
 
 

Delft University of Technology

Impact of connected and autonomous vehicles on road network resilience in Belgium

Mehrabani, Behzad Bamdad; Sgambi, Luca; Pel, Adam; Calvert, Simeon; Snelder, Maaike

DOI
10.1080/23249935.2024.2442576
Publication date
2024
Document Version
Final published version
Published in
Transportmetrica A: Transport Science

Citation (APA)
Mehrabani, B. B., Sgambi, L., Pel, A., Calvert, S., & Snelder, M. (2024). Impact of connected and
autonomous vehicles on road network resilience in Belgium. Transportmetrica A: Transport Science.
https://doi.org/10.1080/23249935.2024.2442576

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/23249935.2024.2442576
https://doi.org/10.1080/23249935.2024.2442576


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Transportmetrica A: Transport Science

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ttra21

Impact of connected and autonomous vehicles on
road network resilience in Belgium

Behzad Bamdad Mehrabani, Luca Sgambi, Adam Pel, Simeon Calvert &
Maaike Snelder

To cite this article: Behzad Bamdad Mehrabani, Luca Sgambi, Adam Pel, Simeon
Calvert & Maaike Snelder (18 Dec 2024): Impact of connected and autonomous vehicles
on road network resilience in Belgium, Transportmetrica A: Transport Science, DOI:
10.1080/23249935.2024.2442576

To link to this article:  https://doi.org/10.1080/23249935.2024.2442576

Published online: 18 Dec 2024.

Submit your article to this journal 

Article views: 103

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ttra21

https://www.tandfonline.com/journals/ttra21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23249935.2024.2442576
https://doi.org/10.1080/23249935.2024.2442576
https://www.tandfonline.com/action/authorSubmission?journalCode=ttra21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ttra21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23249935.2024.2442576?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23249935.2024.2442576?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2024.2442576&domain=pdf&date_stamp=18%20Dec%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2024.2442576&domain=pdf&date_stamp=18%20Dec%202024
https://www.tandfonline.com/action/journalInformation?journalCode=ttra21


TRANSPORTMETRICA A: TRANSPORT SCIENCE
https://doi.org/10.1080/23249935.2024.2442576

Impact of connected and autonomous vehicles on road
network resilience in Belgium

Behzad Bamdad Mehrabani a, Luca Sgambib, Adam Pelc, Simeon Calvertc and
Maaike Snelderc,d

aTransport and Mobility Leuven, Leuven, Belgium; bLouvain Research Institute for Landscape, Architecture,
Built Environment (LAB), Université Catholique de Louvain, Louvain-la-Neuve, Belgium; cTransport &
Planning Department, Delft University of Technology, Delft, Netherlands; dNetherlands Organization for
Applied Scientific Research (TNO), The Hague, Netherlands

ABSTRACT
The advent of Connected and Automated Vehicles (CAVs) has ush-
ered in substantial changes in the transportation sector, particu-
larly impacting the resilience of road networks. CAVs can exchange
real-time information about road conditions, allowing them to
bypass congestion and optimise their routes, thereby enhancing
network resilience through dynamic rerouting. Additionally, these
vehicles significantly affect road capacity, further bolstering theover-
all resilience of the network. As a result, it is essential to assess the
impact of CAVs on road network resilience comprehensively. How-
ever, to the best of the authors’ knowledge, there is a notable gap
in research that thoroughly evaluates the resilience of large-scale
road networks, taking into account all dimensions of resilience, such
as redundancy, robustness, and recovery speed. This paper aims to
fill this gap by assessing the influence of CAVs on the resilience of
a large-scale road network in Belgium. Utilising a simulation-based
approach, the study quantifies the network’s resilience triangle,
addressing all facets of network resilience. The findings reveal that
the integration of CAVs can markedly improve network resilience
under various scenarios, with improvements ranging from 4.4% at a
10% penetration rate to 59.9% at full penetration. These insights are
valuable for researchers andpolicymakers focused on the implemen-
tation of autonomous vehicles.
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1. Introduction

The contemporary road transport system faces numerous challenges that have the poten-
tial to impact its resilience. Among these challenges, the introduction of innovative tech-
nologies, including Connected and Autonomous Vehicles (CAVs), stands out as one of the
most significant. CAVs are vehicles equippedwith advanced technologies that enable them
to communicate with each other and their surrounding environment, as well as operate
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autonomously without direct human input. These advanced capabilities represent a signif-
icant shift in vehicular technology, fundamentally changing how vehicles interact within
the transportation network and with human drivers.

The technology underpinning CAVs comprises two critical elements: automation and
connectivity. Automation encompasses a range of decision-making and control systems
that coordinate human andmachine inputs to operate the vehicle, progressing from com-
plete human control (level 0) to full vehicle autonomy (level 5). This range delineates the
levels of interaction and cooperation between human drivers and automated systems in
vehiclemanagement. At higher levels of automation, vehicles can perform complex driving
taskswithout human intervention, potentially reducing human error and enhancing safety.
Connectivity, the second crucial component, facilitates communication between the vehi-
cle and various external entities, including infrastructure (V2I), other vehicles (V2 V), and
pedestrians (V2P). Additionally, connectivity enables vehicles to interact with cloud-based
services and traffic management systems (V2C), enhancing overall traffic efficiency and
safety. This interconnectedness allows for real-time data exchange, improving decision-
making processes and responsiveness to dynamic road conditions. The integration of these
technologies not only improves operational efficiency but also significantly enhances road
safety and traffic management capabilities.

There is ongoing debate about the impact of CAVs on road networks, but they are
expected to bring several advantages. Firstly, CAVs, through their automation, can increase
road capacity, leading to alterations in link travel times, which in turn influence the routing
decisions of both CAVs and Human Driven Vehicles (HDVs). An increase in road capac-
ity means that more vehicles can travel smoothly without congestion, which can lead to
shorter travel times and reduced delays. Secondly, traffic management centres, with the
ability to control CAVs, can utilise extensive information about the road network’s condi-
tions, enabling them to implement different route choice strategies compared to HDVs.
This centralised control can optimise traffic flows by redirecting vehicles to less congested
routes, thereby balancing the network load. Lastly, the connectivity feature of CAVs allows
them to swiftly respond to traffic congestion or disruptions by dynamically adjusting their
routes (rerouting capability). As a result, assessing road network performance, particu-
larly its resilience, becomes a critical area of research, especially in the context of network
disruptions and the coexistence of diverse types of users.

