<]
TUDelft

Delft University of Technology

OpenNetMon: network monitoring in openflow software-defined networks

van Adrichem, NLM; Doerr, C; Kuipers, FA

DOI
10.1109/NOMS.2014.6838228

Publication date
2014

Document Version
Accepted author manuscript

Published in
Proceedings NOMS

Citation (APA)

van Adrichem, NLM., Doerr, C., & Kuipers, FA. (2014). OpenNetMon: network monitoring in openflow
software-defined networks. In J. Janusz Filipiak (Ed.), Proceedings NOMS (pp. 1-8). IEEE.
https://doi.org/10.1109/NOMS.2014.6838228

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/NOMS.2014.6838228
https://doi.org/10.1109/NOMS.2014.6838228

OpenNetMon: Network Monitoring in OpenFlow
Software-Defined Networks

Niels L. M. van Adrichem, Christian Doerr and Fernando A. Kuipers
Network Architectures and Services, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
{N.L.M.vanAdrichem, C.Doerr, F.A.Kuipers} @tudelft.nl

Abstract—We present OpenNetMon, an approach and open-
source software implementation to monitor per-flow metrics,
especially throughput, delay and packet loss, in OpenFlow net-
works. Currently, ISPs over-provision capacity in order to meet
QoS demands from customers. Software-Defined Networking
and OpenFlow allow for better network control and flexibility
in the pursuit of operating networks as efficiently as possible.
Where OpenFlow provides interfaces to implement fine-grained
Traffic Engineering (TE), OpenNetMon provides the monitoring
necessary to determine whether end-to-end QoS parameters
are actually met and delivers the input for TE approaches to
compute appropriate paths. OpenNetMon polls edge switches, i.e.
switches with flow end-points attached, at an adaptive rate that
increases when flow rates differ between samples and decreases
when flows stabilize to minimize the number of queries. The
adaptive rate reduces network and switch CPU overhead while
optimizing measurement accuracy. We show that not only local
links serving variable bit-rate video streams, but also aggregated
WAN links benefit from an adaptive polling rate to obtain
accurate measurements. Furthermore, we verify throughput,
delay and packet loss measurements for bursty scenarios in our
experiment testbed.

I. INTRODUCTION

Recently, Software-Defined Networking (SDN) has attracted
the interest of both research and industry. As SDN offers
interfaces to implement fine-grained network management,
monitoring and control, it is considered a key element to
implement QoS and network optimization algorithms. As such,
SDN has received a lot of attention from an academic perspec-
tive, enabling researchers to perform experiments which were
previously difficult or too expensive to perform. Additionally,
industry is already adopting vendor-independent network man-
agement protocols such as OpenFlow to configure and monitor
their networks.

A key requirement for network management in order to
reach QoS agreements and traffic engineering is accurate
traffic monitoring. In the past decade, network monitoring
has been an active field of research, particularly because it
is difficult to retrieve online and accurate measurements in IP
networks due to the large number and volume of traffic flows
and the complexity of deploying a measurement infrastructure
[1]. Many flow-based measurement techniques consume too
much resources (bandwidth, CPU) due to the fine-grained
monitoring demands, while other monitoring solutions require
large investments in hardware deployment and configuration
management. Instead, Internet Service Providers (ISPs) over-

provision their network capacity to meet QoS constraints
[2]. Nonetheless, over-provisioning conflicts with operating a
network as efficient as possible and does not facilitate fine-
grained Traffic Engineering (TE). TE in turn, needs granular
real-time monitoring information to compute the most efficient
routing decisions.

Where recent SDN proposals - specifically OpenFlow [3]
- introduce programming interfaces to enable controllers to
execute fine-grained TE, no complete OpenFlow-based mon-
itoring proposal has yet been implemented. We claim that
the absence of an online and accurate monitoring system
prevents the development of envisioned TE-capable OpenFlow
controllers. Given the fact that OpenFlow presents interfaces
that enable controllers to query for statistics and inject packets
into the network, we have designed and implemented such
a granular monitoring system capable of providing TE con-
trollers with the online monitoring measurements they need.
In this paper we present OpenNetMon, a POX OpenFlow
controller module enabling accurate monitoring of per-flow
throughput, packet loss and delay metrics. OpenNetMon' is
capable of monitoring online per-flow throughput, delay and
packet loss in order to aid TE.

The remainder of this paper is structured as follows: In
section II, we first discuss existing measuring methods and
monitoring techniques used by ISPs. Section III summarizes
OpenFlow and its specific options that our implementation
uses, as well as previous work in the field of measuring
traffic in OpenFlow networks. Our proposal OpenNetMon
is presented in section IV and experimentally evaluated in
section V. Section VI discusses implementation specific details
regarding the design of our network controller components.
Finally, section VII concludes this paper.

