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a b s t r a c t 

We introduce a semi-analytical iterative multiscale derivative computation methodology that allows for error 

control and reduction to any desired accuracy, up to fine-scale precision. The model responses are computed by 

the multiscale forward simulation of flow in heterogeneous porous media. The derivative computation method 

is based on the augmentation of the model equation and state vectors with the smoothing stage defined by the 

iterative multiscale method. In the formulation, we avoid additional complexity involved in computing partial 

derivatives associated to the smoothing step. We account for it as an approximate derivative computation stage. 

The numerical experiments illustrate how the newly introduced derivative method computes misfit objective 

function gradients that converge to fine-scale one as the iterative multiscale residual converges. The robustness 

of the methodology is investigated for test cases with high contrast permeability fields. The iterative multiscale 

gradient method casts a promising approach, with minimal accuracy-efficiency tradeoff, for large-scale hetero- 

geneous porous media optimization problems. 
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. Introduction 

Derivative computation is an important aspect of gradient-based op-

imization algorithms. When the objective (or cost) function evaluation

nvolves the numerical simulation of discretized partial derivative equa-

ions (PDE), efficient gradient computation is of utmost importance. It

s well documented in the literature that the most efficient and accu-

ate way of computing derivatives are the analytical direct ( Anterion

t al., 1989; Rodrigues, 2006; Oliver et al., 2008 ) (when the number of

ost functionals is greater than the number of parameters) and Adjoint

 Chavent et al., 1975; Li et al., 2003; Oliver et al., 2008; Kraaijevanger

t al., 2007; Rodrigues, 2006; Jansen, 2011 ) (if the number of param-

ters is greater than the number cost functionals) methods. However,

ven when considering efficient gradient methods, due to the neces-

ity to evaluate the forward model and the derivative information many

imes, up until the optimality conditions are met, techniques to reduce

he forward model simulation cost have been proposed ( Jansen, 2011;

ardoso et al., 2009; van Doren et al., 2006 ). 

Multiscale (MS) simulation methods ( Jenny et al., 2003; Hou and

u, 1997 ) have been increasingly employed for the efficient solution
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f elliptic ( Zhou and Tchelepi, 2008 ) and parabolic ( Ţ ene et al., 2015 )

quations, more specifically subsurface flow problems in highly het-

rogeneous porous media. Also, many developments to extend its ap-

licability to extended physics have been observed in the recent years

 Lie et al., 2017 ). 

Moreover, MS derivative computation strategies, based on MS for-

ard simulation models, has also been subject of study. MS ad-

oint formulation (MS-ADJ) for single-phase subsurface flow have

een presented in Fu et al. (2010, 2011) . MS adjoint computation

ethods for multiphase flow have also been developed ( Krogstad

t al., 2011; Moraes et al., 2017 ). More recently, a mathemati-

al framework for MS computation of derivative information has

een developed ( de Moraes et al., 2017 ). It has been highlighted in

e Moraes et al. (2017) ; Fu et al. (2010) that inaccurate MS gradient

omputations could lead to inaccurate gradient directions. However, as

t is indicated in de Moraes et al. (2017) , strategies that improve the

S forward simulation solution (e.g. refinement of the MS coarse grid)

esult in better gradient estimates. Moreover, in Fu et al. (2010) it is sug-

ested that an iterative MS gradient computation strategy could resolve

he multiscale gradient inaccuracies. 
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t  
In this work, we develop an iterative multiscale gradient computa-

ion strategy which converges to the fine-scale gradient solution, thus

llowing for error control and reduction for multiscale gradients. The

erivative computation method is based on the generic mathematical

ramework introduced in de Moraes et al. (2017) . By augmenting the

S model equation and the state vectors with the i-MSFV smooth-

ng stage, the framework is capable of providing derivative informa-

ion at any desired accuracy, up to fine-scale precision. The augmen-

ation is addressed by the implicit differentiation strategy. In the for-

ulation, we avoid additional complexity involved in computing par-

ial derivatives associated to the smoothing step by also only approxi-

ately solving the derivative state equation associated to the it. Also,

he strategy seamlessly accommodates both the Direct and Adjoint

ethods. 

The remaining of this paper is organized as follows. Firstly, we

resent an algebraic formulation for the i-MSFV method, suitable for

he derivation of the derivative computation methods. Next, we derive

he Direct and Adjoint methods to compute derivative information, fol-

owing the i-MSFV framework, when the algorithms are presented. Nu-

erical validation of the method against numerical differentiation is

resented. The numerical experiments conducted show that fine-scale

radient can be reproduced via the i-MSFV method if the forward simu-

ation converges to a small enough residual tolerance. We show numer-

cal evidence that there is a relationship between the gradient quality

nd the i-MSFV solution residual by comparing fine-scale gradient and

-MSFV gradients and relating the difference between the two with the

ressure error norm. Concluding remarks are finally presented in the

ast section. 

. Algebraic and algorithmic description of the multiscale 

terative method 

We consider the set of equations that algebraically describes the for-

ard simulation at the fine scale, without any assumption regarding the

nderlying physical model, as ( de Moraes et al., 2017 ) 

 𝐹 ( 𝐱, θ) = 𝟎 , (1)

here 𝐠 𝐹 ∶ ℝ 

𝑁 𝐹 ×ℝ 

𝑁 𝜃 → ℝ 

𝑁 𝐹 represents the set of algebraic forward

odel equations, 𝐱 ∈ ℝ 

𝑁 𝐹 is the state vector (which, for single-phase

ow, contains the grid block pressures), θ ∈ ℝ 

𝑁 𝜃 is the vector of param-

ters, and the subscript F refers to ‘fine scale’. There are N F fine-scale

ells and N 𝜃 parameters. Eq. (1) implicitly assumes a dependency of the

tate vector x on the parameters θ, i.e. 

 = 𝐱 ( θ) . (2)

nce the model state is determined, the observable responses of the

orward model are computed. The forward model responses may not

nly depend on the model state, but also on the parameters themselves,

nd can be expressed as 

 𝐹 = 𝐡 𝐹 ( 𝐱, θ) , (3)

here 𝐡 𝐹 ∶ ℝ 

𝑁 𝐹 ×ℝ 

𝑁 𝜃 → ℝ 

𝑁 𝑦 represents the output equations

 Jansen, 2016 ). It is assumed that g F can be described as 

 𝐹 ( 𝐱, θ) = 𝐀 ( θ) 𝐱 − 𝐪 ( θ) , (4)

here 𝐀 ( θ) ∈ ℝ 

𝑁 𝐹 ×ℝ 

𝑁 𝐹 matrix and 𝐪 ( θ) ∈ ℝ 

𝑁 𝐹 . 

