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Strength in Numbers: Improving Generalization
with Ensembles in Machine Learning-based
Profiled Side-channel Analysis

Guilherme Perin'?, Lukasz Chmielewski! and Stjepan Picek?

! Riscure BV, The Netherlands
2 Delft University of Technology, The Netherlands

Abstract. The adoption of deep neural networks for profiled side-channel attacks
provides powerful options for leakage detection and key retrieval of secure products.
When training a neural network for side-channel analysis, it is expected that the
trained model can implement an approximation function that can detect leaking
side-channel samples and, at the same time, be insensible to noisy (or non-leaking)
samples. This outlines a generalization situation where the model can identify the
main representations learned from the training set in a separate test set.

This paper discusses how output class probabilities represent a strong metric when
conducting the side-channel analysis. Further, we observe that these output prob-
abilities are sensitive to small changes, like selecting specific test traces or weight
initialization for a neural network. Next, we discuss the hyperparameter tuning,
where one commonly uses only a single out of dozens of trained models, where each
of those models will result in different output probabilities. We show how ensembles
of machine learning models based on averaged class probabilities can improve gen-
eralization. Our results emphasize that ensembles increase a profiled side-channel
attack’s performance and reduce the variance of results stemming from different
hyperparameters, regardless of the selected dataset or leakage model.

Keywords: Side-channel Analysis - Neural Networks - Model Generalization - Ensemble
Learning

1 Introduction

The implementation of secure products must consider the threat imposed by side-channel
attacks (SCAs). The growing markets of embedded computing, and especially Internet-of-
Things, require large amounts of confidential data to be processed on electronic devices.
Cryptographic algorithms are usually implemented as part of those systems and, if not
properly protected, are vulnerable to side-channel analysis. Depending on the level of
access and control of the target device, side-channel analysis can be categorized as profiled
(e.g., template attacks [CRR02], linear regression [SLP05], machine learning [LMBM13,
MHM13]), or non-profiled attacks (e.g., DPA [KJJ99], CPA [BCO04], MIA [GBTPO0S8],
clustering [BGL09]). Profiled side-channel attacks consider a scenario where the adversary
has full or sufficient control over a device identical to the target device. The adversary
then learns statistics from the device under control and tries to match them on other
target devices.

In the last few years, deep learning, in its supervised setting, has been intensively
considered for profiled side-channel analysis [MPP16, CDP17, CCCT19]. With the adoption
of deep neural networks, especially the availability of open-source frameworks and datasets,
their applications to SCA have improved the community understanding of the main
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capabilities of this type of non-invasive attacks. The works of Cagli et al. [CDP17] and Kim
et al. [KPH™19] proposed the application of techniques to improve generalization of deep
neural networks for profiled SCA. While [CDP17] considered data augmentation to deal with
trace misalignment, [KPH"19] used noise addition to the input traces as a regularization
technique. Consequently, test generalization is improved, which can be confirmed by
inspecting the attacked traces’ guessing entropy. While providing good indications on
how to deal with SCA’s generalization problem, these works focus on fixed neural network
architectures where the relation between hyperparameters and generalization is left for
future research. The work from Prouff et al. [PSBT 18] proposed experiments in order to
verify what are the most promising hyperparameters for specific trace sets. While this
gives valuable information for side-channel analysis, it is still challenging to use the same
conclusions for different datasets, as they are measured from different devices and with
different equipment.

The selection of hyperparameters is a crucial factor in deep neural network generaliza-
tion, as can be deduced by observing the effects of underfitting or overfitting. One way
to solve this issue is to implement a strong hyperparameter tuning, but this can be very
expensive in the profiled side-channel analysis. A realistic scenario could assume hundreds
of different hyperparameters combinations that need to be tested in a reasonable time. This
is particularly difficult when attacking protected AES implementations where hundreds of
thousands of traces need to be used in the training set. This paper demonstrates that the
reference metric for ensembles to select the best model(s) from the hyperparameter search
is the validation key rank or guessing entropy. To provide more details about machine
model metrics and how they are related to the side-channel analysis metrics, we take
a closer look at the output probabilities obtained either in the validation or in the test
phases. More precisely, the output layer of a neural network contains a number of neurons
equal to the number of classes (or the range of labels) defined for datasets. The number of
classes is directly derived from the selected leakage model. For every tested trace, this
output layer provides class probabilities if the activation function is Softmaz. By ranking
these output class probabilities by their size for each trace and key candidate, we observe
that these ranked class probabilities can be seen as a valid distinguisher or metric for
side-channel analysis. We emphasize that the validation set’s generalization ability can be
different from the test set’s behavior in general. While both sets represent a sample of
data we do not use for training, the validation set is used to evaluate the training set’s
performance, and thus, it indirectly affects the model.

While crucial to an attack’s success, output probabilities are sensitive to even small
changes in the setup, e.g., weight initialization, or choice of hyperparameters. As such,
conducting a successful side-channel attack connects with a question on how to make the
output class probabilities robust. To that end, we consider the hyperparameters tuning
where instead of simply selecting the best model out of H experiments, we take an ensemble
of a group of best models. Our results emphasize that this procedure ensures a significantly
higher performance than a single best model’s performance.

1.1 Related Works

As this work tackles the problem of generalization of neural network models and metrics
in side-channel analysis, we provide an overview of works published in the last few years
related to this problem. We identify the following main trends of research within the field:
e Deep learning for profiled side-channel attacks. Bypassing misalignment
and masking countermeasures on AES [MPP16, CDP17] and public-key [CCCT19,
WPB19] implementations with the application of deep convolutional neural networks.
Different techniques for regularization, like data augmentation through random
shifts [CDP17, PSBT18, Mag19] or noise addition [KPH"19] have been tested. The
authors of [ZS19] investigated the efficiency of deep learning concerning misalignment
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in side-channel traces. In [YLMZ18], the authors showed the results of convolutional
neural networks on time-frequency representations of traces. The work of [HGG18§]
proposed using cryptographic information (plaintext and ciphertext) as additional
inputs to the first fully-connected layer in a convolutional neural network in order
to improve the key enumeration. Besides convolutional neural networks, multilayer
perceptron works well and can break protected implementations [CDP17, KPH'19].
They are often less difficult to tune when compared to convolutional neural networks.

e Trained neural networks as a side-channel distinguisher. The work proposed
by [Tim19] considers a DPA-like deep learning attack where models are trained for
each key byte candidate in an AES implementation. Training and validation metrics
are then considered for reference to distinguish between correct and incorrect key
byte candidates.

e Model interpretability and leakage assessment. In this group, several works
proposed different techniques to verify what a neural network learns from side-
channel traces. Different works investigated the evaluation of input activation
gradient [MDP19b], occlusion techniques [HGG19], and layer-wise back propaga-
tion [PEC19] as a metric to assess what input features (or points of interest) the
neural network selects as the most important for its decisions. Additional steps
into the interpretability of neural networks are done with the introduction of the
guessing entropy bias-variance decomposition [vdVP19]. The authors of [WMM19]
provided a methodology for leakage assessment with deep neural networks to lever-
age the benefits of deep learning in terms of location, alignment, and statistical
order of the leakage. Next, the work of [MDP19a] investigated the performance of
neural networks through information theory. Finally, while not belonging to the
interpretability direction, we also mention the work that considers the explainability
of neural networks for SCA, where the authors considered the layer-wise activation
function comparison [vdVPB19].

