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Abstract

This article uses Sentinel-1 satellite images to identify rice fields in Rwanda from 2017 to
2021 in an attempt to derive the current status of rice in Muvumba catchment, in the northern
part of Rwanda. The timing of rice cultivation in each season in that area was identified as not
homogeneous, but generally aligned with the local rainy season. The results identified after late
2019 show a large change, with flooding from extreme rainfall as a possible cause. The paddy
fields may have been completely flooded and the infrastructure destroyed. Policy changes in
Rwanda’s agriculture may also be a contributing factor. Among them, the implementation of
land consolidation policies can influence some of the farmers’ options, for example, by withdraw-
ing from the rice planting program. The absence of official data and field data makes this project
not being able to provide definite reasons for the results. The open discussion of this project
makes it exploratory and offers the possibility for potential follow-up studies. The uncertainty
of the results also suggests that more attention needs to be focused on these topics. However,
what is certain is that the use of remote sensing images to monitor rice has the potential to be
cost-effective.

1



Contents

1 Introduction 3

2 Research Context 5
2.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hydrology and geology characteristics of Muvumba . . . . . . . . . . . . . . . . . . . 5
2.3 Rice field characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Remote sensing products learning and selection . . . . . . . . . . . . . . . . . . . . . 8
2.5 Data selection: a brief introduction to selected products and reasons for choosing them 9

3 Methodology 12
3.1 Data processing platform introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The process of rice identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Image access in GEE: Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Reasons for the selection of frequency and time range of the data set . . . . . 18
3.3.3 Supervised classification in GEE . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Results 22
4.1 Common patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Relatively consistent patterns of rice area . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Relatively consistent patterns of backscatter value . . . . . . . . . . . . . . . 23

4.2 Different patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 From late 2019 to 2021: harder to detect rice . . . . . . . . . . . . . . . . . . 24

5 Discussion and Conclusion 30
5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Potential explanations for big changes . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Extreme weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Policy and farmer’s choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

I Code link 36

II Less important or abandoned methods 37

IIIResult maps and plots 42

2



1 Introduction

This study aims to identify and track rice fields in Muvumba catchment, in the northern part of
Rwanda through remote sensing in order to explore the informative potential of remotely moni-
toring small regional wetland rice fields with an online geo-data processing platform to facilitate
understanding of local agriculture. The first step is to find out the location of rice planted in each
season in a rice growing area, and the timing and area of different batches of rice planted in each
season, by the pattern of backscattering from rice fields. The second step is to compare and analyze
the results obtained to try to identify the cause of this rice growing pattern and try to trace this
cause back to farmers or policy linkages.

Agriculture in Africa needs attention because food insecurity is still a subject that Africa needs to
face. A better understanding of local farming situations can potentially improve the well-being of
people. The Republic of Rwanda is a landlocked country in the Great Rift Valley. In this coun-
try, agriculture remains the backbone for sustained economic growth, providing direct employment
to 62.3% of the population(Ministry of Agriculture and Animal Resources, 2021). It is a typical
example of a country that is undergoing land reform, from land registration to land consolida-
tion policies that address land fragmentation. Like more than 70 percent of other countries in
sub-Saharan Africa (Green, 2019), rain-fed agriculture without or with supplementary irrigation
systems implies a high degree of environmental sensitivity and dependence. Both policy and envi-
ronment affect agriculture, which is fragile but a major source of income for the general public. In
particular, Rwandan agriculture is dominated by smallholder farming, which due to its scattered,
diverse, and small-scale properties makes it an easily neglected group in agricultural research. For
most smallholder families, agriculture is the only or most important means of subsistence.
The initial plan of the project was to be able to go into the rice fields and conduct field research
to understand the current state of Rwanda’s rice fields and the plight of smallholder farmers. Rice
is a crop that has been seen as promising in recent years, since Rwanda has started to reclaim its
rich marsh resources suitable for rice cultivation. It has a high demand as a food in the country
and also has a high commercial value. But in March of 2020, the sudden outbreak of the worldwide
infectious disease, COVID-19, was a reminder of the high threshold of field research. Field trips
to Rwanda were no longer feasible with countries blocked down, and thus using remote sensing to
observe Rwanda became the best option for Muvumba.
After choosing the remote sensing approach, the P8 rice cultivation scheme in Nyagatare, which
is large scale and has relatively more data for easier verification, was selected as the study area.
In 2011, an irrigation system was established at the site to meet the needs of water during the
non-rainy season, but the literature shows that the irrigation system did not function efficiently
(Green, 2019). Monitoring the farmland at this site provides clues to understanding water use in
rain-fed and low-tech rice fields.
The selection of the satellite product was also an important step in the project, as it needed to be
able to identify rice and respond to rice growth conditions, such as sensitivity to water or to crop
structure. The C-band Sentinel-1 image collection was therefore chosen, in addition to its freedom
from clouds and rain (non-extreme rainfall) and its high spatial and temporal resolution, which
offered the possibility of time series analysis (Global Forest Observations Initiative, 2018). The
water environment of rice fields makes this satellite considered the best product for analyzing rice
fields.
In this study, based on the pattern of rice backscatter, using the online geographic information
platform Google Earth Engine’s fast access to rich data sets, Sentinel-1 images of five years were
used to capture the differences between the growth of cycle of rice and other crops based on the
principle of multi-temporal RGB synthesis, thereby identifying the location of rice. The backscatter
values of the rice field area also provide clues to its growth status.
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Ten seasons from five years of data from 2017 to 2021 were analyzed. The results of the monitored
rice fields are presented as maps of rice planting areas, maps of rice planting times, and backscatter
time series plots. The first half of the five year period and the second half show large differences in
the results. The results of the first half of the five years showed similar patterns in terms of timing
and area of planting. The gradual regularization of rice areas planted in the same batch may be the
effectiveness of land consolidation in Rwanda. A slight gradual pattern of delayed planting can also
be found in this time period. The results of the second period do not show such a clear pattern.
The planting area showed an expansion and a shift in time and place. Combining news, amount of
rainfall, and backscatter characteristics of other crops, it could be suggested that the region suffered
from extreme rainfall-induced flooding in the latter half of 2019 to 2020, with consequent damage
to crops and infrastructure. The area may have remained affected in 2021 as well. In addition to
this, Rwandan policies for rice fields and farmers’ corresponding responses could also be responsible
for the fluctuations of the rice area and timing of cultivation.

The project used Google Earth Engine, a promising online geographic information platform, to
remotely identify and inspect rice fields in Rwanda with satellite products, giving results that out-
line the rice fields in a relatively clear manner. Results partially reflect the growth of the rice.
It proves the efficiency of remote low-cost inspection of farmland by remote sensing products. At
the same time, it provides a basic for developing a farm-based perspective on smallholder farmers,
reflecting the (limited) options farmers may have in the face of natural disasters and changing
policies. Below, after describing the background of the study in more detail, the methodology
will be explained. The results will be discussed in detail, after which possible explanation will be
evaluated.
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2 Research Context

After giving the research objectives of this study, this section will present the background of the
research area and the remote sensing products that are used. The study area was chosen to be
Muvumba P8, a paddy area in the north-central part of Nyagatare in the Muvumba catchment,
as this area has a concentrated rice cultivation method supported by an irrigation system and the
yields are outstanding in the country (Baikirize, 2019). It is a representative area of concentrated
rice cultivation for smallholder farmers in Rwanda. The main satellite product used in this project
is Sentinel-1. Independence from clouds, high sensitivity to rice structure and water, and the fit
with the temporal-spatial resolution needed to investigate rice growth are its strengths. It is also a
product supported by Google Earth Engine, a promising online geographic information processing
platform.