A two-stage multiscale (MS) solution strategy ( Jenny et al., 2003;

ang et al., 2014 ) can be devised by firstly computing a coarse scale

olution 

̆
 ( ̆𝐱 , θ) = ( 𝐑𝐀𝐏 ) ̆𝐱 − ( 𝐑𝐪 ) = �̆� ̆𝐱 − �̆� = �̆� , (5)

̆
 ∶ ℝ 

𝑁 𝐶 ×ℝ 

𝑁 𝜃 → ℝ 

𝑁 𝐶 , where N C is the number of coarse grid-blocks,

nd then an approximated fine-scale solution 

 

′(𝐱 ′, ̆𝐱 , θ) = 𝐱 ′ − 𝐏 ̆𝐱 = 𝟎 , (6)

here 𝐠 ′ ∶ ℝ 

𝑁 𝐹 ×ℝ 

𝑁 𝐶 ×ℝ 

𝑁 𝜃 → ℝ 

𝑁 𝐹 . 
211 
The so-called prolongation operator 𝐏 = 𝐏 ( θ) which is an N F ×N C 

atrix that maps (interpolates) the coarse-scale solution to the fine-

cale resolution. The so-called restriction operator 𝐑 = 𝐑 ( θ) is de-

ned as an N C ×N F matrix which maps the fine scale to the coarse

cale. More information about how these operators are constructed

or the Multiscale Finite Volume (MSFV) method can be found in

hou and Tchelepi (2008) ; Wang et al. (2014) . Let ̆𝐱 ∈ ℝ 

𝑁 𝐶 be the coarse

cale solution ( N C ≪ N F ), and 𝐱 ′ ∈ ℝ 

𝑁 𝐹 the approximated fine-scale

olution. 

The iterative multiscale strategy ( Hajibeygi et al., 2008 ) can be de-

ised by considering versions of Eqs. (4) and (5) written in residual form.

et 𝐱 𝜈−1 be an approximate solution to Eq. (4) at iteration 𝜈 − 1 and 

 

𝜈−1 = 𝐪 − 𝐀𝐱 𝜈−1 (7)

e the corresponding residual. A multiscale improvement to this approx-

mation can be devised by writing Eq. (5) in residual form as 

̆
 

𝜈
(
�̆� 𝜈 , 𝐱 𝜈−1 , θ

)
= �̆� ̆𝐱 𝜈 − ̆𝐫 𝜈−1 = �̆� , (8)

here 

̆
 

𝜈−1 = 𝐑𝐫 𝜈−1 , (9)

̆
 

𝜈−1 ∈ ℝ 

𝑁 𝐶 . Here, ̆𝐱 𝜈 is redefined as the coarse scale correction. Redefin-

ng Eq. (6) , we have 

 

′𝜈(𝐱 ′𝜈 , ̆𝐱 𝜈 , θ) = 𝐱 ′𝜈 − 𝐏 ̆𝐱 𝜈 = 𝟎 , (10)

uch that x ′ 𝜈 now represents the approximate fine-scale correction at

teration 𝜈, i.e., 

 

𝜈−1∕2 = 𝐱 𝜈−1 + 𝐱 ′𝜈 (11)

s an approximate solution of Eq. (4) augmented with the correction

rom the coarse-scale calculation. 

The approximate solution provided by Eq. (11) can be improved if

uccessive smoothing steps are employed ( Hajibeygi et al., 2008 ). Let 

 

𝜈−1 
𝜎

= 𝐪 − 𝐀𝐱 𝜈−1∕2 = 𝐪 − 𝐀 

(
𝐱 𝜈−1 + 𝐱 ′𝜈

)
, (12)

 

𝜈−1 
𝜎

∈ ℝ 

𝑁 𝐹 , be the smoothed residual obtained from the approximation

iven by Eq. (11) and 

 

𝜈
𝜎

(
𝐱 ′𝜈 , 𝐱 𝜈

𝜎
, 𝐱 𝜈−1 , θ

)
= 𝐀𝐱 𝜈

𝜎
− 𝐫 𝜈−1 
𝜎

= 𝟎 , (13)

 version of Eq. (4) written in residual form. Here 𝐱 𝜈
𝜎
∈ ℝ 

𝑁 𝐹 is the

moothed fine-scale correction at iteration 𝜈. The solution smoothing is

btained by solving Eq. (13) using any iterative solver up to a prescribed

loose) tolerance or (small) maximum number of iterations ( Hajibeygi

t al., 2008; Ţ ene et al., 2015 ). The solution for a given iteration 𝜈 is,

ence, obtained from 

 

𝜈
𝑥 

(
𝐱 𝜈 , 𝐱 ′𝜈 , 𝐱 𝜈

𝜎
, 𝐱 𝜈−1 , θ

)
= 𝐱 𝜈 − 𝐱 𝜈−1 − 𝐱 ′𝜈 − 𝐱 𝜈

𝜎
= 𝟎 , (14)

here 𝐠 𝜈
𝑥 
∶ ℝ 

𝑁 𝐹 ×ℝ 

𝑁 𝐹 ×ℝ 

𝑁 𝐹 ×ℝ 

𝑁 𝐹 ×ℝ 

𝑁 𝜃 → ℝ 

𝑁 𝐹 . 

The MS iterative strategy is fully depicted in Algorithm 1 , where ∥. ∥
epresents the 2-norm. 

In Algorithm 1 , 𝜖 and 𝜖𝜎 are, respectively, the user-defined toler-

nces for the outer-loop and smoothing step. That allows to control the

moothing step as a relative improvement starting from the MS approx-

mate solution. An investigation of an optimal relationship between the

umber of outer loops and the number of smoothing steps is presented

n Ţ ene et al. (2015) . 

. Iterative multiscale gradient computation 

For the developments that will follow in this section, it is convenient

o write the set of equations that is solved in every iteration, namely
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Algorithm 1: Iterative multiscale method ( Hajibeygi et al., 2008 ). 

Input : �̆� , 𝐀 , 𝐑 , 𝐏 , 𝐪 , 𝜖, 𝜖𝜎
Output : Approximate solution for the linear system 𝐀𝐱 = 𝐪 

1 Set 𝐱 0 = 𝟎 
2 for 𝜈 = 1 , 2 , … do 

3 Compute 𝐫 𝜈−1 = 𝐪 − 𝐀𝐱 𝜈−1 

4 If 
∥ 𝐫 𝜈−1 ∥
∥ 𝐫 0 ∥

< 𝜖, quit with solution given by 𝐱 = 𝐱 𝜈−1 

5 Solve �̆� 𝜈 = �̆� 

−1 (𝐑𝐫 𝜈−1 )
6 Compute 𝐱 ′𝜈 = 𝐏 ̆𝐱 𝜈
7 Compute 𝐫 𝜈−1 

𝜎
= 𝐪 − 𝐀 

(
𝐱 𝜈−1 + 𝐱 ′𝜈

)
8 Iteratively solve 𝐱 𝜈

𝜎
= 𝐀 

−1 𝐫 𝜈−1 
𝜎

until 
∥ 𝐫 𝜈−1 
𝜎

− 𝐀𝐱 𝜈
𝜎
∥

∥ 𝐫 𝜈−1 
𝜎

∥
< 𝜖𝜎

9 Update 𝐱 𝜈 = 𝐱 𝜈−1 + 𝐱 ′𝜈 + 𝐱 𝜈
𝜎

E

 

 

s  

t  

d  

i  

l  

m  

i  

t  

l  

a  

t  

d  

A  

t  

g  

l  

i  

u  

i

{  

K

𝒈  

a

𝒙  

N

 

d  

p  

𝐆

𝐖  

w  

m  

o

 

w  

d

 

a

 