¢ Relationship of deep learning and side-channel metrics. The work proposed
in [PHJT19] concludes that there is an inconsistency between accuracy, recall, and
precision compared to common side-channel metrics like success rate and guessing
entropy. More recently, the authors proposed a cross entropy ratio metric to evaluate
the performance of deep learning in SCA [ZZN*20]. Perin et al. proposed a metric
based on mutual information that helps prevent overfitting when using machine
learning-based side-channel attacks [PBP20].

1.2 Contributions and Motivation

By examining the above list of publications, we conclude there is still a lack of technical
explanations to justify why a trained model can provide successful key recovery even
when deep learning accuracy is close or below random guessing. The work of [PHJ*19]
provides valuable information through practical experiments to show the existence of such
inconsistencies with several deep learning metrics, but does not give a detailed analysis of
output class probabilities. In this paper, we study how class probabilities influence attack
performance. What is more, we propose to use ensembles to improve the output class
probabilities predictions and, consequently, make the attacks more powerful. Our main
contributions are:

1. A didactic analysis of output class probabilities and their relation to
successful key recovery. Motivated by the idea of exploring metrics discrepancy,
in Section 3, we explore the information contained in the class probabilities from the
neural network’s output layer as valid information for verifying the performance of
a trained neural network for SCA. We show how output class probabilities change
concerning the dataset selection and the machine learning model.

2. How to improve generalization with ensembles. We demonstrate how a
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significantly better attack performance can be obtained by considering an ensemble
of several trained neural network models instead of simply selecting the best model
from, e.g., hyperparameters search (Section 4). We show that ensembles work well not
only when including only the best-obtained models, but also when many non-optimal
models are used.

This paper is structured as follows. Section 2 discusses the datasets we investigate,
performance metrics in machine learning and SCA, and ensembles. Section 3 presents an
experimental analysis of output class probabilities and their relevance. In Section 4, we
discuss how ensembles of neural networks can significantly improve the attack performance.
In Section 5, we discuss possible future research directions, and we conclude the paper.
We provide information about notation, machine learning techniques, and key rankings for
the ASCAD dataset example in Appendices A, B, and C, respectively.

2 Background

2.1 Datasets

All considered datasets consist of power side-channel measurements. However, the analysis
and contributions in this paper can be extended to other sources of side-channel analysis,
e.g., electromagnetic analysis. The details about investigated datasets are provided in
Table 1.

Table 1: Publicly available datasets.

Dataset Training  Validation  Test  Features Countermeasure
Pinata SW AES 6000 1000 1000 400 No

DPAv4 34000 1000 1000 2000 RSM

ASCAD 200 000 500 500 1400 Masking
CHES CTF 2018 43000 1000 1000 2000 Masking

2.1.1 Pinata SW AES

This dataset refers to a software AES-128 implementation (32-bit STM microcontroller)
where no countermeasures are implemented against side-channel analysis. The traces
contain 400 features (or samples) each, and this interval corresponds to the processing
of the S-box operation during the first AES encryption round. Training, validation, and
test sets correspond to side-channel traces with the fixed encryption key (the key is the
same for training/validation/test sets). The details about the target are given in [Ris20].

2.1.2 DPAv4

DPAv4 database contains trace sets collected from an AES-256 RSM (rotate shift masking)
implementation [TEL14]. The training set consists of 34 000 traces with a fixed key. For
our experiments, test and validation sets contain 1000 traces (those sets have the same
key as the training set). For convenience, we attack only the first key byte of an AES-256
implementation. We trimmed the traces to contain 2000 features corresponding to the
S-box operation’s processing during the first AES encryption round. !

IThis dataset is available at http://www.dpacontest.org/v4/.


http://www.dpacontest.org/v4/

Guilherme Perin, Lukasz Chmielewski and Stjepan Picek 341

2.1.3 ASCAD

This dataset contains measurements from an 8-bit micro-controller software implementation
of AES-128, where Boolean masking is implemented as a countermeasure. It has 200 000
traces with random keys and an additional trace set with 1000 traces with a fixed
key [PSBT18]. Note, the set with 1000 traces, and with the fixed key is split into two sets
of 500 traces to be used as validation, and test sets?. The randomly generated masks for
every AES encryption are also provided with the database metadata. From these mask
values, we could confirm that in the first encryption round, the intermediates associated
with key bytes 0 and 1 are unprotected because the mask values that would generate a
masked S-box output byte value are set to zero for all traces. For the rest of the 14 key
bytes (from index 2 until 15), the mask bytes are random.

2.1.4 CHES CTF 2018

This database refers to the CHES Capture-the-flag (CTF) AES-128 trace set, released in
2018 for the Conference on Cryptographic Hardware and Embedded Systems (CHES). The
traces consist of masked AES-128 encryption running on a 32-bit STM microcontroller.
In our experiments, we consider 43 000 traces for the training set, which contains a fixed
key. The validation and test set consist of 1000 traces each. The key used in the training
and validation set is different from the key configured for the test set. Each trace consists
of 2200 features. *

2.2 Profiled Side-channel Analysis and Deep Learning

As a profiled side-channel attack, deep learning requires a training set of size N for the
learning or profiling phase. Considering x; as a vector representing a side-channel trace,
where z; ; is a feature (point of interest) in z;, every trace ¢ is labeled according to a
function | = f(k, pk;) that represents the side-channel leakage model. Ideally, the training
set should be composed of side-channel traces where each trace is measured with random
input data (ciphertext or plaintext) pk and random key k. Thus, the leakage model defines
the number of classes in the training set. A profiled attack assumes that the adversary has
an identical device to the target one, and this adversary has (in the best-case scenario)
full control of the device.

The adversary collects a validation set of size V from the device under control in
addition to the training set. * After training the neural network, the validation set is
evaluated to check this trained model’s generalization capacity. If validation metrics
indicate a sufficient level of generalization (we will see later that this sufficient level is
not easy to estimate for SCA), the adversary has obtained a (potentially) good enough
profiling model to apply to @ test traces collected from another, identical device with an
unknown secret key k*. We assume that test traces are drawn from the same underlying
distributions defining training and validation sets (while this may not always be the case
due to the portability setting [BCH"19]).

2.3 Performance Metrics and Generalization in SCA

The conventional machine learning metrics taken into account are accuracy, and loss (or
error). Accuracy indicates the ratio between correctly predicted data and the total number
of predictions. Loss indicates the overall error for the evaluated set.

