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I N T R O D U C T I O N





1W H Y E VA L UAT E H O S T I N G P R O V I D E R S E C U R I T Y
P R A C T I C E S

1.1 cybercrime and the abuse of hosting services

Internet content is typically hosted on servers operated by specific
intermediary businesses known as hosting providers. They provision
servers, Internet connectivity, and storage capacity to their customers to
place content online. At the moment of writing for example, I may rent
a dedicated server with 4 CPU cores, 16GBs of RAM, 2TBs of storage
space, along with a combined 10TBs of inbound or outbound traffic for
the price of 38,00 Euros per month from the Dutch hosting company
LeaseWeb. I may use this server to setup a personal website for my
self, privately backup files or share photos with family members, or
setup an online business to sell products through a web-shop hosted
on the server for instance. Multi-national companies like OVH, 1&1, and
GoDaddy are all examples of hosting providers that operate in this space
and provide such a service.

~Internet Intermediary
is a term often used to
refer to companies like
ISPs, hosting providers,
online domain registrars,
online payment processors,
search engines and social
media platforms, to name
a few, that enable and
facilitate the use of the
Internet [1].

Our use of the Internet is largely facilitated and shaped by such
types of Internet intermediaries ~ as we increasingly create, consume,
and interact with digital content over the Internet through their services.

And while most hosted Internet content is benign, miscreants may
also put up harmful content by abusing the infrastructure and services
of hosting providers. This is of course also the case with many other
types of Internet intermediary services •.

• Miscreants abuse
various Internet
intermediary services and
are quite imaginative in
how and what online
resources they exploit. For
example they misuse
hosting services [2, 3],
domain names [4, 5, 6, 7,
8], Domain Name
System (DNS) resolution
services [9, 10, 11] and
mail servers [12, 13] to
name a few others.

For instance, so-called phishing web pages put up by cybercriminals
are maliciously designed to resemble the legitimate websites of our on-
line banking or e-mail service to name a few examples. When browsed,
phishing pages trick visitors into revealing their credentials or other
forms of sensitive data to unintended recipients who will abuse the
sensitive information if divulged.

Miscreants also host malicious code online for instance to redirect
unsuspecting users to other types of malicious web pages. These may
in turn employ so-called exploit-kits behind the scenes to infect the
machines of unsuspecting visitors with other pieces of harmful code
through exploiting vulnerabilities in their browser software for instance.
If they succeed, miscreants can then offload among others banking tro-
jans, backdoor shells, and ransomware onto user machines, which are
in turn employed to steal, gain access to, or hold valuable user data
hostage. Such harmful code may be broadly referred to by the encom-
passing term malware. And while some malware has the capability

3



4 why evaluate hosting provider security practices

to spread itself even further by automatically probing more devices
for exploitable flaws, other types of hosted harmful code are instead
designed to control groups of already malware-infected devices (bots).
Bots may be directed to preform certain tasks through commands is-
sued via a Command-and-Control (C&C) center hosted on a server, for
instance to launch so-called Denial of Service (DoS) attacks against other
servers to overload and knock them offline.

In short, phishing websites, malware executables, infrastructure for
commanding and controlling machines that have been compromised
with malware, fake online pharmaceuticals shops, underground hacker
forums and markets, or even child sexual abuse material are all but
a few examples of what cybercriminals host online, often with the
ultimate aim of making money off of their victims [14] as a large
fraction of Internet-based crime has fundamentally transformed to be
driven by profit motives (c. f. Franklin et al. [15]).

Large volumes of harmful content are detected on the Internet on
a daily basis [16]. Google Safe Browsing (GSB) [17] - an initiative to
track and mitigate phishing and malware spreading webpages - for
example reports of 1.7 million active phishing pages on Dec 15, 2019

with projections suggesting this number to be on the rise [18]. For the
same time point, GSB also reports 28,000 dangerous malware spreading
websites which it deems harmful. Substantial amounts of harmful
content such as these typically remain unaddressed and accessible
online for extended periods of time [19, 20, 21].

Hosting providers and the services they afford are a critical enabler
of legitimate online activities. Yet, miscreants also abuse (or in technical
jargon ’attack’) hosting services, either by exploiting shortcomings in
security, compromising the resources that have been provided to others
for legitimate use, or by directly acquiring hosting services to criminal
ends themselves [22, 23, 24]. This raises a complex question of how to
deal with hosting service (in-)security. We do not clearly understand
which hosting providers are abused, how often, and what role they
(should) play in addressing the negative side-effects caused by the
abuse of their services.

1.2 the various types of hosting

Hosting providers typically offer a diversified portfolio of services to
their customers. These range from the provisioning of more expensive
dedicated servers to relatively less expensive Virtual Private Servers
(VPSs) to the even cheaper options of shared hosting. Dedicated hosting
means that customers rent servers for exclusive use and are thus also
assigned dedicated IP addresses for their servers. In shared hosting
several customers share usage of the same server while also having
to share the same server IP address. A VPS is a hybrid between the
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latter two where infrastructure is virtually separated so it appears that
customers have dedicated access while in reality they partly share
server infrastructure. That is their virtual servers may operate from the
same physical machine but each receive a dedicated IP address of their
own to communicate with their VPS.

Hosting services may additionally include server management sup-
port (managed hosting) while other times they do not (unmanaged host-
ing). Especially in the case of unmanaged hosting, providers have less
oversight over rented servers but then also assume less responsibility
when things go wrong, for example when data backups fail or the
server is lacking critical software security patches. Cheaper hosting
solutions such as shared hosting typically include server management
support and are managed with the help of the provider for reasons
having to do with access privileges and maintaining control over cer-
tain parts of the shared infrastructure. In practice providers typically
offer combinations of the aforementioned hosting solutions.

Hosting providers also come in various shapes and sizes. Larger
providers typically own physical infrastructure which they locate and
operate from within their own data centers. Smaller providers instead
rely on ISPs or other larger providers to accommodate physical infras-
tructure in their data centers (so called ‘collocation’), or rely on them to
provide connectivity to global networks (so called ‘peering’). Some par-
ticular hosting providers do not even own any physical infrastructure
and instead ‘resell’ services of other providers as go-betweens through
so-called ‘reseller’ programs (also known as reseller hosting). In short,
depending on their business model and needs, providers may directly
posses or rent small or large numbers of resources (e.g. IP addresses,
servers, network infrastructure and middle-boxes) that they’ll have to
manage and maintain.

It is also common for hosting providers to offer other core Inter-
net services in conjunction with their hosting solutions. Most hosting
packages include domain name resolution services - a core Internet
service that allows others to communicate with servers through domain
names, for example myserver.mydomain.com, rather than an assigned IP
addresses like 54.154.156.125. Some also sell domain names to their
customers and act as domain name registrants as well.

Extraordinarily some hosting providers are criminal undertakings.
These, which are known as Bullet-Proof Hosting (BPH) providers, know-
ingly allow the abuse of their services. They cater to cybercriminals by
for example advertising in underground markets and even offer pro-
tection against law enforcement actions to take down harmful content,
thereby provisioning a stable online environment for cybercirminals to
conduct illicit online activities.

In summary, variations in size and types of services offered by host-
ing providers, the myriad business models which they have, in addition
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to the multiple jurisdictions in which they operate, give rise to a com-
plex and heterogeneous global hosting market. The complexities of this
market mean that providers are not easily and clearly distinguishable
from other intermediary businesses at scale.

1.3 combating abuse

Formal Governance of the Hosting Market

A wealth of literature on cybercrime and cybercrime business models
demonstrate that almost all involve a component of abusing hosting
services [24, 25]. Whether it is cybercrime involving spam emails [13,
26, 27, 28], banking fraud [3], selling of fake or illegal goods [29, 30],
selling of drugs, hired guns, or other components of cybercrime in un-
derground markets [31, 32], operating botnets [33], credential phishing
[23], spreading of malware [34, 35], or even operating malicious BPH

providers [36, 37]. Thus hosting providers have in theory, a pivotal role
in preventing various forms of cybercrime.

So what are hosting providers legally required to do when it comes to
abuse? In practice, their security practices are governed by jurisdiction-
specific regulation which may be strict or more lenient depending on
the region.

Within the European Union for example, hosting provider practices
are governed by the eCommerce Directive which does not hold hosting
providers liable for the misuse of their services by customers [38], as
long as they are not negligent and react to legal requests to take down
harmful content [39]. Similarly, within the United States, providers
are not liable for harmful content as governed by the Communications
Decency Act [40] under similar conditions.

Certain types of abuse however, for example hosting child sexual
abuse material, are treated differently and providers may be held
liable both within the EU and the United States for not taking action
against it [41, 42] if they are aware and informed of its existence
on their servers. Under the European Convention on Cybercrime for
example, the creation, distribution and accessing of such material
constitute criminal offenses. Other forms of content, for example adult
pornography or extremist manifestos, may only be considered illegal
in some jurisdictions while not in others.

Regulation largely influences and shapes the security practices of
hosting providers as it sets a baseline for what providers are required
to do both in terms of security practices and handling of abuse.
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Status Quo Versus Best Practices

Due to their pivotal role, providers could combat abuse proactively as
well as reactively [43]. For instance they could prevent compromise by
patching exploitable software and support less experienced customers
whose resources may be more easily compromised due to their lack of
experience. They may also for example monitor their network infras-
tructure for signs of abuse, and suspend servers that are involved in
abusive activities until assurances are gained that problems have been
remediated. They could also completely take down abused resources,
or clean them for future use if that is still an option. Reactions to abuse
should also be quick to prevent further harm to others.

In practice, however, provider responses to abuse vary substan-
tially [44]. In each service tier, the same contractual obligations and
industry norms that determine what services are provisioned to a
customer, also determine what responsibilities hosting providers and
their customers have in matters of security and abuse. And there are
essential differences here.

On a dedicated hosting server for instance (and to a lesser extent
on a VPS), customers exert almost full control over the operating sys-
tem, other software, and the content placed on servers. That is, they
enjoy administrative privileges over the whole server. Unless customers
request support, security responsibilities are typically shifted on to
the customer even though this deviates from some of the advised se-
curity best practices. This is especially the case when talking about
unmanaged hosting.

On shared hosting on the other hand, customers operate under re-
stricted privileges on a machine they share with others. Here, customers
have limited control over content and specific software which they use,
and no control over operating system and other administrative server
software. Thus server maintenance responsibilities, as well as those of
dealing with incidents (at best) fall on both the provider and customers.
For example, security conscious providers may patch and update op-
erating system software during maintenance cycles - something that
customers do not have control over in a shared hosting environment-
and may additionally provide customers with patched and up-to-date
versions of customer-specific software to install [45]. But then typically
it is upon the customer to make that choice. Customers might not install
patches as they could break the functionality of software which they
use. On the other hand providers with lax security practices, may not
even provide patches to their customers for various reasons including
that it is costly to do so [46].

Regardless of which of these scenarios plays out, hosting providers’
pivotal role in preventing abuse is undeniable. They often control,
hand out, and operate the underlying resources that either point to
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content, host content, or run code. If and when these resources are
abused, they are in key positions to monitor for, or respond to various
manifestations of abusing these resources [43]. Yet expecting providers
to actually fulfill such a role would be going beyond base line regulatory
requirements.

Luckily, within the hosting market, certain ‘soft’ forms of governing
have emerged from the industry itself as attempts to move providers
beyond baseline requirements set by regulation. These are attempts to
get providers to implement more effective countermeasures against
abuse. Among them, the Messaging Malware Mobile Anti-Abuse Work-
ing Group (M3AAWG) - a respected global industry initiative to combat
harmful content - sets forth an proposes a number of security best prac-
tices for hosting providers to follow [47]. Table 1.1, as published within
the most recent version of these guidelines, illustrates several types
of hosting services, highlights the parties that are normally in control
of various resources, in addition to propose which parties should be
responsible for dealing with the abuse of resources. M3AAWG’s guide-
lines clearly go beyond regulatory requirements. Providers are advised
for example to take responsibility by blocking or removing harmful
content proactively, in addition to reactively if and when informed
of abuse. Such recommendations are much more in line with what
hosting providers could theoretically do against abuse.

Table 1.1: Various types of hosting with respect to parties that control resources and proposed repon-
sibilities for dealing with abuse issues as best practice

Hosting Type Hardware Operating System Software Abuse Issues

Dedicated Provider Customer Customer Customer

Managed Provider Provider Provider Provider or Customer

Reseller Provider or Customer Customer or its Client Customer or its Client Customer or its Client

Shared Provider Provider Provider Provider and Customer

Unmanaged Provider and Customer Customer Customer Customer

Virtual Private Server Provider Provider Customer Customer

Albeit that such best practices are steps towards the right direction
within the hosting market, following self-regulatory norms are volun-
tary of course. Current governance structures have, for now, proven to
be ineffective in addressing the problem of abuse as evidenced by the
large volumes of it that remain unaddressed globally. Current regula-
tion has translated to many providers shifting security responsibilities
to customers or other third parties in practice [48]. Thus, Internet
intermediary responsibilities towards preventing the abuse of their
infrastructure, and by definition also that of hosting providers, are
exceedingly a topic of discussion among academics and regulators [42,
43, 49].
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As matters stand, hosting providers are understood to mostly take
voluntarily action against harmful content hosted via their infrastruc-
ture with some being more vigilant than others. Reputation effects and
peer pressure may act as a form of incentive for voluntary adherence
to additional security practices such as the ones proposed by M3AAWG.
However, if hosting providers are to move beyond baseline regulatory
requirements, creating the right incentives to adhere to stronger secu-
rity practices is clearly a critical problem that needs solving. Therefore,
an exceedingly important question, one with which this work is con-
cerned with, is how hosting providers could be incentivized to do more
against abuse.

1.4 governance challenges

Collective Action and the Weakest Link Problem

Cybercrime has become a global phenomenon and dealing with it
requires collective action by multiple entities to address its negative
side-effects [50].

Yet, not all hosting providers implement suitable countermeasures
or take action when their resources are abused [51]. The lax security
practices of some providers results in a whack-a-mole game in which
criminals are able to migrate their abusive practices and content to
those lax providers even when others are vigilant and enforce suitable
security countermeasures [39]. In other words, this creates a weakest-link
problem. It appears that there is no shortage of hosting services with
weak security to choose from within the global hosting market. So
called Bullet-Proof Hosting (BPH) providers that are in the business of
enabling cybercrime are a particularly difficult problem to tackle in this
respect [52].

Given the status quo, combating abuse currently also depends, for
a large part, on the security efforts of third parties to notify host-
ing providers of abuse and to get them to act against abuse [53, 54,
55]. The alternative is to protect Internet users by other means when
providers do not, for example by taking away and blocking domain
names that point to harmful content [5, 6]. Many of these efforts,
notwithstanding their limitations, rely on sharing of so-called abuse
data collected and disseminated by various independent parties [25].
Organizations like Google, Spamhaus, and Shadowserver, to name some
examples, routinely monitor websites and other Internet resources
for harmful content and notify various parties to take action against
them. By partnering with such organizations, popular web-browsers
(e.g. Chrome, Firefox and Safari) display warnings to users before
they put themselves at risk by interacting with harmful content on the
web. Additionally, by leveraging such abuse data, email services and
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client software reject spam messages or emails that are suspected of
containing harmful attachments and links to phishing websites. Some
domain registries and registrars also suspend domain names that are
misused towards spreading harmful content by leveraging the same
kind of data [4]. Numerous third party system have also been proposed
to proactively prevent the abuse of Internet resoruces or protect users
against compromise (c. f. [4, 56, 57, 58, 59]), sometimes even predicting
abuse before they are compromised.

All too often however, even third-party security efforts fail to get
those that are in key positions to address abuse [19, 60, 61]. When
all else fails, we rely on court orders and law enforcement bodies to
combat cybercrime and take down harmful content or abused network
resources.

In April 2018 for example, law enforcement authorities from the
Netherlands, UK and US dismantled a popular website (WebStresser.org).
It allowed any paying individual to kick (“boot”) other Internet users
or websites offline at the click of a button [62]. This so-called “booter”
website was able to launch Distributed Denial of Service (DDoS) attacks
against any victim of choice by abusing vulnerable unpatched network
devices. Only a month later, Dutch and Thai police, arrested two in-
dividuals who misused rented servers and network infrastructure to
operate a bullet-proof hosting business (MaxiDed) [63]. Its operators
obtained hosting resources by entering into reseller relationships with
several parenting (upstream) hosting providers. Yet, both of these ex-
amples are cases of abuse incidents that could have been prevented,
by for instance adhering to M3AAWG’s best security practice guidelines.
In the former case, the hosting provider could have taken the booter
website offline, while in the latter case, the parenting hosting providers
that entered into reseller relationships with the BPH provider operators
could have terminated MaxiDed’s reseller contracts.

As matters stand, we lack scalable countermeasures to the global
problem of cybercrime (c. f. [64]). Many hosting providers do not ef-
fectively combat abuse, third-party efforts fail too often, and our last
resort options are costly, and even more difficult to scale due to factors
like jurisdictional complexities [39]. Addressing this shortcoming is
not only a matter of technical solutions but also a matter of economic
incentives [65, 66, 67], which I will discuss next.

Miss-aligned Incentives, Externalities, and a Market for Lemons

Hosting providers, like many other software-based businesses, are eco-
nomically driven by such factors as network effects, and dominance
within the context of economic markets. Assuming a market perspec-
tive, the security of the products and services that are sold, or their
privacy implications for that matter, are not found high on the agenda
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of most digital business [68]. Moreover, the existing regulation govern-
ing the hosting market which I discussed earlier, does not incentivize
market players to take effective mitigatory actions against abuse. That
is because they are not generally liable if and when abuse of their
services takes place [43] in addition to their adherence to best security
practices such as M3AAWG’s being voluntary.

As a result, for hosting providers, incentives to counter cybercrime
are often misaligned with the aforementioned driving economic factors.
More attention is being payed to the latter than to security efforts which
are typically treated as less necessary additional costs. A lack of liability
for the abuse of their services has in fact been one of the driving factors
behind the growth of many intermediaries’ services [42].

As such, the hosting market exhibits a so-called ‘market failure’ [49]
with consequential negative outcomes of the kinds previously illus-
trated through several examples. Market failures especially occur when
the negative side-effects and costs of negligence are ‘externalized’, or
in other words borne by third parties, leading to so-called negative
externalities~ [69]. For hosting providers, the cost of cybercrime which

~A Negative
Externality is a cost born
by a third-party as the
result of an economic
transaction

is enabled by the abuse of their services, is borne by the individual
victims, other businesses, or society as a whole [70] and typically not by
themselves [71]. The law enforcement operations to take down so-called
booter websites or Maxided’s BPH business discussed earlier are clear
examples of how governments bare part of the cost. In other cases, the
costs are directly borne by the victims, or may alternatively be borne
by insurance companies, or for example banks who reimburse victims
when their money gets stolen as the result of online banking fraud for
example.

To incentivize providers to act more responsibly and effectively
against abuse, we need to be able to identify which providers perform
poorly and which perform well in terms of security. Without this knowl-
edge, the market cannot reward secure practices, nor can governance
mechanisms ‘internalize’ the cost of abuse onto providers. In other
words to make the providers themselves bare the cost of cybercrime.

But with respect to the hosting market and its failures, we lack even
the most basic information such as which providers operate within
the market. To the best of my knowledge, there is no technical data
that clearly identifies hosting providers globally. And the data sources
that may be employed for this purpose are limited, some challenging
to utilize [72], difficult to parse [73], or rife with inaccuracies [74,
75]. Thus, a necessary step is to develop measurement techniques to
identify and construct a global list of hosting providers from existing
data before we can begin to understand which providers are more
secure and which less and thus problematic. This important knowledge
gap creates a situation, which in economic terms is referred to as
a ’market for lemons’. The term refers to situations in which good or



12 why evaluate hosting provider security practices

bad products (e. g. lemons) are indistinguishable due to information
asymmetry about the quality of the products. The absence of empirical
data about hosting providers, which also exists in other market areas
[49], leads to information asymmetry regarding the security of hosting
providers. In the hosting market context, this term refers to the fact
that while hosting providers themselves inherently possess greater
knowledge about their own security, other stakeholders do not.

Combined, information asymmetry and miss-aligned security incen-
tives, exacerbate market failure problems and lead to a corrosion of
incentives to combat cybercrime since we are unable to distinguish
good and bad hosting providers. It has become all too common to see
cybercrime as someone else’s problem or something to be dealt with
at a later point in time across a wide range of digital products and
services [76].

While the concepts that I discuss here provide us with a theoretical
economic understanding of why security in the hosting market fails, it
is still a matter of researching which technical solutions and/or gover-
nance strategies are better suited for aligning the security incentives
of hosting providers with their economic driving incentives. In other
words, incentive schemes have to be designed such that security aspects
are taken into account by hosting providers and in economic terms for
cybercrime costs to be ‘internalized’.

1.5 towards potential solutions

To address abuse, security best practices and literature call for hosting
providers to, proactively patch vulnerabilities to prevent compromise
(c. f. [77, 78]), implement security controls (c. f. [79]) in addition to
automated solutions to monitor for abuse (c. f. [51]), and to block and
remove harmful content post-haste (c. f. [43, 53]). It has been suggested
that providers may also need to implement stricter policies about how
and with whom they do business (c. f. [47, 52]).

But before any of these solutions are likely to be adopted across
the market, we first need to fix the underlying incentive problems.
And decades of experience from closely related industries with similar
problems, for example the telecommunication industry, has demon-
strated that fixing market failures, may also require regulators to step
in, and implement suitable governance strategies to restore and realign
economic incentives [80, 81, 82]. With respect to the hosting market,
similar non-technical solutions may also be required [38, 49, 65, 83].

The facts of the matter however are, that due to existing information
asymmetry we do not clearly understand which of these solutions is
going to have an effect on the hosting market nor how effective they
may be. At a more basic level, the inherent information asymmetry

Knowledge Gap: Which
hosting providers and

services are most abused
and insecure

barriers are even preventing us from distinguishing between good,
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negligent, or even outright bad hosting providers, let alone empirically
measure which security solutions may be more effective. In other words,
even basic questions like, who are the worst hosting providers, how
effective are their current security efforts, and how do these efforts
compare to those of their counterparts are currently difficult to answer
as we lack empirical tools to measure security outcomes within this
market. Only once we can empirically measure security and distinguish

Problem Definition:
Reducing information
asymmetry about the
security of hosting
providers

failures from successes, are we going to be able to understand which
solutions are better at moving the hosting market forward. For example,
by empirically tracking and comparing the progress resulting from the
adoption of proposed technical or non-technical solutions. As such,
information asymmetry is the central problem that this dissertation
attempts to tackle and reduce.

Possible Solution:
Design security metrics
that reliably translate
external information on
the abuse of hosting
services into numbers
representing the
effectiveness of provider
security efforts to prevent
and combat abuse

To this end, this thesis explores ways to empirically measure and
compare the security efforts of hosting providers and their postures
towards the abuse of their services as a basis for answering the fun-
damental questions that were posed above. I propose to design and
operationalize ‘security metrics’ as a possible way of measuring, moni-
toring, and comparing the security of hosting providers. These metrics
would have to translate the information available on the abuse of host-
ing services into numbers that meaningfully reflect hosting providers’
security postures. A crude and simplified version of this can be thought
of as a scoring or ranking system. So-called abuse (or incident) data
collected and disseminated by third parties are examples of externally
available information that can be used as inputs. Abuse data from
Google, Spamhaus and Shadowserver which were discussed earlier are
more concrete examples.

Security metrics may potentially be employed as benchmarks to com-
pare the effectiveness of provider security efforts, thus allowing various
stakeholders to understand why, if, and where most of the abuse takes
place within the hosting market. Providers themselves for instance,
may employ metrics to compare their efforts against competitors, or
understand which security practices are most effective, as well as track
progress. Policy analysts, may similarly employ metrics to measure
and empirically test the effectiveness of certain security practices at a
market level thus informing and enabling regulators to enact policies
and uphold standards that have measurable and demonstrable effects
which are grounded in empirical data. Similarly, law enforcement agen-
cies may use metrics to focus their efforts and pursue the worst actors.
Moreover, when or if security metrics become common knowledge,
consumers or other businesses can make informed choices about which
hosting providers to transact with. Reputation effects may also be
instrumentalized to induce competition and incentivize providers to
combat abuse more effectively from a market perspective for example
through insurance premiums adjusted to provider security levels.
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That being said, the main focus of my work is on the design of
meaningful security metrics as a primary step. The question of how to
employ the metrics themselves to steer and govern the hosting market
towards more desirable outcomes is something that still needs to be
explored in future ongoing work which I will later discuss in Chapter 7.

1.6 state of the art

In light of the existing market failures that I have discussed, it should
come as no surprise that empirical studies of hosting provider security
practices typically find their abuse mitigation efforts to be inadequate. A
small scale study by Canali et al. [51] for instance clearly demonstrates
that hosting providers are unable to effectively detect and block illicit
activities taking place on their servers and that some common sense best
security practices like running network monitoring tools are sometimes
neglected. Prior to this, Christin et al. had also found evidence of
disproportionate misuse of certain hosting provider infrastructure,
relative to their market share, in committing certain illicit activities
namely so-called one-click fraud [84]. Such empirical studies clearly
point to the ineffective security practices of certain providers.

Larger scale empirical studies (c. f. [82]), including that of my own
and colleagues (c. f. [44, 78]) also suggest that there are large variations
in how effectively abuse is dealt with across networks, whether they be
that of hosting providers, ISPs, or other types of networks.

Variations in responses to abuse, i. e. the fact that some providers are
much more effective at curbing abuse than others, have been linked to
security efforts by proxy of network hygiene indicators. For instance
better management of infrastructure and servers empirically correlate
with decreased levels of abuse [73, 85]. The reverse also holds. That
is, abuse tends to concentrate around mismanaged networks implying
that increased security effort may lower abuse levels.

The amount of resources that providers manage/maintain or the
number of their customers, which are possible measures of the size
of the hosting business, are also a key influencing factor. Measures
of provider size quantify the potential attack surface of a provider
and strongly correlate with abuse levels. These are highly predictive
of the number of security incidents that may occur, a phenomenon
that is repeatedly observed in the literature and in practice [86, 87,
88]. Naturally then, comparing providers in terms of security efforts
would have to take such exposure effects into account to allow apple-to-
apple comparisons. As larger providers are more likely to experience
incidents in absolute numbers simply due to their larger size, it would
be misleading to compare their security efforts against smaller less
exposed providers.
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Beyond mismanagement of infrastructure and exposure effects like
provider size, several risk factors for compromise have also been high-
lighted in the literature (c. f. [2, 78, 89, 90]). Certain types of hosting
services for instance - e. g. shared hosting or the provisioning of Con-
tent Management System (CMS) platforms like Wordpress, Joomla and
Drupal - have been shown to elevate the likelihood of abuse. Such ad-
ditional risk factors also influence provider exposure and have to also
be taken into account in the design of metrics as some concentrations
of abuse may be explainable by such factors rather than weak security
practices.

At the same time the literature also points to additional factors, e. g.,
biases and errors in empirical abuse data, that contribute to patterns
of elevated abuse that may at times be considered spurious [91]. And
while elevated or concentrated abuse patterns around certain networks
are often interpreted as indicators of bad security practices or even
outright malice, biases and errors in measurements have to also be
taken into account before inferences about bad security practices are
drawn.

A particular area of research that has received a lot of attention is
the special case of Bullet-Proof Hosting (BPH) providers, which directly
cater their services to cybercriminals. Several systems have been devel-
oped to detect BPH providers (c. f. [36, 37, 92, 93]) based on symptomatic
indicators such as high concentration of abuse, so-called fast-fluxing of
IPs, and temporal characteristics of responses to abuse complaints. Yet,
the BPH problem remains a difficult problem to solve within the hosting
market as its operators adapt to evade such detection techniques.

These developments in detecting malicious networks, as well as the
identification of factors that drive abuse, lay much needed groundwork
in understanding the factors that influence hosting provider security
outcomes, albeit that studies in this area are typically focused on certain
areas of the hosting market, e. g. shared hosting, or BPH.

As such there have been recent calls for undertaking more empirical
measurements and development of reliable metrics that cover broader
market sections [49, 94]. Several recent studies have produced met-
rics for closely related Internet intermediaries such as ISPs [80] and
Top-Level Domain-name (TLD) operators [11] for example. Yet the de-
velopment of such metrics for hosting providers are a relatively less
explored endeavor.

Limited industry and security vendor initiatives exist to produce
empirical security metrics for hosting providers (c. f. [95]). Providers of
blocklists and abuse data also typically produce crude metrics which
count the number of abuse incidents at various levels, for instance,
around IP addresses and networks (c. f. the statistical abuse reports
of initiatives like Google Safe Browsing, Shadowserver, bgpranking,
and abuse.ch to name a few examples). Forgoing that the commercial
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security industry may have incentives to exaggerate security failures
[49], the produced metrics have several drawbacks in the sense that they
often do not account for endogenous or exogenous factors that shape
the overall security outcomes for various hosting providers which have
been identified in the literature. For example, they do not account for
the well-known fact that larger providers are probabilistically more
prone to their servers being misused nor the findings that cheaper
shared-hosting services increase the risk of abuse. As such, they lead to
biased comparisons which typically paint larger providers as negligent.
Moreover, the methodologies by which these metrics are produced are
opaque and thereby limit their adoptability by larger audiences. Here,
of course a balance needs to be struck to prevent the metrics from being
gamed.

A particular challenge in developing unbiased empirical metrics for
hosting providers is that security, and hence security performance, is a
dynamic multi-causal phenomena driven by a multitude of factors that
are difficult to measure and disentangle [96, 97]. While some factors
such as provider exposure are relatively more straightforward to take
into account, others factors, for example how customers or attackers
behave, and what type of harmful content ends up being hosted on
their servers are not. It goes without saying that for example certain
content is more harmful than others and treated differently from a
legal perspective, for instance botnet C&C centers versus illegal video
streaming websites versus child sexual abuse material versus hate
speech). As providers treat different types of abuse differently their
security performance is also affected by what their priorities are in
dealing which each type of abuse. Therefore reliable metrics need to
also take the types of harmful content into account in order to allow
meaningful comparisons to be drawn between hosting providers.

Also challenging is the consequential fact that quantifying the secu-
rity of hosting providers and thereafter making meaningful security
performance comparisons require data on many aspects of their busi-
ness which do not readily exist. For example, and as I have mentioned
before, there is no straightforward way of globally identifying hosting
providers as there is no maintained list of hosting providers that one
could refer to. Businesses that provide hosting services are typically
identified from ill-maintained Internet operations data such as WHOIS

information and Border Gateway Protocol (BGP) data which contain
Autonomous System Number (ASN) information as identifiers of or-
ganizations (c. f. [98, 99]). On the other hand, security incident data,
otherwise referred to as abuse data, which is our primary source of
empirical information on how the security efforts of providers mani-
fest, is also usually limited and riddled with its own biases that are
not well understood. Therefore, understanding why certain hosting
providers experience more security incidents in comparison to others
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and controlling for factors that are not directly under their control is a
key step in making unbiased security performance comparisons.

1.7 research aims

Given what I have argued, the main aim of this dissertation is to
understand how the security performance of hosting providers can be
reliably measured through the design of security metrics and to what
extent. In other words its main question can be formulated as follows:

How can we quantify the effectiveness of hosting provider

security practices?

To successfully answer this research question the following sub-
questions need to be answered to form a coherent understanding
of cybercriminal misuse of hosting provider infrastructure and the
possible applications of security metrics to mitigate this problem:

• RQ1: What steps are required to translate empirical abuse data
into meaningful security metrics for hosting providers such that
they reliably quantify and signal the effectiveness of their security
practices relative to other hosting providers?

• RQ2: How can we infer the proactive security performance of
hosting providers (relative to others) from noisy abuse data?

• RQ3: How we can we quantify the reactive security performance
of hosting providers (relative to others) from noisy abuse data?

• RQ4: Are security metrics effective in identifying criminal Bullet-
Proof Hosting (BPH) providers and, if not, how does BPH operate
and why do security metrics fail? Moreover, what alternative
pressure points can we find to disrupt their operations?

• RQ5: How do lax security practices translate into wider societal
problems and what are the wider effects of the cybercrime that it
(un)wittingly facilitates?

The answer to each of the more focused research questions outlined
above brings us closer to forming a better understanding of the cyber-
criminal misuse of hosting provider services, in addition to how and
for which particular circumstances security performance metrics are a
useful solution.

1.8 dissertation outline

The remainder of this dissertation is structured according to the outline
presented in Table 1.2. Each chapter directly corresponds to the re-
search questions outlined earlier in corresponding order. This table also
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provides information about the publications on which each chapter is
based.

Table 1.2: Dissertation Outline
Chapters Research Question Based on Publications

Chapter 2 RQ1 Arman Noroozian, Maciej Korczynski, Samaneh Tajalizadehkhoob, and Michel
van Eeten. “Developing Security Reputation Metrics for Hosting Providers.” In:
USENIX CSET. 2015

Chapter 3 RQ2 Arman Noroozian, Michael Ciere, Maciej Korczynski, Samaneh Tajalizadehkhoob,
and Michel Van Eeten. “Inferring the Security Performance of Providers from
Noisy and Heterogenous Abuse Datasets.” In: WEIS. 2017

Chapter 4 RQ3 Arman Noroozian, Geoffrey Simpson, Maciej Korczynski, Tyler Moore, Rainer
Bohme, and Michel van Eeten. “Using Abuse Data to Evaluate Remediation Ef-
forts.” 2018 (yet to be published)

Chapter 5 RQ4 Arman Noroozian, Jan Koenders, Eelco van Veldhuizen, Carlos Hernandez Ganan,
Sumayah Alrwais, Damon McCoy, and Michel van Eeten. “Platforms in Everything:
Analyzing Ground-Truth Data on the Anatomy and Economics of Bullet Proof
Hosting.” In: Proc. of Usenix Security Symposium. 2019

Chapter 6 RQ5 Arman Noroozian, Maciej Korczyński, Carlos Hernandez Gañan, Daisuke Makita,
Katsunari Yoshioka, and Michel Van Eeten. “Who Gets the Boot? Analyzing Vic-
timization by DDoS-as-a-Service.” In: Proc. of RAID. 2016

Chapter 7 Main RQ Discussion and conclusions based on all publications listed above.

