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Abstract. In the present study, the explicit computational method for fluid-solid coupled
system is proposed based on ALE (Arbitrary Lagrangian-Eulerian) GSMAC(Generalized-
Simplified Marker and Cell)-FEM suitable for low capacity and high speed computation in
order to analyze the interaction of fluid and flexible rubber-like solid. The stability of time-
marching is improved by satisfying the fluid-solid strongly coupled equation at next time
using the explicit iterative calculation. Only the Poisson equation for the pressure correc-
tion is computed implicitly in this coupling method. In order to verify the effectiveness
for the problem that the fluid-solid interaction is large, two-dimensional vortex-induced
vibration problem is analyzed about the interaction of vortices and elastic plate attached
to rigid prism.

1 INTRODUCTION

In recent years, much attention has been paid to a fluid-solid coupled analysis. The
deformation of solid wall which is caused by flow is one of important mechanical problems.
The phenomenon becomes very complex, because solid wall influences the flow field. In
the coupling phenomena of fluid and flexible rubber-like solid whose Young’s modulus
is small, the solid wall is deformed largely by flow force and the vibration with small
frequency is caused.
It is necessary to evaluate the discretized equations of fluid and solid systems at next

time in order to improve the stability of calculation for the case in which fluid and solid
interact largely. The implicit method is often utilized for the time integration1,2. However,
the computer load is big for the matrix calculation in this method. It is possible to use
explicit method for the time integration in order to reduce the computer load. Though
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the explicit method is effective in flexible rubber-like solid analysis, the constraint of time
step width becomes severe in the vibration with large frequency.
In the present study, the explicit computational method for fluid-solid coupled system

is proposed using ALE (Arbitrary Lagrangian-Eulerian) GSMAC(Generalized-Simplified
Marker and Cell)-FEM3 suitable for low capacity and high speed computation in order
to analyze the interaction of fluid and flexible rubber-like solid. The stability of time-
marching is improved by satisfying the fluid-solid strongly coupled equation at next time
using the explicit iterative calculation. Only the Poisson equation is computed implicitly
in this fluid-solid coupled method as well as the coupling method proposed by Ishihara and
Yoshimura4. The velocity-pressure simultaneous relaxation method is used in GSMAC-
FEM in order to leave out the process of making the non-diagonal component of the total
coefficient matrix when the discretized Poisson equation is computed.

2 GOVERNING EQUATIONS

Figure 2 shows the fluid domain ΩF , the solid domain ΩS, and the interface ΓI . The
fluid is assumed to be incompressible Newtonian fluid, and the solid to be Hookean elastic
material or incompressible hyperelastic material. ALE (Arbitrary Lagrangian-Eulerian)
method for the fluid and Lagrangian method for the solid are made use of respectively.
The governing equations for incompressible Newtonian fluid in ΩF are expressed as

follows.
(Continuity Equation)

∇ · v = 0 (1a)

(Equations of Motion)

ρ
δv

δt
+ ρ(v −w) ·∇v = −∇p+∇ · τ + ρb (1b)

(The Relations between Viscous Stress and Velocity Gradient)

τ = µ(∇v + v←−∇ ) (1c)

where ∇ is the nabla of spatial coordinates，v is the velocity，ρ is the density，δ/δt =
(∂/∂t)|χ is the arbitrary time-derivative，w is the arbitrary velocity，p is the pressure，
τ is the viscous stress tensor，b is the volume force per unit mass，µ is the viscosity．
The governing equations for Hookean elastic material in Ω0S are expressed as follows.

(Equations of Motion)

ρ0
d2u

dt2
= ∇X · (S · F T ) + ρ0b (2a)
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Figure 1: Fluid domain, solid domain, and the interface

(Constitutive Equations)

S = λS (trE) I + 2µSE (2b)

(The Relations between Strain and Displacement Gradient)

E =
1

2
(∇Xu+ u←−∇X +∇Xu · u←−∇X) (2c)

where ρ0 is the initial density，d/dt = (∂/∂t)|X is the material time-derivative，u is
the displacement，∇X is the nable of material coordinates，S is the 2nd Piola-Kirchhoff
stress tensor，F = I+u

←−∇X is the deformation gradient tensor，E is the Green-Lagrange
strain tensor，λS and µS are the Lame constants，and I is the identity tensor. Lame
constants are expressed as follows.

