Residential Energy Transition of Amsterdam Nieuw West neighbourhoods

Katerina Panteli_4516397 Mentors: MSc Siebe Broersma Dr.-Ing. MSc Thaleia Konstantinou Delegate of examiners: Dr. Ad Straub

BACKGROUND

CITY-ZEN PROJECT	EU ENERGY GOALS
Energy urban planning approach for fully sustainable and energy (carbon) neutral smart cities	Carbon emissions reduction 80-95% by 2050
Demonstration projects Grenoble Amsterdam (Nieuw-West) 	

BACKGROUND

BACKGROUND

PROBLEM STATEMENT

There are several existing strategies to deal with the retrofit of different residential typologies. Moreover, for Amsterdam Nieuw West there is not a clear structured approach for residential retrofit interventions referring to different scales.

MAIN OBJECTIVE

The main objective is the development of a stepped methodology, to define a roadmap that leads to the goal of the energy transition and CO2 emissions reduction of residential neighbourhoods in Amsterdam Nieuw West, through the suitable combinations of energy systems and retrofit measures on the timeline until 2050.

MAIN OBJECTIVE

The main objective is the development of a methodology, starting from city scale, to define the roadmap that leads to the goal of the energy transition and CO2 emissions reduction of residential neighbourhoods in Amsterdam Nieuw West, through the suitable combinations of energy systems and retrofit measures on the timeline until 2050.

This roadmap constitutes a useful tool for the municipality of Amsterdam, to help give more unified solutions for the energy transition of neighbourhoods of the city, to achieve the energy targets.

RESEARCH QUESTION

Which is the methodology leading to the design of a roadmap that helps to define which energy systems and retrofit measures should be applied where and when, on residential neighbourhoods of Amsterdam Nieuw West until 2050, for achieving their energy transition and CO2 emissions reduction?

SUB-QUESTIONS

- Which are the current energy demands and potentials of Amstedam city?
- Which are the future energy goals until 2050?
- Which are the suitable energy systems and the retrofit measures that can be applied on building, neighbourhood and district scale?
- Which residential typologies exist in Amsterdam Nieuw West neighbourhoods and which are their ownership and energy characteristics?
- Which neighbourhood should get which combination of energy systems and retrofit measures and when?
- Which are the decision points of the roadmap for the different neighbourhoods in Amsterdam Nieuw West with retrofit interventions on timeline?

RESIDENTIAL ENERGY TRANSITION

FUTURE ENERGY GOALS

Overview of Amsterdam's & European commision's energy goals

EU2020 to 2050

Comparing to 1990	2020	2030	2040	2050
Energy reduction	20%	27%	-	-
Share of renwables	20%	27%	- 50%	-
CO2 reduction	20%	40%	60% 75%	80-95% 100%
Amsterdam municipality's goal				

... the cities don't no how to achieve the goals yet...

... a methodology leading to the roadmap for energy transition should be developed today in order to reach this targets in 2050...

LITERATURE REVIEW

01	02	03	04	05	06
FUTURE ENERGY GOALS	RESIDENTIAL BUILDING STOCK IN THE NETHERLANDS	CASE STUDIES	RETROFIT MEASURES & ENERGY SYSTEMS	EXISTING ENERGY URBAN PLANNING METHODOLOGIES	SET ENERGY URBAN PLANNING METHODOLOGY STEPS

RESIDENTIAL BUILDING STOCK IN THE NETHERLANDS

Residential typologies

	Region	Construction	Additional	SFH	TH	MFH	AB
	J. J	Year Class	Classification	Single-Family	Terraced House	Multi-Family	Apartment Block
				House		House	
1	national	1964	generic	NL.N.SFH.01.Gen	NL.N.TH.01.Gen	NL.N.MFH.01.Gen	NL.N.AB.01.Gen
				NE.N.SFN.01.Gen	NE.N. I H. UT.GEN	NE.N.MFH.01.Gell	NL.N.AD.UI.GEI
2	national	19651974	generic				
				NL.N.SFH.02.Gen	NL.N.TH.02.Gen	NL.N.MFH.02.Gen	NL.N.AB.02.Gen
3	national	19751991	generic	NL.N.SFH.03.Gen	NL.N.TH.03.Gen	NL.N.MFH.03.Gen	NL.N.AB.03.Gen
						5.24	
4	national	19922005	generic	NL.N.SFH.04.Gen	NL.N.TH.04.Gen	NL.N.MFH.04.Gen	NL.N.AB.04.Gen
5	national	20062014	generic	NL.N.SFH.05.Gen	NL.N.TH.05.Gen	NL.N.MFH.05.Gen	NL.N.AB.05.Gen

