arises with the rewire operation,
which a vital step in RRT∗ in order to achieve asymptotic optimality. The discrepancy between the
final state of the steering procedure executed from xnew and the near state xnear affects all child
vertices of xnear which may become infeasible (Figure 6.6a). In this case, the simplest solution is to
delete all the children nodes from a node xnear when a lower cost trajectory to this node is found
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(a) xnear can be reached with a lower cost from xnew than from e0.
When connecting e2, e1 is no longer kinematically feasible.

(b) The edge e1 is deleted and
the tree is rewired with e2.

Figure 6.6: Illustration of the problem with rewiring when using an approximate steering function.
Computational time is wasted by discarding previously computed feasible trajectories. Figure adapted from
Ref. [372].

(a) Cost of xnear,1 is lower than xN ;
reconnection not performed.

(b) Cost of xN is lower than xnear,2;
reconnection is performed.

(c) Connecting the new edge
and removing old node xnear,2.

Figure 6.7: Illustrations of the reconnect procedure in DT-RRT. (a) The planner first tries to connect
qnew and qnear,1, but the accumulated cost of reaching xnew and xN from xnew is higher than the cost to
xnear,1. The planner moves onto the next point in Qnear. (b) The cost of reaching xN is lower than that of
xnear,2 and therefore in (c) xnear,2 is removed from the state tree and the workspace tree is reconnected.

(Figure 6.6b). However, by deleting all child nodes computational time is wasted. Instead, one
may store the controls used for reaching these children nodes and re-propagate these when a lower
cost solution to xnear is found [356]. However, this may sacrifice soundness of trajectories. In the
dual-tree RRT (DT-RRT) approach by Moon et al., both a workspace and a state space tree are
stored [372]. When a node xnear can be reached with lower accumulated cost, instead of deleting the
children nodes and the edge connecting these, only xnear is removed from the list of vertices and the
child edges and vertices are retained (Figure 6.7). It was shown that this reconnect procedure results
in trajectories of higher quality at a slight increase in computational complexity. One other benefit
of this approach is that trajectories are retained, which is convenient for multi-agent planning and
for exploring the search space. A variant of this algorithm known as DT-RRT∗ uses a double-tree
structure in which extension and optimisation procedures are separated [373]. However, this relies
on solving BVPs via clothoid fitting.
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6.2.5 Collision detection
The collision detection module plays an essential role in RRT and its variants as it allows to not
establish an explicit representation of the environment (see Figure 6.1). Collision detection is one
of the main computational bottlenecks in sampling-based motion planning, perhaps constituting
up to 90% of the total planning time complexity [297], although its influence is traded off for
nearest neighbour searching for an increasing number of samples in the search space [368]. For
that reason, other strategies than naive collision checking, i.e. incremental checking at a specified
interval, have been proposed to reduce the complexity. Lazy strategies, to only call upon collision
detection after having established a path or trajectory, or to delay collision checking until these
are likely encountered, may drastically decrease the computational time of the algorithm [374].
This type of strategies especially works well when infeasible configurations or states are not
frequently encountered and when trajectory discretisation is sufficiently fine. For complex agent
and environment models a two-phase strategy may be used: (i) the broad phase, where collision
detection is performed using simple conservative bounding boxes, and (ii) the narrow phase, in
which a more accurate representation for collision checking is required [239]. Continuous-time
safety, i.e. also in between discretised time steps, may be guaranteed through swept volumes and
computing the signed distance field [286]. In the narrow phase however, continuous-time collision
checking requires approximately twice as many function evaluations.

To reduce the computational complexity for a single collision check, the complexity of objects such
as the agent or obstacles may be reduced by computing bounding volume hierarchies (BVH).
Common forms include bounding sphere, axis-aligned bounding box, oriented bounding box,
convex hull and swept sphere volume methods [239, 368, 374]. These methods differ in their
accuracy in reproducing the object and complexity in which collisions/intersections can be
evaluated.

For systems with differential constraints, predicting whether collisions would likely occur when
propagating the system after partial planning is useful. Conservative approximations of inevitable
collision states (ICS), which are states that regardless of the selected control inputs end up in
collision, have been used to prune trajectories in RRT [375]. However, such formulations are
usually more applicable to kinodynamic planning, which include accelerations, over kinematic
non-holonomic planning [371].

6.3 RRT and reconnect-tree RRT for non-holonomic systems

6.3.1 Implementation of RRT for non-holonomic systems with unicycle
kinematics

In this section, a RRT variant is described that is suitable for trajectory planning of a
non-holonomic unicycle model. State propagation is modelled in this RRT variant using Lie group
theory on SE(2), as described in Equation 4.3.4, and is similar to the work by Patil et al. on
SE(3) [89]1. Extension to a higher order space, e.g. SE(3), is therefore trivial. The pseudocode of
this variant is shown in Algorithm 3.

Let us denote workspace points pt by their Euclidean coordinates [Xt,Yt]
T . States, xt, are

expressed in generalised coordinates [xt, yt, θt]
T . Allowed control inputs for the system are denoted

1Note that Patil et al. describe the state of the agent in Xt ∈ SE(3). In this work, planning is not actually performed
on SE(2); i.e. the state of the agent xt is described in generalised coordinates. For state propagation, (i) the state
xt is mapped to SE(2), Xt = x̂t, (ii) control inputs are applied for a constant duration δ and Xt+δ is computed, and
(iii) the result is mapped back to generalised coordinates xt+δ.
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Algorithm 3: SE(2)-RRT for non-holonomic systems with unicycle kinematics (adapted
from Ref. [89])

1 XV ← xI ; XE ← ∅; k ← 0;
2 for k = 1 to K do
3 XG← (XV,XE);
4 psamp ← Sample free() ;

5 Usamp ← ∅; Csamp ← ∅; ;
6 for xt ∈ XV do
7 [Usamp, Csamp]← [Usamp, Csamp] ∪ Reachable(xt,psamp);

8 end
9 [unear,xnear]← Nearest reachable(Usamp, XV,Csamp);

10 xnew ← Steer control(unear,xnear);
11 Xsteps ← Intermediate states(unear,xnear,xnew);
12 if Motion free(Xsteps) then
13 XV ← XV ∪ {xnew};
14 XE ← XE ∪Xsteps;
15 if xnew ∈ XG then
16 XG← (XV,XE) ;
17 return XG

18 else
19 continue;
20 end

21 end

22 end
23 return failure

by u = [vt, κt]
T , with control limits vt ∈ [0, v̄t] and κt = {R | |κt| < κ̄, κ 6= 0}. Only a state tree

XG = (XV,XE) is in this algorithm constructed. First, a collision-free configuration psamp is
sampled in Euclidean space R2 (line 4)2. This sampling is performed uniformly with the procedure
Sample free (line 4). The only form of biasing used in this procedure is that on average in one of
every hundred iterations an attempt to greedily connect the existing tree to the target point is
performed, as is recommended [239]. Reachability-guided sampling could potentially speed up the
search [282, 365], but is not yet used in this work. After a sample has been generated, this is
followed by a conservative collision check as the orientation of the agent is not yet determined.
The nearest neighbour xnear is then determined by checking whether psamp is reachable from
previous states in the graph XG = (XV,XE) through the operations Reachable and
Nearest reachable. The procedure Reachable computes the controls u = [vt, κt]

T to reach
psamp from xnear ∈ XV , and assigns infinite costs to invalid control inputs (line 7).
Nearest reachable filters the nearest node based on the distance along the curve (line 9). This
brute force approach results in evaluating the Reachable procedure O(N) times per iteration. It
would be more computationally efficient to for example approximate and store reachable states for
each xt ∈ XV as to limit the amount of function calls to Reachable [365]. This, however, relies on
the existence of a simple geometric shape that could approximate the reachable region of a state.

2In SE(3) sampling would be performed in R3 for workspace points qt = [Xt,Yt,Zt]
T . The state would be denoted

as xt = [xt, yt, zt, θt, φt, ψt]
T . Control inputs are u = [vt, κt, τt]

T



6. IMPLEMENTATION OF ROBUST MOTION PLANNING ALGORITHMS Page 125

In order to compute the controls u = [vt, κt]
T analytically, it may be observed that the two upper

right entries in pose Xt+δ in Eq. 4.25 denote the positional displacements p̃t = [x̃t, ỹt]
T = [Xt+δ −

xt,Yt+δ − yt]T in R2 as a function of the control inputs u. The origin of state xt is defined at the
needle tip which means that the displacement is given by: p̃t = pt+δ. This yields the following
analytical results (assuming all variables are real numbers):

κt =
(2Yt+δ · cos(θt)− 2Xt+δ · sin(θt))

(X2
t+δ + Y2

t+δ)
; (6.5)

vt =

(
(Xt+δ sin(θ) + Yt+δ cos(θ))(X2

t+δ + Y2
t+δ)

)(
2δ(Y2

t+δ cos(θ)2 −X2
t+δ sin(θ)2)

) · (tan−1(sin(2θ) · (Y2
t+δ −X2

t+δ) + 2Xt+δYt+δ cos(2θ),

2Xt+δYt+δ sin(2θ) + cos(2θ)(Xt+δ −Yt+δ)(Xt+δ + Yt+δ)))

(6.6)

In the degenerate case of κ = 0, a small perturbation of 1E−5 is applied [89]. Multiplying vt with
duration δ results in an expression for the traversed distance λt along the tangent direction of the
needle that is solely based on inputs Xt+δ = psamp,x, Yt+δ = psamp,y, and the initial heading θt.
From the states in the tree that do not require exceeding control limits to reach psamp, i.e. from
which psamp is reachable, the state xnear that uses the smallest step size λt is sought.
Additionally, the associated control input unear is stored.

For the steering procedure, Patil et al. sample random controls and determine which set of
controls gets nearest with the Euclidean distance metric [89]. However, as this set of controls is
readily available from the operator Reachable, these can directly be applied from xnear to obtain
a new state xnew through the procedure Steer control. Using sampling to obtain controls could
still be a beneficial approach, which has been previously implemented by the author. In this case,
defining xnear should not be done based on an Euclidean metric. Rather, another evaluation of
Reachable and Nearest reachable may be required to more accurately reflect the cost-to-go,
which can become costly.

To detect whether the trajectory connecting xnear and xnew is feasible, incremental checking is
performed by first discretising this trajectory through the procedure Intermediate states,
resulting in a set of states Xsteps (line 11). The resolution of this discretisation is determined
based on the smallest dimension of the agent. Then, collision checking is performed per state in
the set Xsteps. Although it was established that approximation of the shape of the agent and the
use of a point-in-polygon (PIP) problem solver was computationally efficient for this problem, an
exact polygon-polygon intersection algorithm could viably be used at the cost of a slight increase
in planning time. Only if all of the states are determined to be collision-free using Motion free

(line 12), the state xnew is added to the list of vertices (line 13) and the edge containing all the
intermediate steps to the list of edges (line 14). Although one could choose to add the
intermediate states as well to the tree, when using a sufficiently small maximum step length this
was not deemed necessary in this approach. In Figure 6.8 two demonstrations of RRT for
non-holonomic systems in SE(2) are shown (based on MATLAB Script A.1.13).

6.3.2 Implementation of a reconnect-tree variant of RRT for non-holonomic
systems with unicycle kinematics

The standard RRT algorithm is only able to plan feasible motions, and cannot assure high-quality
solutions. Asymptotically optimal sampling-based motion planning may be computationally
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(a) RRT SE(2) in a standard environment with κ̄ =
30 m−1 and δ = 0.01 s.

(b) RRT SE(2) in a standard environment with κ̄ =
40 m−1 and δ = 0.01 s.

Figure 6.8: Illustrations of two trajectory planning solutions for a non-holonomic system with unicycle
kinematics using the RRT SE(2) algorithm outlined in Algorithm 3. In MATLAB Script A.1.13, the code is
provided to generate these figures.

intricate for non-holonomic systems. In this work a different approach is therefore used to plan
the motion of a non-holonomic system, based on the reconnect-tree procedure of DT-RRT. In
DT-RRT, sampling and nearest neighbour search are performed in Euclidean space from the
workspace tree [372]. Feasibility of the trajectory and kinematic and dynamic constraints are then
considered using the state tree. The idea of DT-RRT to maintain two separate trees is particularly
attractive for systems of which approximate steering functions are available; i.e. where the states
do not directly reside with planned configurations. However, for the motion planning of systems
with unicycle kinematics on SE(2) or SE(3) an analytic solution for reaching a sampled point
from a state is available. In this work only the state graph XG = (XV,XE) is retained, of which
its members are data structures e.g. containing the pose, cost-to-reach, and children and parent
vertices/edges. The ideas of sampling in Euclidean space and finding the nearest neighbour based
on a reachability-guided search by Patil et al. [89, 367], establishing the minimum-cost trajectory
from a set of near states in RRT∗ [354], and the reconnect-tree procedure from DT-RRT [372], are
therefore leveraged in this work. The pseudocode of this algorithm is given in Algorithm 4.

First, similar to the RRT variant previously described for non-holonomic systems, a point psamp
is sampled in Euclidean space R2 (line 4), and the nearest reachable state xnearest is determined
based on the reachable distance metric (lines 5-9). Then, the system is steered towards xnearest such
that state xnew is obtained (line 10). The connection between xnearest and xnew is not necessarily
that of minimum cost. The cost functional f(·) proposed for this type of algorithm is a linear user-
weighted additive function, f(uit,x

i
t) =

∑nc
l=1

[
αl · fl(uit,xit, E i)

]
, which is composed of components

for trajectory length and curvature and is constructed using Eq. 6.4:

f(uit,x
i
t) = αD · δvit + ακ · δκit (6.7)

Length and curvature both act to minimise the control effort of the non-holonomic system. In
order to assure asymptotic convergence towards the optimum cost, the cost function must first be
monotonic [354]. Let us denote the concatenation of two trajectories x̃1 and x̃2 as x̃1 | x̃2 [262].
For monotonicity it must be shown that C(x̃1) ≤ C(x̃1 | x̃2). Although weights αD, ακ ≥ 0 and
parameters δ, vit ≥ 0, the curvature κt, however, is not non-negative and hence f(uit,x

i
t) ≥ 0 is not

monotonic. Moreover, the cost must be Lipschitz continuous, which is shown for a similar cost
function formulation by Luders et al. [262]. However, Lipschitz continuity is not assured for κt
which is modelled as a piecewise function to avoid degenerate case of κt = 0. Therefore, the cost
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Algorithm 4: Reconnect-tree RRT for non-holonomic systems with unicycle kinematics

1 XV ← xI ; XE ← ∅; k ← 0;
2 for k = 1 to K do
3 XG← (XV,XE);
4 psamp ← Sample free() ;

5 Usamp ← ∅; Csamp ← ∅; ;
6 for xt ∈ XV do
7 [Usamp, Csamp]← [Usamp, Csamp] ∪ Reachable(xt,psamp);

8 end
9 [unearest,xnearest]← Nearest reachable(Usamp, XV,Csamp);

10 xnew ← Steer control(unearest,xnearest);
11 Xsteps ← Intermediate states(unearest,xnearest,xnew);
12 if Motion free(Xsteps) then
13 xmin ← xnearest;
14 Xmin,steps ← Xsteps;
15 Xnear ← Near(XG,xnew, |XV |);
16 for all xnear ∈ Xnear do
17 [unear, cnear]← Reachable(xnear,x

∗
new);

18 xnew,cand ← Steer to state(unear,xnear);
19 C ′ ← Cost(xnear)+cnear;
20 if C ′ < Cost(xnew) then
21 Xnear,steps ← Intermediate states(unear,xnear,xnew,cand);
22 if Motion free(Xnear,steps) then
23 xmin ← xnear; xnew ← xnew,cand;
24 Xmin,steps ← Xnear,steps;

25 end

26 end

27 end
28 XV ← XV ∪ {xnew};
29 XE ← XE ∪Xmin,steps;
30 for all xnear ∈ Xnear \ {xmin} do
31 [unew, cnew]← Reachable(xnew,x

∗
near);

32 xnew,near ← Steer to state(unew,xnew);
33 C ′′ ← Cost(xnew)+cnew;
34 if C ′′ < Cost(xnear) then
35 Xnew,steps ← Intermediate states(unew,xnew,xnear);
36 if Motion free(Xnew,steps) then
37 xparent ← Parent(xnear); Xchildren ← Child(xnear);
38 Parent(Xchildren) ← xparent;
39 XV ← XV \ {xnear} ∪ {xnew,near};
40 XE ← XE ∪Xnew,steps;

41 end

42 end

43 end

44 end

45 end
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(a) SE(2) reconnect-tree RRT variant in a standard
environment with K = 3,000, κ = 40 m−1 and δ =
0.01 s.

(b) SE(2) reconnect-tree variant in a standard
environment with K = 4000, κ = 40 m−1 and
δ = 0.01 s.

Figure 6.9: Illustrations of two trajectory planning solutions for a non-holonomic system with unicycle
kinematics using the DT-RRT variant outlined in Algorithm 4. In MATLAB Script A.1.14, the code is provided
to generate these figures.

function in Eq. 6.7 is not well-behaved, and only the trajectory length is at this stage included in
the per-time step cost metric. If the trajectory between xnearest and xnew as discretised in Xsteps

is feasible, the minimum-cost trajectory to xnew is sought from existing nodes in the tree Xnear

(lines 16-27). First, the set of nearest nodes Xnear is determined through the use of Eq. 6.1 (line
15). From all states in this set, the procedure Reachable is used to determine the controls and
cost to reach the candidate new state xnew,cand (line 17). The asterisk (∗) is used here to mark the
conversion of the state x to a point in Euclidean space p. These controls are then used in the
steering procedure Steer to state (line 18), which contrary to Steer control is not limited by
the maximum step size allowed. xnew,cand has the same coordinates in Euclidean space as xnew,
but a different pose. When the cost of reaching xnew,cand is lower than the current cost of reaching
xnew, and this new trajectory is feasible, the candidate state is set as the current state
xnew,cand = xnew. This procedure is repeated for all states in the set Xnear.

The procedure to reconnect the tree upon having established a new state in this thesis is based on the
reconnect-tree scheme in DT-RRT [372], which is a variant of the rewire-procedure in RRT∗. First,
the controls and cost-to-reach are computed for all the trajectories between the newly generated
state xnew and remaining states in its neighbourhood xnear ∈ Xnear \ {xmin} (line 31). The system
is then steered towards xnew and the new pose xnew,near is obtained. If the cost to reach xnew,near
from xnew is lower than the current cost of xnear and the trajectory is feasible, then the parent and
possible children states of xnear are determined (line 37). If applicable, the parent of the children
state(s) is changed to xparent and the node xnear is replaced by xnew,near in the list of states.
Lastly, the trajectory between xnew and xnew,near is added to the list of edges. In this approach,
the trajectory between xnew and xnear is not deleted and children states are retained even when
a trajectory of lower cost is found, similar to DT-RRT [372]. In Figure 6.9 this RRT variant is
illustrated for a non-holonomic system with unicycle kinematics in a standard environment (based
on MATLAB Script A.1.14).

6.4 Bounded uncertainty RRT
Bounded uncertainty RRT, BU-RRT∗, is an asymptotically optimal sampling-based planner which
can guarantee absolute feasibility for systems with linear dynamics subject to bounded noise,
uncertainty in configuration knowledge, and/or environment knowledge [259]. This algorithm was
shown to be probabilistically complete under mild assumptions. Through the use of
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trajectory-wise constraint checking, BU-RRT∗ is able to plan trajectories in real time with similar
complexity to the conventional RRT algorithm. The formulation here is analogous to the
framework presented in Section 4.3 and a heavy simplification of the work by Luders and How
[259]. Only uncertainty in environmental knowledge is considered. In this case, the bounded
uncertainty formulation by Luders and How boils down to expanding obstacles with the bounded
uncertainty through the Minkowski sum Xj ⊕ Sj [259]. Nevertheless, the bounded uncertainty
framework is still briefly introduced here as it allows for incorporating different uncertainty
sources if desired for future work. Obstacles of known geometry with a bounded uncertain
placement can be expressed as:

Xj = Xj,0 + cj ∀j ∈ Z1,no (6.8a)

cj ∈ Sj ∀j ∈ Z1,no (6.8b)

Here, Sj is a convex polytopic set which is a conjunction of linear inequalities: Sj = {cj | Ejcj ≤
fj}3. It has been previously shown (Eq. 4.15) that these obstacle collision avoidance constraints
can equivalently be formulated via the following disjunction:

nj∨
k=1

aTjkx
i
t ≥ aTjkCjk + r ∀t ∈ Z0,T , ∀j ∈ Z1,no , ∀i ∈ Z1,nx (6.9)

Here, Cjk = ĉjk + cj , with ĉjk a point on the kth constraint line of the jth obstacle, cj ∈ S the
bounded displacement, and r the radius of the agent. To assure robust feasibility, for each
individual collision avoidance constraint with bounded uncertainty it satisfies to take the tightest
possible bound on the uncertainty. Introducing the deterministic tightening parameter,
ηcj = maxcj∈Sj (a

T
jkcj), one may establish:

nj∨
k=1

max
(
aTjkCjk + r

)
=

nj∨
k=1

aTjkĉjk + r + max
(
aTjkcj

)
=

nj∨
k=1

aTjkĉjk + r + ηcj (6.10)

As this tightening is time and control input invariant, the constraint tightening parameter ηcj can
be offline, i.e. a priori, computed. A similar strategy would be used to include uncertainty from
other sources. For example, one could include state and time-independent uncertainty in
configuration knowledge by denoting the agent’s position as xit = x̂it + x̃i0, where x̃i0 ∈ Sx. Next,
the deterministic tightening parameter becomes: ηxj = minx̃i0∈Sx

aTjkx̃
i
0, which is in this case

subtracted on the right hand side from Eq. 6.9. Including state-dependent uncertainty sources for
the non-linear non-holonomic system in this formulation requires linearisation of the system’s
kinodynamics for predicting the propagation of uncertainty. The robust collision avoidance
constraints for a problem with only bounded uncertainty in environmental knowledge can be
described as one of the following equivalent relations:

xit /∈ Xj ⇐⇒ ¬(Ajx
i
t ≤ bj)⇐⇒

nj∨
k=1

aTjkx
i
t ≥ aTjkĉjk + r + ηcj (6.11)

To enforce the robustness constraints, BU-RRT∗ checks a generated sequence between two states
for feasibility via the procedure Robustly feasible [259]. Algorithm 4 therefore only requires
slight modifications to lines 12, 22 and 36 for implementation with bounded uncertainty to check
whether the generated intermediate states Xsteps are robustly feasible.

3If the bounded uncertainty set is non-convex, as long as this set can be written as the union of polytopic sets it can
still be used [259].
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(a) Bounded uncertainty SE(2) reconnect-tree RRT
variant in a standard environment with K = 3,000,
κ = 40 m−1, and δ = 0.01 s.

(b) Bounded uncertainty SE(2) reconnect-tree RRT
variant in a standard environment with K = 4000,
κ = 40 m−1, and δ = 0.01 s.

Figure 6.10: Illustrations of two trajectory planning solutions for a non-holonomic system with unicycle
kinematics where one obstacle has bounded position uncertainty. In MATLAB Script A.1.15, the code is
provided to generate these figures.

Consider the scenario where the agent is rectangular-shaped (w = 2.5 mm and L = 5 mm) and
must avoid collision with an uncertain obstacle that has a bounded displacement. A conservative
bounding sphere with r = 3 mm is therefore constructed around the agent and orientations of the
agent are neglected. The obstacle in the centre of the workspace is defined through the following
set of (deterministic) parameters:

A1 =


1 0
−1 0

0 1
0 −1

 , b̂1 =


38
−32

28
−18

 mm, ĉ11 =

[
38
18

]T
, ĉ12 =

[
32
28

]T
, ĉ13 =

[
32
28

]T
, ĉ14 =

[
38
18

]T
mm

Moreover, this obstacle has a positional uncertainty which is captured by:

E1 =


1 0
−1 0

0 1
0 −1

 , f1 =


2
2
1
1

 mm

In the worst case, the displacement c1 is equal to [−2,−1]T , [−2, 1]T , [2,−1]T or [2,−1]T mm,
in which case ηc1 is equal to f1. To account for obstacles with bounded uncertainty the dual-tree
inspired RRT variant is slightly modified and implemented in MATLAB Script A.1.15. Figure 6.10a
and 6.10b show the lowest cost trajectory returned by this algorithm for the non-holonomic system
with unicycle kinematics. The objective function in this example is solely based on minimising the
trajectory length.

6.5 Analytical chance constrained RRT
Characterising the uncertainty in a probabilistic approach may have several advantages over a
set-bounded approach. Foremost, the specification of the probability of constraint violation allows
the user to trade conservatism of the motion planning algorithm against a conflicting measure of
performance or feasibility of the generated trajectories. One convenient way of capturing this
relation is through the use of chance constraints [258]. These chance constraints directly specify
the allowed probability of constraint violation. Chance constrained programming has been
commonly applied to robust model predictive control (MPC) [376]. Chance constraints may be
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joint, i.e. spanning over a larger planning horizon, or individual [376]. Unfortunately, the
evaluation of joint chance constraints requires the computation of an integral over a known
multivariate (Gaussian) distribution [264]. Two ways of handling joint chance constraints are: (i)
analytical methods, such as ellipsoidal relaxation, or techniques revolving around Boole’s
inequality, or (ii) sampling methods, such as the scenario approach, convex bounding method,
mixed-integer linear programming [376, 377]. Sampling techniques only approximate the chance
constraints or the underlying probability distribution and can therefore never give guarantees on
the feasibility [264]. Moreover, these methods are typically overly conservative and have a
moderate computational complexity [377]. Instead, analytical methods can give (probabilistic)
soundness guarantees at low computational cost. However, these methods also typically introduce
conservativeness and are only applicable under mild restrictions, such as the assumption that the
probability distributions are Gaussian. An approach that only introduces minor over-
conservativeness and has a low computational complexity has been introduced by Blackmore et al.
for MPC [264]. This work proposes to decompose joint chance constraints into a sequence of
individual chance constraints, which can be evaluated accurately as univariate probability
distributions, and to upper bound these using Boole’s inequality. Then, the resulting linear chance
constraints may be exactly converted to deterministic constraints, which can be used in a motion
planning algorithm. Blackmore’s chance constraint formulation has been extended to RRT and to
include both time-step-wise and path-wise chance constraints by Luders et al. [258]. Chance
constrained RRT, known as CC-RRT, and its asymptotically optimal variant CC-RRT∗, have
both shown to be capable of producing probabilistically feasible paths in real-time, under the
assumption of Gaussian uncertainty [258, 262]. This framework is simplified and introduced for a
non-holonomic system with uncertainty in environment knowledge only.

In this thesis, in a probabilistic uncertainty scenario the obstacles are modelled as convex polytopic
sets with uncertain translation following a Gaussian distribution:

Xj = Xj,0 + cj ∀j ∈ Z1,no (6.12a)

cj ∼ N (0, Pcj ) ∀j ∈ Z1,no (6.12b)

Consider the desire to limit the probability of collision with any of the obstacles of the entire
sequence of states to at most ∆, i.e. P(xit /∈ Xj) ≥ 1 − ∆. Then via Boole’s bound it can be
shown that it is sufficient to limit the probability of each collision event Oj to ∆/no, where no is
the amount of obstacles [276]:

P(collision) = P(O1 ∪O2 ∪ . . . Ono) ≤
no∑
j=1

(P(Oj)) =

no∑
j=1

(∆/no) = ∆ (6.13)

Regarding the linear collision constraints for defining an obstacle region Xj in Eq. 4.6, a collision
only occurs when all linear inequalities in the conjunction are satisfied. Therefore, the probability
of a collision for the jth obstacle can be written as [258]:

P(Oj) = P

( nj∧
k=1

aTjk
(
xit −Cjk

)
− r < 0

)
≤ P

(
aTjk
(
xit −Cjk

)
− r < 0

)
(6.14)

The right hand side of this equation provides an upper bound on the probability of collision which
reflects that for any two events A and B, the probability of both occurring is always less than or
equal to the individual probabilities: P(A ∧B) ≤ P(A), P(A ∧B) ≤ P(B) [264]. To ensure that no
collision occurs with a particular obstacle, it is sufficient to guarantee that the constraint violation
for one of the linear constraints of that obstacle is less than or equal to the probability ∆/no:
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nj∨
k=1

P
(
aTjk
(
xit −Cjk

)
− r < 0

)
≤ ∆/no (6.15)

Now assuming that Cjk follows a Gaussian distribution, this probabilistic chance constraint may be
converted into a tightened deterministic constraint. Blackmore et al. therefore consider a change
of variable to the single-variate random variable V [264]. This variable V represents the distance
between the agent and the obstacle and can therefore for this work be computed as follows [258]:

V = aTjk
(
xit −Cjk

)
− r (6.16)

Where,
v̂ = E[V ] = aTjk

(
xit − Ĉjk

)
− r = aTjk

(
xit − ĉjk

)
− r (6.17a)

Pv =
√

(E[(V − v̂)(V − v̂)T ]) =

√(
E
[
(aTjk(Cjk − ĉjk))(a

T
jk(Cjk − ĉjk))T

])
=

√(
aTjk (E [(Cjk − E[Cjk])(Cjk − E[Cjk])T ]) ajk

)
=

√(
aTjkPcjajk

) (6.17b)

Note that uncertainty in the state knowledge can easily be incorporated in this formulation by
considering that xit follows a Gaussian distribution as well. The chance constraint in Eq. 6.15 is
therefore equivalent to the chance constraint

∨nj
k=1 P (V < 0) ≤ ∆/no and can be converted to the

following equivalent deterministic constraint [264]:
nj∨
k=1

P (V < 0) ≤ ∆/no ⇐⇒ v̂ ≥
√

2Pv erf−1(1− 2∆/no) (6.18)

For a more elaborate description see the work by Luders et al. [258]. The constraint in Eq. 6.15 is
then probabilistically satisfied if the following constraint holds true:

nj∨
k=1

aTjk

(
xit − Ĉjk

)
− r ≥ b̄kj ≡

√
2Pv erf−1(1− 2∆/no) (6.19)

Here, erf−1 is the inverse error function. The variable b̄kj represents the amount of deterministic
constraint tightening such that probabilistic feasibility is attained [258]. This constant can be a
priori computed and provides an upper bound to the collision probability for all obstacles.

However, using sampling-based approaches a more accurate, i.e. less conservative, bound can be
computed online for each time step and the joint trajectory by, instead of allocating a fixed amount
of risk for each chance constraint, using a risk allocation technique for each constraint [258]. Luders
et al. have shown that the probability of constraint satisfaction for the kth chance constraint of
the jth obstacle using the left hand side of Eq. 6.14 and the described change of variable can be
formulated as:

∆jkt =
1

2

1− erf

aTjk
(
xit − ĉjk

)
− r√

2aTjkPcjajk

 (6.20)

Proceeding analogous to the formulation by Luders and colleagues, only the most stringent
constraint of the set of linear constraints for an obstacle has to be considered to upper bound the
probability of collision (right hand side of Eq. 6.14) [258]:

P(Oj) ≤ ∆jt = min
j∈Z1,no

∆jkt (6.21)

Now considering all obstacles, it follows from Boole’s inequality that for time step t the probability
of collision can be bounded as follows:



6. IMPLEMENTATION OF ROBUST MOTION PLANNING ALGORITHMS Page 133

P(collision) ≤
no∑
j=1

( min
j∈Z1,no

∆jkt) = ∆t (6.22)

Here, ∆t is an individual constraint value which provides an upper bound to the likelihood of
collision at a certain time step. Additionally, the joint chance constraint for the entire trajectory
can simply be found by summing the individual constraints over time:

∆ =

tN∑
t=0

∆t (6.23)

The constraints in Eq. 6.22 and 6.23 can be limited by user-specified risk parameters ψs and ψp
respectively as follows:{

∆t ≤ 1− ψs stepwise probabilistic feasibility constraint
∆ ≤ 1− ψp trajectory-wise probabilistic feasibility constraint

(6.24)

The extension from RRT to chance constrained RRT variants including probabilistic feasibility
checking is straightforward. Only lines 12, 22 and 36 of the pseudocode in Algorithm 4 need to
be modified. The procedure Motion free is modified to include probabilistic feasibility checking
by evaluating the constraints in Eq. 6.24. Rather than pre-computing these constraints offline
as is possible for the fixed bound in Eq. 6.19, the computation of these chance constraints must
be performed online. The cost function for the ith agent may next to path duration include the
accumulated probability of collision as follows:

f(uit,x
i
t) = αD · δvit + α∆ · δ∆i

t (6.25)

This type of function was shown to be admissible for asymptotically optimal motion planners, as
it is monotonic, additive and Lipschitz continuous [262]. A similar scenario as used to introduce
the bounded uncertainty RRT variant has been created to illustrate chance constrained trajectory
planning for a non-holonomic agent using a variant of CC-RRT. The central obstacle’s positional
uncertainty can now be described through the covariance matrix:

Pc1 =

[
4 0
0 1

]
mm2

In MATLAB Script A.1.16 the code to generate probabilistically feasible trajectories with the dual-
tree inspired RRT variant is given. Two solutions that are returned by this script for different risk
parameters are shown in Figure 6.11a and 6.11b.

(a) Chance constrained SE(2) reconnect-tree RRT
variant in a standard environment with K = 3,000,
κ = 40 m−1, δ = 0.01 s, ψs = 0.8 and ψp = 0.6.

(b) Chance constrained SE(2) reconnect-tree RRT
variant in a standard environment with K = 3,000,
κ = 40 m−1, δ = 0.01 s, ψs = 0.98 and ψp = 0.8.

Figure 6.11: Illustrations of two trajectory planning solutions for a non-holonomic system with unicycle
kinematics where one obstacle has Gaussian position uncertainty. In MATLAB Script A.1.16, the code is
provided to generate these figures.
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7. Robust brachytherapy needle
channel planning

7.1 Inverse dose planning

The primary objective of this thesis is to generate robust needle channel solutions which ensure
that dose constraints are obeyed despite geometric variations of OARs. A two-stage approach is
proposed for the robust planning of needle channels for cervical cancer BT applicators. In Chapter
4, the target coverage planning problem (Problem 1.A) and bounded and probabilistic uncertainty
needle channel planning problem (Problems 2.A and 2.B) have been formulated. For solving these
problems, variants of the NPIP algorithm (under the header ‘Initial and target considerations’), BU-
RRT (Section 6.4), and CC-RRT (Section 6.5) have been introduced respectively. These solutions,
however, simplify the main objective of this thesis by considering fixed dwell times. In order to
evaluate whether the generated interstitial dwell segments and intracavitary channels present viable
dwell positions for meeting the dose objectives, a dose optimisation method is required which is
described in this section.

7.1.1 Dose-based treatment optimisation

In dose-based optimisation a dose interval is prescribed to dose calculation points of each tissue type
and penalty costs are associated to exceeding this interval. Dose-based optimisation is therefore
different from dose-volume based optimisation where DVH statistics are used to assess the quality of
treatment plans. Although dose-volume based optimisation uses more clinically relevant constraints,
this is more computationally intricate [105], and not appropriate for the two-dimensional simulation
considered in this thesis. A common model used for dose-based optimisation in treatment planning is
Inverse Planning by Simulated Annealing (IPSA), which has been converted to a linear programming
(LP) problem by Alterovitz et al. [378]. This is the algorithm used for treatment planning in this
thesis due to this convenience. This algorithm revolves around the assumption that the penalty
cost function can be described by a piecewise linear function (see Figure 7.1). This penalty at a
dose calculation point pd belonging to anatomical structure a can then be represented by:

wapd =


−Mmin

a (dapd − dmin
s ) if dapd ≤ dmin

a

Mmax
a (dapd − dmax

a ) if dapd ≥ dmax
a

0 if dmin
a < dapdd

max
a

(7.1)

Here, dapd is the total dose to the calculation point per fraction (calculated from summing the dose
rates in Eq. 1.5 multiplied with dwell time), dose constraints dmin

a and dmax
a , and penalty weights

Mmin
a and Mmax

a . However, this composite function is non-linear. To obtain a linear program, these
penalty functions can be cast in the following linear constraints:

capd ≥ −Mmin
a (dapd − dmin

a )
capd ≥Mmax

a (dapd − dmax
a )

capd ≥ 0
(7.2)

The goal of the dose optimisation is to minimise the sum of all the penalty costs, weighted by the
number of dose calculation points ma in the structure a. The mathematical formulation of this
linear dose optimisation problem is then the following [378]:
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Figure 7.1: Linear penalty function as typically used for dose-based optimisation. Figure adapted from
Ref. [105].

Problem (0.A): Linear dose optimisation problem

min
capd , tzip

na∑
a=1

ma∑
pd=1

capd
ma

(7.3a)

s.t. capd +

nx∑
i=1

nid∑
zip=1

Mmin
a ḋ izp(pd) · tzip ≥Mmin

a dmin
a ∀a ∈ Z1,na , pd ∈ Z1,ma (7.3b)

capd −
nx∑
i=1

nid∑
zip=1

Mmax
a ḋ izp(pd) · tzip≥ −M

max
a dmax

a ∀a ∈ Z1,na , pd ∈ Z1,ma (7.3c)

capd ≥ 0 ∀a ∈ Z1,na , pd ∈ Z1,ma (7.3d)

tzip ≥ 0 ∀zip ∈ Z1,nid
(7.3e)

To restrict the dwell time differences between two adjacent dwell positions, one could opt for
incorporating dwell time modulation restriction (DTMR). However, DTMR was shown to not be
beneficial in the treatment optimisation of some prostate cancer patients [379]. For an overview of
alternative dose optimisation models for HDR brachytherapy the reader is referred to De Boeck et
al. [257].

7.1.2 Dose parameter estimation

In the inverse planning algorithm as described by Alterovitz et al. penalty functions for the target
volume and critical organs are considered [378]. In accordance with the IPSA framework, these
authors divided dose calculation points in two categories: (1) volume and (2) surface. To meet
the minimum dose constraints for the target volume, in this study a prescription dose of 7 Gy
is assigned to the target volume and surface. Dosimetric constraints for the OARs were in this
study initially defined using surface dose calculation points on the bladder, rectum and sigmoid
with similar parameters as used by Guthier et al. [380]. Empirically, several modifications to these
parameters for the dose-based optimisation were determined. Contrary to the article by Guthier et
al., the vagina is not considered as part of the target volume as no vaginal cancer was present in
the selected patient case, nor is it considered as an OAR. Moreover, the penalty weight associated
with OAR surface dose calculation points is lowered in comparison with the weight associated to
the target region to reflect that meeting target dose constraints is to an extent more important
than exceeding OAR dose constraints. Since the modelled dose distribution of the BT source is not
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Table 7.1: Parameters used for the linear penalty cost functions based on common planning aims [50].

Minimum dose
dmin
a (Gy)

Minimum dose
weight Mmin

a

Maximum dose
dmax
a (Gy)

Maximum dose
weight Mmax

a

CTVHR (volume) 7 100 - -

CTVHR (surface) 7 100 - -

Bladder (surface) - - 6.0 20

Rectum (surface) - - 3.7 20

Sigmoid (surface) - - 4.3 20

directly capped, the maximum dose for target volume or surface points is not defined. Lastly, the
criteria were further refined to reflect recent evidence regarding planning dose constraints [50]. The
resulting penalty weights and dose constraints are shown in Table 7.1.

7.1.3 Method evaluation
The linear inverse planning algorithm used for dose-based optimisation in this thesis has been
implemented in MATLAB R2020a, and is given in Script A.1.17. The linear programming problem is
solved using the built-in linprog function in MATLAB using the default dual-simplex algorithm.
The dose contribution of a dwell position to a dose calculation point is calculated using the
AAPM TG-43 formalism for a mHDR-v2 source model (see Subsection 1.2.2). As a
two-dimensional planning case is considered, rather than calculating the dose-volume parameters,
the selected dosimetric indices for the CTVHR are the D98%, D90%, D50% and A100%. Here, DA%

indicates the minimum absorbed dose by at least A% of the dose calculation points, and AD%

indicates the percentage of dose calculation points covered by at least D% of the prescribed dose.
For the OARs, the selected dosimetric indices capture the relative amount of dose calculation
points that is covered by the maximum doses allowed to the structure; A6 Gy, A3.7 Gy and A4.3 Gy

for the bladder, rectum and sigmoid respectively (see Table 7.1). Additionally, for the considered
OARs the D10% and D2% are reported as a substitute for the conventionally used D2cm3 and
D0.1cm3 . Generated plans are moreover compared on the objective function value, the number of
active dwell positions, and mean, maximum and total dwell times.

.

7.2 Coverage planning
The starting point for the second stage, that of robust curvature-constrained intracavitary BT needle
channel planning, is provided by a coverage planning algorithm. This algorithm must compute the
minimal set of straight interstitial dwell segments that sufficiently cover the tumour, are feasible, do
not intersect, and adhere to pose constraints. The binary integer program as formulated by Siauw
et al. for prostate brachytherapy [270], which is mathematically formulated in Problem (1.A), is
therefore adapted. In this section, an implementation of this method is described in detail. The
solutions generated by this approach from varying input parameters were both quantitatively and
qualitatively evaluated through the coverage optimisation and subsequent dose optimisation.

7.2.1 Materials and methods
Patient data set
The contours on T2-weighted sagittal MRI of the vaginal vault, target volume (CTVHR) and
OARs (bladder, rectum and sigmoid) of a single cervical cancer patient described in the study by
Laan et al. [48], were traced manually, appropriately scaled and convexified (Figure 4.5). This
data concerned a gynaecological cancer patient with a tumour involving the lateral parametrium
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(Stage IIIB). The patient was originally treated using a tandem and ring applicator with both
parallel and oblique needles. These interstitial needles were mainly required to extend the
prescription isodose to cover the target region in the coronal and axial planes. In the considered
sagittal image slice, the planned dose distribution in the study by Laan et al. led to sufficient
target coverage, but overexposure of OARs [48]. Therefore, the considered sagittal data set was
thought to be sufficiently challenging for this case study.

As the rectum was cut off in the original image, the image was manipulated using Photoshop CC
2018 (Adobe, San Jose, CA, USA). The rectum was manually extended to create a closed shape,
whereas other structures were left unaltered. The entry zone for the dwell segments was chosen to
be the base line of the convexified tumour region. Bounded uncertainty contours were added to the
bladder, rectum and sigmoid based on the estimated bounded displacement interval in Eq. 4.17.

Candidate set generation
The candidate set of dwell segments N was generated by sampling a point on the entry region and
a point on one of the contour lines of the target region and then connecting these two points with
straight line segments. Since the CTVHR is convexified, all these segments are contained within
the target region. To avoid discretisation issues and to generate a different needle candidate set
in each iteration, the points on the contour lines were randomly sampled with a probability made
proportional to the length of the contour lines. For each line segment, the angle with the base line
and the distance at the base line to the convex hull around OARs indicating worst-case uncertainty
was computed and stored. The generated candidate interstitial dwell segment set consisted in each
iteration of approximately 9,000 segments, which was found to generate consistent results.