This study aims todevelop anovel evaluation framework for roadnetwork resilience that
considers the presence of CAVs and their coexistence with HDVs within the road network.
While some studies suggest that CAVs can enhance resilience (Khan et al. 2016), compre-
hensive research assessing the full range of potential impacts of CAVs on resilience is still
lacking. Most existing studies focus on specific aspects without considering the holistic
functionalities of CAVs. Therefore, this study addresses this gap by 1- Assessing the impact
of CAVs on a large-scale road network in Belgium, taking into account all potential effects,
including varying driving and route choice behaviours. 2- Introducing a new framework for
evaluating road network resilience that incorporates robustness, redundancy, and recovery
using simulation-based methods.

In the following sections of this study, Section 2 begins with an examination of the
concept of resilience within transportation networks. Following that, in Section 3, the
methodology for assessing network resilience is presented. Section 4 covers the develop-
ment of a traffic simulation model for Belgium, as well as the modelling of CAVs and HDVs
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in the traffic simulation. Finally, Section 5 provides the results of the network resilience
assessment. Section 6 concludes this study.

2. Resilience concept and background

The term ‘resilience’ is derived from the Latin word ‘resiliere,’ meaning to ‘bounce back’
(Hosseini, Barker, and Ramirez-Marquez 2016). It describes the capacity of an entity or sys-
tem to return to its normal state after facing disruptive events. Over the years, researchers
from diverse fields have applied the concept of resilience in their work. Initially introduced
in the field of ecology in the 1970s (Holling 1973), the concept has since evolved. Despite
its development, there remains no universally accepted definition of resilience, leading
researchers to define it according to their specific project goals and the type of infrastruc-
ture being examined (Gauthier, Furno, and El Faouzi 2018; Lhomme et al. 2013). In the
realm of transportation systems, resilience is defined as ‘the ability to prepare for changing
conditions and withstand, respond to, and recover rapidly from disruptions’ (FHWA 2015).
This definition highlights not only recovery but also preparation and adaptability as key
components of resilience.

There have been five distinct approaches proposed for analyzing the resiliency of trans-
portation networks (W. Liu and Song 2020; Serdar, Koç, and Al-Ghamdi 2022). These
approaches includeBigData analysis (W. Liu andSong2020), graph theory (Gauthier, Furno,
and El Faouzi 2018; Sgambi et al. 2021; Zang et al. 2024), optimisation models (Kaviani,
Thompson, and Rajabifard 2017; Omer, Mostashari, and Nilchiani 2013), simulation-based
models (M. T. Aghababaei, Costello, and Ranjitkar 2020), and miscellaneous methods
(Calvert and Snelder 2018). Each approach offers unique insights and tools for understand-
ing resilience but also comes with its own set of limitations.

Big Data analysis requires a significant amount of data and is not efficient when no
data is available. Graph-based methods are simple and popular, with roads considered
bi-directional links and intersections asnodes.However, thesemethods aregenerally insen-
sitive to demand and focus less on recovery simulation. They often assume the complete
removal of nodes or links and typically do not account for different traffic modes or the
specific characteristics of one system compared to another (Gauthier, Furno, and El Faouzi
2018; W. Liu and Song 2020; Wei and Xu 2024). This simplification can lead to inaccuracies
when modelling complex, real-world transportation networks.

For example, in the study of Wei and Xu (2024), they assess the resilience of road
networks in disaster-prone areas using a complex-network-based framework, focusing
on the natural disasters (Wenchuan earthquake and the Taihu Lake Basin in China). The
researchers employ complex network theory tomodel roadnetworks, usingmetrics such as
K-core, clustering coefficient, network density, average path length, maximum connectiv-
ity sub-graph, and network efficiency to evaluate resilience. These metrics assess different
resilience aspects like vulnerability, survivability, adaptability, responsiveness, and recov-
ery. Additionally, resilience curves are used to capture the dynamic changes in network
performance over time. The study provides a detailed, quantitative analysis of road net-
work resilience during disasters. Another study in which they have used graph network for
evaluating road network resilience is the study of (Zang et al. 2024). Although they pro-
pose a novel approach for evaluating resilience during heavily rainfall events, the resilience
evaluation metrics they use – node degree centrality, node betweenness centrality, and
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node reachability – are graph-based metrics and cannot capture the impact of functional
performance changes in traffic flow or speed.

Optimisation models are utilised primarily during the design phase to ensure the best
possible outcomes for resilience while adhering to budget constraints. These models aim
to maximise efficiency and effectiveness in enhancing the resilience of transportation net-
workswithin thegiven financial limitations.While useful for planning, theymaynot account
for real-time network dynamics and user behaviours.

Simulationmodels of resiliency analyze road traffic and simulate partial or totalmalfunc-
tions in one or more roads, making them effective in analyzing the behaviour of a specific
network. Additionally, simulation models of resiliency can evaluate specific driving and
routing behaviour of road users, such as CAVs (W. Liu and Song 2020; Sun, Bocchini, and
Davison 2020). The present study employs the simulation-based approach. There are sev-
eral reasons for this. First, simulation-based methods allow for different traffic modes and
vehicle classes (HDVs and CAVs) to be simulated based on their behaviour and characteris-
tics. This means that the impact of CAVs on network resilience can be evaluated accurately.
Second, simulation-basedmethods take intoaccount the interactionbetweenvehicles. This
means that the behaviour of one vehicle affects the behaviour of others, and this can be
modelled accurately. For example, CAVs may influence traffic flow patterns, which in turn
affect HDVs. Third, simulation-basedmethods allow thegeometric and topological features
of roads tobe considered simultaneously. Thismeans that the impact of road characteristics
on network resilience can be evaluated accurately. Factors such as lane widths, signal tim-
ings, and road grades can be included in the simulation. Fourth, simulation-basedmethods
allow for the comparison of various failure types, demand strategies, recovery strategies,
and resource allocations. Thismeans that themost effective strategy for improvingnetwork
resilience can be identified. This flexibility makes simulation-based methods highly valu-
able for scenario analysis and planning. Finally, simulation-based methods enable the cal-
culation of various traffic-related metrics (e.g. average speed), providing a comprehensive
perspective on the impact of CAVs on road network resilience.