The machine learning metrics obtained during the training step may indicate different
phases that can occur when the parameters (weights and biases) are learned from the

2This dataset is available at https://github.com/ANSSI-FR/ASCAD.
3This dataset is available at https://chesctf.riscure.com/2018/news.
4The keys k; and inputs pk; are also known for the validation set.
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training dataset. In machine learning algorithms, it is common to differentiate between
parameters and hyperparameters. Hyperparameters are all those configuration variables
external to the model, e.g., the number of hidden layers in a neural network. The parameters
are the configuration variables internal to the model and whose values can be estimated
from data. One example of parameters is the weights in a neural network.

Here, we assume three main phases (that do not occur necessarily in this order, although
this commonly happens). Note that we discuss the neural network case, although the
description is valid for any supervised algorithm:

1. Underfitting occurs when the approximation function defined by the neural network
model cannot fit both the training and validation sets. The error is significantly high
for the training set.

2. Generalization: during this phase, the neural network achieves an approximation
function that can fit the training and validation sets with an acceptable error. The
metric results are sufficient to solve the classification problem under question. This
is the ideal scenario in a machine learning setting. In the side-channel analysis, a
good enough generalization is what we aim to obtain. The concept of good enough
will be clarified when we discuss output class probabilities in the next section. Still,
note that the validation set’s generalization does not necessarily mean generalization
for the test set. The validation set is used to update the hyperparameter values, and
consequently, it affects the training phase.

3. Overfitting: this phase happens when the neural network can fit the training set
with very high accuracy and very low error, but it cannot fit the validation set.
Typically, it is relatively easy to overfit the model for a training set in the side-
channel analysis. The number of traces is usually limited in size (up to a few million),
and an over-parameterized neural network has conditions to overfit this training set.
Usually, a large generalization gap, i.e., a difference between a model’s performance
on training data and its performance on unseen data drawn from the same underlying
distribution occurs.

Ideally, we should always train a neural network until it achieves the maximum quality
in generalization to the validation set. If this happens, we should be able to assess whether
the model is in the generalization phase or not. This seems to be an easy task. Still, there
are quite some difficulties in interpreting metrics to identify what phase the model belongs
to while the training evolves.

Standard metrics in SCA are success rate and guessing entropy [SMY09]. These metrics
are not aimed only at predicting correct labels as is the case with machine learning metrics,
but also to reveal the secret key. In particular, let us assume that given  amount of
traces in the attacking phase, an attack outputs a key guessing vector g = [g1, g2, .- -, 9|x|]
in decreasing order of probability with |KC| being the size of the keyspace. The success rate
is defined as the average empirical probability that g, is equal to the secret key k*. The
guessing entropy is the average position of £* in g.

To verify if a model is actually generalizing to the validation or even to a separate test
set in the SCA context, one requires a different understanding of training and validation
metrics. Usually, side-channel traces collected from modern cryptographic implementations
provide a limited leakage due to the state-of-the-art countermeasures. For example, the
trained model may present test accuracy close to random guessing, and still, the target
key can be recovered from the side-channel test set. The trained model indicates a level of
generalization that is limited but sufficient for the considered case. We define this limited
level of generalization as good enough. To improve generalization, one can use some of the
techniques as indicted in Section 1.1, but in this paper, we propose to use the ensembles
as a method of choice to improve the SCA performance.
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2.4 Ensembles in Machine Learning

Depending on specific applications and scenarios, it can happen that machine learning
methods do not reach good enough performance, regardless of the measure of success.
Then, one can try to boost performance by combining individual predictors (machine
learning models). More precisely, the idea is to combine the decisions of complementary
predictors to improve the generalization performance of a single predictor (and thus,
reduce the generalization error). In the rest of this discussion, we consider predictors that
conduct the classification task and denote them classifiers. Ensembles combine multiple
hypotheses (classifiers) to form a (hopefully) better hypothesis. In general, ensembles can
be more successful than single classifiers if the individual classifiers’ errors are (somewhat)
uncorrelated, and the classifiers’ error rates are better than random guessing. While in
practice, it is impossible to get classifiers whose errors are completely uncorrelated, various
techniques bring diversity in their errors. Most common ones are:

e Boosting: it is also considered as a sequential ensemble learning method. This type
of ensembles assumes the construction of weak learners (a classifier that is only slightly
correlated with the true classification) to achieve the same performance as a strong
learner (a classifier that is arbitrarily well-correlated with the true classification).
Weak learners are faster to train because they consider a small portion of the training
data. The boosting process works in iterations, where every iteration represents a
weak classifier training, and the training data is drawn from the original distribution.
Thus, the error is evaluated and, before a new iteration, the distribution that defines
the new training data is adjusted based on certain criteria. In the end, there will be
a classifier with optimal metrics based on the selection of training data. Boosting is
used in profiled SCA in [PHJ"17].

e Bootstrap aggregating (bagging): this methodology considers an averaging or
linear combination (or weighted sum) of predictions from all single classifiers. The
main goal of bagging ensembles is to reduce the (high) variance of different classifiers.
Bagging is not uncommon in SCA [LMBM13, MPP16], as for instance, random forest
uses bagging mechanism. The bagging mechanism works as follows. Create many
subsamples of the dataset with replacement (meaning that the two sample values are
independent, i.e., their covariance equals 0). Train a classifier for each subsample.
Calculate the average prediction from each classifier.

e Stacked generalization (stacking): in this particular case, several single classifiers
(not necessarily of the same type) are trained on the same dataset. One first uses two
(or more) base classifiers that fit on the training data in stacking. Then, one uses
the meta classifier that learns how to combine the base classifiers’ predictions best.

Multiple results suggest that the ensembles’ generalization error decreases monotonically
with the increase in the ensemble size [MMnS05, SFBLI7]. Naturally, the potential perfor-
mance improvements become smaller as the ensemble size grows. As such, this represents
an interesting trade-off between efficiency and performance. Finally, in general, the optimal
ensemble size is highly dependent on the particular classification problem [HLMMS13],
and, to the best of our knowledge, no definitive results are suggesting how to set the
ensemble size (beyond doing extensive experimental analysis).

Note that the ensembles can work better than single predictors if the predictors’ error
rates are better than random guessing. This is not necessarily true in SCA as there, the
cumulative probabilities (see Section 3, Eq. (1)) and not independent traces must allow
guessing the correct key.

While there are works that use ensembles in SCA, ensembles are a natural consequence
of a selected machine learning method. For instance, a random forest is designed as a
bagging technique, and thus, it cannot be used without the bagging mechanism. Here,
we are interested in ensembles of classifiers that also reach high performance, like neural
networks. This, to the best of our knowledge, was not investigated in SCA before. Finally,
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in this paper, we concentrate on the bagging ensemble technique.