Dwell segment selection
From the candidate set of dwell segments, first all the straight line segments that had an angle of
more then 10° deviating from the normal of the base line were excluded. This angle is similar to
that used for oblique needles in hybrid IC/IS applicators. As the bounded uncertainty contours of
the sigmoid and bladder overlap with the target volume in the simplified scenario treated in this
thesis, exceeding the dose constraints of OARs with worst-case positional uncertainty is
unavoidable. To allow feasible intracavitary channel solutions to be generated by the motion
planning algorithms in the case of worst-case uncertainty, only all the segments that were less
than coverage radius ε away from the bounded uncertainty contours of OARs at the base line were
discarded. Note that this constraint was less restrictive than the constraint proposed under the
header ‘Initial and target considerations’, where the segments had to be at least dose constraint
radius rD,j away from the bounded uncertainty contours of OARs at the intersection of the
segment and implant. However, the latter was overly conservative for larger dwell times and
therefore resulted in frequently infeasibility of the integer program. Addition of the newly
formulated distance constraints came at the expense of the amount of points that were coverable
by the feasible set of dwell segments. The resulting set of feasible dwell segments is termed Nfree
and consisted consistently of around 1,000 to 1,500 segments.

To evaluate the coverage of the feasible dwell segment set, the tumour region was uniformly
discretised in points τq ∈ T spaced 2.5 mm apart. Using Eq. 4.9 the indices of coverable points,
I(ε), were extracted. The relative amount of dose calculation points in the target region that
could be covered by Nfree was experimentally evaluated to rarely drop below 95% of the total
amount of dose calculation points. Tumour points that could not be covered with the constant
radius ε were located at the anterior and posterior sides of the convexified tumour region,
proximal to the sigmoid and bladder. With the subsequent dose planning, this issue could be in
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the majority of cases resolved resulting in good spatial coverage of the target. The set of dwell
segments that cover a single point in the target region with index q, Mq(ε), could then be
extracted. Linear constraints were added to ensure that each point could be covered by at least
one dwell segment. As this assumption could result in hot spots, an upper limit to the number of
dwell segments covering a point was first implemented as well. Since this did not improve the
solution quality and rather led to more frequent occurrence of infeasible linear programs, these
constraints were later removed.

Collision between two interstitial dwell segments was conservatively defined to occur when these
segments were closer than two times the channel width w. A matrix was constructed indicating
the pairs of segments that are in collision. Constraints were added such that only one of the dwell
segments in a collision set could be extracted.

The objective of the optimisation was to minimise the number of dwell segments in set S. The
reason for this was two-fold. First, this reduces the risk of mechanically caused tissue damage and
possible serious complications. Secondly, as the planning is executed in a two-dimensional case,
a greater number of dwell segments reduces the space available for the motion planning of the
intracavitary needle channels and hence reduces the likelihood that feasible solutions are found in
trajectory planning.

Method evaluation

The MATLAB R2020a code for coverage planning is given in Script A.1.18. All the calculations were
performed on a mobile workstation with a 2.4GHz Intel i7-4700MQ processor with 8 GB of
memory. The binary integer programming problem was solved using the built-in intlinprog

function in MATLAB. The dose coverage radius ε was selected to range between 15% and 40% with
5% increments of the radius of the circle minimally encapsulating the target region, similar as had
been described by Siauw et al. [270]. The latter was calculated using the MATLAB function
ExactMinBoundCircle [381]. For values of ε smaller than 15% in many cases no feasible solution
was found, whereas for values of ε greater than 40% dose constraints of multiple OARs were in
any case exceeded. For the specified patient case the coverage planning problem was solved five
times per value of ε. Adding the constraints generally took around 40 s, whereas solving the
integer programming problem took around 3 s. For each planning instance the following
parameters were recorded: (i) the number of dwell segments nx, (ii) the ratio of coverable points
to the total number of calculation points in the target region, (iii) whether failure of the solver
occurred, and (iv) the dosimetric indices described in 7.1.3 calculated using the dose-based
optimisation algorithm. Dose optimisation was performed for the convexified (conservative)
structures, except for the target volume. Similarly, dosimetric indices were calculated for the
convexified structures with exception of the indices for the tumour volume. All dose calculation
points, i.e. surface and volume points, were spaced 2.5 mm apart. Dwell points were constructed
along the dwell segments with a step size of 5 mm.

The dose conformity of the skew interstitial dwell segments that could possibly be reached through
the 3D-printed intracavitary applicator was moreover compared with that of three current treatment
modalities: (i) a conventional tandem/ring applicator, (ii) a hybrid tandem/ring applicator with
parallel needles, and (iii) a hybrid tandem/ring applicator with oblique needles at 20°. These
applicators were coarsely manually reconstructed based on the sagittal MRI provided in the study
by Laan et al. [48]. For these applicators, the tandem length, ring diameter and needle insertion
depth were assumed to be 6.0, 3.0, and 5.0 cm respectively. Dwell points were reconstructed along
the tandem and needles with a step size of 5 mm.
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7.2.2 Results
Coverage planning
Results of the coverage planning and sequential dose-based optimisation for various dose coverage
radii are shown in Table 7.2. The coverage planning algorithm was in the majority of instances
able to converge to an optimal solution. Infeasibility of a solution of the integer program was more
likely to occur at smaller values of dose coverage radius ε, whereas from values of ε = 30% up to
40% in all cases a feasible solution was found. The occurrence of infeasibility was linked to
collisions at the entry region between dwell segments. After dwell segment coverage planning or
the generation of dwell points for standard applicators, the dose-based optimisation algorithm was
in all instances able to compute the optimal solution. For all feasible instances, the coverage
planning returned dwell segments that could potentially deliver the prescribed dose to on average
99% calculation points of the target region in the simulated patient case. OAR dose constraints
were exceeded in only 0.3% of the dose calculation points. SDs of the coverage quality and
dosimetric indices for the generated plans were generally small, indicating that the selection of
dwell segments from randomly generated candidate sets N produced consistent results.

With increasing dose coverage radius ε, the number of interstitial dwell segments required to
sufficiently cover the target region decreased. The number of (active) dwell points decreased
correspondingly such that the mean, maximum and total dwell times had to be increased in the
dose optimisation to guarantee high dose conformity. Whereas for 42 active dwell points in 7 dwell
segments the mean dwell time was only 4.7 s, this increased up to 38.4±3.4 s for 11 dwell points in
3 dwell segments. Accordingly, the decrease in the number of interstitial segments associated with
larger values of ε resulted in exceeding OAR dose constraints. Ideally, the values of AD for the
OARs would be close to zero, indicating that dose constraints dmax

a are not exceeded. When
optimising the dwell times for the set of three interstitial dwell segments the resulting dose
distribution exceeded the allowable doses in calculation points of the bladder (up to only 0.1% of
the points) and sigmoid (up to 1.5% of the points). In coverage planning solutions with more
dwell segments, i.e. generated with smaller ε, OAR dose constraints were rarely exceeded. For the
target volume, ideally the A100% value would be 100%, indicating that the 100% isodose line (7
Gy) would cover all dose calculation points in the CTVHR. For values of ε = 30% and higher an
almost ideal tumour coverage was achieved for all instances. Realistic dwell times that led to plans
meeting most dose constraints were obtained for solutions with five (ε = 20%) and four (ε = 25%
or 30%) dwell segments.

In Figure 7.2b-7.2e representative isodose contour plots from the dose optimisation for various
solutions of the coverage planning algorithm are shown. For larger values of ε, it can be observed
that to compensate for the smaller amount of interstitial dwell segments the dwell times of the
active positions are increased. Although this ensures that coverage of the target region by the
prescription isodose contour of 7 Gy is sufficient, this results in areas where OARs and normal
tissues are likely overexposed. In solutions containing a larger amount of dwell segments the
prescription isodose contour of 7 Gy approximates the shape of the target region better. Small
areas of underexposure in the tumour region, i.e. where doses are lower than 7 Gy, are the result
of discretisation artifacts. Configurations with four dwell segments (Figure 7.2d), as obtained for
ε ≈ 25-30%, seem to generate dose distributions sufficiently covering the tumour, including
involvement in the lateral parametrium, whilst not exceeding OAR dose constraints. Moreover,
opposed to configurations with a larger amount of dwell segments, this solution limits physical
trauma to the tissue.
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Table 7.2: Results of the dose coverage algorithm and dosimetric evaluation for varying dose coverage radii. Continuous variables are expressed
with the mean ± SD, and discrete variables with the median. For ε = 15% and ε = 20%, the coverage planning algorithm successfully converged to a
feasible solution in only 1 out of 5 instances such that no standard deviations could be reported.

Coverage planning Skew line interstitial dwell segments Current modalities

Coverage radius → ε = 15% ε = 20% ε = 25% ε = 30% ε = 35% ε = 40% T/R T/R + par. T/R + obl.

Number of segments 7 5 4 4 3 3 1 3 5

Coverable points (%) 98.3 ± [-] 97.8 ± [-] 97.6 ± 0.0 97.7 ± 0.0 97.5 ± 0.0 97.7 ± 0.0 - - -

Feasibility 1/5 1/5 3/5 5/5 5/5 5/5 - - -

Dose planning Skew line interstitial dwell segments Current modalities

Coverage radius → ε = 15% ε = 20% ε = 25% ε = 30% ε = 35% ε = 40% T/R T/R + par. T/R + obl.

Objective value 0.00 ± [-] 0.00 ± [-] 0.15 ± 0.04 0.38 ± 0.03 0.80 ± 0.15 1.30 ± 0.08 3.12 ± 0.00 0.53 ± 0.00 0.01 ± 0.00

Active dwell positions
(Total)

42 (72) 24 (53) 17 (43) 19 (44) 12 (34) 11 (36) 3 (13) 16 (33) 25 (55)

Mean dwell time (s) 4.7 ± [-] 10.0 ± [-] 17.6 ± 2.3 18.3 ± 1.9 31.7 ± 2.4 38.4 ± 3.4 189.7 ± 0.0 28.7 ± 0.0 16.4 ± 0.0

Maximum dwell
time (s)

43.9 ± [-] 63.3 ± [-] 80.9 ± 13.9 92.1 ± 8.0 139.4 ± 6.6 162.8 ± 5.3 291.1 ± 0.0 247.6 ± 0.0 186.5 ± 0.0

Total dwell time (s) 199.0 ± [-] 240.2 ± [-] 300.5 ± 4.4 332.9 ± 7.8 397.3 ± 11.8 434.3 ± 3.6 569.1 ± 0.0 459.3 ± 0.0 410.2 ± 0.0

CTVHR

D98% (Gy) 7.0 ± [-] 7.0 ± [-] 7.0 ± 0.0 7.1 ± 0.0 7.1 ± 0.0 7.2 ± 0.2 7.8 ± 0.0 7.0 ± 0.0 7.0 ± 0.0

D90% (Gy) 7.2 ± [-] 7.3 ± [-] 7.6 ± 0.1 7.6 ± 0.1 7.6 ± 0.1 7.7 ± 0.1 9.3 ± 0.0 7.9 ± 0.0 7.3 ± 0.0

D50% (Gy) 9.9 ± [-] 9.9 ± [-] 10.8 ± 0.0 10.9 ± 0.2 11.6 ± 0.2 12.0 ± 0.2 15.4 ± 0.0 12.5 ± 0.0 9.5 ± 0.0

A100% (%) 96.2 ± [-] 97.1 ± [-] 98.9 ± 1.0 99.5 ± 0.2 99.6 ± 0.1 99.8 ± 0.2 100.0 ± 0.0 98.7 ± 0.0 98.4 ± 0.0

Bladder

D10% (Gy) 1.9 ± [-] 2.2 ± [-] 2.6 ± 0.1 2.8 ± 0.1 3.1 ± 0.1 3.2 ± 0.0 3.8 ± 0.0 3.5 ± 0.0 3.0 ± 0.0

D2% (Gy) 3.2 ± [-] 3.8 ± [-] 4.3 ± 0.1 4.5 ± 0.1 4.7 ± 0.1 4.8 ± 0.0 5.4 ± 0.0 5.0 ± 0.0 4.7 ± 0.0

A6 Gy (%) 0.0 ± [-] 0.0 ± [-] 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.9 ± 0.0 0.2 ± 0.0 0.0 ± 0.0

Rectum

D10% (Gy) 0.6 ± [-] 0.8 ± [-] 1.0 ± 0.0 1.1 ± 0.0 1.3 ± 0.0 1.5 ± 0.0 1.5 ± 0.0 1.5 ± 0.0 1.3 ± 0.0

D2% (Gy) 0.8 ± [-] 1.0 ± [-] 1.2 ± 0.0 1.4 ± 0.0 1.7 ± 0.1 1.9 ± 0.0 1.9 ± 0.0 1.8 ± 0.0 1.6 ± 0.0

A3.7 Gy (%) 0.0 ± [-] 0.0 ± [-] 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Sigmoid

D10% (Gy) 2.0 ± [-] 2.2 ± [-] 2.5 ± 0.0 2.7 ± 0.0 2.9 ± 0.1 3.1 ± 0.0 3.5 ± 0.0 2.7 ± 0.0 2.4 ± 0.0

D2% (Gy) 3.1 ± [-] 3.1 ± [-] 3.5 ± 0.0 3.7 ± 0.0 4.0 ± 0.1 4.1 ± 0.0 4.2 ± 0.0 3.6 ± 0.0 3.1 ± 0.0

A4.3 Gy (%) 0.0 ± [-] 0.0 ± [-] 0.3 ± 0.0 0.3 ± 0.0 1.0 ± 0.2 1.5 ± 0.2 1.7 ± 0.0 0.3 ± 0.0 0.0 ± 0.0
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(a) Example output from coverage planning
algorithm for ε = 30%.

(b) Dose distribution after optimisation for a
solution with 7 dwell segments (ε = 15%).

(c) Dose distribution after optimisation for a
solution with 5 dwell segments (ε = 20%).

(d) Dose distribution after optimisation for a
solution with 4 dwell segments (ε = 30%).

(e) Dose distribution after optimisation for a
solution with 3 dwell segments (ε = 40%).

(f) Dose distribution after optimisation for a T/R
applicator.
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(g) Dose distribution after optimisation for a T/R
applicator with parallel interstitial needles.

(h) Dose distribution after optimisation for a T/R
applicator with both parallel and oblique interstitial
needles.

Figure 7.2: Illustrations of the dose distributions calculated via the dose-based optimisation
for an optimal set of interstitial dwell segments returned by the coverage planning algorithm
for a single patient case.

An example output of the coverage planning algorithm for a dose coverage radius of
ε = 30% is illustrated in (a). In (a) shown are: target volume (bright green ), bladder (gold

), rectum (blue ), sigmoid (purple ), stay-in region (pink ), tumour coverage points
(small red dots ), dwell segments (dark blue ), dwell points (black dots ), and surface
calculation points (small black dots ).

Contour plots of the computed dose distributions for coverage planning solutions with
7 to 3 interstitial dwell segments with varying radii ε are shown in (b)-(e). Contour plots of
the optimised dose distributions for common current treatment modalities are shown (f)-(h).
In (b)-(h) shown are: target volume (bright green ), OARs (blue ), dwell segments (dark
blue ), inactive dwell points (black dots ), active dwell points (white dots ), isodose
contours ( ), and prescription isodose line (7 Gy, red ).

Standard treatment modalities

For the standard treatment modalities, the dose-based optimisation converged in each iteration to
a single solution. Table 7.2 and Figure 7.2f - 7.2h demonstrate the limitations of applicators with
a standard configuration in the simulated patient case, as the dose must be escalated to cover the
lateral extension of the tumour. For a standard tandem and ring applicator (T/R), the dose-based
optimisation indicated that the highest dose conformity could be achieved with only three active
dwell points with a mean dwell time of almost 190 s. However, in this case, dosimetric constraints
of the bladder and sigmoid were exceeded in small partial volumes of these organs. Additionally, in
this plan hot spots in and near the tumour region were present, overdosing proximal normal tissue.
For a hybrid T/R applicator with two interstitial needles parallel to the tandem a higher dose
conformity was achieved, i.e. lower value of the objective function. However, to cover the lateral
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extension of the CTVHR, the simulated maximum dwell time in the ring of the applicator (on the
right) was on average 247.6±0.0 s. For the simulated hybrid T/R applicator with both parallel and
oblique needles, the dose optimisation returned a solution in which OAR dose constraints were not
exceeded, but tumour coverage was still not optimal; A100% = 98.4±0.0%. Additionally, the dwell
times of positions near the ring of the applicator proximal to the bladder remained high; i.e. a
maximum dwell time of almost 186.5±0.0 s for a dwell position in one of the needles was computed.
Nevertheless, as indicated by an almost zero value for the objective function the simulated dose
distribution for the T/R applicator with both parallel and oblique needles achieved a high dose
conformity. This was similar to that of dose distributions generated for solutions of the coverage
planning algorithm with small coverage radii.

7.2.3 Discussion
In this section, an algorithm was presented and evaluated for computing a dwell segment
configuration that achieves a high dose conformity even in challenging tumours based on the NPIP
algorithm [270]. In this algorithm, the set of dwell segments minimally required to cover the
tumour region is selected from a candidate set of dwell segments. The algorithm was shown to
converge to a configuration of dwell segments that could achieve a high dose conformity in the
majority of instances for a rather challenging simulated patient case. Opposed to standard
applicators with fixed angles and dwell positions, these skew dwell segments have the potential to
create plans with less hot spots and increased target coverage.

Performance of the algorithm was shown to depend on a single dose coverage parameter ε. For
smaller values of ε, solutions were often not feasible. Dosimetric constraints were more frequently
exceeded for larger values of ε. To both meet dosimetric constraints and minimise the number of
required dwell segments for the simulated patient case, the dose coverage radius would ideally be
set equal to around 25-30% of the radius of the minimally enclosing sphere of the tumour region.
Values of ε of 35 or 40% yielded plans that met dosimetric constraints in the study Siauw et al.
[270], which would lead to hot spots in OARs in the investigated patient case. Values of 25-30%
resulted in a configuration with four straight line dwell segments. Interestingly, one of these dwell
segments is then placed similarly to a central tandem, which has been noted to be crucial to
prevent underdosage of the cervical region [66]. Figure 7.2 and the values of A100% in Table 7.2
both indicate that underdosage of the tumour region could possibly occur. However, this was
likely an artefact of discretisation and could therefore be resolved by using a finer grid. In the
simulated case for configurations with four dwell segments only the dose constraints of the sigmoid
were exceeded. It must be noted that in this case study, OARs were conservatively represented
with a convex hull and therefore the actual dose in these organs would be less. Moreover, when
using dose-volume based optimisation, such as IPIP [382], or the LDV model by Gorissen et al.
[105], opposed to dose-based optimisation the conformity of the treatment plan may be improved.
No constraints were included in the coverage planning algorithm to prevent hot spots in the
cervical region. One could for example provide an upper bound to Eq. 4.30b, but this caused
frequent infeasibility of the integer program and did not improve the solution quality.

Planning was in this thesis performed for a two-dimensional case, only in the sagittal plane. The
lateral extension of the tumour present in the simulated patient case was therefore not represented
accurately and could in most cases sufficiently be covered. The benefits of skew line optimisation
of interstitial needles may be more conveniently illustrated for patients with invasion of the
parametria on a (mid-)coronal image or by using three-dimensional planning and imaging. The
algorithm could simply be extended to higher dimensions as has been done by Siauw et al. [270].
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This would, however, drastically increase the overall computation time, which mainly depends on
the size of the candidate set influencing time spent on collision checking and the number of dose
calculation points that influences time for dose optimisation. The use of a more efficient collision
checking algorithm or strategy would therefore be recommended. For example, as collisions are
not likely to occur in an optimal configuration in a three-dimensional case, one could use a lazy
strategy and only check whether collisions occur after an optimal configuration has been
successfully generated. Moreover, rather than that the candidate set is generated randomly,
informed sampling may be used to strategically position segments. In a three-dimensional case,
the resulting isodose curves would likely be more smooth and dwell times would be less
heterogeneous than the presently found results.

Siauw et al. have demonstrated for 18 prostate cancer patients that NPIP is able to generate
clinically feasible plans [270], but have not compared these plans with those generated for
standard applicators. It was in this section shown that higher dose conformity could be achieved
using the coverage planning algorithm than with conventionally used applicators in a rather
challenging simulated patient case. Previous computer models have shown that with the most
advanced applicators, the planning aim isodose can potentially cover the target region for almost
any patient case [70, 84]. From Figure 7.2h it can however be seen that even when using both
parallel and oblique needles, standard applicators remain ill-adapted for tumours with parametrial
extension. Although the tumour coverage was near-optimal and dose constraints of OARs were
not exceeded for the T/R applicator with parallel and oblique needles in the patient case, dwell
times were generally higher and more heterogeneous. Plans with large dwell time variations come
at a risk of overdosing normal tissues and are more susceptible to uncertainty, e.g. intra-fraction
changes [379]. Potentially, dose homogeneity could be improved through dwell-time modulation
restriction or implementing dwell times in the objective of the dose-based optimisation, but no
effective methods for this purpose exist as of yet [379]. Since only one patient case was considered
in this thesis, comparisons between conventional applicators and configurations generated with the
coverage planning algorithm must be re-investigated for a larger number of patients.

In the proposed two-stage approach, the intersections of the generated straight line dwell segments
-extending to the base line of the convexified tumour region- with the vaginal cavity serve as
the initial points for trajectory planning (Figure 4.9). It is therefore implicitly assumed that the
curved channels, at least partially, coincide with these straight dwell segments. For trajectory
planning in a bounded uncertainty scenario, to guarantee that a robustly feasible trajectory can
be found, these points of intersection must be at least dose constraint radius rD,j away from the
convex bounded uncertainty contours and the corresponding segments must be diverging from these
contours. In this section, the only constraint implemented to position dwell segments away from
OARs in coverage planning was a minimum distance constraint at the baseline of the convexified
tumour region. Therefore, the coverage planning algorithm must be modified to provide initial
conditions for needle trajectory planning subject to bounded uncertainty.

7.3 Needle trajectory planning under uncertainty
The problem of computing robust curvature-constrained intracavitary BT needle channels has been
mathematically described in Problems (2.A) and (2.B) for scenarios with bounded uncertainty
and probabilistic uncertainty in the position of OARs respectively. The algorithm must compute
multiple feasible, non-intersecting curvature-constrained needle channels from the interstitial dwell
segments towards an entry region maintaining sufficient distance to OARs. Dwell positions may
be positioned along both the combined interstitial segments and intracavitary needle channels. In



7. ROBUST BRACHYTHERAPY NEEDLE CHANNEL PLANNING Page 145

this section, two robust motion planning algorithms are implemented and evaluated against the
performance of an algorithm not taking into account uncertainty.

7.3.1 Materials and methods

Modified coverage planning algorithm
In the previous section it was established that for the patient case a dose coverage radius ε of
25-30% could generate configurations with four segments that yield plans with high conformity. In
order to guarantee that the set of dwell segments could feasibly be reached, even by motion
planners taking into account worst-case positional uncertainty of the OARs, two constraints were
added. First, the intersection points of dwell segments with the vaginal cavity contours in the
feasible candidate set Nfree were constrained to be at least dose constraint radius rD,j from the
bounded uncertainty contours. Secondly, dwell segments were only included in the candidate set
Nfree when, from the intersection points onwards, these diverged from the bounded uncertainty
contours. To generate initial poses for the planning of intracavitary channels, xi0, the coverage
planning algorithm was run five times. The dose coverage radius was lowered to ε = 20%, which
was empirically established to generate high quality solutions consisting of four dwell segments. A
single configuration was selected from the generated alternatives, which achieved a high dose
conformity and resulted in the lowest average dwell time. One of the dwell segments in this
configuration was substituted for a central tandem to prevent tumour underdosage. This scenario
is henceforth referred to as the conservative OAR sparing scenario (CO).

Achieving adequate target coverage is generally the most important criterion in brachytherapy.
Therefore, the previously mentioned stringent robust feasibility conditions were for another scenario
substituted with constraints that ensure that the segments are at least radius rD,j from the OAR
contours. The dose coverage radius was set to ε = 25%, the coverage planning algorithm was
iterated five times, and one configuration was selected. A central dwell segment was replaced with a
6 cm tandem. For this planning instance, all points in the convexified tumour region were coverable.
Additionally, none of the OAR dose constraints were exceeded in dose-based optimisation. However,
the resulting configuration of skew line dwell segments could only be used for nominal trajectory
planners or trajectory planners assuming probabilistic uncertainty. This scenario is henceforth
referred to as the nominal planning scenario (NP).

Problem formulation
The formulation of the needle trajectory planning problem under uncertainty is briefly described
here, summarising Section 4.3 and using the taxonomy in Figure 4.4.

Agent representation
Two different shapes were considered for the agent. For physical collision checking with other
needle channels or OARs, the BT source was modelled as a rectangle with length L = 5 mm and a
width of 0.9 mm, corresponding to a channel width w = 2.6 mm. In order to prevent hot spots in
OARs, the agent was represented as a circle with its radius depending on OAR dose constraints.
For the CO scenario, the dose coverage radius ε was set equal to 20% of the minimally enclosing
sphere around the target region, i.e. ε = 7.8 mm. Using data of the mHDR-v2 source and the
TG-43 formalism, this was associated with a dwell time of approximately 34 s. Accordingly, dose
radii for the bladder, rectum and sigmoid were computed to be rD,bladder = 8.4 mm (corresponding
to the radius enclosing the 6 Gy isodose line), rD,rectum = 10.8 mm (for 3.7 Gy), and rD,sigmoid =
10.0 mm (for 4.3 Gy) respectively.
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For the NP scenario, the dose coverage radius ε was set equal to 25%, equivalent to 9.7 mm. The
corresponding dwell time and dose radii were computed to be 53 s, rD,bladder = 10.5 mm,
rD,rectum = 13.4 mm, and rD,sigmoid = 12.4 mm respectively.

Workspace representation
The aforementioned data set of a single cervical cancer patient was used to generate the planning
environment. The boundaries of the vaginal cavity defined the stay-in region I, constraining the
sampling space. The OARs were convexified and represented through a set of inequality constraints.
The initial states for the CO scenario, which resulted from the modified coverage planning algorithm,
were given by:

x1
0,CO =

124.6 mm
113.5 mm
4.0337 rad

 x2
0,CO =

111.3 mm
113.8 mm
4.1328 rad

 x3
0,CO =

100.0 mm
114.0 mm
4.2432 rad

 x4
0,CO =

 95.9 mm
124.4 mm
4.3723 rad


Here, the third dwell segment served as a central tandem. For the NP scenario, the following initial
states were obtained from coverage planning:

x1
0,NP =

126.7 mm
109.6 mm
4.1500 rad

 x2
0,NP =

119.4 mm
115.9 mm
4.0947 rad

 x3
0,NP =

100.0 mm
114.0 mm
4.2432 rad

 x4
0,NP =

 93.1 mm
126.5 mm
4.2364 rad


For each individual dwell segment, a goal region centre xiT was specified in the entry region E with
a tolerance of 2.5 mm:

x1
T =

122.6 mm
0.0 mm
[−] rad

 x2
T =

117.3 mm
0.0 mm
[−] rad

 x3
T =

112.0 mm
0.0 mm
[−] rad

 x4
T =

106.7 mm
0.0 mm
[−] rad


No constraints on the orientation of the final state in this entry region were specified.

Uncertainty representation
For the motion planning instances that considered bounded uncertainty, the displacements of the
bladder, rectum and sigmoid were constrained within the intervals in Eq. 4.17. In the case of
probabilistic uncertainty, the centres of the OARs were distributed according to the covariance
matrices in Eq. 4.16. Bounded uncertainty contours coincided roughly with the 95% confidence
intervals over the Gaussian distributed obstacle faces. Due to this simplified representation of
organ motion and deformations, the target region and uncertainty manifestation could overlap.

Planning execution
The objective functions used in the cases of deterministic planning and planning under bounded
uncertainty represented the trajectory length, by setting f(uit,x

i
t) = δvit. For the probabilistic

uncertainty scheme, the cost function in Eq. 6.25 was used with αD = 1, α∆ = 5. Constraints were
imposed on the curvature κ̄ = 0.028 mm−1 and maximum step size λ̄ = 5 mm, i.e. δ = 0.05 s and
v̄t = 100 mm/s.

Method evaluation
Three of the discussed algorithms capable of planning trajectories for non-holonomic systems were
compared on their performance in the simulated patient case. The following planning variants
were selected for the two scenarios:
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Conservative OAR sparing scenario (CO)

• Nominal reconnect-tree RRT, rt-RRT, described in Subsection 6.3.2;

• The bounded uncertainty variant of reconnect-tree RRT, BU-rt-RRT, described in Section 6.4;

• The chance constrained variant of reconnect-tree RRT with medium tolerated risk levels:
ψs = 0.8 and ψp = 0.6, CC-rt-RRT (med.), described in Section 6.5;

• The chance constrained variant of reconnect-tree RRT with low tolerated risk levels: ψs = 0.99
and ψp = 0.95, CC-rt-RRT (low).

Nominal planning scenario (NP)

• Nominal reconnect-tree RRT, abbreviated as rt-RRT, described in Subsection 6.3.2;

• The chance constrained variant of reconnect-tree RRT with medium tolerated risk levels:
ψs = 0.8 and ψp = 0.6, CC-rt-RRT (med.).

These planners were programmed in MATLAB R2020a. For each of the scenarios and instances, the
planner was run five times with 3,000 iterations. All simulations were performed on a mobile
workstation with a 2.4 GHz Intel i7-4700MQ processor with 8 GB of memory. To increase the rate
of convergence, the target region centre xiT was included as a sample on average in five out of
hundred iterations. Trajectories were planned sequentially, starting with the initial pose nearest to
the entry region and continuing in increasing order of distance to the entry region. This strategy
was shown to minimally obstruct the generation of subsequent trajectories [89]. After a trajectory
was successfully constructed, poses along the trajectory were extracted and a new obstacle was
created from the union of these poses.

The planning instances were evaluated on their: (i) total trajectory length, (ii) maximum risk
per step and accumulated risk by considering that the OARs are distributed with probabilistic
uncertainty, (iii) total runtime, and (iv) failure rate. Shortest curvature-constrained trajectories
between two states without obstacles are Dubins’ curves [239]. If the terminal angle of the second
state is not constrained, this is known as a ‘relaxed’ Dubins’ curve [383], for which simple analytic
solutions are available [384]. Assuming that the optimal solution for each trajectory is of type
‘LS’ and providing an upper bound on the curvature, then the optimal length can be found from
optimisation. Therefore, the computed trajectory lengths were compared with relaxed Dubins’
shortest curves of which the length is optimised using fmincon in MATLAB. The goal tolerance was
subtracted from this length. The total runtime was defined as the time from initialisation of the
motion planner to returning the lowest-cost trajectory for all four initial conditions. Intracavitary
dwell positions were spaced at regular intervals of 5 mm along the generated trajectories, by using
the MATLAB functions arclength and interparc [385, 386], and performing spline interpolation.
For the purpose of coarsely evaluating the risk of the generated trajectories, at each of the dwell
positions along the trajectory the probability of exceeding dose contours was computed using Eq.
6.20. After the generation of these trajectories, dose-based optimisation was performed. The
dose distribution was optimised for the combined intracavitary and interstitial dwell segments in a
deterministic scenario using the dose-based optimisation algorithm introduced in this chapter. Only
the five intracavitary dwell positions per needle channel that were most proximal to the tumour
region were considered for dose-based optimisation. Dosimetric indices and outcome parameters
mentioned in Subsection 7.1.3 were determined for the relevant structures. Additionally, dosimetric
indices and outcome parameters were computed for a worst-case scenario where dwell times were
maintained and the dose calculation points were regularly positioned within the bounded uncertainty
contours at a 2.5 mm interval.
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7.3.2 Results
Trajectory planning simulation
All of the implemented motion planning algorithms were able to construct feasible trajectories
from an initial condition to the goal region in the case study. In Table 7.3 the properties of the
planners and solution trajectories are shown for both coverage planning scenarios. Figure 7.3 and
7.4 show representative solution trajectories for the selected planners.

Conservative OAR sparing scenario (CO)
Visual inspection of Figure 7.3a-7.3d indicated that all planners were able to generate similar
near-shortest length trajectories for the non-holonomic agent in the CO scenario. Shortest
trajectory lengths using Dubins’ theory for the four intracavitary segments were calculated to be
respectively 113.4, 113.2, 113.4, and 122.9 mm. The mean lengths of the trajectories returned by
the motion planners were within 2% of these theoretical lengths. No differences were found
between the trajectory lengths generated with any of the planning approaches in this scenario.
Similarly, no differences between the solution trajectories’ maximum stepwise risk or accumulated
risks were observed, despite the addition of robust feasibility constraints in the bounded
uncertainty and chance constrained approaches. In BU-rt-RRT (Figure 7.3b), the sampling
domain was directly constrained by obstacles that were ‘inflated’ with the dose constraint radius
and bounded uncertainty. The resulting feasible space, however, contained the set of Dubins’
shortest curves which could therefore be found. Addition of probabilistic feasibility constraints
and incorporation of a risk-based objective in CC-rt-RRT (Figure 7.3c and 7.3d) did not alter the

Table 7.3: Trajectory planning results for the selected motion planners in the simulated patient case for
two coverage planning scenarios. Each planner was run 5 times for 3,000 iterations. Variables are expressed
with the mean ± SD. Abbreviations: Max. = maximum, Acc. = accumulated.

Conservative OAR sparing Nominal planning

rt-RRT BU-rt-RRT CC-rt-
RRT (med.)

CC-rt-
RRT (low)

rt-RRT CC-rt-
RRT (med.)

Total length (mm) 467.4 ± 0.6 468.7 ± 1.3 468.0 ± 0.7 467.3 ± 0.9 469.3 ± 1.0 470.0 ± 1.3

Length x̃1 (mm) 114.0 ± 0.5 114.2 ± 0.2 114.4 ± 0.6 114.3 ± 0.5 109.6 ± 0.8 110.2 ± 0.9

Length x̃2 (mm) 114.2 ± 0.4 114.6 ± 0.3 114.8 ± 0.8 114.6 ± 0.2 117.1 ± 0.7 117.3 ± 0.6

Length x̃3 (mm) 114.5 ± 0.3 114.9 ± 0.9 114.4 ± 0.8 114.5 ± 0.4 114.1 ± 0.4 114.2 ± 0.5

Length x̃4 (mm) 124.6 ± 0.2 125.0 ± 09 124.4 ± 0.5 124.0 ± 0.3 128.6 ± 0.1 128.8 ± 0.4

Max. risk (·10−3) 6.5 ± 0.0 6.5 ± 0.0 6.5 ± 0.0 6.5 ± 0.0 198.9 ± 0.0 198.9 ± 0.0

Acc. risk (·10−3) 15.3 ± 1.0 15.0 ± 0.2 15.4 ± 0.9 16.0 ± 1.3 786.6 ± 15.0 659.3 ± 1.3

Acc. risk x̃1 (·10−3) 7.7 ± 1.0 7.4 ± 0.2 7.9 ± 0.9 8.5 ± 1.2 457.6 ± 15.8 332.2 ± 1.1

Acc. risk x̃2 (·10−3) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

Acc. risk x̃3 (·10−3) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

Acc. risk x̃4 (·10−3) 7.6 ± 0.1 7.6 ± 0.0 7.5 ± 0.0 7.5 ± 0.1 328.7 ± 1.3 326.8 ± 2.4

Total runtime (s) 249.4 ± 12.0 196.7 ± 9.1 1120 ± 80.3 840.6 ± 51.8 262.0 ± 0.8 836.5 ± 81.9

Runtime x̃1 (s) 64.1 ± 6.8 53.6 ± 4.7 132.6 ± 19.1 95.7 ± 5.7 62.8 ± 4.2 92.6 ± 14.4

Runtime x̃2 (s) 62.8 ± 3.1 48.6 ± 0.9 200.7 ± 4.1 152.6 ± 14.3 70.6 ± 3.3 166.5 ± 7.9

Runtime x̃3 (s) 61.7 ± 4.7 44.8 ± 3.4 295.2 ± 22.8 155.4 ± 9.3 63.2 ± 4.2 259.5 ± 28.8

Runtime x̃4 (s) 60.8 ± 2.1 49.7 ± 6.1 492.0 ± 47.7 436.8 ± 41.0 65.3 ± 7.3 317.9 ± 41.0

Failure rate 0/5 2/5 2/5 2/5 1/5 2/5



7. ROBUST BRACHYTHERAPY NEEDLE CHANNEL PLANNING Page 149

(a) reconnect-tree RRT (rt-RRT). (b) Bounded uncertainty reconnect-tree RRT (BU-
rt-RRT).

(c) Chance constrained reconnect-tree RRT with
ψs = 0.8 and ψp = 0.6 (CC-rt-RRT (med.)).

(d) Chance constrained reconnect-tree RRT with
ψs = 0.99 and ψp = 0.95 (CC-rt-RRT (low)).

Figure 7.3: Representative trajectory planning solutions for the BT needle channel planning problem
under uncertainty in the conservative OAR sparing scenario (CO). Shown are the: convexified CTVHR (grey

), OARs (blue ), and previously planned needle channels (gold ). Uncertainty is indicated with dotted
lines (bounded uncertainty), or ellipses (probabilistic uncertainty).

behaviour of trajectory planning in the simulated patient case. Despite that lowering the tolerated
risk levels led to an increasingly constrained sampling space, the theoretical shortest trajectories
remained feasible for the evaluated instances. The fourth initial condition, x4

0,CO, was associated
with the maximum stepwise risk level for all planners due to its location proximal to the sigmoid.
Nevertheless, this maximum risk level for a single step was below the lowest tolerated risk in the
chance constrained approaches, i.e. 1− ψs = 0.01. The accumulated risks of exceeding OARs dose
constraints were found to be roughly similar for the first and fourth trajectory, that were
respectively in proximity to the bladder and sigmoid. Accumulated risk levels were in any case
lower than the specified joint tolerated risk levels. Probabilistic feasibility was therefore for every
generated trajectory maintained.
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(a) reconnect-tree RRT (rt-RRT). (b) Chance constrained reconnect-tree RRT with
ψs = 0.80 and ψp = 0.60 (CC-rt-RRT (med.)).

Figure 7.4: Representative trajectory planning solutions for the BT needle channel planning problem
under uncertainty for the nominal planning scenario (NP). Shown are the: convexified CTVHR (grey ),
OARs (blue ), and previously planned needle channels (gold ). Uncertainty is indicated with dotted lines
(bounded uncertainty), or ellipses (probabilistic uncertainty).

Total computation times for the generation of the four trajectories were different between all of
the planning variants. BU-rt-RRT was generally the fastest, followed by rt-RRT, and CC-rt-RRT
with low and medium tolerated risk levels. Whereas for nominal rt-RRT and BU-rt-RRT the
computational times were relatively constant over the computation of individual trajectories, these
drastically increased for CC-rt-RRT approaches. For example, whereas computation of the first
trajectory took on average 95.7 ± 5.7 s, this increased to 436.8 ± 41.0 s for the fourth trajectory in
CC-rt-RRT with low tolerated risk. Further analysis on the distribution of the running time for
the programmed planners showed that in the chance constrained variants the minimum-cost and
reconnect procedures scaled almost exponentially in time complexity with the number of needles.
In other evaluated approaches, most of the computation time was spent on collision checking of
the agent with OARs. Failure of the planner to find feasible trajectories occurred for the robust
motion planners in 2/5 instances. Planning typically failed for the trajectory generated last, i.e.
the trajectory generated from the starting pose furthest from the entry region and passing the
sigmoid.

Nominal planning scenario (NP)
In the nominal planning scenario dwell segments were considered that achieved full spatial coverage
of the target, whilst not exceeding the maximum tolerable stepwise risk at the initial states for
trajectory planning. Similar to the conservative OAR sparing scenario, in the nominal planning
scenario the rt-RRT and CC-rt-RRT algorithms generated near-shortest length trajectories that
deviated at most 2% from theoretical lengths (Figure 7.4a and 7.4b). No differences in the trajectory
lengths between the planners were observed. However, in this scenario, the accumulated risk for
both planning approaches differed. Comparing Figure 7.4a and 7.4b it can be observed that, to
maintain probabilistic feasibility, the chance constrained approach selected trajectories that were
more distant to OARs than those generated with the rt-RRT approach. Whereas CC-rt-RRT
generated trajectories that did not violate the specified joint chance constraints, i.e. ∆ ≤ 1 −
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ψp = 0.40, the standard rt-RRT algorithm yielded trajectories exceeding these limits (Table 7.3).
In particular, note that proximal to the bladder, i.e. the rightmost obstacle, rt-RRT seemed to
select trajectories of shortest length. Contrarily, near the bladder, CC-rt-RRT appeared to identify
trajectories with greater curvature as to avoid the corresponding probabilistic uncertainty region.
The resulting needle trajectories with CC-rt-RRT are slightly S-shaped, opposed to the concatenated
circular arc and straight line segments generated with rt-RRT.

Dose-based evaluation

Results of the dose-based optimisation for the combined generated skew-line dwell segments and
intracavitary needle channels are shown in Appendix A.8. The main findings are discussed here.

Conservative OAR sparing scenario (CO)
The intracavitary needle trajectories generated by the four motion planning variants in the CO
scenario were almost identical near the target region. Therefore, the optimised dose distributions
for the combined interstitial segments and intracavitary needle trajectories yielded virtually the
same dosimetric indices (Table A.4). Generally, the set of generated shortest-length intracavitary
channels enabled high dose constraint satisfaction as was indicated by the small value of the
objective function. The CTVHR A100% was on average 99.1 ± 0.1% indicating near-optimal target
coverage. Only in at most 0.7% of the calculation points in the sigmoid the optimised dose
distribution exceeded the allowable doses; for other OARs the dose constraints were respected in
all dose calculation points. The main contribution to the dose distribution came from dwell points
in the tandem or interstitial segments. Roughly one-third of the total dwell time, 357.9 ± 0.66 s,
was linked to dwell positions in the intracavitary curved channels, i.e. 113.4 ± 0.9 s. These dwell
times optimised for the nominal contours were maintained, and the dosimetric indices were
re-evaluated for worst-case positional uncertainty of OARs. No differences were found in the
dosimetric indices of OARs subject to worst-case uncertainty between the set of trajectories
generated by the four planning variants. Under the simplified worst-case assumption, the average
D2% of the bladder, rectum and sigmoid were respectively 8.0 ± 0.0 Gy, 2.1 ± 0.0 Gy and
8.1 ± 0.0 Gy. For the bladder and sigmoid the dose constraints were exceeded in 4.2 ± 0.0% and
8.5 ± 0.0% of the dose calculation points respectively, regardless of the planning method.