However, when investigating the impact of CAVs on road network resilience, it is impor-
tant to acknowledge that while some studies have evaluated the impact of CAVs on road
network resilience, there is currently no comprehensive research that has assessed the full
range of potential impacts of CAVs on resilience. For instance, Ahmed, Dey, and Fries (2019)
analyzed the effect of varying CAV penetration rates in mixed traffic environments on road
network resilience using mathematical models and graph theory, focusing solely on CAVs’
impact on traffic headway and overlooking other factors such as their routing behaviour.
Similarly, Zou and Chen (2021) proposed an optimisation model for post-disaster recovery
scheduling that accounts for CAVs but only considered the difference in route choice and
driving behaviour between CAVs and HDVs, without incorporating features such as CAV
rerouting behaviour. These limitations highlight the need for more comprehensive studies
that include all functionalities of CAVs.

According to Sun, Bocchini, and Davison (2020), resilience measures for transportation
infrastructure canbebroadly categorised into threegroups: traffic-related, topology-based,
and socioeconomic. The first two categories, traffic-related and topology-based, are also
known as functionality-related resilience metrics. Traffic-related measures focus on traf-
fic flow features and system capacity, with examples including travel time, throughput,
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and outflow. Conversely, topology-basedmeasures employ graph theory to evaluate topo-
logical characteristics, primarily focusing on connectivity and centrality. However, these
measures do not consider the dynamic impacts and driving behaviours affecting the net-
work. Socioeconomicmeasures, another category, evaluate the resilience of transportation
infrastructure based on socioeconomic benefits, such as reduced emissions and lower eco-
nomic costs, which are highly dependent on available resources. This study, however, will
focus on traffic-related measures. Several studies have investigated these measures to
assess the resilience of road networks. One commonly used tool for evaluating resilience
is the resilience triangle, which includes three key features: reducing failure probabilities,
minimising the consequences of failures, and shortening recovery times. The original con-
cept of the resilience triangle was introduced by (Bruneau et al. 2003) and has been further
refined by various researchers. The resilience triangle provides a framework for quantifying
the performance loss and recovery over time. For example, Wan et al. (2018) conducted a
literature review to incorporate additional characteristics of resilience into the resilience
triangle, including vulnerability, adaptability, preparedness, redundancy, response, and
recovery. From the literature (Bruneau et al. 2003; Taylor 2017), the most crucial charac-
teristics of resilience that can be integrated into the resilience triangle are robustness,
redundancy, resourcefulness, and recovery speed. Figure 1 illustrates these characteristics,
and their definitions are derived fromWan et al. (2018):

• Robustness: The capability to withstand or absorb disturbances, maintaining integrity
when exposed to disruptions.

• Redundancy: The ability of certain system components to take over the functions of
failed components without negatively impacting the system’s overall performance.

• Resourcefulness: The availability of materials, supplies, and personnel necessary to
restore functionality, particularly in studies of transportation resilience.

• Rapidity: Implies not just the ability to recover, but emphasises the speed at which
recovery occurs.

The resilience triangle is a concept that describes how a system’s functionality can be
affected by a sudden disruption. The resilience triangle explain that the systemexperiences
a sudden drop in functionality at a specific time (t0), but then gradually recovers until it
returns to its primary level of functionality (th). This is illustrated in Figure 1, which depicts
the resilience triangle consisting of three edges.

The first edge represents the initial decrease in functionality at time t0, the second edge
illustrates the recovery period from t0 to th, and the slope of the third edge indicates the
speedof recovery (Sun, Bocchini, andDavison2020). Byutilising this figure, resilience canbe
mathematically quantified by integrating the area within the resilience triangle, providing
an estimate of the resilience loss due to the disruptive event (as shown in Equation 1). A
highly resilient system will exhibit a low value of resilience loss.

Resilience loss =
∫ th

t0
[100 − P(t)]dt (1)

Resilience index = ∫tht0 [P(t)]dt
th − t0

(2)
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Figure 1. Schematic of performance of a resilient system (Wan et al. 2018).

Where P(t) is an indicator for the quality of infrastructure. Usually in road network resilience
studies, P(t) is considered as a performance indicator: segment travel time, queue length,
segment delay, etc. Establishing an appropriate performance indicator for the road net-
work is crucial for measuring the resilience triangle effectively. Balal et al. (2019) utilised
segment travel time, detour route delay, queue length, segment speed, and frontage road
delay as performance indicator toquantify the resilience triangle. Despite previous research
suggesting network-level measures for evaluating road network resilience, Balal et al.’s
measures only focus on the link level and fail to offer a holistic understanding of network-
level resilience. Thismeans theydonot capture the full extent of how the closureof a roador
link can impact other areas of the transportation network. A network-level approach is nec-
essary to understand the interconnected impacts of disruptions across the entire system.
Additionally, most studies that use resilience-triangle-related measures only calculate one
dimension of resilience, such as redundancy or robustness, andmaynot consider the recov-
ery of the network (M. T. S. Aghababaei, Costello, and Ranjitkar 2021). However, previous
studies have emphasised that recovery and rapidity are critical components of road net-
work resilience, particularly in the context of new technologies like CAVs (Ahmed, Dey, and
Fries 2019). Ignoring these aspects can lead to incomplete assessments of a network’s true
resilience. The study of Z. Liu and Song (2020) is one of the few that employs a comprehen-
sive resilience evaluation framework. While the resilience evaluation framework includes
important metrics such as robustness, recovery, rapidity, and performance, the framework
is not dynamic and fails to account for adaptive traffic management and variable recovery
rates based on real-time conditions.

Another limitation of studies that use the resilience triangle to evaluate road resilience is
that they typically focus onnatural hazards (e.g. earthquakes, floods) that result in structural
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collapse or significant changes in travel demand (M. T. S. Aghababaei, Costello, and Ran-
jitkar 2021; Das 2020; Niu et al. 2022; Nogal et al. 2017; Twumasi-Boakye and Sobanjo 2018).
These studies usually assume a pre-defined recovery strategy (based on resourcefulness)
and then calculate the (un)resilience index. Thus, they have not investigated the immedi-
ate impact of road/link closure and how performance evolves during different disruption
phases.