2.1 Research Objectives

This project is exploratory and the objective is to use remote sensing images to detect and un-
derstand rice fields in Muvumba. Two aspects are included. The first aspect is to explore the
potential of satellite images for monitoring rice fields, that is, whether remote sensing can be used
to efficiently detect rice fields. The second aspect is to understand the rice fields in Muvumba,
trying to understand the growth of local rice through satellites and, accordingly, to interpret the
local rice cultivation.

2.2 Hydrology and geology characteristics of Muvumba

The Muvumba P8 rice scheme is part of the Muvumba catchment within Nyagatare province, lo-
cated near the center of Nyagatare, as shown in figure 1. This area is chosen as the study area
for several reasons. Firstly, this catchment is important in the country, with its river sides rich in
marsh resources, and is one of the representative places for hydroponic rice in the region. Secondly,
a rice cultivation scheme and an irrigation system were constructed in 2011 to increase rice yields
supporting food security (Green, 2019). Thirdly, according to Niyonkuru et al. (2020), the soil
in the area is ideal for rice growth. Fourthly, this region, the southeast of Rwanda, has the least
amount of rainfall in the country (REMA, 2011). As rain-fed agriculture is highly vulnerable to
climate change, monitoring the rice fields at this site can provide more insights into climate- and
hydrology-related agricultural dilemmas. Weather data scarcity is a general problem which creates
a limitation when choosing a study area(Franiriantsoa in green, 2019). More data are available for
this region. In addition to the P8 area, this study also covers the rice fields near the Colline Kiboga
area in the southern part of the region. Since this area is identified as an area of concentrated
rice cultivation in the data for 2020 and 2021, which was not the case in previous years, as will be
discussed in detail in of the results section.

Rwanda has a temperate tropical highland climate, with lower temperatures than are typical for
equatorial countries because of its high elevation (U.S.Department, n.d.). Figure 2 is a map of
the SRTM digital elevation model, with the elevation of the study site at 1200-1400 m. Kigali,
in the center of the country, has a typical daily temperature range between 12 and 27 °C (54 and
81 °F), with little variation throughout the year. There is little difference in temperature between
provinces, so the temperature pattern is almost the same in Nyagatare (WMO, 2022). According
to Green (2019), Rwanda is rich in surface water resources, such as lakes, wetlands, and rivers.
But Rwanda is still facing water stress because of its population size. Nyagatare’s drought vulner-
ability was evaluated as high(Ministry of Environment , 2018). The areas downstream along the
Muvumba river have already been suffering from long periods of drought and these water shortages
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Figure 1: Map of Nyagatare District showing the location of the study area, the location of the irrigation
dam and the photo from local researcher (?Africana Hills, 2022)

.

can potentially get worse in the future. Therefore, as an important source of water for agriculture,
rainfall patterns are very important for studying local agriculture. Figure 3 and 4 show the Mu-
vumba monthly rainfall for 2017-2022 and the daily rainfall comparison for 2017-2019, respectively.
Rwanda has two rainy seasons per year, bridged by two relatively dry periods. Both 2018 and 2020
have a significant peak in rainfall around March compared to the rest of the years. Based on these
two maps and the aforementioned temperature patterns, it is easy to see that there are no distinct
spring, summer, fall, and winter seasons in Rwanda. The local distinction between the seasons of
the year is based on rainfall, with four climatic seasons and two corresponding agricultural seasons.
The country’s four climatic seasons are represented through the long rainy season (March to May)
and the short rainy season (September to November). These seasons alternate with the long dry
season (June to August) and the short dry season (December to February). The periods for the
two agricultural seasons (sometimes referred to as Season A and Season B) in the region include
the first cultivable season (from September to January) and the second cultivable season (from
February to June). This again reflects the high dependence of agriculture on rainfall in the area.

2.3 Rice field characteristics

According to the Ministry of Agriculture and Animal Resources (2021); Ministry of Environment
(2018); Green (2019), agriculture remains the backbone for sustained economic growth, providing
direct employment to 62.3% of the population. In Muvumba catchment, this figure can reach to
90%. About 58% of Rwanda’s land is arable, of which about 5% is potentially marshlands. Cur-
rently only half of Rwanda’s potential marshlands, about 63,742 ha, is actually used for agriculture.
In Muvumba catchment, 22% of wetland utilization is rice. However, Rwanda’s domestic rice pro-
duction does not meet even half of the national rice demand, and the rest of the demand is met by
importing. The demand for rice as an easy-to-cook cash crop is increasing in Rwanda, where the
population is rising rapidly. This suggests that rice is a promising and popular crop in Rwanda (or
the Muvumba region), both as a food and as an economic product.
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Figure 2: SRTM digital elevation map in the Muvumba area in Rwanda (2000)
.

The rice project in the research area is called Muvumba P8(Figure 1). The rice fields are mainly
rain-fed, but is supplemented by a simple irrigation system in the dry season to enable two sea-
sons of rice in one year(Baikirize, 2019; Green, 2019; Ministry of Environment , 2018; Ministry of
Agriculture and Animal Resources, 2021). The dark green dot the figure 1 shows the irrigation
dam (30.281465, -1.313913) at the head of the irrigation district. A photo of the dam is shown
in the lower left corner (Africana Hills, 2022). A simplified layout of the irrigation system with
the diversion dam, the main channel, the reservoirs and the Muvumba river is shown in Figure 5.
The three reservoirs in the main study area and the two reservoirs in the secondary study area are
shown in the black circle. Two recent studies of the area claim that there is 1750 ha of rice fields in
the area (Green, 2019; Niyonkuru et al., 2020), but an official press report states that the farmland
area is only 1050 ha (Minagri, 2022). Figure 1 is used to estimate the scale of study areas rather
than to validate the results. As farmers have the freedom to participate and withdraw from leasing
paddy fields from the government for cultivation, the area of paddy fields is variable. An accurate
annual registered area is not available.

On Muvumba P8, the farmers are growing rice twice a year. The varieties of rice are Japonica
(Oryza sativa japonica) and Indica (Oryza sativa). The yield is about 6t/ha/season and 12t/ha/year
(Green, 2019). Wetland resources are state-owned land in Rwanda, and the farmers who live near
these lands pay a small fee to the government for the right to use wetland areas. Farmers are each
allocated 0.1-1.0 hectares of land and share the agricultural infrastructure (Niyonkuru et al., 2020;
Green, 2019).

In 2020, Niyonkuru et al. (2020) selected three plots in the area for soil experiments. A total
of 45 cm thickness of soil was divided equally into three layers and tested for soil type, bulk density,
soil water content, average infiltration rate, and infiltration rate. This article concluded that soil
there was able to provide sufficient moisture and support for rice. There is no uniform timing of
rice cultivation in the region. Rice in the study area is grown twice a year, but the time of the start
of each season provided by local farmers can vary by three months (Green, 2019). This is char-
acteristic of smallholder farming. In this study, rice fields are studied based on different planting
periods.
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Figure 3: Average monthly rainfall data in muvumba area in Rwanda drived from CHIRPS Pendted data
.

Figure 4: Daily rainfall date in 2017, 2018 and 2019 in Muvumba area that drived from CHIRP DAILY data
.

2.4 Remote sensing products learning and selection

Remote sensing of rice growing areas helps to accurately map rice areas and monitor paddies. It
is increasingly used by scientists around the world to trace rice, and this type of information has
proven to be reliable, cost-effective, quantitative, instantaneous, and non-destructive to the ob-
served objects (Kuenzer & Knauer, 2012). The lack of hydrological data in Sub-Saharan Africa
has been mentioned(Green, 2019; Ministry of Environment , 2018), and this situation is also ap-
plicable to Rwanda. The scope of this missing data is very broad. For example, there is no timely
information on land classification, and locating farmland is relatively difficult. Likewise, it is diffi-
cult to know the location and structure of local irrigation systems. Green (2019) found it hard to
give accurate predictions of climate and water demand changes for Nyagatare watershed because
of missing hydrological, soil, and climate data. Therefore, in the absence of sufficient field data,
remote sensing data becomes an essential source to study agriculture and water in Africa, hence it
is used in this study.
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Figure 5: A simplified layout of the irrigation system with the diversion dam, the main channel, the reservoir
and the Muvumba river (Green, 2019)The three reservoirs in the main study area and the two reservoirs in
the secondary study area are shown in the black circle in the small figure on the right.