A

 

 

u  

g

 

D  

d

qs. (8) , (10) , (13) and (14) , in matrix form as 

(15)

One must note, however, that, in the i-MSFV procedure, Eq. (13) is

olved only approximately and, therefore, strictly speaking the equa-

ion in the third row of Eq. (15) does not hold. The idea here is to

escribe the procedure in an algebraic manner, ignoring this approx-

mation, in order to facilitate the presentation of the derivative calcu-

ation algorithms in the next section. Once the derivative calculation

ethods are obtained under the assumption that the algebraic relations

n Eq. (15) hold, the same type of smoothing approach employed in

he i-MSFV to resolve high frequency errors will be used in the so-

ution of the derivative information. This results in a practical semi-

nalytical algorithm for derivative calculation in an iterative formula-

ion. Note that a fully analytical procedure would require calculating the

erivative of the smoothing operator employed in the i-MSFV (step 8 in

lgorithm 1 ), which can be quite complex, due to its nonlinear charac-

er ( Frank, 2017 ). The proposed semi-analytical approach also becomes

eneral and applicable to any iterative procedure used in step 8, regard-

ess of its nature. A truly analytical derivative method would require the

mplementation of derivative calculation for each iterative procedure

sed. More details on the implication of this assumption are discussed

n 3.2.1 . 

Considering all equations that must be solved for all iterations 𝜈 ∈
1 , … , 𝑁 𝜈} , they can be collated in a super-vector ( Rodrigues, 2006;

raaijevanger et al., 2007; Jansen, 2016 ) fashion as 
212 
 ( 𝒙 , θ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

�̆� 1 
(
�̆� 1 , 𝐱 ′0 , 𝐱 0 

𝜎
, θ
)

𝐠 ′1 
(
𝐱 ′1 , ̆𝐱 1 , θ

)
𝐠 1 
𝜎

(
𝐱 1 
𝜎
, 𝐱 ′1 , 𝐱 ′0 , 𝐱 0 

𝜎
, θ
)

𝐠 1 
𝑥 

(
𝐱 1 , 𝐱 1 

𝜎
, 𝐱 ′1 , 𝐱 0 , θ

)
�̆� 2 
(
�̆� 2 , 𝐱 ′1 , 𝐱 1 

𝜎
, θ
)

𝐠 ′2 
(
𝐱 ′2 , ̆𝐱 2 , θ

)
𝐠 2 
𝜎

(
𝐱 2 
𝜎
, 𝐱 ′2 , 𝐱 ′1 , 𝐱 1 

𝜎
, θ
)

𝐠 2 
𝑥 

(
𝐱 2 , 𝐱 2 

𝜎
, 𝐱 ′2 , 𝐱 1 , θ

)
⋮ 

�̆� 𝑁 𝜈
(
�̆� 𝑁 𝜈 , 𝐱 ′𝑁 𝜈−1 , 𝐱 𝑁 𝜈−1 𝜎 , θ

)
𝐠 ′𝑁 𝜈

(
𝐱 ′𝑁 𝜈 , ̆𝐱 𝑁 𝜈 , θ

)
𝐠 𝑁 𝜈𝜎

(
𝐱 𝑁 𝜈𝜎 , 𝐱 ′

𝑁 𝜈 , 𝐱 ′𝑁 𝜈−1 , 𝐱 𝑁 𝜈−1 𝜎 , θ
)

𝐠 𝜈
𝑥 

(
𝐱 𝑁 𝜈 , 𝐱 𝑁 𝜈𝜎 , 𝐱 ′

𝑁 𝜈 , 𝐱 𝑁 𝜈−1 , θ
)

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 𝟎 , (16)

nd the super-state vector defined as 

 ( θ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

�̆� 1 

𝐱 ′1 

𝐱 1 
𝜎

𝐱 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

𝑇 

…

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

�̆� 𝑁 𝜈−1 
𝐱 ′𝑁 𝜈−1 

𝐱 𝑁 𝜈−1 𝜎

𝐱 𝑁 𝜈−1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

𝑇 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

�̆� 𝑁 𝜈
𝐱 ′𝑁 𝜈
𝐱 𝑁 𝜈𝜎
𝐱 𝑁 𝜈

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

𝑇 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

𝑇 

. (17)

ote that we use bold-italic in the notation to represent super-vectors. 

It is discussed in Rodrigues (2006) ; de Moraes et al. (2017) ,

e Moraes et al. how any derivative information can be efficiently com-

uted from the pre and post multiplication of the sensitivity matrix G ,

 ∈ ℝ 

𝑁 𝑦 ×𝑁 𝜃 , by arbitrary matrices as 

𝐆𝐕 = − 𝐖 

𝜕𝐡 
𝜕 𝒙 

( 

𝜕 𝒈 

𝜕 𝒙 

) −1 
𝜕 𝒈 

𝜕θ
𝐕 + 𝐖 

𝜕𝐡 
𝜕θ

𝐕 , (18)

here V (of order 𝑁 θ × 𝑝 ) and W (of order m ×N y ) are arbitrary

atrices, defined based on the derivative information one wants to

btain. 

Eq. (18) requires the partial derivative of the model equations

ith respect to the parameters. From Eqs. (5) and (6) , as discussed in

e Moraes et al. (2017) , it follows that 

𝜕 ̆𝐠 𝜈
𝜕θ

= 

[
𝜕𝐑 

𝜕θ
( 𝐀𝐏 ) + 𝐑 

𝜕𝐀 

𝜕θ
𝐏 + ( 𝐑𝐀 ) 𝜕𝐏 

𝜕θ

]
�̆� 𝜈 − 

𝜕𝐑 

𝜕θ
𝐪 + 

− 𝐑 

𝜕𝐪 
𝜕θ

+ 

(
𝜕𝐑 

𝜕θ
𝐀 + 𝐑 

𝜕𝐀 

𝜕θ

)
𝐱 𝜈−1 , (19) 

𝜕 𝐠 ′
𝜕θ

𝜈

= − 

𝜕𝐏 
𝜕θ

�̆� 𝜈 , (20)

nd deriving Eq. (13) with respect to θ

𝜕𝐠 𝜈
𝜎

𝜕θ
= 

𝜕𝐀 

𝜕θ
𝐱 𝜈
𝜎
+ 

𝜕𝐀 

𝜕θ
𝐱 ′𝜈 − 

𝜕𝐪 
𝜕θ

+ 

𝜕𝐀 

𝜕θ
𝐱 𝜈−1 . (21)

lso, from Eq. (14) , it follows that 

𝜕𝐠 𝜈
𝑥 

𝜕θ
= 𝟎 (22)

For the sake of simplicity and in coherence with the MSFV method

sed in the numerical experiments, the dependency of R on θ is ne-

lected. 