λS =
ESνS

(1 + νS)(1− 2νS) (3a)

µS =
ES

2(1 + νS)
(3b)

where ES is Young’s modulus and νS is Poisson’s ratio.
The governing equations for incompressible hyperelastic material in ΩS are expressed

as follows.
(Continuity Equation)

∇ · v = 0 (4a)

(Equations of Motion)

ρ
dv

dt
= −∇pr +∇ · τ + ρb (4b)
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(The Relations between Displacement and Velocity)

du

dt
= v (4c)

(Transformation Equation of Pressure)

pr = p+
2

3

h∂W
∂eIB (trB) + ∂W

∂ eIIB ©(trB)2 − tr(B ·B)ªi (4d)

(The Relations between Extra Stress and Deformation)

τ = 2
n∂W
∂eIB + ∂W

∂ eIIB (trB)
o
B − 2 ∂W

∂ eIIBB ·B (4e)

where pr is the transformed pressure，τ is the extra stress，B = F · F T is the left
Cauchy-Green deformation tensor，W is the strain energy density per unit original vol-
ume，eIB = IB/III

1/3
B and eIIB = IIB/III

2/3
B are the reduced invariants of B, IB, IIB,

and IIIB are invariants of B．Although detF = 1 or IIIB = 1 is usually used as the
incompressibility constraint condition in mixed FEM analysis of incompressible hypere-
lastic material, the continuity equation (4a) is used to obtain velocity-pressure decoupled
FEM formulations5,6. W is approximated as polynomial．

W = c10(eIB − 3) + c01( eIIB − 3) + c11(eIB − 3)( eIIB − 3)
+c20(eIB − 3)2 + c02( eIIB − 3)2
+c21(eIB − 3)2( eIIB − 3) + c12(eIB − 3)( eIIB − 3)2
+c30(eIB − 3)3 + c03( eIIB − 3)3 (5)

where cmn (m,n = 0, 1, 2, 3) is the material constants of Mooney-Rivlin model．
The boundary condition on ΓI is expressed as follows.

(Compatibility)

v
¯̄
Fluid

=
du

dt

¯̄̄
Solid

(6a)

(Equilibrium)

(n · T )¯̄
Fluid

+ (n · T )¯̄
Solid

= 0 (6b)

where n is the outward normal vector and T is the Cauchy stress tensor．
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3 COMPUTATIONAL METHOD

3.1 Derivation of fluid-solid coupled equations

The fluid-solid strongly coupled equations are derived according to the following pro-
cedure.

(1) The explicit iterative calculation is applied to the time discretization of the fluid and
the solid from the idea of Newmark-β method in order to solve oscillation problems
accurately.

(2) For the fluid, the decoupled equations consisting of the predictor step equations, the
Poisson equation, and the corrector step equations are derived so as to satisfy the
continuity equation at the next time. For the incompressible hyperelastic material,
the decoupled equations are similarly derived.

(3) The temporal discretized equations of the fluid and the solid are discretized spatially
using Galerkin FEM respectively. Then the velocity-pressure simultaneous relaxation
iteration is introduced for the fluid and it is similarly introduced for the incompressible
hyperelastic material using GSMAC-FEM.

(4) The predictor step equations for the fluid and the equations of motion for Hookean
elastic material, or the predictor step equations for the fluid and incompressible hy-
perelastic material are combined into the fluid-solid strongly coupled equations using
the compatibility and equilibrium conditions given on ΓI .

3.2 Algorithm of the fluid-solid coupled analysis

Figure 2 shows the flowchart of the ALE GSMAC-FEM including the above computa-
tional method. The algorithm is the double iterative calculation consisting of the explicit
iteration located outside and the velocity-pressure simultaneous relaxation iteration lo-
cated inside. i is the velocity or displacement node and l is the pressure node in this
figure. eDl is the node average of ∇ ·v, and ²1 is the convergence criterion of simultaneous
relaxation iteration in Figure 2 (b).
The coupled analysis of incompressible Newtonian fluid and Hookean elastic material

is implemented according to the following procedure. The representative variable of the
fluid is {v, p,w} and that of Hookean elastic material is {u}．The fluid variable is {v}
and the solid variable is {u} on ΓI .
(1) {un} in Ω0S，{vn, pn,wn} in ΩnF，and {un,vn} on ΓnI are known at time t = tn.
(2) The explicit iteration is set at m = 0. Then {u(0)} = {un} in Ω0S，{v(0), p(0),w(0)} =

{vn, pn,wn} in Ω(0)F ，and {u(0), v(0)} = {un,vn} on Γ(0)I ．

(3) After calculating of the fluid-solid coupled equations，{u(m+1)} in Ω0S，{ev, p(m),w(m)}
in Ω

(m)
F ，and {u(m+1),v(m+1)} on Γ(m)I are obtained．
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(4) The velocity-pressure simulateous relaxation iteration is calculated in Ω
(m)
F . The fluid

velocity ev and the fluid pressure p(m) are corrected, and then {v(m+1), p(m+1),w(m)}
in Ω

(m)
F is obtained.