.

2.5 Data selection: a brief introduction to selected products and reasons for
choosing them

Given the wide variety of remote sensing data, an important part of this study was to compare
different remote sensing products and filter the ones that can effectively identify rice fields and give
rice growth information. Therefore, this subsection will introduce the different satellite products
and provide reasons for the selection.
This study will combine Synthetic Aperture Radar (SAR) and optical satellite data to identify and
track rice conditions. It will be supported by other auxiliary data such as Shuttle Radar Topogra-
phy Mission (SRTM) digital elevation data, Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) rainfall data and data from literature or government documents on the
target irrigation areas and local water resources.

• Synthetic Aperture Radar (SAR)

SAR is short for Synthetic Aperture Radar. There are many products covered under SAR, and
this paragraph will describe the definition, working principle and product classification of SAR.
SAR is a type of active data collection where a sensor produces energy and then records the amount
of that energy reflected after interacting with Earth. The signal it received is the backscatter. The
synthetic aperture is a sequence of acquisitions from a shorter antenna that is combined to simulate
a much larger antenna so that the synthetic aperture can greatly improve the spatial resolution
of radar (Synthetic Aperture Radar — Earthdata, n.d.). Sentinel-1A was launched in March 2014.
This mission was the first C-band mission that has the goals of global coverage, continuity, tem-
porally dense coverage and free and open data access built-in (Clauss et al., 2017). Theoretically,
data before 2014 are not available. In practice, data before 2017 were found to be missing during
the experiment. Therefore, in this study, rice fields from 2017 to 2021 were observed.
SAR products have a wide range of options, depending on the wavelength of their emitted signal,
the direction of the emitted and received signal (polarization), the method of picture collection, the
level of picture processing, etc. The strength of the backscatter varies with the different options.

9



The commonly used bands can be divided into P-band (∼69.0 cm), L-band (∼23.5 cm), S-band
(∼9.4cm), C-band (∼5.6cm) and X-band (∼3.1cm) according to the wavelength from long to short.
The strength of the backscatter also depends on the direction of signal emission and reception
(polarization), vertical or horizontal. This polarization is commonly denoted by HH, HV, VH,
and VV, in which H means horizontal and V means Vertical. Compared to optical sensors, radar
sensors utilize longer wavelengths at the centimeter to meter, which enable them to see through
clouds. This advantage of freedom from cloud interference is often used in agricultural research.
The selection of the final product depends on the characteristics of the study object. This will be
explained in the next paragraph.

Sentinel-1 C-band GRD data is the product that is used in this research, and the instrument
mode is Interferometric Wide Swath (IW). VH and VV images are selected. SAR backscatter is a
function of a target’s (the plant itself and the soil or water in which it is planted) moisture content
and structural characteristics, and also to standing open water and below-canopy standing water.
It is also influenced by interactions between vegetation and underlying soil (Steele-Dunne et al.,
2017). So, the radar signal is sensitive to the morphological changes in the plant canopy and the
changes in water content within the plant and in the soil (Kuenzer & Knauer, 2012).
The choice of the waveband depends on the size of the object to be observed. This is because radar
waves can pass through objects that are shorter than the starting band. The C-band (about 5.6 cm)
matches the morphological size of rice. Figure 6 is a comparison of L-band and C-band effects on an
irrigated rice field in Vietnam. Rice at different stages of cultivation can be distinguished when the
C-band is applied. Therefore, this band is also described as probably the most suitable for irrigated
rice fields (Global Forest Observations Initiative, 2018). VH and VV polarizations are used in this
project. The choice of polarization was based on the experience of other scholars. In a review paper
of Steele-Dunne et al. (2017), many studies have confirmed that cross-polarization (VH or HV) is
the single most important polarization for the identification of most crops. However, the addition
of a second polarization would give increased accuracy in identification and an improvement in the
quality of results for some crops. Nguyen & Wagner (2017); Csorba et al. (2019) demonstrated the
potential of VH polarization to establish a continental-scale framework for rice field observations.
Some other experiments using VV and VH polarization demonstrate that this method outperforms
optical picture-based models in detecting crops, including yield prediction (Veloso et al., 2017;
Ranjan & Parida, 2020). Bazzi et al. (2019) also used VV and VH polarization images to build a
rice identification model, which proved to be a reliable and operational approach. As for the GRD,
it is short for Ground Range Detection. Level-1 data can be processed into either Single Look
Complex (SLC) and/or Ground Range Detected (GRD) products. SLC products preserved phase
information and are processed at the natural pixel spacing whereas GRD products contained the
detected amplitude and are multi-looked to reduce the impact of speckle (European Space Agenc,
n.d.). GRD is the only available collection in GEE.
The Sentinel-1 mission has a twelve-day roving cycle, which means that under normal conditions, a
new satellite image is produced every twelve days. This temporal resolution allows for the success-
ful capture of changes in crop phenology in the life cycle of rice during time series analysis, which
is necessary for crop classification.
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Figure 6: The different effects of C-band and L-band Sentinel-1 applied to rice fields(Global Forest Observa-
tions Initiative, 2018)



3 Methodology

Rice fields from 2017 to 2021 for a total of five years and ten growing seasons using multiple S1
images were identified with GEE. Rice can be distinguished from other crops by the trend of its
backscattering during the planting stage due to its submerged character. The RGB (red, green, blue
color model) image composition is used to assist in capturing representative pixels at the stage when
the rice is just planted. The remaining areas are classified using supervised classification. Maps and
backscatter time series plots of different batches of rice were thus obtained for further analysis and
discussion. Method construction is the core of this project. This project is of the exploration type,
in other words, it explores how much information is given by remote sensing observation of rice
fields in Rwanda. Remote sensing being a field unfamiliar to the author, the method used was not
established until after testing methods established from other literature. Therefore, the detailed
steps are presented in this section to give the reader as much clarity as possible and to enable the
possibility of reproducing the method. The earlier methods used for exploration are presented in
the appendix, as they are not the primary step in deriving the results.

3.1 Data processing platform introduction

Geodata is data that also contain information about geographic locations and that can be handled
a geographic information system (GIS) (Lhermitte, 2021c). The geographic information used in
this study was accessed, processed and operated by the online platform, GEE. It combines a
multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis
capabilities (Google, n.d.). The advantage of this platform over traditional geographic information
processing is that the information is stored and computed on the server, and the client only needs
to program the web to request the processing results from the server. Figure 7 illustrates the logic
between clients and GEE server. The efficiency gap between this platform and traditional methods
is obvious. The size of a SAR image is typically 1G, and the application of time analysis usually
involves many images (about 150 images were used in this project). This step is done in GEE on
the server side instead of the user side. Therefore, the researcher is not limited to the storage size of
the computer and does not spend time on filtering and downloading data. This also makes it easy
to handle large amounts of data simultaneously. There is also increased fault tolerance, as the client
only uses modified code to modify the information. There are Javascipt Application Programming
Interface (API), Python interface and Qgis plugin to get access to the GEE web server. Javascript
API is the most mature and easiest to get started in these three methods, and this study is based on
the principle of this method. However, compared with Python, its data export and processing and
plotting functions are much weaker, so this study used Python and Qgis to complete the plotting
and data scientific analysis (Lhermitte, 2021b).