II. MONITORING

Traditionally, many different monitoring techniques are used
in computer networks. The main type of measurement methods
those techniques rely on, and the trade-offs they bring are
discussed in the following two subsections. Traditionally,
every measurement technique requires a separate hardware
installation or software configuration, making it a tedious and
expensive task to implement. However, OpenFlow provides

'OpenNetMon is published as open-source software at our GitHub reposi-
tory [4].

the interfaces necessary to implement most of the discussed
methods without the need of customization. Subsection II-C
summarizes several techniques ISPs use to monitor their
networks.

A. Active vs. passive methods

Network measurement methods are roughly divided into
two groups, passive and active methods. Passive measurement
methods measure network traffic by observation, without in-
jecting additional traffic in the form of probe packets. The
advantage of passive measurements is that they do not generate
additional network overhead, and thus do not influence net-
work performance. Unfortunately, passive measurements rely
on installing in-network traffic monitors, which is not feasible
for all networks and require large investments.

Active measurements on the other hand inject additional
packets into the network, monitoring their behavior. For exam-
ple, the popular application ping uses ICMP packets to reliably
determine end-to-end connection status and compute a path’s
round-trip time.

Both active and passive measurement schemes are useful to
monitor network traffic and to collect statistics. However, one
needs to carefully decide which type of measurement to use.
On the one hand, active measurements introduce additional
network load affecting the network and therefore influence
the accuracy of the measurements themselves. On the other
hand, passive measurements require synchronization between
observation beacons placed within the network, complicating
the monitoring process. Subsection II-C discusses both passive
and active measurement techniques that are often used by ISPs.

B. Application-layer and network-layer measurements

Often network measurements are performed on different
OSI layers. Where measurements on the application layer are
preferred to accurately measure application performance, ISPs
often do not have access to end-user devices and therefore use
network layer measurements. Network layer measurements use
infrastructure components (such as routers and switches) to
obtain statistics. This approach is not considered sufficient,
as the measurement granularity is often limited to port based
counters. It lacks the ability to differ between different appli-
cations and traffic flows. In our proposal in section IV we use
the fact that OpenFlow enabled switches and routers keep per-
flow statistics to determine end-to-end network performance.

C. Current measurement deployments

The Simple Network Management Protocol (SNMP) [5] is
one of the most used protocols to monitor network status.
Among others, SNMP can be used to request per-interface
port-counters and overall node statistics from a switch. Be-
ing developed in 1988, it is implemented in most network
devices. Monitoring using SNMP is achieved by regularly
polling the switch, though switch efficiency may degrade with
frequent polling due to CPU overhead. Although vendors are
free to implement their own SNMP counters, most switches
are limited to counters that aggregate traffic for the whole

switch and each of its interfaces, disabling insight into flow-
level statistics necessary for fine-grained Traffic Engineering.
Therefore, we do not consider SNMP to be suitable for flow-
based monitoring.

NetFlow [6] presents an example of scalable passive flow-
based monitoring. It collects samples of traffic and estimates
overall flow statistics based on these samples, which is consid-
ered sufficiently accurate for long-term statistics. NetFlow uses
a l-out-of-n random sampling, meaning it stores every n-th
packet, and assumes the collected packets to be representative
for all traffic passing through the collector. Every configurable
time interval, the router sends the collected flow statistics to
a centralized unit for further aggregation. One of the major
problems of packet-sampling is the fact that small flows
are underrepresented, if noticed at all. Additionally, multiple
monitoring nodes along a path may sample exactly the same
packet and therewith over-represent a certain traffic group,
decreasing accuracy. cSamp [7] solves these problems by using
flow sampling instead of packet sampling and deploys hash-
based coordination to prevent duplicate sampling of packets.

Skitter [8], a CAIDA project that analyzed the Internet
topology and performance using active probing, used geo-
graphically distributed beacons to perform traceroutes at a
large scale. Its probe packets contain timestamps to com-
pute RTT and estimate delays between measurement beacons.
Where Skitter is suitable to generate a rough estimate of
overall network delay, it does not calculate per-flow delays, as
not all paths are traversed unless a very high density of beacons
is installed. Furthermore, this method introduces additional
inaccuracy due to the addition and subtraction of previously
existing uncertainty margins.

Measuring packet delay using passive measurements is a
little bit more complex. IPMON [9] presents a solution that
captures the header of each TCP/IP packet, timestamps it
and sends it to a central server for further analysis. Multiple
monitoring units need to be installed to retrieve network-wide
statistics. Where the technique is very accurate (in the order of
microseconds), additional network overhead is generated due
to the necessary communication with the central server. Fur-
thermore, accuracy is dependent on accurate synchronization
of the clocks of the monitoring units.