Given the relatively unexplored state of security performance metrics
for hosting providers, Chapter 2 investigates existing security perfor-
mance metrics for hosting providers and takes a broad look at what
information about hosting providers is required to construct mean-
ingful security metrics. This chapter also explores what steps need to
be taken to translate available and relevant information into security
performance metrics for hosting providers. The chapter set the agenda
and maps what subsequent steps to take to answer my main research
question. Next, Chapter 3 investigates how the proactive security ef-
forts of providers can be externally measured and how to deal with
the inherent noisy nature of abuse data. Subsequently, Chapter 4 in-
vestigates how hosting providers react when incidents occur and how
well they perform when notified of security incidents. The chapter
constructs additional security metrics to compare reactive security per-
formances of hosting providers. Next, Chapter 5 takes a closer look
at the special case of criminal Bullet-Proof Hosting (BPH) providers,
how they operate and whether these can be identified through secu-
rity performance metrics. In Chapter 6, I step back and examine the
negative side-effects of provider negligence by studying the victims
of cybercrime in a case-study of Distributed Denial of Service (DDoS)
attacks which are facilitated in part by negligent hosting providers that
host booter websites. Finally, Chapter 7 brings together my results and
discusses the implications of my findings along with my concluding
remarks. Complementary material to this thesis, such as co-authorship
contributions to each study are provided thereafter.
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At the onset of my studies, existing metrics for comparing hosting provider
security postures typically counted and compared instances of abuse among
providers. Some of the metric outcomes demonstrated unusually high concen-
tration of abuse at certain hosting providers. Research into cybercrime which
often points to concentrations of abuse, implicitly implies that providers with
high concentration of abuse are worse in terms of security; some are considered
‘bad’ or even ‘bullet-proof’ hosting providers. Concentration of abuse is also
often taken to point at cases that are amendable to intervention. Yet, more
recent research argues that not all concentrations should be interpreted as such,
since some may be spurious and driven by data artifacts and measurement
errors. Moreover, only in some cases did existing metrics take into account the
differences among providers in terms of susceptibility to abuse. For example
by normalizing incident counts against the size of the advertised IP address
space of the provider. In other words, these other metrics compared provider
security based on the number of abuse incidents per provider IP as a way of
accounting for differences in exposure among providers. Remarkably though,
little work existed at the time on more systematically comparing the security
postures of different hosting providers.

Comparing provider security through metrics involves methodological as
well as metric design choices which have an impact on the metric outcomes.
And the previous attempts to compare provider security through metrics had
not systematically considered such design choices, nor fully addressed some of
the methodological challenges of metrics design. For instance that quantifying
a provider’s attack surface through the proxy of its advertised IP space is just
one way of characterizing its exposure. Or for example, the fact that other
factors than just exposure also drive abuse. How attackers behave, the types
of hosting services [89], or the quality of abuse data [91], also impact our
observations of abuse.

Thus in this chapter I first present a systematic approach for metrics devel-
opment and identify some of its main challenges: (i) identification of providers,
(ii) abuse data coverage and quality, (iii) taking exposure into account (also
referred to as ‘normalization’), (iv) metric aggregation and (v) metric interpre-
tation. I describe a pragmatic approach to deal with some of these challenges
and subsequently improve on the process and metrics that I develop, later in
Chapter 3 and 4.

21
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This chapter is based on the first of a series of peer-reviewed studies that
I have conducted on this subject [100]. In the process of this study, I also
answer an urgent question posed to us by the Dutch police at the time: ‘Which
are the most abused providers in our jurisdiction?’. Notwithstanding their
limitations, there was and still is a clear need for security metrics for hosting
providers in the fight against cybercrime.

2.1 introduction

Hosting providers are companies that provide servers via which cus-
tomers can make content or services available on the Internet e.g.
websites, email or support for multi-player gaming. As with virtually
all services on the Internet, they are abused for criminal purposes as
well. A wealth of research has identified how hosting infrastructure
shows up in various criminal business models. Think of phishing sites,
Command-and-Control (C&C) servers for botnets, distribution of child
sexual abuse material, malware distribution, and spam servers (c. f. [24,
36, 52]).

Nobody contests that hosting providers play a key role in fighting
cybercrime. Much of the criminal activity runs on compromised servers
of legitimate customers, some on servers rented by the criminals them-
selves. In either case, the hosting providers typically becomes aware of
the problem only after being notified of the abuse. And their response
to abuse reports varies widely, ranging from vigilant to slow to negli-
gent or even bullet-proof [36, 51, 37]. To empirically measure which of
these responses is actually occurring has proven to be very challenging.
Existing metrics of hosting provider security typically count instances
of abuse within an Autonomous System (AS), sometimes normalized by
the size of the advertised address space [36, 92, 95] to somewhat account
for provider exposure ~. None of these attempts adequately account

~ Also see statistical abuse
reports of initiatives like

Google Safe Browsing,
Shadowserver,

bgpranking, and
abuse.ch to name a few

other examples

for the serious methodological challenges plaguing such metrics.
In this chapter, I present a systematic approach for developing met-

rics for hosting providers. It enables us to identify and discuss the main
challenges: (i) identification of providers, (ii) abuse data coverage and
quality, (iii) normalization, (iv) aggregation and (v) metric interpreta-
tion in light of the heterogeneity of hosting providers. Additionally I
present a pragmatic approach to deal with these issues.

This study was originally part of an ongoing collaboration with the
Dutch National High Tech Crime Police, the Authority for Consumers
and Markets, the Public Prosecutor and the Dutch Hosting Provider
Association. Its objective is to answer an urgent question posed by the
police at the time: ‘which are the worst providers in our jurisdiction’?

The question in itself illustrates that there is a clear need for security
metrics for hosting providers, notwithstanding their limitations of
course. Reducing cybercrime is as much a problem of incentives as it is a
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technical issue [67]. Without reliable metrics to signal provider security
we cannot tell which provider is vigilant, lax, negligent or outright
criminal and it will be very difficult to move the sector towards more
secure practices. Here, and as I have discussed before in the previous
chapter, Information asymmetry erodes the incentives of providers to
invest in security. Reliable metrics can (i) signal security performance
to customers, upstream and downstream providers, law enforcement
and other stakeholders, (ii) enable benchmarking of providers, and (iii)
help identify the effectiveness of security practices and policies.

The main contributions of this chapter are as follows: (i) I outline a
systematic process to develop security metrics for hosting providers, as
well as the methodological challenges encountered along the way, (ii) I
improve existing techniques for mapping abuse to hosting providers
and for taking into account the size of hosting providers in computing
metric scores, and (iii) I present a pragmatic approach to produce met-
rics for the Dutch hosting market, that was developed in collaboration
with some of the key stakeholders.

2.2 background

Hosting providers come in many shapes and sizes and offer portfolios
of services: from relatively expensive dedicated physical machines to
virtual private servers (VPS) to the cheaper options of shared hosting
or even so-called free hosting. In each service, the role of the provider
vis a vis the customer is different. On a dedicated machine, and to a
lesser extent on a VPS, the customer controls the entire software stack,
whereas on shared hosting, many customers operate under restricted
privileges on a machine they share with many other users. Free hosting
services limit user control to the extreme.

Depending on the type of customer, hosting providers play a different
role in protecting their customers against compromise by patching
servers, cleaning, and monitoring for abuse. Similarly, providers need to
protect the rest of the Internet against potentially malicious customers
by putting in place different checks and restrictions which depends on
the service contract with that customer.

Next to the rate at which abuse incidents occur, the remediation
time ( which I will also refer to as ‘uptime’) of abuse, also reflects host-
ing provider security practices. On one end of the spectrum, vigilant
hosting providers remove malicious content often within hours of its
discovery, in the middle there are some providers that respond more
slowly and more selectively, and on the other extreme are the so called
Bullet-Proof Hosting (BPH) hosting providers that seem to ignore all
abuse notifications.

There has been a lot of speculation over the security incentives of
providers. A shared hosting provider, for example, could act against
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abuse more directly because its customers have only limited control
over the machines that they use. On the other hand, shared hosting is a
highly competitive market with low margins, so investing in security is
not likely to be a high priority. The only way forward is to replace spec-
ulation with reliable empirical evidence of abuse rates across providers
based on data.

2.3 overview of approach

Figure 2.1: Illustrative overview of security metric development process. Starting form the left, a series of
processing transformations (represented as arrows) are applied to data artifacts (represented by
rectangular boxes) to produce security metrics for comparing hosting provider security. Each
graph element contains illustrative examples of the type of data (illustrated as data tables) and
the transformations that are applied to produce the next step.

My proposed approach for calculating hosting provider security met-
rics is partly guided by the goal to allow our collaborators to engage in
meaningful discussions based on reliable empirical techniques. To this
end, I produce two types of security indicators for hosting providers
based on data available in public and private abuse feeds: (i) Occurrence
of abuse: an indicator based on counting occurrences of abuse incidents,
and (ii) Persistence of abuse: an indicator based on how long the abuse
was present and how long it took for the incident to be remediated.
Distinguishing between the occurrence of abuse and the remediation
response of a hosting provider to abuse incidents as independent mea-
sures of performance is important. While the occurrence of abuse is
to some extent inevitable due to technical vulnerabilities and related
to organization size and attacker characteristics, persistence of abuse
indicates attitude towards dealing with abuse and mainly relates to
defender characteristics. In conjunction, these independent indicators
provide a better understanding of the overall security performance of a
hosting provider.

Figure 2.1 illustrates a high-level overview of the complete procedure
to produce these indicators. Here, boxes represent data artifacts as
inputs and outputs of each step while arrows transformations that are
applied to the data. The process is generic and outlines the steps that
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any security metric requires to arrive at final scores for the security
of hosting providers. In executing these steps there are challenges
that need to be overcome and choices that have to be made that will
undoubtedly effect the reliability and interpretation of the metric. In
what follows, I systematically walk the reader through these steps
meanwhile highlighting challenges related to each and the possible
effects they have on the overall metric and its interpretation. A more
detailed analysis of some choices and their effect are presented later in
Section 2.10.

2.4 step 1 - abuse mapping

Identifying hosting providers is not straight forward since they do not
directly map onto entities with which underlying Internet protocols
work or what abuse data capture. The first decision that needs to be
made thus is to identify what a hosting provider is.

Identifying Hosting Providers

To produce security metrics for Dutch hosting providers, I have made
the (common [36, 52, 92, 105]) practical assumption that hosting providers
will have an associated Autonomous System Number (ASN). Conse-
quently, I initially consider any AS which routed IP addresses geo-
locating to the Netherlands as a Dutch hosting provider ~.

~ This was done using
Maxmind’s commercial
geo-location data which is
known to have
inaccuracies [106]. Note
however, that this step was
only done to limit the
scope of the study. The
process of overall process
of producing metrics
described in the previous
section does not rely on
this step

While the assumption may hold in general, ASes (and their associated
ASNs) may refer to Internet Service Providers (ISPs), Internet exchange
points, banks, governmental institutions, universities, and in general
non-hosting entities as well. Without a deeper analysis of the ASes, such
an assumption may lead to considerable error in mapping abuse onto
hosting providers. Even when an AS does refer to a hosting provider,
further complexity still exists. Certain providers may have multiple
ASNs, or there may be multiple organizations which own a smaller part
of the IP space routed from within an AS, e. g. contain reseller hosting
providers who lease infrastructure from the AS owner. Some ASNs also
advertise ranges and route traffic destined to and from IPs owned by
their peers. Furthermore, certain legitimate services (e.g. CloudFlare)
may act as proxies and hide the true providers hosting certain IP
ranges. As a result abuse associated with small organizations with
registered IPs within ASes may end up attributed to the AS from which
the infrastructure is leased. Typically, the aforementioned simplifying
assumption to identify hosting providers needs to be balanced out with
requirements of the metric and whether the abuse from each of these
smaller organizations needs to be taken into account. Here however, I
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have opted to treat abuse for smaller organizations with registered IP
ranges inside larger ASes in later chapters.

One method to better identify hosting providers and the potential
organizations under each AS, is to analyze IP ‘ownership’ using Max-
mind’s GeoIP ISP Database [107]. Utilizing such information results in
a more fine grained mapping which mitigates the mapping problems
discussed above. Nevertheless, this approach has complications of its
own such as non-standardized WHOIS data formats where the same
organization might appear with multiple names that are non-trivial to
relate to each other. For instance, the Dutch hosting provider Leaseweb
also appears under the following additional names in WHOIS: Leaseweb
Asia Pacific. ltd., leaseweb1.iomadserve.com.

Unit of Abuse

The second key decision is about the unit of abuse or how to count the
abuse data. Unlike other hosting metrics which typically count distinct
IP addresses as the unit for abuse (c. f. [36, 52, 92]), my proposed
approach considers unique 2nd-level domain-IP pairs - 〈2LD, IP〉 - as
the unit of counting abuse. From this point on in the chapter, I use the
terms ‘2LD’ and ‘domain’ interchangeably, unless the context requires
otherwise. Simply counting the number of abusive IP addresses largely
underestimates abuse from shared hosting services since criminals may
use the same IPs for various purposes. For example a compromised
server may host a phishing website and also be used for spreading
malware. Furthermore, the number of domains is a better proxy for the
number of customers of the provider, which is valuable to include in
approximating its size. Last, this definition also maximizes the value of
our feeds as measured by their differential contribution [108].

Counting pairs of 〈2LD, IP〉 mitigates the problem but is not per-
fect. In some cases it is appropriate to count fully qualified domain
name and IP pairs 〈FQDN, IP〉 pairs (e.g. malicious domain generation
algorithms), or even 〈URL, IP〉 pairs (e.g. child sexual abuse content
concentrated under the same domain with varying paths in the URL).

Data feeds

A separate decision in mapping abuse is what data feeds to use. A wide
range of abuse on the Internet is associated with hosting. Hosts are used
as malware drop zones and to host phishing pages designed to steal
sensitive information. Botnet Command-and-Control (C&C) servers are
also hosted [52]. Other types of hosting related abuse includes child
sexual abuse material, illicit Search Engine Optimzation (SEO) schemes,
spam and counterfeit goods stores. Not all criminal activity can be
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observed in a way that can be attributed to the infrastructure of a
specific hosting provider however. Think of hidden services on Tor.
Even if it can be observed, the criminal activity might not be captured
in abuse data feeds, which are often produced by automated means.
This implies that abuse feeds are always partial and of varying quality.
This is a well known fact [108, 109, 110]. Needless to say, criminal
activity that is not captured in the abuse data included in a metric,
forms a blind spot of that metric. This suggests to include as broad a
spectrum of abuse feeds as possible [108].

For the purpose of this study I collected a range of feeds and block-
list data from private, public, commercial, and governmental sources.
Table 2.1 gives and overview of these data feeds. The data spans over
the entire duration of 2014 (with the exception of the SHC and SHS
which span over the 2nd half of 2014). The majority of the feeds, do not
share much information on the exact collection methodology. I did not
include some of the available spam feeds because our analysis of their
data revealed these to be mostly related to compromised end-user ma-
chines residing within ISPs rather than hosting companies. In general,
data quality relates mainly (but not only) to: (i) coverage (What is the
overlap between the different feeds?), (ii) purity (How much of the flagged
domains truly host malicious content? However, it is not always possible
to assess the coverage or purity of a feed since many of its details are
not well documented [108].

Coverage. Previous overlap analysis of blocklists capturing different
types of abuse concludes that - although existent - there is little overlap
in terms of the abuse associated with each ASN [109]. I have reached
similar conclusions especially when 〈2LD, IP〉 pairs are the unit of
counting abuse.

Table 2.1: Statistics on collected abuse feed data employed to construct the
security metrics discussed in this chapter

Abuse Type Feed Organization Samples

〈Domain, IP〉 IPs

Total Excl. Total Excl.

Malicious Hosts SHC Shadowserver 3,957 3,615 2,260 1,321

Malicious Hosts SHS Shadowserver 7,632 7,489 1,100 816

Malware SBW StopBadware 15,204 14,757 7,702 6,170

Botnet C&Cs ZEUS Abuse.ch 50 27 72 35

Phishing PHISH Phishtank 2,278 1,780 1,377 -

Phishing APWG APWG 3,060 2,430 1,886 1,101

Take Down Request MLAT Dutch Police 1,347 1,202 1,433 1,202

Child Pornography MELD Meldpunt 725 584 417 242

Total 34,253 31,884 16,247 11,491

https://www.shadowserver.org/wiki/pmwiki.php/Services/Compromised-Website
https://www.shadowserver.org/wiki/pmwiki.php/Services/Sandbox-URL
https://zeustracker.abuse.ch
https://www.phishtank.com/developer_info.php
http://www.antiphishing.org/
https://www.meldpunt-kinderporno.nl/
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Clearly the feeds differ substantially in terms of the volume of re-
ported abuse samples. For example, the professionally sourced SBW
feed contributed over 15,000 samples, while the non-profit ZEUS feed
three orders of magnitude less domain-IP pairs. In terms of the total
number of IPs, SBW reports almost two times less unique IPs than dis-
tinct 〈2LD, IP〉 pairs whereas the ZEUS feed reports more IPs because
some ZEUS malware config, binary, and drop zones are hosted solely
on IP addresses not associated with domains. Moreover, the differences
between 〈2LD, IP〉 pairs and IPs indicate that many domains used
for criminal activity are mapped to a smaller number of IP addresses
which could be the result of shared hosting services. Across the abuse
feeds, 93% of all 〈2LD, IP〉 pairs and 71% of all IPs for all domains
were exclusive to a single feed (cf. Excl. column in Table 2.1). I refer to
samples as exclusive when they appear only in one feed.
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Figure 2.2: Pairwise overlap of feeds with unique 〈2LD, IP〉 and IPs as unit of
abuse. (n) = number of items in intersection.

Figure 2.2 illustrates pairwise feed intersections as a matrix, with
unique 〈2LD, IP〉 (a) and unique IPs (b) as the unit of abuse respectively.
Here darker color shades represent larger overlaps among the data in
the compared feeds. For instance, in Figure 2.2 (a), the overlap between
MLAT and MELD data, indicates 124 〈2LD, IP〉 pairs in common. This
overlap constitutes 9% of the MLAT feed. In comparison, 124 〈2LD, IP〉
pairs represents 17% of the MELD feed. The rightmost column of the
matrices indicates the absolute number and the percentage of samples
that the feed has in common with all other feeds combined. The amount
of overlap in the rightmost columns confirms the simultaneous use of
IPs for different malicious purposes. This also further supports our
choice of abuse unit. In other words there is more unique information
in each feed when considering 〈2LD, IP〉 as the unit of abuse. This may
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be observed by the overall smaller overlap of each feed with all other
feeds combined, in comparison to the overlaps when considering the
alternative choice which is depicted on the right side of the figure.

Finally, the relatively small overlap among our chosen data feeds in
terms of 〈2LD, IP〉 indicates the suitability of these feeds, nevertheless,
other feed characteristics still need to be analyzed to further establish
suitability.

Purity. All abuse feeds contain false positives. The main question
is which samples should be considered false positives and excluded
and which should not? I define false positives as websites maintained
by legitimate users that do not serve any malicious content and are
incorrectly flagged.

Additionally, some domains are legitimate but merely point to
servers that host malicious content. For example, I consider URL
shortening services such as goo.gl or bit.ly as false positives. How-
ever, other legitimate websites such as free web hosting providers (e.g.
Hostinger), or cloud storage services (e.g. Imagezilla.net or Dropbox)
are actually misused by criminals and included in the analysis.

Moreover, a certain portion of abuse feeds include benign domains.
I analyze benign domains that appear in the Alexa top 25 thousand
domain list to evaluate the prevalence of false positives in the collected
data. Although I did not undertake real-time verification of flagged
Alexa domains appearing in the data, I perform a posteriori analysis to
further establish the suitability and quality of the data and the feeds
themselves.

For brevity however, I only briefly discuss the analysis and do not
include the details. Overall I find a limited number of Alexa domains
in the abuse feeds. Nevertheless, there are major differences among the
types of Alexa domains per feed. For example, through manual analysis
of a random sample from the SHS feed I found that approximately 30%
of this feed’s Alexa domains were file sharing services most probably
used to host malicious content and thus relevant to include. On the
other hand, I also find some examples of popular websites like msn.com,
or microsoft.com that are presumably used by compromised machines
to test network connectivity. In the case of the PHISH feed I found a
significant number of ranked domains that are either false positives
(e.g. banks and other legitimate services), or are not appropriate for the
type of analysis that we provide (e.g. URL shorteners). The majority of
the ranked domains for both MLAT and MELD represent file and adult
content sharing services. As systematic false positives, or unrelated
web services in the feeds do not constitute a large fraction I therefore
have opted to include ranked domains in my analyses.
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2.5 step 2 - size mapping

Reliable security metrics need to account for a commonly observed
trend that larger providers also experience a larger amount of abuse.

A common yardstick for measuring the ‘size’ of hosting providers
is the number of IP addresses routed by its corresponding AS in the
BGP protocol [36, 92]. Nevertheless not all IPs routed by an AS are used
for hosting content nor are they directly in use by the AS. IPs may be
leased and used for other purposes. Inaccuracies in size estimation
may negatively impact the reliability of a metric in that they can lead
to misleading results. Nevertheless, due to simplicity of calculating,
advertised IP space remains and attractive choice for size estimation.

I propose (and use) two additional size estimators: (i) the number
of hosted 2LDs and (ii) the number of IP addresses used to host content
per hosting provider. To calculate these estimators I use historical
passive DNS (pDNS) data provided by Farsight Security [111]. This data
records DNS resolution queries collected over the entire duration of 2014

which I use to count the number of unique 2LDs and their matching
IP addresses. These counts are subsequently mapped to ASes routing
the IP addresses and used as an estimation of the size of the provider.
Here the quality of the resulting estimates is highly dependent on the
coverage of the pDNS data. As long as the pDNS data has a reasonable
coverage of all registered 2LDs, it can be used to produce reasonable
size estimates. Hence I have crosschecked the number of unique 2LDs

observed in the pDNS data with the number of 2LDs of Generic Top-Level
Domains (gTLDs) and Country Code Top-Level Domain (ccTLD) present
in zone files of new gTLDs that were obtained under agreement from
ICANN ~ in addition to ccTLD sizes reported by APWG • at the end of

~http:
//newgtlds.icann.org

•http://docs.apwg.org

2014. Extrapolating from these results I have concluded pDNS to be a
reasonably reliable source to estimate hosting provider size (see [112]).

There are potentially other conceivable estimators for hosting provider
size such as the number of customers. Nevertheless, the scarcity of data
to base such estimates on is a largely limiting factor in this respect.

2.6 step 3 - normalization of abuse

Given the output of the abuse mapping and size mapping steps, the
next step in the metric production process is to normalize abuse volume
by a size estimate. This leads to S× N normalized abuse mappings
where S is the number of size maps produced earlier and N the total
number of abuse maps corresponding to the analyzed abuse feeds. A
key question here relates to interpretations that can already be made from
normalized abuse data.

All size estimates have their advantages and disadvantages which
have to be viewed as trade-offs. The most commonly used size estimator

http://newgtlds.icann.org
http://newgtlds.icann.org
http://docs.apwg.org
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- routed IPs - is the easiest to calculate, but it suffers from systematically
favoring large providers, since not all routed IPs are used for hosting.
Using the portion of the routed IP space that is used for hosting as
the size estimator mitigates the problem, however, this is much more
difficult to calculate. This estimate is also not free of systematic bias,
because it favors hosting providers that have a disproportionately large
amount of shared hosting. We can use the number of hosted 2LDs as
the estimator, which would treat shared hosting fairly but would still
underestimate the size of subdomain resellers and free-hosting services.
The trend here is clear; normalized abuse has its blind spots, and needs
to be taken into account especially for interpreting results at this stage.

It is important to note that some size estimates are more volatile
than others due to the dynamic nature of the underlying processes. For
example, the number of FQDNs hosted by a provider may change at
a much faster rate than the number of 2LDs if an estimator based on
FQDNs is used.

Normalized abuse, is already an indicator of security performance by
itself. Note however, that normalized abuse is abuse-type specific. For
example, one can analyze normalized abuse based on the occurrence
of malware on hosting providers and draw conclusions; however, this
only provides a partial picture of the performance of hosting providers.
Some providers might be much less strict about allowing malware
spread from their servers than for example the hosting of child sexual
abuse material [52]. In my case, I use all size estimators outlined in the
previous section without committing to a specific one or considering
one superior to others. The expectation is that the combination of these
can overcome the deficiencies of each. This matter is further explored
in Section 2.10.

Finally, note that when talking about metrics based on the uptime of
abuse, size corrections are not appropriate. In such cases it is common
to use mean or median uptimes instead of normalized abuse.

2.7 step 4 - rating of abuse

Given the normalized abuse data, the next step in the process calculates
rankings over all maps to produce rankings. Rankings are one way of
unifying the scales on which normalized abuse is measured and allows
cross comparisons over categories of abuse. For example, comparing
the security performance of a hosting provider in terms of how well
it manages to mitigate malware with its performance in terms of how
well it mitigates phishing is not meaningful when based on normalized
abuse. However, the comparison is meaningful over rankings.

Given the normalized abuse maps, my method for ranking hosting
providers is as follows: I rank normalized abuse from high to low. This
results in 3× N rankings. The individual rankings may range between
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zero and R, the total number hosting providers being ranked. The
worst rank, R, is assigned to the AS (i. e. provider) with the highest
normalized abuse, R− 1 to the second worst and so forth. ASes with
equal normalized abuse are assigned equal ranks. If a normalized abuse
map only contains data on for example 20 providers the ranking will
range between [R− 20, R] with all providers for which no abuse was
detected receiving the low rank of R− 20.

An important consideration in producing rankings is information loss.
To illustrate this consider two hosting providers HP1 and HP2 that have
a normalized abuse of 0.1 and 0.3 and have been assigned the ranks
of 10 (worst performer) and 5 (5th worst) respectively. Ranking is not
distance preserving since the difference between the hosting provider
ranks (10 − 5) does not entail the same information as that of the
normalized abuse (0.3− 0.1 ). That is, one unit of change in ranking
could mean any number of changes in the unit of normalized abuse.
As a result these distances cannot be interpreted in the same way. In
ranking hosting providers, some information about the magnitude of
the differences is unavoidably lost.

2.8 step 5 - aggregation of rates

I now aggregate the previously constructed rankings into one overall
ranking that assigns scores in the range [0, 1], where score 1 indicates
the worst performer. The aggregation procedure considers every rank-
ing as a voting preference over R candidates in an imaginary election.
The election winner is effectively decided using a Borda Count vote
aggregation method that basically counts how many times a certain
candidate appeared in the 1st place, 2nd place, 3rd place (and so forth)
in every ranking and decides the outcome based on all rankings.

An alternative approach could perform factor analysis and take into
account the most contributing feeds when interpreting metric scores (cf.
also Section 2.10). We find, however, voting systems to be a useful anal-
ogy when thinking about aggregation. A useful aggregation method
must have certain desirable properties, such as being intuitive. For
example, if a particular hosting provider is the worst ranked performer
in all categories of abuse, the security metric should reflect that by
assigning the worst metric score to that provider and not to others.
Certain methods of aggregation will not guarantee such properties and
are therefore undesirable. I refer the reader to literature on different
voting aggregation methods (c. f. Cranor’s discussion on vote aggrega-
tion methods ~ in [113] ) for a better understanding of the properties

~http:

//lorrie.cranor.org/

pubs/diss/node4.html

of such methods and their limitations.

http://lorrie.cranor.org/pubs/diss/node4.html
http://lorrie.cranor.org/pubs/diss/node4.html
http://lorrie.cranor.org/pubs/diss/node4.html
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2.9 step 6 - metric interpretation

Security metrics need to be interpreted to guide policy and reduce
information asymmetry around the security performance of hosting
providers. However, correct interpretation of a metric without detailed
knowledge of the various blind spots and biases of the process is diffi-
cult. Additionally the heterogeneity in the hosting provider landscape
directly influences what conclusions can be drawn from the metrics.

Figure 2.3: The 20 worst Dutch providers for compared by abuse rate. Security
metric scores based on the occurrence of abuse are reported on the
y-axis. Provider exposure to abuse is reported along the x-axis, as
well is encoded in color and bubble size. Larger bubbles and shades
leaning towards blue colors indicate larger exposure while smaller
circles and color shades approaching red indicate reduced exposure
to abuse.

To illustrate the challenges of interpretation I briefly present some
of our results here. Figure 2.3 plots the metric rankings of the 20

worst identified Dutch hosting providers based on the occurrence of
abuse. The plot demonstrates a large variance between the security
performance of providers that have comparable size. The results clearly
indicate significant differences in how hosting providers deal with
abuse. Here, the safest comparisons are among providers that have
the most similar properties. As an example consider the two hosting
providers colored in bright green, first the provider with the highest
(worst) metric score, and second, the provider located approximately at
(x = 104, y = 0.85). These data points represent providers very similar
in all exposure aspects and therefore it can be safely concluded that
the provider with the lower score is performing significantly better
than the worst performer due to its security policies and practices. To
consider the worst provider as negligent or criminally engaged simply
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because it has the worst score is however a wrong conclusion to draw
here.

Figure 2.4: Comparison of occurrence and uptime metric for Dutch hosting
providers. Provider security metric scores based on the occurrence
of abuse are reported along the y-axis. Metric scores based on the
remediation response of providers (uptime) are reported along the
x-axis. Measures of provider exposure to abuse are color coded as
well as reported through bubble size.

Alternatively, Figure 2.4 compares the occurrence metric and the
uptime metric of all the identified Dutch hosting providers. A cau-
tionary note here is that the uptime metrics are based on only 2 data
feeds from which incident remediation times could be calculated. The
weak relationship (Spearman’s ρ = 0.38, Pearson r = 0.36) between
occurrence and uptime is expected as each captures a different aspect
of hosting provider characteristics that relate to abuse (see Section 2.3).
Clearly some providers experience large amounts of abuse while man-
aging to quickly block the abuse (upper left region of the plot). Others,
perform consistently bad in the sense that they experience large vol-
umes of abuse relative to their exposure and are also slow to block
it (upper right region of the plot). Nevertheless, we believe that the
amount of occurring abuse and the response of a hosting provider to
abuse are important aspects that need to be measured separately to
provide a thorough picture of security performance. Only now can
we draw the conclusion that the worst performing hosting provider
in terms of abuse occurrence is probably negligent because it is also
among the worst performers in terms of remediation (see point with
(x = 0.8, y = 1) coordinates).

Finally when interpreting the results, one should also take the host-
ing provider business model into account. Hosting providers with a
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large portion of shared hosting customers have a larger role to play
in cleaning up content than ones with dedicated hosting clients. It
might very well be the case that the worst performer in terms of both
occurrence of abuse and response to abuse provides solely unmanaged
hosting to its customers and therefore not in the same position as its
peers that provide mainly shared hosting for instance. In this case the
observed performance could simply be indicating the security of the
hosting customers rather than that of the hosting provider itself.

2.10 sensitivity analysis

To better understand the impact of key metric design decisions, I
undertake a brief sensitivity analysis of alternative specifications for
(i) unit of abuse, (ii) abuse normalization, and (iii) metric aggregation
strategies. I explore the robustness of the results by producing rankings
based on alternate methodological options for each of these decisions. I
compare them to the ranking of the pragmatic approach that I presented
(referred to as benchmark ranking) by calculating the Pearson correlation
coefficient among the top n = 100 worst performing Dutch hosting
providers.

Unit of abuse. In the benchmark ranking I used unique 〈2LD, IP〉
pairs as the unit of abuse. I also calculated an alternate ranking based on
unique IP counts, the standard approach in the literature. The Pearson’s
r among these alternative rankings is 0, 952. Perhaps more tangible: 16

ASes are in the top-20 of worst performers of both rankings. In other
words, the metric is not very sensitive to either specification.

Abuse normalization. I also calculated three alternate scores using
the three size estimates for hosting providers: (i) the advertised IP
space (ii) the advertised IP space that is used for hosting, and (iii) the
number of hosted 2LDs. The benchmark ranking used all three of them.
The Pearson’s r for the alternative specifications to the benchmark
ranking are 0, 896, 0, 909, and 0, 6438, respectively. These results reveal
a strong correlation between the IP space-based size estimators and the
benchmark ranking, and a less strong correlation with the estimates
based on 2LDs. Out of the top 20 worst performers in the benchmark
ranking, only 7 ASes were present in all alternate top 20 rankings. When
comparing pairwise: the reference ranking shares 13 ASes in with those
based on advertised IP addresses and hosted 2LDs, and 15 ASes with
the ranking based on IP addresses utilized for webhosting. In other
words, using the number of hosted domains vs. estimates based on
IP address space as measure of exposure give significantly different
results. By including all three size estimations, the benchmark metric
specification mitigates that impact, while retaining the advantages of
including domain name counts in abuse counting and size estimation.
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Metric aggregation. I also compare the benchmark ranking with a
ranking in which I assign weights to each data source according to
its comprehensiveness, i.e., the relative volume of each feed in terms
of distinct number of exclusive 〈2LD, IP〉 pairs in the dataset (c. f.
Table 2.1). In summary, out of top 20 abused ASes in the benchmark, 14

ASes showed up in the weighted rankings and the Pearson’s r of the
benchmark ranking and weighted ranking is equal to 0, 791.

2.11 related work

Numerous studies have pointed to concentrations of abuse in certain
networks, typically in the context of a specific criminal business model,
e.g., spam [80], phishing [60] or malware [114]. Effects and policy
implications of intervention at classes of intermediaries have also been
studied in [7, 80]. The quality of abuse data has also been extensively
covered [108, 109, 110, 114]. [51] examines the role of hosting providers
in detecting abuse and reacting to user complaints for shared hosting
providers. It paints a general picture that underlines the need for
hosting security metrics. None of these studies try to develop security
metrics from abuse data, however.

Closest to this study are the studies [36, 92, 115]. [105] produces
a weighted metric score for ASes. [36] includes only up-time data
and focuses mainly on identifying the worst actors. Here I expand on
this work by systematically addressing challenges not discussed there.
These studies typically count IP addresses as the unit of abuse and use
advertised IP address space as a normalization factor.

Industry attention to hosting has been along the lines of the Host
Exploit Index (HE index) [95]. While valuable, its methodologies are not
fully transparent and the parts that are, suffer from similar limitations
as the academic work discussed above.

2.12 conclusions

In this chapter I have systematically worked through some of the many
challenges of developing security metrics for hosting providers. All
conceivable metrics will suffer from various limitations, that much is
clear. This is not to say that they are not useful. When we presented this
approach to various stakeholders in the Netherlands, including hosting
providers, the main response was that the metrics were a valid starting
point for evaluating hosting security, incentivizing self-regulation and,
ultimately, identifying actors for enforcement activities.

As long as the heterogeneity of hosting providers and methodological
limitations that I discuss are taken into account, valid inferences may
be drawn from the metrics developed in this chapter to compare the
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security of hosting providers. That is both in terms of the prevalence of
abuse as well as provider reactions to abuse incidents. Inferences may
for example be drawn to measure market responses to interventions,
or to asses the effectiveness of security policies with the aim of steering
the hosting market towards more desirable security outcomes. These
metrics allow stakeholders to gain insight and empirical grounding
in support of such efforts. However, the limitations that I have dis-
cussed also clearly indicate that the way forward is to improve this
methodology in order to allow valid inferences to be drawn more easily.