Now, the order the operations in Eq. (18) are evaluated define the

irect and Adjoint methods. The derivation of both methods will be

iscussed in the next sections. 
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𝐙

f

𝐙  
.1. The direct method 

If W is factored out in Eq. (18) , it can be rewritten as 

𝐕 = 

𝜕𝐡 
𝜕 𝒙 

𝐙 + 

𝜕𝐡 
𝜕θ

𝐕 , (23)

here 

 = − 

( 

𝜕 𝒈 

𝜕 𝒙 

) −1 
𝜕 𝒈 

𝜕θ
𝐕 , (24)

s solved from 

 

𝜕 𝒈 

𝜕 𝒙 

) 

𝐙 = − 

𝜕 𝒈 

𝜕θ
𝐕 . (25)

The linear system described in Eq. (25) can be re-written in a block-

ise fashion for each iteration 𝜈: 

(26) 

here, from Eqs. (8) , (10) , (13) , and (14) 

𝜕𝐠 𝜈
𝜕 𝒙 𝜈

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜕 ̆𝐠 𝜈
𝜕 𝒙 𝜈
𝜕𝐠 ′ 𝜈
𝜕 𝒙 𝜈
𝜕𝐠 𝜈
𝜎

𝜕 𝒙 𝜈
𝜕𝐠 𝜈
𝑥 

𝜕 𝒙 𝜈

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

�̆� 𝟎 𝟎 𝟎 
− 𝐏 𝐈 𝟎 𝟎 
𝟎 𝐀 𝐀 𝟎 
𝟎 − 𝐈 − 𝐈 𝐈 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (27)

nd 

𝜕𝐠 𝜈

𝜕 𝒙 𝜈−1 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜕 ̆𝐠 𝜈

𝜕 𝒙 𝜈−1 
𝜕𝐠 ′ 𝜈

𝜕 𝒙 𝜈−1 
𝜕𝐠 𝜈
𝜎

𝜕 𝒙 𝜈−1 
𝜕𝐠 𝜈
𝑥 

𝜕 𝒙 𝜈−1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝟎 𝟎 𝟎 𝐑𝐀 

𝟎 𝟎 𝟎 𝟎 
𝟎 𝟎 𝟎 𝐀 

𝟎 𝟎 𝟎 − 𝐈 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (28)

he partitioning lines indicate which matrix and vector terms belong to

ach iteration. 
213 
Substituting Eq. (27) and (28) in Eq. (26) , follows that 

(29) 

or every iteration, the linear system that must be solved for the coarse-

cale equation is 

̆
 

𝜈 = �̆� 

−1 
( 

− 

𝜕 ̆𝐠 𝜈
𝜕θ

𝐕 − 𝐑𝐀𝐙 

𝜈−1 
𝑥 

) 

, (30) 

or the fine-scale approximate solution equation 

 

′𝜈 = − 𝐏 ̆𝐙 

𝜈 − 

𝜕 𝐠 ′𝜈 𝐕 , (31)

𝜕θ
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w
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i
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t  
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F  

(  
nd for the smoothing equation 

 

𝜈
𝜎
= 𝐀 

−1 
( 

− 

𝜕𝐠 𝜈
𝜎

𝜕θ
𝐕 − 𝐀 𝐙 

′𝜈 − 𝐀𝐙 

𝜈−1 
𝑥 

) 

. (32)

s pointed out above, it would not be feasible to fully solve Eq. (32) .

n order to obtain a practical derivative calculation method, the

ame smoothing procedure used in the i-MSFV is applied here, i.e.,

 

𝜈
𝜎

is obtained by solving Eq. (32) using any iterative solver up

o a prescribed (loose) tolerance or a (small) maximum number of

terations. 

Finally, 

 

𝜈
𝑥 
= 𝐙 

𝜈−1 
𝑥 

+ 𝐙 

′𝜈 + 𝐙 

𝜈
𝜎
. (33)

Observing that h only depends on 𝐱 = 𝐱 𝑁 𝜈 , Eq. (23) can be simplified

o 

𝐕 = 

𝜕𝐡 
𝜕𝐱 

𝐙 

𝑁 𝜈
𝑥 + 

𝜕𝐡 
𝜕θ

𝐕 . (34)

Now the Direct method for the iterative multiscale gradient compu-

ation can be fully determined. It is depicted in Algorithm 2 . Note that

eferences to superscript −1 correspond to zero terms. 

Algorithm 2: Post multiplication of G by V via the direct method. 

Input : 𝐑 , 𝐀 , 𝐏 , 𝒙 , 𝜕𝐀 

𝜕θ
, 
𝜕𝐡 
𝜕𝐱 

, 
𝜕𝐡 
𝜕θ

, 𝐕 , 𝜖𝜎

Output : The 𝐆𝐕 product 

1 foreach 𝑗 = 1 , 2 , …, 𝑛 do 

2 foreach 𝜈 = 0 , 1 , … , 𝑁 𝜈 do 

3 Compute β = 

𝜕𝐏 
𝜕θ

�̆� 𝜈𝐕 .,𝑗 ; // Algorithm 3, in [19] 

where 𝐦 = 𝐕 .,𝑗 

4 Compute α = 𝐑𝐀 β + 𝐑 

( 

𝜕𝐀 

𝜕θ
𝐱 𝜈−1 − 

𝜕𝐪 
𝜕θ

+ 

𝜕𝐀 

𝜕θ
𝐏 ̆𝐱 𝜈

) 

𝐕 .,𝑗 

5 Solve �̆� 

𝜈
.,𝑗 

= �̆� 

−1 
(
− α − 𝐑𝐀 𝐙 𝑥 

𝜈−1 
.,𝑗 

)
6 Compute 𝐙 

′𝜈
.,𝑗 

= − 𝐏 ̆𝐙 

𝜈
.,𝑗 
+ β

7 Compute 
𝜕𝐠 𝜈
𝜎

𝜕θ
= 

𝜕𝐀 

𝜕θ
𝐱 𝜈
𝜎
+ 

𝜕𝐀 

𝜕θ
𝐱 ′𝜈 − 

𝜕𝐪 
𝜕θ

+ 

𝜕𝐀 

𝜕θ
𝐱 𝜈−1 

8 Compute δ = 

( 

− 

𝜕𝐠 𝜈
𝜎

𝜕θ
𝐕 .,𝑗 − 𝐀 𝐙 

′𝜈
.,𝑗 
− 𝐀 𝐙 𝑥 

𝜈−1 
.,𝑗 

) 

9 Iteratively solve 𝐙 𝜎
𝜈
.,𝑗 

= 𝐀 

−1 δ until 
∥ δ − 𝐀 𝐙 𝜎

𝜈
.,𝑗 

∥
∥ δ ∥

< 𝜖𝜎

10 Compute 𝐙 𝑥 
𝜈
.,𝑗 

= 𝐙 𝑥 
𝜈−1 
.,𝑗 

+ 𝐙 

′𝜈
.,𝑗 
+ 𝐙 𝜎

𝜈
.,𝑗 

11 Compute ( 𝐆𝐕 ) .,𝑗 = 

𝜕𝐡 
𝜕𝐱 

𝐙 𝑥 
𝑁 𝜈
.,𝑗 

+ 

𝜕𝐡 
𝜕θ

𝐕 .,𝑗 

.2. The adjoint method 

Now, if V is factored out in Eq. (18) , it can be rewritten as 

𝐆 = 𝐙 

𝜕 𝒈 

𝜕θ
+ 𝐖 

𝜕𝐡 
𝜕θ
, (35)

here 

 = − 𝐖 

𝜕𝐡 
𝜕 𝒙 

( 

𝜕 𝒈 

𝜕 𝒙 

) −1 
(36)

s solved from 

 

( 

𝜕 𝒈 

𝜕 𝒙 

) 

= − 𝐖 

𝜕𝐡 
𝜕 𝒙 
. (37)
214 
The linear system described in Eq. (37) can be re-written in a block-

ise fashion for each iteration 𝜈 as 

(38) 

The structure of Eq. (38) shows that it can be solved via back substi-

ution, i.e. the solution of the gradient information is backward in the

terations. 