III. BACKGROUND AND RELATED WORK

Although SDN is not restricted to OpenFlow, other control
plane decoupling mechanisms existed before OpenFlow, Open-
Flow is often considered the standard communication protocol
to configure and monitor switches in SDNs. OpenFlow capable
switches connect to a central controller, such as POX [10]
or Floodlight [11]. The controller can both preconfigure the
switch with forwarding rules as well as it can reactively re-
spond to requests from switches, which are sent when a packet
matching none of the existing rules enters the network. Besides
managing the forwarding plane, the OpenFlow protocol is also
capable of requesting per-flow counter statistics and injecting
packets into the network, a feature which we use in our
proposal presented in section IV.

Controller

Switch

Controller

Controller

@@

Switch Switch

w

¢

(b) The installation of
forwarding rules.

(a) The first packet of a
new connection arrives.

(c) Retransmitting the
captured packet.

Fig. 1: The three-step installation procedure of a new flow.

More specifically, OpenFlow capable switches send a Pack-
etln message to the controller when a new, currently un-
matched connection or packet arrives. The controller responds
with installing a path using one or more Flow Table Mod-
ification messages (FlowMod) and instructs the switch to
resend the packet using a PacketOut message. The FlowMod
message indicates idle and hard timeout durations and whether
the controller should be notified of such a removal with a
FlowRemoved message. Figure 1 gives a schematic overview
of the message exchange during flow setup. Using the PacketIn
and FlowRemoved messages a controller can determine which
active flows exist. Furthermore, the FlowRemoved message
contains the duration, packet and byte count of the recently
removed flow enabling the controller to keep statistics on past
flows. Our proposal in section IV uses this information in
combination with periodically queried Flow Statistics Request
(StatsRequest) messages, as shown in figure 2, to obtain
information of running flows and regularly injects packets into
the network to monitor end-to-end path delay.

OpenFlow’s openness to switch and per-flow statistics has
already been picked up by recent research proposals. OpenTM
[12], for example, estimates a Traffic Matrix (TM) by keeping
track of statistics for each flow. The application queries
switches on regular intervals and stores statistics in order to
derive the TM. The paper presents experiments on several
polling algorithms and compares them for accuracy. Where
polling solely all paths’ last switches gives the most accurate
results, other polling schemes, such as selecting a switch round
robin, by the least load, or (non-) uniform random selection
give only slightly less accurate results with at most 2.3 %
deviation from the most accurate last-switch selection scheme.
From the alternative polling schemes, the non-uniform random
selection with a preference to switches in the end of the
path behaves most accurate compared to last-switch polling,
followed by the uniform random selection and round-robin
selection of switches, while the least-loaded switch ends last
still having an accuracy of approximately +0.4 Mbps over 86
Mbps. However, since OpenTM is limited to generating TMs
for offline use and does not capture packet loss and delay, we
consider it incomplete for online monitoring of flows.

OpenSAFE [13] focuses on distributing traffic to monitoring
applications. It uses the fact that every new flow request passes

Timer Controller
Y | N\
()
N\

Controller

Switch

Switch

(a) While a flow is ac-
tive, the controller can
- f.e. using a timer or
other event - query the
switch to retrieve flow
specific statistics.

(b) The end of a flow is
announced by sending
a FlowRemoved packet
to the controller.

Fig. 2: While a flow is active the controller and switch can
exchange messages concerning the state of the flow.

through the network’s OpenFlow controller. The controller
forwards the creation of new flows to multiple traffic mon-
itoring systems, which record the traffic and analyze it with
an Intrusion Detection System (IDS). OpenSAFE, however,
requires hardware investments to perform the actual moni-
toring, while we introduce a mechanism that reuses existing
OpenFlow commands to retrieve the aforementioned metrics.

Others suggest to design a new protocol, parallel to Open-
Flow, in order to achieve monitoring in SDNs. OpenSketch
[14], for example, proposes such a SDN based monitoring
architecture. A new SDN protocol, however, requires an up-
grade or replacement of all network nodes, a large investment
ISPs will be reluctant to make. Furthermore, standardization
of a new protocol has shown to be a long and tedious task.
Since OpenFlow is already gaining popularity in datacenter
environments and is increasingly being implemented in com-
modity switches, a solution using OpenFlow requires less
investment from ISPs to implement and does not require
standardization by a larger community. Therefore, we consider
an OpenFlow compatible monitoring solution, such as our
solution OpenNetMon, more likely to succeed.

IV. OPENNETMON

In this section, we present our monitoring solution OpenNet-
Mon, written as a module for the OpenFlow controller POX
[10]. OpenNetMon continuously monitors all flows between
predefined link-destination pairs on throughput, packet loss
and delay. We believe such a granular and real-time monitoring
system to be essential for Traffic Engineering (TE) purposes.