Nominal planning scenario (NP)
The trajectories generated by rt-RRT or CC-rt-RRT with medium risk toleration for the NP
scenario yielded treatment plans of higher quality for nominal structures than those generated for
the conservative OAR sparing scenario, i.e. E = 0.03 ± 0.00 vs E = 0.59 ± 0.00. Target coverage
was adequate for the set of trajectories generated using rt-RRT or CC-rt-RRT. None of the dose
constraints in individual calculation points of OARs were exceeded for sets of trajectories
generated by either one of the two motion planners. In the trajectories resulting from the
CC-rt-RRT approach the mean, maximum, and total dwell times, of dwell points in the
intracavitary channels were on average higher than those obtained for the rt-RRT approach:
25.3 ± 0.0, 44.6 ± 0.2, and 75.9 ± 0.1 s respectively versus 17.4 ± 0.0, 36.7 ± 0.3, and 69.5 ± 0.2 s.
The total dwell time of all active positions for rt-RRT and CC-rt-RRT instances remained similar,
i.e. 292.0 ± 0.3 s and 297.6 ± 0.1 s. From visual inspection of Figure 7.5a and 7.5b, it seems that
dose escalation in intracavitary dwell points near the bladder was required to cover the tumour
extension in the chance constrained approach. Subsequently, dosimetric indices for both
approaches in the nominal scenario or in a scenario assuming worst-case uncertainty were similar.
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(a) reconnect-tree RRT (rt-RRT). (b) Chance constrained reconnect-tree RRT with
ψs = 0.80 and ψp = 0.60 (CC-rt-RRT (med.)).

Figure 7.5: Illustrations of the dose distributions calculated via the dose-based optimisation for combined
interstitial dwell segments and intracavitary needle trajectories in the nominal planning scenario for a single
patient case. An overview of the used symbols is given in Figure 7.2.

7.3.3 Discussion
This section presented the first implementation of robust MP algorithms for brachytherapy needle
channel planning subject to uncertainty. A two-stage approach was proposed, where motion
planning was initialised with the optimal set of straight-line interstitial dwell segments given by a
coverage planning algorithm in either a conservative or nominal scenario. Curvature-constrained
needle trajectories were planned sequentially from these initial poses towards an entry region with
minimal trajectory length and/or risk. Two variants of rapidly-exploring random trees (RRTs), a
sampling-based MP algorithm, were introduced that are able to compute non-intersecting
curvature-constrained channels in the presence of bounded or probabilistic, i.e. Gaussian
distributed, uncertainty. Performance of these algorithms on computational and operational
criteria was evaluated against that of a nominal sampling-based MP algorithm in a single patient
case study. Furthermore, dosimetric indices and other characteristics of the optimised treatment
plans generated for the combined interstitial and intracavitary trajectories were compared for
nominal and worst-case uncertainty contours of OARs.

General implementation of (robust) motion planning variants for BT
Previous sampling-based motion planning algorithms for computing intracavitary channels in
brachytherapy applicators have similarly focused on the generation of curvature-constrained
trajectories from straight dwell segments towards an entry region [88–90]. In the work by Patil et
al. simultaneous trajectory optimisation of multiple needle trajectories was performed to generate
locally optimal trajectories from RRT initialisation [89]. The latter is computationally intensive
and relies on the quality and the homotopy class of the solutions returned by the RRT algorithm.
Contrary to this two-stage approach, asymptotically optimal RRT variants for nonholonomic
systems may be used to directly compute optimal trajectories, but require solving two-point
BVPs. In this thesis, rt-RRT was introduced, based on the reconnect-tree procedure of the
DT-RRT algorithm [372], and on the use of sampling in Euclidean space and reachability-guided
search as suggested by Patil et al. [89]. This algorithm was shown to be able to efficiently
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construct high quality trajectories approaching the theoretical optimum for a non-holonomic
agent. Additionally, this algorithm maintains Voronoi bias to explore different homotopy classes.
However, rt-RRT is not guaranteed to asymptotically converge to a globally (near-)optimal
solution. RRT variants with asymptotic near-optimality guarantees, such as LBT-RRT or SST
[369], may therefore be implemented in future work.

In previous sampling-based MP algorithms for BT needle channel planning the possibility of
positioning dwell locations along the curved trajectories was not taken into account. As an
introduction to an integrated approach where coverage planning and trajectory planning are
combined, this work proposed simplifications to account for OAR dose constraints during
trajectory planning. Dwell times were kept fixed over the entire trajectory, which leads to
conservatism of the intracavitary trajectories. In this case study this was not necessarily
detrimental for the planning results as the OARs were sufficiently distant from the theoretically
shortest trajectories. Integrating approximate dwell time planning with trajectory planning to
efficiently predict dwell times may reduce this conservatism for other instances. Moreover,
previous BT needle channel planning algorithms neglect the presence of uncertainty in the
environment. The bounded uncertainty and analytical chance constrained framework that was
introduced for RRT by Luders et al. [258, 259], was leveraged in this thesis. The formulated
BU-rt-RRT and CC-rt-RRT algorithms were able to generate guaranteed or probabilistically
feasible trajectories by construction in presence of spatial uncertainty of OARs. However, both of
these approaches are often overly conservative. To reduce conservatism, Patil et al. have therefore
proposed an analytical approach in which probability distributions are truncated by assuming
inter-dependence with collision probabilities of previous states [278]. Similar ideas can be used
here to speed up the probabilistic feasibility checking. Of particular interest are also chance
constrained approaches for moment-based ambiguity sets [280], since it is unclear whether spatial
uncertainty of OARs can be accurately described by Gaussian distributions. One of the main
qualities of the implemented bounded uncertainty or chance constrained framework for motion
planning is that it can be extended to include different forms of uncertainty, e.g. in configuration
knowledge. This may allow the addition of uncertainties in configuration knowledge such as source
strength or source positioning.

In this thesis sequential planning of trajectories was considered. However, failure to generate
trajectories occurred frequently, i.e. around 2/5 instances, in the narrow cluttered environment
posed by the BT needle channel planning problem. Especially the construction of a feasible
trajectory for the agent considered last proved to be difficult. To avoid ordering issues and to
guarantee optimality of all trajectories, rt-RRT and robust variants must be made applicable for
multi-agent systems. Postlethwaite and Kothari proposed a ‘reactive’ coordination strategy to
sequentially resolve conflicts in a decentralised multi-agent chance constrained RRT approach
[387]. To obtain a combined optimal solution for multiple cooperating agents and to preserve
feasibility guarantees, however, it is of particular interest to extend the risk allocation concept to
multi-agent systems and to implement an efficient decentralised optimisation approach for
sampling-based motion planners [388].

Planning scenario and outcomes

In this section two planning scenarios were created to evaluate the motion planning variants. In
the conservative OAR sparing scenario, no differences in trajectory length or risk between the
trajectories generated by the motion planning variants were observed. Initial states for the
trajectory planning were positioned at guaranteed feasible locations. Additionally, the initial
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heading angles were constrained such that each trajectory initially diverged from the bounded
uncertainty contours. These conservative assumptions ensured that the near-shortest length
trajectories generally avoided infeasible regions or regions of higher uncertainty. All planning
variants were therefore able to generate near-shortest length trajectories in this scenario with low
maximum and accumulated risks, comparable to the optimal relaxed Dubins’ curves. Accordingly,
no differences were found in the treatment planning parameters or dosimetric indices of optimised
dose distributions for these planning variants.

Of greater interest is the nominal planning scenario in which rt-RRT and CC-rt-RRT were
implemented. It was shown in the patient case study that CC-rt-RRT was able to reduce
trajectories’ maximum and accumulated risk to below an a priori specified threshold. In
particular, this approach generated trajectories that maintained larger distance to OARs.
However, by accounting for spatial uncertainty of OARs, the dwell positions along these
trajectories were also positioned less favourably to the extension of the target region in the
simulated patient case. In the subsequent dose-based optimisation, this was associated with
increased dwell times in the intracavitary channels to cover the tumour region sufficiently.
Therefore, dosimetric indices for nominal contours were not improved in comparison with the
treatment plans generated for trajectories computed with rt-RRT. In the robust treatment
optimisation approach by Balvert et al., it has been similarly described that in some patients the
target coverage reduced when accounting for uncertainty of the rectum contours [100]. This issue
may be potentially resolved by including the accumulated negation probability of a state covering
the target region in the objective function, which would serve as a counterpart to the probabilistic
OAR avoidance component. Moreover, in this thesis only a simplified case study was considered
using a sagittal image of a single patient case. Robust brachytherapy needle channel planning
must be re-evaluated for three-dimensional treatment planning and a greater number of patients.

Implementation in clinical practice
Robust planning of needle channels for personalised applicators may have great potential to
improve dose conformity of BT treatment. In the previous section it was shown that coverage
planning of straight interstitial segments may enable treatment plans with higher dose conformity
than for those generated in conventional applicators. The addition of dwell points in the curved
intracavitary channels further improves this dose conformity. Although this thesis considered
two-dimensional planning only, the extension to a three-dimensional case is trivial for the coverage
planning and the nominal rt-RRT algorithms. The implementation of chance constrained
programming for a three-dimensional environment is more complicated on the other hand. Even
though the formulated polytopic representation of obstacles allows analytical chance constraints to
still be used in a 3D environment, the computational complexity required to enable accurate OAR
representation may make other representations, e.g. ellipsoidal obstacles, potentially more viable.

The runtime of the currently implemented RRT variants in the two-dimensional planning case in
this thesis was too slow for clinical implementation. In the pilot study to determine the relative
importance of user requirements (Section 5.3), RT specialists indicated that the time for
generating the catheter trajectories should be on a seconds time scale. Especially for the
CC-rt-RRT the convergence to a high quality solution in the currently described implementations
of the motion planners was much slower (Table 7.3). However, this speed may be improved. Even
with online deterministic parameter tightening, the original implementation of CC-RRT by Luders
et al. was almost ten times faster per node [258]. The main computational bottleneck in the
current implementation was the needle-needle collision checking, of which the time complexity
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may be reduced by computing bounding volume hierarchies. Additionally, lazy collision checking
strategies, reachability-guided sampling, and approximate nearest neighbour search (see
Section 6.2) may all be implemented to reduce planning time. Lastly, the implementation in
MATLAB, as it is an interpreter, may be less efficient than in alternatives.

Reproducibility of the generated channels was considered to be the most important property of
the motion planning software in the user study in Section 5.3. In this thesis, similar to previous
works, it has been assumed that a catheter that is forced through an intracavitary applicator
channel behaves similar to a steerable needle, and can therefore be modelled as a unicycle-type
system. However, this assumption must be validated, especially for channels with multiple bends
in succession. Although in this section trajectories were generated that were composed of at most
three segments, needle channel planning in a three-dimensional case may concern multiple
complex bends with non-constant radii [89]. Mechanics-based models may be used to improve the
accuracy of modelling catheter behaviour in channels. This may especially be useful for
3D-printed applicators in which material surface properties may increase friction, and thereby
introduce positioning errors [48, 389]. For 3D-printed brachytherapy mould designs with 3.5 mm
channel diameters, the reproducibility of 6F BT catheters was assessed to be on average 0.5 mm
from CT rescanning [389]. This geometric uncertainty is similar to that of conventional
afterloaders [205], and therefore does not limit applicability. Alternatively, needle trajectories may
be represented with Gaussian state uncertainty in the chance constrained framework, or via
Gaussian processes which naturally provide a concept of uncertainty [390, 391].
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8. Conclusions and future work

Patient-tailored BT applicators can offer several advantages over conventional BT applicators in
the treatment of locally advanced cervical cancer. However, automated needle channel planning
required for these applicators is currently not capable of handling the spatial uncertainty that is
posed by this complex planning environment. Uncertainty in BT treatment has been shown to
significantly impact the delivered dose of both the target region and OARs and subsequently the
occurrence of normal tissue complications. To account for these uncertainties, this study
introduces the paradigm of robust patient-tailored applicator development in brachytherapy. Both
the freedom of source placement that 3D-printed applicators allow and the principle of robust
treatment optimisation are leveraged in this thesis to develop robust needle channel planning
software for patient-tailored applicators. This thesis provides a theoretical framework for the
development of robust planning software, which is possibly able to lead to treatment plans with
greater dose conformity in future patient case series.

The first aim of this study was to provide an updated overview of dosimetric uncertainty
components, estimate their clinical impact on brachytherapy for cervical cancer, and accordingly
make a case for the implementation of robust planning software. Contouring uncertainty was
established to be the largest individual contributor to dosimetric uncertainty of the primary
tumour volume (SD = 9.5%, k = 1). However, when it is assured that a high dose (>85 Gy
EQD2) is delivered to the target region, the predicted occurrence of local control is rather robust
against the reviewed uncertainties (<1.0% decrease). Inter and intra-fraction uncertainty were
shown to be the main contributors to the delivered dose to OARs, increasing the delivered dose
potentially up to 4.0 ± 20% (k = 1). These may realistically increase the occurrence of moderate
to severe tissue morbidity of the bladder or rectum by respectively 1.5 and 3.7%. In the case of
suboptimal dose conformity, the predicted occurrences increased up to 2.0 and 9.0% respectively.
Contrarily to inter-fraction uncertainty which can be largely resolved through repeated imaging
acquisition and treatment planning, intra-fraction uncertainty is almost inherent to treatment.
Therefore, in this thesis geometric intra-fraction uncertainty was further investigated, converted
into probabilistic and bounded uncertainty representations and cast into a motion planning (MP)
problem. The formulation used in this thesis enables different forms of BT uncertainty to be
represented in future work. As OAR motion patterns were ill-defined in literature and therefore
had to be heavily simplified in this thesis, future studies could moreover focus on characterising
critical structure movement in patient cohorts and individual patients.

This thesis secondly aimed to aid the decision-making process for the selection of a MP class from
a set of alternatives given on a trivial problem formulation and a set of user requirements. The
main contribution of this work was the development of a fully ordinal selection method, in a tool
termed MP-QFD, which does not rely on arbitrary promotion of ordinal data, and minimises the
subjectivity and arbitrariness conventionally associated with decision-making tools. The efficacy
of this tool was illustrated for the BT needle channel planning problem. Using the results from a
pilot study among nine medical specialists, the outcomes of this tool substantiated the preferred
choice for an incremental sampling-based MP algorithm. Future work could potentially focus on
integrating this tool in web-based applications and evaluating its role in the facilitation of
cross-disciplinary collaboration between software engineers and end users.
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Third and foremost, this thesis aimed to develop, implement and evaluate robust sampling-based
algorithms for the BT needle channel planning problem under uncertainty. A two-stage approach
was proposed consisting of coverage planning and robust trajectory planning. The main
contributions of this part were the development of sampling-based MP variants capable of
guaranteeing (probabilistic) feasibility of the trajectories generated for non-holonomic agents in
environments subject to uncertainty. In a two-dimensional simulated patient case, it was shown
that these planners were able to generate near-optimal needle channels that (probabilistically)
guaranteed not exceeding OAR dose constraints. Subsequent dose-based optimisation showed that
the dwell positions from combined coverage planning and (robust) trajectory planning could
theoretically yield treatment plans with improved dose conformity over those generated for
conventional applicators. Due to modelling assumptions, robust motion planning did not result in
improved dose conformity over the nominal motion planning approach in a worst-case scenario.
Future work should first validate the assumption that catheters that are forced through
intracavitary applicator channel can be accurately modelled as a unicycle-type system. Moreover,
the trajectory and coverage planning algorithms should be extended to include three-dimensional
planning cases and runtimes should be improved for clinical implementation. Lastly, whether
robust needle channel planning is able to improve the dose conformity in cervical cancer
brachytherapy subject to uncertainty must be validated in a patient case series.
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A. Appendices

A.1 MATLAB scripts

A.1.1 Script accompanying Figure 1.3

%% MATLAB - Line source distribution (mHDR-v2)
% Robin Straathof (2020)
clc
clear all
close all

% Data from mHDR-v2
% Download online; save as 'mHDR v2.xlsx'
% Save g l and F l data in two separate sheets
global L theta 0 r 0
S K = 40820; % Air-kerma strength: U
Lambda = 1.109; % Dose-rate constant: cm-2
L = 0.35; % Active length: cm
theta 0 = pi/2; % Reference angle: rad
r 0 = 1; % Reference distance: cm
diam = 0.09; % Source diameter: cm
l = 0.5; % Source length: cm

data gl = readmatrix('mHDR v2.xlsx','Sheet','g l');
data Fl = readmatrix('mHDR v2.xlsx','Sheet','F l');
theta Fl = data Fl(2:end,1)./180*pi;
r Fl = data Fl(1,2:end);
val Fl = data Fl(2:end,2:end);

% Compute relevant functions
G l0 = G l(r 0,theta 0);
r vec = linspace(0.3,10,98); % offset from centre due to errors
theta vec = linspace(0,pi,101);

for i = 1:(length(r vec))
r = r vec(i);
g l = interp1(data gl(:,1),data gl(:,2),r); % linearly interpolate
for j = 1:(length(theta vec))

theta = theta vec(j);
F l = interp2(r Fl,theta Fl,val Fl,r,theta); % linearly interpolate
G lp(i,j) = G l(r,theta);
d rate(i,j) = d(S K,Lambda,G lp(i,j),G l0,g l,F l); % cGy/hour

end
end

% Plot result
[t,r] = meshgrid(theta vec,r vec./100);
[x,y] = pol2cart(t,r);

figure(1)
surf(x,y,d rate);
xlabel('X (m)'), ylabel('Y (m)')
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hold on
surf(x,-y,d rate);
colormap([linspace(0.8,1,256)',linspace(0.8,210/255,256)',linspace(0.8,0,256)'])
colorbar
set(gca,'ColorScale','log')

figure(2)
contour(x,y,d rate,10)
xlim([-0.02 0.02])
ylim([-0.02 0.02])
xlabel('X (m)'), ylabel('Y (m)')
hold on
rectangle('Position',[-l/200 -diam/200 l/100 diam/100],'FaceColor', 'k') % source
contour(x,-y,d rate,10)
colormap([linspace(0.8,1,256)',linspace(0.8,210/255,256)',linspace(0.8,0,256)'])
colorbar
set(gca,'ColorScale','log')

%% Functions
% Geometry function
function G l out = G l(r,theta)
global L

beta = atan2(r*cos(theta)+L/2, r*sin(theta))- atan2(r*cos(theta)-L/2, r*sin(theta));
if theta == 0 | | theta == pi

G l out = 1/(rˆ2-Lˆ2/4);
else

G l out = beta/(L*r*sin(theta));
end

end

% Absorbed dose calculation
function d out = d(S K,Lambda,G lp,G l0,g l,F l)
d out = S K*Lambda*G lp/G l0*g l*F l;
end
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A.1.2 Script accompanying Figure A.1a

%% MATLAB - D90 EQD2 vs TCP
% Robin Straathof (2020)
clc
clear all
close all

% Symbolic variables
syms alpha B beta B N B d B G B % subscript `B' denotes BT
syms alpha E beta E N E d E G E % subscript `E' denotes EBRT
syms R x
syms gamma 50 TCD 50 D

%% Computation of (equivalent) Biologically effective dose (BED (eq))
% Formulas BED and BED eq for spherical dose (see Dale et al. (1997))
BED B = N B*d B*(1+G B*d B/(alpha B/beta B));
BED E = N E*d E*(1+G E*d E/(alpha E/beta E));
f = exp(-alpha B*N B*d B*(R/x)ˆ2-beta B*G B*N B*d Bˆ2*(R/x)ˆ4);
BED eq B = -1/alpha B*log(3/Rˆ3*vpaintegral(xˆ2*f,x,0,R));

%% Computation of EQD2 (eq) for BT+EBRT
% Formulas as derived with the method in ICRU 89 (2016)
EQD2 = BED B/((2*G B)/(alpha B/beta B)+1) + BED E/((2*G E)/(alpha E/beta E)+1);
EQD2 eq = BED eq B/((2*G B)/(alpha B/beta B)+1)+ BED E/((2*G E)/(alpha E/beta E)+1);

%% Logistic TCP model
% Formula for the logistic TCP model
TCP = 1/(1+exp(4*gamma 50*(1-D/TCD 50)));
TCP EQD2 = subs(TCP,D,EQD2);
TCP EQD2 eq = subs(TCP,D,EQD2 eq);

%% Plot
% Variable declaration
alpha B = 0.35; beta B = 0.35/10; N B = 4; G B = 1; R = 0.02; d B = 5;
alpha E = 0.35; beta E = 0.35/10; N E = 25; G E = 1; d E = 1.8;

TCP EQD2 = subs(TCP EQD2,{gamma 50,TCD 50},{0.47,36.0});
% From Nesvacil et al. (2016)
TCP EQD2 eq = subs(TCP EQD2 eq,{gamma 50,TCD 50},{0.48,39.4});
% Estimated parameters

% Generate plot
for i = 1:61

TCP EQD2 vec(i) = eval(TCP EQD2); EQD2 vec(i) = eval(EQD2);
TCP EQD2 eq vec(i) = eval(TCP EQD2 eq); EQD2 eq vec(i) = eval(EQD2 eq);
d B = d B + 0.1;

end

% Plot results
figure('Name','Figure 2a','NumberTitle','off')
plot(EQD2 vec,TCP EQD2 vec,'LineWidth',3,'color',[0 166/255 214/255])
hold on
plot(EQD2 vec,TCP EQD2 eq vec,'LineWidth',3,'color',[1 210/255 0])
set(gca,'FontName', 'Times New Roman','xlim',[65 120],'ylim',[0.85 1],...
'FontSize',18,'LineWidth',1.5)
xlabel('BT + EBRT {\it D} {90} CTV {HR} (EQD2 {\alpha/\beta = 10Gy})');ylabel('TCP')
h=legend({'EQD2','EQD2 {eq}'},'location','northwest');
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A.1.3 Script accompanying Figure A.1b

%% MATLAB - D2cm3 EQD2 vs NTCP
% Robin Straathof (2020)
clc
clear all
close all

% Symbolic variables
syms alpha B beta B N B d B G B % subscript `B' denotes BT
syms alpha E beta E N E d E G E % subscript `E' denotes EBRT
syms R x
syms gamma 50 TCD 50 D

%% Computation of (equivalent) Biologically effective dose (BED (eq))
% Formulas BED and BED eq for spherical dose (see Dale et al. (1997))
BED B = N B*d B*(1+G B*d B/(alpha B/beta B));
BED E = N E*d E*(1+G E*d E/(alpha E/beta E));
f = exp(-alpha B*N B*d B*(R/x)ˆ2-beta B*G B*N B*d Bˆ2*(R/x)ˆ4);
BED eq B = -1/alpha B*log(3/Rˆ3*vpaintegral(xˆ2*f,x,0,R));

%% Computation of EQD2 (eq) for BT+EBRT
% Formulas as derived with method in ICRU 89 (2016)
EQD2 = BED B/((2*G B)/(alpha B/beta B)+1) + BED E/((2*G E)/(alpha E/beta E)+1);
EQD2 eq = BED eq B/((2*G B)/(alpha B/beta B)+1)+ BED E/((2*G E)/(alpha E/beta E)+1);

%% Logistic NTCP model
% Formula for the logistic NTCP model
NTCP = 1/(1+exp(4*gamma 50*(1-D/TCD 50)));
NTCP EQD2 = subs(NTCP,D,EQD2);
NTCP EQD2 eq = subs(NTCP,D,EQD2 eq);

%% Plot
% Variable declaration
alpha B = 0.35; beta B = 0.35/10; N B = 4; G B = 1; R = 0.02; d B = 2;
alpha E = 0.35; beta E = 0.35/10; N E = 25; G E = 1; d E = 1.8;

NTCP EQD2 = subs(NTCP EQD2,{gamma 50,TCD 50},{2.0,110});
% From Nesvacil et al. (2016)
NTCP EQD2 eq = subs(NTCP EQD2 eq,{gamma 50,TCD 50},{2.05,118});
% Estimated parameters

% Generate plot
for i = 1:61

NTCP EQD2 vec(i) = eval(NTCP EQD2); EQD2 vec(i) = eval(EQD2);
NTCP EQD2 eq vec(i) = eval(NTCP EQD2 eq); EQD2 eq vec(i) = eval(EQD2 eq);
d B = d B + 0.1;

end

% Plot results
figure('Name','Figure 2b','NumberTitle','off')
plot(EQD2 vec,NTCP EQD2 vec,'LineWidth',3,'color',[0 166/255 214/255])
hold on
plot(EQD2 vec,NTCP EQD2 eq vec,'LineWidth',3,'color',[1 210/255 0])
set(gca,'FontName', 'Times New Roman','xlim',[55 85],'ylim',[0 0.2],...
'FontSize',18,'LineWidth',1.5)
xlabel('BT + EBRT {\it D} {2cmˆ3} OAR (EQD2 {\alpha/\beta = 3Gy})');ylabel('NTCP')
h=legend({'EQD2','EQD2 {eq}'},'location','northwest');
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A.1.4 Script accompanying Figure A.2 and Figure A.3

%% MATLAB - D2cm3 EQD2 vs NTCP
% Robin Straathof (2020)
clc
clear all
close all

% Symbolic variables
syms TD 50 V eff vec D ref y V i D i m n

%% Probit NTCP model
% Variable declaration
m blad = 0.11; n blad = 0.5; TD blad 50 = 80; % data from Burman et al. (1991)
m rect = 0.15; n rect = 0.12; TD rect 50 = 80; % data from Burman et al. (1991)
ax int = 0:1:100;

% Input cumulative DVH data (1)
v blad = [1 1 1 1 1 1 0.8 0.35 0.1 0.04 0.01];
EQD2 blad = [0 10 20 30 40 50 60 70 80 90 100];

% Input cumulative DVH data (2)
v rect = [1 1 1 1 0.5 0.15 0.1 0.08 0.02 0.01 0];

% Generate smooth cumulative DVH diagrams from fitting data
fun blad = @(z blad,EQD2 blad) 1./(1+exp((EQD2 blad-z blad(2))*z blad(1)));
z blad = lsqcurvefit(fun blad,[0.1,50],EQD2 blad,v blad);
DVH blad cm = [ax int;fun blad(z blad,ax int)];
[l blad,L blad] = size(DVH blad cm);

z rect = lsqcurvefit(fun blad,[0.1,50],EQD2 blad,v rect);
DVH rect cm = [ax int;fun blad(z rect,ax int)];

% Generate differential DVH (see Gay and Niemierko (2007))
DVH blad = DVH blad cm;
for i = 2:1:L blad

DVH blad(1,i-1) = DVH blad(1,i-1)+(DVH blad(1,i)-DVH blad(1,i-1))/2;
DVH blad(2,i-1) =(DVH blad(2,i-1)-DVH blad(2,i));

end

DVH rect = DVH rect cm;
for i = 2:1:L blad

DVH rect(1,i-1) = DVH rect(1,i-1)+(DVH rect(1,i)-DVH rect(1,i-1))/2;
DVH rect(2,i-1) =(DVH rect(2,i-1)-DVH rect(2,i));

end

%% Reduced DVH diagrams and NTCP curve
% Reduced DVH diagram with KB reduction algorithm (Kutcher and Burman (1989))
% Generate the NTCP curves
D ref blad = max(DVH blad(1,:));
for i = 1:1:L blad

D blad i = DVH blad(1,i);
v blad i = DVH blad(2,i);
v eff blad vec(i) = v blad i*(D blad i/D ref blad)ˆ(1/n blad);
v eff blad = sum(v eff blad vec);

end
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D ref rect = max(DVH rect(1,:));
for j = 1:1:L blad

D rect j = DVH rect(1,j);
v rect j = DVH rect(2,j);
v eff rect vec(j) = v rect j*(D rect j/D ref rect)ˆ(1/n rect);
v eff rect = sum(v eff rect vec);

end

% Formula for the probit NTCP model by Lyman (1985) for the effective volume
TDV blad eff 50 = TD blad 50/(v eff bladˆn blad);
t blad eff = (D ref blad-TDV blad eff 50)/(m blad*TDV blad eff 50);
NTCP blad eff = eval(1/sqrt(2*pi)*vpaintegral(exp(-yˆ2/2),y,-100,t blad eff))

TDV rect eff 50 = TD rect 50/(v eff rectˆn rect);
t rect eff = (D ref rect-TDV rect eff 50)/(m rect*TDV rect eff 50);
NTCP rect eff = eval(1/sqrt(2*pi)*vpaintegral(exp(-yˆ2/2),y,-100,t rect eff))

% Generate NTCP plot data
for i = 1:1:L blad

TDV blad 50 = TD blad 50/(1ˆn blad);
t blad = (DVH blad(1,i)-TDV blad 50)/(m blad*TDV blad 50);
NTCP blad(i) = eval(1/sqrt(2*pi)*vpaintegral(exp(-yˆ2/2),y,-100,t blad));

end

for j = 1:1:L blad
TDV rect 50 = TD rect 50/(1ˆn rect);
t rect = (DVH rect(1,j)-TDV rect 50)/(m rect*TDV rect 50);
NTCP rect(j) = eval(1/sqrt(2*pi)*vpaintegral(exp(-yˆ2/2),y,-100,t rect));

end

% Calculate dose corresponding to NTCP
D blad NTCP = interp1(NTCP blad,DVH blad cm(1,:),NTCP blad eff)
D blad 50 = interp1(DVH blad cm(2,:),DVH blad cm(1,:),0.5)
NTCP blad D 50 = interp1(DVH blad cm(1,:),NTCP blad,D blad 50)

D rect NTCP = interp1(NTCP rect,DVH rect cm(1,:),NTCP rect eff)
D rect 50 = interp1(DVH rect cm(2,:),DVH rect cm(1,:),0.5)
NTCP rect D 50 = interp1(DVH rect cm(1,:),NTCP rect,D rect 50)

%% Plot
% Plot results
% DVHs
figure('Name','Figure 3a','NumberTitle','off')
plot(EQD2 blad,v blad,'ko','Markerfacecolor','k')
hold on
plot(DVH blad cm(1,:),DVH blad cm(2,:),'LineWidth',3,'color',[0 166/255 214/255])
set(gca,'FontName', 'Times New Roman','xlim',[0 100],'ylim',[0 1],...
'FontSize',18,'LineWidth',1.5)
xlabel('BT + EBRT {\it D} Bladder (EQD2 {\alpha/\beta = 3Gy})');
ylabel('Volume {\it v} (%)');
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figure('Name','Figure 3b','NumberTitle','off')
plot(EQD2 blad,v rect,'ko','Markerfacecolor','k')
hold on
plot(DVH rect cm(1,:),DVH rect cm(2,:),'LineWidth',3,'color',[0 166/255 214/255])
set(gca,'FontName', 'Times New Roman','xlim',[0 100],'ylim',[0 1],...
'FontSize',18,'LineWidth',1.5)
xlabel('BT + EBRT {\it D} Rectum (EQD2 {\alpha/\beta = 3Gy})');
ylabel('Volume {\it v} (%)');

% NTCP-EQD2 graphs
figure('Name','Figure 4a','NumberTitle','off')
plot(DVH blad cm(1,:),NTCP blad(1,:),'LineWidth',3,'color',[0 166/255 214/255])
hold on
plot(D blad NTCP,NTCP blad eff,'ko','MarkerSize',14,'LineWidth',2)
set(gca,'FontName', 'Times New Roman','xlim',[0 100],'ylim',[0 1],...
'FontSize',14,'LineWidth',1.5)
xlabel('BT + EBRT {\it D} Bladder (EQD2 {\alpha/\beta = 3Gy})');ylabel('NTCP')
h=legend({'NTCP','NTCP {eff}'},'location','northwest');

figure('Name','Figure 4b','NumberTitle','off')
plot(DVH rect cm(1,:),NTCP rect(1,:),'LineWidth',3,'color',[0 166/255 214/255])
hold on
plot(D rect NTCP,NTCP rect eff,'ko','MarkerSize',14,'LineWidth',2)
set(gca,'FontName', 'Times New Roman','xlim',[0 100],'ylim',[0 1],...
'FontSize',14,'LineWidth',1.5)
xlabel('BT + EBRT {\it D} Rectum (EQD2 {\alpha/\beta = 3Gy})');ylabel('NTCP')
h=legend({'NTCP','NTCP {eff}'},'location','northwest');
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A.1.5 Script accompanying Figure 2.1 and Table 2.1

%% MATLAB - Error calculations
% Robin Straathof (2020)
clc
clear all
close all

% Patient data
Pat 1 = [ 2 3 ; 3 3 ; 2 2 ; 3 2];
Pat 2 = [ 1 0 ; 2 0 ; 0 2 ; -1 1];
Pat 3 = [-2 -3 ; -2 -2 ; -1 -3 ; -2 -2];

% Mean and SD of patients
Mean 1x = mean(Pat 1(:,1)); SD 1x = std(Pat 1(:,1));
Mean 1y = mean(Pat 1(:,2)); SD 1y = std(Pat 1(:,2));
Mean 2x = mean(Pat 2(:,1)); SD 2x = std(Pat 2(:,1));
Mean 2y = mean(Pat 2(:,2)); SD 2y = std(Pat 2(:,2));
Mean 3x = mean(Pat 3(:,1)); SD 3x = std(Pat 3(:,1));
Mean 3y = mean(Pat 3(:,2)); SD 3y = std(Pat 3(:,2));

% Statistics
Mx = mean([Mean 1x,Mean 2x,Mean 3x]); % Group systematic error
My = mean([Mean 1y,Mean 2y,Mean 3y]); % Group systematic error
Sx = std([Mean 1x,Mean 2x,Mean 3x]); % SD of systematic error
Sy = std([Mean 1y,Mean 2y,Mean 3y]); % SD of systematic error
RMSx = rms([SD 1x,SD 2x,SD 3x]); % Group random error
RMSy = rms([SD 1y,SD 2y,SD 3y]); % Group random error
SDSDx = std([SD 1x,SD 2x,SD 3x]); % Spread of random error
SDSDy = std([SD 1y,SD 2y,SD 3y]); % Spread of random error
R x = std([Pat 1(:,1);Pat 2(:,1);Pat 3(:,1)]) % Random error total
R y = std([Pat 1(:,2);Pat 2(:,2);Pat 3(:,2)]) % Random error total

% Generate circles for plotting later
[cSD 1x,cSD 1y] = circle(Mean 1x,Mean 1y,sqrt(SD 1xˆ2+SD 1yˆ2));
[cSD 2x,cSD 2y] = circle(Mean 2x,Mean 2y,sqrt(SD 2xˆ2+SD 2yˆ2));
[cSD 3x,cSD 3y] = circle(Mean 3x,Mean 3y,sqrt(SD 3xˆ2+SD 3yˆ2));
[cSD x,cSD y] = circle(Mx,My,sqrt(Sxˆ2+Syˆ2));
[RSD x,RSD y] = circle(Mx,My,sqrt(R xˆ2+R yˆ2));
[SDSD x,SDSD y] = circle(Mx,My,sqrt(R xˆ2+R yˆ2));

%% Tables
t = array2table([Pat 1,Pat 2,Pat 3;,...

Mean 1x Mean 1y Mean 2x Mean 2y Mean 3x Mean 3y;,...
SD 1x SD 1y SD 2x SD 2y SD 3x SD 3y],...
'RowNames',{'Fraction 1' 'Fraction 2' 'Fraction 3' 'Fraction 4' 'Mean' 'SD' },...
'VariableNames',{'Pat 1x' 'Pat 1y' 'Pat 2x' 'Pat 2y' 'Pat 3x' 'Pat 3y'})

s = array2table([Mx My; Sx Sy; RMSx RMSy; SDSDx SDSDy],...
'RowNames',{'M' 'S' 'RMS' 'SDSD'},...
'VariableNames',{'x' 'y'})

%% Figure as illustration
figure('Name','Figure 4','NumberTitle','off')
x ax =linspace(-10,10) ;
y ax =linspace(0,0) ;
plot(x ax,y ax,'k-','LineWidth',1.5) ;
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hold on
grid on
axis equal
plot(y ax,x ax,'k-','LineWidth',1.5);

% Plot statistics
plot(cSD 1x,cSD 1y,'LineWidth',2,'color',[0 166/255 214/255]);
plot(cSD 2x,cSD 2y,'LineWidth',2,'color',[1 210/255 0]);
plot(cSD 3x,cSD 3y,'LineWidth',2,'color',[88/255 128/255 10/255]);
plot(cSD x,cSD y,'LineWidth',2,'color','k');
plot(RSD x,RSD y,'LineWidth',2,'color',[0.8 0.8 0.8]);

plot(Pat 1(:,1),Pat 1(:,2),'ko','Markerfacecolor',[0 166/255 214/255],...
'MarkerSize',10,'LineWidth',2);
plot(Pat 2(:,1),Pat 2(:,2),'ko','Markerfacecolor',[1 210/255 0],...
'MarkerSize',10,'LineWidth',2);
plot(Pat 3(:,1),Pat 3(:,2),'ko','Markerfacecolor',[88/255 128/255 10/255],...
'MarkerSize',10,'LineWidth',2);

plot(Mean 1x,Mean 1y,'ko','Markerfacecolor',[0 166/255 214/255],...
'MarkerSize',14,'LineWidth',2);
plot(Mean 2x,Mean 2y,'ko','Markerfacecolor',[1 210/255 0],...
'MarkerSize',14,'LineWidth',2);
plot(Mean 3x,Mean 3y,'ko','Markerfacecolor',[88/255 128/255 10/255],...
'MarkerSize',14,'LineWidth',2);

plot(Mx,My,'ko','Markerfacecolor','k','MarkerSize',16,'LineWidth',2);
xlabel('Error x (mm)');ylabel('Error y (mm)')
set(gca,'FontName', 'Times New Roman','xlim',[-4 4],'ylim',[-4 4],...
'FontSize',18,'LineWidth',1.5)
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A.1.6 Script accompanying Table 2.3 and Figure 2.10b

In order to model the tissue morbidity of organs at risk, the parameters gamma 50, TCD 50,
alpha B/beta B and D 90 must be changed to the appropriate values.

%% MATLAB - CTVHR D90 EQD2 vs TCP under dosimetric uncertainty
% Robin Straathof (2020)
clc
clear all
close all

% Symbolic variables
syms alpha B beta B N B d B G B % subscript `B' denotes BT
syms alpha E beta E N E d E G E % subscript `E' denotes EBRT
syms gamma 50 TCD 50 D

%% Computation of Biologically equivalent dose (BED)
% Formula BED
BED B = N B*d B*(1+G B*d B/(alpha B/beta B));
BED E = N E*d E*(1+G E*d E/(alpha E/beta E));

%% Computation of equieffective dose at 2 Gy fractions (EQD2) for BT+EBRT
EQD2 = BED B/((2*G B)/(alpha B/beta B)+1)+BED E/((2*G E)/(alpha E/beta E)+1);

%% Variables
% Variable declaration
alpha B = 0.35; beta B = 0.35/10; N B = 4; G B = 1;
alpha E = 0.35; beta E = 0.35/10; N E = 25; G E = 1; d E = 1.8;

gamma 50 = 0.47; % Parameters from Nesvacil et al. (2016)
TCD 50 = 36.0; % Parameters from Nesvacil et al. (2016)

% Dosimetric variables
M p sys = 0.0; % Group mean systematic error for systematic effects (in %)
sigma p sys = 0.0; % Overall random error for systematic effects (in %)
M p ran = 0.0; % Group mean systematic error for random effects (in %)
sigma p ran = 0.0; % Overall random error for random effects (in %)

%% Simulation of dose-effect relation with uncertainty
% Generate TCP data
N pat = 1000;

% Planning-aim dose and TCP
d B = linspace(0,12,61);
EQD2 plan(1,:) = eval(EQD2);
TCP plan(1,:) = 1./(1+exp(4*gamma 50*(1-EQD2 plan(1,:)./TCD 50)));

for k = 1:N pat % Number of patients
% Delivered dose and TCP
for i = 1:2 % Number of insertions

% Calculate systematic impact
Delta sys(2*(i-1)+1,:) = normrnd(M p sys*d B/100,sigma p sys*d B/100);
Delta sys(2*i,:) = Delta sys(2*(i-1)+1,:);
for j = 1:2 % Number of fractions

% Calculate random impact
Delta ran(j+2*(i-1),:) = normrnd(M p ran*d B/100,sigma p ran*d B/100);

end
end
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for l = 1:length(d B)
% Delivered dose
d B tilde(:,l) = d B(:,l) + Delta sys(:,l) + Delta ran(:,l);
% BED from delivered dose
BED B tilde(:,l)= sum(d B tilde(:,l).*(1+G B*d B tilde(:,l) ...
./(alpha B/beta B)));

% EQD2 from delivered dose
EQD2 tilde(:,l) = eval(BED B tilde(:,l)/((2*G B)/(alpha B/beta B)+1) + ...
BED E/((2*G E)/(alpha E/beta E)+1));

% Formula for the logistic TCP model
TCP tilde(:,l) = 1/(1+exp(4*gamma 50*(1-EQD2 tilde(:,l)/TCD 50)));

% Compute occurrence of events: '1' is no event, '2' is event occurring
LC tilde(:,l) = randsample(2,1,true,[1-TCP tilde(:,l) TCP tilde(:,l)]);
LC plan(:,l) = randsample(2,1,true,[1-TCP plan(:,l) TCP plan(:,l)]);

end

% Store variables in matrices
TCP tilde mat(k,:) = TCP tilde;
EQD2 tilde mat(k,:) = EQD2 tilde;
LC tilde mat(k,:) = LC tilde;
LC plan mat(k,:) = LC plan;

% Reset vectors
TCP tilde = 0;
EQD2 tilde = 0;
k % counter

end

% Set '0' is no event, '1' is event
LC tilde mat(LC tilde mat==1) = 0;
LC tilde mat(LC tilde mat==2) = 1;
LC plan mat(LC plan mat==1) = 0;
LC plan mat(LC plan mat==2) = 1;

%% Generate new curves
% Logistic regression between events and EQD2
for k = 1:N pat

EQD2 data = EQD2 plan;
X logit = mnrfit(EQD2 data,categorical(LC tilde mat(k,:)),...
'model','nominal');
TCP pred = mnrval(X logit,linspace(0,120,120)',...
'model','nominal');
if isempty(TCP pred) == false

TCP pred vec(k,:) = TCP pred(:,2)';
end

X logit 2 = mnrfit(EQD2 data,categorical(LC plan mat(k,:)),...
'model','nominal');
TCP pred 2 = mnrval(X logit 2,linspace(0,120,120)',...
'model','nominal');
if isempty(TCP pred 2)== false

TCP pred 2 vec(k,:) = TCP pred 2(:,2)';
end

end
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% Compute average models
TCP pred vec(~any(TCP pred vec,2), : ) = [];
TCP tilde avg = mean(TCP pred vec);
TCP tilde SD = std(TCP pred vec);

TCP pred 2 vec(~any(TCP pred 2 vec,2), : ) = [];
TCP plan avg = mean(TCP pred 2 vec);
TCP plan SD = std(TCP pred 2 vec);

%% Plot results
% Plot results
figure('Name','Figure 1.10','NumberTitle','off')

% Without uncertainty
plot(linspace(0,120,120),TCP plan avg,'LineWidth',3,'color',[0 166/255 214/255])
hold on
plot(linspace(0,120,120),TCP plan avg-TCP plan SD,'--','LineWidth',3,...
'color',[0.8 0.8 0.8],'HandleVisibility','off')
plot(linspace(0,120,120),TCP plan avg+TCP plan SD,'--','LineWidth',3,...
'color',[0.8 0.8 0.8])

% With uncertainty
plot(linspace(0,120,120),TCP tilde avg,'LineWidth',3,'color',[1 210/255 0])
plot(linspace(0,120,120),TCP tilde avg-TCP tilde SD,'LineWidth',3,...
'color',[0.8 0.8 0.8],'HandleVisibility','off')
plot(linspace(0,120,120),TCP tilde avg+TCP tilde SD,'LineWidth',3,...
'color',[0.8 0.8 0.8])
set(gca,'FontName', 'Times New Roman','xlim',[70 120],'ylim',[0.85 1.0],...
'FontSize',18,'LineWidth',1.5)
xlabel('BT + EBRT {\it D} {90} CTV {HR} (EQD2 {\alpha/\beta = 10Gy})');ylabel('TCP')
h=legend({'No uncertainty','SD (without uncertainty)',...
'Inter-fraction uncertainty','SD (with uncertainty)'},'location','northwest');

% Calculate clinical impact at planning-aim dose level
D 90 = 90; % Planning-aim dose level
val TCP = TCP tilde avg(:,D 90)
err TCP = TCP tilde avg(:,D 90)-TCP plan avg(:,D 90)
SD TCP = TCP tilde SD(:,D 90)
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A.1.7 Script accompanying Figure 2.9

In order to model the impact of other uncertainty components, the type of uncertainty must be
changed for the first for-loop.