This can be achieved by first, including and better combining abuse
the data captured from multiple feeds, which I will discuss next in
Chapter 3, as well as include more uptime data in constructing metrics,
which I discuss in Chapter 4. In what follows I will also undertake
more in-depth sensitivity analysis of how the various methodological
factors impact metric outcomes, as well as improve the methodology
for identifying hosting providers by employing WHOIS data on IP
address ownership, rather than AS-level routing data. While the more
in-depth analysis will allow more robust inferences to be drawn from
the metrics, the latter technical improvement will allow smaller hosting
providers, e. g. resellers to be benchmarked as well. Last but not least
in Chapter 5 I will also investigate incentives under certain conditions
where security metrics can be gamed by providers.

In conclusion, It is safe to say that a lot of the current claims about
hosting providers are based on anecdotal evidence or methods that are
not adequately understood. This initial chapter contributes to remedi-
ating this shortfall.
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In Chapter 2, I systematically worked through some of the challenges of
developing security metrics for hosting providers and developed two types
of metrics: (i): metrics based on how frequently abuse incidents occur, and
(ii) metrics based on how timely incidents are remediated. It is clear that all
proposed metrics have their limitations. But that is not to say that they do not
project useful information.

Some noteworthy limitations of this previous work are the fact that I had to
make simplifying assumptions about how to identify hosting providers, as well
as how to account for differences among causal factors that drive the abuse
of their services, for instance their exposure to abuse and attacker behavior.
We also saw volatility in metric outcomes depending on how the metrics
were constructed, i. e. with respect to certain design choices that were made.
This may be problematic especially since the metrics that I have discussed
are essentially point-estimates that do not somehow reflect these choices, the
underlying uncertainties, or the level of confidence that we may instill in their
outcomes.

These limitations are invariably linked to the quality and availability of
empirical data which may be used to construct metrics. For example, direct
observations of attacker behavior is virtually non-existent and the approach
to identifying providers by their ASNs in Border Gateway Protocol (BGP)
data carries limitations. With respect to some of these limitation however,
the employed abuse data itself offers a work around to some of these issues.
Empirical abuse data simultaneously reflect the security efforts of defenders as
well as reflect how attackers behave. As such, abuse data can play an important
role in understanding the drivers and causes of insecurity which can lead to
solutions for strengthening and aligning the security incentives of hosting
providers.

Using abuse data to measure security performance suffers from a number
of problems, however. Abuse data is notoriously noisy, highly heterogeneous,
often incomplete, biased, and driven by a multitude of causal factors that are
hard to disentangle. In this chapter, I present a comprehensive approach to
measure defender security performance from a combination of heterogeneous
abuse data sets, taking all of these issues into account. I discuss a causal model
of incidents and on its basis propose a data modeling approach which employs
Item Response Theory (IRT) towards estimating provider security as a latent
trait reflected within the abuse data.

39
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This alternative approach to developing metrics improves upon the previ-
ous chapter in several ways. First, it allows us to quantify the underlying
uncertainties of the abuse data and to reflect those in the security performance
estimates and metric outcomes. Despite the uncertainties, I demonstrate the
effectiveness of the approach by using the security performance estimates
to predict the incident frequencies observed in independent datasets, after
controlling for various exposure effects such as the size and business type
of the providers. Second, I employ a more reliable technique for identifying
hosting providers as well as quantifying their exposure within this new study,
which is based on WHOIS IP ownership information rather than Autonomous
System (AS) ownership embedded within BGP routing data which I previously
employed. Finally, I also verify that the simplifying assumptions regarding
attacker behavior dynamics that I implicitly made in my previous work is
indeed a reasonable one to make at the global hosting market level.

This chapter is based on my second study on the subject of metrics develop-
ment [101], which focuses on the question of how to develop security metrics
for hosting providers that reflect their proactive security efforts.

3.1 introduction

Empirical observations of the computing resources that are being
abused by criminals, also known as abuse data, are an important
foundation for the research on cybercrime. Abuse datasets typically
focus on a specific type of criminal resource – e.g., phishing sites, com-
promised domains, Command-and-Control (C&C) servers, or infected
end user machines – depending on the automated tools via which
the data is collected, such as spam traps, honeypot networks, botnet
sinkholes, webcrawlers, sandboxes, and the like.

Studies based on abuse data have often looked at concentrations of
incidents in certain networks [36], Internet Service Providers (ISPs) [80,
116], countries [117, 118], organizations [73], payment providers [13],
registrars [5], registries [112], and other agents. The idea is that such
concentrations are amenable to intervention. They are interpreted to
reveal attacker economics, such as scale advantages, or defender eco-
nomics, such as lack of security investment by some agents because the
cost of incidents is externalized to others [91, 97].

Abuse data offers one of the very few empirical measurements of the
security performance of defenders. As such, it can play an important
role in strengthening and aligning the security incentives in a variety
of markets. It has been used to reduce information asymmetry and
leverage reputation effects [95, 119], to identify bad providers [100, 120],
and to study the effectiveness of countermeasures [110, 121].

Using abuse data to measure defender security performance suffers
from a number of problems, however. First of all, abuse data is notori-
ously noisy. It contains all kinds of issues around false positives and
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negatives, incorrect attribution to the responsible agent, inconsistent
measurement over time, dynamic attacker behavior, and more, which
others have discussed previously (c. f. [108]) and I have also alluded to
in Chapter 2.

Second, abuse datasets are highly heterogeneous. They are very dif-
ferent in size. Some sets observe one or two orders of magnitude more
events than others. In the previous chapter, this was the case for exam-
ple when comparing some of the abuse feeds that I employed. Pitsillidis
et al. have similarly observed significant differences in examining the
coverage of spam related abuse feeds for instance [108]. Metcalf and
Spring have observed the same phenomenon across a wider range of
data feeds also referred to as blocklists [109]. Moreover, they observed
that abuse feeds also typically have very little overlap. Even datasets
of the same type of abuse, say phishing, rarely independently observe
the same incident. The correlation of different datasets can be quite
low, when counting the number of incidents per defender (e.g., hosting
provider). Some providers might be more susceptible to certain types
of abuse, but less to others.

A third problem is the lack of completeness [108]. Not all abuse events
are observed. Those that are observed might contain biases. Related to
this is the fact that not all providers are observed in abuse data. All
studies that start with the abuse data itself to evaluate providers will,
therefore, suffer from selection bias, as providers where no incidents
were observed are excluded, even though they might be performing
better than those that are included.

Fourth, and final, is the problem of multicausality. Abuse data is
driven by a variety of factors and it is difficult to isolate the defender’s
performance from them. It is clear, for example, that defenders with
more infrastructure and customers will incur more incidents [97, 100].
Unless the other factors are explicitly modeled, any analysis is at risk of
incorrectly assuming that differences in abuse rates reflect differences
in defender efforts.

The first two problems imply that using a single abuse data source
to measure defender efforts is highly unreliable, as the outcomes will
differ greatly per data source. Different sources will have to be com-
bined to derive a more trustworthy signal [108]. This also means that
measurement errors have to be carefully considered as they may result
in observing spurious concentrations of abuse [91]. The third problem,
lack of completeness, means that sources of bias in the data have to be
investigated and mitigated. One key requirement is that any analysis
will have to identify the relevant market players independently from
the abuse data, in order to avoid selection bias. The fourth issue, multi-
causality, has to be tackled by embedding any analysis into an explicit
causal framework that captures, at least analytically, all the relevant
forces that influence the abuse rates.
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Recent work in this area has addressed one, sometimes two or three,
of these problems, but no study has addressed all four. I will discuss
this in more detail in the section on related work. In this chapter I
present the first comprehensive approach to measure defender security
performance from a combination of heterogeneous abuse datasets. I
apply the approach to the hosting sector, which is associated with a
large portion of all observed abuse events. I will first present a causal
model to explain abuse rates in provider networks. I then map the
providers in the hosting market. Second, I study potential biases in the
distribution of abuse data over providers. Next, I collect relevant expo-
sure variables for the providers. We can then specify a model, based
on Item Response Theory (IRT), to estimate the security performance of
providers as a latent variable from a collection of abuse datasets, while
controlling for exposure effects, such as the size of the network of the
provider. Last, I test the reliability of the performance metric.

The contributions of this chapter may be stated as follows:

• I formalize a causal model in order to systematically disentangle
the different factors at work in abuse data. This model provides a
basis for modeling security economics questions based on inci-
dent data.

• I show that a combination of 7 abuse datasets cover observations
in just 34% of all providers in the hosting market. While most
providers have no observed incidents, there is no evidence of
bias. Via a simulation, I demonstrate that all providers, small and
large, have equal probability of showing up in abuse data, once
we control for their exposure.

• Next, I present a novel statistical approach – based on Item Re-
sponse Theory (IRT) – to estimate the security performance of
providers as a latent factor from a range of heterogeneous abuse
data sources, while controlling for exposure effects.

• Finally, I demonstrate the reliability of the new performance
metric. Notwithstanding the noisy nature of abuse data, using
the latent variable we are able to explain between 75-99% of
the variance in any independent abuse dataset, after controlling
for exposure effects. This result agrees with previous work in
that combining abuse data from various sources lead to a better
characterization and understanding of security performance [108].

The overall goal of this study is to enable better measurement of
security performance from combined sources of abuse data, while con-
trolling for differences in firms and their exposure to attacks. The result
is a security benchmark that helps to reduce information asymmetry
in these markets, thus improving the security incentives of providers.
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Reliable performance metrics are also critical to study impact of inter-
ventions and recommended security practices. The success of a wide
range of industry and government-backed initiatives to combat cyber-
crime critically depend on benchmarks to provide empirical evidence
through which the success and progress of the initiatives can be tracked.

In what follows I will first discuss the causal abuse framework which
forms the background of this work in Section 3.2. I then provide an
overview of our data in Section 3.3. To explore the bias in our abuse
data, i independently map the hosting provider market using several
other data sources in Section 3.4 and find no evidence of observation
bias in abuse data using simple simulations of attacks across the hosting
market in Section 3.5. I then move on to construct an IRT model and
motivate our approach in Section 3.6, then provide the specification
of the model in Section 3.7 and estimate the security performance
of the hosting providers in Section 3.8. The robustness and predictive
power of our security performance estimates are explored in Section 3.9.
Finally I provide an overview of the related work, and studies on which
this chapter builds in Section 3.10 and finally discuss the implications
and conclude in Section 3.11.

3.2 causal model

A lot of empirical research is based on the distribution of abuse across
networks or other units of analysis. Any interpretation of those distri-
butions makes assumptions, often implicitly, of the underlying factors
at work. This is even more clear for causal inferences. Several studies
looked at the relationship between characteristics of organizations, net-
works or providers and their abuse rates, e.g., indicators of network
mismanagement [85], provider properties and business models [97], or
the effect of interventions [117, 121].

Previous work shows that the variance in abuse incidence across
networks (or another unit of analysis) can be the result of measurement
errors or causal factors such as structural and security effort related
properties of providers [97]. In this chapter, I focus on the causal factors.
Figure 3.1 describes the different factors that influence abuse rates.1

The primary cause of incidents is, of course, attacks. That relationship
is moderated by two other factors: security and exposure. Neither of
these factors directly cause incidents; they only influence the extent to
which attacks result in incidents.

There are many definitions of security, but it generally refers to the
degree in which the computing resource or service is protected against
attacks so as to preserve confidentiality, integrity and availability of

1 I gratefully acknowledge the contributions of Rainer Böhme, who had the original idea
for the model, and of the participants of the Dagstuhl Seminar 16461 “Assessing ICT
Security Risks in Socio-Technical Systems” who helped to further articulate it.
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resources. It is the opposite of vulnerability, which is one way in which
it can be empirically approximated. Security, or vulnerability, can be
influenced by the efforts of the defender, such as the adoption of certain
controls or maturity models. It is important to separate controls and
efforts from actual security. The former captures actions of the defender,
the latter is the result of these actions, which may or may not be the
intended or expected outcome. In many scenarios, the impact of a
control on the actual security level of an organization is unknown.

The other mediating factor is the degree to which a provider, or
another class of defenders being studied, is exposed to a certain threat.
This is often referred to as the “exposure”. Size is one example. Larger
hosting providers have more customers and hence a higher probability
of one of those customers being compromised. The business model can
also increase exposure. Customers of cheap hosting services running
popular content management systems are more likely to be compro-
mised than professional hosting customers with their own security
staff.

Figure 3.1: Causal model of abuse incidents linking attacks with the expo-
sure and security practices of defenders as moderating factors that
influence how attacks translate to incidents

The yellow ovals in Figure 3.1 contain examples of indicators of
security and exposure. Some of them have already been found in prior
work to correlate with incident rates. For security, prior studies have
found that bad network hygiene and out-dated software is correlated
with higher levels of abuse [73, 90, 97]. Such indicators might not clearly
distinguish between controls and actual security, which is why we
connect them to both, through the label of “security practices”. A well-
known indicator of exposure is the size of the network. Some security
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metrics try to take this into account by simply dividing the number of
incidents in a network by the number of IP addresses advertised by the
network [85, 95, 100]. Price is another example. Cheap or free services
are more prone to be abused by miscreants, leaving their providers
more exposed [97].

With this causal model in hand, I can more precisely articulate the
core idea of this chapter. I want to infer security performance of a
provider from the abuse rate. Ideally, one would measure security
independently, but often this can only be done by collecting partial
indicators at best – e.g., hygiene indicators or patch levels for webstack
software – or it is not possible at all. I would like to test to what extent
performance can be estimated reliably as a latent factor that is driving
the abuse volume.

The model illustrates that this approach assumes we can control for
exposure and attacks. The former I will include in our models via a
number of indicators, which I will collect for the whole population
of hosting providers across the market. The latter we cannot observe
directly and I will include as a random variable. In other words: I
assume that attacks are randomly distributed across the attack surface.
In Section 3.4, I will test how reasonable this assumption is via a simple
simulation. Note that to the extent that this assumption does not hold,
it will increase the size of the error term of the model, i.e., leave more
variance in the abuse data unexplained and ultimately lead to greater
uncertainty in estimates of the security of providers.

3.3 data

Abuse Data

Not all abuse feeds can be used to answer questions about security
as the choice of feeds has to be balanced against the type of research
question [108]. And since we are interested in the security of hosting
providers, I use seven data feeds that include incidents typical for
hosting services: malware-related and phishing abuse.

The malware data is provided by the Stopbadware Data Sharing
Program and contains feeds from a number of volunteer companies
and research institutions for the entire duration of 2015 [122]. The
dataset contains URLs and IP addresses associated with and observed
to spread malware. These companies use different methodologies for
collection and criteria for inclusion, and furthermore the data shared
by these organizations does not necessarily reflect their complete view
of malware URLs. The phishing data is extracted from two sources:
Anti-Phishing Working Group (APWG) [123] and Phishtank [124]. Both
datasets contain IP addresses, Fully Qualified Domain Names (FQDNs)
and URLs associated with phishing. Table 3.1 provides a summary of
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Table 3.1: Data Feeds.
Period Organizations Incidents Abuse Type Provider

APWG 2015 5,496 376,796 Phishing APWG.org

Phish 2015 4,287 139,130 Phishing Phishtank

SBW1 2015 Malware Stopbadware DSP

SBW2 2015 Malware Stopbadware DSP

SBW3 2015 1,580 - 7,208 ** 11,976 - 376,561 ** Malware Stopbadware DSP

SBW4 2015 (ranging between) (ranging between) Malware Stopbadware DSP

SBW5 2015 Malware Stopbadware DSP

** Due to the terms of the data sharing agreement, we only report aggregated ranges for SBW data

the abuse feeds, the number of abused organizations and the number
of incidents they had according to each feed over the course of 2015.
Note that I employ and combine data from multiple feeds with respect
to each type of abuse to ensure better results as previous work has
advocated for [108].

For each dataset, I count the number of observed events per provider.
Constructing such an incidence metric involves several design choices
regarding the unit of analysis, attribution of incidents to the responsible
units and counting the number of incidents per unit which I have more
extensively discussed in the previous chapter. The metric I define as
event per provider is the number of unique (2nd-level-domain, IP-
Address) pairs recorded per provider in every abuse feed.

Recall that most concentration metrics choose Autonomous Sys-
tems (ASes) as the unit of analysis [93, 95, 100] and associate events
with AS owners based on the BGP prefix announcements for each AS

(also see Chapter 2). The AS owner, however, often merely routes the
traffic for the IP address and has no administrative responsibility for
it. In other co-authored work [44] however, I have developed an im-
proved attribution approach based on WHOIS data, as it tells us to what
organization an IP address is assigned. It provides a better approxi-
mation of who is responsible for abuse associated with that address
than routing data can provide. The difference in using organizations
rather than ASes as the unit of analysis has substantial repercussions.
Some organizations operate several ASes, while in other cases several
organizations may share a single AS. We found that, on average, one AS

harbors seven organizations. From the total set of organizations that
are found in WHOIS data, I select the hosting providers through a series
of steps which I explain in Section 3.4.

Figure 3.2a provides a correlation matrix of the abuse counts across
the seven feeds. The numbers underline an earlier point: abuse datasets
are heterogeneous and noisy. Even sets that observe the same type
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Figure 3.2: Correlations between incident counts and overlap of reported 2nd-
level-domains in feeds. Darker shades represent more overlap. Final
column indicates percentage of feed information already contained
in all other feeds combined.

of abuse, may be weakly correlated with each other. The correlation
coefficient between the abuse count in Anti-Phishing Working Group
(APWG) and the one in Phishtank, for example, is just 0.44. Among
the malware feeds, SBW1’s count also has a 0.44 correlation with the
counts from SBW2 and SBW4. Figure 3.2b, alternatively illustrates the
overlap between the abuse feeds in terms of what percentage of 2

nd-
level-domains (2LDs) reported as abusive is shared among the feeds.
The right most column in this figure illustrates the overlap of each feed
with all other feeds combined. In other words it expresses the exclusive
contribution of each feed to the overall combined data.

Hosting Data

To construct a mapping of the hosting provider market, I employ several
data sources and build on techniques used in previous work [44, 100].
The mapping approach to identify hosting provider organizations is
based on (i) IP ownership data from Maxmind’s WHOIS API [107] and
(ii) passive DNS (pDNS) data from DNSDB [111] generously provided
by Farsight Security. The passive DNS data contains Fully Qualified
Domain Names (FQDNs) and IP addresses that have been queried on
the web and detected by Farsight’s sensors in 2015.

Using the aforementioned datasets, we are able to capture several
properties of hosting organizations that we can use as proxy measure-
ments for their exposure (see Figure 3.1): (i) the total number of IP
addresses allocated to an organization, (ii) the number of IP addresses
allocated to the organization that are associated with domain names
(i.e., those observed in passive DNS data), (iii) the total number of 2LDs



48 evaluating hosting provider proactive security efforts

hosted by the organization, (iv) the number of IP addresses that are
associated with at least 10 2LDs (a proxy for shared hosting), and (v)
the number of 2LDs on shared IPs hosted by an organization.

3.4 hosting provider market

My starting point for constructing a mapping of the hosting provider
market is to map the entire IPv4 space to corresponding organizations
based on the Maxmind WHOIS data. This gives us the total population
of organizations to which IP addresses are allocated, as well as the
number of IPs allocated to each organization. I then use pDNS data
to construct the aforementioned structural organization properties
discussed previously based on what has been passively observed in
DNS traffic over the duration of 2015.
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Figure 3.3: Comparing the distributions
of organizations according to
WHOIS IP allocation data ver-
sus the subset observed in pDNS

data versus the subsets defined
as hosting and non-hosting.

I define hosting providers
as the subset of organizations
for which we have observed
at least 30 2LDs, a deliber-
ately chosen low threshold to
minimize false negatives. All
other organizations are con-
sidered non-hosting organi-
zations. Figure 3.3 illustrates
the distributions of the allo-
cated IP space to all organiza-
tions, the subset which have
been observed in DNSDB and
the subsets of hosting and
non-hosting providers respec-
tively.

A comparison of the dis-
tributions of ‘all’ organiza-
tions and those ‘observed in
DNSDB’ (respectively indicated by purple and green bands in the fig-
ure) demonstrates that DNSDB provides a reasonably unbiased view
of all organizations, and thus of providers, as the shapes of the two
distributions closely follow the same pattern, especially for organiza-
tions that are allocateds more than 10 IP addresses. This is consistent
with previous research, which found that DNSDB offers a reasonably
unbiased view into the entire domain name space [112].

We do however see discrepancies between the two distributions for
organizations with less than 10 IP addresses. DNSDB has less visibility
into this subset of small to very small networks. Given our threshold
of only 30 2LDs, the probability is very low that these organizations
with very few allocated IP addresses represent a significant segment
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Figure 3.4: Distributions of hosting providers over various organization prop-
erties that may be used as proxies for the provider’s exposure to
abuse.

of the hosting provider market. Note from the distribution of hosting
providers in Figure 3.3 (indicated by the blue band) that the bulk of
these providers have been allocated between 300 to 10,000 IP addresses.
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Figure 3.5: Distribution of shared host-
ing across the hosting mar-
ket. The plotted histogram
depicts the number of host-
ing providers with various
ratios of shared to dedi-
cated hosting across based
on pDNS data

Given the definition of the host-
ing providers, we can empirically
construct a picture of the afore-
mentioned ‘exposure properties’
of each hosting provider by em-
ploying the passive DNS data.
Figure 3.4 plots the distributions
of these properties for all hosting
providers, i. e. organizations that
match the definition.

In terms of exposure, note that
these properties not only capture
size, but also include information
about the business model of the
provider. Three types of hosting
services are related to the prop-
erties: dedicated hosting (one do-
main per server), shared hosting
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(multiple domains per server),
and services without domains (e.g., data centers or perhaps no hosting
services at all).

Together, the properties capture the mix of these three types of
services for each provider. Figure 3.5 illustrates the ratio of hosted
domains that share the same IP address with at least 10 other domains
to the total number of domains hosted by a provider as a histogram –
i.e., shared hosting. The peak on the left of the figure is the population
of providers with no shared hosting at all. Going from left to right,
an increasing portion of the domains of a provider reside on shared
hosting. In other words, the provider is increasingly dependent on
shared hosting as its main business model in webhosting.

For brevity, I will not go into more detail about the provider mapping
and instead refer the reader to [44] for a more in depth analysis of the
market.

3.5 exploring observation bias in abuse data
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Figure 3.6: Overlaid distributions of hosting providers with observed abuse
events (yellow) vs all identified hosting providers across the market
(blue) over their different estimated exposure properties
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I now first explore how my collected abuse data relates to the overall
population of providers. The first thing that jumps out is that just 34%
of all providers has at least one abuse incident in one of the seven
abuse feeds. So even the combined dataset lacks observations on the
majority of the market. This would be even more skewed when using
only a single dataset: they cover between 5-22% of all providers.

To explore what subset of providers have abuse events, Figure 3.6
shows histograms for each of their exposure properties. Each plot
shows the distribution of providers with abuse events (yellow) as an
overlay on the distribution of all providers (blue). On each indicator, we
see the same pattern: virtually all large hosting providers are present
in the abuse data, while this ratio drops rapidly for medium-sized and
small providers, where just a fraction is associated with an incident.
More precisely, abuse incidents have been observed for almost 99% of
the large providers (i.e., providers with 10,000 or more domain names).

One reason for this pattern is exposure: large providers have such a
high exposure to attacks that the probability of incurring a single abuse
incident becomes 1. That being said, there could also be observation bias
at work. Perhaps the methods that generate the abuse data, whether
based on automated tools or volunteer contributions, are less apt at
observing incidents in smaller and medium-size networks. I test this
possible explanation via a simple simulation.

Understanding the potential observation biases in the abuse data
is a key consideration in constructing abuse concentration metrics as
previous research points out [91, 100]. One way to identify bias is to
compare the datasets against other sources of abuse data. Kührer et
al. [114] for example compared abuse blacklists against each other and
against data they collected themselves. In a way, I have done something
similar by using seven datasets which in my case all display the same
pattern.

While such comparisons are helpful, other datasets are not ground
truth. They are also typically collected with similar collection method-
ologies. There is no ground truth for abuse data, of course. Observations
are actively avoided by adversaries, and the best observation methods
can at best hope to achieve a useful partial view. I therefore complement
the analysis via a simulation that tests to what extent the observed
pattern is consistent with a pure exposure effect. In other words, can
observed patterns be explained from the attack surface of providers?

For this purpose, I assume that attackers, in the search for domains
to comprise, attack the domains that they discover at random with a
fixed probability. The specific behavior of individual attackers of course
will depend on their capabilities and the types of exploits that they
are able to carry out. So I am not assuming that individual attackers
attack domains at random. But what I am assuming here is that the
joint behavior of all attackers may be modeled as all domains having a
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fixed, yet small probability of getting attacked by some attacker group.
In other words, that attacks may be considered as a random variable
over the range of domains.

Note that my datasets (see Table 3.1) also mainly capture cybercrime
that involves domain names. Therefore, the number of domains of
a provider is a useful proxy for its attack surface. If each domain
has a fixed probability p of being abused, then the probability of a
provider not being abused is (1− p)n, where n is the total number
of domains that it hosts. Conversely, the probability of a provider
being abused is equal to 1− (1− p)n. Note that for all providers, I may
obtain n from the exposure properties of the provider which I discussed
earlier in the process of mapping the hosting provider market. Then,
using a maximum likelihood estimator, I may estimate p from the
observed abuse data which results in a value of p = 0.0025. Given this
estimated probability, Figure 3.7 illustrates a ‘separation plot’ [125] of
the predicted and observed abuse status of all hosting providers.

What this plot demonstrates is the degree to which the calculated
probability of abuse per domain agrees with the actual observed abuse
data, thus providing some confirmation that my assumption regard-
ing the randomness of attacks may indeed be reasonable. Here, the
horizontal axis, and the trend line respectively illustrate all hosting
providers and the probability with which I predict they will be abused,
sorted in an increasing order. A green tinted vertical thin line in the plot
represents a provider for which an abuse event has been observed in
the abuse feeds. More dense and darker green areas of the plot indicate
a high density of providers with observed abuse events, light green or
white areas indicate fewer or no such providers. The concentration of
abused providers towards the right side of the plot illustrates the large
degree to which the estimation results and the observed abuse data in
Figure 3.6 are consistent.
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Figure 3.7: Separation plot of predicted versus observed abuse of hosting
providers.

Next, I run two sets of simulations. First, I randomly select domains
from the total population of domains and generate abuse incidents
for the hosting providers of those domains, until we reach the same
volume of incidents as I have observed in the combined empirical
datasets. Next, I follow the same process, but generate 10 times more
abuse incidents than the observed volume of abuse.
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I then compare the distributions of providers over the different
exposure properties in Figure 3.8 based on the simulation results.
The first simulation, generating the same number of events as in our
empirical data, produces a distributions that are highly similar to that
of the empirical abuse data. The second simulation shows that as
the volume of abuse increases, the distribution of abused providers
approaches that of the total population of hosting providers. Another
way to put this is that if we assume that all providers incur at least
one abuse incident per year, which anecdotal evidence from hosting
providers would suggest is not unreasonable, then the total number of
incidents would be at least one order of magnitude larger than those
observed by the seven abuse feeds combined. They see less than 10%
of all incidents at best.
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Figure 3.8: Non-biased distribution of abuse over population of hosting
providers

These results of the simulations as well as the results depicted in the
separation plot, suggest that patterns observed in Figure 3.6 are not
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the result of observation bias, but rather of attacker dynamics and the
random nature of the attack generation process. The simulations also
provide further support for the modeling decision that I will revisit
in the subsequent section, namely to model the attacks as a random
variable.

Having established that there is no clear evidence for bias regarding
certain providers, we can move on to the question of how to estimate
security performance as a latent variable from the array of abuse
datasets.

3.6 modeling security performance

We are now in a position to test whether we can infer the security
performance of a provider from the abuse data. Going back to our
causal model (Figure 3.1), the main idea can be summarized as follows:
if we are able to adequately control for exposure and we correctly
assume that we can model attacks with a random variable, then the
main driving factor in the abuse data is the security performance of
providers. That is once other factors are taken into account the only
remaining factor that drivers abuse volume should be the effectiveness
of provider security efforts. When these are less effective we should
expect more abuse and vice versa when the efforts are more effective.
We can then try to infer this effect as a latent variable from the abuse
datasets.

The simple simulation in the previous section provides support for
the choice to model attacks as a random variable. The simulation was
able to reproduce the empirical distribution of abuse events over the
hosting market by modeling attacks as random process over the attack
surface, as measured by the exposure indicators. This may be related
to how attackers search for different domains to exploit, nevertheless it
allows us to make simplifying yet reasonable modeling assumptions
about attacker behavior. Note that the simulation results also suggests
that our exposure indicators capture an important portion of the expo-
sure factor. A more precise test was conducted by Tajalizadehkhoob
et al.[97]. Using the same indicators, they were able to explain more
than 80% of the variance in two phishing datasets as a function of
exposure. This suggests that these indicators allow us to adequately
control for exposure.

Of course, the proof of the pudding is in the eating. i will test
whether my assumptions indeed hold by testing the predictive power
of the estimated security performance: what portion of the remaining
variance can be explained by providers’ security performance, after
having controlled for exposure effects. Before we get to that step,
though, I first discuss the statistical approach I propose: estimating
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a latent variable for each provider through a model based on Item
Response Theory (IRT). What makes this approach suitable?

The answer lies in understanding the key requirement for this task:
to estimate performance from a wide array of abuse data sources.
Given the noisy and heterogeneous nature of abuse data, making
reliable inferences about the security performance of providers requires
us to model performance over a range of abuse data sources [108].
Earlier work however, has not provided an elegant way to aggregate
information from an array of different abuse datasets. There have
been two basic approaches: estimate performance separately per abuse
dataset or merge all abuse data into a single set.

This first approach, estimating separate models, produces different
results for different abuse types – e.g., [3, 97]. At the level of individ-
ual providers, this can generate wildly different outcomes expectedly,
which is clearly undesirable for a benchmark. One solution is to aver-
age, or otherwise aggregate, benchmarks that are calculated from each
individual abuse feed – e.g., in Chapter 2 I used a Borda count method.
This is slightly better, but the method of aggregation introduces all
kinds of artifacts into the benchmark which, again, can significantly
impact the ranking of individual providers.

The second approach has been to simply merge the different datasets
into a single abuse metric (e.g., [36, 85]). This means a lot of information
is lost. The largest sets will drown out the signal of smaller sets, while
smaller sets are not necessarily less valuable. They might capture abuse
events that are harder to observe, such as the location of command-
and-control servers, but very relevant to the overall abuse landscape.
The merging might also average out differences in the susceptibility
of providers for certain types of abuse, but not for others. Any perfor-
mance benchmark would benefit from taking that into account.

Table 3.2 highlights some of the complex, yet meaningful, relation-
ships among abuse data sets. It compares abuse data from three of
our abuse feeds in relation to some of the exposure properties of the
providers. I compare two data sources capturing the same type of
abuse and two data sources capturing different types of abuse. The first
comparison, using phishing data from Phishtank and APWG, contains
signals about measurement errors. Some providers have a high incident
count in one feed, but a low count in the other feed. As both feeds cap-
ture the same type of abuse, we suspect this difference is mostly due to
measurement error. This demonstrates how (in)consistently the abuse
data captures this particular type of abuse. The second comparison,
between Phishtank and the SBW4data, also shows inconsistencies for
providers. In addition to measurement errors, this also signals differ-
ences in the susceptibility of the provider’s infrastructure to different
types of abuse. Clearly the consistency of the strength and reliability
of signals varies depending on which part of the hosting provider
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Table 3.2: Exposure properties of abused organizations in relation to various
abuse types for the 10th, 10-90 and 90th percentile of the providers
(respectively indicated by light blue, gray and orange colors).
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Note: Reported numbers in plots represent correlation strength

population we inspect as indicated by how strongly the different data
points for different segments of the population correlate.

To meaningfully capture the different signals within the abuse data
and to overcome the aforementioned issues, we apply techniques from
Item Response theory [126, 127] to our abuse data. In the subsequent
sections, we explain the general approach, specify the model, estimate
the latent variable of security performance and then test its predictive
power against independent abuse data.
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3.7 irt model specification

To better capture the information in each of our abuse feeds we specify
an analytical model which draws from Item Response Theory (IRT).
Applications of IRT models have previously been explored in risk
assessment [128]. However, IRT models are most commonly used to
measure the effects of an unobservable latent capability of a student
– let’s say math skills – from how well (s)he performs in a range of
tests. The student examination metaphor can provide a good intuition
of how our approach works. We approach incident numbers in each
of the abuse feeds as an indicator of how good or bad each student
performed in an exam consisting of several questions, with questions
corresponding to our abuse feeds. Needless to say, hosting providers
are the equivalent of students in this metaphor. Just as exam questions
vary in terms of subject and difficulty, we assume that our various
abuse feeds reflect similar properties. Some abuse events are more
difficult to detect than others, which is reflected by the number of
incidents observed per provider in different abuse feeds. Also note that
exam questions often have overlap in terms of their subject matter, and
we consider our 2 phishing and 5 malware feeds to reflect a similar
property as our analogy.

The model is graphically illustrated in Figure 3.9. For every abuse
feed j = 1, ..., k and for every provider n = 1, ..., N, the abuse incident
count Ynj follows a Poisson distribution

Ynj ∼ Poisson(λnj)

with
ln(λnj) = ln(E(Ynj|θn, xn)) = γj + xT

nβ − αjθn. (3.1)

This model consists of k Poisson regression models, one for each abuse
feed j = 1, ..., k, where γj is a feed-level intercept, xn is a vector of
exposure-related covariates for provider n with coefficient vector β
(shared across feeds), and θn is a continuous latent variable that cap-
tures structural variation in abuse counts across providers. This latent
variable has an additive effect on every abuse count, but the sensitivity
of each abuse count to the latent variable, αj, is different for every abuse
feed. We constrain αj > 0, j = 1, ..., k, so that a higher value for the
latent variable θn leads to lower expected abuse counts for every feed.
As such, a higher positive value for the latent variable θn represents
more effective security performance, and a negative value represents
less effective security performance. Hence, the latent variables θn quan-
tify the level of effectiveness of the security practices of each provider.
The feed-level sensitivity parameters αj represents the difficulty of mit-
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Figure 3.9: IRT model jointly explaining variation in incident counts for all
abuse feeds. The model simultaneously relates the number of inci-
dents empirically observed in each abuse feed with the exposure
properties of providers, attacker behavior which may be seen as ran-
dom error given the exposure of providers, and finally the security
performance of providers as the main factors driving abuse volume.

igating the abuse measured by each feed j = 1, ..., k. We further specify
θn as draws from a standard normal distribution

θn ∼ N(0, 1).

The variance of the latent variable distribution is constrained to 1 for
identifiability, since all the sensitivity parameters αj are freely estimated.

Intuitively, this model disentangles the portion of the variation in
incident counts that is due to varying levels of exposure, and attributes
the remaining variation to varying levels of security performance of
the providers, after considering what part of the variation is random
noise from attacker behavior after having accounted for exposure.