Figure 7: A picture showing the logic of the GEE side and the client’s access to information(Lhermitte,
2021b).
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3.2 Methodology Overview

The supervised classification performed in this thesis is based on the different characteristics of rice
from other crops as reflected in remote sensing satellite images. This is the technique most often
used for the quantitative analysis of remote sensing image data (Richards, 2022).
The core of this method is the segmentation of the spectral domain into regions that can be
associated with classes of land surface cover. The spectral domain is divided into regions that can
be associated with the ground cover category of interest for a certain purpose. Many algorithms
exist for this task, and this study applies the Random Forest. In practice, ground cover may be
misclassified because some features are similar to other categories, so there are requirements on the
type, quantity and quality of the input images (Richards, 2022). Figure 8 shows the working steps
of general supervised classification. The first three parts, inputting images, collecting training data
and training a classifier are done by the operator. The later steps are done by the computer, hence
the method is also called machine learning. Figure 9a shows the flow chart for the identification
of rice fields in this project. This figure shows more details of the method and completes the
methodological structure of this study.

Figure 8: work flow of supervised classification(Lhermitte, 2021a)
.

(a) Flow chart for identification of paddy fields

(b) Agriculture RGB composite s2 map of research district

Figure 9: RGB composite of late March in 2017 using VH or VV; The magenta part is the area where the
rice is located, where more details are shown in VH and the spectrum is more continuous, but the rice part
in VV is more striking
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The input image-collections selected for this study were S1 and S2. The time series analysis of S1
provide the backscattering characteristics that distinguish rice fields from other vegetation species.
S2 images provide a visually clearer view of the farmland area by combining images from different
bands.
S1 is a synthetic aperture radar whose received signal strength is very sensitive to the morphological
structure of water and crops. In figure 10, rice growth can be divided into three stages, planting,
growing and harvesting. Rice in the planting stage is submerged by water and its backscattering is
similar to standing water. During this rice growing phase, water is the dominant signal characteristic
received by S1. Therefore, the backscatter of the rice field during this period will be significantly
lower than other plants and close to the value of the water surface. The backscatter value of the
rice field gradually increases as the rice plants grow, and the water surface is becoming covered
by rice plants. Thus backscatter has a variation from ’high’ to ’low’ and then ’higher’ during the
growth cycle of rice. Since the representation of backscattering is negative, its value shows an
increase from cultivation to growth. To better capture this feature, this study uses RGB composite
images to render visually distinguishable features. (The basics of how multichannel SAR imagery
is displayed in figure 11 (OpenGeo Lab, 2022).)

Figure 10: Backscatter mechanisms in dependence of rice crop growth (Clauss et al., 2017).

Three grey SAR images are assigned to Red/Green/Blue band, and when the values (backscatter-
ing) of the images present high (white in pixel), low(black in pixel) and medium (white in pixel),
the resulting color will be magenta. When the values of the three images are trending from high
(white in pixel) to low (black), the composite image display cyan. When the value of the pictures
shows a trend of gradually decreasing, the resulting color of the composite will be yellow. There-
fore, by capturing the magenta pixel of the composite image, the rice-related pattern selected. The
description of the trend alone seems too abstract, Box I following visualizes the specific steps that
the operator did in the GEE.
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Figure 11: RGB synthesis logic schematic (OpenGeo Lab, 2022).
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Box I: detailed step-by-step approach to identify rice fields.



Detecting rice areas by capturing the change in backscatter values from the flooding period after
rice planting to the stage of harvesting has proven to be a simple and effective means of rice area
detection (Kuenzer & Knauer, 2012; Global Forest Observations Initiative, 2018). Multitempo-
ral images combined in the Red/Green/Blue bands are used to capture the low-lying values of
backscatter during rice growth and thus to determine the location of the rice field.
The role of S2 is to assist in determining the area of the rice. The combination of bands 11 (SWIR
1), 8 (NIR), 2 (Blue), which is also known as the agricultural RGB combination, is used in this
study. This combination is mostly used to monitor crop health, as both short-wave and near in-
frared bands are particularly good at highlighting dense vegetation, which appears dark green in
the composite. SWIR measurements can be helpful to reflect water which is present in plants and
soil, as water reflects SWIR light (Sinergise, n.d.; IRS Lab 2 - GEARS - Geospatial Ecology and
Remote Sensing, n.d.). The effect of agricultural RGB on the study area is shown in figure 9b.
Farmland areas (mostly rice fields and forests) are distinguished in figure 9b as being greener than
other land uses.

The reference used in this study to construct the methodology to identify and analyze rice paddy
are mainly publicly available online GEE learning materials (OpenGeo Lab, 2022; GEARS, n.d.;
Gandhi, n.d.) and TU Delft related courses (CIE4616, CIE5401). The code is also partially written
with reference to the answers of some google search results. The addresses of all codes used in this
project are listed in the Appendix A.

3.3 The process of rice identification

3.3.1 Image access in GEE: Preprocessing

The Level 1 S1 data used in this study had to be preprocessed for its use in the analysis to be
meaningful (Esri, n.d.). Pre-processing deals with noise and distortion caused by sensors, terrain,
radiation, heat, etc. It is also influenced by the purpose of use and scope of study, so preprocessing
is not a uniform fixed step. Some common pre-processing operations are listed below.

• Apply orbit file

• Remove thermal noise

• Apply radiometric calibration

• Terrain correction

• GRD border noise removal

• Despeckle

• Apply geometric terrain correction

The first five of these processing operations are done automatically in GEE, of which GRD boundary
noise removal was terminated on January 12, 2018 (Google Developers, 2022). Compared with
traditional methods, Earth Engine provides a simpler mode of image collection operation, but
with less flexibility. The user cannot independently choose the preprocessing operation to be
performed. In addition to this, the preprocessing of S1 images by Earth Engine also varies with
time changes, which can cause systematic errors to the results of this experiment. To eliminate the
scattering effect of terrain on microwave radiation, GEE also automatically performs a unitable
transformation of its images. The S1 image collection in the Earth Engine consists of a level 1
ground sounding (GRD) scene with a processed scattering coefficient (σ°) in decibels (dB). The
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backscatter coefficient represents target backscattering area (radar cross-section) per unit ground
area. Because it can vary by several orders of magnitude, it is converted to dB as 10*log10°.
It measures whether the radiating terrain preferentially scatters the incident microwave radiation
away from the SAR sensor (dB<0) or towards the SAR sensor (dB>0). This scattering behavior
depends on the physical properties of the terrain, mainly the geometry of the terrain elements and
their electromagnetic properties.

3.3.2 Reasons for the selection of frequency and time range of the data set

This section will give explanations of the reasons for the choice of the time period for the data. A
time series analysis of each rice season will be conducted separately in this project. Depending on
the time of year when the rice is planted and grown, the rice in the region is divided into short
rainy season (season A) and long rainy season (season B), with a predicted growth cycle of four to
six months for each season (Green, 2019). The minimum time unit used for this thesis was chosen
to be half a month, with the exact number of days varying with the month, a guarantee that two
observations would be made each month for short rainy season (January 1 to the end of July) and
long rainy season (July 1 and to the end of January of the next year) for year 2017 to 2021. Since
the cycle of S1 at research area is usually 12 days, sometimes there may be more than one image
in a half month. In this case, the average of all the pictures of this period is combined into a new
image. For example, the image called ’early March’ in this study is the average of all S1 images
within the first half of March of that year. Fourteen averaged radar images are available for almost
every season (Late January data are missing in 2017, Early November data are missing in 2021).

(1) One of the reasons for this timing determination is that the timing of rice planting in this study
area is not uniform. Only small and fragmented areas of land are allocated to each Rwandan
farmer, and local farmers the freedom to choose when to plant. Therefore, a planting window
that may be up to several months long is expected to be observed in this study area. Thus,
the study time window for the two seasons overlaps for a total of two months throughout the
year, January and July. This is to prevent potential planting times from being skipped.