Generic building types in the Netherlands (source: http://webtool.building-typology.eu/#bm)

RESIDENTIAL BUILDING STOCK IN THE NETHERLANDS

Total primary energy demand for Heating and DHW (kWh/m²) After retrofit ambitious standard

Construction year class	Single-Family House	Terraced House	Multi-Family House	Apartment Block
1964	48.0	43.8	40.7	41.7
19651974	46.2	41.2	36.7	37.0
19751991	43.8	39.3	38.2	39.3
19922005	43.9	37.5	36.5	35.7
20062014	40.9	35.5	33.7	34.8

Total primary energy demand for Heating and DHW (kWh/m²) per typology (source: http://webtool.building-typology.eu/#bm)

LITERATURE REVIEW

01	02	03	04	05	06
FUTURE ENERGY GOALS	RESIDENTIAL BUILDING STOCK IN THE NETHERLANDS	CASE STUDIES	RETROFIT MEASURES & ENERGY SYSTEMS	EXISTING ENERGY URBAN PLANNING METHODOLOGIES	SET ENERGY URBAN PLANNING METHODOLOGY STEPS

CASE STUDIES

Residential energy retrofit on different scales

PIJNACKER, OOSTLAND

From district to city scale

Basic principles

- Energy Potential Mapping
- Small scale heat networks supported by local sustainable sources
- Future connection to DHN

WIJK VAN MORGEN, KERKRADE from building to neighbourhood

Basic principles

- Passive House standard
- Exploitation of solar energy
- Repeatable renovation concept for a whole neighbourhood

TRUMPINGTON, CAMBRIDGE From building to district

Basic principles

- A feasible and reproducible retrofit strategy same typology
- Achieve "A" energy label

LITERATURE REVIEW

Basis of categorizing

List of measures by literature review

REDUCE	REUSE EXCHANGE CASCADE	PRODUCE
Exterior walls insulation	Waste heat recovery for district heat network	Photovoltaic's (PVs)
Roof insulation	Waste heat recovery for building heating	Solar Collectors (SC)
Ground floor/basement ceiling/basement wall insulation	Energy exchange between building zones	Photo Voltaic Thermal systems (PVT's)
High-performance windows	Energy exchange between buildings	Heat pumps (ground source, air, water or waste heat)
Energy efficient lighting	Energy cascade	Deep Geothermal systems
Shading systems - Solar protection	Smart appliances (dishwasher, clothes washer & dryer, Refrigerator, water heater)	Aquifer Thermal Energy Storage (ATES)
Efficient mechanical ventilation system (with heat recovery)		Road collectors with ATES
Shower heat exchangers		Waste-to-energy district heating plant
Smart meter		District heating boiler fuelled by electricity, biogas, wood pellets, wood chips (usually as backup heating systems)
		Combined Heat and Power (CHP) system fuelled by biogas or biomass Wind turbines