In the following subsections, we will first discuss how our
implementation monitors throughput and how we determine
the right polling algorithm and frequency, followed by our
implementation to measure packet loss and delay. Where
one might argue that measuring throughput in OpenFlow
SDNs is not new, albeit that we implement it specifically for
monitoring instead of Traffic Matrix generation, we are the
first to combine it with active per-flow measurements on packet
loss and delay.

80

Z 70
S ' ,
g 60 ! i | I | |
£ ’ |
S 50 ‘
l

2
g 40
=)
= |
<2 30
=
£ 201

10 T T T T T T T T T

100 200 300 400 500 600 700 800 900
Time (s)

Fig. 3: Available bandwidth on a 100 Mbps WAN link [15].

A. Polling for throughput

To determine throughput for each flow, OpenNetMon reg-
ularly queries switches to retrieve Flow Statistics using the
messages described in section III. With each query, our module
receives the amount of bytes sent and the duration of each
flow, enabling it to calculate the effective throughput for each
flow. Since each flow between any node pair may get different
paths assigned by the controller, OpenNetMon polls on regular
intervals for every distinct assigned path between every node
pair that is designated to be monitored.

Even though polling each path’s switch randomly or in
round robin is considered most efficient and still sufficiently
accurate [12], we poll each path’s last switch. First, the
round robin switch selection becomes more complex in larger
networks with multiple flows. When more flows exist, non-
edge switches will be polled more frequently degrading effi-
ciency. Furthermore, non-edge switches typically have a higher
number of flows to maintain, making the query for flow
statistics more expensive. Second, to compute the packet loss
in subsection IV-B, we periodically query and compare the
packet counters from the first and last switch of each path.
As this query also returns the byte and duration counters
necessary for throughput computation, we decided to combine
these queries and solely sample each path’s last switch for
means of throughput computation.

While in most routing discovery mechanisms link-state in-
formation is exchanged both when the topology changes and in
regular time intervals to guarantee synchronization, the arrival
rate of flows can vary greatly. As we will briefly show below
it is hence necessary to monitor flow behavior adaptively, by
increasing the polling intervals when flows arrive or change
their usage characteristics and decrease the polling interval
when flow statistics converge to a stable behavior.

The bursty consumption of information as well as the coding
and compression of content during transfer results in highly
fluctuating traffic demands of flows, where, for instance,
the required momentary bandwidth for a HD video stream

T]

A

N W b~ U1 OO N O O
|

Available bandwidth (Mbit/s)

T T T T T T T T
0 50 100 150 200 250 300 350 400

Time (s)

Actual available bandwidth
Broadcasted available bandwidth

Fig. 4: Available and advertised bandwidth of a HD video
flow.

can vary between 1 and 9 Mbps?. While dampened through
multiplexing, this behavior is even visible on aggregated links,
as can be seen in the available bandwidth measurement of a
15 minute packet-level trace of a 100 Mbps Japanese WAN
link shown in figure 3. In order to facilitate efficient traffic
engineering and run networks at high utilization to save costs
as discussed in section I, accurate information about the
current throughput per link and flow is needed.

While a number of different link-state update policies has
been proposed in the past decades [16], our experimental
measurements indicate that policies based on absolute or
relative change as well as class-based or timer policies do not
capture the dynamics of today’s network traffic at a sufficiently
detailed level to serve as an input for flow scheduling. Figure 4
contrasts the difference between the actual bandwidth on a 10
Mbps access network link and the bandwidth as estimated by a
relative change policy: as the stream rapidly changes demands,
the flow’s throughput is either grossly under- or overestimated
by the network, thereby either oversubscribing and wasting
resources, or potentially harming flows. This behavior is
the result of current link-state update policies disseminating
information based on recent but still historical measurements,
in an attempt to balance either excessively high update rates or
tolerate outdated information. While this particular trace may
in principle be better approximated by tuning the update rate or
choosing a different link-state update policy, the fundamental
issue exists across all existing approaches: figure 5 shows the
average relative estimation error as a function of update policy
and update frequency.

While reducing the staleness, more periodic updates how-
ever do not necessarily provide better flow information, as the
dynamics of a complex flow characteristic as shown in figure 3
or 4 cannot be easily approached by a static reporting interval
without using infinitesimal time intervals and their prohibitive
overhead costs. To avoid this issue, the proposed OpenNetMon

2An example being shown in figure 4. The drastic difference springs
from the interleaf of fast- and slow-moving scenes and the resulting varying
compression efficiency of media codecs.

90

A
£ 80 - A
§70—.
60 -
o A
2 50+ &
=40 %
= 30 %
5o L A
S 20
g
Z 104
0 T T T

5 10 100

Average time between updates (s)

Relative X
Equal-class [

Periodic +
Absolute

Exp-class 4

Fig. 5: Average relative bandwidth estimation error.

uses an adaptive flow characterization increasing its sampling
rate when new flows are admitted or flow statistics change for
higher resolution and back-off in static environments when
little new information was obtained.