(5) Because the fluid mesh velocity w(m+1) is decided from the interface velocity v(m+1),

{v(m+1), p(m+1), w(m+1)} in Ω(m)F is obtained．

(6) If |v(m+1) − v(m)| ≤ ²2，then {un+1} = {u(m+1)} in Ω0S，{vn+1, pn+1,wn+1} =
{v(m+1), p(m+1),w(m+1)} in Ω(m)F ，and {un+1, vn+1} = {u(m+1),v(m+1)} on Γ(m)I . If
|v(m+1) − v(m)| > ²2, then (m + 1) → (m), and the prcedure from (3) to (6) is
iterated．

The coupled analysis of incompressible Newtonian fluid and hyperelastic material is
implemented according to the following procedure. The representative variable of the
fluid is {v, p,w} and that of incompressible hyperelastic material is {u,v, pr}．The fluid
variable is {v} and the solid variable is {u, v} on ΓI .
(1) {un,vn, pnr } in ΩnS，{vn, pn,wn} in ΩnF，and {un, vn} in ΓnI are known at time t = tn．

(2) The explicit iteration is set at m = 0. Then {u(0), v(0), p(0)r } = {un,vn, pnr } in Ω(m)S ，

{v(0), p(0),w(0)} = {vn, pn,wn} in Ω(m)F ，and {u(0), v(0)} = {un,vn} on Γ(m)I .

(3) After calculating of the fluid-solid coupled equations，{u(m), ev, p(m)r } in Ω(m)S ，{ev, p(m),
w(m)} in Ω(m)F ，and {u(m), ev} on Γ(m)I are obtained．

(4) The velocity-pressure simulateous relaxation iteration is calculated in Ω
(m)
S . The solid

velocity ev and the solid transformed pressure p(m)r are corrected. Then {u(m+1),v(m+1),
p
(m+1)
r } in Ω(m)S and {u(m+1),v(m+1)} on Γ(m)I are obtained．

(5) The velocity-pressure simulateous relaxation iteration is calculated in Ω
(m)
F . The fluid

velocity ev and the fluid pressure p(m) are corrected. Then {v(m+1), p(m+1),w(m)} in
Ω
(m)
F is also obtained.

(6) Because the fluid mesh velocity w(m+1) is decided from the interface velocity v(m+1),

{v(m+1), p(m+1), w(m+1)} in Ω(m)F is obtained．

(7) If |v(m+1) − v(m)| ≤ ²2, then {un+1,vn+1, pn+1r } = {u(m+1), v(m+1), p(m+1)r } in Ω(m)S ，

{vn+1, pn+1,wn+1} = {v(m+1), p(m+1),w(m+1)} in Ω(m)F ，and { un+1,vn+1} = {u(m+1),
v(m+1)} on Γ(m)I . If |v(m+1) − v(m)| > ²2, then (m+ 1)→ (m), and the prcedure from
(3) to (7) is iterated．
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Figure 2: The flowchart of ALE GSMAC-FEM algorithm for analyzing fluid-solid coupled system
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4 NUMERICAL EXAMPLES

Vortex-induced vibration is the forced oscillation caused by the unsteady hydrodynamic
force of vortices shed from solid. In order to verify the effectiveness for the problem that
the fluid-solid interaction is large, two-dimensional vortex-induced vibration problem is
analyzed about the interaction of vortices and elastic plate attached to rigid prism.
Figure 3 shows the analysis model and the boundary conditions. Air flows impulsively

at the inlet of the model as the initial condition. In this analysis, the elastic plate attached
to the rigid prism is regarded as Hookean elastic material or incompressible hyperelastic
material. Table 4 shows the physical properties of air, Hookean elastic material, incom-
pressible hyperelastic material. Reynolds number Re = LrVr/(µ/ρ) is about 332 for the
flow field. The first-order element and second-order element are used for the fluid velocity
and the solid displacement so as to compare the results (see Figure 4). Figure 5 shows
the analysis meshes. The total number of the degrees of freedom for the fluid velocity and
the solid displacement in Mesh A is the same as Mesh B. In Mesh C, the elements of the
elastic plate in Mesh B are divided into halves axially. The constraint of the solid time
width becomes severer than that of the fluid time width. The time width in Mesh A and
Mesh B is 1.0×10−5 s and that in Mesh C is 5.0×10−6 s to catch the wave propagated in
solid elements sufficiently. The fluid mesh velocity is changed linearly from elastic plate
surface to the outside boundary of the fluid domain. The convergence criterion of the
simultaneous relaxation iteration is set at ²1 = 1.0 × 10−3 Vr/Lr，and the convergence
criterion of the explicit iteration at ²2 = 1.0× 10−6 Vr.