3 Output Class Probabilities as an Indication of “Good
Enough” Generalization

There are many domains where a trained neural network requires a very high test accuracy
to solve the problem. Consequently, the generalization phase will start only after a
sufficiently high accuracy is achieved for the training set. In the side-channel analysis,
the generalization phase is directly related to the key recovery, and it may start very
soon after the training starts because a low accuracy can already represent the turning
point from underfitting to generalization. Unfortunately, accuracy or recall may not be
reliable metrics for identifying this minimum amount of epochs to have a successful key
recovery [PHJT19]. On the other hand, SCA metrics like key ranking, success rate, or
guessing entropy are the metrics of use for neural networks in side-channel analysis, but
they are also difficult to evaluate during the training phase. For instance, Robissout et al.
suggest using the Euclidean distance between the training and validation success rate as
a stopping metric. This metric is powerful, but it requires that success rate calculation
is done after every training epoch [RZC'20]. It is not obvious whether this is feasible
in practical scenarios as training sets can have millions of examples where they run for
thousands of epochs. Additionally, it is not clear how to estimate the training set’s success
rate if that set contains random keys.

When a neural network is trained to classify side-channel traces according to a chosen
leakage model (e.g., the Hamming weight of an intermediate byte in the target cryptographic
algorithm), the network’s output layer can provide the probability for each possible class.
For that, the Softmax activation function is defined for the output network layer. According
to a chosen leakage model, these probabilities indicate the likelihood that a specific test
trace leaks an intermediate value. A key ranking can then be calculated, and this process
is similar to a differential power analysis where all possible key byte values are tested for
the same trace set, and a distinguisher indicates the most likely key. The assumption is
that if the trained model achieves a good enough generalization, and if the number of test
traces is sufficiently large, the correct key byte candidate provides a likelihood higher than
the likelihood obtained from the incorrect key hypotheses.

Can a low accuracy (sometimes close to random guessing) still be associated with this
good enough generalization phase? The problem is that the accuracy does not represent
this generalization in SCA, which can only be represented by how key ranking is computed
from the output class probabilities. The accuracy is a metric that considers only the
predicted class 4’ for each test trace. However, the output class probabilities associated
with the predicted 3’ are considered for the key ranking calculation, as they still can
contain valuable information. This situation is directly related to the fact that deep
learning-based SCA against protected targets is successful even if machine learning metrics
indicate the opposite. The outcome of predicting with a trained model on the test set
is a two-dimensional matrix P with dimensions equal to number of traces x number of
classes. Fach row of this matrix is a vector of all possible class probabilities (the sum
of probabilities for each trace ¢ equals 1) for a specific trace i. Note that the number of
classes does not need to be the same as the number of key guesses, which depends on the
leakage model (e.g., for AES, the Hamming weight model has nine classes, while there are
256 key guesses). The summation probability S(k) for each key byte candidate k is a valid
distinguisher for the side-channel analysis:

Q
S(k) = > log(pi.), 1)
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where @ is the number of test traces. The value p; ; is an element of matrix P that denotes
the probability that for a key k, we obtain the label j. Here, the label j is the realization
of a function f(k,pk;) for a specific key guess, trace, and leakage model.

Each row ¢ of the matrix P contains the output class probabilities for a specific
trace. For the correct key candidate k*, Eq. (1) would sum up the highest output class
probabilities from all rows only when the test accuracy is 100% (meaning that the guessed
label is a correct one for every trace). In cases when accuracy is very low and insufficient
to indicate the generalization, the output probabilities p; ; for the correct key &* would
not be the highest-ranked ones in all rows of P. Still, if the summation for S(k*) is the
largest value among all possible S(k), k € |K|, then the predicted key is the correct one.
Not only the highest output class probability in a row ¢ provides valuable classification
information for side-channel analysis (which would consequently mean that the trained
model is still in a “good enough” generalization phase).

Next, we investigate the output class probabilities for three datasets and two neural
network types. Note that we do not aim to reach the best possible attack performance in
these experiments, but to evaluate various architectures’ behavior. For all the experiments
in this paper, we use Keras Python package for neural networks and NVIDIA RTX 2060
GPU.

3.1 Output Class Probabilities from a Leaky Target: Pifiata SW AES

We consider a dataset measured from an unprotected software AES-128 implementation.
In this case, information leakage is significant. For this simple example, the training set
contains 6 000 traces, and the validation and test sets contain 1000 traces each. Each
trace contains 400 points of interest (features). The leakage model is the Hamming weight
of a byte in the S-box output from the first encryption round. This defines a maximum of
nine classes (Hamming weights ranging from 0 to 8). As we target one round key byte, it
is necessary to train 16 models to recover the 16 key bytes. To make it simple, we provide
the results for a single round key byte.

As the training set is relatively small, we define a simple multilayer perceptron (MLP).
To attack this unprotected AES, the configured model has three hidden layers containing
40 units or neurons each. The activation function for the hidden layers is ReL U, and the
output layer, containing nine neurons (equivalent to the number of classes), has Softmax
as the activation function. The learning rate is 0.001 with Adam as the adaptive optimizer
for the backpropagation algorithm. The loss function is computed from the categorical
cross-entropy, which returns the cross-entropy between an approximation distribution y’
(predictions) and a true distribution y (true values).

The model is trained for 200 epochs, and the achieved training, and validation accuracy
are 83% and 52%, respectively (Figure la). For side-channel analysis, this validation
accuracy already indicates a good level of generalization, and the key recovery will be
successful if a reasonable amount of test traces is considered. In this case, the target key
byte is recovered after the processing of approximately 20 traces. At the same time, the
evaluated test accuracy is close to 48%. Notice how the model starts to overfit around
epoch 40.

Now, let us analyze the relevant leakage that is captured in the output class probabilities
for the test set. If the test accuracy would be 100%, for each test trace, the value p; ; would
be associated with the highest output value in the output network layer (the expected
class is always equal to the predicted class). As the test accuracy equals 48%, only
48% of the tested traces will contribute to the summation S(k*) with the highest class
probability. The rest of the traces will contribute to the summation S(k*) with output
class probabilities that are not ranked as the first (or that are not associated with the
predicted class) in the output layer. Figure 1b shows the density distribution for the rank
of output class probabilities for the correct (pink line) and incorrect (grey region) key
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byte candidates. This figure indicates the density of output class probabilities by ranking
the output probabilities in the last neural network layer from 1 (highest probability) to 9
(lowest probability). More precisely, it shows the number of times a certain class probability
appeared for 1000 attack traces.

For the correct key candidate (pink line), the best guess is the correct one for around
50% of the test traces. Afterward, we observe a relatively steep slope of the curve, which
indicates that our trained model is confident in its predictions. The model does not make
errors where the correct key would be predicted as the lowest probable ones. On the other
hand, for the wrong key candidates (grey region, which consists of 255 lines - one for each
wrong key guess), the rank of output probabilities tends to be distributed more evenly
for all wrong key candidates. Still, even the wrong key candidates have a relatively high
density for the top ranks. This happens due to the Hamming weight leakage model as
when the classifier is wrong, it tends to predict the Hamming weight classes 3, 4, and 5,
which occur most often.

As mentioned, this attack succeeds for already around 20 traces. While the required
number of traces cannot be read from Figure 1b, we can deduce the attack will easily
succeed since the pink line has much higher values for most probable class probabilities.
This means that Eq. (1) has a much higher value for the correct key guess than any wrong
key guess.