%% MATLAB - Impact of dosimetric uncertainty type
% Robin Straathof (2020)
clc
clear all
close all

% Symbolic variables
syms alpha B beta B N B d B G B % subscript `B' denotes BT
syms alpha E beta E N E d E G E % subscript `E' denotes EBRT
syms gamma 50 TCD 50 D

%% Computation of Biologically equivalent dose (BED)
% Formula BED
BED B = N B*d B*(1+G B*d B/(alpha B/beta B));
BED E = N E*d E*(1+G E*d E/(alpha E/beta E));

%% Computation of equieffective dose at 2 Gy fractions (EQD2) for BT+EBRT
EQD2 = BED B/((2*G B)/(alpha B/beta B)+1)+BED E/((2*G E)/(alpha E/beta E)+1);

%% Variables
% Variable declaration
alpha B = 0.35; beta B = 0.35/10; N B = 4; G B = 1;
alpha E = 0.35; beta E = 0.35/10; N E = 25; G E = 1; d E = 1.8;

gamma 50 = 0.47; % Parameters from Nesvacil et al. (2016)
TCD 50 = 36.0; % Parameters from Nesvacil et al. (2016)

% Generate TCP data
N pat = 200;

% Planning-aim dose and TCP
d B = linspace(0,12,61);
EQD2 plan(1,:) = eval(EQD2);
TCP plan(1,:) = 1./(1+exp(4*gamma 50*(1-EQD2 plan(1,:)./TCD 50)));

% Dosimetric variables
M p sys = 0; % Group mean systematic error for systematic effects (in %)
sigma p sys = 0; % Overall random error for systematic effects (in %)
M p ran = 0; % Group mean systematic error for random effects (in %)
sigma p ran = 0; % Overall random error for random effects (in %)
q = 1;
for M p sys = -12:4:12 % Select M p sys / sigma p sys / M p ran / sigma p ran
for k = 1:N pat % Number of patients

% Delivered dose and TCP
for i = 1:2 % Number of insertions

% Calculate systematic impact
Delta sys(2*(i-1)+1,:) = normrnd(M p sys*d B/100,sigma p sys*d B/100);
Delta sys(2*i,:) = Delta sys(2*(i-1)+1,:);
for j = 1:2 % Number of fractions

% Calculate random impact
Delta ran(j+2*(i-1),:) = normrnd(M p ran*d B/100,sigma p ran*d B/100);

end
end
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for l = 1:length(d B)
% Delivered dose
d B tilde(:,l) = d B(:,l) + Delta sys(:,l) + Delta ran(:,l);

% BED from delivered dose
BED B tilde(:,l)= sum(d B tilde(:,l).*(1+G B*d B tilde(:,l) ...
./(alpha B/beta B)));

% EQD2 from delivered dose
EQD2 tilde(:,l) = eval(BED B tilde(:,l)/((2*G B)/(alpha B/beta B)+1) + ...
BED E/((2*G E)/(alpha E/beta E)+1));

% Formula for the logistic TCP model
TCP tilde(:,l) = 1/(1+exp(4*gamma 50*(1-EQD2 tilde(:,l)/TCD 50)));

% Compute occurrence of events: '1' is no event, '2' is event occurring
LC tilde(:,l) = randsample(2,1,true,[1-TCP tilde(:,l) TCP tilde(:,l)]);
LC plan(:,l) = randsample(2,1,true,[1-TCP plan(:,l) TCP plan(:,l)]);

end

% Store variables in matrices
TCP tilde mat(k,:) = TCP tilde;
EQD2 tilde mat(k,:) = EQD2 tilde;
LC tilde mat(k,:) = LC tilde;
LC plan mat(k,:) = LC plan;

% Reset vectors
TCP tilde = 0;
EQD2 tilde = 0;
k

end

% Set '0' is no event, '1' is event for clarity
LC tilde mat(LC tilde mat==1) = 0;
LC tilde mat(LC tilde mat==2) = 1;
LC plan mat(LC plan mat==1) = 0;
LC plan mat(LC plan mat==2) = 1;

% Logistic regression between events and EQD2
for k = 1:N pat

EQD2 data = EQD2 plan;
X logit = mnrfit(EQD2 data,categorical(LC tilde mat(k,:)),...
'model','nominal');
TCP pred = mnrval(X logit,linspace(0,120,120)',...
'model','nominal');
if isempty(TCP pred) == false

TCP pred vec(k,:) = TCP pred(:,2)';
end

X logit 2 = mnrfit(EQD2 data,categorical(LC plan mat(k,:)),...
'model','nominal');
TCP pred 2 = mnrval(X logit 2,linspace(0,120,120)',...
'model','nominal');
if isempty(TCP pred 2)== false

TCP pred 2 vec(k,:) = TCP pred 2(:,2)';
end

end
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% Compute average models
TCP pred vec(~any(TCP pred vec,2), : ) = [];
TCP tilde avg(q,:) = mean(TCP pred vec);
TCP tilde SD(q,:) = std(TCP pred vec);

TCP pred 2 vec(~any(TCP pred 2 vec,2), : ) = [];
TCP plan avg(q,:) = mean(TCP pred 2 vec);
q = q+1
end

%% Plot results
% Plot results
figure('Name','Figure 1.9','NumberTitle','off')
for z = 1:(q-1)

plot(linspace(0,120,120),TCP tilde avg(z,:),'LineWidth',6,...
'color',[1-(z-1)*0.07 210/255-(z-1)*0.07 (z-1)*0.07])
hold on

end
plot(linspace(0,120,120),TCP plan avg(2,:),'LineWidth',6,...
'color',[0 166/255 214/255])
set(gca,'FontName', 'Times New Roman','xlim',[0 120],'ylim',[0 1.0],...
'FontSize',40,'LineWidth',1.5)
xlabel('BT + EBRT dose (EQD2)');ylabel('Event probability')
h=legend({'M p = -12%','M p = -8%','M p = -4%','M p = 0%',...
'M p = 4%', 'M p = 8%','M p = 12%','No uncertainty'},'location','northwest');
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A.1.8 Script for converting DICOM-RT into 2D convex shapes in the sagittal
plane

%% MATLAB - DICOM-RT to sagittal contours
% Robin Straathof (2020)
clc
clear all
close all

% Load DICOM-RT structure and plot contours
info = dicominfo('rtstruct.dcm');
contour = dicomContours(info);
figure(1)
plotContour(contour)

for i = 1:size(contour.ROIs,1)
points a = [NaN,NaN];
points p = [NaN,NaN];
for j = 1:1:size(contour.ROIs.ContourData{i,1},1)

data = contour.ROIs.ContourData{i,1}{j};
X = data(:,1);
Y = data(:,2);
Z = data(1,3);

% Find intersection points with sagittal plane
[x0,y0] = intersections(X,Y,[0 0],[-1000 1000]);
% 'intersections' function by Douglas M. Schwarz
% Version: 2.0, 25 May 2017
% https://nl.mathworks.com/matlabcentral/fileexchange/
% 11837-fast-and-robust-curve-intersections
points a = [points a; y0(1) Z];
points p = [points p; y0(2) Z];

end
points ROI{i} = [points a;flip(points p);points a(2,:)];
points ROI{i} = rmmissing(points ROI{i});
[k,av] = convhull(points ROI{i})

% Plot result
figure(i+1)
plot(points ROI{i}(:,1),points ROI{i}(:,2),'k-');
hold on
plot(points ROI{i}(k,1),points ROI{i}(k,2),'LineWidth',2,'color',[1 210/255 0])

end
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A.1.9 Script accompanying Figure 4.5

%% MATLAB - Trace sagittal MRI to compute convex shapes
% Robin Straathof (2020)
clc
clear all
close all

% Load sagittal MR image
MR = imread('Delineation extended.png');
MR = rgb2gray(MR);

% Scale image to real-world size
x Limits = [0.000 0.210];
y Limits = [0.000 0.214];
RMR = imref2d(size(MR),x Limits,y Limits);

% Plot MR image
figure(1)
imshow(flipud(MR),RMR);
axis xy;

% Select CVT HR
msgbox('Trace CTV HR', 'WindowStyle', 'modal');
ctv = drawpolygon('FaceAlpha',0);
ctv.Color = [161/255 225/255 36/255];
ctv coord = ctv.Position;
ctv conv = convhull(ctv coord);
ctv coord = ctv coord(ctv conv,:);
hold on
plot(ctv coord(:,1),ctv coord(:,2),'LineWidth',3,'color',ctv.Color)

% Select vaginal cavity
msgbox('Trace vaginal cavity', 'WindowStyle', 'modal');
cav = drawpolygon('FaceAlpha',0);
cav.Color = [1 0 207/255];
cav coord = cav.Position;
cav conv = convhull(cav coord);
cav coord = cav coord(cav conv,:);
hold on
plot(cav coord(:,1),cav coord(:,2),'LineWidth',3,'color',cav.Color)

% Select bladder
msgbox('Trace bladder', 'WindowStyle', 'modal');
blad = drawpolygon('FaceAlpha',0);
blad.Color = [1 210/255 0];
blad coord = blad.Position;
blad conv = convhull(blad coord);
blad coord = blad coord(blad conv,:);
hold on
plot(blad coord(:,1),blad coord(:,2),'LineWidth',3,'color',blad.Color)

% Select rectum
msgbox('Trace rectum', 'WindowStyle', 'modal');
rect = drawpolygon('FaceAlpha',0);
rect.Color = [0 166/255 214/255];
rect coord = rect.Position;
rect conv = convhull(rect coord);
rect coord = rect coord(rect conv,:);
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hold on
plot(rect coord(:,1),rect coord(:,2),'LineWidth',3,'color',rect.Color)

% Select sigmoid
msgbox('Trace sigmoid', 'WindowStyle', 'modal');
sigm = drawpolygon('FaceAlpha',0);
sigm.Color = [168/255 22/255 184/255];
sigm coord = sigm.Position;
sigm conv = convhull(sigm coord);
sigm coord = sigm coord(sigm conv,:);
hold on
plot(sigm coord(:,1),sigm coord(:,2),'LineWidth',3,'color',sigm.Color)

% Save data
disp('Done')
save('structures 2.mat','ctv coord','cav coord','blad coord','rect coord',...
'sigm coord')
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A.1.10 Script accompanying Figure 4.7b

%% MATLAB - Computing reachable region (partially using Maple (2015))
% Robin Straathof (2020)
clc
clear all
syms d t phi v x v y
syms theta x y kappa
syms X Y

% Lie group and algebra equations
X t = [cos(theta), -sin(theta), x;

sin(theta), cos(theta), y;
0 , 0, 1];

e v = [cos(d t*phi),-sin(d t*phi),v x/phi*sin(d t*phi)-v y/phi*(1-cos(d t*phi));
sin(d t*phi), cos(d t*phi),v y/phi*sin(d t*phi)+v x/phi*(1-cos(d t*phi));
0 , 0, 1];

X td = X t*e v;

% Unicycle kinematics
x = 0;
y = 0;
v y = 0;
theta = 0;
phi = kappa*v x;
d t = 1;
X td = eval(X td);

% Solve for known positions (done using Maple (2015))
% sol = solve(X td(1,3)==X,X td(2,3)==Y)
kappa = (2*cos(theta)*Y-2*X*sin(theta))/(Xˆ2+Yˆ2);
v x = (1/2)*(X*sin(theta)+cos(theta)*Y)*(Xˆ2+Yˆ2)*atan2(-(2*(sin(theta)*...
cos(theta)*Xˆ2-sin(theta)*cos(theta)*Yˆ2-2*cos(theta)ˆ2*X*Y+X*Y))/(Xˆ2+Yˆ2),...
(4*cos(theta)*X*Y*sin(theta)+2*cos(theta)ˆ2*Xˆ2-2*cos(theta)ˆ2*Yˆ2-Xˆ2+Yˆ2)/...
(Xˆ2+Yˆ2))/(d t*(cos(theta)ˆ2*Xˆ2+cos(theta)ˆ2*Yˆ2-Xˆ2));

[X,Y] = meshgrid(0:0.05:2,-1:0.05:1);
g = surf(X,Y,eval(kappa));
axis equal
xlabel('X'); ylabel('Y');
caxis([-1 1]);
colormap([linspace(0,1,256)',linspace(166/255,210/255,256)',...
linspace(214/255,0,256)'])
h = colorbar;
i = ylabel(h, '\kappa','Fontsize',18,'VerticalAlignment','middle');
set(i,'rotation',0);
zlim([-1 1]);
view(0,90);
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A.1.11 Script for basic RRT algorithm (accompanying Figure 6.2b)

This MATLAB script consists of multiple components. The main file is ‘RRT basic.m’. Other files
need to be stored in the same folder in order to work properly. Classes are defined for each of the
primitives, which are in turn part of superclasses that may be used for property inheritance (not
used in this thesis). These codes are based on the previous MATLAB scripts by Vemprala [392], and
Agarwal [393].

Main file - save as: ‘RRT basic.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MATLAB - Basic RRT
% Robin Straathof (2020)
% Based on: - Sai Vemprala (2017)
% - Saurav Agarwal (2017)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function RRT basic
% Add subfolders to path
addpath(genpath(pwd));

clear variables
clc;
close all;

%% Load example problem
% Workspace representation
map.bounds = [0.00 0.00 0.08 0.08 0.00;...

0.00 0.04 0.04 0.00 0.00];
map.obstacles{1} = [0.00 0.00 0.08 0.00;...

0.03 0.04 0.04 0.03];
map.obstacles{2} = [0.00 0.00 0.08 0.00;...

0.00 0.01 0.00 0.00];
map.obstacles{3} = [0.03 0.04 0.04 0.03 0.03;...

0.015 0.015 0.03 0.03 0.015];
map.start1 = [0.08; 0.025];
map.target = [0.00; 0.02];

global Tol
Tol = 1E-3; % [m]; target region width tolerance

qI 1 = map.start1;
qG 1 = map.target;

% Agent representation
global agent width agent length
agent width = 2.5E-3; % [m]; agent width
agent length = 5.0E-3; % [m]; agent length

% Planning execution
global N Nodes delay
N Nodes = 2000; % [ ]; maximum number of nodes
delay = 0.02; % [s]; delay for animation
SampBias = 0.01; % [ ]; bias towards goal region
delta = 5.0E-3; % [m]; maximum step size
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%% Initialise sampling-based primitives
% Sampling
Sample = RandUni Sampler(map,SampBias); % Random uniform sampler
% Metric
Metric = Euc CostFunction; % Euclidean cost function
% Nearest Neighbour
Nearest = Euc NearNeighbour; % Euclidean nearest neighbour
% Steering function
Steer = Path MotionModel(delta); % Straight line towards new sample
% Collision detection
Conf free = @(q) isConfValid(q,map); % Configuration validity checker
Motion free = Samp MotionChecker(delta); % Sampled motion validity checker

%% Run motion planner
% Create plan for a single agent
planner RRT = RRT(map,Sample,Metric,Nearest,Steer,Conf free,Motion free);
Sol Path = planner RRT.plan(qI 1,qG 1);

Motion Planning algorithm - save as: ‘RRT.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Basic RRT algorithm
% Original codes by Agarwal (2017) and Vemprala (2017)

% G: Contains vertices and edges.
% V: Contains list of all explored nodes. Each node contains its
% pose, cost to reach, its parent and index.
% E: Contains list of all explored edges. Each edge contains its
% two nodes, cost and indices of the nodes.

% Brief description of algorithm:
% 1. Sample a node q rand.
% 2. Find the closest node q near from explored nodes to branch out from, towards
% q rand.
% 3. Steer from q near towards q rand to obtain q new
% 4. Check whether the nodes and edges are feasible
% 5. Add configuration and path to tree;
% 6. Continue until maximum number of nodes is reached or goal is hit.

classdef RRT < handle
properties

Map = [];
Sampler = [];
CostFunction = [];
NearNeighbour = [];
MotionModel = [];
ConfValidityChecker = [];
MotionValidityChecker = [];

end

methods
% Input Motion Planner Primitives
function obj = RRT(map,Sample,Metric,Nearest,Steer,Conf free,Motion free)

%obj@Planner Class(); % Only when superclass 'Planner Class' is defined
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obj.Map = map;
obj.Sampler = Sample;
obj.CostFunction = Metric;
obj.NearNeighbour = Nearest;
obj.MotionModel = Steer;
obj.ConfValidityChecker = Conf free;
obj.MotionValidityChecker = Motion free;

end

% Main path planning function
function [Sol Path] = plan(obj,qI i,qG i)

% Workspace definition
global Tol

x max = max(obj.Map.bounds(1,:)); % x-limits
y max = max(obj.Map.bounds(2,:)); % y-limits

q start.pose = qI i; q start.cost = 0; q start.parent = 0;
q start.index = 1; q target.pose = qG i;

% Plot workspace
figh = figure;
axis([0 x max 0 y max])
obj.drawObstacles(figh);
set(gca,'FontName', 'Times New Roman','FontSize',14)
hold on
plot(q start.pose(1),q start.pose(2),'.k','MarkerSize',20)
plot(q target.pose(1),q target.pose(2),'.k','MarkerSize',20)
axis equal
xlim([0 x max]); ylim([0 y max]);
xlabel('X (m)'); ylabel('Y (m)');

% Planning Execution
global N Nodes delay
Sol Path = [];

% Start of algorithm
V(1) = q start;
E(1).line = []; E(1).cost = 0; E(1).n1 = 0; E(1).n2 = 0;

for k = 1:1:N Nodes
G.V = V; G.E = E; % add vertices and edges to tree

% 1. Sample a node q rand
q rand cand = obj.Sampler.sample();
if obj.ConfValidityChecker(q rand cand) % only sample valid points

q rand = q rand cand;
line(q rand(1), q rand(2),'Marker','.','Color', [0 0.45 0.74]);

else
continue

end

% 2. Find the closest node q near from explored nodes
q near = obj.NearNeighbour.nearest(G,q rand,obj.CostFunction);

% 3. Steer from q near towards q rand
q new = obj.MotionModel.steer(q near,q rand);
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% 4. Check whether the nodes and edges are feasible
if obj.MotionValidityChecker.collision free(q near.pose,...
q new.pose,obj.ConfValidityChecker)

q new.index = length(V)+1;

% 5. Add configuration and path to tree;
V = [V q new]; % append to vertices
line(q new.pose(1),q new.pose(2),'Marker','.',...
'Color', [0.2 0.2 0.2]);

E new.line = [q near.pose,q new.pose];
E new.cost = q new.cost-q near.cost;
E new.n1 = q near.index;
E new.n2 = q new.index;
E = [E E new]; % append to edges
line(E new.line(1,:), E new.line(2,:),'Color',[0.5 0.5 0.5]);

% 6. Continue until target is reached
if norm(q target.pose-q new.pose,2) < Tol && k <= N Nodes

G.V = V; G.E = E;

q end = q new;
while q end.parent ~= 0

ix = q end.parent;
line([q end.pose(1),V(ix).pose(1)], [q end.pose(2),...
V(ix).pose(2)], 'Color', 'k', 'LineWidth', 2);
q end = V(ix);
Sol Path = [Sol Path q end.pose];

end

Sol Path = fliplr(Sol Path);
return;

end
end
pause(delay);

end

if k == N Nodes && isempty(Sol Path)
disp("No solution found");
return;

end
end

% Utility functions
function drawObstacles(obj,h)

% Input:
% h: figure handle

obstacles = obj.Map.obstacles;
figure(h)
hold on
for i = 1:length(obstacles)

obs = obstacles{i};
fill(obs(1,:),obs(2,:),[0 166/255 214/255]);

end
end

end
end
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Sampling - save as: ‘RandUni Sampler.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Random uniform sampler
% Input:

% map: map of workspace
classdef RandUni Sampler < handle

properties
GoalBias = [];
map = [];

end
methods

function obj = RandUni Sampler(map,bias)
%obj@Sampler; % Only when superclass 'Sampler' is defined
obj.map = map;
obj.GoalBias = bias;

end
function [q rand] = sample(obj)

x max = max(obj.map.bounds(1,:)); % x-limits
y max = max(obj.map.bounds(2,:)); % y-limits
if rand < obj.GoalBias % with probability of GoalBias

q rand = obj.map.target; % target point
else

q rand = [rand(1)*x max;rand(1)*y max]; % random point
end

end
end

end

Metric - save as: ‘Euc CostFunction.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Euclidean distance metric function
% Input:

% qi,qj: two configurations
classdef Euc CostFunction < handle

properties
end
methods

function obj = Euc CostFunction
%obj@CostFunction; % Only when superclass 'CostFunction' is defined

end
function [cost] = metric(obj,qi,qj)

cost = norm(qi-qj,2); % Euclidean distance in 2D
end

end
end

Nearest Neighbour - save as: ‘Euc NearNeighbour.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Nearest neighbour using Euclidean distance function
% Input:

% q: configuration
% G: current tree
% CostFunction: metric
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classdef Euc NearNeighbour < handle
properties
end
methods

function obj = Euc NearNeighbour
%obj@NearNeighbour; % Only when superclass 'NearNeighbour' is defined

end

function [q near] = nearest(obj,G,q,CostFunction)
V = G.V; N = length(V); v = zeros(2,N); cost = zeros(1,N);

% Determine distance from all vertices to q rand
for i=1:N

v(:,i) = V(i).pose;
cost(1,i) = CostFunction.metric(v(:,i),q);

end

% Determine nearest vertex
[val, idx] = min(cost);
q near = V(idx);

end
end

end

Steering Function - save as: ‘Path MotionModel.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Motion Model of a straight path system
% Input:

% q near: near configuration
% q rand: sampled configuration

classdef Path MotionModel < handle
properties

delta = [];
end
methods

function obj = Path MotionModel(delta)
%obj@MotionModel; % Only when superclass 'MotionModel' is defined
obj.delta = delta;

end
function [q new] = steer(obj,q near,q rand)

dist = norm(q near.pose-q rand,2);
if dist < obj.delta

q new.pose = q rand;
q new.cost = q near.cost + dist;
q new.parent = q near.index;

else
q new.pose = q near.pose + obj.delta*(q rand-q near.pose)/...
norm(q rand-q near.pose,2);
q new.cost = q near.cost + obj.delta;
q new.parent = q near.index;

end
end

end
end
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Configuration validity checker - save as: ‘isConfValid.m’

function bool = isConfValid(q, map)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function that calculates whether the configuration is in collision
% Input:
% q: agent state
% map: obstacle map

% Agent parameters
global agent width agent length
w = agent width; l = agent length;
N = 5; % discretisation level
lpts x = reshape(repmat(linspace(-l/2,l/2,N),N,1),1,[]);
lpts y = reshape(repmat(linspace(-w/2,w/2,N)',1,N),1,[]);

for i =1:Nˆ2
agent(:,i) = [q(1);q(2)] + [lpts x(i);lpts y(i)];

end

% Check collision using inpolygon
for i=1:length(map.obstacles)

obs = map.obstacles{i};
collided = inpolygon(agent(1,:),agent(2,:),obs(1,:),obs(2,:));
if any(collided)

bool = false; % when in collision
return;

end
end
bool = true; % when not in collision
end

Motion validity checker - save as: ‘Samp MotionChecker.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sampled motion validity checker
% Input:

% q near: near configuration
% q new: new configuration

classdef Samp MotionChecker < handle
properties

delta = [];
end
methods

function obj = Samp MotionChecker(delta)
%obj@MotionChecker; % Only when superclass 'MotionChecker' is defined
obj.delta = delta;

end
function [bool] = collision free(obj,q near,q new,ConfValidityChecker)

global agent length
steps = ceil(norm((q new-q near),2)/ min(obj.delta,agent length));
% number of collision checks
p x = linspace(q near(1),q new(1),steps);
p y = linspace(q near(2),q new(2),steps);
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bool = true;
for i = 1:size(p x,2)

if ConfValidityChecker([p x(i);p y(i)]) == 0 % i.e. in collision
bool = false;

end
end

end
end

end
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A.1.12 Script for RRT∗ (accompanying Figure 6.5)

This MATLAB script consists of multiple components that are similar to that of the basic RRT
algorithm. The main file is ‘RRT Star basic.m’. The actual motion planning algorithm is given in
‘RRT Star.m’. Other files need to be copied from Appendix A.1.11 and stored in the same folder
in order to work properly. These codes are based on the previous MATLAB scripts by Vemprala
[392], and Agarwal [393].

Main file - save as: ‘RRT Star basic.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MATLAB - RRT*
% Robin Straathof (2020)
% Based on: - Sai Vemprala (2017)
% - Saurav Agarwal (2017)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function RRT Star basic
% Add subfolders to path
addpath(genpath(pwd));

clear variables
clc;
close all;

%% Load example workspace
% Workspace representation
map.bounds = [0.00 0.00 0.08 0.08 0.00;...

0.00 0.04 0.04 0.00 0.00];
map.obstacles{1} = [0.00 0.00 0.08 0.00;...

0.03 0.04 0.04 0.03];
map.obstacles{2} = [0.00 0.00 0.08 0.00;...

0.00 0.01 0.00 0.00];
map.obstacles{3} = [0.03 0.04 0.04 0.03 0.03;...

0.015 0.015 0.03 0.03 0.015];
map.start1 = [0.08; 0.025];
map.target = [0.00; 0.02];

global Tol
Tol = 1E-3; % [m]; target region width tolerance

qI 1 = map.start1;
qG 1 = map.target;

% Agent representation
global agent width agent length
agent width = 2.5E-3; % [m]; agent width
agent length = 5.0E-3; % [m]; agent length

% Planning execution
global N Nodes delay delta
N Nodes = 3000; % [ ]; maximum number of nodes
delay = 0.0001; % [s]; delay for animation
SampBias = 0.01; % [ ]; bias towards goal region
delta = 5.0E-3; % [m]; maximum step size



Page 224 A. APPENDICES

%% Initialise sampling-based primitives
% Sampling
Sample = RandUni Sampler(map,SampBias); % Random uniform sampler
% Metric
Metric = Euc CostFunction; % Euclidean cost function
% Nearest Neighbour
Nearest = Euc NearNeighbour; % Euclidean nearest neighbour
% Steering function
Steer = Path MotionModel(delta); % Straight line towards new sample
% Collision detection
Conf free = @(q) isConfValid(q,map); % Configuration validity checker
Motion free = Samp MotionChecker(delta); % Sampled motion validity checker

%% Run motion planner
% Create plan for a single agent
planner RRT Star = RRT Star(map,Sample,Metric,Nearest,Steer,Conf free,Motion free);
Sol Path = planner RRT Star.plan(qI 1,qG 1);

Motion Planning algorithm - save as: ‘RRT Star.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RRT* algorithm
% Original codes by Agarwal (2017) and Vemprala (2017)

% G: Contains vertices and edges.
% V: Contains list of all explored nodes. Each node contains its
% pose, cost to reach, its parent and index.
% E: Contains list of all explored edges. Each edge contains its
% two nodes, cost and indices of the nodes.

% Brief description of algorithm:
% 1. Sample a node q rand.
% 2. Find the closest node q nearest from explored nodes to branch out from, towards
% q rand.
% 3. Steer from q nearest towards q rand to obtain q new
% 4. Check whether the nodes and edges are feasible
% 5. Find q min that gives the minimum cost path towards q new
% 6. Rewire the tree from q new
% 7. After maximum number of nodes is reached, find least cost path

classdef RRT Star < handle
properties

Map = [];
Sampler = [];
CostFunction = [];
NearNeighbour = [];
MotionModel = [];
ConfValidityChecker = [];
MotionValidityChecker = [];

end

methods
% Input Motion Planner Primitives

function obj = RRT Star(map,Sample,Metric,Nearest,Steer,Conf free,Motion free)
%obj@Planner Class(); % Only when superclass 'Planner Class' is defined
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obj.Map = map;
obj.Sampler = Sample;
obj.CostFunction = Metric;
obj.NearNeighbour = Nearest;
obj.MotionModel = Steer;
obj.ConfValidityChecker = Conf free;
obj.MotionValidityChecker = Motion free;

end

% Main path planning function
function [Sol Path] = plan(obj,qI i,qG i)

% Workspace definition
global Tol

x max = max(obj.Map.bounds(1,:)); % x-limits
y max = max(obj.Map.bounds(2,:)); % y-limits

q start.pose = qI i;
q start.cost = 0;
q start.parent = 0;
q start.index = 1;
q target.pose = qG i;

% Plot workspace
figh = figure;
axis([0 x max 0 y max])
obj.drawObstacles(figh);
set(gca,'FontName', 'Times New Roman','FontSize',14)
hold on
plot(q start.pose(1),q start.pose(2),'.k','MarkerSize',20)
plot(q target.pose(1),q target.pose(2),'.k','MarkerSize',20)
axis equal
xlim([0 x max])
ylim([0 y max])
xlabel('X (m)'); ylabel('Y (m)');

% Planning Execution
global N Nodes delay delta
Sol Path = [];

% Start of algorithm
V(1) = q start;
E(1).line = []; E(1).cost = 0; E(1).n1 = 0; E(1).n2 = 0;

for k = 1:1:N Nodes
G.V = V; G.E = E; % add vertices and edges to tree

% 1. Sample a node q rand
q rand cand = obj.Sampler.sample();
if obj.ConfValidityChecker(q rand cand) % only sample valid points

q rand = q rand cand;
line(q rand(1), q rand(2),'Marker','.','Color', [0 0.45 0.74]);

else
continue

end
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% 2. Find the closest node q nearest from explored nodes
q nearest = obj.NearNeighbour.nearest(G,q rand,obj.CostFunction);

% 3. Steer from q near towards q rand
q new = obj.MotionModel.steer(q nearest,q rand);

% 4. Check whether the nodes and edges are feasible
if obj.MotionValidityChecker.collision free(q nearest.pose,...
q new.pose,obj.ConfValidityChecker)

% 5. Find q min that gives the minimum cost path towards q new
q min = q nearest;
[Q near,Q idx] = obj.Near(G,q new,length(V),delta);
% establish nodes in neighbourhood of q new
if not(isempty(Q near))

Q N = length(Q near);
C new = q new.cost;
for j = 1:1:Q N

q near = Q near(j);
if obj.MotionValidityChecker.collision free(...
q near.pose,q new.pose,obj.ConfValidityChecker)

C acc = q near.cost + obj.CostFunction.metric(...
q near.pose,q new.pose);
if C acc < C new

q min = q near;
q new.cost = C acc;
q new.parent = q min.index;
C new = C acc;

end
end

end
end
q new.index = length(V)+1;

% 6. Rewire the tree from q new
if not(isempty(Q near))

Q idx(q min.index) = 0;
Q near rew = V(Q idx);
if not(isempty(Q near rew))

Q N rew = length(Q near rew);
for l = 1:1:Q N rew

q near = Q near rew(l);
C new rew = obj.CostFunction.metric(...
q new.pose,q near.pose);
if q near.cost > q new.cost + C new rew

if obj.MotionValidityChecker.collision free(...
q new.pose,q near.pose,obj.ConfValidityChecker)

% Delete old edge and update references
q parent = V(q near.parent);
E([E.n1] == q parent.index & [E.n2] == ...
q near.index) =[]; % remove redundant edge
V(q near.index).parent = q new.index;
V(q near.index).cost = q new.cost + ...
C new rew;
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% Create new edge
E new rew.line = [q new.pose,q near.pose];
E new rew.cost = C new rew;
E new rew.n1 = q new.index;
E new rew.n2 = q near.index;
E = [E E new rew]; % append to edges

end
end

end
end

end

% Add new vertex and line to list of vertices and edges
V = [V q new]; % append to vertices
line(q new.pose(1),q new.pose(2),'Marker','.',...
'Color', [0.2 0.2 0.2]);

E new.line = [q min.pose,q new.pose];
E new.cost = q new.cost-q min.cost;
E new.n1 = q min.index;
E new.n2 = q new.index;
E = [E E new]; % append to edges
line(E new.line(1,:), E new.line(2,:),...
'Color',[0.9 0.9 0.9]);

end
pause(delay);

end

% 7. After maximum number of nodes is reached, find least cost path
G.V = V; G.E = E;

% Plot edges graph
for p = 2:length(E)

line(E(p).line(1,:),E(p).line(2,:),'Color',[0.5 0.5 0.5])
end

% Compute distances to target point
V n = length(V);
dist m = zeros(1,V n);
for m = 1:1:V n

dist m(m) = norm(q target.pose-V(m).pose,2);
end
[cost path,idx] = min(dist m); % find node closest to target
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q end = V(idx); % iterate backwards
while q end.parent ~= 0

ix = q end.parent;
line([q end.pose(1),V(ix).pose(1)],[q end.pose(2),V(ix).pose(2)],...
'Color', 'k', 'LineWidth', 2);
q end = V(ix);
Sol Path = [Sol Path q end.pose];

end

Sol Path = fliplr(Sol Path);
return;

end

% Utility functions
function drawObstacles(obj,h)

% Input:
% h: figure handle

obstacles = obj.Map.obstacles;
figure(h)
hold on;
for i = 1:length(obstacles)

obs = obstacles{i};
fill(obs(1,:),obs(2,:),[0 166/255 214/255]);

end
end

function [Q near,Q near idx] = Near(obj,G,q new,V card,delta)
% Input:

% G: current tree
% q new: new point
% V card: cardinality of the list of vertices

% Parameters for RRT*
ksi d = pi; % volume of unit ball in R2
mu = max(obj.Map.bounds(1,:))*max(obj.Map.bounds(2,:));
% conservative area approx. of C free
gamma = 2ˆ2*(1+1/2)*mu; % constant
eta = delta; % step size
r = min((gamma/ksi d*log(V card)/V card)ˆ(1/2),eta);

% Nodes in neighbourhood
V = G.V;
dist = zeros(1,V card);
for i = 1:1:V card

dist(i) = norm(V(i).pose-q new.pose,2);
end
Q near idx = dist < r;
if sum(Q near idx)>0

Q near = V(Q near idx);
return;

end
Q near = [];

end
end

end
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A.1.13 Script for RRT in SE(2) algorithm (accompanying Figure 6.8)

This MATLAB script consists of multiple components. The main file is ‘RRT SE2 main.m’. All other
files need to be stored in the same folder in order to work properly. ‘RandUni Sampler.m’ must be
obtained from Appendix A.1.11. Classes are defined for each of the primitives, which are in turn
part of superclasses that may be used for property inheritance (not used in this thesis). These
codes are based on the previous MATLAB scripts by Vemprala [392], and Agarwal [393].

Main file - save as: ‘RRT SE2 main.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MATLAB - RRT SE(2)
% Robin Straathof (2020)
% Based on: - Sai Vemprala (2017)
% - Saurav Agarwal (2017)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function RRT SE2 main
% Add subfolders to path
addpath(genpath(pwd));

clear variables
clc;
close all;

%% Load example workspace
% Workspace representation
map.bounds = [0.00 0.00 0.08 0.08 0.00;...

0.00 0.04 0.04 0.00 0.00];
map.obstacles{1} = polyshape([0.00 0.00 0.08],[0.03 0.04 0.04]);
map.obstacles{2} = polyshape([0.00 0.00 0.08],[0.00 0.01 0.00]);
map.obstacles{3} = polyshape([0.03 0.04 0.04 0.03],[0.015 0.015 0.03 0.03]);
map.start1 = [0.08; 0.025; pi];
map.target = [0.00; 0.02];

global Tol
Tol = 3E-3; % [m]; target region width tolerance

xI 1 = map.start1;
xG 1 = map.target;

% Agent representation
w = 2.5E-3; % [m]; agent width
l = 5.0E-3; % [m]; agent length
max dim = sqrt((w/2)ˆ2+(l/2)ˆ2);
agent.rep = polyshape([0 0 l l],[0 w w 0]);
agent.cons = polyshape([0 0 max dim max dim],[0 max dim max dim 0]);
agent.width = w;
agent.length = l;

% Planning execution
global N Nodes delay kappa max v max
N Nodes = 3000; % [ ]; maximum number of nodes
delay = 0.0001; % [s]; delay for animation
kappa max = 40; % [m-1]; curvature constraint
v max = 0.2; % [ms-1]; velocity constraint



Page 230 A. APPENDICES

SampBias = 0.01; % [ ]; bias towards goal region
delta = 0.01; % [s]; time step
l max = v max*delta; % [m]; step size
lc max = min(w,l); % [m]; collision step size

%% Initialise sampling-based primitives
% Sampling
Sample = RandUni Sampler(map,SampBias); % Random uniform sampler
% Metric
Metric = Reach CostFunction(delta); % Reachability-guided cost function
% Nearest Neighbour
Nearest reachable = Reach NearNeighbour; % Reachability-guided nearest neighbour

% Steering function
Steer = SE2 MotionModel(delta,l max,lc max); % Nonholonomic system
% Collision detection
State free = @(x) isStateValid(x,map,agent); % State validity checker
Motion free = Samp MotionChecker; % Sampled motion validity checker

%% Run motion planner
% Create plan for a single agent
planner RRT SE2 = RRT SE2(map,Sample,Metric,Nearest reachable,Steer,...
State free,Motion free);
Sol Traj = planner RRT SE2.plan(xI 1,xG 1);

Motion Planning algorithm - save as: ‘RRT SE2.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RRT algorithm for nonholonomic systems in SE(2)
% Original codes by Agarwal (2017) and Vemprala (2017)

% XG: Contains vertices and edges.
% XV: Contains list of all explored states. Each node contains its
% pose, cost to reach, its parent and index.
% XE: Contains list of all explored edges. Each edge contains its
% two nodes.