3.8 estimation results

To infer the security performance of providers from abuse data, we
input the incident numbers from all abuse feeds into the IRT model and
estimate the parameters of the model (see Equation 3.1) using MCMC
simulation. The model uses the exposure related variables (numbers of
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hosted domains, shared hosting domains, allocated IPs, hosting IPs and
shared hosting IPs) to control for exposure related effects. Note that
some of our exposure related variables capture the attack surface while
others the business type of providers. The model uses a logarithmic
transformation of the independent (exposure) variables as input. Part of
the variation in incident numbers that cannot be attributed to exposure
make up the values for our latent security performance variable.

I performed full Bayesian inference of the model parameters and
the latent variables by means of Markov Chain Monte Carlo (MCMC)
sampling [129]. I used weakly-informative prior distributions for this
purpose

γj ∼ N(0, 10), ln(αj) ∼ N(.5, 1), β ∼ N(0, 3)

reflecting a relative ignorance of their true values. I carried out MCMC
sampling using Stan [130] with the rstan R interface. I ran 4 chains for
1500 iterations each, with 750 warmup samples. This resulted in a total
of 3000 MCMC samples.

Table 3.3: IRT model parameter values for all abuse feeds

Parameter for Mean SE-Mean SD 2.5% 97.5%

γ [1] APWG -7.13 0.01 0.03 -7.20 -7.06

γ [2] Phishtank -6.09 0.00 0.03 -6.15 -6.04

γ [3] SBW1 -9.06 0.00 0.04 -9.13 -8.98

γ [4] SBW3 -5.10 0.00 0.03 -5.15 -5.04

γ [5] SBW4 -5.09 0.00 0.03 -5.14 -5.04

γ [6] SBW2 -5.72 0.00 0.03 -5.77 -5.66

γ [7] SBW5 -6.27 0.00 0.03 -6.33 -6.22

β[1] Owned IPs -0.75 0.00 0.01 -0.76 -0.73

β[2] Hosting IPs -0.36 0.00 0.01 -0.39 -0.34

β[3] Hosted Domains 3.82 0.00 0.03 3.76 3.88

β[4] Shared IPs 1.25 0.00 0.01 1.22 1.27

β[5] Shared Domains -1.96 0.00 0.03 -2.02 -1.91

α[1] APWG 3.19 0.01 0.03 3.14 3.25

α[2] Phishtank 1.83 0.00 0.02 1.80 1.87

α[3] SBW1 2.50 0.01 0.03 2.45 2.55

α[4] SBW3 2.14 0.00 0.02 2.10 2.17

α[5] SBW4 1.80 0.00 0.02 1.77 1.83

α[6] SBW2 2.13 0.00 0.02 2.09 2.17

α[7] SBW5 2.31 0.00 0.02 2.27 2.35

The MCMC algorithm converges towards the parameter values sum-
marized in Table 3.3 with R̂ values close to 1, which indicate conver-
gence of the sampling algorithm [131]. The table reports the estimated
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posterior mean value of each parameter along with the 95% credible
interval in which we estimate the value to be.

The first set of parameters, γ, are intercept values that set the baseline
of abuse levels for each abuse feed. The second set of parameters, β,
capture the effect of each exposure variable on the incident numbers
in all abuse feeds. The third set of parameters, α, capture how much
the security performance of providers affect abuse levels in each of the
feeds. Intuitively this is similar to the difficulty of exam questions from
our analogy of the IRT approach. For example α[5] which has the lowest
value among the α parameters, tells us that the security performance of
providers has the least effect on lowering incident numbers within that
feed. By analogy, it is a hard question to get right on a student exam.
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Figure 3.10: Distributions of security performance (latent variable)

The final model parameter, our latent variable θ, represents the
security performance of providers, which is what we are interested in.
Based on our modeling results, Figure 3.10 illustrates the distributions
of the posterior mean of the latent variable and the posterior standard
deviations for all providers respectively. As stated earlier, security
performance is measured on a continuous scale where larger positive
number represent more effective security performance and negative
numbers represents less effective performance. Notably, Figure 3.10b
demonstrates that the posterior standard deviation of a considerable
portion of the measured performance levels is large. The large posterior
standard deviation simply quantifies our own lack of certainty about
the true value of the latent variable. For that subset of measurements
our confidence in estimated values is low. We explain why this large
standard deviation occurs shortly here after.

Next, Figure 3.11 illustrates the distributions of the estimated latent
security performances of all hosting providers across the market. It
depicts the posterior mean of the latent variable by black dots along
side the 95% credible interval of the latent variable values as colored
error bars. An orange color bar indicates providers for which abuse
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has been observed while gray colors indicate providers for which no
abuse has been observed according to our abuse feeds. Of course and
as stated before, the security performance values are reported along a
latent variable scale where positive numbers represent better security
performance and negative numbers vice versa. To gain an intuition for
the reported security performance values, note that the last term in the
IRT model specification from Equation 3.1, which models the effect of
security performance on abuse volume, is characterized by a subtraction
of some value from the overall right hand side of the equation. This
basically means that a positive value for security performance results
is modeled as having a decreasing effect on the volume of incidents for
each provider.
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Figure 3.11: Estimated provider security performance with 95% credible inter-
val band. Security performance is reported on a latent variable
scale along the y-axis with positive numbers representing better
security performance and negative numbers vice versa. All hosting
providers identified across the market, are represented along the
x-axis in improving performance order.

Going back to the matter of the certainty of the estimates, roughly
stated, the posterior standard deviations for two thirds of the providers
is larger than 0.5. The remaining security performance values have a
standard deviation smaller than 0.5 and capture the level of security
performance with more certainty.

The consequential larger credible intervals are the result of a large
range of potential θ values being plausible, given the observed abuse
data and our model. Improving on this requires larger samples and
more abuse data with a stronger signal to noise ratio. This is a limitation
of our model and of the data. A second factor that leads to large
credible intervals for a subset of the providers is that these coincide



62 evaluating hosting provider proactive security efforts

with providers for which zero abuse incidents have been observed,
which also happen to be small hosting providers. For such providers
it is difficult to disentangle whether the lack of abuse incidents is
due to their small exposure or due to their high security performance.
Therefore our model is not able to accurately capture how well they
perform in terms of their security.

Another reason for larger credible intervals is when incident counts
in different abuse feeds are wildly different, combining high and low
abuse rates. As Table 3.2 illustrates, for a certain selection of providers,
abuse feeds show very different incident counts. Further analysis of
these cases however, revealed that all have a posterior standard devi-
ation smaller than 0.5 associated with their estimated security perfor-
mance.

Despite the uncertainty about the exact values of the latent variable,
in the next section we will see that taking the posterior means as a
simple point estimate of security performance proves to be quite robust
and can be used to generate good out-of-sample predictions.

3.9 robustness and predictive power

Given the estimated security performance levels, we can examine how
much of the variation in incident counts can be explained by the mean
point estimate of the latent variable. To do so, I construct a GLM
model of the incident counts which includes the latent variable as an
explanatory factor, in addition to the exposure related factors. As we
did in our IRT model calculations, the incident counts are fitted to a
Poisson distribution of the same form as described in Equation 3.1 ~.

~ Note the log linear
modeling, e. g. using the
Poisson distribution, is

both typically a
statistically appropriate
choice for fitting count

data, but also in this case
observed to provide a

reasonable fit to the
observed incident counts

based on residual analysis
and goodness-of-fit

indicators in the Bayesian
fitting process used to

estimate the latent variable

To test the predictive power of the approach, I measure the security
performance value repeatedly, each time leaving out one of the abuse
feeds. I then use the measured security performance to explain the
variance in incident counts in the independent abuse feed that was
left out of the estimation process. This way, we may cross-validate the
results and can examine the predictive power of the calculated security
performance values. Table 3.4 shows how different models for the
SBW1 dataset explain the observed variation in incident counts, where
security performance was measured from the other abuse datasets.

Model (1) is a baseline model which only includes a constant baseline
value as an explanatory factor. Model (2) adds the number of hosted
domains as an explanatory factor, and model (3) includes all exposure-
related indicators. Model (4) is the final model and adds security
performance as an explanatory factor.

As indicated by the log-likelihood, AIC and dispersion of the models,
model 4 is a considerable improvement over the models with only
exposure effects. In addition, the pseudo-R2 values presented in the
table indicate that exposure alone explains 78% of the variation in
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abuse counts, while latent security practices add an additional 20% to
the explained variance – or 91% of the variance that remained after
controlling for exposure.

Table 3.4: Poisson GLM regression with ln link function

Dependent variable:

SBW1 Incident Counts

(1) (2) (3) (4)

Hosted Domains (Log10) 1.96
∗∗∗ −1.58

∗∗∗
1.70

∗∗∗

(0.01) (0.11) (0.09)

Hosted Shared Domains (Log10) 1.98
∗∗∗ −0.53

∗∗∗

(0.10) (0.08)

Allocated IPs (Log10) 0.43
∗∗∗

0.05
∗∗∗

(0.02) (0.02)

Hosting IPs (Log10) 0.26
∗∗∗

0.09
∗∗∗

(0.03) (0.03)

Shared Hosting IPs (Log10) 1.42
∗∗∗

1.22
∗∗∗

(0.03) (0.03)

Security Performance −1.84
∗∗∗

(latent variable) (0.01)

Constant −1.01
∗∗∗ −7.95

∗∗∗ −7.24
∗∗∗ −9.15

∗∗∗

(0.01) (0.04) (0.06) (0.07)

Observations 32,822 32,822 32,822 32,822

Log Likelihood −63,479.84 −21,701.49 −15,556.22 −3,142.87

Akaike Inf. Crit. 126,961.70 43,406.97 31,124.44 6,299.74

Dispersion 422.43 9.71 12.39 0.12

Pseudo-R2
0.00 0.68 0.78 0.98

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The coefficients for the explanatory variables in the model can be
interpreted as follows. I use model (4) as an example, needless to say
that the other models can be interpreted in a similar fashion. Lets
take the coefficient value of 1.70 for the number of hosted domains
as our primary example. This value indicates that, while holding all
other independent variables constant around their mean, increasing
the number of hosted domains by 1 unit (the equivalent of multiplying
the number by 10 due to the log10 scale of the variable) results in
the expected number of incidents of the provider being multiplied by
e1.70 = 5.47.

The interpretation is slightly different for the coefficient of the se-
curity performance variable: −1.84. Here, the GLM model suggests
that increasing the variable by 1 unit, while holding all other variables
constant, reduces the number of incidents of the provider by a factor of



64 evaluating hosting provider proactive security efforts

e−1.84 = 0.158 – in other words, by 84%. Increasing the latent variable
by 1 basically means increasing security performance by one standard
deviation. The range from -2 to 2 includes 95% of all providers.

The inverted coefficient signs of the number of hosted domains and
shared hosting domains between model (2), model (3) and model (4)
are due to the interactions between exposure variables, as some of
them are derivative of others. For instance, ’large hosted domain size’
results in ’large hosted shared domain size’ as well. Modeling each of
the exposure variables separately shows a positive significant effect for
each one, which is in line with what we observe in model (4).

We have repeated the same procedure for all abuse feeds. That is,
we measured security performance based on all feeds except one and
then explained the variance of incidents counts in the feed that was left
out. The main results are summarized in Table 3.5. The total explained
variance in the incident numbers, using both exposure and security
performance, ranges from 75% to 99% of the total variation. The key
finding here is that the security performance variable reliably adds
to the explained variation of each individual feed that has been left
out of the security performance estimation process. This suggests that
the variable is able to capture the security performance of providers
reliably enough to have considerable predictive power. The coefficient
value for the latent variable in these models ranges between -2.13 to
-1.54 and consistently shows a significant relation with the incident
counts as the dependent variable.

Table 3.5

Incident Counts According to Abuse Feed

SBW1 SBW2 SBW3 SBW4 SBW5 APWG Phishtank

Variance Explained by

Relative to intercept only baseline model

Exposure 0.78 0.86 0.83 0.89 0.85 0.70 0.83

Exposure + Security Performance ** 0.98 0.95 0.99 0.96 0.96 0.75 0.89

Relative to exposure only model

Security Performance ** 0.93 0.64 0.98 0.65 0.79 0.19 0.40

Note: ∗∗ Calculated from all feeds excluding feed indicated by column heading

The additional explained variance for all results, indicated in the
bottom row of Table 3.5, is remarkably high for such noisy data on
such a multicausal phenomenon.
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Two feeds stand out however. The predictions for the APWG feed
and the Phishtank feed are less strong than those for the malware-
related feeds. We speculate that this might be due to an imbalance in
the number of feeds that have been used as input to the IRT model for
calculating the security performance variable. In both instances, the
modeling procedure involves the use of five malware-related abuse
feeds, leaving only one additional phishing feed that has been used to
measure the security performance. Therefore the security performance
variable calculations are slightly skewed towards values dictated by
the malware related feeds. In future work, this seeming lack of unidi-
mensionality can be further explored by estimating a two-dimensional
item-response model, in which the security performance of providers
is allowed to vary along two dimensions. Presumably, one of these
dimensions will be more strongly correlated with phishing abuse, and
the other with malware abuse. Such an analysis may reveal to what
extent these different types of abuse feeds can be seen as measure-
ments of the same latent trait, and as a consequence, how sensitive
our security performance estimates are to the selection of abuse feeds
used to estimate them. In addition, finding a diverse set of abuse feeds
with minimal redundancy will likely improve the robustness of the
estimated security performance.

3.10 related work

Many studies use abuse feeds as their primary source of data on
security incidents, with different objectives.

A few studies have looked at abuse patterns across single or multiple
threats, with the intent to explore or explain what factors correlate with
abuse levels. The main implication of these studies is that concentra-
tions of abuse are the result of poor security practices. Zhang et al.
found that network hygiene – measured by the normalized number of
misconfigured systems – is correlated with a range of abuse incidents
as observed by various blacklists [85]. Liu et al. have also been able
to predict data breaches using various indicators of network hygiene
and a combination of security incident data feeds [73] . The underlying
logic is that security hygiene practices of providers drive abuse rates
across different threats. Or reverse: that one could infer effective secu-
rity practices from combining different abuse data sources. Note that
this study merged all of their abuse data into one combined data set,
which might mean that the largest set overwhelms all others and thus
the study finds a relation with that specific set of observations of abuse.
A similar approach, but then at the organization level, was conducted
by Edwards et al. They assessed the security performance of organiza-
tions from externally collected indicators of their security posture, and
find that it correlates to abuse data [132]. Shue et al. also utilize abuse
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information from multiple abuse sources and combined them into a
single set to examine the connectivity characteristics of networks with
unusually high concentration of blacklisted IP addresses [92]. Vasek
et al. combine abuse data sources to identify risk factors for webserver
compromise [90]. Soska and Christin extend this work, by developing
predictive systems to identify whether individual websites may be used
for malicious purposes in the near future through the extraction of
features from website contents, and verifying their predictions using a
combination of abuse data feeds [133]. Our work is similar to this body
of work by following the logic that is behind correlating indicators with
abuse. However, our work mainly differs in its unit of analysis, namely
hosting provider organizations, and how we utilize our abuse datasets
towards our goal of inferring security performance.

A separate body of work has looked at concentration of abuse events
in certain networks [36], Internet Service Providers (ISPs) [80, 116],
Autonomous Systems [93, 100, 105], countries [3, 117, 118], organiza-
tions [73], payment providers [13], registrars [5], registries [112], and
other agents. The idea is that such concentrations are amenable to
intervention. They are interpreted to reveal attacker economics – such
as scale advantages – or defender economics – such as a lack of security
investment by some agents because the cost of incidents is external-
ized to others [91, 97]. This chapter contributes to this body work by
offering a systematic explanation for abuse concentrations, replacing
speculative interpretations of what they imply about security efforts
or attacker preferences. This work is most closely related to [97] in
which Tajalizadehkhoob et al. propose analytical models to explain
abuse concentrations based on exposure. I build upon this work with a
different modeling approach, based on IRT. I also build upon [44] to
construct a mapping of the hosting provider market and explore the
issue of bias in my abuse data.

Others studies have experimented with mixing abuse data to infer
reputation scores for individual hosts or IP addresses to help protect
services. One such approach is the idea of threat exchanges. Thomas et
al. examined the usefulness and limitations of mixing multiple sources
of abuse information for this purpose [25]. This work helps illuminate
the relationships among abuse data sources, or the lack thereof, but
their analysis has very different purpose and does not provide any
insight into the security efforts of larger aggregates, such as networks
or providers.

Orthogonal to the subject matter of this chapter is the wide range
of problems associated with incident and abuse data, on which a lot
of security research is based. In Chapter 2 for instance, I systemati-
cally walk through some of the difficulties associated with creating
operator benchmarks based on multiple data sources [100]. Clayton
et al. highlight considerations that need to be made before intervening
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based on abuse concentration metrics [91] an important part of which
is measurement bias and possible artifacts that it produces. Kührer et al.
attempt to quantify the measurement bias of a combined set of malware
blacklists in comparison to independent data sources [114] and find its
effects to be considerable. These studies combine data sources to reduce
the effects of bias, use independent datasets to examine consistency and
use multiple measurements to indicate stability of results over time.
The implication being that there is minimal/negligible effects from
bias. Pitsillidis et al. reflect on the various spam abuse data collection
techniques and the variations in abuse data that can produce different
findings [108]. The authors investigate the noisy nature of spam abuse
data and how it is necessary to combine multiple data sources to more
appropriately investigate security questions. Metcalf and Spring com-
pare the contents of 25 different blocklists and surprisingly find very
little overlap between the contents of the blacklists [109]. This work
takes such issues into account and carefully explores the bias in our
various data sources to ensure minimal effects on its results.

3.11 discussion and conclusions

The success of many industry and government initiatives to combat
cybercrime relies on the ability to empirically track the security efforts
and progress of various market players. Abuse data is a critical resource
in that endeavor, but also a rather unruly one. This chapter addressed
the question of whether one can infer a reliable measurement of security
performance of hosting providers from an array of different abuse feeds.

Abuse datasets are notoriously noisy, highly heterogeneous, incom-
plete, biased and driven by multiple causal factors that are difficult to
disentangle. Earlier research has managed to address some of these
issues, but here I have presented a more comprehensive approach that
takes all of them into account. I have applied this approach to the
hosting sector, which is associated with a large portion of all observed
abuse events.

I have also presented a causal model for the generation of abuse
data that is implicitly behind much of the discussed empirical research.
Furthermore, I have undertaken an exploration into observation bias,
which showed that its impact is limited in terms of the distribution
across the hosting market. The heart of the proposed approach is a
modeling approach based on Item Response Theory (IRT), which esti-
mates the security performance of hosting providers as a latent variable
from an array of abuse datasets. The Bayesian nature of the approach
also means that we can quantify the (un)certainty that we have about
the security performance signal, as the security performance of each
provider is expressed as a distribution. The proof of the pudding is in
the eating, of course. I have tested the robustness of the approach via
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out-of-sample predictions. And I found that the security performance
measurements can predict a large amount of the variance in abuse
incident counts, after controlling for exposure. In short, our results
demonstrate that a careful modeling of abuse data can generate robust
and reliable signals about the security performance of providers.

There are also limitations to this approach of course. Due to the
noisy nature of the abuse data and the limitations of the model, the
certainty in our security performance factor for providers can be low,
for a significant part of the hosting provider market, most notably the
smaller providers. That being said, the fact that the modeling approach
is able to quantify uncertainty is in itself an improvement over existing
approaches. Notwithstanding the uncertainty, the results turned out
to be remarkably robust and powerful, as shown by the out-of-sample
predictions. Prediction power for the two phishing datasets was lower.
One answer would be to select a more balanced set of datasets. A
less arbitrary approach would be to experiment with two-dimensional
latent trait models, which I intend to undertake in future work.

In sum, I would argue that the current approach can help improve
the security incentives by reducing information asymmetry in markets
where abuse incident can be observed and associated with defenders.
It provides a basis to measure the impact of security controls and
practices on performance, thus providing a more empirical basis for
industry security practices and government oversight.
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R E M E D I AT I O N E F F O RT S

In Chapter 2, I systematically walked through some of the challenges of
developing metrics for and comparing hosting provider security postures on
their basis. Subsequently, in Chapter 3 I discussed a comprehensive modeling
approach to develop such metrics based on observing how frequently abuse
incidents occur at each provider. These developed metrics are reflective of
proactive security efforts as they signal how well providers prevent security
incidents from happening in the first place. They capture the idea that if
providers proactively secure their infrastructure through effective security
practices, they should have to deal with less incidents, something which should
also be reflected in lower numbers of and less frequent incidents.

But in Chapter 2, I also discussed a second type of metric for comparing
hosting provider security postures which is based on how timely incidents are
remediated by the providers once they have already occurred. In this chapter, I
systematically examine how abuse data may be employed to construct such
metrics and compare hosting provider security performance on their basis.
These alternative metrics, which capture incident remediation times, reflect the
reactive security of providers and yield a more direct measurement of security
effort. They capture the idea that once incidents occur, independent of how
exposed or secure the providers’ infrastructures are, more secure providers
should remediate incidents faster. As such, they have the added benefit of their
outcomes not being affected by provider exposure.

I first present an empirical analysis of how the actions of defenders and
attackers impact the time required to remediate abuse involving websites. Upon
examining two leading industry data sources of abuse data, I then identify
two fundamental challenges that must be overcome in order to develop this
second type of metric and to draw valid inferences about provider security on
their basis: (i) measurement errors and (ii) multi-causality. I identify different
causal factors affecting remediation time, notably the behavior of attackers and
the shared responsibility of different defenders. I then disentangle and quantify
the causal impacts by constructing survival regression models with a set of
explanatory variables that capture each actor’s behavior and subsequently
derive metrics for comparing hosting provider security postures.

This chapter is based on my third peer-reviewed study on the subject of
metrics development [102] (still to be published), focusing on the development
of security metrics that are reflective of reactive provider security efforts.

69
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4.1 introduction and background

“Abuse” data, for example phishing, malware spreading, or botnet
command and control (C&C) domains, are circulated industry wide and
used in the day-to-day fight against cybercrime. Many industry sources
collect, track, and share data on website abuse to protect customers
and remediate compromise. This brings immense benefits such as
scale, operational visibility, and impact to name a few. Moreover, abuse
data are invaluable to researchers, potentially shedding light on the
effectiveness of defender responses. To understand which defenders
and their respective responses are more effective at remediating abuse
however, we first need to be able to compare defenders.

As such, this chapter focuses on how to leverage abuse data towards
comparing defender responses from data on their incident remedia-
tion times: i.e. the time required by each to clean up a compromised
domain or neutralize a maliciously established one. To this end, I col-
lect and analyze data from two leading industry sources, Google Safe

Browsing [17] and Spamhaus DBL [134] which track the abuse of domain
based resources hosted within various networks. While the primary
purpose of this data is to protect users by identifying malicious activity,
their sources also indirectly track the time required to remediate abuse
incidents.

Internet intermediaries, which are often in a key position to respond
to abuse, are broadly acknowledged to play an important role in de-
fending against and the remediation of abuse [43, 51, 78, 100, 101,
112]. Driven by the fact that our collected abuse data largely captures
incidents in hosting networks, my aim is to compare the remediation
efforts of hosting providers using this data. Achieving this, constitutes
a key step towards understanding which hosting providers are more
effective at defending and perhaps understanding why.

While most prior studies characterize and compare hosting provider
security efforts based on incident counts [97, 101], i.e. abuse concen-
tration, this study measures and compares responses more directly
by constructing metrics based on the amount of time taken for abuse
incidents on hosting provider networks to be remediated. The study
also differs from prior work that measure remediation times as it does
not focus on the effect of specific countermeasures (c.f. [19, 135]) or the
effect of interventions (c.f. [77, 136]) on remediation times but rather
on hosting providers as defenders themselves and the effect they have
on remediation.

Despite our data from the industry sources having been used in
numerous prior studies, it should come as no surprise that real-world
measurements of remediation time are prone to all kinds of errors
and artifacts that affect observations which are implicitly or explicitly
discussed as limitations in prior work. The way in which most industry
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abuse data are collected is underspecified, often intentionally, to combat
reverse engineering by attackers and competitors. This leads to an
opaque view of the data generation process and its measurement errors
which only become transparent once data has been analyzed in-depth.

It is also important to realize that incident remediation times are the
resulting outcome of the entangled actions of multiple actors [43, 53],
most notably webmasters, intermediaries such as hosting providers, the
third parties who discovered the abuse and, last but not least, attackers.

Notwithstanding this jumble of entangled measurement errors and
causal factors, many studies directly attribute observed variation in
remediation times to specific actors - for example webmasters [26,
135, 137] or network operators [36] - sometimes overlooking the other
driving factors. Others attribute variation to the introduction of specific
countermeasures - for example notifying some of the involved parties
in incidents and in a position to act upon the notifications [19, 54]. The
studies that deploy a randomized experimental design in studying their
factors of interest (e.g. [19, 54]) can make such attributions with some
confidence but are also typically the ones that are focused on measuring
the effect of a specific countermeasure. In observational studies like this
study however, it is important to rule out that differences in remediation
time are not caused by factors other than the factor of interest, i.e. the
defenders that are being compared, and to control for the causal effects
of other actors.

The challenge therefore, is to identify the influential casual factors in,
and where possible overcome the measurement errors of, remediation
time data towards drawing robust inferences about how various hosting
providers compare in terms of their remediation efforts. This study
should also help anyone using third party abuse data, to avoid its
potential pitfalls, by demonstrating an approach of how such data can
be more safely consumed and interpreted.

A necessary first step towards this goal then, is to systematically
identify factors that drive variation in empirical observations of reme-
diation times. I therefore develop an analytical model in Section 4.2
that identifies sources of variance – in addition to webmaster behavior –
based on the data generation process underlying prior work and careful
analysis of the data sources.

Given the widely used industry abuse feeds, a detailed description
of the data and my methodology for extracting remediation times from
each dataset are described in Section 4.3.

I then analyze the data in depth in Section 4.4, while Section 4.4.1
illustrates how differences between when a cleaned resource is dropped
from the blocklist contribute to significant measurement errors. Section
Section 4.4.2 demonstrates how widely used metrics in the literature
and inferences drawn therefrom may be affected by these measurement
errors.
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To draw, inferences about the causal drivers of remediation efforts, I
subsequently construct several explanatory models of the remediation
time data in Section 4.5. Using a set of proxy variables pertaining to each
agent’s behavior described in Section 4.5.1, I then investigate how the
multiple agents identified by the analytical model influence remediation
time by disentangling their causal effects. While prior work has focused
more on webmaster efforts, in Section 4.5.2, I find that hosting provider
efforts and attacker behavior each have a strong impact on remediation
times. For the DBL data, provider and attacker-related factors together
explain nearly 60% of the total variation in remediation times. For GSB
data, I again find that provider characteristics also explain 12% of the
total variation.

To deal with the measurement errors that I identify in the datasets,
I triangulate my findings by comparing DBL malware data to Safe
Browsing data in Section 4.5.3 in order to reach more robust inferences
about and comparisons of hosting providers. While some of the effects
that I find are consistent and therefore may generalize, I also find that
certain provider-level explanatory variables have inconsistent effects
(i.e., the same characteristic is associated with longer remediation times
in one dataset and shorter times in the other). This both demonstrates
and reinforces the need for more rigorous triangulation in future studies
of a similar nature. I then briefly reflect on this study’s empirical
findings in Section 4.5.4.

Next, Section 4.6 summarizes the related work, highlighting the
similarities and differences, and how this study extends prior work.

I finally conclude by providing recommendations in Section 4.7 and
articulating the main lessons learned from the study applicable in
future research.

The main contributions may be summarized as follows:

• I provide an analytical model describing sources of variation in
remediation time measurements. It generalizes existing models
from studies which are largely based on measuring incident
counts (c.f. [97]), to the case of tracking incidents over time.

• I unpack how measurement errors manifest in remediation time
measurements and how they threaten the validity of inferences
drawn therefrom.

• I demonstrate a modeling approach to compare defender re-
sponses and draw robust causal inferences from noisy remedia-
tion time measurements. As such I extend prior work by explicitly
modeling and controlling for the behavior of a more complete set
of actors.

• I demonstrate that hosting provider and attacker behavior signifi-
cantly affect remediation times.
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• I demonstrate an approach of "triangulation" across multiple data
sources to limit the impact of remediation time measurement
errors on causal inferences drawn from the data.

• I discuss and propose alternative solutions for improving data
collection and observational research based on remediation time
measurements.

4.2 data generation model for remediation times

As a first step, I have identified a broad set of factors that influence
the data generation process and observations of remediation times by
analyzing prior research. I incorporate these factors into an analytical
model, which captures the sources of variance in remediation time
observations (Figure 4.1). The model separates influential factors into
two main sources of variance: measurement errors and causal factors.
An intuitive way to think about these factors is that they explain why
two empirical observations of remediation time may differ.

Figure 4.1: Analytical model of variation sources in remediation times

I first briefly explain the various factors of this analytical model. At
suitable points I also refer to literature in which some of the elements
have been explicitly or implicitly discussed as findings or limitations.

I start with discussing variance in observations driven by measure-
ment error and how the factors listed under this category in Figure 4.1
have been discussed in the literature.

Prior work discusses several types of measurement errors that may
affect remediation time data. For example, imperfect vulnerability and
abuse detection instruments lead to false positives and negatives (cf
[25, 55, 135, 138, 139, 140]). Similarly, imperfections can also lead to
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incorrect detection of remediation (cf [77, 135]). When remediation is
carried out by making the harmful resource unavailable, researchers
may incorrectly deem malicious resources as clean that are in fact
temporarily unavailable due to networking problems [28].

Perhaps to avoid or lessen the impact of such imperfections, some re-
searchers rely on real-time abuse data compiled by industry to measure
remediation time [135, 141]. Such abuse feeds have certain advantages,
including scale, impact and visibility, as they are often supported by
more resources and expertise than academic measurements can bring
to bear. Furthermore, because being placed on an industry blocklist can
have immediate negative consequences, webmasters are incentivized
to take action and drop their blocked resources off the list. The choice
of consuming industry data however, comes at the expense of loss of
control and accepting an opaque view of the data generation process,
along with its potential measurement artifacts and errors.

Additional errors arise when datasets are augmented with labels for
further analysis, such as assigning responsibility for incidents to specific
entities [97, 100] or differentiating the type of abuse or vulnerability.
For example, prior work discusses that certain types of abuse are more
difficult to detect. Attackers may also actively try to evade detection
[21, 28, 43, 141, 142]. Attacks that are difficult to detect may not show
up at all in remediation data or may appear shorter in duration due to
difficulties in detecting their initial onset.

Measurement frequencies also lead to imprecision over exactly when
incidents and, later, remediation occur [60, 135, 141]. This can in turn
bias remediation time measurements [3, 44]. For example, all such
measurements systematically underestimate the remediation time of
incidents that have not been resolved by the end of a study or ones
that existed at the start of a study. As such, remediation time mea-
surements at best represent estimates of true remediation time. As
a result, researchers regularly employ survival analysis (e.g., [19, 21,
141]), a statistical technique designed and well equipped to deal with
remediation time estimations and its inherent biases. Other forms of
biases may also arise, for example when measurement instruments are
employed at different rates during a study or in relation to specific data
subjects [18, 135].

Having enumerated many of the factors leading to measurement
errors, I next turn to discussing the relevant causal factors driving
variation in empirically observed remediation times. These relate to
attacker and defender actions, that is, the efforts of those perpetrating
and remediating abuse. I first discuss factors relating to attackers.

Prior work has demonstrated that the way in which attackers abuse
resources plays a role in how well they protect them against detection
and remediation. For example, Moore and Clayton demonstrated that
remediation times were slower for phishing attacks perpetrated by
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criminals using botnets to host resources, compared to those compro-
mising websites [60]. Similarly, in their investigation of search result
poisoning and search redirection attacks Leontiadis et al. have demon-
strated different remediation times for abused resources, depending
on whether the resources are owned or more closely guarded by the
attackers themselves or not [20]. More specifically, Leontiadis et al.
demonstrate that traffic brokers employed to redirect traffic for instance
to fake pharmaceutical websites, which are under the full control of
attackers, are remediated at a much slower rate than the actual phara-
maceutical websites themselves, or the compromised websites that are
used to advertise the latter in order to increase their search rankings.

Some prior work also discusses the fact that attackers may use a sin-
gle resource for several purposes at different times or abuse a resource
again if not properly remedied [100, 135, 141]. Multiple infections,
e.g., one domain name being repeatedly compromised can prolong
remediation time. Finally, whether attackers misuse hacked resources
or maliciously create their own, also plays a role in when or whether
potential remediation will take place at all [19, 135]. Attackers may
also use bullet-proof hosting services that notoriously ignore abuse
complaints and help miscreants dodge remediation [100, 143]. It is
unfortunately impractical to expect attackers to assist in remediating
their own maliciously created resources. Consequently, the burden of
remediation of maliciously-hosted content falls entirely on defenders
who do not directly control the resources in question.

On the defender side, the literature discusses the role of actors who
influence remediation efforts. I categorize these into two main types:
webmasters and intermediaries ~. Webmasters understandably play a

~For a comprehensive
discussion on the roles of
various actors in
combating cybercrime, I
refer the reader to [43, 53].

crucial role in remediating abuse on their systems. They typically have
the most control over a resource and its security. They are also most
directly affected if their traffic plummets as a result of appearing on a
blacklist. Much of the research has focused on the efforts of webmasters
in combating abuse [26, 30, 135].

Yet there is reason to believe that when it comes to remediating
abuse, intermediaries play at least as big of a role as the webmasters.
Intermediaries include hosting providers, network operators and reg-
istrars. They are often better positioned to observe abuse directly and
process third party abuse reports. In some contexts (e.g., shared host-
ing [78]), providers are capable of directly implementing remediation.
Researchers have investigated the importance of hosting providers [28,
44, 51, 141, 144], ISPs [80], and registrars [4, 112] in remediating abuse.

Of course independent third parties such as governments, law en-
forcement, and organizations harmed by or tracking abuse can also
influence remediation. Prior research has established that the incentives
of the party requesting remediation often influence whether and how
fast abuse is remediated [67]. More indirectly, third parties create cer-
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tain institutional and socio-economic environments in which criminal
behavior may be more or less persistent [143, 145]. Such third party
influence however, is indirect and acts through the medium of the
efforts of defenders and attackers discussed earlier.

Defenders jointly influence how timely or effective remediation is.
Webmasters impact remediation through patching and cleaning of their
abused resources, intermediaries through their proactive and reactive
security efforts and third parties through monitoring, notifying and in-
formation sharing about vulnerabilities and abuse. Finally, remediation
times also depend in large part on the efforts of attackers in designing
attacks that evade detection.

4.3 industry abuse data

For this study I collect data from two industry leading abuse feeds to
gather observations on the remediation time of abuse incidents. Both
feeds are operational real-time blocklists actively used to prevent access
to online resources or warn Internet users of potential harm that they
may face through accessing the flagged resources. I first provide a short
description of each data source and its data generation process to the
extent that is publicly known in Section 4.3.1 and subsequently ex-
plain the methodology for extracting observations on hosting provider
remediation responses from these data sources in Section 4.3.2.