Catalogue of measures for this project

	\bigwedge	\land	20
	BUILDING	NEIGHCOURHOOD	DISTRICT
ENERGY SAVING MEASURES		:	i
Exterior walls insulation	······		
Roof insulation	v		
Ground floor/basement ceiling/basement wall insulation			
High-performance windows	<u> </u>		
Energy efficient lighting	\		
Shading systems - Solar protection			
Efficient mechanical ventilation system (with heat recovery)	\		
Shower heat exchangers	√		
ENERGY EXCHANGE MEASURES			
Waste heat from industrial units			
Waste heat recovery for building heating	<u> </u>		
Energy exchange between building zones	<u> </u>		
Energy exchange between buildings		\checkmark	
Energy cascade		\checkmark	
Smart appliances (dishwasher, clothes washer & dryer, Refrigerator, water heater)	\checkmark		
RENEWABLE ENERGY TECHNOLOGIES			
Photovoltaic's (PVs)	<u> </u>	<u> </u>	
Solar Collectors (SC)	\checkmark	\checkmark	\checkmark
Photo Voltaic Thermal systems (PVT's)	\checkmark		
Heat pumps (ground source, air, water or waste heat)	<u> </u>	\checkmark	\checkmark
Deep Geothermal systems			\checkmark
Aquifer Thermal Energy Storage (ATES)	\checkmark	\checkmark	
Road collectors with ATES	\checkmark	\checkmark	
Waste-to-energy district heating plant			\checkmark
District heating boiler fuelled by electricity, biogas, wood pellets, wood chips (usually			1
as backup heating systems)			✓
Combined Heat and Power (CHP) system fuelled by biogas or biomass			\checkmark
Wind turbines	\checkmark		\checkmark

RETROFIT MEASURES & ENERGY SYSTEMS Proposed energy systems for Amsterdam city

Existing energy systems' application scenarios

Application requirements of energy systems

• Favourable solution when there is heating network near

- Hgh heat demand
- Easier to convince one owner / big corporation

Application requirements of energy systems

• Excess heat from buildings like offices, supermarkets, hospitals and supermarkets in the neighbourhood

- Heating and cooling demand in equilibrium
- Well-insulated dwellings with integrated floor and/or wall heating
- Preferable in case of big buildings & not too high heat demand
- Easier to convince one owner / big corporation

Application requirements of energy systems

• Low-rise dwellings because of the suitable roof area

- Well-insulated dwellings with low heat demand
- Possible for individual home owners & for big corporations

Application requirements of energy systems

• Preferable for high rise dwellings since low rise are possible for NOM

- Well-insulated dwellings with low heat demand
- Possible for individual home owners & for big corporations

Application requirements of energy systems

- Can be injected into the natural gas grid
- A suitable solution in the case historic buildings that have strict restrictions for any modifications
- Possible in case of big buildings with multiple owners.

Important variables for applying the suitable energy system

LITERATURE REVIEW

ENERGY URBAN PLANNING METHODOLOGIES Basis of retrofit steps

THE REAP METHODOLOGY

Neighbourhood

nood

ENERGY URBAN PLANNING METHODOLOGIES Basis of retrofit steps

EUROPE'S BUILDINGS UNDER THE MICROSCOPE - BPIE MODEL

ENERGY URBAN PLANNING METHODOLOGIES Energy Potential Mapping (EPM)

ENERGY URBAN PLANNING METHODOLOGIES Energy Potential Mapping (EPM)

ENERGY URBAN PLANNING METHODOLOGIES City-Zen stepped methodology

LITERATURE REVIEW

ENERGY URBAN PLANNING METHODOLOGY STEPS

Leading to energy transition of residential areas

ENERGY URBAN PLANNING METHODOLOGY STEPS

Apply steps on city scale

	Step 1 Map the present	Step 2 Define future energy targets	Step 3 Strategy for selecting energy systems	Step 4 Roadmap design
Amsterdam city	Step 1a Energy demands Step 1b Energy potentials	Step 2a Future scenario for natural gas and electricity use Step 2b Desired future heat demand	Step 3aDevelop scenario fordividing the main heatsystems through thedistricts of AmsteramStep 3bMain heat systems ratioin each districtStep 3bClassify energy systems	
ENERGY URBAN PLANNING METHODOLOGY STEPS

Leading to the roadmap final design

	Step 1 Map the present	Step 2 Define future energy targets	Step 3 Strategy for selecting energy systems	Step 4 Roadmap design	
Step 1a Energy demands Step 1b Energy potentials		Step 2a Future scenario for natural gas and electricity use Step 2b Desired future heat demand	Step 3aDevelop scenario fordividing the main heatsystems through thedistricts of AmsteramStep 3bMain heat systems ratioin each districtStep 3bClassify energy systems		
Step 1a Site determination inside Amsterdam Nieuw West neighbourhoods Step 1b Buildings description & Energy demands Step 1c Energy potentials		Step 2a Desired future heat demand Step 2b Low and high temperature heat potentials & technologies for each system	Step 3a Set variables for selecting the suitable energy systemStep 3b Set priority criteria for on-site interventionsStep 3c Develop decision-making diagram for on-site inter- ventions on appropriate time	Step 4aDefine suitable energysystems in 2050 for eachneighbourhoodStep 4bDescribe energy systemsand retrofit measuresleading to 2050 visionStep 4cDefine the interventions ontimeline	

ENERGY URBAN PLANNING METHODOLOGY STEPS

Leading to energy transition of residential areas

1a Energy demands

Average gas demand

How was it mapped out?