Figure 3: Analysis model and boundary conditions
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(a) Incompressible Newtonian fluid (air)

ρ 1.18 kg/m3

µ 1.82× 10−5 Pa
(b) Hookean elastic material

ρ0 2.0× 103 kg/m3
ES 2.0× 105 Pa
νS 0.35

(c) Incompressible hyperelastic material

ρ 1.0× 103 kg/m3
c10 1.81222092× 105 Pa
c01 9.95175450× 103 Pa
c11 −1.51094601× 102 Pa
c20 −2.11709610× 103 Pa
c02 0.0
c21 0.0
c12 0.0
c30 5.00884866× 101 Pa
c03 0.0

Table 1: Calculation data

Figure 4: Quadrilateral elements for analyzing fluid-solid coupled system
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Figure 5: Analysis meshes

4.1 Hookean elastic material and air

The proposed computational method is evaluated from the coupled analysis results of
Hookean elastic material and air. The obtained results are compared with the results
using weakly coupling method which receives the data in the interface by Wall et al 7.
The elements used by Wall et al. are Q1Q1 for fluid and Q2 for solid．In Mesh A and
Mesh B, the total number of the degrees of freedom for the displacement is the same as
that by Wall et al. and the total number of the degrees of freedom for the fluid velocity
is more than that by Wall et al.
Symmetric vortices arise from the rigid prism after the start of computation. After

that, the flow field becomes asymmetric and vortices are shed one after another. The
elastic plate begins to vibrate by the difference of hydrodynamic forces acting on the
sides of it. Figure 6 and Figure 7 show the pressure contours in Mesh A and Mesh C
respectively, and Figure 8 shows the time histories of the displacement at the elastic plate
tip. Though the deformed shapes of the elastic plate are different, the obtained first-mode
frequency is close to that by Wall et al. The influence of the second-mode frequency is
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Figure 6: Pressure contours (Mesh A, fluid: Q2Q1 element, solid: Q2 element)

Figure 7: Pressure contours (Mesh C, fluid: Q1Q0 element, solid: Q1 element)
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Figure 8: Time histories of displacement at the tip of elastic plate

small in Mesh B, while the influence of the second-mode frequency becomes larger and that
of the first-mode frequency becomes smaller by increasing the total number of elements
in Mesh C. The influence of second-mode frequency also increases by changing first-order
elements to second-order in Mesh A. This is caused by shear locking of the obtained
solutions by using linear elements．

4.2 Incompressible hyperelastic material and air

The computational method for the fluid and the solid which have incompressibility
constraint conditions is evaluated from the coupled analysis of incompressible hyperelastic
material and air. The elastic plate begins to vibrate by the difference of hydrodynamic
forces as well as the plate made in Hookean elastic plate after the start of computation.
Figure 9 and Figure 10 show the pressure contours in Mesh A and Mesh C respectively,
and Figure 11 shows the time histories of the displacement at the elastic plate tip. The
solutions become stiffing because of shear locking by using of linear elements for solid
displacement in Mesh B. However it is possible to avoid locking by using of quadratic
elements in Mesh A. By increasing the element number axially in Mesh C, the influence
of shear locking is small, the results is close to the results in Mesh A. Figure 12 shows the
time histories of the total area of solid domain. The variation of the total area is within
3.5×10−5 % and is very small because the incompressible constraint condition is fulfilled.
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Figure 9: Pressure contours (Mesh A, fluid: Q2Q1 element, solid: Q2Q1 element)

Figure 10: Pressure contours (Mesh C, fluid: Q1Q0 element, solid: Q1Q0 element)
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Figure 11: Time histories of displacement at the tip of elastic plate

Figure 12: Time histories of the area of total solid domain
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The comparisons with other strongly coupling methods are required for computation
time and memory capacity in order to show the advantage of the present coupling method
clearly.

5 CONCLUSIONS

In the present study, the computational method that is effective in the coupled analysis
of fluid and flexible rubber-like solid was proposed based on ALE GSMAC-FEM suitable
for high speed computation and low memory capacity. In order to verify the effectiveness
for the problem that the fluid-solid interaction is large, two-dimensional vortex-induced
vibration problem was analyzed about the interaction of vortices and elastic plate at-
tached to rigid prism. When vortices were shed one after another from the prism, the
plate began to vibrate by the difference of hydrodynamic forces acting on the sides of
it. From the conservation of the total area of incompressible hyperelastic material, fluid-
solid interaction imposed the incompressibility constraint condition was analyzed using
GSMAC-FEM.
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