% Brief description of algorithm:
% 1. Pick a random point p rand and check collision.
% 2. Determine from which x near in the list of explored states p rand is
% reachable
% 3. Find the closest state x near and associated control from this set
% 4. Steer from x near towards p rand to obtain x new and the set of intermediate
% states
% 5. Check whether the intermediate states are feasible
% 6. Add configuration and path to tree;
% 7. Continue until maximum number of nodes is reached or goal is hit.

classdef RRT SE2 < handle
properties

Map = [];
Sampler = [];
CostFunction = [];
NearNeighbour = [];
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MotionModel = [];
StateValidityChecker = [];
MotionValidityChecker = [];

end

methods
% Input Motion Planner Primitives
function obj = RRT SE2(map,Sample,Metric,Nearest,Steer,State free,Motion free)

%obj@Planner Class(); % Only when superclass 'Planner Class' is defined
obj.Map = map;
obj.Sampler = Sample;
obj.CostFunction = Metric;
obj.NearNeighbour = Nearest;
obj.MotionModel = Steer;
obj.StateValidityChecker = State free;
obj.MotionValidityChecker = Motion free;

end

% Main path planning function
function [Sol Traj] = plan(obj,xI i,xG i)

% Workspace definition
global Tol

x max = max(obj.Map.bounds(1,:)); % x-limits
y max = max(obj.Map.bounds(2,:)); % y-limits

x start.pose = xI i;
x start.cost = 0;
x start.parent = 0;
x start.index = 1;
x target.pose = xG i;

% Plot workspace
figh = figure;
axis([0 x max 0 y max])
obj.drawObstacles(figh);
set(gca,'FontName', 'Times New Roman','FontSize',14)
hold on
plot(x start.pose(1),x start.pose(2),'.k','MarkerSize',20)
plot(x target.pose(1),x target.pose(2),'.k','MarkerSize',20)
axis equal
xlim([0 x max])
ylim([0 y max])
xlabel('X (m)'); ylabel('Y (m)');

% Planning Execution
global N Nodes delay kappa max
Ctrl lim = kappa max;
Sol Traj = [];



Page 232 A. APPENDICES

% Start of algorithm
XV(1) = x start;
XE(1).line = [];
XE(1).cost = 0;
XE(1).n1 = 0;
XE(1).n2 = 0;

for k = 1:1:N Nodes
XG.V = XV; XG.E = XE; % add vertices and edges to tree
% 1. Pick a node p rand randomly and uniformly
p rand cand = obj.Sampler.sample();
if obj.StateValidityChecker(p rand cand) % only sample valid points

p rand = p rand cand;
line(p rand(1), p rand(2),'Marker','.','Color', [0 0.45 0.74]);

else
continue

end

% 2. Determine from which x near in the list of explored states
% p rand is reachable
N = length(XG.V);
U rand = zeros(2,N);
C rand = zeros(1,N);
for i = 1:N

u rand = obj.MotionModel.reachable(XG.V(i).pose,p rand);
U rand(:,i) = u rand;
C rand(:,i) = obj.CostFunction.metric(u rand,Ctrl lim);

end

% 3. Find the closest state x near and associated control
[u near,x near,c near] = obj.NearNeighbour.nearest reachable(...
U rand,XG.V,C rand);
if isinf(c near)

continue
end

% 4. Steer from x near towards p rand to obtain x new
% and the set of intermediate states
[x new,X steps] = obj.MotionModel.steer(u near,x near,c near);

% 5. Check whether the intermediate states are feasible
if obj.MotionValidityChecker.motion free(X steps,...
obj.StateValidityChecker)

x new.index = length(XV)+1;

% 6. Add configuration and path to tree;
XV = [XV x new]; % append to vertices
line(x new.pose(1),x new.pose(2),'Marker',...
'.','Color', [0.2 0.2 0.2]);

XE new.line = X steps;
XE new.cost = x new.cost-x near.cost;
XE new.n1 = x near.index;
XE new.n2 = x new.index;
XE = [XE XE new]; % append to edges
line(XE new.line(1,:), XE new.line(2,:),'Color',[0.5 0.5 0.5]);
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% 7. Continue until maximum number of nodes is reached or goal is hit.
if norm(x target.pose-x new.pose(1:2),2) < Tol && k <= N Nodes

XG.V = XV; XG.E = XE;

x end = x new;
while x end.parent ~= 0

ix = x end.parent;
line([x end.pose(1),XV(ix).pose(1)],[x end.pose(2),...
XV(ix).pose(2)], 'Color', 'k', 'LineWidth', 2);
x end = XV(ix);
Sol Traj = [Sol Traj x end.pose];

end

Sol Traj = fliplr(Sol Traj);
return;

end
end
pause(delay);

end

if k == N Nodes && isempty(Sol Traj)
disp("No solution found");
return;

end
end

% Utility functions
function drawObstacles(obj,h)

% Draw obstacles in the world.
% Input:
% h: figure handle
% obstacles: list of obstacle vertices

obstacles = obj.Map.obstacles;
figure(h)
hold on;
for i = 1:length(obstacles)

obs = obstacles{i};
plot(obs,'FaceColor',[0 166/255 214/255],'FaceAlpha',1);

end
end

end
end

Metric - save as: ‘Reach CostFunction.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Reachability based metric function
% Input:

% u = control input
% Ctrl lim = control limits

classdef Reach CostFunction < handle
properties
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delta = [];
end
methods

function obj = Reach CostFunction(delta)
%obj@CostFunction; % Only when superclass 'CostFunction' is defined
obj.delta = delta;

end
function [c rand] = metric(obj,u,Ctrl lim)

v t = u(1);
kappa t = u(2);
kappa max = Ctrl lim;
if kappa t < kappa max && kappa t > -kappa max && v t > 0

c rand = v t*obj.delta;
else

c rand = inf;
end

end
end

end

Nearest Neighbour - save as: ‘Reach NearNeighbour.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Nearest neighbour using reachable distance function
% Input:

% U: set of control actions
% XV: set of vertices in state tree
% C: distance metric

classdef Reach NearNeighbour < handle
properties
end
methods

function obj = Reach NearNeighbour
%obj@NearNeighbour; % Only when superclass 'NearNeighbour' is defined

end

function [u near,x near,c near] = nearest reachable(obj,U,XV,C)
% Determine 'nearest' vertex
[c near, idx] = min(C);
u near = U(:,idx);
x near = XV(idx);

end
end

end

Steering Function - save as: ‘SE2 MotionModel.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Motion Model of a nonholonomic system in SE(2)
% Input:

% x t: starting pose
% p t: end point
% u t: control action
% c t: associated cost
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classdef SE2 MotionModel < handle
properties

delta = [];
l max = [];
lc max = [];

end
methods

function obj = SE2 MotionModel(delta,l max,lc max)
%obj@MotionModel; % Only when superclass 'MotionModel' is defined
obj.delta = delta;
obj.l max = l max;
obj.lc max = lc max;

end
function [u rand] = reachable(obj,x t,p t)

x tilde = p t(1)-x t(1);
y tilde = p t(2)-x t(2);
theta = x t(3);

% From SE(2) algebra
kappa t = (2*y tilde*cos(theta)-2*x tilde*sin(theta))/...
(x tildeˆ2+y tildeˆ2); % curvature
if isnan(kappa t)

kappa t = 1E-5; % to avoid the degenerate case of kappa = 0;
end
v t = (1/2)*(x tilde*sin(theta)+y tilde*cos(theta))*...
(x tildeˆ2+y tildeˆ2)*atan2((2*x tilde*y tilde*cos(2*theta)+...
(y tildeˆ2-x tildeˆ2)*sin(2*theta)),((x tilde-y tilde)*...
(x tilde+y tilde)*cos(2*theta)+2*x tilde*y tilde*sin(2*theta)))/...

(obj.delta*(y tildeˆ2*cos(theta)ˆ2-x tildeˆ2*sin(theta)ˆ2));
% analytic expression of tangential velocity

u rand = [v t;kappa t];
end

function [x new,X steps] = steer(obj,u t,x t,c t)
% Compute x new
if c t > obj.l max

v t = obj.l max/obj.delta;
c t = obj.l max;

else
v t = u t(1);

end

k t = u t(2);
theta = x t.pose(3);
d t = obj.delta;
X t = [cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

-cos(theta)*sin(k t*v t*d t)-sin(theta)*cos(k t*v t*d t),...
(cos(theta)*sin(k t*v t*d t)+sin(theta)*cos(k t*v t*d t)-...
sin(theta))/k t;...
sin(theta)*cos(k t*v t*d t)+cos(theta)*sin(k t*v t*d t),...
cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

(sin(theta)*sin(k t*v t*d t)-cos(theta)*cos(k t*v t*d t)+...
cos(theta))/k t;...
0,0,1];

x new.pose = [x t.pose(1:2)+X t(1:2,3);atan2(X t(2,1),X t(1,1))];
x new.cost = x t.cost+c t;
x new.parent = x t.index;
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% Compute X steps (only poses are required for collision checking)
n s = ceil(c t/obj.lc max)+1; % amount of steps
v t vec = linspace(0,v t,n s);
X steps = [x t.pose,zeros(3,n s-2),x new.pose];
for i = 2:(n s-1)

v t = v t vec(i);
X t = [cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...
-cos(theta)*sin(k t*v t*d t)-sin(theta)*cos(k t*v t*d t),...
(cos(theta)*sin(k t*v t*d t)+sin(theta)*cos(k t*v t*d t)-...
sin(theta))/k t;...
sin(theta)*cos(k t*v t*d t)+cos(theta)*sin(k t*v t*d t),...
cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

(sin(theta)*sin(k t*v t*d t)-cos(theta)*cos(k t*v t*d t)+...
cos(theta))/k t;...
0,0,1];
X steps(1:3,i) = [x t.pose(1:2)+X t(1:2,3);atan2(X t(2,1),X t(1,1))];

end
end

end
end

State validity checker - save as: ‘isStateValid.m’

function bool = isStateValid(x, map,agent)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function that calculates whether the configuration is in collision
% Input:
% x: agent state
% map: obstacle map
% agent: agent representation

% Agent representation
if length(x) == 2

agent poly = agent.cons;
max dim = sqrt((agent.length/2)ˆ2+(agent.width/2)ˆ2);
x(3) = 0;
agent state = translate(rotate(agent poly,x(3)/pi*180,...
[max dim/2 max dim/2]),[x(1)-max dim/2 x(2)-max dim/2]);

else
agent poly = agent.rep;
agent state = translate(rotate(agent poly,x(3)/pi*180,...
[agent.length/2 agent.width/2]),[x(1)-agent.length/2 x(2)-agent.width/2]);

end

% Check collision using intersects
for i=1:length(map.obstacles)

obs = map.obstacles{i};
col = intersect([agent state,obs]);
if col.NumRegions>0

bool = false; % when in collision
return;

end
end
bool = true; % when not in collision
end
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Motion validity checker - save as: ‘Samp MotionChecker.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sampled motion validity checker
% Input:

% X steps: vector of intermediate steps

classdef Samp MotionChecker < handle
properties
end
methods

function obj = Samp MotionChecker()
%obj@MotionChecker; % Only when superclass 'MotionChecker' is defined

end
function [bool] = motion free(obj,X steps,StateValidityChecker)

bool = true;
for i = 2:size(X steps,2)

if StateValidityChecker(X steps(:,i)) == 0
bool = false; % when one state is in collision

end
end

end
end

end
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A.1.14 Script for reconnect-tree RRT variant (accompanying Figure 6.9)

This MATLAB script consists of multiple components. The main file is ‘RRT DT SE2 main.m’. All
other files need to be stored in the same folder in order to work properly. ‘RandUni Sampler.m’
must be obtained from Appendix A.1.11, whereas ‘isStateValid.m’, ‘Samp MotionChecker.m’,
‘Reach CostFunction.m’, and ‘Reach NearNeighbour.m’ can be obtained from Appendix
A.1.13. Classes are defined for each of the primitives, which are in turn part of superclasses that
may be used for property inheritance (not used in this thesis). These codes are based on the
previous MATLAB scripts by Vemprala [392], and Agarwal [393].

Main file - save as: ‘RRT DT SE2 main.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MATLAB - reconnect-tree based RRT for SE(2)
% Robin Straathof (2020)
% Based on: - Sai Vemprala (2017)
% - Saurav Agarwal (2017)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function RRT DT SE2 main
% Add subfolders to path
addpath(genpath(pwd));

clear variables
clc;
close all;

%% Load example workspace
% Workspace representation
map.bounds = [0.00 0.00 0.08 0.08 0.00;...

0.00 0.04 0.04 0.00 0.00];
map.obstacles{1} = polyshape([0.00 0.00 0.08],[0.03 0.04 0.04]);
map.obstacles{2} = polyshape([0.00 0.00 0.08],[0.00 0.01 0.00]);
map.obstacles{3} = polyshape([0.03 0.04 0.04 0.03],[0.015 0.015 0.03 0.03]);
map.start1 = [0.08; 0.025; pi];
map.target = [0.00; 0.02];

global Tol
Tol = 3E-3; % [m]; target region width tolerance

xI 1 = map.start1;
xG 1 = map.target;

% Agent representation
w = 2.5E-3; % [m]; agent width
l = 5.0E-3; % [m]; agent length
max dim = sqrt((w/2)ˆ2+(l/2)ˆ2);
agent.rep = polyshape([0 0 l l],[0 w w 0]);
agent.cons = polyshape([0 0 max dim max dim],[0 max dim max dim 0]);
agent.width = w;
agent.length = l;

% Planning execution
global N Nodes delay kappa max v max delta
N Nodes = 3000; % [ ]; maximum number of nodes
delay = 0.0001; % [s]; delay for animation
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kappa max = 40; % [m-1]; curvature constraint
v max = 0.2; % [ms-1]; velocity constraint
SampBias = 0.01; % [ ]; bias towards goal region
delta = 0.02; % [s]; time step
l max = v max*delta; % [m]; step size
lc max = min(w,l); % [m]; collision step size

%% Initialise sampling-based primitives
% Sampling
Sample = RandUni Sampler(map,SampBias); % Random uniform sampler
% Metric
Metric = Reach CostFunction(delta);
% Reachability-guided cost function
% Nearest Neighbour
Nearest reachable = Reach NearNeighbour;
% Reachability-guided nearest neighbour
% Steering function
Steer = SE2 MotionModel(delta,l max,lc max); % Nonholonomic unicycle
% Collision detection
State free = @(x) isStateValid(x,map,agent); % State validity checker
Motion free = Samp MotionChecker;
% Sampled motion validity checker

%% Run motion planner
% Create plan for a single agent
planner RRT DT SE2 = RRT DT SE2(map,Sample,Metric,Nearest reachable,Steer,...
State free,Motion free);
Sol Traj = planner RRT DT SE2.plan(xI 1,xG 1);

Motion Planning algorithm - save as: ‘RRT DT SE2.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Dual-tree inspired RRT algorithm for nonholonomic systems in SE(2)
% Original codes by Agarwal (2017) and Vemprala (2017)

% XG: Contains vertices and edges.
% XV: Contains list of all explored states. Each node contains its
% pose, cost to reach, its parent, children and index.
% XE: Contains list of all explored edges. Each edge contains its
% two nodes.

% Brief description of algorithm:
% 1. Pick a random point p rand and check collision.
% 2. Determine from which x near in the list of explored states p rand is
% reachable
% 3. Find the closest state x near and associated control from this set
% 4. Steer from x near towards p rand to obtain x new and the set of intermediate
% states
% 5. Check whether the intermediate states are feasible
% 6. Find the near state x near which reaches p new with minimum cost
% 7. Determine whether other near states can be reached at lower cost from x new
% 8. If trajectory connecting x new and x near is feasible, reconnect
% children states
% 9. After maximum number of nodes is reached, find least cost trajectory
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classdef RRT DT SE2 < handle
properties

Map = [];
Sampler = [];
CostFunction = [];
NearNeighbour = [];
MotionModel = [];
StateValidityChecker = [];
MotionValidityChecker = [];

end

methods
% Input Motion Planner Primitives
function obj = RRT DT SE2(map,Sample,Metric,Nearest,Steer,State free,...
Motion free)

%obj@Planner Class(); % Only when superclass 'Planner Class' is defined
obj.Map = map;
obj.Sampler = Sample;
obj.CostFunction = Metric;
obj.NearNeighbour = Nearest;
obj.MotionModel = Steer;
obj.StateValidityChecker = State free;
obj.MotionValidityChecker = Motion free;

end

% Main path planning function
function [Sol Traj] = plan(obj,xI i,xG i)

% Workspace definition
global Tol

x max = max(obj.Map.bounds(1,:)); % x-limits
y max = max(obj.Map.bounds(2,:)); % y-limits

x start.pose = xI i;
x start.cost = 0;
x start.parent = 0;
x start.child = NaN;
x start.index = 1;
x target.pose = xG i;

% Plot workspace
figh = figure;
axis([0 x max 0 y max])
obj.drawObstacles(figh);
set(gca,'FontName', 'Times New Roman','FontSize',14)
hold on
plot(x start.pose(1),x start.pose(2),'.k','MarkerSize',20)
plot(x target.pose(1),x target.pose(2),'.k','MarkerSize',20)
axis equal
xlim([0 x max])
ylim([0 y max])
xlabel('X (m)'); ylabel('Y (m)');

% Planning Execution
global N Nodes delay kappa max delta
Ctrl lim = kappa max;
Sol Traj = [];
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% Start of algorithm
XV(1) = x start;
XE(1).line = [];
XE(1).cost = 0;
XE(1).n1 = 0;
XE(1).n2 = 1;

for k = 1:1:N Nodes
XG.V = XV; XG.E = XE; % add vertices and edges to tree
% 1. Pick a node p rand randomly and uniformly
p rand cand = obj.Sampler.sample();
if obj.StateValidityChecker(p rand cand) % only sample valid points

p rand = p rand cand;
line(p rand(1), p rand(2),'Marker','.','Color', [0 0.45 0.74]);

else
continue

end

%2. Determine from which x near in the list of explored
% states p rand is reachable
N = length(XG.V);
U rand = zeros(2,N);
C rand = zeros(1,N);
for i = 1:N

u rand = obj.MotionModel.reachable(XG.V(i).pose,p rand);
U rand(:,i) = u rand;
C rand(:,i) = obj.CostFunction.metric(u rand,Ctrl lim);

end

% 3. Find the closest state x near and control from this set
[u nearest,x nearest,c nearest] = ...
obj.NearNeighbour.nearest reachable(U rand,XG.V,C rand);
if isinf(c nearest)

continue
end

% 4. Steer from x near towards p rand to obtain x new and the set
% of intermediate states
[x new,X steps] = obj.MotionModel.steer control(u nearest,...
x nearest,c nearest);

% 5. Check whether the intermediate states are feasible
if obj.MotionValidityChecker.motion free(X steps,...
obj.StateValidityChecker)

% 6. Find the state x near which reaches p new with minimum cost
x min = x nearest;
X min steps = X steps;
[X near,X idx] = obj.Near(XG,x new,length(XV),delta);
if not(isempty(X near))

X N = length(X near);
C new = x new.cost;
for j = 1:1:X N

x near = X near(j);
u near = obj.MotionModel.reachable(x near.pose,...
x new.pose(1:2));
c near = obj.CostFunction.metric(u near,Ctrl lim);
C acc = x near.cost + c near;
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if C acc < C new
[x new cand,X near steps] = obj.MotionModel.steer to state(u near,...
x near,c near);
if obj.MotionValidityChecker.motion free(X near steps,...
obj.StateValidityChecker)

x min = x near;
x new = x new cand;
X min steps = X near steps;
C new = C acc;

end
end

end
end
x new.index = length(XV)+1;
XV(x min.index).child = [XV(x min.index).child x new.index]; % make x new a child

% 7. Determine whether other near states can be reached at lower cost from x new
if not(isempty(X near))

X idx(x min.index) = 0; % exclude x min
X near rew = XV(X idx); % remaining near states
if not(isempty(X near rew))

X N rew = length(X near rew);
for l = 1:1:X N rew

X near rew = XV(X idx);
x near 2 = X near rew(l);
u new = obj.MotionModel.reachable(x new.pose,x near 2.pose(1:2));
c new = obj.CostFunction.metric(u new,Ctrl lim);
C acc acc = x new.cost + c new;
if C acc acc < x near 2.cost
[x new near,X new steps] = obj.MotionModel.steer to state(u new,...
x new,c new);

% 8. If trajectory connecting x new and x near is feasible, reconnect
% children states
if obj.MotionValidityChecker.motion free(X new steps,...
obj.StateValidityChecker)
x parent = XG.V(x near 2.parent); % parent of near node
ix = x near 2.index; % index of near node
x new near.index = ix; % change index of connected state

% to that of near node
XV(ix) = x new near; % replace x near with x new near
x new.child = ix; % x new near is a child of x new
XV(x parent.index).child([XG.V(x parent.index).child] == ix) = NaN;

% delete child entry for parent

XE par near = XE([XE.n1] == x parent.index & [XE.n2] == ix);
XE par near = XE par near(1);

idx child = x near 2.child;
idx child(isnan(idx child)) = [];
if ~isempty(idx child)

for o = 1:length(idx child)
XE near chi = XE([XE.n1] == ix & [XE.n2] == idx child(o));
XE near chi = XE near chi(1);
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% Create line between parent and children
XE par chi.line = [XE par near.line,XE near chi.line];
XE par chi.cost = XE par near.cost + XE near chi.cost;
XE par chi.n1 = x parent.index;
XE par chi.n2 = idx child(o);
XE = [XE XE par chi];

% Change parent/child
XV(x parent.index).child = [XV(x parent.index).child ...
idx child(o)];
XV(idx child(o)).parent = x parent.index;

end
end

% Create new edge
XE new rew.line = X new steps;
XE new rew.cost = c new;
XE new rew.n1 = x new.index;
XE new rew.n2 = ix;
XE = [XE XE new rew]; % append to edges

end
end

end
end
end

% Add new vertex and line to list of vertices and edges
XV = [XV x new]; % append to vertices
line(x new.pose(1),x new.pose(2),'Marker','.','Color', [0.2 0.2 0.2]);

XE new.line = X min steps;
XE new.cost = x new.cost-x min.cost;
XE new.n1 = x min.index;
XE new.n2 = x new.index;
XE = [XE XE new]; % append to edges
line(XE new.line(1,:), XE new.line(2,:),'Color',[0.5 0.5 0.5]);
end
pause(delay);
end

% 9. After maximum number of nodes is reached, find least cost trajectory
XG.V = XV; XG.E = XE;

% Plot edges graph
for p = 2:length(XE)

line(XE(p).line(1,:),XE(p).line(2,:),'Color',[0.5 0.5 0.5])
end

% Compute distances to target point
XV n = length(XV);
dist m = zeros(1,XV n);
ind = [];
for m = 1:1:XV n

dist = norm(x target.pose(1:2)-XV(m).pose(1:2),2);
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if dist < Tol
dist m(m) = dist;
ind = [ind m];

else
dist m(m) = inf;

end
end
if min(dist m) == inf

disp('No solution found')
return

else
XV target = XV(ind);
% Find node with lowest cost to target
[Traj Cost,id] = min(arrayfun(@(x) min(x.cost), XV target));
idx = XV target(id).index;

end

x end = XV(idx); % iterate backwards
while x end.parent ~= 0

ix c = x end.index;
ix p = x end.parent;
e cp = XE([XE.n1] == ix p & [XE.n2] == ix c);
line([e cp.line(1,:)],[e cp.line(2,:)], 'Color', 'k', 'LineWidth', 2);
x end = XV(ix p);
Sol Traj = [Sol Traj x end.pose];

end

Sol Traj = fliplr(Sol Traj);
return;
end

% Utility functions
function drawObstacles(obj,h)

% Draw obstacles in the world.
% Input:
% h: figure handle
% obstacles: list of obstacle vertices

obstacles = obj.Map.obstacles;
figure(h)
hold on;
for i = 1:length(obstacles)

obs = obstacles{i};
plot(obs,'FaceColor',[0 166/255 214/255],'FaceAlpha',1);

end
end

function [X near,X near idx] = Near(obj,XG,x new,XV card,delta)
% Input:
% XG: current tree
% x new: new point
% V card: cardinality of the list of vertices

% Parameters for RRT*
ksi d = pi; % volume of unit ball in R2
mu = max(obj.Map.bounds(1,:))*max(obj.Map.bounds(2,:));
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% conservative area approx. of C free
gamma = 2ˆ2*(1+1/2)*mu; % constant
eta = delta; % step size
r = min((gamma/ksi d*log(XV card)/XV card)ˆ(1/2),eta);

% Nodes in neighbourhood
XV = XG.V;
dist = zeros(1,XV card);
for i = 1:1:XV card

dist(i) = norm(XV(i).pose(1:2)-x new.pose(1:2),2);
end
X near idx = dist < r;
if sum(X near idx)>0

X near = XV(X near idx);
return;

end
X near = [];

end
end

end

Steering Function - save as: ‘SE2 MotionModel.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Motion Model of a nonholonomic system in SE(2)
% Input:

% x t: starting pose
% p t: end point
% u t: control action
% c t: associated cost

classdef SE2 MotionModel < handle
properties

delta = [];
l max = [];
lc max = [];

end
methods

function obj = SE2 MotionModel(delta,l max,lc max)
%obj@MotionModel; % Only when superclass 'MotionModel' is defined
obj.delta = delta;
obj.l max = l max;
obj.lc max = lc max;

end
function [u rand] = reachable(obj,x t,p t)

x tilde = p t(1)-x t(1);
y tilde = p t(2)-x t(2);
theta = x t(3);

% From SE(2) algebra
kappa t = (2*y tilde*cos(theta)-2*x tilde*sin(theta))/...
(x tildeˆ2+y tildeˆ2); % curvature
if isnan(kappa t)

kappa t = 1E-5; % to avoid the degenerate case of kappa = 0;
end
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v t = (1/2)*(x tilde*sin(theta)+y tilde*cos(theta))*...
(x tildeˆ2+y tildeˆ2)*atan2((2*x tilde*y tilde*cos(2*theta)+...
(y tildeˆ2-x tildeˆ2)*sin(2*theta)),((x tilde-y tilde)*...
(x tilde+y tilde)*cos(2*theta)+2*x tilde*y tilde*sin(2*theta)))/...

(obj.delta*(y tildeˆ2*cos(theta)ˆ2-x tildeˆ2*sin(theta)ˆ2));
% analytic expression of tangential velocity

u rand = [v t;kappa t];
end

function [x new,X steps] = steer control(obj,u t,x t,c t)
% Compute x new
if c t > obj.l max

v t = obj.l max/obj.delta;
c t = obj.l max;

else
v t = u t(1);

end

k t = u t(2);
theta = x t.pose(3);
d t = obj.delta;
X t = [cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

-cos(theta)*sin(k t*v t*d t)-sin(theta)*cos(k t*v t*d t),...
(cos(theta)*sin(k t*v t*d t)+sin(theta)*cos(k t*v t*d t)-...
sin(theta))/k t;...
sin(theta)*cos(k t*v t*d t)+cos(theta)*sin(k t*v t*d t),...
cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

(sin(theta)*sin(k t*v t*d t)-cos(theta)*cos(k t*v t*d t)+...
cos(theta))/k t;...
0,0,1];

x new.pose = [x t.pose(1:2)+X t(1:2,3);atan2(X t(2,1),X t(1,1))];
x new.cost = x t.cost+c t;
x new.parent = x t.index;
x new.child = NaN;

% Compute X steps (only poses are required for collision checking)
n s = ceil(c t/obj.lc max)+1; % amount of steps
v t vec = linspace(0,v t,n s);
X steps = [x t.pose,zeros(3,n s-2),x new.pose];
for i = 2:(n s-1)

v t = v t vec(i);
X t = [cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...
-cos(theta)*sin(k t*v t*d t)-sin(theta)*cos(k t*v t*d t),...
(cos(theta)*sin(k t*v t*d t)+sin(theta)*cos(k t*v t*d t)-...
sin(theta))/k t;...
sin(theta)*cos(k t*v t*d t)+cos(theta)*sin(k t*v t*d t),...
cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

(sin(theta)*sin(k t*v t*d t)-cos(theta)*cos(k t*v t*d t)+...
cos(theta))/k t;...
0,0,1];

X steps(1:3,i) = [x t.pose(1:2)+X t(1:2,3);atan2(X t(2,1),X t(1,1))];
end

end
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function [x new,X steps] = steer to state(obj,u t,x t,c t)
v t = u t(1);
k t = u t(2);
theta = x t.pose(3);
d t = obj.delta;
X t = [cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

-cos(theta)*sin(k t*v t*d t)-sin(theta)*cos(k t*v t*d t),...
(cos(theta)*sin(k t*v t*d t)+sin(theta)*cos(k t*v t*d t)-...
sin(theta))/k t;...
sin(theta)*cos(k t*v t*d t)+cos(theta)*sin(k t*v t*d t),...
cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

(sin(theta)*sin(k t*v t*d t)-cos(theta)*cos(k t*v t*d t)+...
cos(theta))/k t;...
0,0,1];

x new.pose = [x t.pose(1:2)+X t(1:2,3);atan2(X t(2,1),X t(1,1))];
x new.cost = x t.cost+c t;
x new.parent = x t.index;
x new.child = NaN;

% Compute X steps (only poses are required for collision checking)
n s = ceil(c t/obj.lc max)+1; % amount of steps
v t vec = linspace(0,v t,n s);
X steps = [x t.pose,zeros(3,n s-2),x new.pose];
for i = 2:(n s-1)

v t = v t vec(i);
X t = [cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...
-cos(theta)*sin(k t*v t*d t)-sin(theta)*cos(k t*v t*d t),...
(cos(theta)*sin(k t*v t*d t)+sin(theta)*cos(k t*v t*d t)-...
sin(theta))/k t;...
sin(theta)*cos(k t*v t*d t)+cos(theta)*sin(k t*v t*d t),...
cos(theta)*cos(k t*v t*d t)-sin(theta)*sin(k t*v t*d t),...

(sin(theta)*sin(k t*v t*d t)-cos(theta)*cos(k t*v t*d t)+...
cos(theta))/k t;...
0,0,1];

X steps(1:3,i) = [x t.pose(1:2)+X t(1:2,3);atan2(X t(2,1),X t(1,1))];
end

end
end

end
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A.1.15 Script for bounded uncertainty reconnect-tree RRT in SE(2)
(accompanying Figure 6.10)

This MATLAB script consists of multiple components. The main file is ‘BU RRT DT SE2 main.m’. All
other files need to be stored in the same folder in order to work properly. ‘RandUni Sampler.m’
can be obtained from Appendix A.1.11, ‘Samp MotionChecker.m’, ‘Reach CostFunction.m’,
‘Reach NearNeighbour.m’ can be obtained from Appendix A.1.13, and ‘SE2 MotionModel.m’ can
be obtained from Appendix A.1.14. The motion planning algorithm ‘RRT DT SE2.m’ from
Appendix A.1.14 is renamed to ‘BU RRT DT SE2.m’ and only the utility function ‘drawObstacles’
is changed to illustrate uncertainty bounds. Classes are defined for each of the primitives, which
are in turn part of superclasses that may be used for property inheritance (not used in this thesis).
These codes are based on the previous MATLAB scripts by Vemprala [392], and Agarwal [393].

Main file - save as: ‘BU RRT DT SE2 main.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MATLAB - Bounded uncertainty reconnect-tree based RRT for SE(2)
% Robin Straathof (2020)
% Based on: - Sai Vemprala (2017)
% - Saurav Agarwal (2017)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function BU RRT DT SE2 main
% Add subfolders to path
addpath(genpath(pwd));

clear variables
clc;
close all;

%% Load example workspace
% Agent representation
w = 2.5E-3; % [m]; agent width
l = 5.0E-3; % [m]; agent length
r = 3.0E-3; % [m]; agent radius
max dim = sqrt((w/2)ˆ2+(l/2)ˆ2);
agent.rep = polyshape([0 0 l l],[0 w w 0]);
agent.cons = polyshape([0 0 max dim max dim],[0 max dim max dim 0]);
agent.width = w;
agent.length = l;
agent.radius = r;

% Workspace representation
map.bounds = [0.00 0.00 0.08 0.08 0.00;...

0.00 0.04 0.04 0.00 0.00];
map.start1 = [0.08; 0.025; pi];
map.target = [0.00; 0.02];
xI 1 = map.start1;
xG 1 = map.target;

% Deterministic obstacles
map.det obstacles(1) = polyshape([0.00 0.00 0.08],[0.03 0.04 0.04]);
map.det obstacles(2) = polyshape([0.00 0.00 0.08],[0.00 0.01 0.00]);

% Uncertain obstacles
A 1 = [1 0;-1 0;0 1;0 -1]; % Uncertain obstacle normals
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eta 1 = [2;2;1;1]*10ˆ(-3); % [m]; obstacle max displacement
c hat 1 = [0.038 0.018; 0.032 0.028; 0.032 0.028; 0.038 0.018];
for i = 1:size(A 1,1)

const 1(i,:) = A 1(i,:)*c hat 1(i,:)'+r+eta 1(i,:);
end
map.unc obstacles(1).shape = polyshape([0.032 0.038 0.038 0.032],...
[0.018 0.018 0.028 0.028]);
map.unc obstacles(1).const = const 1;
map.unc obstacles(1).A = A 1;
map.unc obstacles(1).eta = eta 1;

% Planning execution
global N Nodes delay kappa max v max delta Tol
Tol = 3E-3; % [m]; target region width tolerance
N Nodes = 3000; % [ ]; maximum number of nodes
delay = 0.0001; % [s]; delay for animation
kappa max = 40; % [m-1]; curvature constraint
v max = 0.2; % [ms-1]; velocity constraint
SampBias = 0.01; % [ ]; bias towards goal region
delta = 0.01; % [s]; time step
l max = v max*delta; % [m]; step size
lc max = min(w,l); % [m]; collision step size

%% Initialise sampling-based primitives
% Sampling
Sample = RandUni Sampler(map,SampBias); % Random uniform sampler
% Metric
Metric = Reach CostFunction(delta);
% Reachability-guided cost function
% Nearest Neighbour
Nearest reachable = Reach NearNeighbour;
% Reachability-guided nearest neighbour
% Steering function
Steer = SE2 MotionModel(delta,l max,lc max); % Nonholonomic unicycle
% Collision detection
State free = @(x) isStateValid(x,map,agent); % State validity checker
Motion free = Samp MotionChecker;
% Sampled motion validity checker

%% Run motion planner
% Create plan for a single agent
planner BU RRT DT SE2 = BU RRT DT SE2(map,Sample,Metric,Nearest reachable,...
Steer,State free,Motion free);
Sol Traj = planner BU RRT DT SE2.plan(xI 1,xG 1);

Utility function in Motion Planning algorithm - (1) save ‘RRT DT SE2.m’ as
‘BU RRT DT SE2.m’, (2) change all references from ‘RRT DT SE2’ to ‘BU RRT DT SE2.m’, and (3)
substitute the utility function ‘drawObstacles’ with the following function:

% Utility functions
function drawObstacles(obj,h)

% Input:
% h: figure handle
% obstacles: list of obstacle vertices
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det obstacles = obj.Map.det obstacles;
unc obstacles = obj.Map.unc obstacles;
figure(h)
hold on;
for i = 1:length(det obstacles)

obs = det obstacles(i);
plot(obs,'FaceColor',[0 166/255 214/255],'FaceAlpha',1);

end
for j = 1:length(unc obstacles)

obs = unc obstacles(j).shape;
plot(obs,'FaceColor',[1 210/255 0],'FaceAlpha',1);
obs c = obs.Vertices;
obs n c = length(obs c);
e = unc obstacles(j).eta;
obs bu = [obs c;obs c+repmat([e(1),e(3)],obs n c,1);...
obs c+repmat([e(1),-e(3)],obs n c,1);obs c+repmat([-e(1),e(3)],...
obs n c,1);obs c+repmat([-e(1),-e(3)],obs n c,1)];
obs conv bu = convhull(obs bu);
obs bu = obs bu(obs conv bu,:);
plot(obs bu(:,1),obs bu(:,2),'--','LineWidth',2,'color',[1
210/255 0])

end
end

State validity checker - save as: ‘isStateValid.m’

function bool = isStateValid(x, map,agent)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function that calculates whether the configuration is in collision
% Input:
% x: agent state
% map: obstacle map
% agent: agent representation

% Agent representation
if length(x) == 2

agent poly = agent.cons;
max dim = sqrt((agent.length/2)ˆ2+(agent.width/2)ˆ2);
x(3) = 0;
agent state = translate(rotate(agent poly,x(3)/pi*180,...
[max dim/2 max dim/2]),[x(1)-max dim/2 x(2)-max dim/2]);

else
agent poly = agent.rep;
agent state = translate(rotate(agent poly,x(3)/pi*180,...
[agent.length/2 agent.width/2]),[x(1)-agent.length/2 x(2)-agent.width/2]);

end

% Check collision using intersect
obstacles = [map.det obstacles,map.unc obstacles.shape];
for i=1:length(obstacles)

obs = obstacles(i);
col = intersect([agent state,obs]);
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if col.NumRegions>0
bool = false; % when in collision
return;

end
end
unc obstacles = map.unc obstacles;

% Check robust feasibility with linear constraints
for j=1:length(unc obstacles)

obs = unc obstacles(j);
A = obs.A;
const = obs.const;
for k = 1:size(A,1)

if A(k,:)*x(1:2,1) < const(k)
ind(k) = 0;

else
ind(k) = 1;

end
end
if sum(ind)==0

bool = false; % when not robustly feasible
return;

end
end
bool = true; % when not in collision
end
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A.1.16 Script for a chance constrained reconnect-tree RRT variant in SE(2)
(accompanying Figure 6.11)

This MATLAB script consists of multiple components. The main file is ‘CC RRT DT SE2 main.m’. All
other files need to be stored in the same folder in order to work properly. ‘RandUni Sampler.m’
can be obtained from Appendix A.1.11, ‘Reach NearNeighbour.m’ can be obtained from
Appendix A.1.13, and ‘SE2 MotionModel.m’ can be obtained from Appendix A.1.14. Classes are
defined for each of the primitives, which are in turn part of superclasses that may be used for
property inheritance (not used in this thesis). These codes are based on the previous MATLAB

scripts by Vemprala [392], and Agarwal [393].

Main file - save as: ‘CC RRT DT SE2 main.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MATLAB - Chance constrained reconnect-tree based RRT for SE(2)
% Robin Straathof (2020)
% Based on: - Sai Vemprala (2017)
% - Saurav Agarwal (2017)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function CC RRT DT SE2 main
% Add subfolders to path
addpath(genpath(pwd));

clear variables
clc;
close all;

%% Load example workspace
% Agent representation
w = 2.5E-3; % [m]; agent width
l = 5.0E-3; % [m]; agent length
r = 3.0E-3; % [m]; agent radius
max dim = sqrt((w/2)ˆ2+(l/2)ˆ2);
agent.rep = polyshape([0 0 l l],[0 w w 0]);
agent.cons = polyshape([0 0 max dim max dim],[0 max dim max dim 0]);
agent.width = w;
agent.length = l;
agent.radius = r;

% Workspace representation
map.bounds = [0.00 0.00 0.08 0.08 0.00;...

0.00 0.04 0.04 0.00 0.00];
map.start1 = [0.08; 0.025; pi];
map.target = [0.00; 0.02];
xI 1 = map.start1;
xG 1 = map.target;

% Deterministic obstacles
map.det obstacles(1) = polyshape([0.00 0.00 0.08],[0.03 0.04 0.04]);
map.det obstacles(2) = polyshape([0.00 0.00 0.08],[0.00 0.01 0.00]);

% Uncertain obstacles
A 1 = [1 0;-1 0;0 1;0 -1]; % Uncertain obstacle normals
P c1 = [4,0;0,1]*10ˆ(-6); % [m]; covariance matrix
c hat 1 = [0.038 0.028; 0.032 0.018; 0.032 0.028; 0.038 0.018];
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map.unc obstacles(1).shape = polyshape([0.032 0.038 0.038 0.032],...
[0.018 0.018 0.028 0.028]);
map.unc obstacles(1).A = A 1;
map.unc obstacles(1).P c = P c1;
map.unc obstacles(1).c hat = c hat 1;

% Planning execution
global N Nodes delay kappa max v max delta Tol
Tol = 3E-3; % [m]; target region width tolerance
N Nodes = 3000; % [ ]; maximum number of nodes
delay = 0.0001; % [s]; delay for animation
kappa max = 40; % [m-1]; curvature constraint
v max = 0.2; % [ms-1]; velocity constraint
SampBias = 0.01; % [ ]; bias towards goal region
delta = 0.01; % [s]; time step
l max = v max*delta; % [m]; step size
lc max = min(w,l); % [m]; collision step size
psi.s = 0.98; % [ ]; step-wise probability constraint
psi.p = 0.8; % [ ]; traj-wise probability constraint
alpha.D = 1; % [ ]; weight of trajectory duration
alpha.Delta = 5; % [ ]; weight of trajectory risk

%% Initialise sampling-based primitives
% Sampling
Sample = RandUni Sampler(map,SampBias); % Random uniform sampler
% Metric
Metric = Reach CostFunction(delta,alpha);
% Reachability-guided cost function
% Nearest Neighbour
Nearest reachable = Reach NearNeighbour;
% Reachability-guided nearest neighbour
% Steering function
Steer = SE2 MotionModel(delta,l max,lc max); % Nonholonomic unicycle
% Collision detection
State free = @(x,risk) isStateValid(x,risk,map,agent,psi);
% State validity checker
Motion free = Samp MotionChecker;
% Sampled motion validity checker

%% Run motion planner
% Create plan for a single agent
planner CC RRT DT SE2 = CC RRT DT SE2(map,Sample,Metric,Nearest reachable,...
Steer,State free,Motion free);
Sol Traj = planner CC RRT DT SE2.plan(xI 1,xG 1);

Motion Planning algorithm - save as: ‘CC RRT DT SE2.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Chance constrained dual-tree inspired RRT algorithm for nonholonomic system
% Original codes by Agarwal (2017) and Vemprala (2017)

% XG: Contains vertices and edges.
% XV: Contains list of all explored states. Each node contains its
% pose, cost to reach, its parent, children, index and per time-step risk.
% XE: Contains list of all explored edges. Each edge contains its
% two nodes.
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% Brief description of algorithm:
% 1. Pick a random point p rand and check collision.
% 2. Determine from which x near in the list of explored states p rand is
% reachable
% 3. Find the closest state x near and associated control from this set
% 4. Steer from x near towards p rand to obtain x new and the set of intermediate
% states
% 5. Check whether the intermediate states are probabilistically feasible
% 6. Find the near state x near which reaches p new with minimum cost
% 7. Determine whether other near states can be reached at lower cost from x new
% 8. If trajectory connecting x new and x near is probabilistically feasible,
% reconnect children states
% 9. After maximum number of nodes is reached, find least cost trajectory

classdef CC RRT DT SE2 < handle
properties

Map = [];
Sampler = [];
CostFunction = [];
NearNeighbour = [];
MotionModel = [];
StateValidityChecker = [];
MotionValidityChecker = [];

end

methods
% Input Motion Planner Primitives
function obj = CC RRT DT SE2(map,Sample,Metric,Nearest,...
Steer,State free,Motion free)

%obj@Planner Class(); % Only when superclass 'Planner Class' is defined
obj.Map = map;
obj.Sampler = Sample;
obj.CostFunction = Metric;
obj.NearNeighbour = Nearest;
obj.MotionModel = Steer;
obj.StateValidityChecker = State free;
obj.MotionValidityChecker = Motion free;

end

% Main path planning function
function [Sol Traj] = plan(obj,xI i,xG i)

% Workspace definition
global Tol

x max = max(obj.Map.bounds(1,:)); % x-limits
y max = max(obj.Map.bounds(2,:)); % y-limits

x start.pose = xI i;
x start.cost = 0;
x start.parent = 0;
x start.child = NaN;
x start.index = 1;
x start.risk = 0;
x target.pose = xG i;
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% Plot workspace
figh = figure;
axis([0 x max 0 y max])
obj.drawObstacles(figh);
set(gca,'FontName', 'Times New Roman','FontSize',14)
hold on
plot(x start.pose(1),x start.pose(2),'.k','MarkerSize',20)
plot(x target.pose(1),x target.pose(2),'.k','MarkerSize',20)
axis equal
xlim([0 x max])
ylim([0 y max])
xlabel('X (m)'); ylabel('Y (m)');

% Planning Execution
global N Nodes delay kappa max delta
Ctrl lim = kappa max;
Sol Traj = [];

% Start of algorithm
XV(1) = x start;
XE(1).line = [];
XE(1).cost = 0;
XE(1).n1 = 0;
XE(1).n2 = 1;

for k = 1:1:N Nodes
XG.V = XV; XG.E = XE; % add vertices and edges to tree
% 1. Pick a node p rand randomly and uniformly
p rand cand = obj.Sampler.sample();
if obj.StateValidityChecker(p rand cand,NaN) % sample valid points

p rand = p rand cand;
line(p rand(1), p rand(2),'Marker','.','Color', [0 0.45 0.74]);

else
continue

end

%2. Determine from which x near in the list of explored states
% p rand is reachable
N = length(XG.V);
U rand = zeros(2,N);
C rand = zeros(1,N);
for i = 1:N

u rand = obj.MotionModel.reachable(XG.V(i).pose,p rand);
U rand(:,i) = u rand;
C rand(:,i) = obj.CostFunction.dist metric(u rand,Ctrl lim);

end

% 3. Find the closest state x near and control from this set
[u nearest,x nearest,c nearest] = ...
obj.NearNeighbour.nearest reachable(U rand,XG.V,C rand);
if isinf(c nearest)

continue
end

% 4. Steer from x near towards p rand to obtain x new
% and the set of intermediate states
[x new,X steps] = obj.MotionModel.steer control(u nearest,...
x nearest,c nearest);
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% 5. Check whether the intermediate states are feasible
[yesno,Delta t] = obj.MotionValidityChecker.motion free(X steps,...
x nearest.risk,obj.StateValidityChecker);
if yesno