This map shows the average gas consumption per square metre (m²) of floor area for each urban block, which is determined using the average consumption of all the gas connections within an urban block or cluster. In principle each dwelling has a single connection, while a business might have several. The data is grouped by function and per 5 connections.

Source: Alliander 2013

Gas consumption (m³ per year per m²)

15

Source: Geert den Boogert, L. H. (2014). Energy Atlas Amsterdam Southeast

1a Energy demands

Average electricity demand

This map shows the average electricity consumption per m² of floor area for each urban block, which is determined using the average consumption of all the connections within an urban block or cluster. In principle each dwelling has a single connection, but a business might have several. The data is grouped by function and per 5 connections.

Electricity consumption (in kWh per year per m²)

Source: Alliander 2013

Source: Geert den Boogert, L. H. (2014). Energy Atlas Amsterdam Southeast

1a Energy demands

Source: Geert den Boogert, L. H. (2014). Energy Atlas Amsterdam Southeast

1b Energy potentials

Renewable sources potentials & energy production technologies

SUN	PV panels on roofs		4.01 PJ	
A WIND	Wind turbines		1.78 PJ	4
DOMESTIC WASTE	Waste incineration		1.18 PJ	ELECTRICITY
D	Biomass treatment	5, 253,000 2, 500,000 1,000,000 1,000,000 1,000,000 5,012,500	0.06 PJ	
XXX RESIDUAL HEAT	Supermarkets, Offices, Hospitals, Datacenters		1.90 PJ	
	Open loop thermal energy storage - ATES system		111.9 PJ available	₽t
EARTH	Closed loop thermal energy storage - GSHP system		8.40 PJ	HEAT
WATER	Deep geothermal system		9.36 PJ available	

Source: Geert den Boogert, L. H. (2014). Energy Atlas Amsterdam Southeast

ENERGY URBAN PLANNING METHODOLOGY STEPS

Leading to energy transition of residential areas

STEP 2 DEFINE FUTURE ENERGY TARGETS

2a Future scenario for natural gas and electricity use

	2017	2050 Assumption
Electricity use =	16.5 PJ	Remains the same \longrightarrow Demand reduced because of using smart appliances But, an amount needed for heat pumps' operation
Natural gas use =	27.7 PJ	Not used anymore

STEP 2 DEFINE FUTURE ENERGY TARGETS

2b Desired future energy demand for heating

ENERGY URBAN PLANNING METHODOLOGY

Stepped methodology leading to energy transition of residential areas

Step 1 Map the present	Step 2 Define future energy targets	Step 3 Strategy for selecting energy systems
Step 1a Energy demands Step 1b Energy potentials	Step 2a Future scenario for natural gas and electricity use Step 2b Desired future heat demand	Step 3aDevelop scenario fordividing the main heatsystems through thedistricts of AmsteramStep 3bMain heat systems ratioin each districtStep 3bClassify energy systems

3a Develop scenario for dividing the main heat systems through Amsteram districts

3a Develop scenario for dividing the main heat systems through Amsteram districts

PJ

3a Develop scenario for dividing the main heat systems through Amsteram districts

PJ

STEP 3 STRATEGY FOR SELECTING ENERGY SYSTEMS 3b Main heat systems ratio in each district

Map of gas demand

> 1.000.000 m3 500.000 - 1.000.000 m3 200.000 - 500.000 m3 100.000 - 200.000 m3 50.000 - 100.000 m3 20.000 - 50.000 m3 10.000 - 20.000 m3 < 10.000 m3</pre>