Data Feeds and Collection Methodology

Here, I collect data from the Google Safe Browsing [17] and Spamhaus
DBL [134] abuse feeds. These jointly capture information about the
remediation of three distinct abuse types, namely: malware, phishing
and botnet Command-and-Control (C&C) infrastructure. To provide a
more detailed overview, I split the data collected from these feeds into
distinct datasets each focusing on the remediation of a single type of
abuse. A summary of this data is provided in Table 4.1.

Table 4.1: Overview of abuse feeds and data extracted from the feeds over the
period of 2017-07-17 / 2017-10-31

Dataset Organizations Hosters URLs 2LDs Abuse Type Abuse Feed

GSB 3,618 2728 295,326 127,833 Malware Google Safe Browsing [17]

DBLM 765 675 - 3,684 Malware Spamhaus DBL [134]

DBLP 1,678 1,357 - 94,403 Phishing Spamhaus DBL [134]

DBLCC 1,351 1,135 - 36,980 C&Cs Spamhaus DBL [134]

The GSB dataset, derived from Google’s Safe Browsing feed, is com-
prised of URLs that attempt to automatically download malware onto
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victim computers when visited. While the genesis of this feed can be
traced to a published research paper [138], the feed today is essentially
a black box for which only specific details about its collection and
scanning methods are publicly known. What is known is that Google
regularly flags URLs which point to harmful content, notifies appropri-
ate parties (webmasters / domain owners) of the flagged domains and
monitors cleanup progress through rescanning flagged resources. This
feed is used by Google to displays warnings to Internet users if flagged
domains appear in search results, or when users navigate to such do-
mains within the Chrome, Firefox or Safari browsers. If a domain owner
signs up, they will be notified via Google’s webmaster tool and can
take action if and when security issues are discovered. Domain owners,
perhaps with the assistance of their hosting providers, must remove
the harmful content in order to drop off the list. After harmful content
has been removed, webmasters can request a rescan through Google’s
webmaster tool or through StopBadware’s appeals process. Without
a rescan request, domains are automatically rescanned 14 days after
having first been flagged. The frequency by which flagged resources
are automatically rescanned beyond the 14 day period is not publicly
known, although Google’s public pages indicate that some networks
may be scanned more often than others. Google claims a negligible
false positive rate [135]. Through collaboration with StopBadware, I
have an hourly view of this feed and collect snapshots of its data. I
refer the reader to [17, 135, 146] for more information regarding this
data.

The DBL{M|P|CC} family of datasets are derived from the Spamhaus
DBL (Domain Block List) feed, which is a real-time blocklist of 2

nd-level-
domains (2LDs) with low reputation. Spamhaus deems these domains
to be involved in sending, hosting or origination of spam, phishing
websites, distribution of malware or C&C infrastructure of botnets. The
feed is primarily intended to be used by mail server software to identify,
tag or block incoming email containing domains that Spamhaus flags
based on the contents of message bodies. The DBL can be used to reject
spam email, as well as emails containing or pointing to harmful content
in their message body. Documentation suggests that spam traps are
used primarily to populate the DBL. DBL also claims that their feed
has almost no false positives [134]. To achieve that, Spamhaus drops
blacklisted entries if a certain expiry time has been reached. Entries are
tagged with additional information on the type of abuse. These tags
fall into two main categories of abused legit and malicious domains.
Within each category at least 4 subcategories are identified namely, spam,
phishing, malware and botnet C&C. The DBL{M|P|CC} datasets have
been constructed based on these tags. Because my focus is on websites
hosting malicious content, I discard the entries flagged for spam which
typically point to end user machines rather specific hosted servers. I
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have been collecting a snapshot of the entire DBL list every 15 minutes
during the period indicated in Table 4.1. Spamhaus documentation
suggests that flagged abusive domains are regularly monitored for
remediation although it is not clear how frequent rescanning occurs.
More detailed information about the DBL data feed can be found on
the DBL documentation pages [134].

Definitions and Data Processing Methodology

I extract incident remediation time observations from the data, by
processing the snapshots collected from each data source. Note that
the GSB dataset snapshots record harmful URLs, whereas the DBL
datasets record harmful domains as explained in the previous section. I
defined and tracked incidents across snapshots at a domain ownership
level in order to unify the unit of analysis across all datasets. That
is, incidents were defined as pertaining to 2

nd-level-domains (2LDs),
e.g. example.tld. In certain cases where domains may be owned at
sub-levels, for example with a structure like *.example.tld, incidents
were defined as pertaining to the sub-level domains ~. I employed

~Such cases typically
occur on cloud and shared

hosting platforms or for
example under TLDs like

.co.uk.

Mozilla’s public suffix list [147] to map all snapshot entires onto their
defined 2LD unit of analysis.

Given this particular unit of analysis, the remediation time of an
incident was defined as the continuous timespan between its discovery,
i.e. a 2LD’s entrance on the blocklist, to the moment it was explicitly
flagged as resolved or removed from the data.

Figure 4.2: Derivation of remediation time by
collapsing URL remediation time-
line

Note that some domains
have had repeated inci-
dents and reappeared as
flagged entries in the data
after having been removed.
In this respect, I treated
non-overlapping abuse in-
cidents that involve the
same 2LD as separate in-
cident cases of abuse,
i.e. reinfection, whereas
duration-overlapping inci-
dents were merged and
treated as a single incident.
Figure 4.2 graphically illus-
trates how remediation times have been derived and reinfections
treated.

I have also regularly resolved the flagged entries of the datasets,
to their corresponding IP addresses during the collection of the data.
I have used this information to attribute each incident to a specific
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hosting provider organization by looking up the organization to which
the corresponding IP address was allocated at an incident’s onset,
based on WHOIS information. Here, as in Chapter 3, I have made use
of historical IP WHOIS data provided by MaxMind [107]. As such, I
identified the hosting providers that had been in a position to take
remediation action on each incident.

Note that I excluded a small proportion of organizations that were
identified by the described attribution process from analysis. Their
proportions may be observed in Table 4.1 by comparing the columns
labeled as “Organizations” and “Hosters”. First, several governmental
and educational organizations were identified from specific keywords
in their WHOIS data organization names and excluded from further
analysis as they were clearly identifiable as not being hosting providers
that publicly provide hosting services. Next, I adopted the heuristic
definition of hosting providers developed in [44, 101] which I discussed
previously in Chapter 3, to further exclude some organizations deemed
to be too small to constitute hosting providers. As such, only organi-
zations that hosted at least 30 2LDs were deemed hosting providers.
I calculated the number of 2LDs hosted by all organizations in sim-
ilar fashion to the previous chapters data using passive DNS data
from DNSDB [111] collected during 2017. The heuristic threshold was
then applied to exclude non-hosting provider organizations other than
the previously identified governmental and educations institutions.
Note that the particular adopted 2LD threshold was chosen based
on a receiver operating characteristic (ROC) curve analysis of manually
constructed ground truth data and demonstrated to have reasonable
accuracy in the referenced prior work. The potential attribution errors
of this process are also more extensively discussed in [97]. For more
details, I refer the reader to this related work.

Given this methodology, I identified the hosting provider organiza-
tions captured in the data, tracked all of their incident remediation
times and excluded non-hosting organizations and their observed inci-
dents from further analysis.

4.4 examining remediation data

My use of GSB and DBL data as industry sourced data, means that I
have a less than complete and rather opaque view of the data genera-
tion process, potential measurement artifacts, and the biases of each
data source. Therefore, the important questions to address first, are
concerning the extent to which my derived incident remediation times
may be considered accurate, and what types of potential measurement
errors they are affected by. A lot here depends on how incidents have
been tracked and how frequently they have been monitored, which
are factors that are outside of my control. Therefore, my first step is
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take a closer look at the derived remediation data through the lens
of the analytical model (discussed in Section 4.2) in order to identify
potential measurement errors and biases. To this end, in Section 4.4.1 I
first examine the data using survival analysis, comparing data sources
and abuse types. I then split the data by hosting providers in Sec-
tion 4.4.2, highlighting the challenges of drawing comparisons among
hosting providers based on the derived remediation times to under-
stand how and to what extent the measurement errors in the data affect
comparisons of hosting providers.

Measurement Errors

To analyze the derived remediation times I use survival analysis as
a tool to inspect my data in-depth. In addition to survival analysis
being a well-established statistical technique to analyze elapsed time
measurements, I first highlight several additional reasons for why
survival analysis was chosen a as suitable tool.

First, survival analysis is a well suited technique to analyze time-
interval measurements, especially when they contain censored data.
Due to the limited time window of my study, many of the observations
capture the onset of specific incidents but data collection does not carry
on long enough to capture their remediation. These are referred to as
(right-) censored data points and contain lower bound information on
remediation times. For example, an incident that has not been reme-
diated by the end of a 60 day study (censored), reflects the fact that
its remediation time is at least 60 days. Note that, censored data are
typically excluded from analysis in prior studies that measured reme-
diation times. Survival analysis allows me to retain information carried
by such data points by giving them less weight without excluding them
from analysis.

Second, It is important to note that virtually all remediation time
measurements are estimates. The more frequently monitoring occurs,
the closer the estimates are to their true values. Since the monitor-
ing frequencies of my original data sources are not fully known, it
is important to treat the derived remediation time measurements as
estimates. As such, survival analysis also allows me to analyze remedi-
ation times along with associated statistical error bounds. Errors may
be smaller particularly when multiple observations with respect to a
particular hosting provider or particular type of incident are available.
In other words, by employing survival analysis techniques, I am forced
to take confidence bounds into account when drawing comparisons
and inferences from the data.

As such, the first step in analyzing the data, is to empirically derive
the probability that incidents will not be remediated within a certain
time by applying the non-parametric Kaplan-Meier estimator [148] to
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the remediation time observations. The KM-estimator, constitutes a
useful metric of comparing remediation times and additionally allows
us to unearth hidden measurement artifacts in the collected data as
I shall demonstrate shortly hereafter. Its results may be intuitively
interpreted as characterizing the fraction of incidents that have (or have
not) been remediated by a certain time since their onset.
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Figure 4.3: Incident remediation trends in collected datasets from GSB and
DBL. Plots report the KM survival probability estimate of incidents
over a timeline measured in amount of time required to remediate
incidents

Figure 4.3a depicts the survival probability of incidents captured
by each of the datasets plotted against a timeline relative to their
discovery. Right censored data points in the datasets are observable
by the illustrated survival curves not approaching the zero mark on
the y-axis. For the GSB and DBL feeds, I respectively observe 18% and
10% of incidents not resolved by the 75th day since their discovery.
Note that, had I excluded these censored data points, the results and
comparisons would have been misleading and would appear to suggest
that all incidents were remediated within the study period.

We can clearly see measurement artifacts in the resulting survival
curves that are indicative of some of the discussed measurement errors
in Section 4.2. For example, some of the observed artifacts relate to the
timing and frequency of monitoring incidents. Note however, that these
artifacts are to be expected as evident from the public documentation
that I found on these data feeds.

Data from GSB for example exhibits a small drop on the 14-day mark
(corresponding to the first time that Google automatically rescans all
discovered incidents), a rather flat curve between the 14th and 60th day
followed by a large drop in survival probability on the 60-day mark.
Similarly, data from the DBL exhibit drops in probability over several
points on the survival timeline, most prominently on the 14-day mark.
Patterns observed in GSB data are indicative of irregular monitoring
of incidents, especially beyond the 14th day mark. Similarly, further
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analysis of DBL data (see Figure 4.3b and Figure 4.3c) also suggest
irregular monitoring of incidents specifically related to those labeled as
“malicious” 2LDs by Spamhaus.

The most direct comparison that can be drawn between the datasets is
between GSB and malware-related incidents in the DBL which pertain
to the same type of abuse. The corresponding survival curves plotted
in Figure 4.3a both see a quick drop on the first initial days, but diverge
thereafter. This suggest that differences across these two datasets may
at least in part be driven by particular biases of each data source.
This however, is not necessarily problematic as the datasets may be
capturing responses to different incidents.

My analysis of the observations in each dataset show that there
is indeed very little overlap between GSB and DBL in terms of the
individual incidents that each dataset captures. Prior work already
demonstrates that abuse feeds typically have very little overlap in
terms of the incidents they capture [109] as I have also alluded to in
previous chapters.

Overall however, my datasets capture the behavior of a shared set
of 2,097 hosting providers, and provide me with repeated remediation
time observations on incidents that occurred on their networks. In
terms of the more directly comparable malware abuse subsets, data on a
shared set of 475 hosting providers has been captured which I later use
to triangulate comparisons of defenders across these two different data
sources.

Comparing Provider Efforts

To compare the remediation responses of hosting providers, I start
by dividing the data based on the providers to which incidents are
attributed. Comparing remediation times across providers, enables us
to evaluate if some defender efforts have been more effective than others.
Outcomes of comparisons however, depend on how comparisons are
drawn and which metrics are constructed as I demonstrate next.

We typically observe two types of metrics constructed on top of
remediation data in the literature when comparing remediation times
across groups: point estimates and distributions.

Examples of point estimates include: the proportion of remediation
at certain points of time in various notification campaigns compared in
[54], remediation speeds of DDoS attack amplifiers between countries
and between Regional Internet Registries (RIRs) compared in [136], and
remediation times of botnet C&C domains hosted in certain countries
[145]. Other work considers distributions. We see for example compar-
isons of Internet intermediaries in terms of the statistical distribution of
their reaction times to C&C domains hosted on their servers in [3, 145],
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or comparisons of groups of data subjects based on the cumulative
distribution of their reaction times in [135].

Prior work has regularly drawn inferences from such metrics, imply-
ing that they reliably capture differences among data subjects. However,
making this assumption may not be justifiable in the presence of the
measurement errors that I found in the data. Therefore, I first investigate
how the measurement errors of my data reflect in several commonly
constructed metrics, what pitfalls they may lead to, and which types of
metrics are less impacted by measurement artifacts, i.e. more reliability
characterize differences among providers.

To this end, I sample 30 providers from the data and construct metrics
for this set of providers. I limit the sample to providers where at least
50 incidents were observed. I also segment the providers into the lower
10th (LQ), 10-90 (MQ) and 90th percentile (HQ) based on their size and ran-
domly select 10 providers from each population segment to construct
metrics. I then construct several metrics to compare these providers
and investigate how accurately they characterize the differences among
the providers based on several illustrative examples.
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Figure 4.4: Remediation trends with 95% confidence bands for two sets of
providers in different size percentiles.

The first example depicted in Figure 4.4 plots the remediation efforts
of some large and medium sized providers selected from the GSB
and DBL feeds. Here, we can observe that measurement errors likely
prompting a drop in survival probability affecting the resulting view
of defenders’ remediation efforts to different degrees. In Figure 4.4a,
at the 60-day mark we observe a sudden drop of approximately 55

percentage points in survival probability for one hosting provider, and
25 percentage points for the other.

Despite this artifact, there appears to be a significant difference in the
distributions, but these are masked if one only examines the median
value: in both cases 50% of the incidents have been remediated by 60

days.
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The opposite outcome happens when comparing defender efforts in
Figure 4.4b. Here, the measurement error manifests in one provider’s
outcome only, skewing the median calculations for only this provider.
Since half of incidents are supposedly remediated by 14 days by this
provider, this creates a shorter median cleanup time for than the
provider without such measurement error.

As such we may conclude that metrics that compare point estimates
of provider remediation efforts are likely to result in misleading com-
parisons based on the data I have collected.

We may alternatively construct metrics and compare the providers
depicted in Figure 4.4, based on their remediation speed or propor-
tion of remediation at specific points of time. It is clear though that
inferences drawn from such metrics are sensitive to the specific points
in time which comparisons are made. Comparing remediation efforts
at 14 days and 75 days in Figure 4.4a for example, would yield com-
pletely opposing results. In the former case they would suggest that the
provider labeled as Host_HQ_9 was more responsive while the opposite
conclusions is drawn in the latter case. This demonstrates, that com-
parisons based on remediation speed and proportion of remediation,
which are point estimates again, may also be misleading.

To avoid such misleading inferences, I conclude that metrics should
ideally preserve relative differences among providers and retain infor-
mation on variation along dimensions in which comparisons are made.
These are properties that survival curves based on the KM estimator
meet best.

Other common metrics, for example rankings do not meet these
criteria and are also impacted by the measurement artifacts.

I constructed rankings of defender remediation efforts based on
the proportion of incidents remediated over increasingly large time
windows of my data. For GSB data I observed the autocorrelation of
provider rankings before and after the 60th day artifact to drop from a
Pearson-r value of 1 to 0.78 signaling a notable impact on how rankings
immediately before and after the artifact relate to each other. For DBL
data, the Pearson-r value approximately held a constant value of 1

before and after the 14th day artifact. During this study’s period, of
the 187 and 1,016 providers in GSB and DBL data that had at least
50 incidents, 177 and 140 providers respectively changed in ranking
position after the observed measurement artifacts.

Rankings have additional limitations as well. Constructing them
would again require comparisons of point estimates, for example the
proportion of remediation at time ’X’, which I already illustrated to be
sensitive to errors. They also mask relative differences among providers
by projecting them onto fixed ranking positions which do not pre-
serve relative distances. It is not possible to infer that a better ranking
provider has for example remediated ‘Y’ times as many incidents rela-
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Figure 4.5: Rankings of defender efforts based on remediation proportion
achieved over growing time windows of captured remediation data

tive to a lower ranking provider by comparing their rankings let alone
why. Even when rankings are constructed over time, they are subject
to the natural variability of data over time and are impacted by mea-
surement artifacts. Figure 4.5 which plots the constructed rankings of
the 10 randomly selected providers from the HQ percentile of providers
illustrates these issues.

In short, different metrics over the same data can lead to drastically
different conclusions about defender remediation efforts. Given that
measurement errors exist, an alternative solution may be to treat and
analyze the data as a binary signal of remediation, i.e. remediated vs
not-remediated incident. This would essentially require that I ignore the
time dimension of my data and would be antithetical to my stated aim
of evaluating security efforts based on the time required to remediate
incidents. Moreover, applying such a reduction on the data, places us
in the realm of studies that compare remediation efforts through abuse
concentration.

At the same time it is important to realize that even in ideal scenarios,
constructing metrics over my data to compare providers, does not
eliminate the fact observed differences in metric values, even when
comparing survival curves, may be driven by other causal factors than
just the providers.

To compare provider remediation efforts, there are other options
however. One could move beyond comparison of point estimates, or
reduce data to a binary signal, towards causal analysis of provider
differences captured by entire survival curves as outlined in the next
section.
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Table 4.2: Proxy Indicators used to model captured remediation data
Abbr. Description - (Source) Trans. Indicator for [min - max / mean]

RNG Nr. of IP addresses allocated to provider (WHOIS) Log10 Provider Behavior [0.3 - 8.34 / 4.98]

DOMs Nr. of domains hosted by provider (DNSDB [111]) Log10 Provider Behavior [1.49 - 7.76 / 6.08]

IPs Nr. of IP addresses observed to be hosting domains (DNSDB) Log10 Provider Behavior [0.3 - 6.73 / 4.21]

SDOMs Nr. of domains sharing an IP with minimum 10 others (DNSDB) Log10 Provider Behavior [0 - 7.76 / 6.01]

SIPs Nr. of IP addresses hosting at least 10 domains (DNSDB) Log10 Provider Behavior [0 - 5.28 / 3.36]

CAR Nr. of Alexa top-1M ranked domains hosted * (DNSDB/Alexa) Log10 Provider Behavior [0 - 7.61 / 4.29]

MAR Median rank of Alexa ranked domains hosted * (DNSDB/Alexa) Log10 Provider Behavior [0 - 6 / 5.83]

SPM Security Performance Metric ([101], see Chapter 3) - Provider Behavior [-3.54 - 2.18 / -0.81]

AR Alexa top-1M ranking of domain with Incident (Alexa) Log10 Webmaster Behavior [0 - 6 / 0.03 ]

ML Malicious domain (versus hacked) ** (Spamhaus) - Attacker Behavior {0, 1} / 0.71

AT Type of Abuse ** (Spamhaus) - Attacker Behavior {0cc , 2ph} / 1.33

* Alexa ranks have been reversed. Highest ranked website has ranking 106

** Only available for DBL data

4.5 drawing causal inferences

With a few notable exceptions (e.g., [30, 145]), studies commonly in-
terpret differences in remediation times as the result of the actions of
one particular actor [28, 144, 44, 112, 141], often the webmaster (c. f.
[26, 137, 135]). While a randomized experimental design can often iso-
late the causal effects of particular actors, they are not always feasible.
Many studies (c. f. [141, 135]), including mine presented in this chapter,
are based on observational data and lack randomized experimental
controls. In these studies, it is very difficult to evaluate whether it is
justified to attribute all variation in remediation times to one specific
class of defender. A lot depends on specific properties of the data and
methodological assumptions to see if the impact of other defenders,
as well as the attackers, are indeed controlled for. I argue that a more
systematic and transparent approach is to explicitly model the causal
impacts of the different agents (defenders and attackers), as I have
done in Section 4.2. I next apply the data to the model in order to draw
conclusions about what factors affect remediations time observation
and how the different providers captured by the data compare in terms
of their efforts.

Causal Model and Proxy Indicators

I explicitly model the impact of defenders and attackers based on the
causal model illustrated in Figure 4.6. Differences in the behavior of
these agents, i.e., attackers, hosting providers, and webmasters from
my analytical model (Section 4.2), are hypothesized to be the primary
driver of variation and the cause of variations in remediation times. For
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modeling purposes I construct several proxy indicators to approximate
their behaviors.

I retrospectively collect the indicators on a best-effort basis, meaning
I collect pertinent additional information for abuse incidents at the time
which they occurred. Notwithstanding their limitations (more on this
later), I will demonstrate that even this incomplete and imperfect set of
indicators has significant explanatory power. More importantly, I will
show just how substantial the impacts of different agents can be. The
indicators used in my statistical models of the data are summarized
in Table 4.2, which also lists summary statistics and an explanation of
which agents’ behavior they are associated with.

Figure 4.6: Assumed causal model
linking variation in re-
mediation times to at-
tacker, provider, and
webmaster behavior

As I am primarily interested in
hosting providers, I control for differ-
ences in webmaster behavior through
the proxy of a domain’s popularity
(AR), similar to methods used in [30,
104].

I also control for differences in
attacker behavior observed by the
proxy of type of abuse (AT) and
whether attackers utilized hacked re-
sources or maliciously created their
own domains (ML). Data on the latter
indicator is only available for the DBL
data provided as part of the abuse
event data by Spamhaus.

I then utilize a number of provider level indicators to capture how
differences in provider security efforts relate to their size (RNG, DOMs,
IPs), business model (SDOMs, SIPs), popularity (CAR, MAR), and their
proactive efforts (SPM) similar to methods used in [101, 78]. The latter
indicator is essentially the result of the metrics that I produced previ-
ously in Chapter 3 captures how effectively providers prevent abuse of
their infrastructure. It may serve as a signal of whether a provider’s
network has high concentration of abuse incidents as would be the case
with bullet-proof hosting for example.

Causal Analysis

I employ Cox proportional hazards regression (CoxPH) to model and
estimate the impact of the collected set of indicators on remediation
times in the DBL data (and GSB data later in §Section 4.5.3). CoxPH
models quantify the magnitude and direction of the effect of variables
in terms of regression coefficients. They are commonly used in prior
work [30, 145, 141] for datasets involving observations of elapsed time
where some values are censored, that is, the event of interest has not
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occurred by the end of the study. In my case, the event of interest is
remediation. Unfortunately, it is quite common for resources to go
unfixed and therefore to be censored. The value and sign of each coeffi-
cient quantifies the impact of a variable on the instantaneous hazard ~

~The term “hazard”
originates from medical

studies and refers to
hazard of patients dying.

Unlike medical studies,
higher hazard is preferable

in this context.

of incidents surviving beyond a point in time, commonly referred to as
the hazard function h(t). This is relative to a baseline hazard derived
from observations. This function is specified as h(t, X) = h0(t)× eXT β,
where h0 is the baseline hazard, Xp×1 a vector of p explanatory vari-
ables and βp×1 regression coefficients expressing the direction and
magnitude of the effects of each variable to be estimated from the data
by maximizing partial-likelihood.

Note that my constructed statistical models are non-parametric, i.e.,
they make no assumption about the particular distribution of the
dependent variable, i.e. remediation time. They do, however, assume
that the effects of the independent variables remain proportional over
the timeline of events. For a detailed discussion of CoxPH models I
refer the reader to [148].

Given the dependent variable of remediation time and indepen-
dent (proxy) variables, I construct and report several CoxPH models
over DBL data first. Here, data are reported at the level of individual
incidents. Also note that for DBL a more comprehensive set of indepen-
dent variables are available. To observe the impact of different agents
(defenders and attackers) on remediation time, I incrementally add
indicators to demonstrate how the resulting causal inferences change
when other agents are, or are not, controlled for.

Table 4.3 presents the first two models ~. In model m1, I do not
~Note that we have

repeated observations of
incidents for hosting
providers, which we

cluster on the basis of the
name of the provider to
which they correspond

using a “cluster” term
in our model specification.
This is a necessary step to

account for potential
correlation among

observations and used to
estimate robust standard

errors (reported in
brackets below estimated
coefficients) through the

procedure described in
[148] (Ch. 9).

control for differences in attacker behavior. In m2, I control for attacker
behavior by introducing dummy variables derived from the ML and AT

proxy indicators. Attackers either use malicious or hacked resources
(ML) and may use them to host C&C, malware, or phishing domains (AT)
jointly resulting in 6 strata of attacker behavior. By including 5 dummy
variables, I express and control for all strata of attacker behavior.

The first set of findings from these statistical models concerns the
relative explanatory power of the different classes of indicators. Con-
ventional wisdom about web security holds that less popular websites
have worse security because they lack the resources of more popular
websites to invest adequately in security. Yet a simple model (not re-
ported in Table 4.3) that only includes webmaster characteristics (in
particular website popularity captured by proxy of AR) explains almost
none of the variation in remediation times (pseudo-R2 value of 0.001).
However, relative to the webmaster-only model, we observe a 33%-pt.
increase in explained variance for model m1 that incorporates provider-
level behavior. This increased (Cox & Snell) pseudo-R2 suggests that
providers and their security efforts impact remediation, and are much
more influential than domain popularity. Model m2, which additionally
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controls for differences in attacker behavior, increases the proportion
of explained variance to 0.59. This 26%-pt. increase in pseudo-R2 from
m1 to m2 shows that attacker behavior substantially affects remediation
times. It is striking that the models, comprised of imperfect and incom-
plete indicators, nonetheless explains a majority of the variance in the
remediation times.

Table 4.3: CoxPH Models (DBL)

Dependent variable:

Remediation Time

Model (m1) (m2)

RNG 0.632
∗∗

0.399
∗∗

(0.123) (0.099)

DOMs 0.843
∗∗

0.344
∗∗

(0.148) (0.078)

SDOMs −0.354
∗ −0.218

∗∗

(0.139) (0.073)

IPs −0.678
∗∗ −0.314

∗

(0.233) (0.146)

SIPs 0.373
∗

0.244
∗

(0.179) (0.109)

CAR −0.833
∗∗ −0.296

∗∗

(0.076) (0.063)

MAR −0.201
∗∗ −0.145

∗

(0.066) (0.072)

SPM −0.350
∗∗ −0.083

(0.111) (0.065)

AR 0.104
∗∗ −0.037

(0.024) (0.028)

Hacked.C2 1.543
∗∗

(dummy) (0.112)

Hacked.Malw 3.526
∗∗

(dummy) (0.152)

Hacked.Phish 4.435
∗∗

(dummy) (0.258)

Malicious.Malw 2.306
∗∗

(dummy) (0.186)

Malicious.Phish 2.246
∗∗

(dummy) (0.168)

Observations 154,052 154,052

pseudo-R2
0.33 0.59

Log Likelihood −1,244,755 −1,207,761

Note: ∗p<0.05; ∗∗p<0.01

The next set of findings con-
cerns the influence of particular
indicators on remediation times.
To draw conclusions, I must first
briefly explain how the regres-
sion coefficients of these mod-
els may be interpreted. Consider
the coefficient for the RNG indi-
cator from model m1. This indi-
cator captures the size of a host-
ing provider (see Table 4.2). RNG
has a significant, positive effect of
0.632 on the hazard rate. This sig-
nals an increase in hazard if all
other indicators were held con-
stant, and the number of IP ad-
dresses assigned to a provider
were to increase by one over its
mean value. Increased hazard
means that incidents are remedi-
ated faster. But how much faster?

We have to exponentiate the
coefficient to interpret it accu-
rately (e0.632 = 1.88). Since RNG

is Log10 transformed, we can say
that for every 10-fold increase
in the number of IP addresses
assigned to a provider, remedia-
tion speed increases by 88% com-
pared to the baseline. Negative
coefficients on the other hand, in-
dicate slower remediation. It is
important to note however, that
only because m1 and m2 share
the same baseline hazard their
coefficients may be directly com-
pared.

All coefficients are significant
in model m1. In addition to the
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number of IPs assigned to a provider, the number of domains hosted
and the number of IPs operating at least 10 domains are linked to faster
remediation times. By contrast, the number of shared domains, the
number of IPs hosting websites, the number of Alexa ranked websites,
and their median Alexa ranking are associated with slower remedia-
tions.

Comparing the coefficients of m1 to m2, where more differences have
been controlled for, we observe that the magnitude and significance of
indicators shared across both models are lowered. However, it is worth
noting that with the exception of AR (which I have already shown to
have weak explanatory power), the significance and direction (positive
or negative) of the coefficients is consistent across the models.

By incorporating attacker related indicators in m2, we can disentangle
their effects from the provider-level measures. The coefficients are
computed relative to maliciously registered c2! domains. All other attack
categories are cleaned up faster. Hacked phishing websites are fastest,
followed by hacked malware. Maliciously registered websites, be it
for phishing or malware, are cleaned more slowly than their hacked
counterparts. More important than the individual differences between
categories, what is especially noteworthy is that a lot of the total
variation in cleanup times is tied to the decisions taken by attackers,
as opposed to anything that the defender, be it webmaster or hosting
provider, can do. This is consistent with Çetin et al.’s experiments on
notifications involving the Asprox botnet, when they observed that
remediation times worsened substantially when the botnet operators
took steps to evade detection [21].

While prior work has confirmed the important role of webmasters
[135], these results demonstrate that providers also play a very signif-
icant role in abuse remediation, not only in preventing the incidents,
but also in responding to them once they occur. Nonetheless, the at-
tacker also influences remediation times, as just reported. Note that the
results in Table 4.3 are robust and still hold after residual analysis and
removing observations with the top 5% largest residuals (i.e., outliers).
The results are also consistent with findings from [78], which report
that patching efforts by shared hosting providers had a large impact
on the number of abuse incidents, even for client-side software.

Triangulation

Thus far, I have identified significant explanatory factors for variations
in the remediation time of events captured by the DBL dataset. At this
point, the findings only hold for this (admittedly large and influential)
dataset.

In order to evaluate the robustness of the findings and to check
whether they might extend to other forms of abuse data, I now seek to
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triangulate my findings by analyzing data from a completely different
source.

Table 4.4: CoxPH Model - GSB vs DBL
(malware)

Dependent variable:

Remediation Time

Model (m3)

Interaction

(GSB×Var)

RNG −0.192
∗ −0.315

(0.088) (0.220)

DOMs −0.564 −0.258

(0.357) (0.498)

SDOMs 0.317 0.758

(0.316) (0.527)

IPs −0.195 1.411
∗∗

(0.170) (0.503)

SIPs 0.296
∗∗ −1.568

∗∗

(0.088) (0.459)

CAR 0.299
∗∗ −0.117

(0.088) (0.128)

MAR −0.432
∗∗

0.286

(0.163) (0.157)

SPM 0.103 −0.385
∗

(0.107) (0.173)

AR −0.100 0.079

(0.058) (0.083)

GSB −4.308
∗∗

(dummy) (1.131)

Observations 146,316

pseudo-R2
0.126

Log Likelihood −1,048,811

Note: ∗p<0.05; ∗∗p<0.01

I therefore compare the esti-
mated causal impacts of the col-
lected indicators across my two
data feeds using a single model
m3 that includes data from GSB
and DBL. Table 4.4 presents the
results. Because GSB only in-
cludes malware abuse data, I
only incorporate the best match-
ing subset of our DBL data ob-
servations, i. e. those labeled as
malware abuse (DBLmalw). I con-
trol for differences in provider
and webmaster behavior using
the same indicators as before. I
am not however, able to control
for differences in attacker behav-
ior in terms of abusing hacked or
maliciously registered domains
in GSB, as this data is not avail-
able for the GSB observations
and cannot be collected retro-
spectively at scale.

To triangulate, I combine the
GSB and DBLmalw data into a
joint larger dataset and introduce
a dummy variable (GSB) that cap-
tures which subset of the data
each observation belongs to, and
use this combined dataset as the
input of m3. This ensures that co-
efficients for each subset of the
data are estimated relative to the
same baseline hazard ~.

~It is important to note
that the effects of
indicators that are in fact
modeled, are reported
against a different baseline
and not directly
comparable to results
reported in Table 4.3.

I quantify changes in coeffi-
cient values across the two sub-
sets by introducing interactions between variables and the GSB dummy.
These interaction terms (reported in the third column of Table 4.4)
are the primary quantity of interest of m3. They express how much
coefficient values for the different indicators previously related to reme-
diation in m1 and m2, differ between the two data sources and whether
this difference is significant.
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We observe that the majority of interaction coefficients do not have a
significant value. This signifies that the causal effects of the correspond-
ing indicators do not differ significantly across the two subsets of data
and generalize.

A number of interaction terms in m3 however, indicate inconsistencies
when looking at different subsets of the abuse data. That is, each feed
suggests different causal effects for some of the indicators capturing
hosting provider behavior, namely IPs, SIPs and SPM. This is observable
by the significance of the coefficients of their corresponding interaction
terms. Their significance should be interpreted as the causal effects
of these indicators behaving differently when looking at the GSB or
DBLmalw subset of the data.

Discussion

It should not come as a surprise that m3 suggests some inconsistencies.
The fact that m3 does not adequately control for attacker behavior
does not influence the fact that a number of factors that have been
explicitly modeled across all models behave differently. The model
still quantifies the differences of both datasets independently of which
factors have been taken into account. The purpose of this triangulation
exercise however, is to test to what extent my empirical findings are
sensitive to the idiosyncrasies of each dataset and whether they produce
generalizable results.

So what generalized findings can we draw? The GSB model still
consistently demonstrates that providers play an important role. This
is supported by an increase of 11% in the proportion of explained
variance (pseudo-R2) in models that explicitly model webmaster and
provider behavior, relative to a webmaster only model.

I hypothesize that the inconsistencies across my datasets are partially
driven by their different natures. Data in each feed is collected for
different purposes, combating spam and harmful emails in one case
(DBL), and preventing Internet users from browsing drive-by down-
load URLs in the other (GSB). These feeds also vary in how they are
disseminated, as well as whether and how the affected webmasters and
providers are notified.