This analysis shows that output class probabilities contain valuable information and
can be considered an important metric for side-channel analysis and generalization. Still, as
we considered a very simple example here, we can question whether we see the same trend
when attacking more difficult targets. Next, we evaluate a protected AES implementation,
where output class probabilities behave very differently when accuracy is close to random
guessing.
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(a) Training, validation, and test accuracy. (b) Rank of output class probabilities.

Figure 1: Machine learning metrics and class probability ranks for the Pifiata SW AES
implementation.

3.2 OQOutput Class Probabilities from a Protected Target: ASCAD AES

This section analyzes the output class probabilities on a masked AES implementation
(ASCAD database). We develop our analysis for key byte with index 2 in the first
encryption round (the first masked byte). For training, validation, and test phases, the
selected leakage model is the Hamming weight of S-box output without taking into account
the mask values and the knowledge of countermeasures, i.e., a black-box scenario.

We consider two neural network models that are more complex than the previous
example from Section 3.1. First, we define a multilayer perceptron with five hidden
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layers, where each layer contains 200 neurons, and the activation function is ReLU. The
rest of the hyperparameters are the same as those considered for the leaky AES in the
previous subsection. This architecture is similar to the one given in [PSB™ 18], with a small
difference that we use one less hidden layer. Next, we define a small CNN architecture,
consisting of one convolutional layer, and two fully-connected layers. Both fully-connected
layers have 100 neurons. The convolutional layer has filter size equal to eight, kernel size
equal to ten, and stride equal to five. The activation function is ReLU. We train both
architectures for 100 epochs. Note that MLP and CNN represent standard choices in deep
learning-based SCA.

In Figure 2a, we observe that while the accuracy grows during the full training phase,
the validation accuracy slowly decreases from the beginning, which indicates that the neural
network is not learning how to generalize to unseen data. If we had to identify the main
training phases (underfitting, generalization, and overfitting) from the accuracy metric, we
would assume that the neural network model starts in an underfitting scenario (up to 10
epochs) and then it starts to fit the training set until the overfitting happens if more than
100 epochs are processed. Unfortunately, from the validation and test accuracy, we can
assume that the generalization phase never happened. This is somewhat counter-intuitive,
as the actual attack reveals that this target can be broken with around 1000 traces (the
correct key candidate k* is ranked as the first).

Next, we consider the ranks for the output class probabilities for the correct and wrong
key candidates (Figure 2b). Differing from Figure 1b, now the probabilities for the correct
and wrong key candidates are similar, which means that the trained model is less certain
in its predictions. Additionally, the best-ranked guess for the correct key candidate has
a lower density, which is expected as the classifier predicts it less often. Even for the
correct key candidate, sometimes we reach the correct guess among the least probable
ones. Finally, the highest probability rank is still somewhat higher for the correct key than
for any wrong key.

The grey region’s interpretation of all wrong keys is somewhat more difficult as it
cannot distinguish among various keys. The grey region appears above the pink line for
the least probable guesses, which means that the wrong keys have predictions more spread
out, i.e., for wrong keys, the classifier is less certain how to classify. Next, between the
ranks 4 and 8, the grey region is above the pink line, which would indicate that some of
the wrong guesses could have the final probability very close to the correct key (or even
surpass it, depending on specific values). Still, this is not the case because our analysis
shows that the wrong key with high probability for a specific key rank (e.g., rank 1) has
large drops for next ranks (e.g., ranks 2 and 3), which means that in the end, the summed
probability for any wrong key is smaller than the summed probability for the correct key.

Figure 3 depicts the same experiments, but now for the CNN architecture. We observe
a similar behavior as for MLP, but now, reaches somewhat lower final value. The density of
the rank of output class probabilities also indicate a slightly worse behavior when compared
to MLP since there are wrong key guesses with higher density for the first probability rank
compared to the correct key guess. At the same time, the probability values are higher,
which indicate that CNN is more certain in its best guesses (observe more narrow region
for the middle class probability ranks).

Next, in Figures 4 and 5, we depict the class probability rankings for different number
of test traces: 250, 500, 750, and 1 000 traces, for MLP and ASCAD, respectively. For MLP,
it is clear that with 250 traces, the correct key guess is far from the predicted one, as there
is a significant grey region above the pink line even for the highest probable ranks. As the
number of traces increases, the correct key guess (pink line) values increase, first becoming
more reliable for ranks 2 and 3, and then finally, for 1000 traces reaching one of the top
values for the highest probable rank. Additionally, in Appendix C, we give details about the
probabilities behavior for the correct key and the best wrong guess for MLP. Interestingly,
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(a) Training, validation and test accuracy. (b) Rank of output class probabilities.

Figure 2: Machine learning metrics and class probability ranks for the ASCAD database
(1000 traces) and MLP.
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Figure 3: Machine learning metrics and class probability ranks for the ASCAD database
(1000 traces) and CNN.

the result with 1000 traces somewhat differs from the one given in Figure 2b (especially
for the correct key guess). This indicates that while the summed output probability is
a correct metric for assessing the SCA performance, it is also quite sensitive to small
changes, like a random selection of test traces or different weight initialization (that are
the differences here).

When considering CNN results, we observe it is more sensitive to the number of attack
traces, as, for 250 traces, the density for the highest rank is lower. Additionally, we see a
stronger influence of middle ranks. As we start to add more measurements to the attack
set, the behavior becomes more smooth and resembles more the MLP behavior. Finally,
the case with 1000 attack traces shows that the correct key is still not the highest ranked,
but is very close, resembling the performance of MLP for 750 attack traces.

While the weight initialization procedure and selection of test traces are important, we
commonly assume that, on average, the performance should be similar for any subset of
traces drawn from the same distribution and any reasonable weight initialization procedure.
Next, we ask the question of how sensitive are output class probabilities to hyperparameter
tuning. We see a stable behavior of class probability ranks for different deep learning
methods, where the final behavior depends on the quality of the trained model and the
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Figure 4: Rank of output class probabilities for the test set by considering correct and
incorrect key candidates for different amount of test traces (ASCAD) and MLP.

number of attack traces.

3.3 Output Class Probabilities from a Protected Target: CHES CTF
2018

Next, we analyze the CHES CTF 2018 dataset (43000 traces for the training phase and
1000 for validation and testing). We consider two CNN architectures (details in Figure 6
that differ only in the number of fully-connected layers (2 and 3 layers). We investigate
whether the output class probability analysis holds for CNNs and small architectural
changes. The selected leakage model is the Hamming weight of the S-box output in the
first AES encryption round. As shown in Figure 6, a small change in hyperparameters
results in different output probabilities for the correct and wrong key guesses. Both attacks
will be successful as the pink line is above the grey region for the highest probability ranks.