Source: http://maps.amsterdam.nl/

Regional warmtenet 2015-2040

Amsterdam Centrum as a possible area of D.H.N. extention because of the high concentrated heat demand

	bestaand
	in uitvoering
	waarschijnlijke uitbreiding
	gewenst
bron: Pro	gramma Warmte en Koude, MRA

Source: Gemeente Amsterdam. (2016). Naar een stad zonder aardgas

3b Main heat systems ratio in each district

Amsterdam district	Heat demand 2050	H.T. or L.T. Heat Systems	Percentage	Heat Potential	
Centrum	1.5	High Temperature	50%	0.7	
Centrum	1.5	Low Temperature	50%	0.7	
Oost	1.2	High Temperature	20%	0.2	
Obst	1.2	Low Temperature	80%	1.0	
Zuid	1.5	High Temperature	50%	0.7	
2010	1.5	Low Temperature	50%	0.7	
West	1.5	High Temperature	20%	0.3	
West	1.5	Low Temperature	80%	1.2	
Nieuw-West	1.2	High Temperature	50%	0.6	
Nieuw-West	1.2	Low Temperature	50%	0.6	
Westpoort	0.7	High Temperature	30%	0.2	
Westpoolt	0.7	Low Temperature	70%	0.5	
Noord	1.2	High Temperature	50%	0.6	
Noord	1.2	Low Temperature	50%	0.6	
Zuidoost	1.2	High Temperature	45%	0.5	
Zuidoost	1.2	Low Temperature	55%	0.7	
	Total heat demand 2050			Total H.T. Heat potentia	
	10.0]	>	4.0	
		-		Total L.T. Heat potentia	
				<u> </u>	

6.0

3b Main heat systems ratio in each district

Existing research on energy systems' application scenarios 1st scenario 2nd scenario groen gas all electric restwarmte warmte- koudeopslag onbekend bron: CE Delft, CEGOIA

I and **H** energy systems ratio covering the future heat demand ⇒1.2 PJ 0.7 PJ 🤜 30% 50% 50% 1.2 PJ < ⇒1.2 PJ 1.5 PJ 1.5 PJ 1.5 PJ 1.2 PJ

Covering the total Heat demand of 10 PJ in 2050 In reality the energy systems are mixed in the districts of Amsteram

- [High Temperature Heat		
≯	Small scale Heat Network ATES	NOM (up to 2 floors)	All-electric	District Heat Network

3c Classify energy systems

	Low Temperature Heat					
Small scale Heat Network ATES			District Heat Network			
Image: state stat	Kernel Ke	Image: selectric selectri	Image: wide wide wide wide wide wide wide wide			

ENERGY URBAN PLANNING METHODOLOGY

Stepped methodology leading to energy transition of residential areas

 	Step 1 Map the present	Step 2 Define future energy targets	Step 3 Strategy for selecting energy systems	Step 4 Roadmap design
Amsterdam city	Step 1a Energy demands Step 1b Energy potentials	Step 2a Future scenario for natural gas and electricity use Step 2b Desired future heat demand	Step 3aDevelop scenario fordividing the main heatsystems through thedistricts of AmsteramStep 3bMain heat systems ratioin each districtStep 3bClassify energy systems	
Amsterdam Nieuw West neighbourhoods	Step 1a Site determination inside Amsterdam Nieuw West Step 1b Buildings description & Energy demands Step 1c Energy potentials			

1a Site determination inside Amsterdam Nieuw West

DISTRICT HEAT NETWORK

Source: http://maps.amsterdam.nl/

BOUNDARY CONDITION Site restriction because of the project time limit

AVERAGE GAS CONSUMPTION

CONSTRUCTION YEAR

1a Site determination inside Amsterdam Nieuw West

AMSTERDAM NIEUW WEST DISTRICT

NEIGHBOURHOOD COMBINATIONS

STEP 1 MAP THE PRESENT1b Buildings description & Energy demands

Typologies map

Gallerijflat appartment block

Portiekflat appartment block

Rowhouse

Multifamily house

Detached house

Semi-detached house

Data extraction

Area	Neighbourhood	Building blo	ock number	Hous	se typology	Additional classification
Slotermeer-Zuidwest	Buurt 4 Oost		18937	Арра	rtment bloc	Portiekflat
			18938	Appa	rtment bloc	Portiekflat
			18939	Агра	artment bloc	Portiekflat
			19067	App	rtment bloc	Gallerijflat