Beyond the challenges of triangulation, my modeling efforts may
be further improved through the collection of a more comprehensive
set of proxies during the study period rather than in retrospect. A
variety of indicators for the efforts of different types of defenders
cannot be accurately collected retrospectively (e.g. how defenders and
attackers behaved at the time of each incident). Another limitation is
the multicollinearity of some of the proxy indicators which complicate
their interpretation. However, I do not expect such improvements to
have a significant bearing on the overall results that we find.
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The lessons drawn here are clear. Different agents such as web-
masters, providers and attackers causally affect remediation times
as demonstrated by the results. It is important to explicitly model
and disentangle their behavior when drawing causal inferences from
remediation time data and to triangulate results to demonstrate gener-
alizability. To understand exactly how and to what extent these agents
causally influence remediation times remains to be further explored.

4.6 related work

(Studies of Abuse Concentration) Past empirical studies have demon-
strated that higher rates of abuse are correlated with a lack of security
hygiene and a lack of proactivity to implement security countermea-
sures. For example, network operators that do not fix security mis-
configurations [85], or webmasterss and hosting providers that do not
patch vulnerabilities [78], experience more abuse. Given that such cor-
relations exist, numerous studies, including some of my own which I
have discussed in the previous chapters, follow this logic in reverse, and
compare defenders based on abuse concentration [60, 92, 97, 100, 101]. By
comparing abuse concentration across provider networks, such studies
imply that providers with higher abuse rates show less security effort
and may be identified as lax or potential candidates for intervening
against.

Studies that evaluate defenders responses in this way, count the
number of incidents attributed to each defender. They are not concerned
with how fast incidents are remediated but rather their volume. As such,
they mostly evaluate proactive defender security efforts in preventing
incidents [43, 100] in contrast to the approach of evaluating reactive
efforts towards neutralizing incidents that have occurred as fast as
possible. A particular drawback of comparing defenders based on
incident counts is that one needs to account for the fact that defenders
with more infrastructure or customers will experience more incidents
[97, 101]. The approach presented in this chapter does not suffer from
this particular restriction.

At the same time evaluating and comparing defenders based on
incident counts, shares several challenges with comparisons based on
remediation times. While the latter involves an additional technical
challenge of tracking incidents over time, variations in both incident
counts and remediation time are driven by multiple entangled causal
factors such as webmaster, hosting provider and attacker behavior [43,
53, 97]. There is also the shared problem of how to deal with noisy
and error prone industry data to compare defenders [101]. A handful
of prior studies [78, 97] have analytically discussed various types of
measurement errors and methods of dealing with multi-causality when
dealing with incident counts. To the best of my knowledge however,
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methodologies for dealing with these issues regarding remediation
times have not been adequately addressed in prior work. This chapter
partly fills this knowledge gap.

(Studies of Remediation Time) While most studies that compare
defenders draw comparison based abuse concentration, a wide range
of studies nevertheless measure remediation times. i mostly analyzed
these studies to enumerate different types of measurement errors in
remediation times. These studies however, are mostly concerned with
the effectiveness of specific countermeasures and interventions, and
study the effect they have on how long it takes to remediate incidents
[19, 21, 30, 60, 135, 141, 144] or patch vulnerabilities [54, 77, 136, 140,
149] after specific treatments have been introduced. As such, they
compare the same defender entity pre and post the introduction of a
treatment. Some also examine overall market trends or the responses of
a group of subjects to the treatment of interest. By contrast, the study
presented in this chapter is concerned with evaluating and comparing
defenders against others, and is not concerned with the effect of a
specific treatment. Notably several studies are similar to this one and
compare defenders against others based on remediation times. These
however, have examined the role of other classes of defenders, for
example TLD operators [112] or compared hosting provider responses
with respect to a specific type of abuse only [3].

Of these prior studies, a few follow a randomized control experimen-
tal design [19, 21, 54] to measure the effects of treatments on remedia-
tion time. Others follow quasi-experimental designs [77, 135, 136, 141,
149] or are purely observational by nature [30, 60, 144]. While variations
in remediation time may be more safely interpreted as causally driven
by the introduced treatments in randomized studies, conducting such
studies are not always viable options. This study, and several prior
studies of remediation times are observational in nature. To this end,
this chapter is a first to highlight some of factors that causally drive re-
mediation time in addition to investigate various types of measurement
errors in industry abuse data, which need to be accounted for in obser-
vational studies. I demonstrate a modeling approach for dealing with
this multi-causality challenge, and a triangulation approach for deal-
ing with measurement error, which prior studies have not specifically
undertaken and described as limitations.

4.7 concluding remarks

This chapter has investigated how to leverage industry sources of
abuse data involving websites to evaluate the reactive security efforts
of defenders. Rather than causally attribute the variance in remediation
times derived from abuse data to a specific actor, I have modeled the
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behavior of multiple actors (attackers, webmasters, hosting providers)
and analyzed their impact jointly.

I found that hosting providers significantly influence remediation
time, explaining between 12% of the variation for GSB data and 33% of
the variance in DBL data. Attacker behavior explained a further 26% of
the variance in the DBL data. Hence, I can confidently conclude that
providers have a substantial role to play in remediating online abuse.
Furthermore, I have demonstrated that my results are partially robust
by triangulating the statistical results based on the GSB data against
those based on the most comparable subset of DBL. Prior studies ex-
amining remediation times have not explicitly triangulated data in this
way. Alas, the results also uncover a number of inconsistencies in the
direction and significance of certain provider-level indicators of their
security behavior. While disappointing, it is worth noting that these
datasets are collected and disseminated for different purposes, such as
spam filtering or protecting web browser users. Therefore, it should not
come as a surprise that some findings do not generalize across datasets.
At least now we have ’known unknowns’, rather than an overconfi-
dent interpretation of a model based on a single dataset. One way to
draw more generalizable inferences is to control for differences among
the data generation processes. Unfortunately, this is not possible for
industry-sourced datasets. A more realistic alternative is to triangulate
with other datasets.

I have also demonstrated that abuse data sources present a variety
of measurement challenges for researchers investigating remediation
times. I uncovered several types of measurement errors in the data
(e.g., abrupt drops in survival probability that are consistent with what
our industry sources, Google and Spamhaus, document about their
data collection and maintenance procedures). I carefully unravel these,
illustrating how such errors complicate the construction of metrics to
evaluate and compare the remediation efforts of defenders. Different
metric specifications constructed over the same dataset can easily lead
to conflicting inferences about how the efforts of defenders compare to
each other. Of importance is to analyze and construct metrics that are
less sensitive to such errors. Metrics that more transparently retain the
variations captured by the data should be preferred. Many observed
measurement errors reflect conscious choices by the industry source to
optimize operational efficiency over the precision of secondary mea-
surements such as remediation time.

Furthermore, the exact data generation process is often purposefully
underspecified to prevent gaming by attackers. Consequently, over
the long term, researchers should consider additional options beyond
constructing more robust metrics alone.

One option is for researchers to take control over the data generation
process when collaboration with the source. For example, industry
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sources could aid researchers by monitoring abuse remediation fre-
quently and uniformly across networks thereby reducing measurement
artifacts and removing systematic biases such as monitoring some net-
works more than others. A second option is for researchers to reverse
engineer the data generation black box. The biases that are identified
this way would allow for the use of custom-tailored statistical methods
to reduce their impact on the analysis. However, such efforts are likely
to be expensive, and measurement error could only be reduced, not
eliminated. The final option (and the one adopted by our study) is to
triangulate with other data sources, to better identify which findings
generalize and which apply only to particular circumstances.

In sum, I hope that these lessons and recommendations help future
security research based on remediation times of abuse events and
vulnerabilities. A key challenge for security researchers is to improve
our understanding of the causal factors that drive security or insecurity.
Any study that observes a change in attack, incident, or vulnerability
data and then attributes this change to a certain countermeasure or
defender action, is making a causal claim. The analysis presented here
has aimed to contribute to a better foundation for such claims.
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This chapter focuses on examining so-called Bullet-Proof Hosting (BPH) providers,
which have been a difficult area of the hosting market to tackle. BPH providers
knowingly allow miscreants to host harmful content and abuse their services.
They even assist in the persistence of the harmful content hosted on their
platform thereby enabling a large range of cybercrime and providing a stable
environment for cybercriminals to conduct illicit activities.

BPH providers are interesting cases to examine as they demonstrate the
limitations of security metrics. They represents corner cases for which security
metrics begin to fail, and exemplify how metrics, including ones that I have
discussed in previous chapters, may be gamed and distorted.

Understanding how such malicious providers operate is an important issue
due to the pivotal role that BPH plays in enabling cybercrime and may lead
to better techniques for detecting and disrupting their operations. Therefore
within this chapter I undertake a case-study of a recently taken-down BPH

provider called MaxiDed. The study on which it is based [103] provides a
wide range of empirical insights into the inner workings of BPH providers
and demonstrates with ground-truth data how isolating criminal areas of the
hosting market via employing security metrics is a challenging task.

My analysis of MaxiDed is based on data extracted from its backend
databases after it was legally taken down by law enforcement and its servers
seized. I connect the extracted data to various external data sources and char-
acterize MaxiDed’s business model, supply chain, customers and finances. I
reason about what the “inside” view reveals about potential chokepoints for
disrupting BPH providers as well as demonstrate how little of the harmful
content hosted on the provider’s platform is captured in abuse data. As such
security metrics that rely on abuse data are unable to correctly capture and
represent the concentration of abuse around BPH providers.

5.1 introduction

Bullet-Proof Hosting (BPH) is a part of the hosting market where its
operators knowingly enable miscreants to serve abusive content and
actively assist in its persistence. BPH enables criminals to host some of
their most valuable resources, such as botnet Command-and-Control
(C&C) assets, exploit-kits, phishing websites, drop sites, or even host
child sexual abuse material [24, 150, 52, 143, 37]. The name refers to

97
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the fact that BPH provides “body armor” to protect miscreants against
interventions and takedown efforts by defenders and law enforcement.

Much of the prior work in this area has focused on how to iden-
tify such malicious providers. Initially, BPH providers served miscre-
ants directly from their own networks, even though this associated
them with high levels of abuse. Famous examples of such providers in-
clude McColo Corp. [151], the Russian Business Network (RBN) [152],
Troyak [52] and Freedom Hosting [153]. This operational model en-
abled AS-reputation based defenses, such as Fire [36], BGP Ranking
[105] and ASwatch [93]. These defenses would identify networks with
unusually high concentrations of abuse as evidence for the complicity
of the network owner, and thus of BPH.

AS-reputation defenses became largely ineffective when a more “ag-
ile” form of BPH emerged. In this new form, providers would rent
and resell infrastructure from various legitimate upstream providers,
rather than operate their own “monolithic” network. Concentrations of
abuse were diluted beyond detection thresholds by mixing it with the
legitimate traffic from the ASes of the upstream providers.

In response, researchers developed a new detection approach, which
searched for concentrations of abuse in sub-allocated IP blocks of
legitimate providers [37, 143]. This approach assumes that honest
upstream providers update their WHOIS records when they delegate
a network block to resellers. It also assumes that the BPH operator
functions as a reseller of the upstream providers.

A key limitation of this prior work is that it is based on external
measurements. This means that we have little inside knowledge of
how BPH operations are actually run and whether assumptions behind
the most recent detection approaches are valid. A second, and related,
limitation is the lack of ground-truth data on the actions of the provider.
There are minor exceptions, but even those studies contain highly
sparse and partial ground-truth data [37, 150].

This chapter presents the first empirical study of BPH based on com-
prehensive internal ground-truth data. The data pertains to a provider
called MaxiDed, a significant player in the BPH market. It unearths a
further, and previously unknown, evolution in the provisioning of BPH,
namely a shift towards platforms. Rather than MaxiDed renting and
reselling upstream resources on its own, it offered a platform where
external merchants could offer, for a fee, servers of upstream providers
to MaxiDed customers, while explicitly indicating what kinds of abuse
were allowed. By operating as a platform, MaxiDed externalizes to the
merchants the cost and risk of acquiring and abusing infrastructure
from legitimate upstream providers. The merchants, in turn, externalize
the risk of customer acquisition, contact and payment handling to the
marketplace. This new BPH model is capable of evading the state-of-
the-art detection methods. Our analysis shows that in most cases, there
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are no sub-allocations visible in WHOIS that can be used to detect abuse
concentrations, rendering the most recent detection method [37] much
less effective.

Before we can develop better detection and mitigation strategies, we
need an in-depth empirical understanding of how this type of provider
operates and what potential chokepoints it has. To this end, I analyze a
unique dataset captured during the takedown of MaxiDed by Dutch and
Thai law enforcement agencies in May 2018 [154]. The confiscated data
includes over seven years of records (Jan 2011 – May 2018) on server
packages on offer, transactions with customers, provisioned servers,
customer tickets, pricing, and payment instruments. In addition to the
confiscated systems, two men were arrested: allegedly the owner and
admin of MaxiDed.

The central question of this chapter is: how can we characterize the
anatomy and economics of an agile BPH provider and what are its potential
chokepoints for disruption? I first describe how the supply chain is set
up. Then, I characterize and quantify the supply, demand, revenue,
payment instruments and profits of the BPH services offered by MaxiDed.
All of this will be analyzed longitudinally over seven years. I also
explore what MaxiDed’s customers used servers for.

The main contributions may be summarized as follows:

• I provide the first detailed empirical study of the anatomy and
economics of an agile BPH provider based on ground-truth data.

• I map the supply of BPH services and find a highly diversified
ecosystem of 394 abused upstream providers.

• Contrary to conventional wisdom, I find that the provider’s BP
services are not expensive and priced at a 40-54 % markup to
technically similar non-BP offers.

• I quantify demand for BPH services and find it resulting in a
revenue of 3.4M USD over 7 years. I conclude the market to be
constrained by demand, not by supply, i.e. demand for this type
of agile BPH seems limited.

• I estimate profits to amount to significantly less than 280K USD
over 7 years. This belies the conventional wisdom of BPH being a
very lucrative business.

• I find disruptable pressure points to be limited. Payment instru-
ments were sensitive to disruption, but a recent shift to crypto-
currencies limits this option. I identified 2 merchants and a set of
15 abused upstream hosting providers as pressure points though
their identifcation would have been difficult based on external
measurements. The only remaining viable options are raising
operational costs and taking down the provider’s platform.
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I should note that the “bullet-proof” metaphor seems less suited
for this new model of BPH provider that we study. Commonly, BPH is
understood to include two aspects: (i) intentionally enabling abuse, and
(ii) providing resilience against takedowns. The BP metaphor directs
attention to the resilience. This new business model, however, primarily
focuses on the agile enabling of abuse at low cost. MaxiDed and its
external merchants provide servers for abuse at close to the market
price for legitimate servers. Customers then prepay the rent for these
servers. This means that the risk of takedown, in terms of a prepaid
server being prematurely shut down by the upstream provider, is
borne by the customer. Most customers manage this risk by opting
for short lease times and treating servers as disposable and cheaply
replaceable resources. They take care of the resilience of their services
themselves, using these disposable resources. Some forms of resilience –
e.g., reinstalling an OS and moving files to a new server – are provided
by the BPH provider as a premium service for an additional fee. The
’bullet-proof’ metaphor is less suitable for this business model. A more
fitting alternative may be “agile abuse enabler”. That being said, in
this chapter I retain the existing term. The market of intentionally
provisioning hosting services for criminals is still widely referred to as
BPH and I want to maintain the connection with prior work.

The remainder of this chapter is structured as follows. First, I provide
a high-level overview of MaxiDed ’s business (Section 5.2). I then discuss
the ethical issues related to our study (Section 5.3). Next, I describe our
datasets (Section 5.4) and the integrity checks I performed to ensure the
validity of my analysis (Section 5.5). I then outline MaxiDed’s anatomy
and business model (Section 5.6). Next, I turn to the substantive find-
ings and analyze the supply and demand around MaxiDed’s platform,
with a specific focus on identifying choke points (Section 5.7). I also
analyze MaxiDed’s customer population (Section 5.8). I then take a look
at longitudinal patterns in terms of use and abuse of BP servers by
customers (Section 5.9). The final part of the analysis is on MaxiDed’s
revenue, costs and profits (Section 5.10). I conclude by locating this
study within the related work (Section 5.11) and by discussing its im-
plications for the problem of BPH (Section 5.13). Additional material are
provided in Section 5.14.

5.2 background

MaxiDed Ltd. was a hosting company legally registered in the Com-
monwealth of Dominica, an island state in the West Indies that is also
known for its offshore banking and payments processing companies.
MaxiDed’s operators publicly advertised the fact that customers were
allowed to conduct certain abusive activities upon purchasing its host-
ing solutions. While WHOIS information of the MaxiDed domain shows
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Table 5.1: MaxiDed in comparison with previously studied BPH by Alrwais
et al.[37] that appear to be still operational

Advertised BPH Services

Dedicated VPS Shared Total

BPH Servers Hosting

66host 0 0 3 3

outlawservers 1 6 4 11

abusehosting 47 5 3 55

bpw 5 4 0 9

bulletproof-web 7 9 0 16

MaxiDed 1,855 1,066 0 2,921

that it has existed since 2008, web archive data suggest that initially it
was just a small hosting provider with no mention of allowing illicit
activities. It underwent a major transformation in 2011 towards becom-
ing an agile BPH service. MaxiDed does not have its own Autonomous
System (AS), nor does it have any IP address ranges assigned to it by
Regional Internet Registries (RIRs), according to our analysis of WHOIS

data at the time of its disruption. This implies that IP addresses are
provisioned to customer servers by upstream providers, rather than
by MaxiDed. This underlines MaxiDed’s agile nature, i.e., its reliance on
reselling upstream infrastructure. Table 5.1 compares MaxiDed with sev-
eral previously studied agile BPH providers in terms of the quantity and
types of services they offered. It highlights that its scale of operations
is around two orders of magnitude larger. It is reasonable to view the
provider as a major player in this market which others have similarly
pointed to [155].

5.3 ethics

Our data is similar in nature to that used in prior studies of criminal
backends [26, 29, 156]. It originates from legal law enforcement proce-
dures to seize infrastructure. Using such data raises ethical issues. For
this study I operated in compliance with and under the approval of our
institution’s IRB. I discuss further issues using the principles identified
in the Menlo Report [157].

(Respect for persons.) The data contains personally identifiable infor-
mation (PII) on customers, merchants and employees. Access has been
controlled and limited to authorized personnel within the investigative
team, and later granted to several of the co-authors. Since ‘participation‘
in this study is not voluntary and cannot be based on informed con-
sent, we took great care not to analyze PII on customers, because they
form the most vulnerable party involved and not all of them may have
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used servers for illicit purposes. I only compiled aggregate statistics.
For merchants, I have masked identities using pseudonyms to prevent
identifiability. I did not analyze the data in terms of MaxiDed employee
names.

(Beneficence.) I believe that our analysis does not create further
harm. I did not purchase services from the provider and thus did not
contribute to any criminal revenue. The authors and police investigators
believe the benefits of a better understanding of BPH operations, most
notably in terms of better countermeasures, outweigh the potential cost
of making this kind of knowledge more widely known, as the model
of agile BPH itself is already well-documented in prior work.

(Justice.) The benefits of the work are distributed to the wider public,
in terms of helping to reduce crime. It especially helps to protect
persons who are more vulnerable to being victimized. I see no impact
to persons from being included in the study itself.

(Respect for law and public interest.) This study has been con-
ducted with the approval of, and in collaboration with, the investiga-
tive team and public prosecutors. It is important to note, that while
captured information may point to certain illegal conduct, establishing
legal proof of criminal conduct is not the purpose of this study.

5.4 data

Table 5.2: High-level statistics of MaxiDed backend data

Data on Description Total Nr.

Suppliers 60 directly listed upstream hosters and 14 listed merchants supplying server packages 74

Server Packages Customizable server packages on offer during 2011-2018 56,113

Payment Instruments Supported payment instruments/methods 23

Orders Customer placed orders for various server packages and other administrative services 66,886

Users Number of registered users 308,396

Transactions Financial transactions including 30938 received payments and 33124 payments made to other entities 64,602

Tickets CRM system tickets capturing communications between various entities 26,562

From the servers seized during the takedown, the Dutch investiga-
tive team has been able to resurrect MaxiDed’s administrative backend
(CRM and database). They have granted us access to the data and cor-
responding source code. I analyzed the source code to ensure correct
interpretation of the stored data. I observed how various resurrected
administrative pages queried specific records to display information.

The revived single-instance Postgres database contains longitudi-
nal information on several key aspects of MaxiDed’s operations. On
the supply side, it includes data on what server packages were on
offer, which merchants were offering these packages, and the inter-
nal and externally-advertised prices of each package. On the demand



5.5 data integrity 103

side, there is customer contact information, order placements, rented
servers, server assigned IP addresses, financial transactions, and type
of payment instruments used and available over time.

Communications between MaxiDed operators, customers, merchants,
and upstream providers were captured as CRM system tickets. Ticket
contents and email communications also include instances of abuse
complaint emails that MaxiDed administrators received and forwarded
to their customers. I should note that the operators also operated a
live-chat channel for customers on the site. They were also known
to use ICQ, Jabber and Skype contact channels at some point in time.
These communications were not stored on the seized servers, if they
were stored at all. Communications data, often the most sensitive, have
not been analyzed in favor of the ethical principles that were followed.

Overall, the retrieved data represents information over the course of
MaxiDed’s life span from Jan.- 2011 to May-2018, when its operation was
disrupted. High level statistics and descriptions of the ground-truth
data is presented in Table 5.2.

To enrich the ground-truth data, I deployed several additional data
sources. Domain-based resources operating from the customer IPs,
were identified using historical passive DNS data collected via Farsight
Security’s (DNSDB [111]). To identify upstream providers of servers
and IPs, we used historical acsWHOIS IP allocation data from Maxmind
[107]. A set of domain and IP-based blacklists have been used to gain
further insights into abuse emanating from customer servers.

5.5 data integrity

Since we did not gather the information ourselves, there is a need to
evaluate its accuracy and authenticity: how do we know that MaxiDed
admins did not manipulate data, for reasons of operational security or
otherwise?

The data resulted from the legal seizure of servers, in close coordi-
nation with apprehension of two individuals who had administrative
control over these systems. This ensured that the data was not ma-
nipulated during or after the seizure. To ensure that data was not
manipulated in the course of MaxiDed’s operation, I have examined
data integrity in several ways. I first discuss the correspondence of the
seized data with external (third-party) data. Next, I analyze the internal
consistency of the seized data itself.

The strongest indicator of integrity is that the seized server data was
consistent with the data that was collected via legal intercept prior to
the takedown. A wiretap had been running for over two years on the
backend CRM server.

I also compared the data to snapshots of MaxiDed’s webshop archives
on Internet Archive between 2015-2018. I extracted all server package
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IDs that were on offer. All these IDs were present in the seized back-end
data as well.

For a sample of over 50 server packages on sale in April 2018, I
compared the internally recorded price with the prices of the entities
listed as the upstream providers. These included packages from a
Dutch and a German upstream hosting provider. For each package, I
visited the supplier’s website, customized a server package to match,
and found its price to be correctly reflected by the internal price.

For the payment data, I was able to compare the WebMoney transac-
tions logged in the database with data that was subpoenaed by Dutch
law enforcement from WebMoney on transactions during a period of
10 days involving one particular WebMoney wallet address. Of 31 inter-
nally recorded transactions during this period via WebMoney, 17 were
matched with the external data.

Together, these external checks provide confidence that the inter-
nal data has not been manipulated. Multiple internal data consistency
checks were also carried out. I cross referenced customer order place-
ments against server package data, to determine if all order placements
consistently point to an existing package. Of the 14, 702 customer or-
ders for servers, I found 431 referencing package IDs that were not
listed, indicating a 2.9% proportion of inconsistent order placement
records. These references point to a set of 306 unique server packages
(a 0.5% proportion of all server packages).

I also cross referenced MaxiDed operators’ payments to their mer-
chants, against server package data. These indirectly referenced specific
server packages, thereby indicating what each payment is for. Of the
33, 124 outgoing payments, I found 345 referencing packages that were
not listed among the set of offered server packages (a 1.0% proportion
of inconsistent payment records). Cross referencing the same payment
data against customer orders, I found 474 outgoing payments referenc-
ing servers that were not listed among the orders of customers (a 1.5%
of inconsistent payment records).

The timestamps of order placement and transactions were also ana-
lyzed, to check for suspicious gaps in the timeline. The longest gap was
observed to be 76 days from 2011-03-31 to 2011-06-15. All remaining
gaps (37) were at most 2 days long. Approximately an average number
of 26 order placements per day were observed. For payment events,
the longest timeline gap was observed to be 135 days pertaining to
the data from the period between 2011-01-29 and 2011-06-13. The re-
maining gaps (5) were no longer than 1 day. An average number of 24

transactions per day were observed in the payment data.
The minor inconsistencies and timeline gaps for the most part relate

to records from 2011 and 2012, a period corresponding to the initial
set up and early growth phase of MaxiDed. A certain amount of in-
consistency in database records is to be expected, but more so during
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the initial set up and growth phase of any organization. All in all, the
internal and external consistency of the data merits confidence in its
validity for the purposes of characterizing the overall anatomy and
economics of MaxiDed’s BPH operation.

5.6 anatomy of maxided’s business

Merchants

Upstream
Hosting 
Providers

Marketplace

Customers

Server + 
Network Infra.

operators Payment

Supply

Resell

Malicious 
Server

+$$
(Marketplace Fee)

Figure 5.1: MaxiDed in a glance.

Figure 5.1 provides a high-level overview of MaxiDed’s anatomy and
business model. In following sections I will take a close look at each of
its components.

Hosting Business Components

(Marketplace) MaxiDed was a marketplace which connected merchants
offering server packages that allowed abuse, with customers looking
for an abuse-tolerant provider. It captured a fixed 20% fee from each
sale between a merchant and a customer. Customers did not see the
merchants’ identities or even that an offer came from a separate entity.
All they knew was that they contracted with MaxiDed. The merchants
advertised server packages from legitimate upstream providers and
put these on the MaxiDed market with a markup. Server packages
specified default server configurations that were further customizable
by customers. In addition to the technical specification, each package
indicated what type of abuse, if any, was allowed. The majority of
the packages explicitly allowed certain forms of abuse. MaxiDed itself
also put server packages from certain upstream providers for sale in
the webshop, de facto operating as merchant on its own platform.
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For its own packages, profits varied between 0 to 40% of the cost
of packages at the upstream providers. What’s more, MaxiDed also
operated as a customer on its own platform, acquiring offers from
merchants for its side business, a highly permissive and lucrative file
sharing service called DepFile. This file sharing service was a major
hub for distributing child sexual abuse material.

The platform approach means MaxiDed can externalize the cost and
risks of acquiring and supplying upstream server infrastructure to
third-party merchants. As such it is decoupled from the upstreams.
The advantage for merchants, on the other hand, was that they could
externalize the responsibility and risks of acquiring customers and
processing their payments. Beside the fee that MaxiDed charged on top
of the merchant’s price, it also charged customers for performing addi-
tional administrative tasks, like re-installing servers after a takedown
by the upstream provider. From these fees, it needed to recoup the cost
of its staff and backend systems.

The main components of the marketplace were a frontend webshop, a
backend Customer Relationship Management (CRM) system, accounts
for merchants who could offer server packages on in the webshop,
and payment handling of customers paying to MaxiDed and, in turn,
MaxiDed paying the merchants when their offers resulted in a sale. The
CRM, a series of webpages implemented in PHP, was used by both
MaxiDed and merchants to create the server packages displayed on
the webshop. It was also used to facilitate communications between
customers and merchants through customer tickets. Merchants were
responsible for handling customer tickets of their own server packages.
Communications also took place through multiple MaxiDed support
email addresses which were automatically imported into the backend
database and live-chat functionality which was not retrievable from
our data.

Different payment options have been supported over time by MaxiDed;
23 in total. Some from third-party payment providers like Paypal and
WebMoney to cryptocurrencies such as Bitcoin and Zcash.

(Merchants) Third-party merchants supplied server packages that
were re-branded and sold, with a mark-up, under MaxiDed’s name.
Many offered packages were directly scraped by the merchants from
retail auction sites run by certain upstream providers. As far as I could
tell, most merchants had no established reseller relationship with the
upstream provider and no delegation was visible in IP WHOIS (I ex-
plore this more systematically in Section 5.7.3.). This invalidates a key
assumption in prior work, i.e., that agile BPH providers operate on
the basis of established reseller relationships that are visible in sub-
allocations. In some cases, merchants did establish reseller relationships
with an upstream provider. This allowed them to hook into an API
and automate the importing and advertising process of upstream pack-
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ages, rather than having to manually scrape other hosting provider’s
websites, in addition to receive certain discounts.

(Upstream Providers) These are legitimate hosting companies that
offer server packages, via retail channels, auctions or reseller programs,
which are put into the MaxiDed marketplace by the merchants. Once
sold, the merchant acquires the package from the upstream provider.
In Section 5.7.3, I use WHOIS IP allocation information to infer from
which upstream providers the merchants bought their packages.

(Customers) Customers were elicited for their preferences and guided
towards server packages upon visiting MaxiDed’s webshop. This oc-
curred via standard search filters or via live chat with administrators.
Customers were able to request more powerful hardware, additional
IP addresses, pre-installation of a specific OS, and decide on the physi-
cal location of the servers. Figure 5.15 (see Section 5.14 Appendix-A)
provides an excerpt of a live chat conducted by one of the authors with
MaxiDed operators prior to its takedown demonstrating this process.

Customers would first deposit funds into a USD denominated “wal-
let” and then use these wallet funds to pay for the invoices that MaxiDed
issued to them. In other words, purchases were prepaid. This structure
allows merchants to place orders only after receiving payments and to
shift the risks of premature contract termination to customers as they
have received payments in full. Customers were not reimbursed for lost
server-day usage due to premature service suspension at the upstream.

Side Business

MaxiDed’s administrators also operated a file sharing platform, known
as DepFile [155, 158], run on servers which they rented through the
MaxiDed marketplace. Some of these servers were also seized during the
law enforcement action. Data shows that DepFile infrastructure was
acquired using a single MaxiDed customer account which never paid its
invoices. Over time, the account accrued approximately 400,000 USD in
debt. DepFile allowed its customers to host and access content, some of
which included child sexual abuse material, on a monthly subscription
basis. Our separate analysis of internal DepFile data, suggest that it
resembled a so called “affiliate program” [13, 29, 159] with affiliates
bringing in new subscribers. The profits from subsequent sign-ups
were shared between DepFile (a.k.a. MaxiDed) and the affiliates. As an
aside: these profits were much higher than those of MaxiDed. One could
argue that the MaxiDed was more valuable to its owners as a way to
acquire cheap and risk-free server infrastructure than as its own profit
model.
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Per mont

Features

Location: Saudi Arabia

Data center:

Speed Test Files: Private Network - more freedom of content and speech

Delivery time: Unix/Linux-based OS – 24 hours. Windows-based OS – 48 hours.

Allowed: adult, erotic, movies, doorways, dating, vpn, blogs

Allowed: Xrumer, Zennoposter and etc. Use without proxy

Not Allowed: CP, Zoo, anti-government sites

Base price

Configure Intel Xeon E5650, Saudi Arabia
Easily add hardware & software upgrades to server

(a)

Customer B: Server is not responding !

Provider: IP was null-routed. Assigned ALT IP. Don’t
abuse

Customer B: The server I have allows ‘..., xrumer,
...’ (See ‘allowed’ in Figure 5.2a)

Provider: What were you running ?

Customer B: xrumer ...

Provider: OK. Proceed.

Customer B: Reinstall OS please. I had C&C and XOR
DDoS on it. Possibly causing complaints.

Provider: Done ... should be up in a few minutes

(b)

Customer C: Server is down !

Provider: It was suspended due to abuse
complaints

Customer C: You were informed of what it is
used for! Shouldn’t have suspended !

Provider: Pay “abuse fee” and server will be
re-enabled

Customer C: how much ?

Provider: $300

Provider: ... Invoice sent ...

Customer C: That’s a steep price!

(c)

Figure 5.2: Examples of MaxiDed’s bullet-proof behavior. (a) screenshot of server
publicly advertised to customers. (b) and (c) are excerpts of a conver-
sation between customer and administrator (edited for readability).

Examples of Bullet-Proof Behavior

Figure 5.2a shows a screenshot of one of MaxiDed’s publicly advertised
server packages along with descriptions of its location, network/IP-
address information, price, in addition to explicit descriptions of abu-
sive activities that were (dis-)allowed upon purchasing. Figure 5.2b
illustrates a conversation (lightly edited for spelling) that took place be-
tween an admin and a customer in the context of a CRM ticket. XRumer
is a tool aimed at boosting search engine rankings by auto-registering
accounts and posting link spam. It demonstrates that MaxiDed operators
were not only explicitly tolerating abuse, but that they were informed
about the abusive activities of their customers and actively supported
them. This is also the case for DepFile. It knows the file sharing service
is supporting illegal content, including child sexual abuse material.
The customer interaction also shows the admin ignoring abuse com-
plaints, then assisting the customer by migrating resources to a different
network location. Figure 5.2c is another example of a (lightly-edited)
conversation excerpt, demonstrating that certain customers were asked
to pay an ‘abuse fee’ to continue accessing their rented server upon
receiving abuse complaints.

5.7 supply and demand for bph

MaxiDed’s operations deviate from certain assumptions underlying re-
cent detection techniques. This warrants a more detailed analysis of
its characteristics to understand if this new form of agile BPH exhibits
chokepoints that allow for disruption. Most disruption strategies rely
either on taking down the provider as a whole or on cutting off the
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supply of resources that it needs: servers, connectivity, payment instru-
ments, customers. In MaxiDed’s case, the former occurred. These kinds
of takedowns however, are rare and hard to scale. This section explores
the alternative strategy: squeezing potential chokepoints in the supply
chain.

Merchants

In a period of seven years, merchants offered 56, 113 different server
packages. Around a quarter of all packages (14, 931) explicitly allowed
certain kinds of abuse. I refer to these as bullet-proof (BP) packages.
Note that non-BP packages were also abused, as we learned from cus-
tomer tickets when servers were suspended. Admins frowned on this
practice. Not because of the abuse itself, but because these customers
should have purchased a more expensive abuse-allowing package.
MaxiDed admins listed offers as well in the role of a merchant on their
own platform. We label MaxiDed as merchant zero (mc0) and 14 third-
party merchants as mc1...14, identified by connecting MaxiDed’s user and
supplier database tables.
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Figure 5.3: Merchant Package Offerings. (left) All packages; (right) Subset of
illicit packages

Figure 5.3 (left) illustrates the total number of server packages offered
by the top 4 merchants, which accounted for 98% of all packages. At the
moment of takedown (May 2018), there were 3, 957 available packages.
Of these, 2, 921 (74%) explicitly allowed abuse. Packages expired when
corresponding upstream provider packages expired or when operators
no longer maintained relationships with the upstreams.