Substituting Eqs. (27) and (28) in Eq. (38) , follows that 

(39) 

rom Eq. (39) and recalling that h only depends on 𝐱 = 𝐱 𝑁 𝜈 , the

transposed) linear system that must be solved to compute Z 𝜈 is
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Algorithm 3: Pre multiplication of G by W via the adjoint method. 

Input : 𝐑 , 𝐀 , 𝐏 , 𝒙 , 𝜕𝐀 

𝜕θ
, 
𝜕𝐡 
𝜕𝐱 

, 
𝜕𝐡 
𝜕θ

, 𝐖 , 𝜖𝜎

Output : The 𝐖𝐆 product 

1 foreach 𝑖 = 1 , 2 , … , 𝑚 do 

2 foreach 𝜈 = 𝑁 𝜈 , … , 1 , 0 do 

3 Set 
(
𝐙 

𝜈
𝑥 

)𝑇 
𝑖,. 
= ⎧ ⎪ ⎨ ⎪ ⎩ 

− 

(
𝜕𝐡 
𝜕𝐱 

)𝑇 
𝐖 

𝑇 , if 𝜈 = 𝑁 𝜈(
𝐙 

𝜈+1 
𝑥 

)𝑇 
𝑖,. 
− 𝐀 

𝑇 
(
𝐙 

𝜈+1 
𝜎

)𝑇 
𝑖,. 
− 𝐀 

𝑇 𝐑 

𝑇 
(
�̆� 

𝜈+1 
)𝑇 
𝑖,. 

, otherwise 

4 Iteratively solve 
(
𝐙 

𝜈
𝜎

)𝑇 
𝑖,. 
= 𝐀 

− 𝑇 (𝐙 

𝜈
𝑥 

)𝑇 
𝑖,. 

until 

∥ 𝐙 

𝜈
𝑥 
− 𝐀 𝐙 𝜎

𝜈
.,𝑗 

∥
∥ 𝐙 

𝜈
𝑥 
∥

< 𝜖𝜎

5 Compute 
(
𝐙 

′𝜈)𝑇 
𝑖,. 
= 

(
𝐙 

𝜈
𝑥 

)𝑇 
𝑖,. 
− 𝐀 

𝑇 
(
𝐙 

𝜈
𝜎

)𝑇 
𝑖,. 

6 Solve �̆� 

𝜈
𝑖,. 
= 

(
�̆� 

− 𝑇 
)(

𝐏 ̆𝐙 

𝜈+1 
𝑖,. 

)
7 Compute α𝑇 = �̆� 

𝜈
𝑖,. 
( 𝐑𝐀 ) − 𝐙 

′𝜈
𝑖,. 

8 Compute β = α
𝜕𝐏 
𝜕θ

�̆� 𝜈 ; // Algorithm 4 in [19] where 

𝐦 

𝑇 = α𝑇 

9 Compute γ = 𝐑 

𝜕𝐀 

𝜕θ
𝐏 ̆𝐱 𝜈 − 𝐑 

𝜕𝐪 
𝜕θ

+ 𝐑 

𝜕𝐀 

𝜕θ
𝐱 𝜈−1 

10 Compute 
𝜕𝐠 𝜈
𝜎

𝜕θ
= 

𝜕𝐀 

𝜕θ
𝐱 𝜈
𝜎
+ 

𝜕𝐀 

𝜕θ
𝐱 ′𝜈 − 

𝜕𝐪 
𝜕θ

+ 

𝜕𝐀 

𝜕θ
𝐱 𝜈−1 

11 Update ( 𝐖𝐆 ) 𝜈
𝑖,. 
= ( 𝐖𝐆 ) 𝜈+1 

𝑖,. 
+ β + �̆� 

𝜈
𝑖,. 
γ + 𝐙 

𝜈
𝜎 𝑖,. 

𝜕𝐠 𝜈
𝜎

𝜕θ

12 Update 𝐖𝐆 = ( 𝐖𝐆 ) 0 + 𝐖 

𝜕𝐡 
𝜕θ

3
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iven by 

(40) 

or 𝜈 ≠N 𝜈 , while 𝐙 

𝑁 𝜈 is calculated from 

 

 

 

 

 

 

�̆� 

𝑇 − 𝐏 𝑇 𝟎 𝟎 
𝟎 𝐈 𝐀 

𝑇 − 𝐈 
𝟎 𝟎 𝐀 

𝑇 − 𝐈 
𝟎 𝟎 𝟎 𝐈 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
�̆� 

𝑁 𝜈

)𝑇 
(
𝐙 

′𝑁 𝜈
)𝑇 

(
𝐙 

𝑁 𝜈
𝜎

)𝑇 
(
𝐙 

𝑁 𝜈
𝑥 

)𝑇 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝟎 
𝟎 
𝟎 

− 

(
𝜕𝐡 
𝜕𝐱 

)𝑇 
𝐖 

𝑇 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. 

(41) 

he equation that computes the ”adjoint state ” associated with 𝐠 𝜈
𝑥 

reads

𝐙 

𝜈
𝑥 

)𝑇 = 

(
𝐙 

𝜈−1 
𝑥 

)𝑇 − 𝐀 

𝑇 𝐑 

𝑇 
(
�̆� 

𝜈−1 
)𝑇 

− 𝐀 

𝑇 
(
𝐙 

𝜈−1 
𝜎

)𝑇 
, 𝜈 ≠ 𝑁 𝜈 , (42)

nd 

𝐙 

𝑁 𝜈
𝑥 

)𝑇 
= − 

(
𝜕𝐡 
𝜕𝐱 

)𝑇 
𝐖 

𝑇 . (43)

The “adjoint state ” for 𝐠 𝜈
𝜎

is calculated from 

𝐙 

𝜈
𝜎

)𝑇 = 𝐀 

− 𝑇 (𝐙 

𝜈
𝑥 

)𝑇 
. (44)

As discussed for the direct method, in the proposed derivative cal-

ulation method, Eq. (44) is solved as a smoothing step only, using any

terative solver up to a prescribed tolerance or number of iterations. 