Year of construction	Storeys number	Type of roof	Electricity consumption kWh
1955	5	sloped	93075
1955	5	sloped	90100
1955	5	sloped	122748
1959	9	flat	290376

Use surface m2	Electricity kWh/m2	Gas consumption m3	Gas m3/m2
2804	33	59808	21
2804	32	55056	20
2804	44	58703	21
6498	45	146382	23

	Gas CO2 emmisions kg	Gas consumption kWh	Heat demand kWh	Heat demand kWh/m2
	106458	584264	525838	188
	98000	537842	484058	173
	104491	573470	516123	184
1	260560	1430006	1287005	198

STEP 1 MAP THE PRESENT1b Buildings description & Energy demands

Year of construction

Electrictity demand kWh

> 25.000.000 kWh 8.500.000 - 25.000.000 kWh 3.000.000 - 8.500.000 kWh 1.300.000 - 3.000.000 kWh 600.000 - 1.300.000 kWh 250.000 - 600.000 kWh 75.000 - 250.000 kWh < 75.000 kWh</pre>

Housing corporations

Gas demand m³ per m²

1c Energy potentials

Aquifer Thermal Energy Storage System

Vertical heat exhange - Ground Source Heat Pump

Solar pontential on roofs

STEP 1 MAP THE PRESENT 3D heat map_Data visualisation

Average heat demand per m² Building levels Housing corporations District Heat Network

ENERGY URBAN PLANNING METHODOLOGY

Stepped methodology leading to energy transition of residential areas

	Step 1 Map the present	Step 2 Define future energy targets	Step 3 Strategy for selecting energy systems	Step 4 Roadmap design
Amsterdam city	Step 1a Energy demands Step 1b Energy potentials	Step 2a Future scenario for natural gas and electricity use Step 2b Desired future heat demand	Step 3aDevelop scenario fordividing the main heatsystems through thedistricts of AmsteramStep 3bMain heat systems ratioin each districtStep 3bClassify energy systems	
Amsterdam Nieuw West neighbourhoods	Step 1a Site determination inside Amsterdam Nieuw West Step 1b Buildings description & Energy demands Step 1c Energy potentials	Step 2a Desired future heat demand Step 2b Low and high temperature heat potentials & technologies for each system		

STEP 2 DEFINE FUTURE ENERGY TARGETS

2a Desired future heat demand

	4 []	Data collected from site ana	Ilysis
		Nieuw-West_Sloteermer neighb.	Heat demand kWh 2017
		Buurt 4 Oost	5504688
Buurt 4 Oost	Buurt 3	Buurt 5 Noord	15962339
		Slotermeer Zuid	15962339
		Buurt 5 Zuid	24676013
		Noordoever Sloterplas	10734521
Buurt 5 Noord	Buurt 2	Buurt 3	29793499
		Buurt 2	12289597
Sloterme	er Zuid		114922996
			Heat demand PJ 2017
Buurt 5 Zuid Noordoever S	Sloterplas		0.41
Nooldoever	Sloterplas		Heat demand PJ 2050
Sloterpark			0.10
	E		
1			

STEP 2 DEFINE FUTURE ENERGY TARGETS

2b Low and High Temperature heat potentials & technologies for each energy system

ENERGY URBAN PLANNING METHODOLOGY

Stepped methodology leading to energy transition of residential areas

	Step 1 Map the present	Step 2 Define future energy targets	Step 3 Strategy for selecting energy systems	Step 4 Roadmap design
Amsterdam city	Step 1a Energy demands Step 1b Energy potentials	Step 2a Future scenario for natural gas and electricity use Step 2b Desired future heat demand	Step 3aDevelop scenario fordividing the main heatsystems through thedistricts of AmsteramStep 3bMain heat systems ratioin each districtStep 3bClassify energy systems	
Amsterdam Nieuw West neighbourhoods	Step 1a Site determination inside Amsterdam Nieuw West Step 1b Buildings description & Energy demands Step 1c Energy potentials	Step 2a Desired future heat demand Step 2b Low and high temperature heat potentials & technologies for each system	Step 3aSet variables for selecting the suitable energy systemStep 3bSet priority criteria for on-site interventionsStep 3cDevelop decision-making diagram for on-site inter- ventions on appropriate time	