% 6. Find the near state x near which reaches p new with minimum cost
x new.cost = x nearest.cost+obj.CostFunction.cost metric(c nearest,Delta t);
x new.risk = x nearest.risk + Delta t;
x min = x nearest;
X min steps = X steps;
[X near,X idx] = obj.Near(XG,x new,length(XV),delta); % nodes in neighbourhood
if not(isempty(X near))

X N = length(X near);
C new = x new.cost;
for j = 1:1:X N

x near = X near(j);
u near = obj.MotionModel.reachable(x near.pose,x new.pose(1:2));
c near = obj.CostFunction.dist metric(u near,Ctrl lim);
if c near~=inf
[x new cand,X near steps] = obj.MotionModel.steer to state(...
u near,x near,c near);
[yesno 2,Delta t near] = obj.MotionValidityChecker.motion free(...
X near steps,x near.risk,obj.StateValidityChecker);
C acc = x near.cost+obj.CostFunction.cost metric(c near,Delta t near);
if C acc < C new & yesno 2

x min = x near;
x new = x new cand;
x new.cost = C acc;
x new.risk = x near.risk + Delta t near;
X min steps = X near steps;
C new = C acc;

end
end

end
end
x new.index = length(XV)+1;
XV(x min.index).child = [XV(x min.index).child x new.index]; % make x new a child

% 7. Determine whether other near states can be reached at lower cost from x new
if not(isempty(X near))

X idx(x min.index) = 0; % exclude x min
X near rew = XV(X idx); % remaining near states
if not(isempty(X near rew))

X N rew = length(X near rew);
for l = 1:1:X N rew

X near rew = XV(X idx);
x near 2 = X near rew(l);
u new = obj.MotionModel.reachable(x new.pose,x near 2.pose(1:2));
c new = obj.CostFunction.dist metric(u new,Ctrl lim);
if c new ~= inf

[x new near,X new steps] = obj.MotionModel.steer to state(...
u new,x new,c new);
% 8. If trajectory connecting x new and x near is feasible,
% reconnect children states
[yesno 3,Delta t new] = ...
obj.MotionValidityChecker.motion free(X new steps,...
x new.risk,obj.StateValidityChecker);
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C acc acc = x new.cost + obj.CostFunction.cost metric(c new,Delta t new);
if C acc acc < x near 2.cost & yesno 3
x new near.cost = C acc acc;
x new near.risk = x new.risk + Delta t new;
x parent = XG.V(x near 2.parent); % parent of near node
ix = x near 2.index; % index of near node
x new near.index = ix; % change index of new connected state

% to that of near node
XV(ix) = x new near; % replace x near with x new near in tree
x new.child = ix; % x new near is a child of x new
XV(x parent.index).child([XG.V(x parent.index).child] == ix) = NaN;

% delete child entry for parent node

XE par near = XE([XE.n1] == x parent.index & [XE.n2] == ix);
XE par near = XE par near(1);

idx child = x near 2.child;
idx child(isnan(idx child)) = [];
if ~isempty(idx child)

for o = 1:length(idx child)
XE near chi = XE([XE.n1] == ix & [XE.n2] == idx child(o));
XE near chi = XE near chi(1);

% Create line between parent and children
XE par chi.line = [XE par near.line,XE near chi.line];
XE par chi.cost = XE par near.cost + XE near chi.cost;
XE par chi.n1 = x parent.index;
XE par chi.n2 = idx child(o);
XE = [XE XE par chi];

% Change parent/child
XV(x parent.index).child = [XV(x parent.index).child idx child(o)];
XV(idx child(o)).parent = x parent.index;

end
end

% Create new edge
XE new rew.line = X new steps;
XE new rew.cost = c new;
XE new rew.n1 = x new.index;
XE new rew.n2 = ix;
XE = [XE XE new rew]; % append to edges
end

end
end
end
end

% Add new vertex and line to list of vertices and edges
XV = [XV x new]; % append to vertices
line(x new.pose(1),x new.pose(2),'Marker','.','Color', [0.2 0.2 0.2]);

XE new.line = X min steps;
XE new.cost = x new.cost-x min.cost;
XE new.n1 = x min.index;
XE new.n2 = x new.index;
XE = [XE XE new]; % append to edges
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line(XE new.line(1,:), XE new.line(2,:),'Color',[0.5 0.5 0.5]);
end
pause(delay);
end

% 9. After maximum number of nodes is reached, find least cost trajectory
XG.V = XV; XG.E = XE;

% Plot edges graph
for p = 2:length(XE)

line(XE(p).line(1,:),XE(p).line(2,:),'Color',[0.5 0.5 0.5])
end

% Compute distances to target point
XV n = length(XV);
dist m = zeros(1,XV n);
ind = [];
for m = 1:1:XV n

dist = norm(x target.pose(1:2)-XV(m).pose(1:2),2);
if dist < Tol

dist m(m) = dist;
ind = [ind m];

else
dist m(m) = inf;

end
end
if min(dist m) == inf

disp('No solution found')
return

else
XV target = XV(ind);
% Find node with lowest cost to target
[Traj Cost,id] = min(arrayfun(@(x) min(x.cost), XV target));
idx = XV target(id).index;

end

x end = XV(idx); % iterate backwards
while x end.parent ~= 0

ix c = x end.index;
ix p = x end.parent;
e cp = XE([XE.n1] == ix p & [XE.n2] == ix c);
line([e cp.line(1,:)],[e cp.line(2,:)], 'Color', 'k', 'LineWidth', 2);
x end = XV(ix p);
Sol Traj = [Sol Traj x end.pose];

end

Sol Traj = fliplr(Sol Traj);
return;
end

% Utility functions
function drawObstacles(obj,h)

% Input:
% h: figure handle
% obstacles: list of obstacle vertices
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det obstacles = obj.Map.det obstacles;
unc obstacles = obj.Map.unc obstacles;
figure(h)
hold on;
for i = 1:length(det obstacles)

obs = det obstacles(i);
plot(obs,'FaceColor',[0 166/255 214/255],'FaceAlpha',1);

end
for j = 1:length(unc obstacles)

obs = unc obstacles(j).shape;
plot(obs,'FaceColor',[1 210/255 0],'FaceAlpha',1);
obs c = obs.Vertices;
obs x = (max(obs c(:,1))+min(obs c(:,1)))/2;
obs y = (max(obs c(:,2))+min(obs c(:,2)))/2;
obs P = unc obstacles.P c;
el t = linspace(0,2*pi) ;
el x = sqrt(obs P(1,1))*cos(el t)+obs x;
el y = sqrt(obs P(2,2))*sin(el t)+obs y;
plot(el x,el y,'--','LineWidth',1,'color','k')

end
end

function [X near,X near idx] = Near(obj,XG,x new,XV card,delta)
% Input:
% XG: current tree
% x new: new point
% V card: cardinality of the list of vertices

% Parameters for RRT*
ksi d = pi; % volume of unit ball in R2
mu = max(obj.Map.bounds(1,:))*max(obj.Map.bounds(2,:));
% conservative area approx. of C free
gamma = 2ˆ2*(1+1/2)*mu; % constant
eta = delta; % step size
r = min((gamma/ksi d*log(XV card)/XV card)ˆ(1/2),eta);

% Nodes in neighbourhood
XV = XG.V;
dist = zeros(1,XV card);
for i = 1:1:XV card

dist(i) = norm(XV(i).pose(1:2)-x new.pose(1:2),2);
end
X near idx = dist < r;
if sum(X near idx)>0

X near = XV(X near idx);
return;

end
X near = [];

end
end
end
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Metric - save as: ‘Reach CostFunction.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Reachability based metric function
% Input:

% u = control input
% Ctrl lim = control limits
% c dist = trajectory length
% Delta t = step-wise risk

classdef Reach CostFunction < handle
properties

delta = [];
alpha = [];

end
methods

function obj = Reach CostFunction(delta,alpha)
%obj@CostFunction; % Only when superclass 'CostFunction' is defined
obj.delta = delta;
obj.alpha = alpha;

end
function [c rand] = dist metric(obj,u,Ctrl lim)

v t = u(1);
kappa t = u(2);
kappa max = Ctrl lim;
if kappa t < kappa max && kappa t > -kappa max && v t > 0

c rand = v t*obj.delta;
else

c rand = inf;
end

end

function [cost] = cost metric(obj,c dist,Delta t)
cost = obj.alpha.D*c dist + obj.alpha.Delta*obj.delta*Delta t;

end
end

end

State validity checker - save as: ‘Reach CostFunction.m’

function [bool,Delta t] = isStateValid(x,risk, map,agent,psi)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function that calculates whether the configuration is in collision
% Input:
% x: agent state
% risk: accumulated risk
% map: obstacle map
% agent: agent representation
% psi: probabilistic feasibility constraint values

% Agent representation
if length(x) == 2

agent poly = agent.cons;
max dim = sqrt((agent.length/2)ˆ2+(agent.width/2)ˆ2);
x(3) = 0;
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agent state = translate(rotate(agent poly,x(3)/pi*180,...
[max dim/2 max dim/2]),[x(1)-max dim/2 x(2)-max dim/2]);

else

agent poly = agent.rep;
agent state = translate(rotate(agent poly,x(3)/pi*180,...
[agent.length/2 agent.width/2]),[x(1)-agent.length/2 x(2)-agent.width/2]);

end

% Check collision using intersect
obstacles = [map.det obstacles,map.unc obstacles.shape];
for i=1:length(obstacles)

obs = obstacles(i);
col = intersect([agent state,obs]);
if col.NumRegions>0

bool = false; % when in collision
Delta t = 0;
return;

end
end

% Probabilistic feasibility checking
unc obstacles = map.unc obstacles;
Delta jt = zeros(length(unc obstacles),1);
for j=1:length(unc obstacles)

obs = unc obstacles(j);
A = obs.A;
P c = obs.P c;
c hat = obs.c hat;
r = agent.radius;
Delta jkt = zeros(size(A,1),1);
for k = 1:size(A,1)

Delta jkt(k,:) = 1/2*(1-erf((A(k,:)*(x(1:2)-c hat(k,:)')-r)/...
(sqrt(2*A(k,:)*P c*A(k,:)'))));

end
Delta jt(j,:) = min(Delta jkt);

end
Delta t = sum(Delta jt);

if length(x) == 2 % when sampling a point the accumulated cost is not clear
Delta = 0;

else
Delta = risk + Delta t;

end

if Delta t > 1-psi.s | | Delta > 1-psi.p
bool = false; % when not robustly feasible
return;

end
bool = true; % when not in collision

end
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Motion validity checker - save as: ‘Samp MotionChecker.m’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sampled motion validity checker
% Input:

% X steps: vector of intermediate steps

classdef Samp MotionChecker < handle
properties
end
methods

function obj = Samp MotionChecker()
%obj@MotionChecker; % Only when superclass 'MotionChecker' is defined

end
function [bool,Delta t] = motion free(obj,X steps,risk,StateValidityChecker)

bool = true;
Delta t steps = zeros(size(X steps,2),1);
for i = 2:size(X steps,2)

[yesno,Delta t steps(i,1)] = StateValidityChecker(X steps(:,i),risk);
if yesno == 0 % when one state is in collision

bool = false;
end

end
Delta t = max(Delta t steps);

end
end

end
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A.1.17 Script for linear dose-based optimisation
In order to use this script, the user must provide (evenly spaced) dose calculation points for the
tumour volume [P x ctv,P y ctv], tumour surface P s ctv, and OAR surfaces P s blad, P s rect,
and P s sigm. Additionally the user must provide dwell points point s.

%% MATLAB dose-based optimisation
% (c) Robin Straathof 2020
% Based on algorithm by Alterovitz et al. (2006)
clc
close all
clear all

% Data from mHDR-v2
% Download online; save as 'mHDRv2.xlsx'
% Save gl and Fl data in two separate sheets
S K = 40820; % Air-kerma strength: U
Lambda = 1.109; % Dose-rate constant: cm-2
L = 0.35; % Active length: cm
theta 0 = pi/2; % Reference angle: rad
r 0 = 1; % Reference distance: cm
diam = 0.09; % Source diameter: cm
l = 0.5; % Source length: cm

data gl = readmatrix('mHDR v2.xlsx','Sheet','g l');
data Fl = readmatrix('mHDR v2.xlsx','Sheet','F l');
data phi l = readmatrix('mHDR v2.xlsx','Sheet','phi l');

% Compute relevant functions
G l0 = G l(r 0,theta 0,L);
x s = point s(:,1)*100;
y s = point s(:,2)*100;

% Structure data
% Load in the following variables;
% [P x ctv,P y ctv]: [m ctv v X 2] volume data points CTV HR
% P s ctv : [m ctv s X 2] surface data points CTV HR
% P s blad : [m blad X 2] data points bladder
% P s rect : [m rect X 2] data points rectum
% P s sigm : [m sigm X 2] data points sigmoid

% Dwell point data
% Load in the following variables;
% [point s]: [n d X 2] dwell points

% Optimisation variables
m ctv v = length(P x ctv);
m ctv s = length(P s ctv);
m blad = length(P s blad);
m rect = length(P s rect);
m sigm = length(P s sigm);

c ctvvpd = optimvar('c ctvvpd',m ctv v);
c ctvspd = optimvar('c ctvspd',m ctv s);
c bladpd = optimvar('c bladpd',m blad);
c rectpd = optimvar('c rectpd',m rect);
c sigmpd = optimvar('c sigmpd',m sigm);
t zp = optimvar('t zp',length(point s));
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% Constraint variables [Example values!]
M ctv v min = 100; M ctv s min = 100; M blad max = 20;
M rect max = 20; M sigm max = 20;
d ctv v min = 7.0; d ctv s min = 7.0; d blad max = 6.0;
d rect max = 3.7; d sigm max = 4.3;

% Optimisation problem
dwell time = optimproblem;
dwell time.Objective = sum(c ctvvpd/m ctv v)+sum(c ctvspd/m ctv s)+...
sum(c bladpd/m blad)+sum(c rectpd/m rect)+sum(c sigmpd/m sigm);

% Constraints CTV volume
dwell time.Constraints.ctv v con min = [];
for i = 1:m ctv v

min ctv v con = 0;
for j = 1:length(point s)

d ctv vzp = dose point(P x ctv(i)*100,P y ctv(i)*100,point s(j,1)*100,...
point s(j,2)*100,data gl,data phi l,theta 0,L,S K,Lambda,G l0);
min ctv v con = min ctv v con+M ctv v min*d ctv vzp*t zp(j);

end
dwell time.Constraints.ctv v con min(i) = c ctvvpd(i)+min ctv v con>=...
M ctv v min*d ctv v min;

end
dwell time.Constraints.ctv v con c = c ctvvpd'>=0;

% Constraints CTV surface
dwell time.Constraints.ctv s con min = [];
for i = 1:m ctv s

min ctv s con = 0;
for j = 1:length(point s)

d ctv szp = dose point(P s ctv(i,1)*100,P s ctv(i,2)*100,point s(j,1)*100,...
point s(j,2)*100,data gl,data phi l,theta 0,L,S K,Lambda,G l0);
min ctv s con = min ctv s con+M ctv s min*d ctv szp*t zp(j);

end
dwell time.Constraints.ctv s con min(i) = c ctvspd(i)+min ctv s con>=...
M ctv s min*d ctv s min;

end
dwell time.Constraints.ctv s con c = c ctvspd'>=0;

% Constraints bladder surface
dwell time.Constraints.blad con max = [];
for i = 1:m blad

max blad con = 0;
for j = 1:length(point s)

d blad zp = dose point(P s blad(i,1)*100,P s blad(i,2)*100,point s(j,1)*100,...
point s(j,2)*100,data gl,data phi l,theta 0,L,S K,Lambda,G l0);
max blad con = max blad con+M blad max*d blad zp*t zp(j);

end
dwell time.Constraints.blad con max(i) = c bladpd(i)-max blad con>=...
-M blad max*d blad max;

end
dwell time.Constraints.blad con c = c bladpd'>=0;

% Constraints rectum
dwell time.Constraints.rect con max = [];
for i = 1:m rect
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max rect con = 0;
for j = 1:length(point s)

d rect zp = dose point(P s rect(i,1)*100,P s rect(i,2)*100,point s(j,1)*100,...
point s(j,2)*100,data gl,data phi l,theta 0,L,S K,Lambda,G l0);
max rect con = max rect con+M rect max*d rect zp*t zp(j);

end
dwell time.Constraints.rect con max(i) = c rectpd(i)-max rect con>=...
-M rect max*d rect max;

end
dwell time.Constraints.rect con c = c rectpd'>=0;

% Constraints sigmoid
dwell time.Constraints.sigm con max = [];
for i = 1:m sigm

max sigm con = 0;
for j = 1:length(point s)

d sigm zp = dose point(P s sigm(i,1)*100,P s sigm(i,2)*100,point s(j,1)*100,...
point s(j,2)*100,data gl,data phi l,theta 0,L,S K,Lambda,G l0);
max sigm con = max sigm con+M sigm max*d sigm zp*t zp(j);

end
dwell time.Constraints.sigm con max(i) = c sigmpd(i)-max sigm con>=...
-M sigm max*d sigm max;

end
dwell time.Constraints.sigm con c = c sigmpd'>=0;

% Dwell time constraint
dwell time.Constraints.t min = t zp >=0;

% Solve problem
[sol,fval,exitflag,output,lambda] = solve(dwell time);
d t sol = sol.t zp;
ind act = d t sol > 0;
zp act = point s(ind act,:);

% Output parameters
disp('Dose-based optimisation output:');
disp(['Objective value: ',num2str(fval)]);
disp(['Active dwell positions: ',num2str(length(zp act)),' out of ',...
num2str(length(point s))]);
disp(['Mean dwell time: ',num2str(mean(nonzeros(d t sol)))]);
disp(['Max dwell time: ',num2str(max(nonzeros(d t sol)))]);
disp(['Total dwell time: ',num2str(sum(nonzeros(d t sol)))]);

%% Dose evaluation
% Create grid
x vec = linspace(0,x Limits(2)*100,(x Limits(2)/g size+1));
y vec = linspace(0,y Limits(2)*100,(y Limits(2)/g size+1));

D tot = zeros(length(x vec),length(y vec));
for i = 1:length(x vec)

x p = x vec(i);

for j = 1:length(y vec)
y p = y vec(j);

for k = 1:length(x s)
r = norm([x p y p]-[x s(k) y s(k)]);
g l = interp1(data gl(:,1),data gl(:,2),r);
phi l = interp1(data phi l(:,1),data phi l(:,2),r);
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G lp = G l(r,theta 0,L);
d rate = dose(S K,Lambda,G lp,G l0,g l,phi l); % [cGy/hour]: dose rate
d p(k) = d rate/(3600*100)*d t sol(k); % [Gy]: dose

end
d p = sum(d p,'omitnan');
if d p > 100 % truncate dose

d p = 100;
end
D tot(i,j) = d p; % append dose to grid

end
end
[x,y] = meshgrid(x vec./100,y vec./100); % grid in cm to m

% Extract dose distributions for each structure
ind ctv = inpolygon(x,y,P s ctv(:,1),P s ctv(:,2));
ind blad = inpolygon(x,y,P s blad(:,1),P s blad(:,2));
ind rect = inpolygon(x,y,P s rect(:,1),P s rect(:,2));
ind sigm = inpolygon(x,y,P s sigm(:,1),P s sigm(:,2));

D ctv = D tot(ind ctv');
D blad = D tot(ind blad');
D rect = D tot(ind rect');
D sigm = D tot(ind sigm');

% Establish dose parameters
% CTV-HR
N ctv = length(D ctv);
disp('CTV-HR dosimetric indices:')
D 98 ctv = min(maxk(D ctv,ceil(0.98*N ctv)))
D 90 ctv = min(maxk(D ctv,ceil(0.90*N ctv)))
D 50 ctv = min(maxk(D ctv,ceil(0.50*N ctv)))
A 100 ctv = length(D ctv(D ctv > d ctv v min))/N ctv*100

% Bladder
N blad = length(D blad);
disp('Bladder dosimetric indices:')
D 10 blad = min(maxk(D blad,ceil(0.1*N blad)))
D 2 blad = min(maxk(D blad,ceil(0.02*N blad)))
A 6Gy blad = length(D blad(D blad > 6))/N blad*100

% Rectum
N rect = length(D rect);
disp('Rectum dosimetric indices:')
D 10 rect = min(maxk(D rect,ceil(0.1*N rect)))
D 2 rect = min(maxk(D rect,ceil(0.02*N rect)))
A 37Gy rect= length(D rect(D rect > 3.7))/N rect*100

% Sigmoid
N sigm = length(D sigm);
disp('Sigmoid dosimetric indices:')
D 10 sigm = min(maxk(D sigm,ceil(0.1*N sigm)))
D 2 sigm = min(maxk(D sigm,ceil(0.02*N sigm)))
A 43Gy sigm= length(D sigm(D sigm > 4.3))/N sigm*100
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%% Functions
% Geometry function
function G l out = G l(r,theta,L)

beta = atan2(r*cos(theta)+L/2, r*sin(theta))- atan2(r*cos(theta)-L/2, r*sin(theta));
if theta == 0 | | theta == pi

G l out = 1/(rˆ2-Lˆ2/4);
else

G l out = beta/(L*r*sin(theta));
end

end

% Absorbed dose calculation
function d out = dose(S K,Lambda,G lp,G l0,g l,phi l)
d out = S K*Lambda*G lp/G l0*g l*phi l;
end

% Dose point function
function d ij = dose point(x i,y i,x s,y s,data gl,data phi l,theta 0,...
L,S K,Lambda,G l0)

r = norm([x i y i]-[x s y s]);
if r>10

r = 10;
end
g l = interp1(data gl(:,1),data gl(:,2),r);
phi l = interp1(data phi l(:,1),data phi l(:,2),r);
G lp = G l(r,theta 0,L);
d rate = dose(S K,Lambda,G lp,G l0,g l,phi l); % cGy/hour
d ij = d rate/(100*3600); % Gy/s

end
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A.1.18 Script for coverage planning

In order to use this script, the user must provide coordinates of structures in the file
structures BT.mat generated with Script A.1.9 of a MR image (here called
‘Delineation extended.png’), the function ExactMinBoundCircle [381], and source data (here
used is mHDR v2.xlsx [26]). Note that this is only a minimal working example not including
plotting. To evaluate the generated configuration of dwell segments, the dose-based optimisation
in Script A.1.17 may be used.

%% MATLAB NPIP-inspired coverage planning
% (c) Robin Straathof 2020
clc
clf
close all
clear all

load('structures BT.mat');
x Limits = [0.000 0.210];
y Limits = [0.000 0.214];

%% Generate dwell segment candidate set N free
% Parameters
n = 1000; % dwell segment density
d int = 5E-3; % [m]: step size
g size = 2.5E-3; % [m]: grid size
w = 2.2E-3; % [m]: channel width
max a = 80/180*pi; % [rad]: maximum angle
eps = ExactMinBoundCircle(ctv coord)*0.30; % [m]: radius

% Select CTV HR base
E = ctv coord(3:4,:);
n e = round(n*norm(E(1,:)-E(2,:)));
e i = E(1,:) + rand(n e,1).*(E(2,:)-E(1,:));

% Initialisation
idx = 1;
N.edge = [NaN,NaN]; N.points = [NaN,NaN]; N.angle = [NaN]; N.idx = idx;
N f.edge = [NaN,NaN]; N f.points = [NaN,NaN]; N f.angle = [NaN]; N f.idx = idx;

for i = 1:(size(ctv coord,1)-1)
if i == 3 % base of tumour

continue
end

C = ctv coord(i:(i+1),:); % contour line of tumour
n c = round(n*norm(C(1,:)-C(2,:))); % number of points on contour length
c i = C(1,:) + rand(n c,1).*(C(2,:)-C(1,:)); % random point on contour
for j = 1:n c

c p = c i(j,:);
for k = 1:n e

e p = e i(k,:); % base point
idx = idx+1;
L = floor(norm(e p-c p)/d int)+1; % number of dwell points
for l = 1:L

z p(l,:) = c p + d int*(e p-c p)/norm(e p-c p)*(l-1);
end
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c vec = e p-c p;
e vec = E(2,:)-E(1,:);
ang = acos(min(1,max(-1, c vec(:).'*e vec(:)/...
(norm(c vec)*norm(e vec)))));

% Generate candidate set N
N new.edge = [c p;e p];
N new.points = [z p;e p];
N new.angle = ang;
N new.idx = idx;
N = [N N new];

% Compute distance between worst-case bound of OARs and base point
for m = 1:(size(blad coord bu,1)-1)

b1 = blad coord bu(m,:);
b2 = blad coord bu(m+1,:);

d b1b2 = norm(b1-b2);
d b1e = norm(b1-e p);
d b2e = norm(b2-e p);

if dot(b1-b2,e p-b2)*dot(b2-b1,e p-b1)>=0
A = [b1,1;b2,1;e p,1];
dist blad(m) = abs(det(A))/d b1b2;

else
dist blad(m) = min(d b1e, d b2e);

end
end

for o = 1:(size(sigm coord bu,1)-1)
b3 = sigm coord bu(o,:);
b4 = sigm coord bu(o+1,:);

d b3b4 = norm(b3-b4);
d b3e = norm(b3-e p);
d b4e = norm(b4-e p);

if dot(b3-b4,e p-b4)*dot(b4-b3,e p-b3)>=0
B = [b3,1;b4,1;e p,1];
dist sigm(o) = abs(det(B))/d b3b4;

else
dist sigm(o) = min(d b3e, d b4e);

end
end

% Extract segments that are feasible and where the angle with
% base is within limits
if min(dist blad) > eps && min(dist sigm) > eps && ...
max a < ang && ang < (pi-max a)

N fnew.edge = N new.edge;
N fnew.points = N new.points;
N fnew.angle = N new.angle;
N fnew.idx = idx;
N f = [N f N fnew];

end
z p = [];

end
end

end
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N k = size(N f,2);

%% Generate coverable points
% Regularly spaced points in tumour
x 1 = min(ctv coord(:,1));
y 1 = min(ctv coord(:,2));
x 2 = max(ctv coord(:,1));
y 2 = max(ctv coord(:,2));
n x = ceil((x 2-x 1)/g size);
n y = ceil((y 2-y 1)/g size);

[P x,P y] = meshgrid(linspace(x 1,x 1+n x*g size,n x),...
linspace(y 1,y 1+n y*g size,n y));
P ind = inpolygon(P x,P y,ctv coord(:,1),ctv coord(:,2));
P x = P x(P ind);
P y = P y(P ind);
line(P x,P y,'linestyle','none','marker','.','color','b')

% Coverable points
I eps = zeros(length(P x),1);
Q = size(P x,1);
for s i = 1:N k

for p = 1:size(N f(s i).points,1)
for q = 1:Q

if I eps(q) ~= 1
if norm(N f(s i).points(p,:)-[P x(q,1),P y(q,1)])<eps

I eps(q) = 1;
end

end
end

end
end

I x = P x(logical(I eps));
I y = P y(logical(I eps));
line(I x,I y,'linestyle','none','marker','.','color','r')

%% Linear integer programming
% Set of needles that cover tumour points
M i = zeros(length(I x),N k);
for i = 1:length(I x)

for s i = 1:N k
for p = 1:size(N f(s i).points,1)

if norm(N f(s i).points(p,:)-[I x(i,1),I y(i,1)])<=eps
M i(i,s i) = 1;
continue

end
end

end
end
M iL = logical(M i);
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% Set of colliding needles
Y = zeros(size(N f,2));
for k = 2:size(N f,2)

for j = k:size(N f,2)
if line dist(N f(k).edge(1,:),N f(k).edge(2,:),...
N f(j).edge(1,:),N f(j).edge(2,:))<2*w

Y(k,j) = 1;
end

end
end
Y = logical(Y);

% Optimisation parameters
x = optimvar('x',N k,'Type','integer','LowerBound',0,'UpperBound',1);
NPIP = optimproblem;
NPIP.Objective = sum(x);

% Coverage constraints
NPIP.Constraints.cov = [];
for i = 1:length(I x)

NPIP.Constraints.cov(i) = 1-sum(x(M iL(i,:)),1) <= 0;
end

% Collision constraints
NPIP.Constraints.col = [];
for l = 1:N k

NPIP.Constraints.col(l) = sum(x(Y(l,:)))-1 <=0;
end

% Solution
NPIPln = solve(NPIP);
sol ind = find(NPIPln.x);
disp(['Coverable points: ',num2str(length(I x)/length(I eps)*100),' %']);
point s = [];
for i = 1:length(sol ind)

point s = [point s; N f(sol ind(i)).points];
end

%% Generate dose evaluation points
% Regularly space points in CTV-HR volume
x 1 ctv = min(ctv coord nonc(:,1));
y 1 ctv = min(ctv coord nonc(:,2));
x 2 ctv = max(ctv coord nonc(:,1));
y 2 ctv = max(ctv coord nonc(:,2));
n x ctv = ceil((x 2 ctv-x 1 ctv)/g size);
n y ctv = ceil((y 2 ctv-y 1 ctv)/g size);

[P x ctv,P y ctv] = meshgrid(linspace(x 1 ctv,x 1 ctv+n x ctv*g size,n x ctv),...
linspace(y 1 ctv,y 1 ctv+n y ctv*g size,n y ctv));
P ind ctv = inpolygon(P x ctv,P y ctv,ctv coord nonc(:,1),ctv coord nonc(:,2));
P x ctv = P x ctv(P ind ctv);
P y ctv = P y ctv(P ind ctv);

% Regularly space points along surface
P s ctv = [];
for i = 1:(length(ctv coord nonc)-1)

n ctv = ceil(norm(ctv coord nonc(i,:)-ctv coord nonc(i+1,:),2)/g size)+1;
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L ctv = [linspace(ctv coord nonc(i,1),ctv coord nonc(i+1,1),n ctv).' ...
linspace(ctv coord nonc(i,2),ctv coord nonc(i+1,2),n ctv).'];

P s ctv = [P s ctv; L ctv];
end

% Regularly spaced points along the surface of OARs
% Bladder
P s blad = [];
for i = 1:(length(blad coord)-1)

n blad = ceil(norm(blad coord(i,:)-blad coord(i+1,:),2)/g size)+1;
L blad = [linspace(blad coord(i,1),blad coord(i+1,1),n blad).' ...

linspace(blad coord(i,2),blad coord(i+1,2),n blad).'];
P s blad = [P s blad; L blad];

end

% Rectum
P s rect = [];
for i = 1:(length(rect coord)-1)

n rect = ceil(norm(rect coord(i,:)-rect coord(i+1,:),2)/g size)+1;
L rect = [linspace(rect coord(i,1),rect coord(i+1,1),n rect).' ...

linspace(rect coord(i,2),rect coord(i+1,2),n rect).'];
P s rect = [P s rect; L rect];

end

% Sigmoid
P s sigm = [];
for i = 1:(length(sigm coord)-1)

n sigm = ceil(norm(sigm coord(i,:)-sigm coord(i+1,:),2)/g size)+1;
L sigm = [linspace(sigm coord(i,1),sigm coord(i+1,1),n sigm).' ...

linspace(sigm coord(i,2),sigm coord(i+1,2),n sigm).'];
P s sigm = [P s sigm; L sigm];

end

% Insert linear dose-based optimisation script here

%% Functions
function dist = line dist(a,b,c,d)
% Lines intersect
t = det([c'-a',d'-c'])/det([b'-a',d'-c']);
s = det([a'-c',b'-a'])/det([d'-c',b'-a']);

if 0<=t && t<=1 && 0<=s && s<=1 && det([d'-c',b'-a'])~=0
dist = 0;
return

end

% Lines do not intersect, may be parallel
d ab = norm(a-b);
d ac = norm(a-c);
d ad = norm(a-d);
d bc = norm(b-c);
d bd = norm(b-d);
d cd = norm(c-d);
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% Line a to cd
if dot(c-d,a-d)*dot(d-c,a-c)>=0

A = [c,1;d,1;a,1]; dist a = abs(det(A))/d cd;
else

dist a = min(d ac, d ad);
end

% Line b to cd
if dot(c-d,b-d)*dot(d-c,b-c)>=0

B = [c,1;d,1;b,1]; dist b = abs(det(B))/d cd;
else

dist b = min(d bc, d bd);
end

% Line c to ab
if dot(a-b,c-b)*dot(b-a,c-a)>=0

C = [a,1;b,1;c,1]; dist c = abs(det(C))/d ab;
else

dist c = min(d ac, d bc);
end

% Line d to ab
if dot(a-b,d-b)*dot(b-a,d-a)>=0

D = [a,1;b,1;d,1]; dist d = abs(det(D))/d ab;
else

dist d = min(d ad, d bd);
end
dist = min([dist a,dist b,dist c,dist d]);
end

% Geometry function
function G l out = G l(r,theta,L)
beta = atan2(r*cos(theta)+L/2, r*sin(theta))- atan2(r*cos(theta)-L/2, r*sin(theta));
if theta == 0 | | theta == pi

G l out = 1/(rˆ2-Lˆ2/4);
else

G l out = beta/(L*r*sin(theta));
end
end

% Absorbed dose calculation
function d out = dose(S K,Lambda,G lp,G l0,g l,phi l)
d out = S K*Lambda*G lp/G l0*g l*phi l;
end

% Dose point function
function d ij = dose point(x i,y i,x s,y s,data gl,data phi l,theta 0,L,...
S K,Lambda,G l0)

r = norm([x i y i]-[x s y s]);
if r>10

r = 10;
end
g l = interp1(data gl(:,1),data gl(:,2),r);
phi l = interp1(data phi l(:,1),data phi l(:,2),r);
G lp = G l(r,theta 0,L);
d rate = dose(S K,Lambda,G lp,G l0,g l,phi l); % cGy/hour
d ij = d rate/(100*3600); % Gy/s

end
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A.2 A brief overview and discussion on dose and radiobiological
concepts and models in brachytherapy

Biologically effective dose (BED)
The biologically effective dose (BED) formalism and other techniques transforming absorbed dose
to equivalent or equieffective dose are typically based on the use of the linear quadratic (LQ) model.
An excellent review on the history and ability of the LQ model to characterise radiation effects was
recently published [394]. Some critique on this model includes: (i) that its validity is believed for
delivered dose per fraction ranging between 0.5 Gy to 6 Gy, and may overestimate the effect at higher
dosages [7, 20, 22, 394, 395]1, (ii) that radiosensitivity coefficients α and β can vary for different
tumour histologies or tissue types [7, 20, 394, 395], and (iii) that it does not take into account
the gradient of the dose in brachytherapy, such that the actual equivalent dose is underestimated
with a factor of 1.15-1.30 [397–399]. Considering the latter, Dale et al. proposed to calculate the
equivalent dose if a uniform dose distribution was to be generated from a non-uniform applicator
dose distribution [397, 398], similar to the equivalent uniform dose (EUD) concept [400]. In
the ‘spherical model’, it is assumed that the point dose falloff primarily follows an inverse square
law [397–399], which is similar to the distribution most intracavitary brachytherapy applicators
produce. Assuming a spherical model with radius R and prescribed dose at distance r = R from
the point source as well2, the equivalent BED, BEDeq, for a non-uniform BT, e.g. tandem-ovoid,
applicator, is found as follows (derivation in Ref. [397]):

BEDeq,α/β = − 1

α
ln

(
3

R3

∫ R

0
x2f(x)dx

)
(A.1)

With, f(x) derived for HDR-BT from Eq. 1.1:

f(x) = exp

(
−αNd

(
R

x

)2

− βGNd2

(
R

x

)4
)

(A.2)

Although this is a simple analytical formulation, i.e. with simplified geometry, its accuracy was
established to be within 2% of doses derived with voxel-based approaches [399]3. Nevertheless the
accuracy of such a method was questioned recently [401]. The analytical method may perform
poorly against voxel-by-voxel approaches, due to its inability to: (i) compensate for asymmetrical
dose shapes, i.e. deviation from the pear dose shape, (ii) distinguish between plans for different
applicators, and (iii) be robust against variability stemming from physician, or treatment planning
aspects. Nevertheless, although the author acknowledges that equivalent uniform BED
(EUBED) or generalized biologically equivalent uniform dose (gBEUD)4 are more
accurate metrics -especially for lower values of α-, and may possibly even predict clinical outcome
more accurately [401, 402], for the purpose of illustration the BED (Eq. 1.1), and equivalent BED
(Eq. A.1), are sufficient. It must be noted that in its latest report the ICRU does not promote the
use of the equivalent BED, BEDeq, for organs at risk as it is clinically unproven, its influence on
organ at risk dosage is limited and its parameters are uncertain [7].

1Interestingly, the dose used typically for HDR brachytherapy amounts to 7 Gy per fraction which implies that the
calculated BED may overestimate the effect, but this is rarely questioned [134]. At higher dose rates, a change in
the rate of repair might be observed as the result of overloading repair enzymes, which has led to the development
of new models, e.g. LQL and gLQ in other fields of radiotherapy [396], at the expense of additional parameters and
complexity. The LQ-model has insofar remained the standard approach due to its simplicity and its reproducibility
of clinical observations [394].

2This means that the equivalent dose is independent of R, which drops out of the equation.
3The authors of this article refer to data by Dale and Coles [398], which the author of this thesis was not able to
retrieve.

4gBEUD is an extension of gEUD, which is expressed in Eq. A.19, using the BED opposed to the absorbed dose.
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Equieffective dose (EQDX)
The equieffective dose can be derived from the linear quadratic model in Eq. 1.1 by assigning the
total dose given during treatment the product of the number of fractions and dose per fraction, D =
Nd, and using subscripts 1 and 2 to denote the absorbed dose and equieffective dose respectively:

D1

(
1 +G1

d1

α1/β1

)
= EQDX

(
1 +G2

d2

α2/β2

)
(A.3)

EQDX = D1
(α2(G1β1d1 + α1))

(α1(G2β2d2 + α2))
(A.4)

Now: (i) assuming that all dose-related parameters do not change (α1 = α2 = α, β1 = β2 = β,
G1 = G2 = G), (ii) rewriting Eq. 1.1 such that D1 = BED/[1 + (Gd)/(α/β)], and (iii) defining
d2 = 2 Gy as to obtain the equivalent dose at 2 Gy reference fractions, the equations for EQD2α/β
simply follows:

EQD2α/β =
BEDα/β(
2G
α/β + 1

) (A.5)

The EQD2 values from EBRT and brachytherapy may now be added for specific dose volumes or
points. The addition of dose volume relations typically involves using a worst-case assumption
that the volume receiving the highest dose, in the case of organs at risk, or the lowest dose, in the
case of the tumour volume, remains at the same location throughout treatment [22], which is the
subject of discussion under the header ‘Treatment planning: DVH addition’. Other critique on the
EQD2 model includes the aforementioned dependence [134, 403], and uncertainty in the estimated
values of the radiosensitivity coefficients; sensitivity data for different organ and tissue types, and
tumour histologies has been reviewed in several works [31, 404, 405]. For example, for the bladder
a ratio of α/β = 0.4 Gy was shown to produce the best fit with the incidence of severe urinary
toxicity out of the three tested values (0.4, 3 and 5 Gy) in hypofractionated radiotherapy of
prostate cancer [406]. Moreover, it must be emphasised that the α/β ratio is not constant during
treatment [395]. For the tumour, in cervical cancer radiotherapy the radiosensitivity coefficient
ratio may vary from α/β = 6 Gy [407], to 21 Gy [405], similar to reports for other tumours with
α/β = 7-20 Gy [7]. In the study by Datta et al. a value of α/β = 26 Gy was found for cervical
cancer patients in a LQ-model also incorporating treatment time [408].

Whether to include a time factor in the LQ-model for HDR brachytherapy has been questioned
[134, 395]. As mentioned, the repair function G is commonly assumed to be equal to one for HDR-
BT, indicating that complete sublethal damage repair occurs in between fractions [7]. However, it
has been shown that longer treatment time, i.e. longer than 8 weeks or 55 days, requires additional
dose to the tumour to achieve similar biological effects and is related subsequently to poorer local
control and survival rates [409, 410]. This may be the result of accelerated cellular repopulation,
which does not result in significant dose differences until several weeks after the onset of treatment,
usually modelled with a ‘kick-off time’ Tk [134, 395, 405, 411]. As introduced by Fowler (1989), this
means that the BED accounting for delayed proliferation may be written as (from eq (1.1)) [411]:

BEDα/β(t) = Nd

(
1 +G

d

α/β

)
− κ(t− Tk) (A.6)

With, κ = ln (2)/(αTp) the time factor, t the overall treatment time, and Tp the average doubling
time of the cells [411]. With such a model, Tornero-López et al. were reasonably able to predict
the additional dose required to compensate for the loss of local control as the effect of prolonged
treatment duration [134]. However, there are several reasons for not including time factors in the
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LQ-model. Firstly, the model introduces three additional parameters, which are difficult to estimate
[411]. Moreover, inclusion of this time factor may alter the values of the other parameters in the
model significantly; e.g. when including a time factor the estimated α/β value increased from 5.1 Gy
to 11.1 Gy in the work by Suwinski et al.[412]. This implies that transition from the LQ-model which
usually provides a good fit, to a new model including time factors requires new parameter estimation.
Lastly, rather than that the loss of tumour control probability with increased duration is attributed
to biological factors, one may argue that patients with less favourable prognoses generally have
longer treatment times and hence reduced tumour control probability is caused by poor management
[413]. However, after controlling for possible biases such as tumour volume and stage, Tanderup et
al. still found treatment prolongation of one week correlated to equieffective dose differences of 5
Gy EQD2α/β=10 [409].

Dose-volume parameters
One main complication with interpreting and extracting parameters from DVHs is that these
reduce the spatial dosimetric information into two-dimensional dose-volume relations [7, 23, 414],
in order to be able to correlate biological effects or treatment outcomes between patients with the
absorbed dose. However, in doing so, valuable information is lost. For example, DVHs cannot
indicate where within a structure hot or cold spots are present [23]. In another example; an
assymmetric dose distribution over a specified volume could result in a similar DVH as when
computed for a symmetric dose distribution over the same volume [415]. Moreover, such a model
does not discriminate between functional or structural organisation of different subregions [416],
or their dose response [7]. This limits the predictive power of dose-effect relationships based on
DVH parameters and means that the spatial distribution of the dose with respect to the
topography must always be analysed for plan evaluation and final prescription [7].

Furthermore, the calculation of accumulated dose over succeeding EBRT and BT fractions, is more
complex than simple DVH parameter addition. When adding DVH parameters, such as the D98%, it
is assumed that the location of the concerning volume remains identical for each fraction [7, 22, 98].
For the target dose this leads to a ‘worst-case assumption’ under the supposition that the relative
position between applicator and tumour is fixed, whereas this term is inaccurate for organs and
normal tissues [7].