The adaptive nature of OpenNetMon might also be ben-
eficial in avoiding excessive route flapping when flows are
reallocated based on a new fine-grained view of the state of
the network. For a discussion of path stability in a dynamic
network we refer to [17].

B. Packet loss and delay

Per-flow packet loss can be estimated by polling each
switch’s port statistics, assuming a linear relation to link packet
loss and the throughput rate of each flow. However, this linear
relation to flow throughput does not hold when traffic gets
queued based on QoS parameters or prioritization. Instead,
we calculate per-flow packet loss by polling flow statistics
from the first and last switch of each path. By subtracting the
increase of the source switch packet counter with the increase
of the packet counter of the destination switch, we obtain an
accurate measurement® of the packet loss over the past sample.

Path delay, however, is more difficult to measure. Measuring
delay in a non-evasive, passive manner - meaning that no ad-
ditional packets are sent through the network - is infeasible in
OpenFlow due to the fact that it is impossible to have switches
tag samples of packets with timestamps, nor is it possible to
let switches duplicate and send predictable samples of packets
to the controller to have their inter-arrival times compared.
Therefore, we use OpenFlow’s capabilities to inject packets
into the network. At every monitored path, we regularly inject
packets at the first switch, such that that probe packet travels
exactly the same path, and have the last switch send it back to
the controller. The controller estimates the complete path delay
by calculating the difference between the packet’s departure
and arrival times, subtracting with the estimated latency from
the switch-to-controller delays. The switch-to-controller delay
is estimated by determining its RTT by injecting packets which

3Given no fragmentation occurs within the scope of the OpenFlow network.

Server Controller Client
Vd ~N
// ‘ \\
Pl / \ AN
e / \ ~
1 Gbps e / \ S 1 Gbps
rd ~
rd ~
~
~N
~
U . 5
100 Mbps
" 1ms; 1%) 5ms; 1% " 1ms; 1% :
Switch 1 Switch 2 Switch 3 Switch 4

Fig. 6: Experiment testbed topology. The measured traffic
flows from Server to Client.

are immediately returned to the controller, dividing the RTT
by two to account for the bidirectionality of the answer giving
tdelay = (tarrival — tsent — % (RTTsl + RTTSZ))

The experiments on delay in section V show that using
the control plane to inject and retrieve probe packets, using
OpenFlow PacketIn and PacketOut messages, yields inaccurate
results introduced by software scheduling in the switches’
control planes. To ensure measurement accuracy we connect a
separate VLAN, exclusively used to transport probe packets,
from the controller to all switch data planes directly. This
method ensures we omit the switches their control plane
software which results in a higher accuracy.

To have the measurement accuracy and the packet overhead
match the size of each flow, we inject packets for each path
with a rate relative to the underlying sum of flow throughput.
Meaning, the higher the number of packets per second of all
flows from node A to B over a certain path C, the more packets
we send to accurately determine packet loss. On average, we
send one monitoring packet every measuring round. Although
this gives an overhead at first sight, the monitoring packet is
an arbitrary small Ethernet frame of 72 bytes (minimum frame
size including preamble) that is forwarded along the path based
on a MAC address pair identifying its path and has a packet
identifier as payload. Compared to a default MTU of 1500
(which is even larger in jumbo frames), resulting in frames of
1526 bytes without 802.1Q VLAN tagging, we believe that
such a small overhead is a reasonable penalty for the gained
knowledge.

V. EXPERIMENTAL EVALUATION

In this section we evaluate our implementation of Open-
NetMon by experiments on a physical testbed. Our testbed
consists of two Intel Xeon Quad Core servers running stock
Ubuntu Server 12.04.2 LTS with 1 Gbps NICs connected to
four Intel Xeon Quad Core servers running stock Ubuntu
Server 13.04 functioning as OpenFlow compatible switches
using Open vSwitch. The network is controlled by an identical
server running the POX OpenFlow controller as shown in
figure 6. All hosts are connected to their switch using 1 Gbps
Ethernet connections, thus we assume plenty of bandwidth

ax10° - J J
OpenNetMon
—— Tcpstat

. 3
[%2)
Q
Q
=]
£ 2
(=
>
o
<
=

1H

0 L L

0 100 200 300 400 500

Time (s)

Fig. 7: Bandwidth measurements of the flow between the
client and server hosts, performed by both the OpenNetMon
monitoring module and Tcpstat on the receiving node.

locally. Inter-switch connections, however, are limited to 100
Mbps. The delay between switches 1-2 and 3-4 equals 1 ms,
while the delay between switches 2-3 equals 5 ms to emulate
a WAN connection. Furthermore, the packet loss between all
switches equals 1 %, resulting in an average packet loss a
little less than 3 %. Delay and packet loss is introduced using
NetEm [18]. Using this topology we intend to imitate a small
private WAN, controlled by a single OpenFlow controller.