In summary, there are several gaps in the existing research on road network resilience.
Most studies that examine the recovery speed of the network focus solely on the link level
and concentrate on the post-crisis stage rather than the crisis itself. Furthermore, although
certain measures, such as total travel time, are correlated with recovery time, they fail to
capture the immediate impact of disruptions and the network’s evolution. A more com-
prehensive approach is needed to fully understand and enhance network resilience. This
study aims to address these gaps by introducing a novel performance indicator based on
simulation-based methods. Subsequently, this performance indicator is utilised to con-
struct a resilience triangle at the network level for a large-scale road network in Belgium.
Additionally, the study calculates the resilience loss using the proposed measure for the
given network. This approach enables an investigation into the speed of network response,
the immediate impact of disruptions, and the network’s evolution during different phases
of disruption, encompassing not only natural disasters but also other scenarios. On top of
that, this study provides significant societal value by addressing how CAVs can enhance
roadnetwork resilience in response to incidents, a crucial aspect ofmodernurbanplanning.
By simulating CAV impacts under various disruption scenarios, our research informs poli-
cymakers and urban planners on effective CAV integration strategies. Enhanced resilience
leads to reduced travel times and fewer disruptions, ultimately resulting in lower emissions
and improved safety and accessibility for all road users.

To the best of the authors’ knowledge, this is the first instance where a traffic-related
measure of resiliency has been introduced at the network level to examine resilience across
various disruption phases in the presence of CAVs.

3. Resilience evaluation framework

This section outlines the methodology for plotting the resilience triangle and calculating
the resilience loss, starting with the selection of an appropriate performance indicator.
While many studies have used total travel time as a performance indicator, this has limi-
tations. For example, it does not capture the immediate impact of sudden incidents on the
network, and it does not reflect the recovery time, or rapidity, of the network. Addition-
ally, total travel time is heavily influenced by the travel times of specific origin-destination
pairs and may not be generalisable to other patterns. Therefore, the authors chose a new
performance indicator based on simulation-based methods that measures network func-
tionality and captures the evolution of the network during different phases of disruption.
This approach facilitates a more comprehensive understanding of the network’s resilience,
enabling the resilience triangle to be plotted at the network level.

Based on the explanation provided in the preceding section, the performance indica-
tor needs to encompass all aspects of resilience, including robustness, redundancy, and
rapidity. It’s worth noting that this study does not consider resourcefulness, as it is solely
reliant on the availability of resources and, therefore, falls outside the scope of this research.
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Additionally, given the researchobjectives, theperformance indicatormust also account for
the impact of CAVs on the resilience of the road network.

The performance of a road network can bemeasured by the number of completed trips
within a unit of time, also known as the network outflow (Amini, Tilg, and Busch 2018a;
Knoop 2017). In essence, this indicates the number of vehicles that can be accommodated
by the road network. However, in the event of an incident, the impact on the outflow can-
not be immediately observed. Only when the affected vehicles reach their destination can
the effect on the outflow be noticed. Additionally, determining the outflow of the net-
work in practice can be challenging. Therefore, this study employs a surrogate measure of
outflow. Previous research (Amini, Tilg, and Busch 2018b; Geroliminis and Daganzo 2008;
Knoop 2017) has demonstrated that the performance of the network is closely related to
its production in equilibrium conditions. Network production refers to the internal flows
in the network. Furthermore, it has been established that the production of a network is
dependent on its accumulation, which refers to the number of vehicles in the network.
The advantages of using accumulation as the performance indicator are twofold: Firstly, it
can be easily measured in practice, assuming a good coverage of detectors in the network.
Secondly, the impact of incidents on accumulations can be detected much faster than on
outflow or travel time, as it is dynamically impacted by any incident. Therefore, this study
considers accumulation as the performance indicator for the formation of the resilience
triangle.

At = Vi
t + Vo

t (3)

Where At is the accumulation of the network at time t, Vi
t is the number of vehicles in the

network at time t, and Vo
t is the number of vehicles waiting for insertion to the network

at time t. In this performance indicator definition, not only the number of vehicles within
the network is taken into account, but also the number of vehicleswaiting for insertion. The
reason for this inclusion is to account for the effect of blockages in the insertion links, which
can significantly impact the network’s performance.

To construct the resilience triangle using accumulation, the first step is to simulate a base
case scenario in which no disruptions occur. The accumulation of the network at each time
interval, typically 1min, is then plotted. Following this, another simulation is conducted for
a scenario in which a disruption occurs, and the corresponding accumulation is plotted.
The area between the accumulation curve of the base case scenario and the accumulation
curve of the disrupted scenario is defined as the resilience loss. A smaller area between the
two curves indicates a higher level of resilience in the network. Figure 2 presents a sample
resilience triangle using accumulation, where the Y-axis represents the accumulation in the
network, and the X-axis represents the time interval. The resilience loss formulation can be
defined as follows:

RL =
∫ th

t0
Adt (t)dt −

∫ th

t0
Abt (t)dt (4)

Here, RL is the resilience loss, and Adt (t) and Abt (t) are the accumulation of disrupted and
base case scenarios at time t, respectively.

Using accumulation as the performance indicator to plot the resilience loss triangle
allows for a comprehensive assessment of all aspects of resilience, including redundancy,
robustness, and recovery. This method also facilitates the evaluation of the impact of CAVs
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Figure 2. Road network resilience triangle using accumulation.

on the overall network resilience, especially considering their rerouting capabilities. CAVs
can bypass congested and disrupted roads, leading to an increase in network outflow,
as captured by the accumulation measure. This rise in outflow correlates with enhanced
network performance, indicating a more resilient network. Thus, employing accumulation
as a performance indicator effectively quantifies the benefits of CAVs in enhancing net-
work resilience, particularly in the face of disruptive events. Figure 3 presents a flow chart
outlining themethodological approach for evaluating roadnetwork resilience in this paper.

4. Traffic simulationmodel development

4.1. Case study

Belgium, a European country with a population of 11.5 million and a land area of
30,688 km⊃2, is divided into three regions: Flanders, Wallonia, and the Brussels-Capital
Region (OECD 2022). The country has a well-developed and well-connected transport
network, including national roads spanning 13.2 thousand kilometres, five international
airports, a usable rail network of 3,602 kilometres, and five seaports (Statista 2009; 2020).
AmongEU countries, Belgium ranks 7th in terms of passenger-kilometres, and itsmotorway
network is the third densest in Europe (Decoster et al. 2020). It also has over eight interna-
tional E-roads connecting eastern and western Europe, as well as southern and northern
Europe. To simulate the Belgium road network, the Simulation of Urban Mobility (SUMO)
was used. The network was generated using data from the Open Street Map (OSM) file,
and it includes Motorway, Trunk, and Primary roads for outer-city roads like highways and
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Figure 3. Road network resilience evaluation methodology.

provincial and regional roads. However, inner-city traffic roads are not included. A prob-
abilistic travel demand model was developed to generate demand data between cities,
which was previously calibrated and validated in the authors’ previous work (Mehrabani
et al. 2023). The same traffic simulationmodel is used in this study. Formore information on
the travel demandmodel of Belgium, please refer to the above mentioned article. Figure 4
shows the peak hour traffic volume simulated for Belgium.