(2) The temporal frequency and year of the acquired satellite images are due to the accessibility
of the data(temporal resolution) and the features of the agricultural observations(for example,
number of crops, consistency of planting practices, presence of intercropping, and number of
cropping seasons per year (Steele-Dunne et al., 2017). The minimum cycle in this study is
one growth cycle of rice, which is a growing season of about half a year. Satellite images
with a temporal resolution of half a month matches the temporal resolution of crop growth,
implying that changes in crop phenology can be captured. The twelve-day revisit time of
S-1’s out-of-Europe region image collection enables this analysis.

(3) The time span selected for this study is 2017-2021, which is subject to the limited amount
of available data. The time frame for the original plan was chosen to be 2015-2019, for a
total of five years and ten crop growing seasons. Since the purpose of this study is to analyze
the reasons why farmers make agricultural strategies, unexpected social factors can be a
distracting factor in the analysis. The years 2020 and 2021 were considered to be potentially
affected by the COVID-19, and it was difficult to weight the factors. However, continuous
S1(launched in 2014) images covering the present study area were not available in GEE until
after 2017. Overall, five years of data compared to three years of data are more reliable in
the operation of conducting time series analysis to guarantee the credibility of the results.
Therefore, the final time period chosen for the study are 2017-2021.
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3.3.3 Supervised classification in GEE

In this study, the RGB composite S1 images were used as the references for supervised classifica-
tion of the experimental area to identify the area in which the rice was located, the results were
compared accordingly. The introduction of the method has been mentioned at the beginning of
this chapter, and the steps of the method will be described in this section.

(1) Load the boundary of the research area

The first step was to introduce the second level of FAO’s Global Administrative Unit Layer
(GAUL2015) map in GEE and filter the ’Nyagatare’ area by the name. The study area for this
project was rice grown within the marshes along the river in the region, so this step screened out a
much larger area than the actual site. The step of refining the boundaries will be performed later.

(2) Load and stack the images

In GEE, need to filter the required images by the code made by GEE library. The required indices
for filtering images are time, signal acceptance polarization, instrumentation pattern, orbit passing
properties and location. The 14 filtered VH images containing only backscatter are then stacked
and labeled in order to facilitate the combination of the requested images.

(3) Classify and label representative pixels with rice paddy features(Collect training data)

This step labels and classifies the representative pixel points that represent rice, forest, town, sur-
face water and other surface types, based on the spectral information of the satellite images, in
order to enable the computer to classify all the pixels remaining according to this classification
logic. This method is commonly called ’collecting training data’. ’Training’ refers to the estima-
tion of the parameters that the classifier needs in order to be able to recognise and label unseen
pixels. Therefore, the different types of land use should have visually distinguishable features, and
each spectral class is required to have enough training pixels to allow reasonable estimation of the
elements of the class conditional mean vector and covariance matrix (Richards, 2022).

Generally, the principle is to identify the location of rice by using the color synthesized from the
trend of the values of three different pictures to capture the dipping part of the rice life cycle. The
actual process is as follows. The images potentially located in the rice planting period are sequen-
tially used as the middle image of the RGB composite image, traversing all of them. After taking
into account the upper and lower bounds of backscattering, the magenta pixels in all composites
are captured and classified by the time in which their middle pictures lie, indicating that this is the
time from which the captured rice was planted. The operation is repeated for each season. The
next paragraph is a practical example.
Screenshots of the classification process are shown in figure 12. The three RGB channels are from
early March, late March and early May. As can be seen in Fig 12a, the RGB combination of VH
is sensitive to the different growth states of rice. The magenta gradient in this figure is relatively
smooth and rich, which can show the relatively continuous spectrum of rice. The saturation of the
magenta in the same region in image 12b has a much higher contrast compared with other areas,
but there is relatively less detail in the picture. Thus VH and VV work together to improve the
quality of classification results by improving the accuracy of target pixels.
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(a) VH (b) VV

Figure 12: RGB composite of late March in 2017 using VH or VV; The magenta part is the area where the
rice is located, where more details are shown in VH and the spectrum is more continuous, but the rice part
in VV is more striking

(4) Classify the image

Phenological parameters derived from the S-1 VH and VV backscatter time series were used as
an input to a classifier in order to classify the input data into rice and other areas. The trained
classifier is used to label every pixel in the image, then the whole image is classified. The algorithm
adopted in this study is Random Forest (Richards, 2022). This classifier was chosen because the
RF classifier provides performance improvements relative to the decision tree classifier (H.McNairn,
2012; Bazzi et al., 2019). Random Forest consists of a large number of individual decision trees that
operate as an ensemble. Each individual tree in the random forest spits out a class prediction and
the class with the most votes becomes our model’s prediction (figure 13a) (Yiu, 2021). Because
of the presence of multiple decision trees, the distribution of classification results, where each
decision is considered as independent, is more uniform, meaning higher probability of success of
the classification. The better classification performance is the characteristic of this method, but
according to Richards (2022), there are requirements of data quality for the RF methodology to
work well. The selected data should be sufficiently different from each other, and there should be
enough data to ensure a good classifier. To guarantee this, the classification operation is repeated
three times. Each time more than one-third of the training data that can be recognized in the map
is captured.

(5) Results Processing and presentation

Before the final rice map was generated, some slight image operations were used to optimize the
results.

1) The first thing to do is to limit the range. The study site for this research is in the irrigation
area on both sides of the Nyagatare River. Scattered paddy fields of small farmers outside
the marshes or pixels that were misclassified as paddy fields were removed by delineating the
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(a) Visualization of a random forest model making a pre-
diction

(b) Neural network of machine learning (Lhermitte, 2021a)

Figure 13: Visualization of Machine Learning

boundaries of the area. The extent of the study area was delineated manually on the map
for each season, based on the agricultural RGB composite map of S-2 for the rice maturation
time period, leaving only the dark green (considered as vegetation) parts of the river banks in
the picture. This ensures that the final selected area must be vegetation. It is then required
to consider whether to extend the study area based on the results and objectives. Considering
the focus of the study, for the maps up to 2020, only the part downstream of the Muvumba
irrigation dam will be shown. For the two years 2020 and 2021, since the area where it
shows the concentration of rice results is in the Mimuli part more upstream, this part will be
included in the map as well. Some scattered rice fields with no more than three pixels are
not removed as noise because the edges of the unnormalized image are more natural.

2) The second step of the operation to be considered is the visualization of the results. Different
batches of rice starting to be planted were the focus of this project, and the visible spectrum
is divided into seven sections (rainbow colors) as visualization parameter to distinguish the
different planting times. From red to purple, the planting time of the rice in its specific area
is gradually delayed. Since there are five batches of rice in most seasons, most of the maps
eventually show the color from red to blue (cyan is used for blue in this experiment). The
planting order is accomplished by sequentially displaying a map of the rice that has been
planted before a certain time point and the rice that was planted at that time. As shown
in Figure 15, the red color indicates rice planted at the current time period (within half
a month), and the cyan color indicates rice that has been planted before the current time
period.

3) The final step is to create plots. These plots show the time series of backscattering for different
batches of rice. Land use types classified as water and forest are also shown as comparisons
in the plots, where other types of crops appear in the plots for 2020 and 2021. The colors of
the lines used for different batches of rice are consistent with those on the rice map. Dashed
lines are used for other land use types. The time of the horizontal coordinate corresponding
to the lowest point of each line is the time when the batch of rice is considered to be seeded,
and rice growth starts from this point. These lines have not been mathematically fitted so as
to reflect the direct data.
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4 Results

This chapter presents the results of this study, which consists of maps showing the location of rice,
schematic maps of rice planting orders, and plots of time series analysis of backward scattering.
Additional image results are in the appendix. The first five growing seasons, 2017 to the first half
of 2019, showed a similar pattern, reflected in the areas where rice was planted and the timing
of planting in different areas. This would be a reflection of the relative consistency of farmers’
practices in growing rice. The results after this period differed considerably from the previous one,
and were particularly different in 2020. The backscatter time series for other land use types for
this year partially overlap with those for rice. Possible reasons for this result will be discussed in
the next chapter.