Throughout, we use a video stream to model traffic. Due to
its bursty nature of traffic, we have chosen a H.264 encoded
movie that is streamed from server to client. Figure 7 shows
the throughput between our server and client measured by
our implementation of OpenNetMon compared to Tcpstat.
Furthermore, figure 8 shows packet loss compared to the
configured packet loss. Finally, figure 9 presents the delay
measured in our network.

The measurements shown in figure 7 represent the through-
put measurements performed by Tcpstat and OpenNetMon, on
average they only differ with 16 KB/s (1.2 %), which shows
that most of the transmitted traffic is taken into account by
the measurements. The standard deviation, however, shows to
be 17.8 % which appears to be quite a significant inaccuracy
at first sight. This inaccuracy is mainly introduced by a lack
of synchronization between the two measurement setups. Due
to the fact that we were unable to synchronize the start of
the minimal 1-second buckets, traffic that is categorized in
one bucket in one measurement is categorized in two adjacent
buckets in the other. In combination with the highly bursty na-
ture of our traffic, this leads to the elevated deviation. However,
the high accuracy of the average shows an appropriate level
of preciseness from OpenNetMon’s measurements. In fact, we
selected highly deviating traffic to prove our implementation
in a worst-case measurement scenario, therefore, we claim our
results are more reliable than a scenario with traffic of less
bursty nature.

The throughput measurements in figure 7 furthermore show
incidental spikes, followed or preceded by sudden drops.
The spikes are introduced due to the fact that the switches’
flow counter update frequency and OpenNetMon’s polling

[[[[[
0.10 — —
—— Average Packet Loss
Configured Packet Loss
0.08 —]
173
o
g
S 0.06 - —
o
0.04 ﬂ _
(\ M b o e o
“wwl WWI"V"! v Iw 7] T W VI'U
0 100 200 300 400 500

Time (s)

Fig. 8: Packet loss measurements of the flow between the client
and server hosts performed by the OpenNetMon monitoring
module, compared to the configured values using NetEm.

frequency match too closely, due to which binning problems
occur. In short, it occurs that our system requests the counter
statistics shortly before the counter has been updated in one
round, while it is already updated in the adjacent round.
Although the difference is evened out on the long run, both
bins have values that are equally but opposite deviating from
the expected value, contributing to the standard deviation.

The described binning problem cannot be solved by either
decreasing or increasing the polling frequency, in the best case
the error margin is smaller but still existent. Instead, both ends
need to implement update and polling frequencies based on
the system clock, opposed to using the popular sleep function
which introduces a slight drift due to delay introduced by
the operating system scheduler and the polling and updating
process consuming time to execute. Using the system clock
to time update and polling ensures synchronization between
the two systems’ sampling bins. Furthermore, the switch
needs to implement a system to mutually exclude* access
to the counter, guaranteeing a flow counter cannot be read
until all its properties are updated and vice versa. Another,
ideal, solution is to extend OpenFlow to allow flow counter
updates to be sent to the controller at a configurable interval
by subscription. However, since this requires updating both
the OpenFlow specification and switch firmware, we do not
consider it feasible within a short time frame.

As packet loss within one time sample may not represent
overall packet loss behavior, figure 8 shows the running aver-
age of packet loss as calculated by computing the difference
between the packet counters of the first and last switch on a
path. Although the running packet loss is not very accurate, the
measurements give a good enough estimation to detect service
degration. For more accurate flow packet loss estimates one
can reside to interpolation from port counter statistics.

Figure 9 shows delay measurements taken by (1) OpenNet-
Mon using the control plane to send and retrieve probe packets,
(2) OpenNetMon using a separate VLAN connection to the
data plane to send and retrieve probe packets and (3) delay

4Generally known as “mutex locks”.

30 T T T [I
|| User Application —— Data Plane —— Control Plane
20 —
g
FR L INIRFANY TN I
° UW 'WI WW ””"WM]M” w’\IVI“'HM\N\’T“w ‘!I\‘ 1'!'\” "['
0]
-10 | | | | |
0 100 200 300 400 500 600
Time (s)

Fig. 9: Delay measurements on the path from server to client,
as measured by (a) the user application, (b) OpenNetMon
using the OpenFlow control plane and (c) OpenNetMon con-
nected to the data plane using a separate VLAN.

measurements as experienced by the end-user application to
verify measurement results, computed by a stream’s RTT. The
figure shows that using the OpenFlow control plane to send
and retrieve timing related probe packets introduces a large
deviation in measurements, furthermore, the measured average
is far below the expected value of 7 ms introduced by the addi-
tion of link delays as presented in figure 6. The measurements
using exclusively data plane operations, however, resemble the
delay experienced by the end-user application so closely that
a difference between the two is hardly identifiable.