4.2. Traffic simulationmodel

The simulation includes two typesof vehicles:HDVsandCAVs.HDVsareoperatedbyhuman
drivers who can receive information from navigation apps but require a human to control
the vehicle. CAVs, on the other hand, are equipped with advanced technologies, including
internet connectivity, sensors, and artificial intelligence, that enable them to operate with-
out human input. CAVs have various features, such as the ability to sense and respond to
their environment, navigate roads, make decisions, and communicate with other vehicles
and infrastructure. The study models the differences between CAVs and HDVs based on
their driving behaviour and route choice.

In the context of driving behaviour, this study employs the traffic simulation software
SUMO to model traffic flow at the mesoscopic scale. SUMO’s mesoscopic model utilises
a queue-based approach developed by (Eissfeldt 2004). This model calculates the travel
time for a vehicle from the queue by considering the traffic state in both the current and
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Figure 4. Simulated peak hour traffic flow of the Belgium road network.

subsequent queues, the minimum travel time, and the intersection stage (e.g. red, green,
yellow). There are four possible traffic state combinations between consecutive segments
(DLR 2023), each with a distinct minimum headway between vehicles:

1. Travelling from one congested segment to another congested segment (default
minimum headway 1.4).

2. Travelling from a congested segment to a free-flowing segment (default minimum
headway 1.73).

3. Travelling from a free-flowing segment to a congested segment (default minimum
headway 1.13).

4. Travelling from a free-flowing segment to another free-flowing segment (default
minimum headway 1.13).

The parameter τ is used to establish the minimum headways between vehicles, serving
as a multiplier for each of these scenarios. Each of these headway values is multiplied by
the τ value specified for the vehicle type (with the default τ set to 1).

The driving behaviour of CAVs centres around their fully autonomous capability (level
5), resulting in safer and more efficient driving. This automation technology enables
CAVs to react more quickly, allowing them to maintain shorter following distances com-
pared to HDVs. Consequently, CAVs are assumed to have reduced time headways (Kar-
basi et al. 2022). Distinctions between CAVs and HDVs are made based on their queuing
model parameters, specifically the minimum headway (τ ) values assigned to each vehicle
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category. The underlying assumption is that CAVs can follow preceding vehicles more effi-
ciently across sequential segments than HDVs, leading to a reduced τ parameter for CAVs
(Yu et al. 2021). While some studies have utilised cell transmission models or simplified
car-following models to simulate CAVs at the mesoscopic level (Mansourianfar et al. 2021;
Melson et al. 2018), to the best of the authors’ knowledge, the only study that has calibrated
the Eissfeldt model parameters for CAVs is the authors’ previous research (Bamdad Mehra-
bani et al. 2023). Therefore, this study will employ the same parameters calibrated in the
authors’ prior work, with the τ value set at 1.06 for HDVs and 0.79 for CAVs. For further
details on the calibration process of these parameters, please refer to the authors’ previous
work (Bamdad Mehrabani et al. 2023).

In the context of route choice behaviour, it is assumed that CAVs are under the control of
a central trafficmanagement system,which guides them to follow the route thatminimises
the overall travel time of the system, utilising real-time information about the road network
(known as the system optimal principle). On the other hand, HDVs adhere to the user equi-
librium principle, where each driver selects a route that minimises their individual travel
timewithout considering the impact on the overall system. Furthermore, it is assumed that
a portion of CAVS (50%) are equipped to reroute based on real-time updated information
such as an accident. The process of rerouting can be utilised by CAVs both prior to entering
the network and during driving based on real-time information of traffic congestion. This
can help in optimising the route and enhancing the overall efficiency of the transportation
system. While acquiring real-time information from the entire network poses some chal-
lenges in reality, it is imperative to consider that leveraging the deployment of routing
software and accessing both historical and real-time data through such applications can
bring the network closer to system optimal. Notably, routing software (e.g. google map),
given the high penetration rates in road networks, constrains routes based on the real-time
shortest path. Consequently, integrating data from connected vehicles with the real-time
and historical data from routing software allows for the substitution of the shortest path
with a marginal path, approaching a route that aligns with the system optimal. Similarly, a
percentage of HDVs (50%) possess the ability to reroute before entering the network using
navigation applications (e.g. google map, Waze, etc.), and they also follow the user equi-
librium principle. The reason for assuming that 50% of HDVs use navigation apps is that
previous studies using surveys have shown that more than 49.6% of users utilise mobile
navigation applications (Yang et al. 2021).

In situations where the network consists of only one type of user (e.g. exclusively HDVs
or exclusively CAVs), the dynamic Traffic Assignment Problem (TAP) can be solvedby apply-
ing one of the principles of Wardrop (either user equilibrium or system optimal). However,
when both HDVs and CAVs coexist in the network, the TAP becomes a multiclass problem
involving mixed traffic flow. Multiclass refers to the fact that two types of users (HDVs and
CAVs) follow different path selection principles, while mixed traffic refers to the fact that
these two types of users have different driving behaviours. To tackle the multiclass TAP
involvingmixed traffic flow, the authors haveutilised a simulation-based approach thatwas
developed in their previous research. Consequently, in order to obtain the results, themul-
ticlass traffic assignment problem for mixed traffic flow has been solved iteratively for each
scenario until convergence is achieved. For a comprehensive explanation of how to solve
the multiclass TAP and how to model the variations in driving and route choice behaviour
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between CAVs and HDVs, it is recommended to refer to the previous publication by the
authors (Bamdad Mehrabani et al. 2023)

4.3. Disruption scenarios

This study has taken into account accident scenarios to assess the network’s resilience.
However, when simulating accidents in large networks like Belgium, it is imperative to iden-
tify where these accidents take place within the network. To this end, a critical link analysis
was performed. The critical links were determined by identifying the shortest paths during
peak hour period. The significance of each link was determined by counting the number of
times it appeared in the shortest paths of all trips. As a result, links can be sorted based on
their importance.