4.1 Common patterns

Of the data being analyzed from 2017 to 2021, the data from 2017 to the first half of 2019 show
relatively similar paddy patterns.

4.1.1 Relatively consistent patterns of rice area

Figure 14: Map of rice from the first half of 2017 to the first half of 2019 for a total of five growing seasons,
with red to blue color blocks indicating planting batches from early to late.

The results of rice identification from the first half of 2017 to the first half of 2019 are shown in
Figure 14. The different colors indicate different planting batches of rice in the same season, pre-
sented in the order of the visible spectrum, with red being the earliest planting batch of the season
and blue being the latest. The earliest batch of rice planted during the long rainy season starts in
late February, with planting ending in late April. The first batch of rice planted in the short rainy
season starts in August, and the last batch ends in late October. The number of batches of rice
planted per season (5 batches) and the locations where the rice was planted were almost the same.
The locations where the same batches were planted were similar. The areas where rice was first
planted are all located in the south-central part of the map. Rice planting ends in the middle of
the area.
Looking from left to right from 2017 to 2019 in Figure 14, the maps show a decrease in red and
an increase in blue, suggesting an overall gradual delay in rice planting. In addition to this, the

22



timing of planting on adjacent land tends to be the same, with a large amount of blue and green
appearing in the graph during the first half of 2019. Such a shift indicates that the farmers’ rice
planting strategy started to change. This trend may serve as a basis for the change in results in
the latter two years and can partially explain the change. However, these links will be explained
in the discussion section.

Figure 15: Map of rice from the late February of 2017 to the late April of 2017. The red area indicates rice
planted within the period to which it belongs, and the cyan color indicates rice planted before this period.

Figure 15 shows a map of the rice planting order during the long rainy season in 2017. The graphs
for the rest of the period are in the Appendix. The red color of the graph indicates rice that was
started during that period, and the cyan color indicates rice that was already planted before that
period. The graph shows that March 2017 was the time when the largest area of rice was planted.
This time is usually the beginning of the long rainy season in Rwanda. Relatively less rice was
planted in April. The distribution of rice planted in the same batch shown in the figure is relatively
concentrated, and farmers living closer to each other may choose to refer to each other for planting
strategies. However, the graph does not show why the farmers chose to plant rice in this order.
This may be related to water resources.

4.1.2 Relatively consistent patterns of backscatter value

Figure 16 shows a time series plot of backscatter from 2017 to 2019, with different colors representing
the same as in the previous map of rice distribution (figure 14). Higher backscatter values occur at
the maturing stage of crop, when the crop is growing and water is shaded by the plants. Excluding
the second half of 2019 (bottom right), more standard low-lying values are captured for each batch
in each season, with minimum values ranging from -22 to -25. The maximum values are distributed
in January and July, with values ranging from -15 to -16. Among all batches, the backscatter values
for the first batch of each season are relatively less stable, with the occurrence of two minimum
values and longer periods of duration of the minimum values. However, the overall trend is similar
for each batch. The second half of 2019 starts to show a clear inconsistency. The minimum values
of the captured batches are not sufficiently low and there is high variability between batches. Its
trend is also different from other seasons of rice. This part will be discussed later.
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Figure 16: Time series of rice field backscatter values for 2017 to 2019. The different colored lines indicate
the rice planted at different periods. The dotted lines indicate the water and the forest respectively.

4.2 Different patterns

4.2.1 From late 2019 to 2021: harder to detect rice

As previously mentioned, the 2019 rice detection results were unexpected. Rice failed to be captured
at the sowing stage, but pixels matching the backscattering pattern of rice were captured at the
rice maturity stage. Similar to the situation in late 2019, the results for the area of rice fields and
their cropping patterns derived in 2020 and 2021 are very different from the previous three years. It
is nearly impossible to directly attribute the reasons for such a large change, and several potential
causes are discussed in the next section. These potential impacts could be the effects of flooding
from extreme rainfall, the effects of policies, or changes in farmers’ choices. The next paragraph
will describe specifically the differences that appear in the results.

For 2019(figure 17), the rice areas identified have little similarity to the previous three years. The
areas identified as most intensively cultivated with rice in the previous years were hardly observed
with rice in later two years. Instead, the wetlands near Colline Kiboga (another river in the direction
upstream of the study area) appear to be full with rice. This area showed little rice in 2017-2019
and its not in the scope of the P8 program (Figure 18). Therefore it does not attract attention in
the first three years. Figure 19 shows that the 2019 situation is also visible in 2020 and 2021. In
addition to this, even if there is some similarity in the planting areas from the second half of 2019
to 2021, there is a large variation in the colors of the same areas in the graph, which indicates that
there is no regularity in rice planting times.
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Figure 17: 2019 Results Map. A zoomed-out version is shown on the left. The concentrated area identified
for rice cultivation can be seen on the map on the left in the Colline Kiboga area in the upstream direction
of the Nyagatare area. In the Nyagatare region in the right map, no rice was identified on a large scale.

.

This result has been noted in the process of rice identification. Figure 20 shows a composite RGB
image with late August 2019 as the middle image; Figure 20a is a zoomed out image, and Figure
20b is a screenshot of a zoomed-in image of the river. For the past few years, this period was the
first rice planting time of the short rainy season: the combination of marshes and seedlings would
have made the pixels representing the rice fields on the image to be magenta. However, there is
almost no magenta in Figure 20a, and the various crops on this map are all a similar purple or pale
pink color. When the image is scaled up, in Figure 20b, only scattered magenta appears along the
river, which may represent low-lying lands along the river that were flooded at that time of year.
Therefore, the lack of success in identifying rice in this region was not due to operational errors.

Even in the areas where rice was identified, its backscatter values were somewhat higher than
the values of the previous years. In addition to this, the areas identified as other crops and moun-
tainous (ridge topography) in the second half of 2020 show almost the same trend as the rice planted
starting in late September. Figure 20 shows the same color on all the land during the experiment,
thus the rice area does not show distinguishable blocks of color. Therefore, the lines labeled as
other land use types were added to the time series analysis of rice in Figure 21. The dotted black
line is the line for the other land use types. Since most of the site is agricultural land, this line also
partially represents the backscatter time series of other crops, such as soybeans and maize.
In Figure 21, the remarkable situation is that only three batches of rice were identified in each
season in 2020 and their trends were different even compared to 2021. The minimum values of the
lines in the short rainy season of 2020 were even higher than -20. The maximum values also varied
widely and fluctuated considerably around the maximum values. Another noteworthy aspect is the
other land use types in 2020. The black dashed line is similar to or even coincides with the trend of
rice in both seasons of 2020 (the black dashed line almost coincides with the solid orange line in the
long rainy season), and the low-lying points of the black dashed line are observed in early March
and late September 2020. This phenomenon occurred in that year only. In 2021, the backscatter
values are relatively similar, although the location of rice cultivation is different from the previous
years. The difference is higher for the rice planted after the middle of the two seasons in 2021,
where the minimum value is higher than -20. However, the backscatter values for the other land
types are different from rice, and the line tends to be straight.
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Figure 18: Rice paddy map from 2017 to 2019 in a larger scope.
.

Figure 19: Rice paddy map from 2020 to 2021. Different colors indicate rice planted at different times.