These experiences are confirmed by the category plot in
figure 10, showing an average of 4.91 ms with a 95 %
confidence interval of 11.0 ms for the control plane based
measurements. Where the average value already differs more
than 30 % with the expected value, a confidence interval
1.5 times larger than the expected value is infeasible for
practical use. The data plane based measurements, however,
do show an accurate estimation of 7.1640.104, which matches
closely to the slightly larger end-user application experience
of 7.31 + 0.059 ms. The application delay is slightly larger
due to the link delays from switch to end-hosts that cannot be
monitored by OpenNetMon.

These results show that the control plane is unsuitable to
use as a medium for time-accurate delay measurements, as
response times introduced by the software fluctuate too much.
However, we were able to obtain accurate results by connect-
ing the controller to the data plane using a VLAN configured
exclusively to forward probe packets from controller to the
network.

VI. IMPLEMENTATION DETAILS,

The implementation of OpenNetMon is published open
source and can be found at our GitHub web page [4]. Our
main intention to share it as open source is to enable other
researchers and industry to perform experiments with it, use it
as an approach to gain input parameters for fine-grained Traffic
Engineering, and - when applicable - extend it to their use.
While considered as a single module, technically OpenNetMon

16~ ! ! —
14| .
12| -

2 1l .

8 oL i
4 H L]
2_ —
0]]

Control Plane Data Plane User Application

Fig. 10: Category plot showing the averages and 95 % confi-
dence intervals of the measurements from figure 9.

consists of two module components implemented in the POX
OpenFlow controller. The forwarding component is respon-
sible for the reservation and installation of paths, while the
monitoring component is responsible for the actual monitoring.
Both components rely on the POX Discovery module to learn
network topology and updates.

Like some of the components shipped with POX, the
forwarding component learns the location of nodes within
the network and configures paths between those nodes by
installing per-flow forwarding rules on the switches. However,
we have implemented some of the specific details different
from the other POX forwarding modules on which we will
elaborate further. One could refer to this as a small guide to
building one’s own forwarding module.

1) OpenNetMon does not precalculate paths, it computes
them online when they are needed. In a multipath
environment (e.g. see [19]) not all flows from node
A to B necessarily follow the same path, by means
of load-balancing or Traffic Engineering it might be
preferred to use multiple distinct paths between any
two nodes. In order to support monitoring multipath
networks, we decided to implement a forwarding module
which may compute and choose from multiple paths
from any node A to B. Especially to support online
fine-grained Traffic Engineering, which may compute
paths based on multiple metrics using the SAMCRA
[20] routing algorithm, we decided to implement this
using online path calculations.

2) We install per-flow forwarding rules on all neces-
sary switches immediately. We found that the modules
shipped with many controllers configured paths switch-
by-switch. Meaning that once an unmatched packet is
received, the controller configures specific forwarding
rules on that switch, resends that packet, and then
receives an identical packet from the next switch on
the path. This process iterates until all switches are
configured. Our forwarding module, however, installs
the appropriate forwarding rules on all switches along
the path from node A to B, then resends the original

packet from the last switch on the path to the destination
instead.

3) We flood broadcast messages and unicast messages
with an unknown destination on all edge ports of all
switches immediately. We found that packets which were
classified to be flooded, either due to their broadcast or
multicast nature or due to the fact that their destination
MAC address location was still unknown, were flooded
switch-by-switch equally to the approach mentioned
in the previous item. In the end, each switch in the
spanning-tree contacts the controller with an identical
packet while the action of that packet remains the same.
Furthermore, if in the meantime the destination of a
previously unknown unicast message was learned, this
resulted in the forwarding module installing an invalid
path from that specific switch to the destination switch.
To reduce communication overhead when a packet
arrives that needs to be flooded, our implementation
contacts all switches and floods on all edge ports.

4) We only “learn” MAC addresses on edge ports to prevent
learning invalid switch-port locations for hosts.

The forwarding component sends an event to the monitoring
component when a new flow, with possibly a new distinct
path, has been installed. Upon this action, the monitoring
component will add the edge switches to the list iterated
by the adaptive timer. At each timer interval the monitoring
component requests flow-counters from all flow destination
and source switches. The flow-counters contain the packet
counter, byte counter and duration of each flow. By storing
statistics from the previous round, the delta of those counters
is determined to calculate per-flow throughput and packet loss.