Accidents at critical links in the network are considered as the disruption scenarios. The
simulation covers a 3-hour, during rush hours, and the accidents happen one hour after the
start of the simulation. The first 15minof this simulationhavebeen consideredas thewarm-
up time. The occurrence of an accident takes place one hour after the end of the warm-up
time and last for 30min in onedirection. These accidents result in the closure of two lanes in
the related highway, which can be considered asminor accidents. Minor accidents on high-
ways can have a substantial impact on traffic flow, often resulting in the closure of lanes and
causing disruptions that range froma fewminutes to several hours. In this study, we specifi-
cally focus on incidents with a duration of 30min. This time framewas chosen based on the
significant influence that even minor accidents can have on the flow of traffic when two
out of three lanes are temporarily closed. Despite their seemingly brief nature, these inci-
dents can lead to congestion, delays, and ripple effects on overall road network efficiency.
By examining the impact of these 30-minute closures caused by minor accidents, we aim
to gain insights into the broader implications for network resilience analysis and explore
potential impacts of CAVs to mitigate the consequences of such disruptions on highways.
To evaluate the network’s resilience under various scenarios, the cumulative occurrence of
accidents was simulated, starting with the most critical link up to the 10 most critical links.
This approach provides insight into the network’s behaviour when the most critical links
are affected first and can help plan preventative and adaptive measures. Table 1 shows the
simulated scenarios and their settings.

5. Result and discussion

Table 2 provides an overview of the traffic metrics generated at various penetration rates
of CAVs across all scenarios. As shown in the table, an increase in the percentage of CAVs
corresponds to a reduction in the total travel time of the network. This improvement can
be attributed to CAVs adhering to the System Optimum (SO), which aims to optimise the
overall travel time of the entire network. Particularly in disrupted scenarios, the reduction
in total travel timewith a higher percentage of CAVs can be explained by their connectivity.
When a sudden incident occurs, CAVs can communicate with each other, allowing vehicles
that have not yet reached the incident to reroute and avoid the disruption.

Figure 5 displays the accumulation curves (resilience triangle) for a base scenario and
the disrupted scenarios in which the 1–10 most critical links are closed, across 0%, 10%,
20%, 40%, 60%, 80% and 100% penetration rates of CAVs. Given that the accumulation
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Table 1. Malfunction scenarios.

Scenario CAV percentage HDV percentage Disrupted links

1 0 100 0 (base case)
2 10 90
3 20 80
4 40 60
5 60 40
6 80 20
7 100 0
8 0 100 Top 1 critical link
9 10 90
10 20 80
11 40 60
12 60 40
13 80 20
14 100 0
15 0 100 Top 2 critical links
16 10 90
17 20 80
18 40 60
19 60 40
20 80 20
21 100 0
22 0 100 Top 3 critical links
23 10 90
24 20 80
25 40 60
26 60 40
27 80 20
28 100 0
29 0 100 Top 4 critical links
30 10 90
31 20 80
32 40 60
33 60 40
34 80 20
35 100 0
36 0 100 Top 5 critical links
37 10 90
38 20 80
39 40 60
40 60 40
41 80 20
42 100 0
43 0 100 Top 10 critical links
44 10 90
45 20 80
46 40 60
47 60 40
48 80 20
49 100 0

curve is the same for all disrupted and non-disrupted scenarios prior to the occurrence of
the incident in a specific partition rate, for the sake of simplicity two out of three hours
of simulation time are displayed. As depicted in the figure, the accumulation curve for all
scenarios prior to an incident is consistent for each CAV penetration rate. However, follow-
ing a disruption, the accumulation curve begins to diverge from the accumulation curve
of the base-case scenario. The rise in accumulation in disrupted scenarios, as compared to
the non-disrupted scenario, is to be expected as a disruption in the network leads to an
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Table 2. Simulation Results-Total Travel Time (min).

0%CAV 10%CAV 20%CAV 40%CAV 60%CAV 80%CAV 100%CAV

1 link Closure 13076523 12737497 12447666 12360555 11834474 11840927 11727832
2 Link Closure 13117268 12745272 12479101 12392351 11871907 11859870 11760581
3 Link Closure 13165122 12839657 12489484 12395149 11907132 11870081 11807367
4 link Closure 13260307 13010625 12494796 12498335 11911474 11875285 11874124
5 Link Closure 13316268 13064213 12592035 12502181 11976920 11926337 11892919
10 Link Closure 13463633 13236609 12834344 12571591 11986508 11954628 11900310

increase in the travel time of vehicles, resulting in longer trips. Consequently, the number
of completed trips within a given timeframe reduces, leading to an immediate increase in
the number of vehicles in the network or accumulation after the incident.

When analyzing accumulation in various scenarios, a crucial consideration is whether
the accumulation curve returns to its initial state after the disruption. If the curve does
return to its initial state, then the system has fully recovered; however, if the curve does
not return to its initial state until vehicles enter the network, then the system has not fully
recovered. Examining Figure 5, we can see thatwhen only HDVs are present in the network,
the distance between the disruptive accumulation scenarios and the base case scenario is
significant, and these curves do not return to their original state until the end of the peak
hour. However, as the percentage of CAVs increases in the network, the distance between
the accumulation curves of the disruptive scenarios and the base case scenario decreases. It
is noteworthy thatwhen all vehicles are CAVs, the distance between these curves is insignif-
icant, and after the disruption ends, the accumulation curve of the disruptive scenarios
returns to its initial state. This finding suggests that the presence of CAVs in the network
results in faster network recovery time and hence increases the network’s resilience.

Another noteworthy observation in the accumulation curve is the change in the net-
work accumulation values in different scenarios with varying CAVs penetration rates. As
illustrated in Figure 5, an increase in the CAVs penetration rate results in a decrease in the
network accumulation value in all disruptive scenarios. For instance, thenetwork accumula-
tion value rangesbetween50,000 and75,000 in all scenarioswith 100%HDV,while it ranges
between 50,000 and 70,000 in scenarios involving 100% CAVs. Given that the number of
vehicles remains constant across all scenarios, with only the CAV penetration rate varying,
it can be inferred that the completed trip rate increases as the CAV penetration rate rises.
This leads to a reduction in the network accumulation value over a specific period. In other
words, the overall network performance improves with a higher penetration rate of CAVs.