For g ′ 𝜈 , the adjoint state is given by 

𝐙 

′𝜈)𝑇 = 

(
𝐙 

𝜈
𝑥 

)𝑇 − 𝐀 

𝑇 
(
𝐙 

𝜈
𝜎

)𝑇 
, (45)

nd finally for �̆� 𝜈

̆
 

𝜈 = 

(
�̆� 

− 𝑇 
)(

𝐏 𝑇 𝐙 

′𝜈). (46)

Eq. (35) can be written as a sum where each term corresponds to the

ontribution of one iteration 

𝐆 = 

𝑁 𝜈∑
𝜈=0 

( 

�̆� 

𝜈 𝜕 ̆𝐠 𝜈
𝜕θ

+ 𝐙 

′𝜈 𝜕 𝐠 ′
𝜈

𝜕θ
+ 𝐙 

𝜈
𝜎

𝜕𝐠 𝜈
𝜎

𝜕θ

) 

+ 𝐖 

𝜕𝐡 
𝜕θ
. (47)

The algorithm can now be fully defined and is presented in 3 .

ote the use of the notation ( WG ) 𝜈 to denote the partial sums in

q. (47) and that references to superscript 𝑁 𝜈 + 1 correspond to zero

erms. 
215 
.2.1. Remarks about the framework 

An alternative formulation for the i-MSFV formulation has been pre-

iously proposed and investigated in Frank (2017) . In that work, both

he state and the model equation vectors explicitly account for the

moothing stage. The formulation here proposed is based on two ob-

ervations. Firstly, the implementation of the aforementioned variant,

lthough offers more control over the gradient quality, relies on the

bility of computing partial derivative matrices of smoothing step with

espect to the parameters. More specifically, it implies on the knowledge

f how the precondition M of the system matrix A is built. For simpler

terative strategies, e.g. Jacobi, which construction of M can be simple,

he computation of 
𝜕𝐌 

𝜕θ
is relatively simple. However, simpler iterative

ethods are usually less efficient. Also, the requirement of knowing the

onstruction of M hampers the utilization of ‘black-box’ type of pre-

onditioners. Secondly, it has been shown in Ţ ene et al. (2015) that

nly a limited number of smoothing steps are necessary to result in an

fficient i-MSFV solution strategy. Hence, not much extra control would

e achieved. 

Note that the linear solvers employed in lines 9 and 4 of, respec-

ively, Algorithms 2 and 3 , are the same solvers employed in the solu-

ion of the forward simulation, using the same prescribed (loose) toler-

nce. Hence, the algorithms share the same computational advantages

y solving for the approximated derivative information arising from the

moothing step. 

The backward algorithm requires storing all intermediate states gen-

rated during the iterations in the forward run. It also requires solving

any systems of equations for each backward time-step. If the iteration

rocess in the forward run goes until machine precision is reached, then

ssentially the fully coupled system has been solved to fine-scale preci-

ion and it might be more beneficial to neglect the iteration history and

im to solve the fine-scale system of adjoint equations in a more efficient

ay, given that the derivative computation problem is linear. However,

e highlight that, as it has been shown in the literature ( Fonseca et al.,

015; de Moraes et al., 2017 ), approximate gradients computed from
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Table 1 

Validation experiments well setup. 

Well Fine scale position (I, J) Well Type 

INJE (1, 1) Injection 

PROD (21, 21) Production 

OBS1 (3, 3) Observation 

OBS2 (19, 19) Observation 
pproximate solutions are already sufficient to efficiently/successfully

ead the optimization process to the optimal solution. How accurate this

radient will need to be is dependent on different aspects, e.g. the opti-

ization algorithm, how early/late the optimization process is in terms

f finding the maximum/minimum of a given objective function, among

thers. The algorithm here proposed has the advantage of controlling

he gradient quality, as will be shown in the numerical experiments pre-

ented in the next section. 

. Numerical experiments 

Given the fundamental nature of the developments presented here,

e focus the numerical experiments on the validation of the computa-

ion and assessment of the gradient quality provided by the iterative

ultiscale method. 

Our experiments will be based on the evaluation of the gradient of

 misfit objective function with no regularization term ( Oliver et al.,

008 ) 

 ( θ) = 

1 
2 
(
𝐡 ( 𝐱, θ) − 𝐝 𝑜𝑏𝑠 

)𝑇 𝐂 

−1 
𝐷 

(
𝐡 ( 𝐱, θ) − 𝐝 𝑜𝑏𝑠 

)
, (48)

ith a gradient 

 𝛉𝑂 = 𝐆 

𝑇 𝐂 

−1 
𝐷 

(
𝐡 ( 𝐱, θ) − 𝐝 𝑜𝑏𝑠 

)
, (49)

here 𝐂 𝐷 ∈ ℝ 

𝑁 𝑌 ×𝑁 𝑌 is the so-called data covariance matrix. Here, C D 

ill be considered a diagonal matrix given by Oliver et al. (2008) 

 𝐷 = 𝜎2 𝐈 , (50)

here 𝜎2 is the variance of the data measurement error. 

In all experiments, the fitting parameters are cell-centered perme-

bilities. The observed quantity, d obs , is the fine scale pressure at the

ocation of (non-flowing) observation wells, therefore 

𝜕𝐡 
𝜕 𝐱 ′

= 𝐈 , (51)

nd 

𝜕𝐡 
𝜕 ̆𝐱 

= 𝟎 . (52)

n all experiments, the standard deviation of the pressure measure-

ent error is 𝜎 ≈0.03 (note that the measurement error is also non-

imensional). This represents a (very accurate) measurement error in

he range of those usually employed in synthetic study cases (see e.g.

liver et al., 2008 ). 

Note that the wells are controlled by bottom-hole pressure, expressed

n terms of a non-dimensional pressure, i.e., 

 𝐷 = 

𝑝 − 𝑝 𝑝𝑟𝑜𝑑 

𝑝 𝑖𝑛𝑗 − 𝑝 𝑝𝑟𝑜𝑑 
, (53)

here p inj and p prod are the injection and production pressures, respec-

ively. In all the experiments, 𝑝 𝑖𝑛𝑗 = 1 . 0 and 𝑝 𝑝𝑟𝑜𝑑 = 0 . 0 , the grid-block

imensions are Δ𝑥 = Δ𝑦 = Δ𝑧 = 1 m and the fluid viscosity is 1 . 0 × 10 −3
a s. In addition, in all the following test cases, well basis functions are

ncluded. 

The metric utilized to assess the i-MSFV gradient quality is the angle

etween fine-scale and i-MSFV normalized gradients, i.e., 

= cos −1 
(
∇ 

𝑇 
θ
�̂� 𝐹𝑆 ∇ θ�̂� 𝑀𝑆 

)
. (54)

ere, 

 θ�̂� 𝐹𝑆 = 

∇ θ𝑂 𝐹𝑆 ‖‖∇ θ𝑂 𝐹𝑆 
‖‖2 (55)

nd 

 θ�̂� 𝑀𝑆 = 

∇ θ𝑂 𝑀𝑆 ‖‖∇ θ𝑂 𝑀𝑆 
‖‖2 . (56)

Also, ∇ θ𝑂 𝐹𝑆 and ∇ θ𝑂 𝑀𝑆 denote the fine-scale and MS analytical

radients, respectively. As a minimum requirement, acceptable MS gra-

ients are obtained if 𝛼 is much smaller than 90 o ( Fonseca et al., 2015 ).
216 
nd to prove our hypothesis, we particularly interested in observing

he behaviour of the metric as more accurate i-MSFV solutions are com-

uted. 