Year-to-year and batch-to-batch time series of backscatter are compared in figure 22 and figure 23.
Figure 22 shows rice planted in March and September, with similar trends for each of the five years.
This shows a relatively stable growth of rice planted at that time of the year, coinciding with the
beginning of the two rainy seasons in Rwanda. Both plots show that the backscatter in 2020 and
2021 are less variable over the rice growth cycle than in the previous three years. The dark blue
line and the light blue line are almost always above the other lines, no matter what the planting
stage or maturity stage of rice are.
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(a) Almost no magenta in the image. (b) Only the pixels by the river appear magenta

Figure 20: In late August 2019, which should have been the time when the first rice plantings began at the
site, the rice can only barely be captured on the map (pixels showing a contrasting magenta color).

Figure 21: Time series of backscatter values for paddy fields from 2020 to 2021. The different colored lines
indicate the rice planted at different periods. The dotted lines indicate water and forest respectively, but the
black dashed lines indicate all other types of cover (mostly other kinds of crops, so they can also be seen as
crops other than rice).

.
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Figure 22: Backscatter from the same planting batch in different years.
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Figure 23: Comparison of backscatter of all batches of rice grown in different years.
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5 Discussion and Conclusion

This discussion section aims to explain in the results, and discuss limitations of the present ex-
perimental methodology. This project did not produce conclusive results, which is an inevitable
consequence when purely remote monitoring experiments are conducted and field data are not
available. In order to expand the significance of this study, the discussion section gives the fullest
possible explanation of the causes of the phenomena in the results. Open conclusions enable further
research. Flooding due to extreme rainfall, policy changes and farmers’ own strategy changes are
the more likely causes, and data support for this attribution includes meteorological data, news
reports, government documents and articles written by local scholars. Limitations of this experi-
mental approach include, but are not limited to, the lack of local data support for validation and
the lack of long time series due to the lack of satellite data.

5.1 Limitations

No definitive results are derived in this study, which is a result of the absence of field data. The
speculations provided in the above discussion can only be considered as possibilities.
If time permits, other products of remote sensing can be used to confirm or determine the extent
of flooding. This thesis briefly describes this method to facilitate potential subsequent studies.
Gandhi (2020) describes a method for mapping flooded areas inside the GEE using the same S1
product as this study. (OpenGeo Lab, 2022)’s approach uses SNAP in conjunction with QGIS to
pre-process the S1 image set and present the results. This method is not limited to S1 products
in GEE and has the flexibility to add pre-processing steps on demand. QGIS also provides a more
convenient way to create maps and thus better display the results. However, since the products
usually used to detect flooding and the principles are the same as the ones used to capture rice
in this project, a partial overlap results are expected. For policy-related discussions, verification is
much more difficult, and fieldwork is very helpful.
Moreover, this project covers a limited time period and does not reveal a long term pattern. Any
changes that may occur are difficult to consider in terms of historical causes. This is limited by the
development of satellite technology, which was launched late and earlier data were not available.
Therefore future studies using satellites are to be expected to provide longer term result.

5.2 Potential explanations for big changes

5.2.1 Extreme weather

A reason for the inconsistency of the results in late 2019 and 2020 with earlier years could be flood-
ing. News reports, rainfall data, values of backscatter and distribution areas support this statement.

(1) Rwanda has increasingly experienced heavy rains, affecting most parts of the country. Rwanda
was hit by floods at the end of 2019 due to huge rainfall, but the study area was not the worst
hit at this time. Between 03 and 05 March 2020, extensive rainfall was recorded, leading to
flooding and windstorms, in Gisagara and Gasabo districts in Kigali City, and Ngoma and
Nyagatare districts in Eastern Province. Between 07 and 09 May 2020, more heavy rainfall
caused flooding and landslides in seceral areas in Rwanda(Reliefweb, 2021; IFRC, 2021).

(2) Combining the Rwanda monthly precipitation plots (figure 3), the monthly rainfall in March
2020 was much higher than other study periods, exceeding 350 mm/month, which indicates
that Rwanda suffered from floods in both the long and short rainy seasons in 2020.
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Figure 24: Farmers try to salvage some of their rice produce that had been washed away by floods in Nyagatare
District (Nkurunziza, 2021)

.

(3) Also able to support the argument are the time series plots of backscattering in 2020 and
2021 (figure 21). The other land use types distributed around the swampy rice fields (mostly
non-rice crops), represented by the black dotted line, showed a minimum value in early March,
which is usually considered to be the part of the low value captured by the rice cultivation
stage that has a higher reflection value because it presents an agricultural flooded state. This
scenario only occurs in 2020. The other land use types typically do not show much fluctuation
in backscatter values throughout the year, as shown in figure 21 for 2021. The occurrence
of a low value means that there is a large amount of water in the region. The explanation
is consistent with flooding following extreme rainfall inundating large areas, including areas
slightly higher in elevation than the rice fields. Accordingly, if almost all low-lying areas in
the area were flooded, then the identified rice field may not be a rice field at that time, but
an area that was inundated due to flooding, as shown in figure 24.

(4) Farmland after the flood transit may not be able to support cultivation due to damage to
infrastructure and changes in the nature of the land, requiring a recovery period, which is
consistent with the result that only a limited amount of rice can be observed in 2021.

In summary, flooding is a likely cause. However, strictly speaking, the information only mentions
that the province of Nyagatare was severely affected, without mentioning the specific areas of the
province that were affected. So it is not possible to conclude that the study site was definitely
affected. The use of other remote sensing products to detect the actual impact areas of the 2019
and 2020 floods could increase the credibility of this assertion.

This section discusses policy-induced changes in rice fields. Policy determines the flow of funds and
technical support, which partly determines the direction of agricultural development and cannot be
ignored as a factor that also triggers a change in Rwanda’s rice fields. The Rwandan government
promotes swamp reclamation of rice fields to increase rice production, but in the face of Rwanda’s
agricultural transformation, i.e. land consolidation policy, growing rice is not necessarily the only
option for local farmers.
The government of Rwanda recognizes the economic benefits provided by rice. According to its
policy, the gradual expansion of rice fields, and even their extension in other areas, is predictable.
Officially published yields of about 12 t/ha per year in Rwanda’s rice fields also prove the usefulness
of growing rice in Rwanda. Plans for rice development are supported by the National Agricultural
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Policy (2019). Rice is also one of the eight major crops of the Crop Intensification Program (CIP),
a program that promotes land consolidation. The National Rice Development Strategy-II (2020-
2030) plan mentions the expansion of rice fields. At least 9,000 ha of new marshlands will be
developed and at least 3,000 ha of existing marshland will be rehabilitated for rice cultivation by
2024. An additional 4,600 ha of new marshlands will be developed for rice cultivation by 2030
(Ministry of Agriculture and Animal Resources, 2021; Green, 2019; Nilsson, 2018).
Rwanda’s agricultural reforms demand new strategies for farmers in terms of labour and planning.
For some farmers, this policy has limited their options for farmland use. The reclaimed rice fields
are owned by government cooperatives that provide the supporting infrastructure, and the farmers
pay for the lease of the fields themselves. Influenced by commercial monocropping, farmers do
not have the freedom to choose the source and price of seeds and fertilizers, nor do they have
access to markets. Because of the uneven quality of field reclamation, farmers’ income varies.
The foreseeable option for farmers under the policy may be to withdraw from the rice growing
program, because they cannot afford the capital and risk. As a result some farmers have quit
rice cultivation after receiving negative agricultural consequences (Huggins, 2022). Similarly, the
slightly increasing concentration of planted rice observed for the first three years may be the result
of land consolidation, and the delay in planting rice could be attributed to the time constrains of
farmers (Huggins, 2022).
In summary, policies set the rules of the game and farmers add or withdraw based on their individual
capabilities.
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The remote sensing approach provide successfully in identify rice. In the first 5 seasons, a consistent 

pattern of growth in Nyagatare could be identified. Planting times were slightly delayed our times,
which is possibly related to government polices and associated farmers’ options. In the second 

5 seasons that were analysed, flooding seems to have disrupted the status, slightly changing rice 

growth patterns. It goes beyond this study to exactly explain observations further, nor speculate 

on the longer term effects of disruptions.