3a Set variables for selecting the suitable energy system

3b Set priotiry criteria for on-site interventions

3c Develop decision-making diagram for on-site interventions on appropriate time

ENERGY URBAN PLANNING METHODOLOGY

Stepped methodology leading to energy transition of residential areas

	Step 1 Map the present	Step 2 Define future energy targets	Step 3 Strategy for selecting energy systems	Step 4 Roadmap design
Amsterdam city	Step 1a Energy demands Step 1b Energy potentials	Step 2a Future scenario for natural gas and electricity use Step 2b Desired future heat demand	Step 3aDevelop scenario fordividing the main heatsystems through thedistricts of AmsteramStep 3bMain heat systems ratioin each districtStep 3bClassify energy systems	
Amsterdam Nieuw West neighbourhoods	Step 1a Site determination inside Amsterdam Nieuw West Step 1b Buildings description & Energy demands Step 1c Energy potentials	Step 2a Desired future heat demand Step 2b Low and high temperature heat potentials & technologies for each system	 Step 3a Set variables for selecting the suitable energy system Step 3b Set priority criteria for on-site interventions Step 3c Develop decision-making diagram for on-site interventions on appropriate time 	Step 4aDefine suitable energysystems in 2050 for eachneighbourhoodStep 4bDescribe energy systemsand retrofit measuresleading to 2050 visionStep 4cDefine the interventions ontimeline

4a Define suitable energy systems in 2050 for each neighbourhood

Selection of suitable energy system for each neighbourhood for 2050 final vision

STEP 4 ROADMAP DESIGN

4a Define suitable energy systems in 2050 for each neighbourhood_Buurt 3

STEP 4 ROADMAP DESIGN

4a Define suitable energy systems in 2050 for each neighbourhood_Buurt 3

4a Define suitable energy systems in 2050 for each neighbourhood_Buurt 3

4a Define suitable energy systems in 2050 for each neighbourhood_Buurt 2

4a Define suitable energy systems in 2050 for each neighbourhood_Buurt 4 Oost

4a Define suitable energy systems in 2050 for each neighbourhood

4b Describe energy systems and retrofit measures leading to 2050 vision_Buurt 3

	PRINCIPLES	STEPS AND FEATURES	RESULTS
<text><text></text></text>	0. EXISTING SITUATION	Features: • 124 multifamily and rowhouses, some for social rental and some of private ownership • poor energy performance	Heat demand H 14363 MWh/y CO2 2908 tCO2eq/y
	1. DEMAND REDUCTION	Insulation: • roof, walls, roofs • high performance win- dows Installation efficiency: • Smart appliances • change heating system • efficient mechinical venti- lation with heat recovery • shower heat exchangers	Remaining heat demand H 3591 MWh/y CO2 727 tCO2eq/y
	2. HEAT PRODUCTION	 Transition to NOM energy system Individual GSHP with hori- zontal heat exchanger Heat pump is used with GSHP system_the electriciry used is produced by rene- wable sources 	Remaining heat demand & Electricity demand for heat pump with COP = 6 H 0 MWh/y CO2 0 tCO2eq/y E 599 MWh/y
	3. ELECTRICITY PRODUC- TION	PV on roofs: • 9 m2 per roof	Remaining heat & Electricity demand H 0 MWh/y E -60 MWh/y

4b Describe energy systems and retrofit measures leading to 2050 vision_Buurt 3

	PRINCIPLES	STEPS AND FEATURES	RESULTS
<section-header></section-header>	0. EXISTING SITUATION	Features: • 45 multistory dwellings of social rental • poor energy performance	Heat demand H 15430 MWh/y CO2 3124 tCO2eq/y
	1. DEMAND REDUCTION	Insulation: • roof, walls, roofs • high performance win- dows Installation efficiency: • Smart appliances • change heating system • efficient mechinical venti- lation with heat recovery • shower heat exchangers	Remaining heat demand H 3858 MWh/y CO2 781 tCO2eq/y
	2. HEAT PRODUCTION	 Transition to All-electric energy system Individual GSHP with hori- zontal heat exchanger Heat pump is used with GSHP system_the electriciry used is produced by rene- wable sources 	Remaining heat demand & Electricity demand for heat pump with COP = 6 H 0 MWh/y CO2 0 tCO2eq/y E 643 MWh/y
	3. ELECTRICITY PRODUC- TION	PV on roofs: • 25 m2 per roof	Remaining heat & Electricity demand H 0 MWh/y E -21 MWh/y