By comparing the curves in Figure 5, it can be observed that the introduction of CAVs at
varying penetration rates significantly influences the network’s ability to recover following
disruptions. In scenarioswith lower CAVpenetration rates (Figure 5(a–c)), the accumulation
curves for disrupted scenarios show a marked and sustained deviation from the baseline
curve after an incident. This deviation highlights a slower recovery process, as the network
struggles to return to its original state of functionality. Specifically, the distance between
the accumulation curves in disrupted andbaseline scenarios indicates substantial resilience
loss, reflecting limited network recovery in these scenarios. Lower CAV penetration implies
fewer vehicles are capable of rerouting effectively, leading to increased congestion and
extended travel times. However, as CAV penetration rates increase (Figure 5(d–f)), the dis-
rupted accumulation curves gradually return to align more closely with the baseline curve,
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Figure 5. Accumulation Curve (resilience triangle) for all scenarios.

demonstrating improved resilience. This change reflects the enhanced recovery capabili-
ties afforded by the higher proportion of CAVs, which are able to bypass congested routes
and re-establish efficient traffic flow quickly. At higher CAV rates, the resilience of the net-
work improves significantly, as shown by the reduced distance between disrupted and
baseline accumulation curves. This behaviour suggests that with a larger presence of CAVs,
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Table 3. Percentage of improvement in resilience in different penetration rate of CAVs.

10%CAV 20%CAV 40%CAV 60%CAV 80%CAV 100%CAV

1 link Closure 28.5 28.9 36.6 37.8 39.6 42.5
2 Link Closure 4.4 15.9 27.3 30.1 30.3 33.4
3 Link Closure 9.4 27.0 31.8 32.1 36.9 41.6
4 link Closure 19.3 24.3 28.1 38.6 48.4 56.2
5 Link Closure 18.5 26.6 31.6 32.6 50.6 59.9
10 Link Closure 14.2 20.7 20.8 36.9 52.4 54.3

the network experiences less congestion impact and achieves a faster recovery, even under
disruption.

In summary, after analyzing Figure 5, it can be conclusively stated that the inclusion of
CAVs has a positive impact on both the rapidity and redundancy of the network. The term
rapidity refers to the duration required for the system to revert to its initial state before
an incident occurs, while redundancy denotes the extent of performance reduction after
an incident. The existence of CAVs has resulted in the network returning to its initial state
at a quicker pace and experiencing a lower level of performance degradation following an
incidentwhen compared to situationswithout CAVs. This indicates the significance of CAVs
in the redundancy and resilience of transportation road networks.

The network’s resilience loss was determined and illustrated in Figure 6 to measure the
network’s resilience under various scenarios. A careful examination of this figure reveals
that as the number of CAVs increases, the network’s resilience loss reduces in different dis-
ruption situations. In other words, the network’s resilience improves with an increase in the
deployment of CAVs. Two factors may contribute to this trend. Firstly, CAVs rely on sys-
tem optimal principles to navigate through the network and have the ability to reroute in
real-time. CAVs continuously gather updated information and are promptly notified in the
event of an incident. If a quicker route is available, they reroute and take the new detour.
Secondly, the driving behaviour of CAVs improves the network’s capacity and enhances its
overall performance.

Tobetter understand the impact of CAVsonnetwork resilience, thepercentage improve-
ment in network resilience at various CAVs penetration rates compared towhen all vehicles
are HDV is shown in the Table 3.

According to the findings presented in Table 3, an increase in the percentage of CAVs in
all of the studied disruption scenarios corresponds to an increase in the resilience value
of the network. Notably, the scenario involving lane closures in the top five most criti-
cal links exhibits the most significant improvement in network resilience, with a 59.9%
enhancement achieved at a 100%CAVspenetration rate. Conversely, the scenario involving
lane closures in only the two most critical links exhibits the lowest improvement in net-
work resilience, with a mere 4.4% improvement observed at a 10% CAVs penetration rate.
These results underscore the critical role of CAVs in enhancing the overall resilience of the
transportation network during disruptive events.

In investigating the resilience improvement percentageswithin the Belgiannetwork, it is
crucial to note that a simple correlationbetween thenumber of links affectedby an incident
and the percentage of improvement may not be apparent. Our study’s simulation results
indicate that this expected effect does not occur. Specifically, when an incident arises in
only one link at a 10% penetration rate of CAVs, network resilience improves by 28.5%.
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Figure 6. Resilience Loss for all scenarios (Veh. Min x1000).

However, when the incident occurs in two links, network resilience improves by a mere
4.4%. One plausible explanation is that the ranking of link criticality may differ based on
network resilience criteria versus the shortest path criteria. Consequently, a new criticality
ranking for links based on the resilience loss criterion could be introduced. However, such
a proposal falls outside the scope of this study.

We also observe that in the 10-link closure scenario, the percentage improvement in net-
work resilience is 20.7% at 20%CAVpenetration and only slightly increases to 20.8% at 40%
CAV penetration. This minimal change is due to the severe disruption caused by closing
multiple critical links, which significantly strains the network’s capacity. At these lower CAV
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penetration rates, the benefits of CAVs – such as improved driving behaviour and rerouting
capabilities – are not sufficient to substantially alleviate the congestion resulting from such
extensive disruptions. The remaining open routes are heavily congested, and the presence
of HDVs still dominates traffic conditions, limiting the potential gains from additional CAVs.
Only at higher penetration rates (above 40%) dowe see amore significant improvement in
resilience. This is because a greater proportion of CAVs canbetter utilise the available infras-
tructure through enhanced coordination and optimised routing. Therefore, the relatively
small difference between 20% and 40%CAV penetration reflects the network’s limited abil-
ity to benefit from CAVs under severe disruption until a higher threshold of CAV presence
is reached.

It is essential to note that the results of the resilience evaluation can have various appli-
cations. For instance, by eliminating cumulative links and calculating the resilience loss
resulting from the removal of each link, one can investigate the link criticality anddetermine
whether the link criticality ranking derived from resilience loss results aligns with the rank-
ing obtained from the shortest paths or not. Additionally, considering that the scenarios
utilised in this study, involvingminor incidents, lead to the closure of lanes onhighways, the
interpretations and findings of this study can be applied to any incident causing lane clo-
sures.Moreover, given that themethodologypresented in this study for assessing resilience
is based on traffic simulation, it can be employed to examine network resilience under con-
ditions where other incidents occur (such as adverse weather conditions). In other words,
the impact of other incidents can easily be simulated in traffic simulation. For instance, if we
aim to assess network resilience under adverse weather conditions, we can simulate it by
reducing the vehicle speed at the network level or by decreasing link capacities at the net-
work level. In this way, the level of network resilience can be examined using the measure
proposed in this study.