5.2.3    Conclusion
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A

I Code link

The addresses of all codes used in this project are listed below.
Code list for rice identification:

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe1 201901

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe2 201902

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe3 201801

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe4 201802

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe5 201701

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe6 201702

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe7 202001

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe8 202002

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe9 202102

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Abishe10 202101

Code list for land classification:

• https://code.earthengine.google.com/?scriptPath=users\%2Fjiangshilian\%2Fseeworld\%3Aclassification\%203\
%20(copy)
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B

II Less important or abandoned methods

• Methodology exploration: Test if Sentinel-2 alone can identify rice fields

Sentinel-2 Multispectral Instrument (MSI) is one of the passive optical image sources from the
European Space Agency, and the characteristics of this mission are wide-swath, high-resolution,
multi-spectral imaging. The interpreting method of this optical image is similar to interpreting
a photograph (Synthetic Aperture Radar — Earthdata, n.d.). Optical sensors collect data in the
visible, near-infrared, and short-wave infrared portions of the electromagnetic spectrum (European
Space Agency, 2015). The launch of this satellite took place on June 23, 2015, so the time of this
study will be limited by this product.

The reflectance characteristics of rice in optical remote sensing images also make medium-resolution
optical images one of the methods used to detect rice. Authors Ni et al. (2021); Son et al. (2020)
explored the potential of tracking and mapping rice based on rice phenological characteristics using
only Sentinel-2 images. Both experiments successfully identified rice simply and efficiently. In this
project, however, using Sentinel-2 was less successful. The results of rice identification using this
method are given in the fourth section of this study, but their accuracy does not meet the require-
ments of this project. Therefore, the Sentinel 2 pictures will not be used as the most dominant
information in the subsequent sections of this project.
The method of making decision trees to identify rice fields using parameters derived from optical
images (Sentinel-2) was mentioned in several studies (Kuenzer & Knauer, 2012; Weichun Zhang,
2020; Son et al., 2020; Ni et al., 2021) and tested to be effective. Therefore this method was tried
during the exploratory period of this study. A land classification was performed through the use
of S2 as a preliminary investigation into the land use of the study site. To verify the accuracy of
this method, both methods using only S2 and NDVI, and also additionally using LSWI and EVI,
were tested in this study.
The decision tree references the study of Son et al. (2020). The land was identified as rice field
when EVI was greater than or equal to 0.5 and less than 0.7, LSWI was greater than 0 and less
than 0.5, and NDVI was less than 0.64.
Supervised classification is also the method used for the first land classification method, and its
brief step-by-step description is listed below, with the first five steps for method 1 and an additional
sixth step added for method 2. Figure 25 shows the location of some of the training data. Figure
26 shows the land classification map of Nyagatare region obtained using method I. Rice in the area
is grown in the lowlands along the river, and this part of the area is potentially swampy. This part
of the farmland is separated from the city by a narrow strip of forest. Such a result is consistent
with the study of Green (2019). The overall accuracy is higher than 90% (table 1).
Figure 27 shows the two results obtained using different classification trees and only the part clas-
sified as agricultural land (rice fields) is shown. The left figure shows the results of supervised
classification by selecting training data to train the classifier (the dark green part is the rice field).
The right figure shows the filtered part based on the decision tree from the literature (white part).
The overall accuracy is high, but the results are not ideal. The red circled parts in both figures
are ridge-like types that are misclassified as rice fields. This misclassification can be explained by
the study of Zhang et al. (2018) in Bazzi et al. (2019). In their study that rice and other crops are
often misclassified when using only the spectral information of optical images. This shows that the
rice fields in the study area cannot be effectively identified using Sentinel-2 alone and therefore is
not used as the main method for this project.
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Steps:
1) Filter the area of interest:
Using the Second-Level Administrative Units from FAO to select the area of interest by specifying
the area name, Nyagatare.

2) Filter sentinel-2 image collection
Filter the image collection by the number of clouds, area of interest and the time (March 1, 2021
to the end of 2021).

3) NDVI mapping and unit specification and training data selection
Add NDVI using the map function and normalize its units. Add feature collections, classify into
land use types of interest (agricultural, water, urban, forest and others) and select representative
points and representative geometries.

4) Add the required bands and build the classifier

5) Classification is performed using CART and random forests, respectively, and points are rese-
lected for validation and accuracy is calculated.

6) In addition to NDVI, LSWI and EVI indicators are added for classification to compare the result
maps showing only agricultural areas.

Figure 25: Classification of land into agricultural, water, urban, forest and bareland (other) based on the type
of land of interest; Selection of representative points and representative geometries (training data collecting)

.

In order to estimate the time of the start of rice cultivation, time series plots of NDVI (figure 28)
were produced for rice fields from 2017 to 2019 (the results of Method 2 used). Due to the cloud
cover, the map shows significant data missing in different years, which is an unavoidable drawback
of optical images. However, the map can still give some valid information. In combination with the
figure4, it can be found that NDVI, an indicator showing status of vegetation, has a clear positive
correlation with rainfall. When it comes to transplanting time, the first season (season A) starts
around late February and the second season (season B)in early August. This can be used as a
reference for subsequent selection of time periods for remote sensing images.

• Discarded methods: using Sentinel-1 VH, VV and their mathematically
fitted parameters as decision trees for identifying rice fields

This study decided to incorporate radar images after an initial exploration of using only optical
images.Prior to understanding the RGB synthesis method, mathematical fitting parameters of the
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Figure 26: Land classification map of study sites using randomly selected points combined with machine
learning methods

.

Classifier Overall accuracy Cohen’s kappa
Cart 0.900 0.822
Random Forest 0.933 0.881

Table 1: Accuracy of two different machine learning methods for land classification

Sentinel I time series were used to identify the decision tree of rice, where both VH and VV are
used. The principle and steps of this method are mentioned in detail in the literature of Bazzi et
al. (2019). It is verified that this method can be used to identify rice fields to obtain an overall
accuracy of 96%.
The principle of this method is that the temporal behavior of the Sentinel 1 backscattering coef-
ficient of rice is significantly different from that of other crops at VV, VH as well as the ratio of
VV/VH polarizations. To standardize their temporal behavior, metrics are calculated for use in
classification. Gaussian fits and variance fitting are performed for the time series of VV/VH, and
linear fits are performed for the VH signal. Finally a decision tree made from the above metrics is
used for classification. After this step is completed, the implications of the water resources aspects
of all signal responses are then analyzed. The workflow is showed in figure 29.
This method was abandoned mainly because it was time-consuming and difficult. There are also
more steps and techniques to be used. This was not in line with the time schedule of this project
and the aim of finding a simple and efficient method.
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Figure 27: Two different methods were used to try to identify rice fields
.

Figure 28: NDVI in 2017, 2018 and 2019 in a rice field that drived from Sentinel-2
.
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Figure 29: work flow of the discard method
.
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C

III Result maps and plots

Result maps and plots

Figure 30: Map of rice from the late August of 2017 to the late October of 2017. The red area indicates rice
planted within the time period to which it belongs, and the cyan color indicates rice planted before this time
period.

.

Figure 31: Map of rice from the late February of 2018 to the late April of 2018. The red area indicates rice
planted within the time period to which it belongs, and the cyan color indicates rice planted before this time
period.

.
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Figure 32: Map of rice from the late August of 2018 to the late October of 2018. The red area indicates rice
planted within the time period to which it belongs, and the cyan color indicates rice planted before this time
period.

.

Figure 33: Map of rice from the late February of 2019 to the late April of 2019. The red area indicates rice
planted within the time period to which it belongs, and the cyan color indicates rice planted before this time
period.

.
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