This means that while summed output probabilities represent a strong distinguisher,
they are not necessarily robust to changes in the architectures (for both the correct guess
and wrong guesses). Again, note that while the grey region is above the pink line for
several ranks, the grey region represents 255 wrong guesses, and the output probability
for any wrong key guess is lower than the one for the correct key guess. A natural step
is to try to make the output class predictions more robust, resulting in a better attack
performance and more stable behavior in the presence of small architecture changes.

Since the hyperparameter selection is a difficult task that rarely results in the best
possible hyperparameters (and consequently, machine learning models), we propose using
ensembles to improve the SCA performance. There, one would select several good machine
learning models instead of “simply” taking a single better (where better denotes the best
out of the tested machine learning models, but still a model that is most likely not the
optimal one) model according to a validation metric. This approach is motivated by
increasing the distance of the summation in Eq. (1) for the correct key candidate k*
compared to the wrong key candidates.
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Figure 5: Rank of output class probabilities for the test set by considering correct and
incorrect key candidates for different amount of test traces (ASCAD) and CNN.

4 Improving Generalization in SCA with Ensembles

A deep neural network can be understood as a learning algorithm that needs to be tuned to
perform well. This tuning, i.e., selecting hyperparameters, can be considered one stage of
a bi-level optimization problem. The first objective is to learn neural network parameters
(weights and biases). The second objective is the performance with regards to the selected
hyperparameters. In deep learning-based profiled SCA, we could even consider a third
objective: selecting a leakage model. The latter defines the way the datasets are labeled,
and this also needs to be selected in a proper way for an attack to be successful. Several
deep neural network configurations can be tested depending on the available time, and
the output metrics are monitored to adjust the hyperparameters. Such a hyperparameter
optimization process generates many profiling models and is usually concluded by selecting
a model according to the minimum (cross-validation) generalization error.

Let us assume a neural network model h and a set of different groups of hyperparameters
A= (X, \,...,A\s—1). The model A is trained with training set t.q:n and validated with
validation set tyqi, VA € A, producing H = (hx,,hr,s--.,ha,_,) trained models. As
suggested in [HKV19], the best model is selected according to:

hbest - argmin Lval (h)\v ttraina tval)a (2)
AEA
where Lyqi(hx, terain, tvar) Teturn the validation loss for a model h, which is configured
with a set of hyperparameters A, trained with t;4;n, and validated with ¢,q;.

In our experiments, the set of H trained models is a result of random hyperparameter
selection in the predefined ranges of hyperparameter values, as detailed in Section 4.2.
Because each separate model’s training can take a considerable amount of time, commonly
in SCA, the size of the set H has to be limited to achieve results in a reasonable time.
For example, the training of a deep neural network on a dataset containing millions of
traces may take several minutes for a single key byte (an optimistic scenario using parallel
GPUs). If an optimization process for hyperparameters requires evaluation of hundreds of
different hyperparameter groups, a profiled attack on a 16-key bytes AES implementation
will take weeks or even months.

Consequently, it sounds reasonable to take the most out of the hyperparameter tuning
phase and explore whether one can use more than a single machine learning model obtained
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Figure 6: Rank of output class probabilities for two different groups of CNN hyperparam-
eters on the same dataset (CHES CTF 2018).

during the tuning phase. We emphasize that one acquires numerous machine learning
models due to the tuning phase, so there is no added computational complexity. The only
addition stems from the fact that one needs to combine multiple models in the attack
phase, but the complexity of that grows linearly in the number of used models (we only
require the additional summation of output probabilities over all trained models). Finally,
we will demonstrate that using even a small number of models in ensembles, e.g., ten
models improves performance significantly.

4.1 Model Ensembles for Profiled Side-channel Analysis

Ideally, for neural networks, each model’s hyperparameters should vary to learn different
features from the same training set. If the models have equal configurations, the neural
network will likely learn similar representations from the training set and provide similar
classification results for the same test set. Here, the main goal of ensemble learning is
to improve the performance of profiled side-channel attacks. This will be confirmed by
comparing the guessing entropy convergence for ensembles and a single best model.

When a deep learning-based side-channel attack is successful, the main reason is that
the summation probability (see Eq. (1)) is larger for the correct key candidate in the
more important ranks (see for example Figure 2b). As a result, successful ensembles
should increase the correct key candidate’s summation probability while averaging out the
variations for the incorrect candidates.

Still, we are not assuming that ensemble learning is always better when compared to a
single learning model resulting from an optimal hyperparameter search. This analysis’s
main goal is to demonstrate that the chances of success in terms of key recovery are higher
for ensembles than a single model selected from a limited number of hyperparameters
groups, which is confirmed for several public side-channel datasets.

For a very large training set, one expects a complex deep neural network to be defined.
This requires a careful selection of hyperparameters, and each new configuration may take
a significant amount of time and computation power. Moreover, because in ensembles,
several models are combined, if few of the models do not perform well, the fluctuations
introduced by these models will be removed by having models that are generalizing. The
experiments provided in this section demonstrate that ensembles are more likely to succeed
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compared to a single learning model for a limited number of H trained models. °

Eq. (2) indicates that the selection of a good model from the hyperparameter optimiza-
tion process takes into account the loss function. This is obvious, as the model with the
lowest validation loss would indicate the best generalization case. However, as empirically
demonstrated in the previous sections and also highlighted in [PHJT19], the key rank,
which is obtained from output class probabilities, is a more informative metric with respect
to generalization for profiled side-channel analysis. Therefore, instead of using the original
proposition from [HKV19], we modify Eq. (2) to select the best model:

hbest — al"gmin GE(h)\; ttrainv tval)v (3)
€A

where GFEyq1(hx, tirain, tval) Tefers to guessing entropy computed over the validation trace
set, tyqr, after training the model hy with a training trace set trqin.

The selected best model, hyest provides output class probability py,. ., :,j, where i is
the trace i, and j is the label. Note that this probability is obtained for a leakage model I.
Instead of selecting simply the best model, we compute an ensemble of models by summing
up the output class probabilities from several trained models. We consider the bagging
option to build ensembles (see details in Section 2.4). The applied method computes the
new likelihood for each key candidate by summing up the probabilities from all individuals
models. The summation probabilities for ensemble learning S, (k) are then computed for
each key byte candidate k as follows:

z
Se(k) = log(pm,ik)- (4)

=1i=1

In Eq. (4), the term Z (where Z < H) refers to the number of machine learning models.
The term p,, ; ; refers to the output class probability for model m and trace i according
to the label j, leakage model [, and input pk;. We expect an improvement in the key
ranking convergence after building the ensemble, stemming from the ensemble summation
probabilities. The main goal of this analysis is to compare ensemble learning in SCA when:

e Ensembles are built from all the available single trained models.
e Ensembles are built from E} best trained single models. The best models are selected
based on key rank for the validation set according to Eq. (3).