Dose-response models
The logistic model in Eq. 1.9 for relating local tumour control to the radiation dose has been
commonly used. However, one disadvantage of this model is that the value of TCP at zero dose is
non-zero -although this rarely becomes an issue [35]- and for that purpose the log-logistic function
may be used [37]:

TCP =
1(

1 + (TCD50/D)(4γ50)
) (A.7)

Log-logistic formulations may however yield dose-response parameters that are different from
those in other models [417], possibly as the log-logistic distribution is positively skewed. Note that
rather than D, also the BED (Eq. 1.1) or EQD2 (Eq. 1.2) doses could be related to local control
via this formulation. In addition, to account for dose gradients, one may incorporate the
equivalent BED, BEDeq (Eq. A.1), or equivalent EQD2, EQD2eq, in the TCP formulation as for
example done in the study by Plataniotis et al. [418]. More complex, mechanistic models, such as
Poisson models, take into account clonogenic tumour cell distribution [419], but this is out of
scope for the models used in this thesis.
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For modelling the NTCP, other than the logistic model, it is more common to use the Lyman
model [420], which assumes a power-law relation between the tolerance dose and the irradiated
volume fraction:

TD(v) = TD(1)/vn (A.8)

Here, TD(v) is the tolerance dose for a partial volume v, TD(1) is the tolerance dose for the full
volume and n a fitted power law parameter used for describing the magnitude of the volume effect.
The NTCP may then be determined via the integral of a normal distribution, as the cumulative
distribution function for a normal distribution has a sigmoid shape, leading to the following ‘probit’
model [420]:

NTCP(D, v) =
1√
2π
·
∫ t

−∞
{exp (−x2/2)}dx (A.9)

Where,
t =

(D − TD50(v))

(σ(v))
(A.10)

TD50(v) = TD50(1)/vn (A.11)

In this expression, it is thus assumed that the complication probability as a function of the dose D
and uniformly irradiated volume v follows a normal distribution characterised by the mean, TD50(v),
and standard deviation, σ(v), which is approximated by σ(v) = m · TD50(v) [420]. Therefore,
only three model parameters are required to calculate the NTCP of specific (partial) organ or
tissue volumes: TD50, n, and m. The latter parameter, m is related to the steepness of the dose-
response curve [32]. Uniform irradiation however cannot be assumed, and therefore non-uniform
information, generally obtained from a DVH, must be converted into a uniform dose to a (partial)
volume [32]. This histogram reduction may involve an effective volume method irradiated to a
reference dose or determining an equivalent uniform dose applied to the full volume [421]. The
Kutcher–Burman (KB) reduction algorithm, using the Lyman model and collectively known as the
Lyman-Kutcher–Burman (LKB) model is the most frequently used method for calculating
the effective fractional volume [32, 422]. This LKB-model assumes that each irradiated fractional
sub-volume vi receiving dose Di, leads to the same NTCP as an partial effective volume, veff,i,
irradiated with a uniform reference dose Dref :

veff,i = vi ·
(
Di

Dref

)1/n

(A.12)

These smaller effective volumes may then be summed, such that:

veff =

j∑
i=1

veff,i (A.13)

The reference dose, Dref, may be selected arbitrarily as the NTCP is independent of this dose [423].
This volume reduction model may now be implemented in the Lyman model, by modifying Eq.
A.10, such that:

t =
(Dref − TD50(veff))

(m · TD50(veff))
(A.14)

Similarly, one could also derive an effective dose, Deff [424]:

Deff =

(
j∑
i=1

vi · (Di)
1/n

)n
(A.15)

t =
(Deff − TD50(v))

(m · TD50(v))
(A.16)
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This is conceptually equivalent to the EUD (which uses a = 1/n) [425], and typically a probit-
formulation:

EUD =

(
j∑
i=1

vi · (Di)
a

)1/a

(A.17)

t =
(EUD− EUD50(v))

(m · EUD50(v))
(A.18)

Or a log-logistic formulation [426]:

NTCP =
1(

1 + (TD50/EUD)(4γ50)
) (A.19)

Note that in all of the above formulations, the dose D may be changed to BED (Eq. 1.1) or EQD2
(Eq. 1.2). The LKB model has a high sensitivity to small high-dose regions [427], which are
present in the case of brachytherapy. Moreover, although the KB reduction and EUD formulation
have shown to have less inconsistencies in their formulation than comparable models [428], still
their predictive and comparative power is limited and their results therefore must be interpreted
with caution [32]. Furthermore, the often used Burman NTCP model parameters, derived from
data by Emami et al., have been developed for conventional radiotherapy [427], at the time of
two-dimensional imaging and planning, and have to be re-evaluated for brachytherapy with more
complex three-dimensional dose distributions. Lastly, one problem with the previous NTCP
formulations is that these do not account for functional or structural organisation of different
subregions, and for that reason the use of biophysically based models, such as the relative
seriality model, is encouraged [416].

Definition A.2.1. Serial organs: Serial organs consist of a chain of functional units, where
the function of the entire chain depends on the function of each of its links.

Definition A.2.2. Parallel organs: Parallel organs consist of individual functional units
which function independently and are therefore only impacted when a number of units are
inactivated.

For example, the rectum, sigmoid colon and bowel are considered as serial organs when regarding
their role in transporting stool [7]. However, such a classification is in general difficult as some
organs may exhibit serial-parallel behaviour [416]. Nevertheless, in the relative seriality model,
serial or parallel behaviour is captured in the parameter s, with higher values of s indicating greater
seriality [429]:

NTCP =

(
1−

j∏
i=1

[1− P (Di)
s]vi

)1/s

(A.20)

Here, P (Di) describes the response in each compartment via a model, e.g. logistic, Poisson or
probit. For other NTCP methods and their considerations the reader is referred to more elaborate
reviews [414, 430].
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A.3 Terminology and modelling of uncertainty in brachytherapy

The evaluation and expression of uncertainties is most often performed based on documents by
the Comité International des Poids et Mesures (CIPM) [431], Joint Committee for Guides in
Metrology (JCGM) [432], U.S. National Institute of Standards and Technology (NIST) [433],
among others. Regarding radiotherapy, the International Atomic Energy Agency (IAEA) has
recently a issued a publication in accuracy issues and their management [35], with its definitions
based upon the aforementioned documents. The latter is primarily used for the terminology in
this work.

The following basic terms considering uncertainty are used throughout this thesis:

A.3.1 Uncertainty

Definition A.3.1. Uncertainty: Uncertainty expresses the dispersion of the values that are
obtained for repeated measurements. The overall or expanded uncertainty is expressed as
V , opposed to the conventional U , in order to avoid confusion with the symbol for the units
of air-kerma strength used in radiotherapy [25, 98]. The uncertainty of a measurement result
is commonly termed standard uncertainty, some suggesting the symbol ui [25, 433].

Uncertainty or its components may be grouped into one of two categories according to the method
used to estimate their numerical value:

• Type A: Those which are evaluated by applying statistical methods. For the ith type A
component, the standard uncertainty is represented by the standard deviation (SD), si, which
is the positive square root of the statistically estimated variance s2

i ;

• Type B: Those which are evaluated by any other type of means. For the jth type B
component, the standard uncertainty is represented by the quantity uj or approximated
variance u2

j .

The associated number of degrees of freedom for both type A and type B components is
represented by ν. The distinction between type A and B components is merely for the purpose of
convenience for discussion on quality of data, as both components are often treated in similar
manner; i.e. uncertainty from either type is quantified by variances or standard deviations [434].
The distinction between type A and type B uncertainties is rarely used in recent brachytherapy
literature [98], and not particularly useful for this work.

NOTE: Type A and type B uncertainties are sometimes referred to as ‘random’ and
‘systematic’ respectively, but such a simple correspondence is not always the case. Although
the BIPM and NIST recommend avoiding the use of the term ‘systematic uncertainty’
altogether for this reason as the example below points out [431, 433], radiotherapy literature
often uses the terms ‘random’ and ‘systematic’ to describe the effect of corresponding errors
[35]. However, the term ‘error’ is sometimes discouraged in this context [25, 35], such that
-recognising that this may be confusing- the terms ‘random uncertainty’ and ‘systematic
uncertainty’ are still used throughout this work. These are subsequently, acknowledging
possible confusions from the example below, defined as ‘component of uncertainty arising
from a random effect ’ or ‘[...] systematic effect ’ respectively [434, 435].
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Example: It may be ambiguous to classify an uncertainty component itself as ‘random’
or ‘systematic’. The contribution of uncertainty in one measurement stemming from a
random error may become systematic if a new measurement is based on this previous
uncertainty component. If one was to plan a treatment dose based on a single acquired
image prior to treatment, with possible uncertainty due to random organ motion, during
delivery this error may systematically be present in consecutive dose fractions. In this
particular case, uncertainty in delivered dose would stem from both a random error, i.e.
the random organ movement that is still present during treatment delivery itself, and a
systematic error, i.e. as the imaged random position is used throughout the treatment
fractions.

When assuming uncorrelated equally weighed components and sufficient degrees of freedom, the
combined standard uncertainty, uc, is obtained via the law of propagation of uncertainty
what is commonly known as the ‘root sum of squares’, taking the root of the sum of components

in quadrature, i.e. in its simplest form: uc =
√∑I

i=1 s
2
i +

∑J
j=1 u

2
j . Although usually uncorrelated

components may be assumed for radiotherapy or in particular brachytherapy [98], typically for
margin calculation in radiotherapy different weights are assigned to the combination of these
uncertainty components [35].

The overall or expanded uncertainty, V , captures a confidence interval of the about the measurement
result, y, within which the value of the measurand, Y , is confidently asserted to lie. This expanded
uncertainty is derived by multiplying the combined standard uncertainty with a coverage factor,
k, that defines the desired level of confidence, via:

V = kuc (A.21)

such that: Y = y ± V represents the interval of the measurand to the level of confidence specified
by k. The conventional and recommended coverage factor used for brachytherapy reporting is
k = 2, specifying approximately a 95% confidence interval in the case of an assumed normal
distribution [99]. Nevertheless, such a factor should only be applied for the calculation of the
combined uncertainty, and not for the individual components from the uncertainty budget.

Lastly, uncertainty may be expressed in: (i) an absolute form: |u(y)|, i.e. the magnitude of the
difference between a measured and expected value, or commonly in, (ii) a relative form: |u(y)/y|,
i.e. when the absolute error is divided by the magnitude of the expected value [436]. However,
relative uncertainty must be carefully analysed in literature, as this ratio may involve different
units, e.g. absorbed dose in Gy or EQD2 dose, or could for example be related to the total dose
from combined treatment, solely the brachytherapy dose, or even the dose per fraction [98].

A.3.2 Error

Definition A.3.2. Error: An error is the discrepancy between a measured or calculated
value and the expected, actual or true value.

Two types of errors may be distinguished:

• Random error: The random error, typically denoted ε, describes the fluctuation of the error
around the true or accepted value. This type of error varies in both direction and magnitude
and may be obtained by subtracting the mean of infinite measurements from the result of
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a measurement. Typically it is assumed that this random error is Gaussian distributed; i.e.
having a zero mean and being distributed according to variance σ2

V ;

• Systematic error: The systematic error, sometimes denoted b (derived from the term
‘bias’5), is the difference between the mean of infinite measurements and the true value of
the measurand. A systematic error is predictable in its direction and its magnitude is
generally constant or proportional to the value of the measurand.

NOTE: The term error is not used here to denote a mistake or failure of an action.

Although random errors cannot directly be compensated for, these may be estimated by
performing repeated measurements and their effect reduced through averaging over the number
observations as their expected value is zero. However, for example in radiotherapy treatment the
number of fractions is finite, and therefore the random error may not completely die out, but
rather results in an error which is distributed with the standard deviation of the random errors
divided by the square root of the number of fractions [98, 101]. It is difficult to detect systematic
errors as the value of the measurand is unknown. Although the systematic effect may be
quantified, a correction or correction factor is inherently uncertain and thus despite
compensating for this effect when applied, the systematic error is not eliminated [434].

A gross error is an unacceptably large error, and therefore in the case of radiotherapy must be
determined and corrected prior to treatment delivery [437]. Generally gross errors may be identified
using image after treatment planning, but before treatment delivery. These will not be treated in
this work.

A.3.3 Accuracy

Definition A.3.3. Accuracy: Accuracy is used to describe the closeness of agreement
between a calculated or measured value and the true or accepted value.

Accuracy is a qualitative term resulting from the combination of systematic and random errors.

A.3.4 Precision

Definition A.3.4. Precision: Precision is used to describe the closeness or variability of
replicate measurements of a measurand.

Therefore, precision does not require a true or accepted value of the measurand but is a concept
related to the repeatability (or reproducability)6 of measurements. As it solely depends on random
errors, precision may be quantified as a standard deviation accordingly.

A.3.5 Action level or maximum permissable error

Definition A.3.5. Action level or maximum permissable error: As described by the
IAEA [35], the action level is a threshold value above which intervention should be undertaken.
The maximum permissable error denotes a similar value level.

Often, the word ‘tolerance’ is used to define the range of acceptability, but as this may conflict with
‘action level’ this is not used in this work [35].

5Although bias is used almost synonymously to systematic error, the latter term is recommended [433]. Bias may be
used for expressing the magnitude of the systematic error.

6Some recommendations include both repeatability and reproducibility in the definition of precision [433].
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A.3.6 Intra-fraction, inter-fraction, and inter-application variation

Definition A.3.6. Intra-fraction variation: Intra-fraction variation refers to the variation,
e.g. in dose or treated volume, within the time span of imaging, planning and delivering a
brachytherapy fraction [7].

Definition A.3.7. Inter-fraction variation: Inter-fraction variation refers to the variation,
e.g. in dose or treated volume, between different fractions of brachytherapy, typically from a
single imaging, planning and application session [7].

Definition A.3.8. Inter-application variation: Inter-application variation refers to the
variation, e.g. in dose or treated volume, between applicator insertions [7].

This is also illustrated in Figure 1.2. The former two may also be regarded as intra-application
variation as these occur within the same application. In literature, the used definitions of these
terms may vary, e.g. depending on the treatment schedule and the measurement method, leading to
ambiguities. For example, imaging may be performed directly before and after a treatment session,
such that the intra-fraction variation in between these sessions can be established. However, with
real-time imaging the variation occurring within a continuous period of irradiation solely may also
be considered as intra-fraction variation.

A.3.7 Establishing models for estimating the effect of dosimetric uncertainty
The impact of dosimetric changes on the clinical outcome due to different types of uncertainty has
been researched in several works for radiotherapy [35, 438–440], and brachytherapy [38]. In this
subsection, some basic models to predict a clinical outcome from a prescribed dose without
uncertainty are described. As to encourage readers to reproduce the figures, MATLAB (MATLAB
R2020a, MathWorks, Natick, MA, USA) scripts are provided.

It was decided to use the logistic TCP model as described in Eq. 1.9 to estimate the impact of
dosimetric differences on local control, based on the work by Nesvacil et al. [38]. A MATLAB code
shown in Script A.1.2 is used for generating the equieffective dose - local control relationship, i.e.
the effect of the D90 EQD2α/β=10 of the high-risk clinical target volume on the TCP. The
parameters used to generate Figure A.1a, γ50 = 0.47 and D50 = 36.0 Gy, were obtained from
clinical data for image guided cervix cancer brachytherapy as described in the study by Nesvacil et
al. [38]. In this work, it was assumed that the treatment schedule consists of 25 EBRT fractions of
1.8 Gy, and four BT fractions of varying prescribed dose. Considering dose uniformity, the
EQD2eq,α/β=10 derived from the BEDeq in Eq. A.1, could as well be used for generating a fit with
the clinical data, but then with manually tweaked parameters γ50 = 0.48 and D50 = 39.4 Gy.

In order to model the impact of dosimetric differences on the NTCP of three organs at risk during
cervical cancer brachytherapy treatment, Nesvacil et al. used the logistic model for generating the
equieffective dose - tissue morbidity relationship, i.e. the effect of the D2cm3 EQD2α/β=3 of an
organ at risk on the NTCP [38]. Their results, shown in Figure A.1b, were reproduced with
MATLAB Script A.1.3 and parameters γ50 = 2.0 and D50 = 110.0 Gy (or γ50 = 2.05 and D50 =
118.0 Gy for EQD2eq,α/β=3). The International Atomic Energy Agency (IAEA) considered a
similar model to investigate the impact of uncertainties on simulated biological effects or outcome
[35]. However, in these models it is assumed that a uniform dose is applied to the (partial) volume
of the tumour or organ, whereas the dose distribution in brachytherapy is heterogeneous, and that
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Figure A.1: Simulation of the TCP and NTCP as a function of the equieffective dose via a logistic model
(Eq. 1.9), as previously performed by Nesvacil et al. [38]. The MATLAB script for generating this figure is
given in Script A.1.2.
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(a) Cumulative DVH of the bladder.
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(b) Cumulative DVH of the rectum.

Figure A.2: Typical cumulative dose volume histograms of two organs at risk involved in cervical cancer
brachytherapy, attained from a logistic (sigmoid curve) fit through sample dose-volume data pairs. The
MATLAB script for generating this figure is given in Script A.1.4.

the irradiated tissue is homogeneous. The equivalent BED model, BEDeq, may be used to
incorporate the effect of the brachytherapy dose gradient, but may require investigation of the
organisational or functional structure of OAR tissue to determine the volume of integration [397].

To illustrate the effect of dose non-uniformity, the LKB-model (Eq. A.9 and A.14), or the
EUD-formulation (Eq. A.19), may be used. Data pairs, {Di, Vi}, of a cumulative DVH of a
bladder were generated for a typical simulated dose-volume relation and a smooth
sigmoidal-shaped function is fitted through these data points (Figure A.2a), see MATLAB Script
A.1.4. The data are converted into a differential DVH, as described by Gay and Niemierko [441],
and the effective volume Veff is calculated. Using the effective volume, a NTCP of 8.2% was
computed, via Eq. A.9, and using the parameters for the estimation of bladder tissue complication
probability at fractions of 1.8 - 2.0 Gy by Burman et al. [135, 442]. This corresponds to a dose of
67.2 Gy in the NTCP-EQD2 relation plotted in Figure A.3a. Conventionally, when not accounting
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Figure A.3: Simulation of the NTCP as a function of the equieffective dose via the Lyman equation (Eq.
A.9), and the point marking the NTCP for the effective volume (Eq. A.14) after KB reduction. The MATLAB
script for generating this figure is given in Script A.1.4.

for the nonuniform dose distribution, one would likely take the average dose of the DVH in
Figure A.2a, D(50%), which is 67.1 Gy, and corresponds to a NTCP of 8.0%, which is similar to
the number found using the KB reduction scheme7. However, the larger the deviation of n from
unity, where the equivalent uniform dose becomes the mean dose, and the more heterogeneously
distributed the DVH becomes, the larger the inaccuracy. This is illustrated using the rectum as an
example, which has n = 0.12 opposed to n = 0.5 for the bladder [135], and the sample DVH in
Figure A.2b. This results in a NTCP of 0.25% with the effective volume computation, whereas
taking the mean dose, D(50%) = 40.8 Gy, would result in a NTCP of 6.4 ·10−2 % (Figure A.3b).
Therefore, one must be aware of the inaccuracies in using the models assuming dose uniformity.

A problem arises however when one desires to evaluate the impact of uncertainty in the dose
per fraction of brachytherapy on the NTCP using an aforementioned DVH reduction scheme as
expressing the total DVH as a function of the BT dose per fraction is complicated. An alternative
approach is to manipulate a DVH curve at specific portions or its parameters based on uncertainty
distributions, see for example Moiseenko et al. [440], and compute the impact of the distribution
parameters on the NTCP after DVH reduction. However, it would still be difficult to relate these
distribution parameters to uncertainty in BT fractions. In this thesis, hence it is opted for using the
logistic NTCP and TCP model for illustration purposes as used in previous works, acknowledging
that its accuracy is limited and that its outcomes must be carefully evaluated.

7Some studies in other types of cancer treatment have shown that the mean dose is able to predict the incidence of
complications [443], which supports this practice.
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A.4 Literature review on inter and intra-fraction geometric uncertainty

A.4.1 Inter-fraction uncertainty
Five studies describing inter-fraction volumetric changes and five studies describing positional changes of one or more OARs were identified.
Table A.1 summarises the findings of these studies.

Table A.1: Overview of inter-fraction geometric uncertainty in cervical cancer BT literature

Volumetric change

Ref. N Modality Imag. Applic. Time
frame

Method Protocol Corr. Structure Statistic Begin End Change

[198] 44 HDR
(fx = 2)

CT TO Weekly
(2 app.)

Manual
contour
differences

Foley
catheter

- Bladder Mean
(±SD)

84.1 cm3 78.2 cm3 +30.6
(±38.1) cm3

Rectum Mean
(±SD)

43.2 cm3 44.5 cm3 +9.2
(±7.8) cm3

[145] 27 HDR
(fx = 2)

MR TR Weekly
(2 app.)

Manual
contour
differences

Foley
catheter

- Bladder Ind. Pat. - - N.D.

Bowel
preparation

Rectum Ind. Pat. - - N.D.

Sigmoid Ind. Pat. - - N.D.

[210] 43 PDR
(3 days)

MR IU Daily
(3 app.)

Manual
contour
differences

Bladder
catheter

- Bladder Mean - - N.D.

Dietary
requirements

Rectum Mean 53.0 cm3 65.0 cm3

57.1 cm3
N.D.**

[68] 85 HDR
(fx = 2)

CT TR/TO Weekly
(2 app.)

Manual
contour
differences

Foley
catheter

- Bladder Median - - +11 cm3 (N:35%)
−7 cm3 (N:61%)

Rectum Median - - +8.5 cm3 (N:49%)
−7 cm3 (N:46%)

Sigmoid Median - - +4 cm3 (N:31%)
−2cm3 (N:64%)

[126] 11 HDR
(fx = 3)

CT TR (11)
VC (2)

1-12 d.
(3 app.)

Manual
contour
differences

Void
prior to
BT

BV -
Dur.**

Bladder CVmean - - 44.1 %

Rectum CVmean - - 23.3 %
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Table A.1: (continued)

Positional change

Ref. N Modality Imag. Applic. Time
frame

Method Protocol Corr. Structure Statistic A-P S-I R-L Total

[222] 7 HDR
(fx = 4)

CT/MR TR ?
(2 app.)

RIR Spasmolytic
agent

- Bladder
2cm3

Mean
(±SD)

- 0.1 (±1.1)
cm

- 1.1 (±0.6)
cm

Rectum
2cm3

Mean
(±SD)

- 0.2 (±1.7)
cm

- 1.6 (±1.3)
cm

Sigmoid
2cm3

Mean
(±SD)

- 1.1 (±1.2)
cm

- 2.0 (±1.6)
cm

[223] 10 HDR
(fx = 5)

CT/MR TR ?
(5 app.)

RIR
DIR

Foley
catheter

- Bladder
RIR /
DIR

Mean MDA
(±SD)

- - - 4.2 (±3.9)
mm /
3.0 (±3.1)
mm

Rectum
RIR /
DIR

Mean MDA
(±SD)

- - - 3.7 (±3.5)
mm /
2.5 (±2.8)
mm

Sigmoid
RIR /
DIR

Mean MDA
(±SD)

- - - 7.2 (±7.4)
mm /
5.4 (±6.8)
mm

[444] 10 HDR
(fx = 5)

CT TR (4)
TO (6)

?
(5 app.)

Axial
CT diff.

Bladder
filling

- Bladder
PW

Range
PWD

- - - [-0.85, 0.4]
cm

[141] 15 HDR
(fx = 2)

X-ray TO ?
(2 app.)

Lateral
film diff.

None - Rectum
AW

Median
ARW

- - - -10.5 mm

[445] 34 HDR
(fx = 5)

CT TR (17)
TO (5)
TC (2)

?
(5 app.)

Axial
CT diff.

Foley
catheter

- Sigmoid
PP

CVmean - - - 40%

Denotations/abbreviations: ** = significance found. N.D.: No summarised data presented.

• Study aspects: N = number of patients; Imag. = imaging modality; Corr. = correlations; A-P = anterior-posterior; SI = superior-inferior; R-L = lateral.
• Modality: fx = fractions.
• Applicator: TR = tandem/ring; TO = tandem/ovoid; TC = tandem/cylinder; IU = intrauterine line; VC = vaginal cylinder.
• Time frame: app. = applications.
• Method: RIR = rigid registration; DIR = deformable image registration.
• Correlations: BV - Dur. = bladder volume - treatment duration.
• Structure: PW = posterior wall; AW = anterior wall; PP = proximal point.
• Statistic: Ind. Pat. = individual patients; CV = coefficient of variation; MDA = mean distance to agreement; PWD = posterior wall distance to applicator;

ARW = anterior rectal wall distance to applicator.
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A.4.2 Intra-fraction uncertainty
Three studies describing intra-fraction volumetric changes and four studies describing positional changes of one or more OARs were
identified. Table A.2 summarises the findings of these studies.

Table A.2: Overview of intra-fraction geometric uncertainty in cervical cancer BT literature

Volumetric change

Ref. N Modality Imag. Applic. Time
frame

Method Protocol Corr. Structure Statistic Begin End Change

[202] 50 HDR
(fx = 4)

CT/MR ? 2 h. Manual
contour
differences

Bladder
filling

- Bladder Mean
(±SD)

- - 15.7
(±13.8) cm3

Rectum Mean
(±SD)

- - 7.8
(±6.7) cm3

Sigmoid Mean
(±SD)

- - 14.9
(±13.3) cm3

[214] 21 HDR
(fx = 2)

MR TR 4.8 h. Manual
contour
differences

Bladder
catheter

Time -
Mov.

Bladder Mean
(±SD)

60 (±33)
cm3

52 (±10)
cm3

|22.5|
(±24.7) cm3

Time -
Mov.

Rectum Mean
(±SD)

48 (±39)
cm3

56 (±42)
cm3

|20.0|
(±20.8) cm3

Time -
Mov.

Sigmoid Mean
(±SD)

130
(±113)
cm3

156
(±131)
cm3

|57.9|
(±56.9) cm3

[204] 15 HDR
(fx =
3-5)

CT TO 43 m. Manual
contour
differences

Bladder
filling

- Bladder Mean
(±SD)

135.1
(±87.2)
cm3

214.8
(±161.1)
cm3

65.1
(±84.3) cm3

**

Rectum Mean
(±SD)

125
(±72.3)
cm3

113.7
(±61.8)
cm3

-5.9
(±19.0) cm3

**

Positional change

Ref. N Modality Imag. Applic. Time
frame

Method Protocol Corr. Structure Statistic A-P S-I R-L Total

[201] 19 PDR (3
days)

MR/CT VM ? Manual
contour
differences

Bladder
cath.

- Bladder
∩ V10Gy

Mean
(±SD)

- - - -1.1
(±4.0) cm3

Enema Rectum
∩ V10Gy

Mean
(±SD)

- - - 2.1
(±3.3) cm3

Bowel ∩
V10Gy

Mean
(±SD)

- - - -0.3
(±0.9) cm3
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Table A.2: (continued)

[204] 15 HDR
(fx =
3-5)

CT TO 43 m. DIR Bladder
filling

Time -
DVF

Bladder Mean
(±SD)

-2.3
(±2.9) mm

2.8 (±5.1)
mm

-0.4
(±1.3)
mm

-

Rectum Mean
(±SD)

-1.5
(±2.4) mm

0.4 (±3.1)
mm

0.1 (±1.1)
mm

-

[190] 14 PDR
(?)

- TR ? Rectal
diode

Enema - Rectal
wall

SD (±σ) 0.9 (±0.6)
mm

1.2 (±0.7)
mm

1.2 (±0.8)
mm

-

[446] 10 HDR
(fx =
1-3)

X-ray TO ? Lateral
film
differences

None - Bladder Mean - - - 2.5 mm

Denotations/abbreviations: ** = significance found. N.D.: No summarised data presented.

• Study aspects: N = number of patients; Imag. = imaging modality; Corr. = correlations; A-P = anterior-posterior; SI = superior-inferior; R-L = lateral.
• Modality: fx = fractions.
• Applicator: TR = tandem/ring; TO = tandem/ovoid; VM = vaginal mould.
• Method: DIR = deformable image registration.
• Correlations: Time - Mov. = treatment time - OAR movement; Time - DVF. = treatment time - mean deformation vector field distance.

A.4.3 Bladder distension
In order to illustrate the effects that bladder distension has on the movement of OARs, the results of five studies have been summarised
in Table A.3. As can be seen, lateral displacements of all OARs are generally limited, whereas the bladder may push the sigmoid away
in the superior and posterior directions. The rectum is likely less affected, but may move superiorly according to the presented findings.

Table A.3: Overview of BT literature investigating the influence of bladder distension

Positional change

Ref. N Modality Imag. Applic. Method Protocol Corr. Structure Statistic A-P S-I R-L Total

[200] 21 HDR
(fx =
2-3)

CT TR Manual
contour
differences

Fill bladder with
saline: 50 - 100
cm3

- Bladder
2cm3

COV
mean (±SD)
50 cm3 /
100 cm3

0.6 (±5.4)
mm/
1.3 (±6.3)
mm

0.2 (±2.4)
mm/
1.1 (±4.7)
mm

2.5 (±4.7)
mm/
1.0 (±2.6)
mm

-

[447] 40 HDR
(fx = 4)

CT TO Manual
contour
differences

Fill bladder with
saline: 100 cm3

- Bladder
PW

Mean
dist.
0 cm3 /
100 cm3

0.19 cm /
0.26 cm*

-0.62 cm /
-0.63 cm

0.04 cm /
0.08 cm

-

[448] 20 HDR
(fx = 3)

CT VC Sagittal
CT
differences

Drink water: 950
cm3

- Bowel PP Median
dist.
empty /
full

- - - 5.8 / 11.6*
mm
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Table A.3: (continued)

[449] 12 HDR
(fx =
2-5)

CT VC Sagittal
CT
differences

Fill bladder with
water: 180 cm3

- Bowel PP Mean
dist.
empty /
full

- - - 0.72 / 0.92
cm

Denotations/abbreviations: ** = significance found. N.D.: No summarised data presented.

• Study aspects: N = number of patients; Imag. = imaging modality; Corr. = correlations; A-P = anterior-posterior; SI = superior-inferior; R-L = lateral.
• Modality: fx = fractions.
• Applicator: TR = tandem/ring; TO = tandem/ovoid; VC = vaginal cylinder.
• Structure: PW = posterior wall; PP = proximal point.
• Statistic: COV = centre of volume.
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A.5 Description of robust motion planning algorithm classes
In this Appendix, brief descriptions of robust motion planner classes are given, that were
distinguished in a previous literature review [240].

Path planning classes

Approximate cell decomposition
In approximate cell decomposition the free configuration space is represented with a set of non-
overlapping cells with pre-specified shapes [293]. Rather than in exact cell decomposition, Cfree
is (conservatively) approximated. The decomposition of the workspace may be regular, such as a
fixed-size grid, or adaptive, such as quadtree decomposition. Uncertainty of the environment is
usually incorporated by indicating the probability of occupation within a cell, known as occupancy
mapping [450]. In the second step, a non-directed connectivity graph is created which captures
the adjacency between cells. This can then be searched by a graph search algorithm to find the
least-cost path.

Potential-based methods
In potential-based methods, a potential field U consisting of attractive potential towards the goal
region and repulsive potential to steer the system from obstacle regions is imposed over the free
space Cfree [451]. A force field, which is the gradient of the potential function F(q) = −∇U(q),
drives the system from start to goal such that an optimal path is found. However, this gradient
descent may converge to local minima of the potential function. For that reason: (i) a potential
field may be defined that is free of local minima and contains only one minimum located at the goal
location, known as a navigation function [239], or (ii) a potential field method may be combined
with a different MP approach in a so-called hybrid approach. Uncertainty may be incorporated in
potential-based methods by directly assigning the strength of repulsive potential to the probability
of collision, or by bounding the collision probability and assuring that the gradient steers the system
from these bounds [244].

Topology-based methods
Concepts from topology have been used extensively in motion planning, such as retraction and
cell decomposition. In these topology-based methods, topological information of the free space is
extracted and embedded in a topological map. In an uncertain environment, represented by an
occupancy map, topological information may be used to find the homotopy class which is most
robust to uncertainty. This concept is known as persistent homology, and can be used to establish
classes and paths belonging to these classes that are ‘most safe’ [452]. After reducing the workspace
to a discrete representation, least cost paths may then be sought with a graph search algorithm.

Probabilistic roadmap
A probabilistic roadmap, commonly abbreviated as PRM, is a multi-query approach where a
roadmap is constructed from nodes that are sampled in the configuration space [352]. In the
learning phase, a sampled configuration qsamp, which may be uniformly or non-uniformly sampled,
is added to the roadmap’s list of vertices if it is feasible. Nodes in the existing list of vertices are
sought which may be connected to this sample, usually the nearest neighbour qnear is sought
based on a Euclidean distance function. In the last step of the learning phase, if feasible, a
connection is established between qsamp and qnear and added to the list of edges. In the query
phase, a least-cost path is sought by adding the start and goal configurations to the roadmap and
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using a graph search algorithm. Environmental uncertainty may for example be incorporated by
adjusting the sampling distribution or by assigning the collision probabilities as weights in the
graph.

Rapidly-exploring random trees
A rapidly-exploring random tree (RRT), belonging to the more general method rapidly-exploring
dense trees (RDTs), is a single-query method in which the configuration space is explored implicitly
with a tree-like structure [239]. A sample is drawn from the configuration space, qsamp, and when
feasible a nearest neighbour qnear is sought in the already established tree. A new node qnew is
added along the edge connecting these two samples at a distance from the nearest node or at a
feasible location on this edge, which is again followed by feasibility checks of both the resulting edge
and node. The goal configuration may be included as a sampled node periodically to check whether
a feasible connection between start and goal configuration is possible. An interesting approach for
RRTs to account for environmental uncertainty is that of computing shadows, which are geometric
equivalents of confidence intervals over uncertain obstacle faces [453].

Trajectory planning classes
Stochastic continuous-time optimisation
In trajectory optimisation approaches a naive, possibly infeasible, solution is locally optimised in
accordance with a cost function C(x̃(t)) such that it obeys constraints. Typically, the problem or
trajectory x̃(t) is discretised in time. However, a finely discretised trajectory is required in order
to assure feasibility, and it may not be possible to handle problems with many (non-differentiable)
constraints [249, 390]. Continuous-time optimisation approaches can be computationally efficient
and assure smooth trajectories. For this purpose, the trajectory is commonly represented using
continuous-time interpolation methods, such as splines, or non-parametric representations, such as
Gaussian processes. In order to incorporate uncertainty of the environment, planning typically is
performed on occupancy maps, for which Hilbert maps are a viable continuous alternative [391, 454].

Stochastic optimal control
The problem of optimising the motion of a kinodynamic system through selecting a set of input
controls, also known as an optimal control problem, is conventionally numerically solved using
mathematical programming. This may involve the trajectory optimisation approaches such as
discussed under the previous heading, whereas recent work focuses as well on numerical optimal
control techniques over a finite horizon to make computations more tractable. In Model Predictive
Control (MPC) or Receding Horizon Control (RHC), an open-loop control policy is designed over a
finite time receding horizon and executed until the goal region is reached [241]. After execution of
a policy, a filter is used to estimate the state and used to update the control problem in closed-loop
fashion. Linear-Quadratic- Gaussian (LQG) control is another type of optimal control approach,
but where a state estimator is combined with a Linear-Quadratic Regulator (LQR) and optisation
is performed over a fixed size time window [455]. Uncertainty in these approaches is generally
incorporated in the form of chance constraints, i.e. restricting the feasibility constraints to hold up
to a certain probability limit.

Backward stochastic reachability
The optimal control problem may also be solved by introducing an expected cost-to-go or value
function, known as Bellman’s optimality equation, which can be iterated back in time to establish
reachable sets from an initial state. The optimal control policy that maximises the cost is then
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found using dynamic programming (DP). In order to include uncertainty of the environment in
this problem, a so-called Discrete-Time Stochastic Hybrid System (DTSHS) is considered, and a
Markov policy may be sought that maximises the probability of reaching a target set and avoiding
the obstacle set, which is represented as a random closed set [456]. Since dynamic programming is
computationally intensive, numerical methods are usually used to solve this problem.

Reachability tree
In reachability tree methods, the system is constrained to act according to motion primitives that
are obtained by applying a control action from a discretised set of actions, which combine to
form a lattice-like structure from an initial state. A graph search algorithm may then be used to
find an optimal trajectory. This concept has also been extended in order to deal with uncertain
environments. One example approach in this category plans in belief space, where a belief describes
knowledge of the state distribution with a mean and covariance [457], which is a popular approach
in motion planning under configuration knowledge uncertainty. The current belief state is expanded
by performing all possible control actions and calculating the success probability, i.e. the probability
of non-collision, of the resulting list of belief states. The lowest-cost trajectory to the goal is then
established from the tree using a heuristic search algorithm.

Incremental sampling with analytic chance constraints
In incremental sampling-based algorithms, such as RRTs, a state is sampled from the environment
xsamp and the nearest node in the existing tree xnear is identified for expansion using a distance or
reachability-based metric. From this nearest node, the tree is expanded towards the sampled node by
selecting the control input that brings the system in proximity of this sampled node. The resulting
state xnew, found by simulating the kinodynamics of the system, is added to the tree if this is in
proximity to the sampled state and if it is feasible. In order to include environmental uncertainty,
incremental sampling approaches have mainly focused on one of two techniques: chance constraints
and particle expansion. The former is an analytical, slightly conservative approach usually involving
the use of Boole’s inequality to bound the probability of collision instead of having to evaluate a
multivariate probability integral. However, such an approach is often bound to severe restrictions
such as Gaussian uncertainty, convex constraints and linear dynamics.

Incremental sampling with particle expansion
A technique which may be used to approximate the probability integral without any conservatism
is that of particle expansion, which uses particles to represent possible realisations of trajectories
under uncertainty [458]. Clustering is used to combine these realisations back to nodes in the
incremental sampling approach.

Virtual potential field
A navigation policy may be directly generated from a combined probability P (x) and potential
field V (x), in an approach called gamma harmonic potential field planning [459]. This probability
field P (x) is a type of globally defined cost map, which may be based on collision probability,
traversability, etc. The boundary conditions chosen determine how obstacles are avoided and are
critical to generate a navigation potential, such that local minima are averted.

Warm-started trajectory optimisation
Warm-starting a trajectory optimisation approach aims at using a generated feasible solution from
an inexpensive motion planning approach, such as: (i) to avoid getting ‘trapped’ in local minima,
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(ii) to minimise the total computation time by offloading time to an exploration phase, and (iii)
to allow for alleviating constraints from the optimisation problem [460]. Especially when multiple
homotopy classes are present, warm-starting through an explorative planner may allow for increasing
the likelihood that a globally optimum trajectory is found. An example for robust optimisation is
shown in the work by González-Arribas and colleagues where randomised Legendre polynomials are
used in an initialisation step to allow a globally optimal trajectory to be found during trajectory
optimisation [461].

Plan and transform
Trajectories may simply be generated from paths by transforming kinematically infeasible sections
in a decoupled approach such that these satisfy differential constraints of the system [239]. Common
interpolation methods -such as clothoids, Dubins’ curves, β-splines- may be used for this purpose,
but also other local planning methods may compute a trajectory segment. The correctness of the
solution depends on the initial solution provided by the path planner, and when no solution can be
found with the plan and transform approach replanning by the path planner may be required.
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A.6 Methodological problems and inaccuracies in QFD

In this Appendix, a small discussion of methodological problems an inaccuracies in QFD is given,
mainly based on the article by van de Poel [322].

(B) Prioritisation of user requirements
Many methods have been developed for the purpose of defining relative importance ratings
(RIRs), relying on different input data scales, assumptions on the crispness of users’ answers and
hierarchies of users. Some methods require promotion from a nominal or ordinal scale towards a
ratio one, which may be methodologically inappropriate [318]. Another problem is a high
complexity of many prioritisation techniques for the respondent, such as a pairwise comparison
technique, which may lead to inconsistencies in answers. Moreover, many approaches such as
preference ordering techniques require the translation of individual preference rankings into a
collective ordering, which may violate conditions of Arrow’s impossibility theorem [322].

In a point direct scoring method, if the resulting distribution of the relative importance rating is
unimodal and assuming that the responses on this ordinal scale can be treated as interval data, the
mean value can simply be extracted to establish the individual RIRs. In other cases the results may
be re-investigated since these may indicate that different market segments were confronted [305].
Although one may correctly argue that a point direct scoring method lacks a common reference
or starting level [318], promotes an ordinal scale to a cardinal one such that it violates Arrowian
principles [318, 462], and that a preference ordering may be more natural to the respondent [463],
this method is selected for its simplicity. The relative importance weights can be established via:

gi =
K∑
k=1

gik/K (A.22)

The user requirements must be independent from each other [322], but if this is not the case, one
may try and incorporate correlations among these importance weights [464]:

gnorm
i =

(∑I
m=1 βim

)
gi∑I

i=1

(∑I
m=1 βim

)
gi

(A.23)

Here, βim denotes the correlation between the ith and mth user requirements.

(C) Competitive analysis and final importance ratings
Both the wording of the questions and the answer possibilities in Kano’s model have been
criticised frequently [465]. First, provision-based questions were suggested instead of
performance-based questions to increase the reliability of answers [341], but concrete evidence is
lacking to conclude whether provision-based questionnaires indeed have an increased reliability
over performance-based methods. The five-level answer scale is moreover often falsely interpreted
as a five-point ordinal scale by both respondents as well as researchers, and contains ambiguities
and language association problems for which many modifications have been proposed [465].
Furthermore, several adaptations to the original evaluation table have been suggested [465].
Moreover, the questionnaire becomes lengthy and cumbersome in the case when many attributes
are reviewed [347]. For this reason, the validity of alternative approaches such as three-point
questionnaires, direct classification and dual-importance grid has been investigated [348].
Classification through direct questions seems to be a viable alternative to avoid having to use the
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functional and dysfunctional question format [341, 348], although this requires a correct
understanding of Kano’s model by the respondents. Evidence on the reliability of this direct
approach as a substitute for a five-level scale shows mixed results [348, 466, 467].