VII. CONCLUSION

In this paper, we have presented OpenNetMon, a POX
OpenFlow controller module monitoring per-flow QoS metrics
to enable fine-grained Traffic Engineering. By polling flow
source and destination switches at an adaptive rate, we obtain
accurate results while minimizing the network and switch CPU
overhead. The per-flow throughput and packet loss is derived
from the queried flow counters. Delay, on the contrary, is
measured by injecting probe packets directly into switch data
planes, traveling the same paths, meaning nodes, links and
buffers, and thus determining a realistic end-to-end delay for
each flow. We have published the implemented Python-code
of our proposal as open source to enable further research
and collaboration in the area of QoS in Software-Defined
Networks.

We have performed experiments on a hardware testbed
simulating a small inter-office network, while loading it with
traffic of highly bursty nature. The experimental measurements
verify the accuracy of the measured throughput and delay for
monitoring, while the packet loss gives a good estimate of
possible service degration.

Based on the work in [21], we further suggest to remove the
overhead introduced by microflows, by categorizing them into
one greater stream until recognized as an elephant flow. This

prevents potential overloading of the controller by insignificant
but possibly numerous flows. In future work, we intend to use
OpenNetMon as an input generator for a responsive real-time
QoS controller that recomputes and redistributes paths.

REFERENCES

[11 Q. Zhao, Z. Ge, J. Wang, and J. Xu, “Robust traffic matrix estimation
with imperfect information: making use of multiple data sources,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 34, no. 1.
ACM, 2006, pp. 133-144.

[2] C. Doerr, R. Gavrila, F. A. Kuipers, and P. Trimintzios, “Good practices
in resilient internet interconnection,” ENISA Report, Jun. 2012.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

[4] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers.
(2013, Sep.) Tudelftnas/sdn-opennetmon. [Online]. Available:
https://github.com/TUDelftNAS/SDN-OpenNetMon

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple Network Man-
agement Protocol (SNMP),” RFC 1157 (Historic), Internet Engineering
Task Force, May 1990.

[6] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954 (Informational), Internet Engineering Task Force, Oct. 2004.

[71 V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen, “csamp: A system for network-wide flow monitoring.”
in NSDI, 2008, pp. 233-246.

[8] B. Huffaker, D. Plummer, D. Moore, and K. Clafty, “Topology discovery
by active probing,” in Applications and the Internet (SAINT) Workshop:s,
2002. Proceedings. 2002 Symposium on. 1EEE, 2002, pp. 90-96.

[9] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,

T. Seely, and C. Diot, “Packet-level traffic measurements from the sprint

ip backbone,” Network, IEEE, vol. 17, no. 6, pp. 616, 2003.

M. McCauley. (2013, Aug.) About pox. [Online]. Available:

http://www.noxrepo.org/pox/about-pox/

B. S. Networks. (2013, Aug.) Floodlight openflow controller. [Online].

Available: http://www.projectfloodlight.org/floodlight/

A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix

estimator for openflow networks,” in Passive and Active Measurement.

Springer, 2010, pp. 201-210.

J. R. Ballard, 1. Rae, and A. Akella, “Extensible and scalable network

monitoring using opensafe,” Proc. INM/WREN, 2010.

M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with

opensketch,” in Proceedings 10th USENIX Symposium on Networked

Systems Design and Implementation, NSDI, vol. 13, 2013.

W. M. WorkingGroup. (2013, Sep.) Mawi working group traffic archive.

[Online]. Available: http://mawi.wide.ad.jp/mawi/

B. Fu, F. A. Kuipers, and P. Van Mieghem, “To update network

state or not?” in Telecommunication Networking Workshop on QoS

in Multiservice IP Networks, 2008. IT-NEWS 2008. 4th International.

IEEE, 2008, pp. 229-234.

F. A. Kuipers, H. Wang, and P. Van Mieghem, “The stability of paths

in a dynamic network,” in Proceedings of the 2005 ACM conference

on Emerging network experiment and technology. ACM, 2005, pp.

105-114.

S. Hemminger, “Network emulation with netem,” in Linux Conf Au.

Citeseer, 2005, pp. 18-23.

R. van der Pol, M. Bredel, A. Barczyk, B. Overeinder, N. L. M.

van Adrichem, and F. A. Kuipers, “Experiences with MPTCP in an

intercontinental multipathed OpenFlow network,” in Proceedings of the
29th Trans European Research and Education Networking Conference,

D. Foster, Ed. TERENA, August 2013.

P. Van Mieghem and F. A. Kuipers, “Concepts of exact QoS routing

algorithms,” Networking, IEEE/ACM Transactions on, vol. 12, no. 5,

pp. 851-864, 2004.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee, “Devoflow: Scaling flow management for high-performance

networks,” in ACM SIGCOMM Computer Communication Review,

vol. 41, no. 4. ACM, 2011, pp. 254-265.

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