In our i-MSFV implementation, the iterative process is controlled by

he outer loop residual 𝜖 and the pre-conditioner smoother error toler-

nce 𝜖𝜎 . The Krylov subspace biconjugate gradient stabilized method

BiCGSTAB, Saad, 2003 ) is employed in the smoothing stage. 

.1. Validation experiments 

Before focusing in the validation, in this section we will validate the

MS-gradient method against the numerical differentiation method with

 higher order, two-sided Taylor approximation 

 θ𝑂 𝑖 = 

1 
2 𝛿𝜃𝑖 

(
𝑂( 𝜃1 , ⋯ , 𝜃𝑖 −1 , 𝜃𝑖 + 𝛿𝜃𝑖 , 𝜃𝑖 +1 , ⋯ , 𝜃𝑁 𝜃

) 

− 𝑂( 𝜃1 , ⋯ , 𝜃𝑖 −1 , 𝜃𝑖 − 𝛿𝜃𝑖 , 𝜃𝑖 +1 , ⋯ , 𝜃𝑁 𝜃
) 
)

(57) 

here we consider 𝛿 to be a multiplicative parameter perturbation. We

efine the relative error as 

 = 

||∇ θ𝑂 𝑁𝑈𝑀 

− ∇ θ𝑂 𝑖𝑀𝑆 ||2 ||∇ θ𝑂 𝑖𝑀𝑆 ||2 (58)

ere ∇ θ𝑂 𝑁𝑈𝑀 

is obtained by performing the proper amount of iter-

tive multiscale reservoir simulations required to evaluate Eq. [57] .

 θ𝑂 𝑖𝑀𝑆 is obtained by employing the iterative Direct or Adjoint gra-

ient method. 

To evaluate the correctness of the proposed iterative gradient com-

utation methods, as well as their implementation, we investigate the

inear decrease of the relative error 𝜀 by decreasing the parameter per-

urbation 𝛿 from 10 −1 to 10 −4 . This investigation is carried out in two

istinct examples. Both have a fine grid of 21 ×21 grid blocks. We em-

loy a 7 ×7 coarsening ratio, giving a 3 ×3 coarse grid. The reference

win-experiment is generated with permeability realization number 992.

ig. 1 illustrates the fine-, coarse- and dual-grid cells along with the ref-

rence permeability. 

Next we determine the well positions. We use the so-called quarter

ell spot. Here, two observation wells are placed near operating wells.

he full specifications can be found in Table 1 . 

The results of this experiment are found in Fig. 2 . Here, we use

 single outer iteration. We use a very tight smoothing tolerance of

𝜎 = 5 × 10 −8 to ensure that the numerical gradient method produces

ccurate enough gradients. First of all we can see that the fine-scale nu-

erical gradient method and the iterative MS-gradient methods are of

he same order of accuracy with respect to the perturbation 𝛿, for all

ifferent cases considered. In all experiments, we can see the linear de-

reasing behaviour of the relative error values 𝜀 as the perturbation 𝛿

ecreases. Also, note that the Adjoint and Direct methods provide the

nalytical gradient with the same level of accuracy. In the first exper-

ment, a homogeneous test case with the permeability value of 1 . 0 𝑒 −13 
s used. The second experiment indicates the correctness of the method

hen it is applied to heterogeneous porous media problems. 

.2. Investigation of i-MSFV convergence behaviour and gradient quality 

In this investigation, the error metric given by Eq. (54) is evalu-

ted for a whole ensemble of heterogeneous permeability fields. The
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Fig. 1. Validation experiments setup. (a) Primal (bold black 

line), dual (identified by the blue cells) and fine grids (thin 

black lines). (b) Reference permeability field used in the twin 

experiment. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 2. Validation of the i-MSFV gradient computation method compared with a numerical gradient. ( a ) represents the homogeneous test case, while ( b ) represents 

the heterogeneous test case. 

Fig. 3. Four different permeability realizations from the ensemble of 1000 members used in the 2D numerical experiments. 
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Table 2 

Well configuration for the homogeneous, two- 

dimensional case. 

Well Fine scale position (I, J) Well type 

INJE (11, 11) Injection 

PROD1 (1, 1) Production 

PROD2 (21, 1) Production 

PROD3 (1, 21) Production 

PROD4 (21, 21) Production 

OBSWELL1 (3, 3) Observation 

OBSWELL2 (19, 3) Observation 

OBSWELL3 (3, 19) Observation 

OBSWELL4 (19, 19) Observation 

s  

i  

s

nsemble is generated via the decomposition of a reference permeabil-

ty image using Principal Component Analysis parameterization. Fig. 3

llustrates 4 different permeability realizations from the ensemble. See

ansen (2013) for more details. 

The fine-scale and coarse grids contain 21 x 21 and 7 x 7 cells, re-

pectively. An inverted five-spot well pattern is employed, while four

bservation wells are placed close to the production wells. The well

onfiguration is depicted in Table 2 . 

The synthetic observed pressures at the observation well locations

re created via the classical twin-experiment strategy, where the per-

eability field is extracted from the 1000 geological realizations (the

rst one in Fig. 3 ). 

The robustness of the method is illustrated in Fig. 4 . It is possible

o observe that the angle between fine-scale gradient and the i-MSFV

radient is smaller the tighter we make the outer-loop residual tolerance.

oreover, the variance also goes to almost zero as we set the residual

olerance to 1 𝑒 −4 . For this set of relatively small permeability contrast,

erfect alignment with fine-scale gradient is reached if the tolerance is
217 
et to 1 𝑒 −5 . We highlight that the permeability contrast of this ensemble

s not high. Next, we assess the robustness for the method for geological

ettings with higher permeability contrasts. 
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Fig. 4. Box-plot illustrating the angle 𝛼 between fine-scale gradient and i-MSFV 

gradient computed for the 1000 member ensemble as a function of the outer- 

loop tolerance error 𝜖. “No iteration ” is equivalent to the MSFV gradient com- 

putation presented in de Moraes et al. (2017) . 
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Table 3 

Well configuration for Case 2. 

Well Fine scale position (I, J) Well type 

INJE (1, 1) Injection 

PROD (100, 100) Production 

OBSWELL1 (3, 3) Observation 

OBSWELL2 (98, 98) Observation 

Fig. 6. Box-plot representing the total number of smoothing iterations required 

to compute the misfit OF gradient for the different permeability ensembles with 

correlation angles 0 o , 15 o and 45 o and with a small correlation length (patchy). 
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.3. Robustness with respect to heterogeneity contrast and distribution 

In order to further explore the point about the robustness of the

ethod with respect to heterogeneity contrast and distribution, four sets

f 20 equiprobable realizations of log-normally distributed permeability

elds with a spherical variogram and dimensionless correlation lengths

f Ψ1 = 0 . 5 and Ψ2 = 0 . 02 are generated using sequential Gaussian sim-

lations ( Remy et al., 2009 ). For each set, the variance and the mean

f ln ( k ) are 2.0 and 3.0, respectively, where k is the grid block perme-

bility. As depicted in Fig. 5 , for the realizations with a long correlation

ength, the angles between the permeability layers and the horizontal

xis are 0 o , 15 o , and 45 o . A patchy (small correlation length) pattern is

lso considered ( Fig. 5 d). Compared with the previous set, the perme-

bility contrast is much higher in this case. 