Many variants have been proposed to integrate Kano’s model in QFD. Tan and Shen proposed to
modify the improvement ratio IR0,i that is derived from the competitive analysis per user
requirement i and represents the ratio between target and current satisfaction: IR0,i = star,i/s0,i

[468]. As they argue that satisfaction s and performance p on a requirement may be related via a
parameter k that represents Kano’s category and constant c via: si = cpki , the improvement ratio
may then be adjusted to reflect Kano’s category according to: IRadj,i = (IR0,i)

k. Here, IRadj and
IR0 are the adjusted and original improvement ratios respectively, and k is equal to ‘2’, ‘1’ or
‘1/2’ for attractive, one-dimensional or basic requirements. However, a common critique is that
these parameters are arbitrary and subjective [318, 469]. Moreover, the use of the mode statistic
for classifying an attribute into a fixed Kano category with associated weight based on
respondents’ answers may not be appropriate [327]. For that reason, satisfaction and
dissatisfaction indices were coined which would better preserve information on the distribution of
answers and would indicate how the fulfillment or provision of a requirement would influence user
satisfaction or dissatisfaction [327]:

SIi =
Ai +Oi

Ai +Oi +Bi + Ii
; DIi = − Bi +Oi

Ai +Oi +Bi + Ii
(A.24)

Here, SIi and DIi denote the satisfaction and dissatisfaction indices, and the other parameters are
the counts of the Kano attributes. Usually these indices are plotted on a two-dimensional
(|DI|, |SI|)-plot where the quadrants indicate the Kano category [327]. Tontini directly integrated
these indices in QFD to compute the relative importance of user requirements:
di = max (|SIi|, |DIi|) [323]. However, this implies that two requirements from different Kano
categories, but with the same maximum coefficient value, receive the same importance which
seems odd. Therefore, Chaudha and colleagues coupled these indices to the improvement ratio by
Tan and Shen via [324]:

IRadj,i = (1 + max (|SIi|, |DIi|))k · IR0,i (A.25)

The parameter k is chosen here as ‘0’, ‘0.5’, ‘1’, and ‘1.5’ for indifferent, basic, one-dimensional
and attractive attributes respectively. These weights are arbitrary and may lead to a wrong focus
[469]. For example the ‘0’ score implies that one does not have to pay attention on improving
the performance of indifferent requirements, which may become attractive attributes over time
according to Kano’s original theory. Moreover, the computation of an improvement ratio based on
competitive analysis may not make sense in the case of novel products and are often subjective. An
interesting approach to calculate the transformation function between satisfaction and fulfillment of
the user requirement based on satisfaction and dissatisfaction indices has been developed by Wang
and Ji [332, 349], which deviates from other approaches by not calculating the improvement ratio
from a competitive analysis and instead using competitors’ product performance as a constraint in
a mathematical program. In this model it is assumed that the overall satisfaction of the user can
be modelled via the following linear additive value function [332, 349]:

S′ =

I∑
i=1

gisi(yi) (A.26)

Observing Figure 5.3a, one may establish relations between satisfaction and the fulfillment of user
requirements based on parameters a and b: si(yi) = aφ(yi) + b. These parameters are derived by
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assuming that the fulfillment level is a continuous variable ranging from 0 to 1, yi ∈ [0, 1], and that
φ(yi) is a linear or exponential function depending on the Kano category. The following satisfaction
- user requirement relations are proposed by Wang and Ji [349]:

si(yi) = SIi−DIi
e−1 eyi − SIi−eDIi

e−1 (attractive attribute)

si(yi) = (SIi −DIi)yi +DIi (one-dimensional attribute)

si(yi) = − e(SIi−DIi)
e−1 e−yi + eSIi−DIi

e−1 (basic attribute)

(A.27)

No such relation is proposed for indifferent requirements, which are therefore ignored in this
analysis. Note that in the model in Eq. A.27, Kano’s category is determined based on the statistic
mode of the responses, which has been criticised previously [327]. Additionally, these satisfaction
functions are monotonically increasing with increasing attainment, which may not be the actual
case. Furthermore, one may question whether fulfillment of a user requirement is always a
continuous variable and hence satisfaction can be modelled as a continuous function; i.e. many
user requirements may be described better in a provision-based formulation rather than a
performance-based formulation. Even so, this model is able to deal with discrete values of yi
without loss of accuracy. Lastly, although the idea of neglecting the competitive analysis is
attractive, especially for novel products, simultaneously it loses the ability of setting ‘company
considerations’ to discriminate between user requirements, such as sales points or target values
[322]. Due to its simplicity and direct, i.e. explicit, association with users’ satisfaction via Eq.
A.26, and Kano’s model, this model is particularly useful.

(F) Relationship matrix
Several considerations for the relationship matrix have been discussed in the sections below and
are based on the paper by van de Poel [322].

Negative and non-constant relationship coefficients
Although traditionally for a certain technical parameter a direction is specified which is said to
mark improvement satisfaction of a user requirement for increasing attainment, this has been
criticised as it may conflict with improvement of other user requirements [322]. Indeed, whereas
the weight of a car negatively affects fuel economy it may positively correlate to safety of the
passengers [322]. Moreover, as an undesirable consequence of normalisation some of the relations
may become negative [464]. One may simply solve these problems by only taking the absolute of
the correlation values, but this rules out finding an optimal solution from the QFD and loses
meaning of the outcome [322]. In some instances, through proper selection of negative/positive
formulations or omitting technical attributes one may be able to find non-conflicting satisfaction
functions, but this is not possible in all cases nor desirable. Another option is to allow for negative
correlations, but this may divert the company from investing in possibly important HOWs that
are levelled out and therefore entails additional analyses [470]. This is in many cases still the
preferred approach. Additionally, rij is implicitly assumed to be constant for all levels of ej
whereas van de Poel indicates that this does not necessarily have to be the case and is not
convenient [322]. An interesting solution may be to make rij dependent on the level of ej , which
has been previously incorporated in QFD [470]. The obvious problem is that establishing these
additional magnitude-dependent relations may be a rather tedious process and in the general case
impossible.

Normalisation of relationships and correlations
The importance of normalisation of the coefficients rij in QFD has been distinguished to avoid
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artificial distortion of the outcome prioritisation of technical attributes [471]. The commonly used
Wasserman’s normalisation builds upon Lyman’s normalisation and takes into account
inter-correlation between the engineering characteristics via [471]:

rnorm
ij =

∑J
l=1 ril · γlj∑J

j=1

∑J
l=1 ril · γjl

(A.28)

Here, γlj denotes the inter-correlation between the lth and jth engineering characteristic, and γlj =
γjl. The model assumes that user requirements are independent. Interestingly, this computation
may introduce artefacts such as introducing a relation between a WHAT and HOW when previously
the relation intensity was null [464]. To ensure that WHATs and HOWs with a void relation remain
orthogonal, i.e. uncorrelated, Chen and Chen therefore propose the following normalisation [464]:

rnorm’
ij =

(∑J
l=1 γlj

)
rij∑J

j=1

(∑J
l=1 γlj

)
rij

(A.29)

In this formulation, one may observe that inter-correlation coefficients may strengthen or lessen
the correlation coefficient rij and not involving other relations. However, this assumes that all
inter-correlation coefficients are of equal importance and are not affected by the intensity of the
corresponding relation between user requirement and technical parameter. Whereas this is
possibly inaccurate, Eq. A.29 avoids the methodological problems of the Wasserman correlation
and is therefore the preferred option.

Scaling of relationship coefficients and rank reversal
The main issues with the HOQ have to do with translating the importance weights of user
requirements into prioritising technical attributes via a method that is known as the independent
scoring method (ISM) [322]:

wj =
I∑
i=1

dirij (A.30)

Here, wj is the weight given to the prioritisation of the jth technical parameter, which is a linear
additive function of the importance of user requirements di and the (normalised) correlation
coefficients rij or rnorm

ij from Eq. A.28. The overall satisfaction may then be found via (combining
Eq. 5.4, 5.6, and 5.7) [322]:

S =
I∑
i=1

diyi =
I∑
i=1

J∑
j=1

dir
norm
ij ej =

J∑
j=1

wjej (A.31)

The technical attributes with the highest weights wj would therefore increase satisfaction the most at
constant effort, and should therefore possibly receive most of the focus in the product development.
The first step in this method is converting the ordinal scale of the correlation coefficients to a set
of weights which is argued to be a ratio scale [322, 472]. The latter implies, roughly put, that
one may state that a relation with weight ‘9’ is three times as correlated one with weight ‘3’.
However, Olewnik and Lewis have for example shown that the choice of the ratio scale, even when
random or unreasonable scores are used, does not influence the prioritisation of technical attributes
[314, 473]. One may interpret these findings in the sense that the outcomes of QFD are robust to
the scale used, and perhaps argue that the arbitrariness of these weights from translating ordinal
information to a ratio one is not critical for the methodological soundness [472]. In this light, it is
commonly recommended that the validity of the outcome is checked by selecting different weights
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and performing a sanity check [304]. However, more fundamentally, it may indicate that the ratio
scale lacks the ability to model relationships between customer and technical attributes despite
falsely giving such an impression [314]. It may seem that if one acknowledges that the resulting
quantitative outcomes, i.e. weights of the customer requirements, are not the absolute truth and
are susceptible to changes, one may be able to still draw some qualitative conclusions such as the
ordering of the technical attributes. However, as will be illustrated, this is not possible with the
general assumptions made in QFD. Another option is to abandon numerical relations altogether
and instead define these on an ordinal scale level [335]. In the ordinal approach by Francheschini
et al. technical attributes are prioritised according to the function [335]:

w′′j = min
i∈Z1,I

(
max {neg(gi), r

′′
ij}
)

(A.32)

Here, gi and r′′ij are defined on an ordinal level scale and neg(·) is the negation operator [335].
Although this enables calculation of an importance ordering of the technical attributes, the resulting
weak ordering may be dissatisfying from the designer’s point of view as it does not indicate target
values. Moreover, the weights w′′j in Eq. A.32 -expressed on an ordinal scale- may be the same for
different ECs due to flattening effects [335]. In this case, one can refine the ordering by using the
following indicator function [335]:

Tj = dim (Wi | r′′ij > w′′j ) (A.33)

In this indicator function the technical attributes with a stronger relation to user requirements
receive a higher scoring of Tj , which are argued to be of greater importance. Note that this
implies that the discriminatory power of the ranking using this method is thereby limited by the
level of the ordinal scale, which in turn limits the amount of technical attributes that can be
included in analysis. The resulting ranking of HOWs cannot be directly used with target setting
approaches, for which another method is required (hybrid approach). Additionally, one may desire
to capture the inter-relations between the technical attributes, but this generally requires the
promotion of the ordinal scale to a cardinal one.

The main problem with the relationship matrix and its normalisation is the violation of the
condition ‘independence of irrelevant alternatives’ in Arrow’s impossibility theorem [322]. If one
was to add or remove a technical parameter, this may affect the ordering of two different technical
attributes, known as rank reversal. Partially this is caused by the promotion of ordinal
information to numerical information, and hence one suggestion has been to maintain an ordinal
scale level for the correlations [335], or possibly consider ratio information for measurements [462].
Van de Poel and colleagues however argue that both can not escape from Arrow’s Impossibility
Theorem [322, 462]. The effects of this theorem may be reduced by alleviating Eq. 5.6 [322], for
example by converting the multi-criteria problem to a single criterion problem or by establishing a
satisfaction relation for each individual user. However, to the best of the author’s knowledge, no
QFD approach has been developed that (partially) alleviate the consequences of Arrow’s theorem
in this manner. Rank reversal in QFD has also been observed without inclusion or exclusion of a
technical parameter due to normalisation [472]. As Raharjo argues, rank reversal due to
normalisation may not always be undesirable; contrarily, it may even be desirable by correcting for
the artificial distortion when no normalisation has been applied [472]. A set of guidelines was
proposed to whenever possible correct for rank reversal due to normalisation.

Establishing relationships for novel products or by inexperienced practitioners
A challenge in formulating the HOQ is the way of establishing relationships between user
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requirements and technical attributes in the case of incomplete or inaccurate information such as
in the early development process. Moreover, when the practitioner may be unfamiliar with either
the WHATs or HOWs, e.g. a marketeer is aware of the WHATs but not of the HOWs and for an
engineer vice versa, accurate assessment of the relationship matrix is difficult. Most of the
research in this field has focused on applying fuzzy logic to QFD models, capturing these
uncertain relationships in linguistic terms. One problem with this type of method is that this still
relies on arbitrary conversion of nominal or ordinal data to numeric membership functions and
violates Arrowian principles similar to general QFD approaches [322, 335]. For designers
inexperienced with fuzzy theory, including membership functions may further increase the
arbitrariness and subjectivity in the process. This similarly holds for related approaches such as
rough set based methods. Nevertheless, fuzzy logic does provide a means for the inexperienced
practitioner to assess the relationships between WHATs and HOWs in an understandable way. A
brief account of fuzzy set theory is given here, but the reader is invited to explore other literature
on this topic; e.g. see the work by Chen et al. or Chen and Weng for a general implementation of
fuzzy set theory in QFD [474, 475], and the work by Dursun and Karsak or Liu for a fuzzy
QFD-based selection method [307, 309].

A fuzzy set F̃ = (U,m) is a pairing of a set (known as universe of discourse) U , and membership
function m : U → [0, 1]. The grade of membership m(x), where x ∈ U , indicates therefore the degree
of belonging to the set. The membership function of fuzzy set F̃ is denoted as µF̃ , where m = µF̃ .
A fuzzy number is a special type of (convex, normalised) fuzzy set where the universe of discourse
is the real number line, i.e. x ∈ U ⊆ R, and where the membership function is a (segmentally)
continuous mapping to closed interval [0, 1]: F̃ = {[x, µF̃ (x)], x ∈ R}. A triangular fuzzy number
can be described by the triplet of parameters (l,m, u), where l ≤ m ≤ u, which are the supports of
the set M̃ and denote lower bound, mode, and upper bound respectively. The membership function
of a triangular fuzzy number is the following piecewise function:

µM̃ (x) =


1

m−lx−
l

m−l x ∈ [l,m]
1

m−ux−
u

m−u x ∈ [m,u]

0 otherwise

(A.34)

Triangular fuzzy numbers are widely used as these are both simple to handle and interpret. A
special type of triangular fuzzy number is that of a symmetric triangular fuzzy number, denoted by
T̃ (l, u), which has the following membership function [316]:

µT̃ (x) =

{
1− |x−(u+l)/2|

(u−l)/2 x ∈ [l, u]

0 otherwise
(A.35)

Both types of fuzzy numbers have been often used in fuzzy QFD, but any form of membership
function may be used. One important concept in fuzzy set theory is that of an α-cut, which is given
a fuzzy set F̃ on set U and confidence degree α ∈ [0, 1], defined as [476]:

F̃α = {x | F̃ (x) ≥ α} (A.36)

For example, the triangular fuzzy number and symmetrical triangular fuzzy number may be
characterised by the following α-cuts of the fuzzy sets:

M̃α = [(m− l)α+ l, (m− u)α+ u] (A.37)

S̃α = [(u− l)α/2 + l, (l − u)α/2 + u] (A.38)
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Figure A.4: Example of triangular membership functions of linguistic variables that can be used to express
the strength of the relations between WHATs and HOWs in fuzzy QFD.

As can be observed, the α-cut procedure results in sets with a lower and upper bounds under
confidence interval α. Extending this principle to QFD, in this brief account, the approach by Chen
and Weng is taken as an example [475]. Starting from Wassermann’s normalisation (Eq. A.28) -but
one may freely use the normalisation by Chen and Chen (Eq. A.29)- one can define the following
fuzzy numbers from their crisp counterparts:

R̃norm
ij =

∑J
l=1 R̃il · G̃lj∑J

j=1

∑J
l=1 R̃il · G̃lj

(A.39a)

R̃il = {[ril, µR̃il(ril)] | ril ∈ Ril} (A.39b)

G̃lj = {[γlj , µG̃lj (γlj)] | γlj ∈ Glj} (A.39c)

For example, one may convert the linguistic relations ‘strong’, ‘medium’, and ‘weak’ between
WHATs and HOWs to the triangular fuzzy numbers characterised by triplets (3,9,9), (1,3,9), and
(1,1,3) respectively (Figure A.4). Using the α-cut on these numbers defines the following sets
[475]:

(Ril)α = [(Ril)Lα, (Ril)Uα ] = [min
ril
{ril ∈ Ril | µR̃il(ril) ≥ α},max

Ril
{ril ∈ Ril | µR̃il(ril) ≥ α}] (A.40a)

(Glj)α = [(Glj)Lα, (Glj)Uα ] = [min
γlj
{γlj ∈ Glj | µG̃lj (γlj) ≥ α},max

γlj
{γlj ∈ Glj | µG̃lj (γlj) ≥ α}] (A.40b)

Here, superscripts L and U are used to denote the lower and upper bounds respectively. For example,
when considering that the fuzzy number R̃il is associated with linguistic variable ‘strong’ S̃ (see
Figure A.4), then it has the triangular membership function:

µS̃(ril) =

{
1
6ril −

1
2 ril ∈ [3, 9]

0 otherwise
(A.41)

The α-cuts of this membership function results in the following crisp set:

(Ril)α = [(Ril)Lα, (Ril)Uα ] = [6α+ 3, 9] (A.42)

In order to establish the fuzzy weighted average R̃norm
ij , the membership function is found based on

Zadeh’s extension principle [475]:



A. APPENDICES Page 301

µR̃norm
ij

(rnorm
ij ) = sup

ril,γlj

min

{
µR̃il(ril), µG̃lj (γlj) | r

norm
ij =

∑J
l=1 ril · γlj∑J

j=1

∑J
l=1 ril · γjl

}
(A.43)

In constructing this membership function µR̃norm
ij

, one has several options. For example, one may

use α-cuts to determine: (i) extreme bounds (Rnorm
ij )Lα and (Rnorm

ij )Uα , (ii) more accurate bounds

m(Rnorm
ij )Lα and m(Rnorm

ij )Uα , or (iii) corrected bounds (∗Rnorm
ij )Lα and (∗Rnorm

ij )Uα (see Refs. [475,
477]). When using the independent scoring method (ISM) (Eq. A.30) and the importance weights
of user requirements are numeric non-fuzzy variables, the importance weights of technical attributes
are expressed via [477]:

(Wj)α = [(Wj)
L
α, (Wj)

U
α ] =

[∑I
i=1 di · (Rnorm

ij )Lα∑I
i=1 di

,

∑I
i=1 di · (Rnorm

ij )Uα∑I
i=1 di

]
(A.44)

These weights of the technical attributes may then be implemented in the technical matrix to select
between a set of alternatives whilst keeping lower and upper bounds on the scoring. In the case
of multiple fuzzy numbers, or more difficult functions -such as the satisfaction models treated in
this thesis- these computations may become computationally intensive or require approximations.
Nevertheless, it is for example most certainly possible to integrate non-linear models, such as Kano’s
model, in fuzzy QFD. Moreover, fuzzy models can well be used for the ordinal methods; in fact,
the preference ranking equations in Eq. A.32 and Eq. A.33 are based on fuzzy sets. Approaches
that incorporate non-crisp numbers or variables, such as the 2-tuple linguistic model, however, often
transform the information from an ordinal scale into a cardinal one.



 
 
WAARDE-BEPALING KWALITEITSKENMERKEN 
BRACHYTHERAPIE SOFTWARE 
 

GEÏNFORMEERDE TOESTEMMING 

Dank voor uw interesse in deelname aan dit onderzoek. Dit onderzoek maakt deel uit van 
een Master’s thesis aan de afdeling BioMechanical Engineering van de TU Delft naar de 
ontwikkeling van software voor het automatiseren en optimaliseren van de positie-bepaling 
van stralingsbronnen voor brachytherapie van de cervix (zogeheten motion-planning 
software). Deze studie is een onderdeel van het ARCHITECT onderzoeksprogramma waarin 
- samen met de afdeling Radiotherapie van het Erasmus MC - 3D-geprinte patiënt-specifieke 
gynaecologische brachytherapie applicatoren ontwikkeld worden. 
 

Het doel van dit onderzoek is het vaststellen van de waarde van vooraf geselecteerde 
kwaliteitskenmerken (specificaties) op de mate van tevredenheid in het gebruik van te 
ontwikkelen software. Uw antwoorden dragen bij aan de ontwikkeling van applicatoren met 
verbeterde positionering van stralingsbronnen met als resultaat een hogere dosis 
conformiteit en verminderde blootstelling van gezonde weefsels aan straling. 
 

Dit onderzoek omvat een digitale vragenlijst bestaande uit 22 vragen en neemt ongeveer 20 
minuten in beslag. Voorafgaand worden twee vragen gesteld om uw rol in de behandeling 
vast te stellen. De vragenlijst bestaat uit twee delen: 

1. Om het belang van kwaliteitskenmerken aan te geven op uw mogelijke tevredenheid 
in het gebruik van deze software.  

2. Om de kwaliteitskenmerken te categoriseren op hoe deze uw tevredenheid 
beïnvloeden. 

 

Uw deelname aan dit onderzoek is vrijwillig. U kunt uw medewerking op elk moment 
stopzetten zonder opgave van reden en zonder verdere gevolgen. 
 

Geen nadelen worden verwacht ten gevolge van uw deelname. Voor dit onderzoek wordt 
persoonlijke informatie verzameld: uw naam en e-mailadres (voor contact), uw specialisme 
en de tijdsduur dat u werkzaam bent in deze functie. Op de volgende wijzen worden risico’s 
geminimaliseerd: 

 Uw antwoorden worden anoniem en vertrouwelijk verwerkt. 

 De resultaten van dit onderzoek worden enkel op groepsniveau geanalyseerd en 
gerapporteerd.  

 De digitale dataset wordt bewaard in een veilige omgeving (TU Delft Project Drive), 
waartoe enkel Robin Straathof en Nick van de Berg middels een code toegang 
hebben.  

 De inhoud van de drive wordt uiterlijk 10 jaar na voltooiing van de studie verwijderd. 
 

Geanonimiseerde data worden online beschikbaar gemaakt als bijlage van de Master’s 
thesis en kan gebruikt mogelijk worden voor toekomstige studies. U kunt contact opnemen 
met Robin Straathof om de verkregen geanonimiseerde data vooraf in te zien. 
 

Bij aanvullende vragen of klachten naar aanleiding van dit onderzoek kunt u contact 
opnemen met: 
 

Robin Straathof 
Student Technische Universiteit Delft – Master Mechanical Engineering 
Verantwoordelijk onderzoeker  
Email: r.straathof@student.tudelft.nl  
 

Onder supervisie van: 
Dr.ir. Nick van de Berg, Dr.ir. Linda Wauben, Prof.dr. Remi Nout. 
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A.7 Questionnaire for determining relative importance ratings



 
Klik in de selectievakjes om uw deelname te bevestigen Ja 

Deelname in studie  

Ik bevestig dat ik de informatie van de studie naar het bepalen van relatieve belangen 

van kwaliteitskenmerken heb gelezen. Tevens bevestig ik dat ik de kans heb gekregen 

om vragen over dit onderzoek te stellen en dat ik tevreden ben met de antwoorden en 

uitleg die ik heb ontvangen. 

 

  

Ik bevestig mijn deelname op vrijwillige basis aan dit onderzoek en begrijp dat ik te 

allen tijde ik vragen mag weigeren te beantwoorden en dat ik vrij ben om op elk 

moment deze vragenlijst te verlaten, zonder dat ik hiervoor een reden dien op te geven.   

 

  

Ik begrijp dat ik voor deze studie zelf en zonder overleg een online vragenlijst dien in te 

vullen, bestaande uit 22 vragen. 

 

 

Bevindingen van studie   

Ik begrijp dat de resultaten van de studie geanonimiseerd verwerkt en gerapporteerd 

worden voor de Master’s thesis van de verantwoordelijk onderzoeker.     

 

  

Ik begrijp dat persoonlijke informatie die mogelijk te herleiden valt tot mij, enkel bekend 

is bij de onderzoekers met toegang tot de volledige dataset (Robin Straathof en Nick 

van de Berg) en enkel op groepsniveau wordt geanalyseerd. 

 

 

 

 

 

 

--------------------------------------------------------------------------------------------------------------------   

Toestemming 

Ik geef mijn toestemming voor deelname aan dit onderzoek. 

Naam van deelnemer: 
Voornaam Achternaam 
 
 

 

 

--------------------------------------------------------------------------------------------------------------------  

Ik bevestig dat de deelnemer zo goed mogelijk geïnformeerd is over het onderzoek. Ik 

verklaar mij bereid om aanvullende vragen over het onderzoek naar vermogen te 

beantwoorden.  

Naam van onderzoeker: 
Robin Straathof  
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VRAGENLIJST 
Instructies voor het invullen van de vragenlijst 
Voor het invullen van deze vragenlijst wil ik u vragen de volgende voorstelling te maken:  
 
Binnen het ARCHITECT programma wensen wij patiënt-specifieke applicatoren te 3D-
printen. In deze prints worden katheter-paden gedefinieerd in de vrije ruimte (intracavitair en 
interstitieel), aan de hand van de anatomie van de patiënt (MRI), zie onderstaand figuur. Dit 
is dus complexer dan de huidige situatie, waarbij in de planning gekozen kan worden uit een 
beperkt aantal gedefinieerde paden bepaald door de vaste geometrie van de applicator. Het 
intekenen van katheter-paden wordt volledig geautomatiseerd in de software, maar de 
resultaten kunnen (enigszins) worden aangepast. Tevens kunnen de paden zo gepland 
worden dat deze rekening houden met de mogelijke relatieve verplaatsing van omringende 
structuren. Na deze vormbepaling kan de applicator geïmporteerd worden in treatment 
planning software om een behandelingsplan te genereren.  
 

 
Figuur. De software kan paden te plannen zodoende dat de stralingsbronnen in nabijheid van het 
tumorweefsel worden gebracht. 

 
De vragenlijst richt zich op de eerste fase: het genereren van paden voor 
stralingsbron locaties die gekozen kunnen worden in het behandelplan. 
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DEEL 0: ALGEMENE INFORMATIE 
 
(1) Kunt u uw specialisme aangeven? 
 
<Vul uw specialisme in> 
 
Anders, namelijk - 
 
 
(2) Hoe lang bent u werkzaam in uw huidige functie? 
 
-    < kies eenheid >  

 
DEEL 1: BELANG VAN KWALITEITSKENMERKEN 
 

Instructie  
Kunt u per kwaliteitskenmerk aan geven hoe belangrijk voor u de inclusie of de mate van 
vervulling van dit kenmerk zou zijn voor de software?  
 
 
(1) Hoe belangrijk is de mogelijkheid van de software om robuust optimale plaatsing van 
stralingsbronnen ten opzichte van de tumor te garanderen? 
Toelichting: Robuust optimale plaatsing betekent dat de planner proximale plaatsing van 
stralingsbronnen bij de tumor garandeert, zelfs mochten er anatomische veranderingen 
gedurende de behandeling optreden. De software kan aannames maken voor de ideale 
oriëntatie van paden, zodat de kans op een hoge conformiteit zo groot mogelijk is. 
 
<Selecteer hier uw antwoord> 
 
 
 
(2) Hoe belangrijk is de mogelijkheid van de software om robuust optimale plaatsing van 
stralingsbronnen ten opzichte van de gezonde weefsels en structuren (organs at risk) te 
garanderen? 
Toelichting: Robuust optimale plaatsing betekent dat de planner plaatsing van 
stralingsbronnen garandeert zodoende dat dosimetrische grenswaarden in omringende 
gezonde weefsels niet worden overschreden, zelfs mochten er anatomische veranderingen 
optreden gedurende de behandeling optreden. De software kan aannames maken voor de 
ideale oriëntatie van paden, zodat de kans op een hoge conformiteit zo groot mogelijk is. 
 
<Selecteer hier uw antwoord> 
 
 
(3) Hoe belangrijk is de mogelijkheid van de software om driedimensionale (3D) visualisatie 
en positie-bepaling van de stralingsbronnen uit te voeren? 
 
<Selecteer hier uw antwoord> 
 
 
(4) Hoe belangrijk is de mogelijkheid van de software om in reële tijd (real-time, binnen een 
tijdsbestek van enkele seconden) aanpassingen uit te voeren in katheter-paden en de 
resultaten hiervan te zien? 
 
<Selecteer hier uw antwoord> 
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(5) Hoe belangrijk is de mogelijkheid van de software om de positie van stralingsbronnen als 
een startpunt voor de optimalisatie handmatig vast te leggen en te gebruiken als routepunt 
(waarlangs het katheter-pad moet volgen)? 
 
<Selecteer hier uw antwoord> 
 
 
(6) Hoe belangrijk is de mogelijkheid van de software om in een korte tijd de stralingsbron 
positie-bepaling uit te voeren? 
 
<Selecteer hier uw antwoord> 
 
(6.2) Wat vindt u een ‘korte tijd’ voor het plannen van een pad? 
- < kies eenheid > 
 
 
(7) Hoe belangrijk is de mogelijkheid van de software om visualisatie en planning met een 
hoge resolutie uit te voeren? 
Toelichting: Bij een hogere resolutie wordt de anatomie realistischer weergegeven en zijn de 
paden ook accurater, maar het genereren van de paden kost meer tijd.  
 
<Selecteer hier uw antwoord> 
 
 
(8) Hoe belangrijk is de mogelijkheid van de software om met een lage kans op mislukking 
een succesvol plan te genereren? 
Toelichting: Sommige softwareoplossingen voor het plannen van paden zijn niet per definitie 
succesvol (kunnen vastlopen zonder een optimaal pad te vinden). In dat geval dient opnieuw 
de software te worden gestart. 
 
<Selecteer hier uw antwoord> 
 
 
(9) Hoe belangrijk is de mogelijkheid van de software om paden te genereren, die 
reproduceerbaar gevolgd kunnen worden in de 3D-geprinte applicator door katheters 
aangestuurd via een afterloader? 
Toelichting: Bijvoorbeeld scherpe bochten kunnen mogelijk niet nauwkeurig gevolgd worden.  
 
<Selecteer hier uw antwoord> 
 
 
(10) Hoe belangrijk is de mogelijkheid van de software om een inschatting te maken van de 
risiconiveaus op het overschrijden van grenswaarden voor gezonde weefsels (organs at risk) 
voor het gebruik van treatment planning software, zelfs mochten er anatomische 
veranderingen gedurende de behandeling optreden? 
 
<Selecteer hier uw antwoord> 
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DEEL 2: INVLOED VAN KWALITEITSKENMERKEN OP 
TEVREDENHEID 
 
Instructie  
De invloed van de mate van vervulling of de aanwezigheid van een kwaliteitskenmerk op de 
tevredenheid kan verschillen per kwaliteitskenmerk. Een model om de tevredenheid ten 
gevolge van een kwaliteitskenmerk te categoriseren is Kano’s model. 
 
Dit model onderscheidt vier typen kenmerken: 
 
Afk. Kenmerk Beschrijving formeel Beschrijving informeel 

A. Aantrekkelijk/ 
Wenselijk 

Een kwaliteitskenmerk dat voor een grotere 
mate van tevredenheid zorgt wanneer 
aanwezig, dan de mate van ontevredenheid 
wanneer deze niet aanwezig is 

Wordt niet verwacht, 
maar zorgt voor 
extra tevredenheid 

P. Prestatie/ 
Relevant 

Een kwaliteitskenmerk dat voor dezelfde 
mate van tevredenheid zorgt wanneer 
aanwezig, als de mate van ontevredenheid 
wanneer deze niet aanwezig is; 

Valt binnen de 
verwachting, zorgt 
wel voor 
tevredenheid 

B. Basis/ 
Noodzakelijk 

Een kwaliteitskenmerk dat voor een grote 
mate ontevredenheid zorgt wanneer dit niet 
aanwezig is, maar een lage mate van 
tevredenheid wanneer wel aanwezig; 

Moet minimaal aan 
worden voldaan 

O. Onverschillig/ 
Irrelevant 

Het maakt niet uit of het kwaliteitskenmerk 
aanwezig is. 

Niet relevant 

 
Kunt u per eerder beschreven kwaliteitskenmerk aangeven in welke categorie u dit 
kenmerk beschouwt? 
 
 

 

Nr. 
Deel 1 

Kwaliteitskenmerk  
(korte omschrijving, zie de volledige in deel 1)  

Categorie van 
tevredenheid 

   
(1) Robuust optimale plaatsing ten opzichte van tumor < selecteer categorie >  

(2) Robuust optimale plaatsing ten opzichte van organen < selecteer categorie >  

(3) 3D visualisatie en positie-bepaling < selecteer categorie >  

(4) Aanpassingen in reële tijd (real-time)  < selecteer categorie >  

(5) Vastleggen positie van stralingsbronnen als routepunt < selecteer categorie >  

(6) Tijdsduur van het plannen < selecteer categorie >  

(7) Resolutie van structuren en paden < selecteer categorie >  

(8) Kans op succesvol plan < selecteer categorie >  

(9) Reproduceerbaar volgen van paden < selecteer categorie >  

(10) Inschatting van risiconiveaus < selecteer categorie >  
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Optioneel. Ruimte voor opmerkingen. 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
<Einde van vragenlijst> 

Druk op de onderstaande knop om uw antwoorden op te slaan 
 

Opslaan
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A.8 Dose-based optimisation results of generated needle channels

Table A.4: Results of the dosimetric evaluation for the combined intracavitary trajectories and straight
interstitial dwell segments in two coverage planning scenarios. Dose distributions are evaluated for regularly
spaced dose calculation points in the nominal delineations of structures and within the worst-case uncertainty
contours. Continuous variables are expressed with the mean ± SD, and discrete variables with the median.
Abbreviations: DT = dwell time, DT IC = dwell time in intracavitary part.

Conservative OAR sparing Nominal planning

rt-RRT BU-rt-RRT CC-rt-
RRT (med.)

CC-rt-
RRT (low)

rt-RRT CC-rt-
RRT (med.)

Objective value 0.59 ± 0.00 0.59 ± 0.01 0.59 ± 0.00 0.59 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

Active dwell 18 (61) 18 (61) 18 (61) 18 (61) 24 (59) 23 (59)

positions (Total)

Mean DT (s) 19.9 ± 0.0 19.9 ± 0.0 19.9 ± 0.0 19.9 ± 0.1 12.0 ± 0.2 12.8 ± 0.3

Maximum DT (s) 96.2 ± 0.1 96.1 ± 0.2 95.4 ± 0.3 95.6 ± 0.5 63.3 ± 0.0 62.7 ± 0.1

Total DT (s) 357.7 ± 0.2 358.1 ± 0.6 357.8 ± 0.4 358.2 ± 1.0 292.0 ± 0.3 297.6 ± 0.1

Mean DT IC (s) 56.5 ± 0.2 56.8 ± 0.4 56.8 ± 0.3 57.0 ± 0.7 17.4 ± 0.0 25.3 ± 0.0

Maximum DT IC (s) 71.3 ± 0.2 71.5 ± 0.2 71.5 ± 0.3 71.6 ± 0.5 36.7 ± 0.3 44.6 ± 0.2

Total DT IC (s) 113.0 ± 0.3 113.5 ± 0.9 113.6 ± 0.7 114.0 ± 1.4 69.5 ± 0.2 75.9 ± 0.1

Nominal contours

CTVHR D98% (Gy) 7.1 ± 0.0 7.1 ± 0.0 7.1 ± 0.0 7.1 ± 0.0 7.0 ± 0.0 7.0 ± 0.0

D90% (Gy) 7.6 ± 0.0 7.7 ± 0.0 7.7 ± 0.0 7.7 ± 0.0 7.3 ± 0.0 7.3 ± 0.0

D50% (Gy) 11.4 ± 0.0 11.4 ± 0.0 11.4 ± 0.0 11.4 ± 0.0 10.4 ± 0.0 10.3 ± 0.0

A100% (%) 99.0 ± 0.1 99.1 ± 0.1 99.1 ± 0.1 99.0 ± 0.1 98.7 ± 0.1 98.4 ± 0.4

Bladder D10% (Gy) 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.8 ± 0.0 2.8 ± 0.0

D2% (Gy) 4.5 ± 0.0 4.5 ± 0.0 4.5 ± 0.0 4.5 ± 0.0 4.4 ± 0.0 4.4 ± 0.0

A6 Gy (%) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Rectum D10% (Gy) 1.2 ± 0.0 1.2 ± 0.0 1.2 ± 0.0 1.2 ± 0.0 0.8 ± 0.0 0.9 ± 0.0

D2% (Gy) 1.6 ± 0.0 1.5 ± 0.0 1.5 ± 0.0 1.5 ± 0.0 1.1 ± 0.0 1.1 ± 0.0

A3.7 Gy (%) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Sigmoid D10% (Gy) 2.9 ± 0.0 2.8 ± 0.0 2.8 ± 0.0 2.8 ± 0.0 2.4 ± 0.0 2.4 ± 0.0

D2% (Gy) 3.8 ± 0.0 3.8 ± 0.0 3.8 ± 0.0 3.8 ± 0.0 3.3 ± 0.0 3.4 ± 0.0

A4.3 Gy (%) 0.7 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Worst-case uncertainty

Bladder D10% (Gy) 3.7 ± 0.0 3.7 ± 0.0 3.7 ± 0.0 3.7 ± 0.0 3.9 ± 0.0 3.9 ± 0.0

D2% (Gy) 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 8.9 ± 0.0 8.8 ± 0.0

A6 Gy (%) 4.2 ± 0.0 4.2 ± 0.0 4.2 ± 0.0 4.2 ± 0.0 4.8 ± 0.0 4.8 ± 0.0

Rectum D10% (Gy) 1.5 ± 0.0 1.5 ± 0.0 1.5 ± 0.0 1.5 ± 0.0 1.1 ± 0.0 1.1 ± 0.0

D2% (Gy) 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 1.6 ± 0.0 1.6 ± 0.0

A3.7 Gy (%) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Sigmoid D10% (Gy) 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0 3.4 ± 0.0 3.5 ± 0.0

D2% (Gy) 8.1 ± 0.0 8.1 ± 0.0 8.1 ± 0.0 8.1 ± 0.0 8.2 ± 0.0 8.2 ± 0.0

A4.3 Gy (%) 8.5 ± 0.0 8.5 ± 0.0 8.5 ± 0.0 8.5 ± 0.0 7.0 ± 0.0 7.0 ± 0.0


	Preliminaries
	Nomenclature in brachytherapy
	Nomenclature in motion planning
	Nomenclature in quality function deployment

	I Evaluation and specification of uncertainty in cervical cancer brachytherapy
	Clinical introduction
	Cervical cancer: epidemiology, diagnosis and treatment
	Basic concepts in brachytherapy
	Treatment modality
	Brachytherapy dose definitions and calculations
	Clinical outcome parameters and morbidity
	Dose-response relationships

	Advances in brachytherapy techniques and systems
	Evolution of brachytherapy techniques
	Evolution of brachytherapy applicators

	Uncertainty in cervical cancer BT
	Sources and magnitude of uncertainty
	Current strategies in brachytherapy in reducing the impact of uncertainty

	Rationale for robust applicator design and treatment planning
	Thesis structure

	The impact of uncertainties in cervical cancer BT
	Background
	Methods
	Classifying uncertainty components in brachytherapy
	Clinical impact modelling

	Results
	Literature review of uncertainty components
	Uncertainty budget for cervical cancer BT
	Clinical impact of dosimetric uncertainty

	Discussion
	Conclusions and future work

	Inter and intra-fraction uncertainty in cervical cancer BT 
	Background
	Materials and methods
	Results and discussion
	Inter-fraction changes
	Intra-fraction changes

	From population analysis to patient-specific planning

	The BT needle channel planning problem under uncertainty
	Terminology and concepts in motion planning
	Topological spaces
	Motion planning definitions
	Computational or operational criteria of motion planning algorithms

	The use of motion planning for BT needle channel planning
	Previous work in needle channel planning algorithms
	Decomposing a motion planning problem

	Formulation of the BT needle channel planning problem under uncertainty
	Agent representation
	Workspace representation
	Uncertainty Representation
	Planning execution
	Problem definition



	II Development of a tool for aiding the decision-making process between motion planning algorithms
	Development of a tool for the selection of motion planning algorithms
	Selection of robust motion planning algorithms
	Algorithm classes
	Previous work in aiding selection of MP algorithms

	Quality Function Deployment
	An introduction and methodological evaluation of QFD

	Description and step-by-step application of MP-QFD
	Formulation and prioritisation of user requirements
	Formulation of technical attributes and technical correlations
	Generation of relationship matrix
	Ranking of a set of alternatives
	Selection of a motion planning class

	Discussion and future work
	Conclusion


	III Robust brachytherapy needle channel planning under uncertainty
	Implementation of robust motion planning algorithms
	An introduction in sampling-based planers
	Basic rapidly-exploring random tree
	Asymptotically optimal rapidly-exploring random tree

	RRT variants for MP of non-holonomic systems
	Sampling strategies
	Metric
	Nearest neighbour
	Steering function
	Collision detection

	RRT and reconnect-tree RRT for non-holonomic systems
	Implementation of RRT for non-holonomic systems with unicycle kinematics
	Implementation of a reconnect-tree variant of RRT for non-holonomic systems with unicycle kinematics

	Bounded uncertainty RRT
	Analytical chance constrained RRT

	Robust brachytherapy needle channel planning
	Inverse dose planning
	Dose-based treatment optimisation
	Dose parameter estimation
	Method evaluation

	Coverage planning
	Materials and methods
	Results
	Discussion

	Needle trajectory planning under uncertainty
	Materials and methods
	Results
	Discussion



	Conclusions and future work
	Appendices
	MATLAB scripts
	Script accompanying Figure 1.3
	Script accompanying Figure A.1a
	Script accompanying Figure A.1b
	Script accompanying Figure A.2 and Figure A.3
	Script accompanying Figure 2.1 and Table 2.1
	Script accompanying Table 2.3 and Figure 2.10b
	Script accompanying Figure 2.9
	Script for converting DICOM-RT into 2D convex shapes in the sagittal plane
	Script accompanying Figure 4.5
	Script accompanying Figure 4.7b
	Script for basic RRT algorithm (accompanying Figure 6.2b)
	Script for RRT* (accompanying Figure 6.5)
	Script for RRT in SE(2) algorithm (accompanying Figure 6.8)
	Script for reconnect-tree RRT variant (accompanying Figure 6.9)
	Script for bounded uncertainty reconnect-tree RRT in SE(2) (accompanying Figure 6.10)
	Script for a chance constrained reconnect-tree RRT variant in SE(2) (accompanying Figure 6.11)
	Script for linear dose-based optimisation
	Script for coverage planning

	A brief overview and discussion on dose and radiobiological concepts and models in brachytherapy
	Terminology and modelling of uncertainty in brachytherapy
	Uncertainty
	Error
	Accuracy
	Precision
	Action level or maximum permissable error
	Intra-fraction, inter-fraction, and inter-application variation
	Establishing models for estimating the effect of dosimetric uncertainty

	Literature review on inter and intra-fraction geometric uncertainty
	Inter-fraction uncertainty
	Intra-fraction uncertainty
	Bladder distension

	Description of robust motion planning algorithm classes
	Methodological problems and inaccuracies in QFD
	Questionnaire for determining relative importance ratings
	Dose-based optimisation results of generated needle channels