We compare the performance of ensembles and a single best model. Note that the
single best model approach could be considered as the current state-of-the-art in machine
learning-based SCA. Indeed, commonly one investigates several machine learning methods
and their hyperparameters, and in the end, uses the best performing model. To better
explain the difference in performance between ensembles and a single best model, we
consider the class probability ranks for the CHES CTF 2018 dataset in Figure 7. There are
two main effects 1) for the correct key guess, ranks 2 to 4 improve, which means that the
correct key guess will have a higher summed probability, and 2) wrong key guesses behave
more stable where the top values for the highest ranks are significantly reduced. This
means that the wrong key guesses will have smaller summed probabilities. Consequently,
the difference between the correct and wrong key guesses will be larger, and the target
will be broken with fewer measurements.

5In a hyperparameter search, a large number of possible hyperparameter combinations would result in
neural network architectures that are unable to generalize to a separate test set. It is crucial to have an
ensemble that does not contain a majority of bad classifiers to generalize over the space of hyperparameters
A.
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Figure 7: Rank of output class probabilities computed from the CHES CTF 2018 dataset.
Ensemble of 50 models.

4.2 Results on Publicly Available Datasets

This section provides experimental results for the bagging ensemble methodology. ¢ We
consider three publicly available datasets and do not give results for the Pinata SW
implementation as it is very easy to attack. We consider both the Hamming weight and
identity leakage models, but we provide the latter only for the ASCAD dataset as this is
the only case where there are random keys in the training phase. When using the identity
leakage models with a dataset with the same key for the training and testing (DPAv4),
our results show it can be easily broken. On the other hand, when there is a single key for
training and a single, but different key for testing (CHES CTF 2018), we cannot break
it with the identity leakage model, which is not surprising as the neural network never
learned to generalize for a different key.

We compute the ensemble guessing entropy and success rate on a single AES key byte
for each dataset. For that, the hyperparameter search consists of training H = 50 different
models. These experiments are repeated for MLP and CNN. For each trained model, the
hyperparameters are randomly selected from predefined ranges defined in Tables 2 and 3
for MLP and CNN, respectively. These ranges are selected based on results from related
works where we aimed to have a wide selection of hyperparameters, but still, those that
are known can result in a good attack performance. The unchanged hyperparameters
are optimizer, where we use adaptive Adam optimizer, and weight initialization that adopts
the random uniform method. Furthermore, the models are always trained for 50 epochs,
as this was an amount leading to better generalization.

Table 2: Hyperparameter search space for multilayer perceptron.

Hyperparameter min max step
Learning Rate 0.0001  0.001 0.0001
Mini-batch 100 1000 100
Dense (fully-connected) layers 2 8 1
Neurons (for dense or fully-connected layers) 100 1000 100
Activation function (all layers) ReLU, Tanh, ELU, or SELU

6We also experimented with the stacking method, but it provided poor performance for the considered
datasets.
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Table 3: Hyperparameters search space for convolutional neural network.

Hyperparameter min max step
Learning Rate 0.0001  0.001 0.0001
Mini-batch 100 1000 100
Convolution layers 1 2 1
Filters 8 32 4
Kernel Size 10 20 2
Stride 5 10 5
Dense (fully-connected) layers 2 3 1
Neurons (for dense or fully-connected layers) 100 1000 100
Activation function (all layers) ReLU, Tanh, ELU, or SELU

4.2.1 AES256 - DPAv4

In Figure 8, we provide results for the Hamming weight leakage model and DPAv4 with
guessing entropy. First, we observe that MLP performs better than CNN and that for
MLP, there is almost no difference between using an ensemble of all available models, an
ensemble of ten best models, or a single best model. Still, a small improvement (albeit
not relevant from a practical perspective) h for the ensemble of ten best models. On the
other hand, when using CNN, ensembles are significantly better than a single best model.
Simultaneously, there is no difference between the setting with 10 or 50 models in the
ensemble.

In Figure 9, we consider the same setting, but this time, with the success rate metric.
For MLP, the behavior is similar to the guessing entropy scenario. For CNN, there are
more significant differences where the ensemble of ten best models is significantly better
than the ensemble of 50 models or a single best model. We note that with an ensemble of
ten models, we require around 350 traces to reach a success rate of 1, while for the same
performance with a single best model, we require around 750 traces.

—— key byte 0 Ensemble 50 Models 100
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Figure 8: Guessing entropy for DPAv4 for the Hamming weight leakage model.

4.2.2 AES128 - ASCAD

In Figures 10 and 11, we depict results for the ASCAD dataset in the Hamming weight
leakage model, for guessing entropy and success rate, respectively. When considering
guessing entropy, we see very similar behavior for both MLP and CNN. Interestingly,
here the best option is to use an ensemble of all 50 models, which indicates that more
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Figure 9: Success rate for DPAv4 for the Hamming weight leakage model.

than ten best models provided strong information to reduce the attack variance. In both
cases, selecting only a single best model performs the worst, where the difference in the
performance is around one order of magnitude compared with ensembles of 50 models.
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Figure 10: Guessing entropy for ASCAD for the Hamming weight leakage model.

When considering the success rate, the differences in performance are much smaller.
This is because the success rate considers only the best key guess, limiting its power
compared to guessing entropy. With MLP, an ensemble of 50 models is the best, while an
ensemble of ten models and one single best model perform significantly worse. For CNN,
the situation is even more interesting as all considered techniques reach a success rate of 1
after processing approximately the same number of traces. Both ensemble options perform
better than a single model where this difference is especially striking if using a smaller
number of traces in the training phase.

Next, we show the results for ASCAD for the identity leakage model (I =S-box(k, pk))
where the training set contains random keys. Figure 12 gives results for the guessing
entropy metric. For MLP and CNN, ensembles work better than a single best model,
where the difference is significant for CNNs (order of difference in the number of traces
needed to reach guessing entropy of 0 for ensembles vs. the best model). Success rate
results (Figure 13) show similar behavior where ensembles are better than a single model.
This difference is rather small for MLLP but quite significant for CNN. More precisely, with
ensembles, we require around 100 traces to reach a success rate of 1, while with the best
model, we need 500 traces.
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Figure 11: Success rate for ASCAD for the Hamming weight leakage model.
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Figure 12: Guessing entropy for ASCAD for the identity leakage model.
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Figure 13: Success rate for ASCAD for the identity leakage model.

4.2.3 AES128 - CHES CTF 2018

Finally, in Figures 14 and 15, we show results for the CHES CTF dataset, the Hamming
weight leakage model, for guessing entropy and success rate, respectively. Here, ensembles
again outperform a single best model, which confirms our previous results. What is more,
50 models work better than a subset of ten best models. Differing from previous settings,
CNN here outperforms MLP as it requires half the number of traces to reach guessing
entropy of 1 for the best performing method.
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Figure 14: Guessing entropy for CHES CTF 2018 for the Hamming weight leakage model.
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Figure 15: Success rate for CHES CTF 2018 for the Hamming weight leakage model.

5 Conclusions and Future Works

This paper proposes an analysis of the deep learning model generalization in the SCA
context. First, we analyze the output class probabilities from the test phase of a deep
learning-based side-channel analysis. We demonstrate how output class probabilities
contribute to the successful attack with all the probabilities (ranks) and not only the
highest ones. Next, we show that those output class probabilities are sensitive to small

changes in the neural network architectures.