4b Describe energy systems and retrofit measures leading to 2050 vision_Buurt 2

<section-header></section-header>	PRINCIPLES	STEPS AND FEATURES	RESULTS
	0. EXISTING SITUATION	Features: • 22 multistory building blocks of social rental • poor energy performance	Heat demand H 12289 MWh/y CO2 2488 tCO2eq/y
	1. DEMAND REDUCTION	Insulation: • roof, walls, roofs • high performance win- dows Installation efficiency: • Smart appliances • change heating system • efficient mechinical venti- lation with heat recovery • shower heat exchangers	Remaining heat demand H 3072 MWh/y CO2 622 tCO2eq/y
	2. HEAT PRODUCTION	 Local heat network Collective ATES using waste heat from offices and supermarkets SC if heat demand is not covered Heat pump is used with ATES system_the electriciry used is produced by rene- wable sources 	Remaining heat demand & Electricity demand for heat pump with COP = 6 H 0 MWh/y CO2 0 tCO2eq/y E 512 MWh/y
	3. ELECTRICITY PRODUC- TION	PV on roofs: • 40 m2 per roof	Remaining heat & Electricity demand H 0 MWh/y CO2 0 tCO2eq/y E -8 MWh/y

4b Describe energy systems and retrofit measures leading to 2050 vision_Buurt 4 Oost

	PRINCIPLES	STEPS AND FEATURES	RESULTS
<image/>	0. EXISTING SITUATION	Features: • 35 multistory building blocks of social rental • poor energy performance	Heat demand H 10899 MWh/y CO2 2206 tCO2eq/y
	1. HEAT PRODUCTION	• Collective District Heat Network is used	Remaining heat demand H 0 MWh/y CO2 1103 tCO2eq/y
	2. DEMAND REDUCTION	Insulation: • roof, walls, roofs • high performance win- dows Installation efficiency: • Smart appliances • change heating system • efficient mechinical venti- lation with heat recovery • shower heat exchangers	Remaining heat demand H 0 MWh/y CO2 278 -> 0 tCO2eq/y Year 2020 -> 2050

4c Define the interventions on timeline

Source: Europe's buildings under the microscope . A country-by-country review of the energy performance of buildings. Buildings Performance Institute Europe (BPIE)

4c Define the interventions on timeline_Final vision

CONCLUSIONS

Answering the research question

The methodology leading to the design of a roadmap that helps to define which energy systems and retrofit measures should be applied where and when, on residential neighbourhoods of Amsterdam Nieuw West until 2050, for achieving their energy transition and CO2 emissions reduction, is organised in a 4-step energy urban planning approach to be applied on both city and neighbourhood scale.

• Total heating demand reduction by 60% for the entire city of Amsterdam and up to 75% for Amsterdam Nieuw West district by 2050.

• The solutions in several neighbourhoods vary due to the different features of each building block.

• The heating demand and the electricity need for operating the systems can be fully covered by renewable sources by 2050.

• The classified energy systems for neighbourhoods of Amsterdam are 1) DHN, 2) Small-scale heat network connected to ATES system, 3) the transition to All-electric and 4) NOM.

• The result of the systems on-site applications cannot be presented as a specific blueprint.

• The developed stepped methodology can be used for retrofitting other neighbourhoods of Amsterdam and results a promising methodology for further implementations in other cities of the world.

FURTHER RESEARCH

• Interviewing the owners and asking the energy suppliers about future plans, for giving more detailed and accurate solutions.

- The actual time consumption of each retrofit stage.
- The changes needed for using the methodology in other cities, that can be based on different future energy goals of other cities, local energy demands and potentials that must be collected.