Figure 5.3 (right) shows the subset of server packages that allowed
abuse, from the same top four merchants. This figure highlights that
two merchants, mc4 and mc14 were responsible for 89% of all the BP
packages offered on MaxiDed’s platform and 94% of the BP packages
available at the moment of the takedown. Interestingly, MaxiDed itself
(mc0) supplied only 29 BP packages (1%), relying almost exclusively on
its merchants to supply BP infrastructure. This fits with the interpreta-
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tion that moving to a platform model allowed MaxiDed to externalize the
risk and cost of managing the relationships with upstream providers
around abusive practices.

Of the 14, 931 BP packages on offer, only 3, 066 (20%) were ever sold.
There were 9, 439 customer orders for these. This indicates that there
was an oversupply of BP packages on MaxiDed. Sales followed a similar
distribution to supply, with mc4 and mc14 accounting for 70% of all
sales. (Of the packages that did not explicitly allow abuse, 2, 006 were
sold 4, 832 times.)

In sum, only around 20% of offers were ever sold, showing that
the market for BPH is, unfortunately, not supply-constrained. MaxiDed
externalized the supply of BP packages to merchants and two of these
were dominant, in terms of supply and sales. Merchants mc4 and mc14
would have been viable candidates for disrupting the supply chain of
the marketplace as a whole, had they been identified prior to MaxiDed’s
takedown. This might be feasible if, as prior work assumed, they are
resellers of upstream providers and WHOIS records are updated to show
which network blocks are delegated to them. I later discuss evidence
that, in most cases, there is no such delegation. The takedown of
MaxiDed itself is unlikely to have disrupted these merchants. They may
have taken some losses from outstanding due payments from MaxiDed.
Except for these losses, merchants could migrate to other marketplaces,
resulting in a game of whack-a-mole. This demonstrates the advantages
of merchants externalizing part of their risks to the MaxiDed platform.

BP Package Categories

BP packages were differentiated in terms of what types of abuse was
allowed. The platform pre-defined 12 categories of abusive activities.
Merchants could tick the boxes of whatever categories they were com-
fortable with for their packages. The activities ranged from the distribu-
tion of pornographic content or copyrighted material, to Internet-wide
scanning, running counterfeit pharmacies, running automated spam-
ming software such as Xrumer, and doing IP spoofing, typically to
conduct amplification Distributed Denial of Service (DDoS) attacks. Ta-
ble 5.3 lists these activities along with associated category labels C1..12.

We suspect merchant choices for certain types of abuse to have been
partly driven by what they could handle in terms of their relationship
with the upstream provider of a package. Some forms of abuse trig-
ger more backlash than others. Plus, certain upstreams might be less
vigilant regarding certain forms of abuse, depending on jurisdiction or
other factors.

To analyze the relationships among the allowed forms of abuse, I cal-
culate the correlations between all categories. In other words, if category
’cX’ is allowed, what is the probability that category ’cY’ is also allowed?
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Figure 5.4: Correlation of abuse categories.
(See Table 5.3 for ci labels).

The results are plotted in Fig-
ure 5.4. Five groups of server
packages can be identified,
each with a different type of
abuse profile, which roughly
corresponds to a certain risk
profile. At the top end of the
risk profile is "spoofing" (x =
c12). Where this was allowed,
everything else was also al-
lowed with high probability
(i.e., all values along the y-
axis indicate high probability
for x = c12). As such a high-
est risk group label G5 was as-
signed to packages that allow
"spoofing". One step down are packages that allow "scanning" (x = c11):
everything else is typically allowed, except "spoofing" (x = c11, y = c12),
which has a lower probability. This is group G4. Next, G3 was assigned
to a group composed of 4 categories, C7..10 which were allowed in
conjunction with a high probability, and disallowed the higher risk
c11..12 categories with a high probability. The remaining groups were
created using a similar logic.

Table 5.3: Statistics on packages allowing each category of illicit activity and
associated risk groups

Cat. Description All Avail. before Risk Avail.

packages takedown Group per-group

C1 File Sharing 12,344 2,724

C2 Content Streaming 11,891 2,629 G1 404

C3 WAREZ 11,856 2,615

C4 Adult Content 10,732 2,557

C5 Double VPN 10,099 1,529 G2
630

C6 Seedbox 8,835 1,298

C7 Gambling 2,663 1,862

C8 Xrumer 3,120 1,849 G3 1,279

C9 DMCA ignore 2,978 1,841

C10 Pharma 2,620 1,821

C11 Scanning 629 565 G4 254

C12 Spoofing 396 354 G5 354

For each risk group, Table 5.3 lists the abuse types and the number
of packages that allowed it, over the whole period of MaxiDed (’all
packages’) or at the moment of the takedown (’Avail. before takedown’).
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Note that packages are counted multiple times, as they often allowed
multiple forms of abuse. The last column, ’Avail. per group’, counts
each package as belonging uniquely to one group, namely the group
with the highest risk profile – e.g., if a package allows spoofing, it will
be counted in G5, but not in others, even though it likely also allows
those types of activities. We can see that MaxiDed had a significant
amount of supply in each category, with a clear peak in group 3.

A side note: the tickets and live chats clearly showed that other types
of abuse were also allowed, such as running botnet Command-and-
Control (C&C) servers. The admins did not wish to list these forms of
abuse publicly (see Figure 5.15 in Section 5.14 Appendix-A).

Merchant Upstream Providers

To understand how MaxiDed’s supply of BP infrastructure was dis-
tributed over legitimate upstream providers, I narrowed our analysis to
5 merchants, namely mc0, mc4, mc10, mc12, and mc14, who jointly had
94% of the BP package sales.

Merchant mc14 sold most of the servers associated with risk groups
G3 or higher, the others sold mostly packages of group G3 and below.
So mc14 appears to have specialized in higher risk packages.
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Figure 5.5: Upstream Overlaps

I determined each merchant’s set of
upstream providers by first extracting
from the data the IP addresses provi-
sioned once the server was sold. Max-
mind‘s historical IP WHOIS data was then
used to lookup organizations to which
these IP address belonged. This way,
I could see how each merchant’s sup-
ply chain was composed of multiple up-
stream providers. The variance was sig-
nificant. The two dominant merchants
(mc10 and mc14) abused 134 and 276 up-
stream providers, respectively. The others connected with 4 to 26 up-
streams. Overall, MaxiDed’s supply chain comprised of servers at 394
upstream providers.

Figure 5.5 show how much, or rather how little, the supply chains of
merchants overlapped in terms of upstreams. Figure 5.6 shows a CDF
of how each merchant’s sold BP servers were distributed across its own
set of upstream providers. Across all merchants, 15 upstream hosted
50% of all sold BP servers and 57 account for 80% of all sold servers.

At first glance, the concentration in 15 upstream providers suggests
a chokepoint that could be leveraged, but the long tail of available
upstreams makes this strategy not very promising. Merchants could
shift supply to those hundreds of alternatives. The 15 top ones might



5.7 supply and demand for bph 113

have certain advantages in terms of location, price and quality, but only
5 of them are shared between the two top merchants, so there does not
seem to be a unique advantage to these providers.

0 100 200
Upstream Providers

0.2

0.4

0.6

0.8

1.0

So
ld

 B
P 

Se
rv

er
 P

er
ce

nt
ile

mc0
mc4
mc14
mc10
mc12

Figure 5.6: BP Server Distribu-
tion over Upstream
Providers

Recent BPH detection approaches [37]
have relied on upstream providers up-
dating WHOIS records when they del-
egate network blocks to resellers. As
stated, MaxiDed’s data suggested that
merchants often do not enter into re-
seller agreements with upstream. That
would seriously undermine the effective-
ness of these detection methods. To test
this more systematically, I looked at the
set of upstream providers that hosted
80% of the BP servers (57). In this set, I
found 22 which are reputable upstream
providers and more likely to reflect sub-
allocations to their clients in WHOIS. I randomly sampled 10 BP servers
for each of these 22 providers and manually inspected their IP WHOIS

information. In only 24% of the cases did the WHOIS information reflect
sub-allocation to downstream entities. Note that these downstream
entities might also be legitimate resellers who sold to the merchants,
rather than being the merchants themselves. Also, none of the records
pointed to MaxiDed. This means that in 76% of the cases, the BP ac-
tivities could not be associated with a sub-allocation, thus evading
the current best detection method. Abuse on these addresses would
be counted against the upstream provider, typically diluting the de-
tectable concentration of abuse. Establishing a relationship between
the upstream provider, their downstream customers, merchants and,
ultimately, MaxiDed, would have been impossible with this kind of data.

I next examined the distribution of each merchants’ sold BP servers
and server life spans across their corresponding upstream providers
longitudinally. I visualize some of the results for mc14, who was spe-
cialized in selling higher risk BP servers. Figure 5.7 plots the lifespan
of mc14’s sold BP servers that allowed "scanning" (left) and "spoofing"
(right) for its 10 most misused upstream providers.

Figure 5.7 demonstrates that the merchant’s BP customer servers
were spatially as well as temporally spread across multiple upstream
providers. It also shows that at no point in time, was there a shortage
in the supply of servers even for the higher risk server packages. We
observe no timeline gap during which servers of a particular group
were not provisioned and active. We clearly observe a supply chain
that was diversified, yet proportionally concentrated on a limited set
of upstream providers. This approach of the merchant seems to be
driven by a combination of efficiency in working with a limited set of



114 the case of bullet-proof hosting

20
15

-0
4

20
15

-0
8

20
15

-1
2

20
16

-0
4

20
16

-0
8

20
16

-1
2

20
17

-0
4

20
17

-0
8

20
17

-1
2

20
18

-0
4

mcup2414

mcup514

mcup1414

mcup2514

mcup1214

mcup2014

mcup4714

mcup2214

mcup5414
mcup2814

(a)

20
15

-0
4

20
15

-0
8

20
15

-1
2

20
16

-0
4

20
16

-0
8

20
16

-1
2

20
17

-0
4

20
17

-0
8

20
17

-1
2

20
18

-0
4

mcup1214

mcup514

mcup2814

mcup2014

mcup1614

mcup1414

mcup2414

mcup2514

mcup4314
mcup3814

(b)

Figure 5.7: 10 most misused upstream providers via which mc14 provisioned
BP servers of risk group G4 (allowing “scanning” - left) and G5
(“spoofing’ - right’), plotted against server lifespans at each provider.
Each colored line represents the lifespan of one server.

upstreams and the flexibility of migrating from one upstream to the
next, once the cost of working with that provider went up, perhaps
because of mounting abuse complaints.

Payment Instruments

Next, I analyze the various payment instruments to identify potential
chokepoints. From analyzing the source code of the webshop and the
transactions in the database, I know that MaxiDed accepted payments
via 23 different instruments. Three of these were actually never used
by customers: Bitcoin Gold, Electroneum and Kubera Coin. Eight pay-
ment options were provided for a limited time and then discontinued
by MaxiDed. At the moment of its takedown, 12 payment options were
available. Some of these instruments, e.g., Paypal, were later restricted
to specific groups of customers. Payments through Yandex Money were
generally restricted to clients from Russia.

Figure 5.8 reconstructs transaction volumes over time for 20 payment
instruments based on timestamps of financial transactions in the data. It
plots a logscale of the number of transactions in each month. The Y-axes
are the same for all instruments. First, we see that WebMoney has been a
consistent and reliable payment provider for MaxiDed, basically from
the start. Other instruments from that period proved more problematic.
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For example, Paypal became much more difficult to use in the course
of 2015 and was abandoned completely in early 2018.
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Figure 5.8: Payment instrument monthly trans-
action volume

We can see the operators
deploying new ones and
also abandoning some of
them again. This process
seems to suggest respond-
ing to potential or mani-
fest disruptions via pay-
ment providers. Consis-
tent with this interpreta-
tion is the increase in op-
tions to pay with cryp-
tocurrencies. We first see
a major shift to bitcoin

at the end of 2013. Then,
around the end of 2017,
MaxiDed added 8 new
cryptocurrencies. A pref-
erence to move to cryp-
tocurrencies was also ob-
served in backend data,
where MaxiDed’s opera-
tors maintained an ex-
plicit preference order for the different payment methods.

Figure 5.9 plots the cumulative generated revenue for the top 5 most
popular payment instruments. While WebMoney had brought in the
most revenue, the total amount of bitcoin payments was growing
rapidly and poised to overtake the leading position, until the takedown
happened.
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Figure 5.9: MaxiDed’s generated rev-
enue per payment instru-
ment

All in all, MaxiDed’s revenue
was generated through a small
set of payment methods. The
bulk of their customers used only
one payment method. Disruption
of MaxiDed’s payment flow via
WebMoney would have been a vi-
able chokepoint in earlier phases.
The self-imposed limits on using
Paypal probably reflect the fact
that those payments were vul-
nerable to countermeasures by
Paypal.

The shift towards cryptocurrency payments demonstrates that MaxiDed
recognized this dependency, as well as illustrates how it was attempting
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to remediate it. It is clear that this shift makes disruption more difficult,
though it is hard to gauge how resilient the bitcoin payment option
actually was. This would require a study of the blockchain and the role
of currency exchanges, which is out of scope for this study. That being
said, the proliferation of cryptocurrency options might counteract the
vulnerabilities associated with each specific instrument.

Package Pricing

BPH businesses are typically understood as charging customers high
markup prices for allowing illicit activities and offering protection
against takedowns. There is anecdotal evidence (e.g., [150, 37]) that
suggests prices are well above those for bonafide services. Our data,
however, questions this widely-held understanding.

I first distinguished VPS packages from physical dedicated servers
in the data. In each category, I then compared the distribution of the
monthly lease price of packages that allowed abuse versus those that
did not. The results are plotted in Figure 5.10a. We observe that indeed
abuse-enabling servers cost more, but the differences are modest across
most of the distribution. For dedicated servers, the median price was
95.00 USD for non-BP packages and 146.00 USD for BP packages. For
virtual servers, the median prices were 25.00 USD versus 35.00 USD.
These numbers suggest that customers payed a median markup ranging
from 40% to 54% for being allowed to abuse. This includes both the fee
of MaxiDed as well as the margin of the merchant. The rest goes to the
upstream provider.
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Figure 5.10: Distribution of MaxiDed’s server package pricing (See Table 5.3 for
risk group labels).

I also compared package prices based on associated risk groups of
their packages. Figure 5.10b illustrates the results with median group
prices indicated in the plot. Here, we observe larger prices differences.
The median price of the highest risk packages are 3.5 times higher than
those for the non-abuse packages.
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The limited markup seen in the lower risk packages might reflect the
fact that the platform has an oversupply of BP packages. Many packages
never got sold. The platform also sets up the merchants to compete
with each other. All of this might push prices down, towards the cost
of the upstream package. Relatively low markup might also reflect less
cost on the side of the merchant and marketplace because of takedown.
Low prices may also be the result of MaxiDed’s business model which
pushes takedown risks to customers by requiring prepayment.

5.8 customers

Law enforcement takedowns of online anonymous markets (a.k.a., dark
markets) have targeted the platforms, the supply chains, but also the
customers on these platforms, in an attempt to disrupt the demand side.
The most ambitious operation was the coordinated Alphabay-Hansa
market action, which de-anonymized many merchants and buyers
[160]. As of yet, it is unclear if these actions will have any impact on
the demand for these services. Nevertheless, I will take a closer look at
the population of MaxiDed customers to understand how demand has
evolved over time and whether it offers starting points for disruption.
MaxiDed’s registration data shows that 308, 396 unique users signed

up to its platform. Figure 5.11 plots the cumulative number of regis-
tered, active and paying users over time. I find three outlier events,
during which a large number of users appear to have been artificially
created, that distort the numbers. Only 6, 782 of the user population
ever purchased server packages. Of these, 4, 498 users were active in
the sense that they logged into the platform’s CRM at least once after
having signed up. On average, the platform saw a daily growth of 3

user sign ups, excluding the three outlier events.
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Figure 5.11: MaxiDed’s user numbers over time

Cross referencing the
user data, customer or-
ders, and server package
data, I find that the ma-
jority of the customers
were interested in and
may have engaged in
abusive activities. This is
observable in Figure 5.12

(left) which plots the cu-
mulative number of cus-
tomers, separating out
those that eventually
ended up purchasing BP
servers. In the earlier
stage of MaxiDed ’s evolution, they still had a significant number of
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customers who never bought BP packages. A few years in, they attract
an increasing number of users that do buy BP packages. At the time
of its disruption, 66% of all customers ever to register had purchased
BP packages. The remaining 34% was a mix of bonafide customers
and customers who may have undertaken abusive activities on non-BP
packages.
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Figure 5.12: (left) Customer types; (right) Customer locations (XX = Location
not specified)

Customers could specify language preferences in their profile: 5, 085
selected English and 1, 697 selected Russian. They were also asked to
supply location information. Assuming that user-specified locations
are correct, a crude assumption, then most users came from 3 countries,
namely RU, US and NL (see Figure 5.12 - right), followed by a long tail
of other countries.

5.9 use and abuse

Next, I explore server use and abuse by customers. I examine how
customers manage takedown risks transferred to them by MaxiDed and
look at the measure of last-resort, namely blacklisting BP servers once
they are detected.
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Figure 5.13: MaxiDed’s active servers in
various risk groups over
time

The data contains timestamps of
when servers were provisioned
and when they were taken offline.
Servers were deactivated when
their lease expired or when abuse
complaints caused the upstream
provider to terminate the lease
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early. Figure 5.13 plots the number of active servers across various risk
profiles. It shows what customers mostly sought to purchase.

After a start as a legitimate provider, BP servers become dominant
over time. Initially, customers were interested in spamming, operat-
ing phishing domains (which triggered DMCA complaints), running
counterfeit pharma and gambling sites (risk profile G3). Then we see a
steady growth in demand for G1: file sharing, streaming, adult content,
and WAREZ forums. The rapid growth of MaxiDed, starting around
the end of 2014, saw a diversification of the abuse and an increase of
VPNs and seedboxes for file sharing (G2), scanning (G4), and spoofing
(G5). These shifts reflect a wider trend towards commoditization of
cybercrime services, such as the provisioning of DDoS-as-a-Service [24].
At its peak, MaxiDed administered 1,620 active BP and non-BP servers.

Abusive Server Uptime

MaxiDed and its merchants shifted the risk of takedown to their cus-
tomers. They required prepayment, offered no reimbursements, and
provided minimal resilience support with considerable attached “abuse
fees”.

Table 5.4: Server lifespan statistics

Risk Payment Premature Expired Extended Lost Usage Total

Profile Cycle Termination (Median

(days) (%) (%) (%) # days) (# servers)

No Abuse 91.0 15.69 38.77 45.54 10 4,831

G1 92.0 18.23 47.39 34.38 23 1,437

G2 90.0 23.04 52.22 24.74 28 2,834

G3 61.0 19.59 45.86 34.55 13 3,792

G4 46.0 15.41 48.39 36.20 3 558

G5 31.0 19.15 54.73 26.12 6 804

How do customers deal with this risk? In essence: by choosing
shorter lease periods for more risky activities. Table 5.4 lists the median
lease periods that customers opt for across various risk groups. The
more risky the abuse, i.e., the higher the probability of a takedown,
the shorter the lease time. The table also provides statistics on the pro-
portions of BP servers that were prematurely terminated due to abuse
complaints, proportions of lease expirations, extensions, in addition to
the number of usage days that customers lost from termination of their
lease. Customers with the most risky activities manage to mitigate the
cost of takedown to a median of 6 lost days.

We also see that at most 23% of the BP servers were prematurely
taken down. Most BP server ran uninterrupted for their entire lease
period. This speaks to the low rate of blacklisting, questioning the
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effectiveness of this practices in disincentivizing abuse. An interesting
pattern is that customers also abused servers that did not allow abuse.
15% of these servers were also taken down.

Overall 2, 656 servers were deactivated prior to the expiry of their
lease plan. Another 6,483 active servers were deactivated when they
reached their normal expiry term. 5,117 servers remained active beyond
their initial lease plan.

Detected Abusive Resources

I next explore a final chokepoint: blocking the BP servers and abusive
content hosted on them once they are discovered.

Table 5.5: Statistics on flagged or blocked MaxiDed customer resources
Hosted resources Number flagged resource in abuse feed

IPs FQDN 2LD PHTK1 APWG2 SBW3 GSB4 DBL5 CMX6

Year (IP) (FQDN) (2LD) (IP) (FQDN) (2LD) (IP) (FQDN) (2LD) (IP) (FQDN) (2LD) (IP) (FQDN) (2LD) (IP) (FQDN) (2LD)

2016 985 9,902 3,378 2 1 32 29 45 75 12 10 23 . . . . . . 85 185 201

2017 906 15,494 3,573 5 2 18 1 4 23 . . . 4 63 71 40 644 696 22 20 51

2018 145 416 280 0 0 2 0 0 5 . . . 0 0 4 20 23 22 . . .

Notes: (1) Phishing; (2) Phishing; (3, 4) Malware drive-by; (5) SPAM, Malware, Phishing, botnet C&C; (6) Malware and Phishing.

Sources: PHTK: Phishtank[124], APWG: Anti-Phishing Working Group[123], SBW: StopBadware[122], GSB: Google Safe Browsing[122],

DBL: Spamhaus[134], CMX: Clean-MX[161].

I triangulated these results by looking directly at several blocklists. I
used three years of passive DNS data from Farsight Security’s DNSDB
[111] to identify domain based resources on MaxiDed’s IP addresses:
Fully Qualified Domain Names (FQDNs) and 2

nd-level-domains (2LDs).
Table 5.5 lists the quantities of resources associated with MaxiDed from
2016 to 2018. This period corresponds to when MaxiDed had the highest
number of active servers. I examined the intersection between these
resources and those flagged or blocked by several leading industry
abuse feeds. The feeds capture a mix of spam, phishing, malware and
botnet C&C abuse. Detailed information on these feeds is provided in
Table 5.5. The quantities of flagged MaxiDed customer resources within
each of these abuse feeds are also listed in the table. When no historical
feed data was available, I have left the cell empty.

While coverage of blacklists is known to be limited (c. f. [108] or the
previous in which I have also discussed their limitation), it is quite
disappointing to see the small fraction of the abuse that gets picked
up by the feeds. This confirms, with ground truth, the observation
in prior work that blacklisting is generally ineffective in disrupting
abuse. It also shows the limitations of the metrics that I have produced
in previous chapters that they would essentially not be able to flag a
provider like MaxiDed as an outlier with bad security.
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5.10 marketplace finances

Disruption of BPH is also determined by how profitable the business
is. Lower margins mean that the provider is more vulnerable to raised
operating costs in the supply chain. In this section, I analyze MaxiDed’s
revenue, costs and profits. To get a sense of the company as a whole, I
include both BP and non-BP services.

(Revenue.) From the 23 different payment instruments employed
by MaxiDed, most of its revenue was received via WebMoney payments
(1,493,876 USD) followed by direct BitCoin payments (1,324,449 USD,
MaxiDed itself logged these in USD). Around 577,118 USD was received
through the remaining payment instruments. The total amount of
revenue from 2011 up to May 2018, adds up to 3.4M USD.

(Operating Costs.) We have no data on personnel cost at MaxiDed.
Here, I analyze the outgoing payments to merchants, upstreams and
outstanding debts recorded in the database.

i) Payments to Merchants. A main component of MaxiDed’s cost struc-
ture consists of payments to merchants. Merchant payments were ex-
clusively deposited on WebMoney and Epayments wallets. After MaxiDed
took their 20% fee, the remaining 80% went to the merchants. Analyz-
ing outgoing MaxiDed payments show 11 of the 14 operating merchants
to have received payments, adding up to 1, 588, 810 USD.

Figure 5.14 illustrates the distribution of payments made to each
merchant. The two largest suppliers of server packages, mc4 and mc14,
received the bulk of the earnings. Most of the merchants were com-
pletely unsuccessful. The lowest earners, combined, generated less than
190K USD over all years.
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Figure 5.14: Payments to
merchants.

ii) Payments to Upstreams. We cannot see
the payments of third-party merchants to
their upstreams, only the payments where
MaxiDed is itself a merchant on the platform
(mc0). The data shows that mc0 payments to
their upstreams add up to 1, 526, 015 USD,
paid via WebMoney and PayPal. Note that
99% of these payments were not for BP
servers, as those were almost exclusively
provided by the third-party merchants.

iii) Debtors. The final component of
MaxiDed’s costs structure is that of outstanding debts due from its cus-
tomers. The operators have vigilantly banned customers with outstand-
ing debts. One customer was the exception to this rule. Actually, this
was not a real customer, but a customer account through which MaxiDed

operators themselves purchased servers from merchants on their plat-
form. These were used to host DepFile, their large file-sharing platform
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side-business. This customer entity accumulated debts amounting to
399, 123 USD.

(Profits.) Table 5.6 details MaxiDed’s yearly finances, alongside fi-
nances of their side business DepFile. Despite the common under-
standing of BPH services being lucrative, we clearly observe MaxiDed’s
earnings to be modest and declining. In total, over seven years, MaxiDed
made just over 280K USD in profit. If we take out the debt incurred for
the DepFile side-business (399, 123 + 280, 618), then the profit would
have been 679, 741 USD. This is still an underwhelming figure for 7

years of operating a BPH platform. Recall that the cost of personnel,
office space, and equipment also has to be taken from this amount.
These combined costs would have to be substantially lower than 100K
USD per year to leave even a tiny profit on the balance sheet. Also note
that there is large asymmetry between these profits and overall costs of
cybercrime also noted by Anderson et al., were in fact these profits are
dwarfed in comparison to the negative externalities that are caused by
allowing abusive content to be hosted [71].

Table 5.6: Overview of MaxiDed’s yearly finances along side that of DepFile
MaxiDed DepFile

Year Revenue Costs Profmx Revenue Costs Profdp (Σ Prof.i)

2011 79,987 1,312 78,675 . . . 78,675

2012 345,213 72,418 272,794 . . . 272,794

2013 458,028 17,9761 278,266 334,540 248,307 86,233 364,499

2014 419,739 328,757 90,981 1,646,568 712,442 934,125 1,025,106

2015 615,046 570,895 44,150 2,205,687 1,396,820 808,867 853,017

2016 733,151 726,040 7,111 3,153,553 2,188,634 964,919 972,030

2017 566,471 872,520 -306,048 3,998,244 2,841,322 1,156,922 850,874

2018 177,806 363,118 -185,312 1,547,078 1,129,586 417,492 232,180

Total 3,395,444 3,114,825 280,618 12,885,673 8,517,113 4,368,560 4,649,178

Note: (mx: MaxiDed) (dp: DepFile)

The side-business DepFile, on the other hand, appears to have gener-
ated much better margins. We could even speculate that MaxiDed was
more valuable to its owners as a way to acquire cheap and risk-free
server infrastructure than as its own profit model, were in fact the
better profit margins are to be gained in other forms of cybercrime.

5.11 related work

(Underground Ecosystems.) Several ecosystems and marketplaces of
a malicious nature have been studied in the literature via captured
datasets. Stone-Gross et al. analyzed credential stealing malware [162]
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and spam botnets [26] by taking over part of the botnet infrastructure to
understand their inner workings. Wang et al. studied SEO campaigns
to sell counterfeit luxury goods and the effectiveness of various inter-
ventions to combat such activities [64]. Alrwais et al.[163] investigate
illicit activities in the domain parking industry by interacting with
the services to collect ground truth data. Christin [31] analyzed the
Silk Road marketplace by running daily crawls of its webservices for
6 months to understand merchants, customers, and what was being
sold. A followup study by Soska and Christin [164] examined 16 anony-
mous market places also by periodically crawling their webservices and
found that marketplace takedowns may be less effective than pursuing
key merchants that may migrate to others. Another followup study by
Wegberg et al. [32] augments previous studies by examining evidence
for commoditization of entire cybercrime value-chains in underground
marketplaces and finds that only niche value-chain components are on
offer.

Datasets on the underground can also be leaked by criminal com-
petitors. McCoy et al. used leaked databases of three affiliate programs
to study pharmaceutical affiliate programs [29]. More recently, Brunt
et al.[165] analyzed data from a DDoS-for-hire service and found that
disrupting their regulated payment channel reduced their profitability
but that they were still profitable by switching to unregulated cryp-
tocurrency payments. Hao et al. [156] analyzed a combination of leaked
and legally seized data to understand the ecosystem for monetizing
stolen credit cards. The dataset used in this study resulted from the
aftermath of the legal takedown of the BPH provider MaxiDed. To the
best of my knowledge, there has been no prior academic work on BPH

using such ground-truth data. This study presented in this chapter
uniquely provides a comprehensive picture of the supply, demand and
finances of the entire BPH operation.

(Bulletproof hosting.) Earlier efforts on detecting BPH have relied
heavily on identifying autonomous systems. Fire [36] was one of the
first systems for detecting BP ASes by temporally and spatially aggre-
gating information from multiple blacklists in order to detect elevated
concentrations of persistent abuse within an AS’s IP blocks. Shue et al.
[92] noted that BP ASes often fast-flux their BGP routing information
to evade detection. ASwatch [93] leveraged fast-fluxing BGP routing
as strong indicator of a BP AS to build a classifier and detect BP ASes

before they appear on blacklists. My own studies discussed in previous
chapters have developed security metrics to compare concentrations of
abuse on various hosting networks and to identify negligent providers
that may be suspected of operating BPH services [100, 101], while Tajal-
izadehkhoob et al. developed techniques to analyze abuse concentration
on the hosting market as a whole by identifying providers from their
WHOIS information rather than BGP data [44]. BPH however, has evolved
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over time. Alrwais, et al.[37] studied a recent approach of BPH abusing
legitimate hosting providers through reseller packages to provide a
more agile BP infrastructure. This chapter complements this work by
providing a unique perspective into to the ecosystem of BPH. Based on
my analysis, we can better reason about which mitigation techniques
might be effective and which are likely ineffective for undermining
modern agile BPH marketplaces.

5.12 limitations and future work

In comparison to other underground marketplaces studied previously
(cf. [32, 164]), MaxiDed may be seen as a specialized marketplace for
provisioning BP servers. While comparisons with other underground
markets may be drawn, direct comparisons are difficult due to dif-
ferences in how MaxiDed’s marketplace operated. For example its cus-
tomers were not aware that merchants were involved in supplying the
marketplace with resources. This also explains why in comparison no
reputation mechanisms were in place for customers to differentiate
packages based on their quality (or differentiate good/bad merchants).

Despite such differences, I do still observe patterns similar to what
other studies of criminal endeavors have reported. For example, I have
observed a concentrated supply pattern around a handful of merchants
in MaxiDed’s case, which is a similar to what other studies of under-
ground market places have observed ([32, 164]). I have also observed
demand to gravitate towards the resources supplied by successful
merchants. The number of successful merchants being limited, also
agrees with studies of other criminal operations, e.g. in studying spam
botmasters and their operations [26].

Given that this study has focused on an in-depth analysis of the
anatomy and economics of MaxiDed, future work may draw more
systematic comparisons to better understand the implications of what
has been reported here. Furthermore, MaxiDed’s prominence within
the ecosystem has also not been systematically explored in my study,
albeit the limited comparisons with other BPH providers in addition to
anecdotal evidence [143, 155] suggest that MaxiDed may be reasonably
considered as a major provider within the ecosystem. Nevertheless,
some of my findings, particularly those relating to the economics and
profitability of BPH services may require further research to better
understand the BPH ecosystem as a whole.

5.13 discussion and implications

(Discussion.) I found MaxiDed to have developed a new agile model in
response to detection and disruption strategies. Its operations had ma-



5.13 discussion and implications 125

tured to the point of a new innovation, namely operating a marketplace-
like platform for selling BPH services. This model transfers the risks
of acquiring the BP server infrastructure from upstream providers to
merchants. MaxiDed ’s main role was to take on the risks of acquiring
customers, communicating with them and processing their payments.
The 14 merchants on the platform (over)-supplied the market with
more than 50K different server packages, many of which expired with-
out being purchased. They abused a total of set 394 different upstream
providers, thus allowing merchants to spread out and rotate abuse
across many different legitimate networks.

I see some concentration in this supply chain, with 15 upstreams
providing infrastructure for over 50% of the BP servers sold. Most
of these upstream resources are not shown to be delegated in WHOIS,
drastically curtailing the effectiveness of the most recent detection
approaches. Another point of concentration is in the merchant pool:
two merchants offered 89% of all BP servers and made 94% of the BP
packages sales. Most other MaxiDed merchants failed to generate any
meaningful sales. The platform deployed 23 different instruments to
transact with customers over various periods. Revenue was initially
largely processed by one payment settlement system: WebMoney. We
also saw an increased volume of BitCoin payments and the adoption of
other cryptocurrencies in response to disruptions in other instruments,
such as PayPal. A lack of product differentiation on the market is likely
to have created a fierce price competition across the merchants which
in turn has led a great proportion of merchants to fail. This competition
also decreases the profits of not only the merchants, but also of MaxiDed
itself. Its profits, over seven years, amounted to a mere 280K USD (or
680K USD if we ignore cross subsidies to their other business, DepFile).
The actual profits are even lower, as this amount also has to cover the
cost of personnel, office space and equipment, on which I had no data.

(Implications.) Bullet-Proof Hosting (BPH) companies remain a diffi-
cult problem as their operators adapt to evade detection and disruption.
Prior work in this area has largely relied on external measurements and
generally lacks ground-truth data on the internal operations of such
providers. Recent detection techniques rely on certain assumptions,
namely that agile BPH operates under reseller relationships, and that
upstream providers accurately reflect such relationships in their WHOIS

information. I found MaxiDed to deviate from both assumptions, thus
rendering detection less effective.

Prior BPH instances were mainly disrupted by pressuring upstream
providers to sever ties with downstream BPH providers. Given the
number of available substitute upstream providers of MaxiDed, this is
unlikely to be an effective chokepoint. Drawing parallels with other un-
derground markets suggest that, other than taking down the platform
itself, disruption may also be achieved by pressuring other chokepoints:
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merchants, revenue and demand. MaxiDed’s dominant merchants would
have been a viable chokepoint, yet, identifying them most likely re-
quired internal operational knowledge as their existence and identities
were not externally visible. As for disrupting payment channels, the
transition to mostly unregulated cryptocurrencies payments suggest
that this is no longer a straightforward option. Surprisingly, MaxiDed’s
low profits indicate that an increase in transaction or operating costs
may be viable a pressure point to disrupt revenue and demand. Future
work could explore how to raise these costs. Being aware of the threat
of criminal prosecution might, ironically, be one way.

The final remaining pressure point would be to take down the plat-
form. Such takedowns however are hard to replicate, let alone scale.
That being said, MaxiDed explicitly marketed bullet proof services on
the clear web. Even in cases when criminal prosecution itself is not
feasible, if the threat can be made plausible, it might force the company
to operate within higher op sec requirements, raising the cost of doing
business. This suggests that what appears the more difficult strategy
might actually be the best option in light of the supply chain becoming
even more agile and evasive. My hope is that by further studying and
understanding these emerging agile BPH services we can inform new
and potentially more effective directions for mitigating this threat. To
orient future work in this area, researchers might be better off depre-
cating the increasingly misleading metaphor of “bullet-proof” hosting
in favor of a term like “agile abuse enablers”.