To strengthen the performance of side-channel attacks and make the output class
probabilities more stable, we propose to use ensembles of neural networks. Our results
confirm that ensembles perform very well and, on average, better than single (best) models.

The main conclusions from the use of ensembles in the deep learning-based SCA are:

e The summed output class probabilities represent a strong distinguisher of a side-

channel analysis performance. To properly assess the attack’s performance, it is not
enough to look only at the highest output class probability, but one needs to consider
all the values. Our experiments show how middle-ranked probabilities play a crucial
role when conducting a side-channel attack on a difficult target.

e Output class probabilities are sensitive to even small changes in experimental setups:

from the selections of specific traces in a dataset to hyperparameters. To make them

more robust, one can use ensembles of classifiers.

e Ensembles are strong alternatives to make better usage of several hyperparameter
groups tested for a single key byte. Combining the outcome of several trained models
increases attack performance.

e The ensembles tend to provide a success rate that is at least good as the best single
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model among several hyperparameters configuration options. Our results showed that
a single model never outperformed the ensemble. Consequently, ensembles should be
considered the preferred way to conduct deep learning-based SCA, provided that the
added complexity from more experiments is acceptable.

e The use of ensembles relaxes the need for a careful selection of a strong group of
hyperparameters in neural networks. Still, we do not conclude that ensembles replace
an optimal hyperparameter tuning method.

e We do not assume or conclude that ensembles improve the correct learnability of
neural networks from side-channel traces. If the model is configured and trained
so that the generalization is very poor, likely, ensembles will not improve the
generalization.

e QOur results indicate that the ensembles stabilize after a few learning models. Moreover,
as the complexity increases with adding models, we recommend using a limited
number of models, e.g., up to 50. We consider this sufficient as our underlying models
(CNNs and MLP) are already quite complex and powerful.

As future work, we plan to investigate the stacking ensemble methodology. Moreover,
we aim to investigate the benefits of ensemble learning in combination with regularization
techniques. Finally, we discuss Eq. (1) as an essential metric to understand SCA perfor-
mance. It would be interesting to investigate the distribution of probabilities and try to
formalize the density.

Availability

Implementations for reproducing our results are available at https://github.com/AISyLab/
EnsembleSCA.
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A Notation

Table 4: Notation.

Symbol Description
tirain, IN training set of size IV
tval, V' validation set of size V'
tiest, Q test set of size @
T side-channel measurement ¢
Tif feature f in side-channel measurement &
l, HW leakage model, Hamming weight
k, k*, K, |K| key guess, secret key, keyspace, keyspace size
pk input data
GE, g guessing entropy, guessing entropy vector
vy true classes, predicted classes
P probability matrix
Di,j> Pm,i,j probability vectors in P
L loss function
H, h set of machine learning models, machine learning model
Ey, Z ensemble of best models, number of machine learning models
A, A set of hyperparameters groups, group of hyperparameters

B Machine Learning Algorithms

B.1 Multilayer Perceptron

The multilayer perceptron (MLP) is a feed-forward neural network that maps sets of inputs
onto sets of appropriate outputs [GD98]. MLP consists of multiple layers of nodes in a
directed graph, where each layer is fully connected to the next one, and training of the
network is done with the backpropagation algorithm. There are at least three layers: one
input layer, one output layer, and one hidden layer. If there is more than one hidden layer,
then such an architecture already represents deep learning.
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B.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) commonly consist of three types of layers: con-
volutional layers, pooling layers, and fully-connected layers. Convolution layer computes
the output of neurons that are connected to local regions in the input, each computing
a dot product between their weights and a small region they are connected to in the
input volume. Pooling decrease the number of extracted features by performing a down-
sampling operation along the spatial dimensions. The fully-connected layer (the same as in
MLP) computes either the hidden activations or the class scores. To avoid the overfitting,
batch normalization layer, which normalizes the input layer by adjusting and scaling the
activations, is commonly used.

C Class Probabilities vs. Number of Traces

In Tables 5 and 6, we depict the key rank probabilities for the ASCAD dataset and the
Hamming weight leakage model. We consider the results if taking only the best rank,
the sum of two best ranks, or the sum of the three best ranks. We give results for four
different test set sizes. We put the red color values if the correct key is worse than the best
wrong, and green color otherwise. In Figure 5, we consider the case where we compare
the correct key with the best wrong key up to a certain ranking. This means that the
best wrong key can change from setting to setting. First, we consider only the highest
probability rank; for instance, if the correct key is highest ranked for a trace, we add it to
the sum. Otherwise, we add nothing. Going to the first two ranks, we add the probability
if the correct key is in the first two ranks. Otherwise, we add nothing. We follow the same
procedure for wrong keys, but we take the best wrong key (which means there is always a
value to add to the sum of probabilities). We aim to depict the behavior of wrong keys as
from figure, it is not always easy to discern it since 255 lines overlap.

Considering the results, we can see that the correct key has a lower probability if
we take a smaller number of traces or only the best rank. By adding more information
(regardless if it is in the form of more traces or more ranks), the correct key improves,
while the best wrong key becomes worse. If we consider only the best rank, we see that
even 1000 traces is not enough to reach guessing entropy 0. By adding the second-best
ranking information, we notice that 750 traces become enough to conduct a successful
attack. Naturally, considering more ranks or taking more traces makes the distinction
between the correct and the best wrong key even larger, and thus, the attack easier.

In Table 6, we consider a similar setting, but now, we take only the wrong key that was
the best for the first key rank. We see a similar behavior as for the previous example. The
difference is that now, reaching guessing entropy of 0 is easier. This is because the best
wrong key for key rank 1 is not staying the best wrong key when taking ranks 1 and 2, etc.

Table 5: Density for class probability ranks 1, 2, and 3 for the ASCAD dataset in the
Hamming weight model.

rank 1 rank 1 + rank 2 rank 1 + rank 2 + rank 3
Nr traces  Correct key  Best wrong key =~ Correct key = Best wrong key ~ Correct key  Best wrong key
250 0.268 0.314 0.505 0.572 0.690 0.755
500 0.274 0.299 0.520 0.547 0.708 0.732
750 0.282 0.290 0.540 0.535 0.730 0.725
1000 0.283 0.284 0.539 0.529 0.735 0.725
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Table 6: Density for class probability ranks 1, 2, and 3 for the ASCAD dataset in the
Hamming weight model (best wrong key selected from rank 1 only.).

rank 1 rank 1 + rank 2 rank 1 + rank 2 + rank 3
Nr traces  Correct key  Best wrong key ~ Correct key = Best wrong key ~ Correct key  Best wrong key
250 0.268 0.314 0.505 0.529 0.690 0.744
500 0.274 0.299 0.520 0.547 0.708 0.720
750 0.282 0.290 0.540 0.526 0.730 0.698

1000 0.283 0.284 0.539 0.519 0.735 0.701
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