The fine-scale and coarse grids contain 100 × 100 and 20 × 20 cells,

espectively. The well configuration utilized in this numerical experi-

ent is depicted in Table 3 . 

The observed data is generated from a twin-experiment associated

ith (the first) permeability realization of each set. 

In this experiment, 𝜖 = 1 . 0 𝑒 −6 and 𝜖𝜎 = 1 . 0 𝑒 −1 . The box-plot shown

n Fig. 6 summarizes the required total number of smoothing steps, for

ll outer i-MSFV steps. 

The grid orientation effect ( Aziz et al., 1993 ) impact on the perfor-

ance of the i-MSFV method is clear in this example. The more the

eterogeneity orientation is aligned with the flow orientation, the less
ig. 5. Permeability distribution of four different realizations taken from the sets of

ngles (a-c). Also, a patchy field (d) with a small correlation length is considered. 

218 
s the number of required iterations. Also, in relation to Fig. 7 , the more

hallenging the forward problem, the more challenging it is to com-

ute i-MSFV gradient in accordance to the fine-scale gradient. Never-

heless, in all cases, almost all i-MSFV realization gradients are perfectly

ligned with fine-scale gradient, demonstrating the robustness of the

ethod. 

.4. SPE-10 comparative test case 

Now, we investigate the performance of our method in the SPE-

0 comparative case ( Christie et al., 2001 ), regarded as challeng-

ng model for upscaling ( Durlofsky, 2005 ) and multiscale simulation

 Hajibeygi, 2011 ) techniques. Here, we consider the 2-D flow simula-

ion of both top and bottom layer of the original 3D model, which per-

eability fields are illustrated in Fig. 8 . 

The fine grid dimensions is 60 × 220, while we employ a 12 x 20

oarse grid in the MS simulation. A quarter five-spot well setting is
 20 geostatistically equiprobable permeability fields with different correlation 
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Fig. 7. Illustration of gradient quality improvement when an 

i-MSFV gradient computation strategy is employed in compar- 

ison to a MSFV computation strategy. The x-axis represent the 

angle 𝛼 between fine-scale and the MSFV gradient (illustrated 

by blue crosses) and the i-MSFV gradient with error tolerance 

𝜖 = 10 −6 (illustrated by orange circles). (For interpretation of 

the references to colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 

Fig. 8. SPE-10 comparative test case: top (a) and bot- 

tom (b) layer permeability fields. 
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Table 4 

Well configuration for the SPE-10 comparative test 

case. 

Well Fine scale position (I, J) Well type 

INJE (1, 220) Injection 

PROD (60, 1) Production 

OBSWELL1 (33, 5) Observation 

OBSWELL2 (28, 50) Observation 

OBSWELL3 (28, 83) Observation 

OBSWELL4 (43, 204) Observation 
onsidered. Four observation wells are deliberately positioned in low

ermeability regions, surrounded by high permeability regions. The well

ositions are described in Table 4 . 

We emphasize that it has been reported (see e.g. Hajibeygi, 2011 )

hat the MSFV method provides non-monotone pressure solutions when

olving the pressure for the bottom layer ( Fig. 8 b). Strategies to improve

he MSFV solution, among them the i-MSFV ( Hajibeygi and Jenny, 2011 )

ere considered, are necessary to address the issue. 

In this twin experiment, the reference permeability field used to com-

ute the observations is considered homogeneous with a value of 1e-13.
219 
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Fig. 9. i-MSFV gradient quality (angle 𝛼 between fine-scale and i-MSFV gradients) as a function of residual error 𝜖 for the SPE-10 top layer (a) and bottom layer (b). 
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In this experiment, we fix 𝜖𝜎 = 1 . 0 𝑒 −2 and vary 𝜖 = 1 . 0 𝑒 −2 ,
 . 0 𝑒 −4 , 1 . 0 𝑒 −6 to evaluate whether the same convergence behaviour

f the i-MSFV gradient toward fine-scale gradient direction is

bserved. 

Once again we observe that the method provides accurate gradients,

ven considering this challenging geological setting, for both the top

nd bottom layers of the model (see Fig. 9 ). 

.5. Discussion 

Based on the results acquired from the different numerical cases

f increasing complexity we demonstrated that our newly introduced

ethod can provide accurate gradients, up to fine-scale accuracy, if

mall enough residual tolerances are employed in the i-MSFV forward

imulation. Also, it is shown that only a few i-MSFV/smoothing iter-

tions are necessary to have reasonably accurate gradients. However,

e highlight that, from an optimization point of view, gradients that

re fully in accordance with fine-scale gradient are not necessary. As

ong as the gradient roughly points to the correct up/downward di-

ection, the optimization process is able to progress towards the maxi-

um/minimum. This is particularly true in the early iterations, where

here is a more steep region of the objective function. On the other hand,

s the optimization process approaches the optimum, more accurate gra-

ients are required for a precise stopping criteria evaluation. The con-

ergent behaviour of the i-MSFV gradient, which is demonstrated to be

irectly related to the outer-residual tolerance, which is an estimate de-

ned a-priori , should allow for an error control of the gradient computa-

ion, which ultimately would allow control of the optimization process

erformance. 

The gradient computation methods here, by design, directly inherits

he characteristics of the i-MSFV introduced in Hajibeygi et al. (2008) .

he solution of the backward (transposed) system of equations mir-

ors the solution strategy of the linear system of equations that arises

rom the forward problem. Even the system matrices from the for-

ard and the backward system of equations share the same proper-

ies (e.g. conditioning number). Therefore, in principle, all studies in

he literature related to the robustness and efficiency of the i-MSFV

ethod with respect to grid size, level of heterogeneity, among others,

hould also be valid in the context of the gradient computation methods

ere proposed. Nevertheless, further numerical studies are important

o investigate the robustness of the method itself with respect to such

spects. 
220 
. Summary and research perspectives 

We introduce iterative multiscale gradient computation algorithms

ased on the iterative Multiscale Finite Volume (i-MSFV) simulation

ethod. By firstly re-casting the i-MSFV in an algebraic framework,

e derive a flexible, multi-purpose derivative computation framework

hich accounts for the Direct and Adjoint methods. Their computational

fficiency is discussed and it is shown that they share advantages equiv-

lent to the i-MSFV method. The new methods are validated via numer-

cal experiments against numerical differentiation are shown to address

he challenges encountered by the MSFV gradient computation, specif-

cally associated with high heterogeneity contrast. Fine-scale-accurate

radients are obtained for challenging geological models with high per-

eability contrasts (e.g. the SPE-10 comparative test case) if the i-MSFV

odel converges to an error tolerance of 1 . 0 𝑒 −6 . However, we highlight

hat such accuracy is not necessary and only a few i-MSFV/smoothing it-

rations are required for reasonably accurate gradients. Further control

f the gradient quality via an a-priori error estimate along the optimiza-

ion process should allow for a computationally efficient optimization

ethod. More specifically, a less accurate gradient estimate usually suf-

ces in the early optimization iterations, when the objective function

onvergence is more steep, while more accurate gradients are required

n the flatter regions for a more precise stopping criterion. Hence, the

etermination of an a-priori error estimate should be a key development.
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