6. Conclusion

While CAVs offer numerous advantages, it is crucial to consider their features that can
impact the resilience of road networks. One significant benefit of CAVs is their capabil-
ity to have their routes managed by a traffic management centre, which sets them apart
from HDVs. This could lead to a scenario where diverse road users with varying prefer-
ences coexist. Additionally, CAVs can adapt their routes in response to disruptions within
the road network, influencing its overall resilience. Moreover, CAVs can communicate
with each other, enabling optimised route choices, reduced congestion, and improved
network resilience. Therefore, it is essential to assess whether the presence of CAVs gen-
uinely enhances the resilience of road networks. The primary objective of our study is to
investigate the impact of CAVs on road network resilience.

To achieve this goal the Simulation-based approach of resilience evaluation is taken.
To simulate the resilience of the network, a base case model of the Belgian road network
was usedwhich were previously calibrated and validated in authors previous work (Mehra-
bani et al. 2023). In this study, it is assumed that the driving behaviour and route choice
behaviour of CAVs are different from those of HDV, resulting in a mixed traffic flow. Thus,
the multiclass traffic assignment for mixed traffic was solved for each scenario. Finally, a
newmethodology for investigating the resilience of the network is presented in this study
which can capture the impact of CAVs. This method is capable of accurately displaying the
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network performance, i.e. accumulation, at any given time interval. By comparing the accu-
mulation curves of scenarios with and without disruptions, the value of resilience loss can
bemeasured. As network accumulation can be obtained using detector data or traffic con-
trol centre data, the proposed method can be utilised to measure network resilience in
real-world scenarios. To apply this method in practical cases, we need to compare the net-
work accumulation during normal times (without disruptions) with network accumulation
during abnormal times. Consequently, both real-time and strategic actions can be taken to
enhance network resilience. The present study has employed thismethodology to examine
network resilience on intercity highways, but it is equally applicable to investigate network
resilience in other networks such as urban networks.

A total of 49 different simulation scenarios were examined, which demonstrate that as
the percentage of CAVs penetration increases, both in scenarios without disruption and
in scenarios with disruption, travel time decrease. The conclusion from this study sug-
gests that the presence of CAVs within a network can significantly enhance the network’s
resilience. The improved resiliencemeans that scenarioswithhigherCAVspenetration rates
result in lower resilience losses. This improvement in network resilience is due to the ability
of CAVs to enhance both the redundancy and rapidity of the network. It is worth noting
that the extent of this improvement varies, with a range of 4.4% for a 10% penetration
rate to 59.9% for a 100% penetration rate, depending on the different scenarios of lane clo-
sures. It is important to note that this study assumes CAVs exhibit faster and safer driving
behaviour and have different route selection behaviour than regular vehicles. Furthermore,
CAVs have rerouting capabilities that contribute to the enhancement of network resilience.
Therefore, the improved resilience observed in our study is primarily due to these assump-
tions. The assumption of CAVs adhere to SO and have rerouting capabilities, can be justify
by assuming CAVs are connected to a traffic management centre so they have the ability
to receive real-time information about traffic conditions, enabling them to make optimal
route choices. However, this assumption can be highly challenging. This is because many
CAV users in the future may not prefer a route with longer travel times (SO and not UE).
Nevertheless, this question should be thoroughly investigated in future studies, taking into
account the value of time for CAV users. Considering that CAV users can utilise their time
for other tasks, this aspect needs a comprehensive examination. However, since these vehi-
cles have not yet fully entered themarket and are not regulated, a definite opinion on their
behaviour cannot be provided. The advantage of the algorithms presented in this study is
that they allow for the simulation of different assumptions. The assumption that CAVs can
reroute during driving or before entering the network aligns with the potential benefits of
connected vehicles adapting to changing traffic conditions in real time. However, if there
are communication disruptions, the effectiveness of the system may be compromised.
Assuming CAVs exhibit faster, and safer driving behaviour is grounded in the capabilities
of automated driving systems, which can react faster than human drivers and adheremore
consistently to safety protocols. The assumption depends on the reliability of CAV technol-
ogy. If there aremalfunctions or technical issues, the safety and speed advantagesmay not
be realised.

In conclusion, this paper provides a comprehensive analysis of the impact of CAVs on
network resilience, demonstrating that their introduction can significantly improve the
overall performance of the roadway network. This method was used to assess the impact
of CAV’s on the resilience. Depending on penetration rate of CAVs the resilience can be
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improved by more than a factor 2. The findings of this study have important implications
for transportation planning and policy-making, as they suggest that the widespread adop-
tion of CAVs could help to mitigate congestion, reduce travel time, and improve air quality
in urban areas.

The findings of this study on network resilience depend on the scenarios outlined in the
research. This means that changes to the scenarios will likely affect the variations in net-
work resilience. However, the methodologies provided are versatile and can be used to
evaluate network resilience across different scenarios in future studies. In this study, accu-
mulationwas used as a performancemetric for the network. Future research is encouraged
to use other performance metrics, such as space-mean flow, and compare these results to
those of the current study. The framework used here to assess the resilience of the Belgian
road network could be applied to other networks to evaluate their resilience. This study
emphasises the potential of the proposed framework for wider application in assessing the
resilience of various networks. It assumes that Connected andAutonomous Vehicles (CAVs)
have rerouting capabilities, significantly enhancing network resilience in their presence.
Future studies should focus on developing a CAV rerouting system for various disruption
scenarios to identify the optimal rerouting strategy. Such strategies should aim to max-
imise network resilience. Specifically, it is recommended to create a traffic management
system for CAVs that activates during disruptions, building on the tools and findings of
this study. The proposed CAV rerouting system would allow vehicles to detect and avoid
congested areas, thus improving resilience amid unpredictable events like accidents or
road closures. Additionally, developing this system would enable network operators to
respond proactively to disruptions by diverting traffic, reducing congestion, and lessen-
ing the negative effects on the network’s overall performance. Therefore, the results of
this study are expected to significantly influence the design and operation of future CAV
networks.

Future studies should also examine the resilience of CAVs following critical operational
disruptions, like communication disruptions or power losses disruptions. Communication
disruptions and power losses can compromise their operation, so developing effective
strategies, such as fail-safe systems and backup power, is essential to restore functionality.
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