5.14 additional material

A - Customer Preference Elicitation

Customer : Some servers don’t specify what is allowed. does this mean everything is OK?

Provider: What are you looking for?

Customer : I’m looking for malware, spam and botnet C2 hosting , VPS or physical server are both fine

Provider: We allow this here for example ... [provides link to server package configurator]

Customer : That says xrumer, warez, adult, ...not what I asked for

Provider: We don’t mention what you want on the public list

Customer : Can you send me a large private list to choose from?

Provider: [provides link to dedicated servers located in a country]

Provider: Dedicated server prices are above 100

Customer : All of these are in one country, anything in US or EU?

Provider: [provides several links to other server package configs]

Figure 5.15: Chat excerpt illustrating customer preference elicitation.
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Figure 5.15 illustrates an excerpt of a live chat (edited for readability)
conducted by one of the authors with MaxiDed operators prior to its
takedown. It shows the process of preference elicitation by MaxiDed

operators.
The conversation was conducted using the live-chat functionality on

their webshop. It demonstrates that MaxiDed operators may have also
allowed other forms of abuse which they did not publicly mention
on their webshop along side the various BP server packages that the
platform advertised.

B - Geographical distribution of Customer Servers
In analyzing MaxiDed’s platform, I also examined where its customer

servers were located. I used Maxmind’s commercial historical geo-
location data for this purpose. This data is available on a weekly basis.
For each customer server I first found the closest matching Maxmind
IP geolocation database with the timespan during which the server was
active. I then determined were each server was located based on its IP
address and Maxmind’s datasets. Figure 5.16 plots the top-20 locations
for MaxiDed’s customer servers.
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Figure 5.16: Top-20 locations for MaxiDed cus-
tomer servers

I found that the major-
ity of the BP servers ge-
olocated to Moldova fol-
lowed by Russia, the US,
Ukraine, the Netherlands
and a long tail of other
countries. Figure 5.16 also
displays the number of
non-BP servers in each of
these top-20 locations. I
observed that the Nether-
lands in particular hosted
a substantial number of
the non-BP servers.





6D D O S V I C T I M S A N D T H E E X T E R N A L I T I E S O F
S E C U R I T Y N E G L I G E N C E

This final content chapter is based on a published study of mine [104], and
employs some of the methodological contributions of my previous chapters
towards examining how security failures in the hosting market negatively
affect others. It examines the negative externalities of so-called ‘booter’ websites,
which package and sell the ability to kick arbitrary targets offline by launching
Distributed Denial of Service (DDoS) attacks at the click of a button. In essence
they provision and sell DDoS-as-a-Service at often low prices to anyone that
is willing to pay for it. As part of their service, booter websites typically
also amplify attacks in comparison to more traditional DDoS attacks. That is
by employing so-called amplification techniques booter websites boost attack
volumes by playing on the asymmetry between the volume of generated traffic
which is directed at the victim versus the actual amount of traffic required to
generate the attack. The empirical insights gained in this study demonstrate the
extent of harm that malicious content may create if not adequately addressed,
particularly by hosting providers that host such booter websites and are in a
unique position to take them offline.

Within this area, a lot of research has been devoted to understanding the
technical properties of DDoS attacks, particularly how amplified attacks may
be generated, and the emergence of the DDoS-as-a-service economy, especially
these so-called booters. Much less however, is known about the consequences
for victimization patterns. As such this final chapter profiles victims via data
from amplification DDoS honeypots to provide a broader understanding of
how security negligence in the hosting market plays out.

I conclude this chapter by also reflecting on the implications of my findings
for the wider trend of commoditization in cybercrime.

6.1 introduction

While Distributed Denial-of-Service (DDoS) attacks have been around
for a long time, the use of amplification techniques has transformed
the criminal ecosystem. These techniques now make up the bulk of
the observed attack traffic [149, 166]. This shift is intimately related
to another trend: the rise of DDoS-as-a-service, also known as booters.
Booters are a clear example of the so-called commoditization of cyber-
crime [24]: criminal service providers bundling all the resources and
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tools needed for an attack and offering them in an accessible way as a
commodity service to anyone willing to pay.

Several in-depth studies have illuminated the supply side of the
market for DDoS: the technical resources and techniques deployed by
the criminal service providers [166, 167, 168]. We have also learned
quite a bit about the economics of booters from publicly-leaked dumps
of several operational databases containing information about revenue
and customers [169, 170, 171].

What is much less understood, however, is how the abundance and
affordability of DDoS-as-a-service has impacted victimization patterns.
Who is bearing the brunt of the lowered barriers for DDoS attacks?
Existing studies have revealed some basic distributions of victims
across countries, Regional Internet Registries (RIRs) and Autonomous
Systems (ASes). They have pointed to end hosts, gaming servers and
hosting providers [149], but they lack a more in-depth investigation
and explanation of victimization patterns.

This chapter addresses this knowledge gap and profiles the af-
fected networks and victims. It uses a dataset of 1, 115, 795 victim
IP addresses captured over two years (2014-2015) via several amplifier-
honeypots [166]. From the IP addresses, I have inferred certain proper-
ties of the victims and identified the factors determining their distribu-
tions across networks and countries.

Since the existing work on amplifiers and booters has not focused
on the victims, the public understanding of them has been shaped
by anecdotal news articles and by industry reports compiled by DDoS

mitigation providers. The former focus on the more news-worthy cases,
i.e., the attacks against high profile targets. The latter are biased towards
their own customer base, i.e., enterprises purchasing DDoS protection
services, as that is where the data is being collected. As I demonstrate
in this chapter, neither provide a good understanding of the ecosystem
of commoditized DDoS attacks.

The main contributions of this chapter are as follows:

• In this chapter I show that the bulk of the victims (62%) are users
in access networks, rather than in hosting networks (26%). Only
a small fraction resides in enterprise networks;

• I demonstrate that the victimization rate in access networks is
highly proportional to the number of broadband subscribers in
those networks, suggesting that the commoditization of attacks
has led to a democratization of victims;

• I find that certain countries have a significantly higher number of
victims per subscriber. This rate is weakly related to institutional
factors such as Information and Communication Technology (ICT)
development, suggesting geographical network effects among
attackers and victims increasing the uptake of DDoS-as-a-service;
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• I demonstrate that victimization in hosting networks is propor-
tional to the number of IP addresses and hosted domains, and
also influenced by the popularity of the hosted content.

• Where I was able to specifically identify webhosting victims, I
find that they have barely any enterprises among them or other
valuable targets. The largest victim group are gaming-related
sites, most notably around Minecraft, suggesting that the com-
moditization of DDoS facilitates crime that is mostly not profit
driven.

In what follows I first present some background (Section 6.2) and
the data collection method (Section 6.3), I then discuss the distribu-
tion of victim IP addresses over access, hosting and other networks
(Section 6.4). Next I delve deeper into victimization patterns in access
networks (Section 6.5) and hosting networks (Section 6.6). I then briefly
explore whether attack duration is different across victim populations
(Section 6.7). After comparing my findings to related work, I summa-
rize my conclusions on the consequences of DDoS-as-a-service and
discuss the implications for the wider issue of the commoditization of
cybercrime.

6.2 background

DDoS attacks have been associated with a range of motives. They can
be profit-driven – as in the case of extortion, disrupting competitors, or
using it as a smoke screen for committing financial fraud – or motivated
by other objectives, such as political protest, harassment, or gaining
advantage in online gaming [24, 149].

Amplification DDoS attacks now make up a considerable fraction of
network-layer DDoS incidents [172, 173, 174]. Attackers send requests to
amplifiers – a.k.a. reflectors – and spoof the source IP address, so that
the amplifiers’ responses are directed to the victim. A whole range of
protocols can be abused for amplification and millions of machines run
these protocols which enables such attacks [139].

Most of the amplification attacks stem from booter services [166, 170].
The price for purchasing an amplified DDoS attack can be as low as
$1, as the analysis of some leaked booter databases demonstrates [170,
175]. A purchase from a booter would typically entail access to the
service for a limited amount of time, tied to different pricing tiers. Most
attacks are very short, less than 10 minutes [170].

On the customer side of booter services, leaked databases have shown
that most customers of DDoS-as-a-service use it only once to attack a
single target [170] and only a small fraction of them hide their tracks
via Tor or VPN. This might indicate that their technical skills are limited
or that they do not perceive a need to hide. The users that do hide
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their tracks, tend to return for more and also tend to launch more
attacks [169]. The databases have also revealed that gamers make up a
specific and important customer group [169]. On the victim side, booter
databases contain the targeted IP addresses or URLs, but these sets
are limited in scope and volume. The top 100 most attacked sites were
mostly game servers and game forums [169].

Besides booter databases, NTP amplification attacks allow victim
IPs to be retrieved from the NTP servers. From this data, Czyz et al.
point to end hosts and gaming servers to be common victims [149].
Amplification honeypots have also collected victim IP addresses [166].
They have only been superficially analyzed, in terms of the distribution
over countries and IP address space. The U.S., China and France were
the most attacked countries. In this chapter, I significantly extend the
analysis of honeypot data.

The only other systematic source of information comes from industry
reports by DDoS mitigation providers. Akamai points to gaming, soft-
ware and the financial industry as the major victims [172], with a small
fraction of victims belonging to the telecom industry. Other reports
suggest hosting as major victims [176]. These industry reports have
specific limitations and biases, which I will return to in Section 6.4.

6.3 honeypot data

The victim data used in this study was gathered via a set of amplifier
honeypots – dubbed AmpPots [166] – which are still deployed to
monitor attacks. My data pertains to two years of data over 2014-
2015 from these AmpPots. They run services that are known to be
misused for amplification attacks: QotD (17/udp), CharGen (19/udp),
DNS (53/udp), NTP (123/udp), SNMP (161/udp) and SSDP (1900/udp).
Each AmpPot uses real server software (in ‘proxy’ mode) to provide the
aforementioned services except for SSDP in which an emulated script is
used instead. The responses of AmpPots are filtered in order to prevent
from contributing to actual attacks. More details of AmpPot can be
found in prior work [166] which I refer the reader to.

In total 8 AmpPots were deployed on the Internet during the mea-
surement period of 2014-2015. Table 6.1 shows a summary of the opera-
tional timeline and supported protocols of these devices. At the start of
the measurement period (2014-01-01), two AmpPots were operational
and initially only supported the CharGen and DNS protocols. With a
sustained effort to monitor more amplification attacks, more devices
were gradually added with support for additional abused protocols. At
the end of the measurement period (2015-12-31) the deployed AmpPots
collectively monitored 6 services except for H02 which only supports
DNS. All AmpPots are located at ISPs in Japan and their IP addresses are
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Table 6.1: Overview of deployed AmpPots.

AmpPot ID Deployed on IP Changes Notes

H01 2012-10-07 19 added QOTD, NTP, SNMP, SSDP on 2014-09-25. Discontinued
on 2015-10-09

H02 2013-05-13 25 only DNS supported

H03 2014-05-13 9 added SNMP support on 2014-09-17 and SSDP on 2014-10-03 *

H04 2014-05-13 10 added SNMP, SSDP support on 2014-09-17 *

H05 2014-05-10 4 added SNMP, SSDP support on 2014-10-18 *

H06 2014-05-10 6 added SNMP, SSDP support on 2014-10-18 *

H07 2014-05-10 8 added SNMP, SSDP support on 2014-10-18 *

H08 2015-11-09 0 _ **

Note:* Deployed with QOTD, CharGen, DNS and NTP support

Note:** Deployed with support for all protocols

dynamically assigned. Depending on the ISP, the IP addresses changed
every 5-30 weeks, on average.

AmpPots observe not only amplification attacks, but also scans from
researchers or attackers who search for vulnerable devices. To separate
actual attacks from scans, attacks are defined as a series of at least 100
consecutive query packets that a single host sent to an AmpPot, where
consecutive means that there was no gap of more than 600 seconds
between two packets. This definition is in concord with the one used in
[166]. I did, however, reduce the gap from 3600 seconds to 600 seconds,
in order to analyze attack duration with a more fine-grained approach.
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Figure 6.1: Number of amplification attacks per protocol observed in AmpPot

data over the course of 2014 and 2015

Collectively, the AmpPots have monitored 1,115,795 unique victim IP
addresses from 92 countries and 15,044 unique victim ASes. Figure 6.1
shows the number of attacks per protocol during 2014 and 2015. As
the figure demonstrates, the total number of attacks has increased
over time and protocols like DNS, NTP and SSDP have been used more
often to launch amplification attacks. During the measurement period,
the AmpPots have monitored 5,726,150 amplification DDoS attacks in
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total: DNS (41.26%), NTP (38.73%), CharGen (11.32%), SSDP (8.01%), SNMP
(0.65%), and QotD (0.01%).

6.4 victims of amplification attacks

Given the amplification attack data the first question I pursue is: In
which type of networks are victims concentrated?

To avoid confusion, I first define the main concepts. The term attack
has been defined and operationalized in the previous section. I use
the term target to refer to the entity (or entities) that the attacker
intended to affect. This may be a person, organization, service or
machine. Since the data consists of IP addresses, the attacker’s intention
is not directly observable. For this reason, I use the term victim to refer
to the targeted IP addresses and the hosts residing there. As DDoS
attacks are also a cost to the networks in which the victims reside,
I refer to the Autonomous System (AS) that routes the traffic for the
victims as victim AS or victim network. To answer my question I looked
up the ASes of the victims and categorized them into three groups:
broadband ISPs, hosting providers, and other networks.

To reliably identify the broadband ISPs, I utilize a previously devel-
oped mapping that identifies the ASes of broadband ISPs in 82 countries,
that has been previously used to study botnet mitigation in broadband
ISPs [82]. The mapping accurately distinguishes between and provides
labels for Autonomous System Numbers (ASNs) which have been man-
ually mapped to broadband ISPs, hosting, governmental, mobile ISP,
educational and other types of networks. In total, the mapping con-
tains 2,050 labeled autonomous systems. The mapping is organized
around ground truth data in the form of a highly accurate commercial
database; TeleGeography Globalcomms [177], containing the broadband
subscriber numbers of 211 countries. Compared to machine learning
approaches that map AS types [178], this mapping is more accurate
since it manually identifies access networks, and the completeness of
the mapping is verified with the Telegeography database.

To identify hosting providers, I take all the non-broadband ASes in
the data and apply a simple heuristic to them similar to the ones
that I previously used in Chapter 2, Chapter 3 and Chapter 4. First,
I count the number of unique 2

nd-level-domains (2LDs) hosted within
the ASes. For this I used all observed domains in 2014 and 2015 in
DNSDB, a large passive DNS (pDNS) database operated by Farsight
Security [111]. DNSDB is sourced from more than 100 sensors located
around the world, in addition to authoritative DNS data from various
top-level domain (TLD) zone operators. To illustrate: in 2015 DNSDB
observed 287M unique 2LDs, which map to 69M distinct IP addresses.

I use the accurate AS labels mentioned above to identify a threshold
for the number of hosted domains per AS that most accurately separates
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the ASes labeled as hosting from other types of ASes which may also
host domains. This approach does mean that Content Distribuion Net-
works (CDNs) and others networks like Cloudflare also get categorized
as hosting. Based on a constructed Receiver Operating Characteris-
tic (ROC) curve I identify this threshold to be 2,700 2LDs. Therefore I
define as hosting any AS that has not been previously identified as a
broadband ISP which hosts more than 2,700 2LDs. This corresponds
to a false-positive/true-positive rate of 0.17/0.74. This accuracy is far
from perfect, but better than available alternatives. I compared it to ma-
chine learning approaches, such as CAIDA’s classification of ASes [178].
Using CAIDA’s ‘Content’ label as an alternative for classifying the host-
ing providers results in a 0.04/0.32 false-positive/true-positive rate of
classification. This classification has a better false-positive rate, but this
comes at the cost of a highly reduced true-positive rate in compari-
son to my classification. Alternative methods for identifying hosting
providers have also been explored in [44] and discussed in Chapter 3

and Chapter 4. They are not directly comparable due to their organi-
zational level classification rather than AS level but I have adopted the
same heuristic technique for classification.

Finally, all ASes that have not been classified as broadband ISP or
hosting are labeled as other. Manual inspection show that this group
contains governmental and educational networks, mobile and cloud
providers, enterprises and more.
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Figure 6.2: Spread of unique victim networks (left), attacks (middle) and unique
victim IPs (right) observed in the data over the various types of
networks that have been identified

Having constructed the network classification, I can now examine
the distribution of victims over these networks. Figure 6.2 plots the
results.

It clearly shows that the majority of attacks and victim IPs are located
in broadband ISPs, even though they only constitute a small fraction
of all ASes that have been attacked. More precisely, 48% of the attacks
and 62% of the victims are in access networks. In total, I observe victim
IPs from 92 countries in the attack data. We have detailed information
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on ISPs from 77 of these 92 countries. All identified ISPs in these 77

countries receive attacks, except for 5 countries (GB, US, JO, KE, LV)
where at most 2 smaller ISPs are missing from the attack data. This
suggests that the whole global broadband market is victimized by these
attacks.

The second largest category is hosting: 41% of attacks and 26% of
victims. The remaining victim networks constitute only a small fraction
of the attacks and victims (11% and 12%, respectively).

This distribution of victims across broadband and hosting networks
is different from earlier work by Czyz et al. [149]. They observed that
the top 10 most targeted networks consisted of eight hosting providers
and two telecom companies and that access nodes made up around
half of all victims. They did observe already a trend that the portion
of victims in access networks was increasing, which seems to have
continued after their measurement period. My analysis of the UDP

ports used for the attacks largely agrees with that of [149]. The most
frequently attacked UDP ports by a large margin include ports 80 and
8080, that are more likely to be open and accessible through firewalls.
Other application specific ports are also targeted such as (7000) for
BitTorrent trackers and CORBA management agent (1050).

I have triangulated our results with CAIDA’s mapping of ASes [178],
which classifies them as ‘Content’, ‘Enterprise’ or ‘Transit/Access’.
While these category labels are different from my classification of net-
works, which means we cannot directly compare the exact distributions,
the CAIDA mapping also locates most victims in Transit/Access net-
works, followed by Content and Enterprise. This is consistent with
my findings.

Networks are not homogeneous, of course. Broadband networks, for
example, can also contain hosting services. To probe deeper into the
AS-level pattern, I take a closer look at the IP addresses of victims in
access and hosting networks. I checked whether the addresses were
associated with any domains in pDNS data. Domains are used for a
variety of hosting services; websites, but also for gaming servers, email
servers, basically for any service where a human readable name is more
convenient than an IP address. The pDNS data found that 95% of the
victims in broadband networks have never been associated with any
domains in 2014 and 2015. This suggests that the bulk of the victims
in these networks are access nodes. The remaining 5% host on average
20.8 domains per IP address (The median domain count is 1 and 75%
of these victims host 3 or less domains).

Since this categorization is dependent on the coverage of the pDNS
data, I have cross-checked our domain data with the Bing.com search
engine. I took a random sample of 1,000 broadband victim IP addresses
and queried Bing (‘IP:<x.x.x.x >’) to see if any domains were associated
with it. For 9% of the cases, BING reports observing domains where
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our pDNS data did not observe any. The opposite was true in 2% of
the cases. This suggests that the pDNS data gives a reasonably accurate
picture.

In hosting networks, I found that 46.6% of the victim IPs have been
associated with domains. This confirms earlier work that webhosting is
just one among many targets. Figure 6.3 summarizes the breakdown
of the victim types and the subsets which I analyze in more detail in
subsequent sections.

Figure 6.3: Breakdown of DDoS attack victims observed in the AmpPot data

Note that these results substantially differ from the victimization
analysis in the reports of DDoS mitigation providers. Essentially there
are two types of industry reports: based on traffic data or based on
customer surveys. An example of the former is Akamai’s State of the
Internet report [179]. It identifies the gaming industry as the largest
victim of DDoS attacks with 54% of the attacks, followed by the soft-
ware and technology industry (23%) and financial industry (7%). Only
4% of attacks map to the Internet and Telecom industry. Another type
of industry report is based on surveys among customers of DDoS mit-
igation providers. A recent example is Arbor Networks’ WISR [173],
which surveys 287 different organizations of which 24% are ISPs and
5% hosting providers. Other industry reports [176] point to hosting as
the main victim however, this could be due to a focus on botnet-assisted
DDoS attacks rather than amplification attacks.

The mismatch between these reports and my findings is evident.
I would argue that when it comes to observing victimization, the
industry analyses are more biased than the honeypot data. Industry
data is typically collected in the networks of the customers of the
DDoS mitigation providers. It is unlikely that users in retail broadband
networks are purchasing these kinds of services and thus those victims
are severely under-counted by the industry reports. The amplifier data
is much less biased towards certain types of victims. This strength does
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come at the cost of a weakness: missing attacks that are not amplifier-
based. Earlier work suggests this is not a significant issue. Czyz et
al. compared the data captured by observing NTP amplifiers against
industry measurements and victim network data and they found that
the patterns observed in the amplifier data were consistent with the
industry measurements [149].

The contrast between my findings and industry reports are more
than measurement issues. They have significant theoretical implications
for our understanding the DDoS ecosystem, a point to which I will
return later in the chapter. But first I turn to a more in-depth look at
the victimization patterns in broadband ISPs and hosting networks.

6.5 victims in broadband providers

I have now established that the majority of victims reside in broadband
provider networks and that the majority of these victims are access
nodes. In other words, home routers are typically the most affected
devices. It suggests that the actual target is a regular home user be-
hind that router. This brings us to the next question: How are victims
distributed over broadband networks?

A simple count of unique victim IP addresses over the whole mea-
surement period, does not give us a decent metric of victimization rates
per ISP because of DHCP churn. ISPs re-assign IP addresses to their users
at varying rates, where high rates lead to significant over-estimation
of the number of victims. One method to reduce the effect of churn is
to use short measurement windows [82, 117]. For this reason, I count
the unique number of IP addresses seen for each day and then aver-
age those daily counts to get to victimization rates over larger time
frames. This results in a more accurate representation of the relative
victimization rate per ISP.

In Figure 6.4, I have plotted the average daily number of victims
against the number of subscribers of those ISPs. The subscriber data
is drawn from the TeleGeography database discussed in the previous
section [177]. The database provides accurate worldwide subscriber
numbers for ISPs from 77 countries that appear in our attack data. It
provides a more precise proxy for the number of users in a network
than technical network properties, like the number of advertised IP
addresses, can provide.

As we can see, victimization rates differ by several orders of mag-
nitude across ISPs, but these differences are highly correlated with the
size of the customer base: R2 = 0.60. As an aside, the correlation with
the number of IP addresses advertised by each ISP also shows a strong
linear relation, though a bit weaker (R2 = 0.56).

In other words, the number of users is a strong predictor for the num-
ber of observed victims. This is consistent with the earlier speculation
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Figure 6.4: Correlation between number of victims in broadband networks and
number of ISP subscribers. Histograms along the axes depict the
distribution of data points along each axis indicating their normal
distribution.

that it is individual users that are being attacked, rather than services
or devices. It also means that, to some extent, victimization rates are
uniform across ISPs. Whatever motivations attackers may have, it seems
they select targets somewhat evenly across broadband networks.

Notwithstanding the effect of the size of the subscriber base, as
captured by the regression line, the figure also clearly shows that there
is significant variation around that line. That raises a new question:
why do some ISPs have disproportionately more or fewer victims? We can
use the victim rates of ISPs (i.e., the daily average number of victim IP
addresses divided by the number of ISP subscribers) to further explain
the variance among them. From the size-corrected victim rates we can
see that there are several orders of magnitude differences among the
most and least attacked ISPs. How can these differences be explained?

In Figure 6.4, I have color coded ISPs by the country in which they
operate. To better highlight between and within country relations, Fig-
ure 6.5 plots the distribution of ISP victims per subscriber in relation to
the country in which they operate. Two things become apparent. First,
in many countries, ISP victimization rates are remarkably clustered,
compared to the overall variance across countries. Second, ISPs in some
countries are victimized less, according to my metrics. In other words,
there seem to be country-level effects at work, in addition to network-
and user-level effects. The plot shows that ISPs in New Zealand, Aus-
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Figure 6.5: Between and within country differences among victimization in
differentISPs

tralia, U.S., U.K. and France have disproportionately more victims,
while ISPs within countries such as China, Japan and Indonesia have
disproportionately fewer. It is important to note that almost all ISPs in
the 77 countries are present in the data, so there is no selection bias at
work in these patterns.

The differences between countries might be explained by institu-
tional characteristics of the countries in which the ISPs operate. Two
institutional differences that I tested for are: i) the development of the
ICT infrastructure of each country and ii) the overall economic status of
the country. In both cases we should expect to observe more victims in
more developed countries, as more online activity and better infrastruc-
ture might drive more motives and opportunities for attacks – around
online gaming, for example.

The ICT development index is a well established indicator of ICT de-
velopment ranging from 1 to 10 with higher values for more developed
countries which I have tested my data against. The index is provided by
the ITU (the United Nations International Telecommunications Union)
and constructed from a set of internationally agreed-upon indicators. I
also looked at the gross domestic product at purchasing power parity
(GDP PPP) per capita, to capture the economic status of each coun-
try [180]. From the plots in Figure 6.6a and Figure 6.6b, it is clear that
both explanatory variables do correlate with ISP victim rates, but only
weakly.

To consider the joint effect of the three explanatory factors that I have
examined so far, i.e., the number of ISP subscribers, ICT and GDP PPP
indexes, I construct several statistical models using negative binomial,
generalized linear model (GLM) regression. The models predict the
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Figure 6.6: Correlation of ISP victim rates with country level development statis-
tics, namely ICT development (left) and GDP PPP of the countries
in which ISPs operate

number of victims per ISP given a set of explanatory variables. A
summary of these statistical models are presented in Table 6.2.

Model1 only includes the attack surface size, Model2 adds the ICT
development index as an additional factor and finally Model3 adds the
GDP PPP per capita. As expected, Model1 demonstrates the effect of the
size of the subscriber population – i.e., the size of the ’attack surface’
– in correspondence with my earlier results (Figure 6.4). The other
two models demonstrate that in addition to size, the two institutional
country level variables considerably contribute to the variation in the
number of victims per ISP, however their effects are much smaller. I
interpret the results of Model2 as an illustrative example. While holding
everything else constant, increasing the number of subscribers by one
unit (equivalent to multiplying the number of subscribers by 10 due to
the log10 scale of the variable) multiplies the number of victims per ISP

by e1.996 = 7.36. Similarly, increasing the ICT development index by one
unit (while other factors are held constant) multiplies the number of
victims by e0.249 = 1.28. Model3 can be interpreted in a similar fashion.
Note that due to the correlation of ICT development and GDP I did
not include both variables in one model.

I have also examined other factors, such as ‘gaming popularity’ and
‘piracy’ which show weak correlations with victimization rates as well.
Including these in separate GLM models shows a significant small
effect of online gaming as captured by the average number of games
owned per country on the Steam online gaming platform. This could be
indicative of a possibly weak relation with online gaming and end-host
victimization. However, further examination of the variable indicates
strong correlations with ICT development and GDP therefore bearing
little added information which the other factors did not already include
in the models.
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Table 6.2: Negative binomial GLM regression models with ‘Loge’ link function
for number of ISP victims

Dependent variable:

# Victims per ISP

Models→ (1) (2) (3)

↓ Independent vars.

Subscribers 2.160
∗∗∗

1.996
∗∗∗

1.977
∗∗∗

(log10) (0.079) (0.075) (0.074)

ICT Dev. Index 0.249
∗∗∗

(2015) (0.034)

GDP PPP per Capita 0.030
∗∗∗

(in $1000) (0.004)

Constant −5.880
∗∗∗ −6.712

∗∗∗ −5.705
∗∗∗

(0.454) (0.468) (0.430)

Observations 304 300 291

Log Likelihood −2,255.880 −2,204.260 −2,128.202

θ 0.963
∗∗∗ (0.070) 1.097

∗∗∗ (0.082) 1.143
∗∗∗ (0.087)

Akaike Inf. Crit. 4,515.761 4,414.520 4,262.404

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Given that the institutional factors have a weak effect, it begs the
question of why, in the majority of the countries, ISP victim rates are
closely clustered together. More specifically, the ISPs of only 12 of
the 77 countries are dispersed by more than one order of magnitude
(among them are Brazil, India, and China). Even with quite similar
infrastructure and economic conditions, the differences among ISPs are
larger between the countries than within them. This pattern suggests
that there are specific country-level factors at work, beyond the general
factors that I have examined.

We can only speculate why ISPs in a certain country are so clustered,
but one explanation is that attackers and victims are geographically
concentrated and that their interaction leads to network-effects. We
know from the research on booters that many of the customers are
gamers [169]. Other studies have told us that many of the victims are
also related to gaming [149]. Combine this with findings from online
social network analysis, inside and outside of gaming, which found
that these online networks are shaped by geographical vicinity. In other
words, users in online networks tend to be friends or familiar with each
other in offline networks as well [181, 182]. In other words, they are
geographically close.

Jointly, these three factors might drive a geographically concentrated
network effect: some of the victims become attackers themselves, which
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is easy because of the booter services. These new attackers, in turn, vic-
timize others, and the cycle continues. This pattern fits with anecdotal
evidence from news reports. In the Netherlands, for example, DDoS-
ing became such a widespread phenomenon among schoolkids [175],
that even those who did not play online games started to use booters,
because everyone was doing it. One more technically skilled youngster
said he quit DDoS-ing, as “it became too easy” and “even my sister can
do it” [183].

Overall, these findings reveal that the number of subscribers of ISPs

is a very strong predictor for the number of victims per ISP (see Figure
Figure 6.4). This suggests that the chances of being victimized are
surprisingly uniform across ISPs. The accessibility of DDoS-as-a-service
might have caused a democratization of victims: everywhere there are
now regular users deemed worthy of attack. This is a far cry from the
highly publicized attacks on high profile targets like governments and
enterprises. Those are attacked too, of course, but the bulk is targeted
at regular netizens.

That being said, I do see significant variation in terms of victim-
ization rates. The country-level differences are partially explained by
institutional factors and partially by specific country-level effects. In the
absence of direct evidence, I speculated that the remaining variation
might be driven by geographically concentrated network effects.

6.6 hosting providers

In this section I take a closer look at victims located in hosting provider
networks. As for ISPs, the main questions at this stage are: How are vic-
tims distributed across different hosting ASes and Do some hosting providers
have disproportionately more victims than others?. Unlike broadband vic-
tims, here, I do not expect the dynamic nature of IP allocation to
significantly effect or lead to a misrepresentation of the number of vic-
tims as hosting networks do not typically exhibit IP churn. Therefore
we can examine the distribution of victims over networks by simply
counting the number of unique victim IPs that have been observe perAS.

As with broadband networks, I expect differences in customer base
or network size to correlate with the number of victims. To test this, I
need to estimate the size of the hosting providers. One approximation,
which I have discussed in previous chapter as a measure of provider
’exposure’, is to use the number of hosted 2

nd-level-domains (2LDs)
per each provider. Recall however, that I found that only 46.6% of the
hosting victim IPs have been observed to host domains. This implies
that the number of domains will not be a very reliable approximation
of the attack surface size in this instance. Therefore, we can also use the
number of routed IP addresses by each hosting provider as a second
proxy for its size to compare against. This metric, however, is less



144 ddos victims and the externalities of security negligence

able to account for shared hosting (several 2LDs sharing the same IP
address). As I will see below, using both proxies in combination gives
the best results.
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Figure 6.7: Correlation between hosting network victim counts and estimates
of provider size based on number of routed IP addresses (left)
and number of hosted 2LDs (right). Histograms along axes show
distribution of data points along axis. Graphs share the same y-axis.

Figure 6.7a and Figure 6.7b plot the number of unique victim IPs
per hosting provider against the number of routed IP addresses and
hosted 2LDs of the provider respectively. Both figures demonstrate a
moderate effect of attack surface size on the number of victims, but size
does not appear to explain a large portion of the variance as indicated
by the relatively lower R2 values in comparison to what we observed
in the previous section. This simply means that only a small part of
the variation among hosting ASes is explainable purely through the
attack surface size. But as before, we can see that some hosting ASes are
disproportionately attacked more (data points far above the regression
line) or less (data points far below the regression line) in relation to
their size. This signals that attacks on hosting providers are also quite
strongly driven by other explanatory factors. The question to consider
then is what additional factors can explain the variation that we observe after
the size effect has been corrected for? Again, as before correcting for size
effects can be achieved through dividing the number of victims per
provider by the size estimate of the provider.

One possible non-size related explanatory factor that I consider is
related to the popularity of the hosted content. The expectation here
is that more popular content is more likely to be attacked. In my
analysis I use the list of top 1 million Alexa ranked domains as a
proxy for the popularity of the hosted content [184]. Given the 2LDs

that we have identified per hosting provider using pDNS data, I use the
median ranking of the subset of top 1M Alexa ranked domains per
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each provider as an indicator of the popularity of content that it hosts.
Note that in my analysis I use reversed rankings: the most popular
Alexa domain has the rank of 1,000,000 to make the interpretation of
my results more intuitive.

A second possible factor that I consider is the type of hosting service
that is offered. I expect that dedicated hosting is more likely to be
attacked in comparison to shared hosting and other similar cheaper
services offered by hosting providers. I use the number of IP addresses
that have been used by the hosting provider to host all of its 2LDs as
an indicator of the type of hosting. This indicator combined with size
estimates (routed IPs and hosted 2LDs) captures the spread/density of
domains per available IP address. A lower density of domains per IP
is an indication for more dedicated services to their customers, while
higher densities are indicators of shared hosting.

The analysis of these non size-related factors demonstrates a weak
correlation with the number of victims per provider after correcting
for size effects. For the sake of brevity I do not include the details
and instead move on to consider and report on the joint effect of all
explanatory factors through statistical modeling of the data instead.

In a similar fashion to what I did for broadband victims, I construct
several statistical models of the number of victims per hosting provider
using negative binomial GLM regression. A summary of these models
is presented in Table 6.3. They clearly demonstrate that for larger attack
surfaces there are more victims.

Model3 uses all variables to explain the variance in victimization of
hosting providers. Due to the unavoidable correlations between these
variables I include interaction terms which control for the covariance be-
tween them. The model demonstrates that when considered jointly, the
number of hosted 2LDs and the popularity of content have a significant
effect on the number of victims per hosting provider. As expected, the
size-related factor has the largest effect while the popularity of content
as represented by the median Alexa rank is moderately affecting the
victim numbers. It also suggests that there is not enough evidence to
support the hypothesis that the density of domains or type of hosting
has a significant effect on victim numbers. Due to the inclusion of
interaction terms, Model3’s results need to be interpreted in a slightly
different manner. The more complex and improved model (as indicated
by the improved log likelihood) suggests that while holding all other
factors constant, increasing the ‘Hosted Domains’ variable by one unit
(equivalent to multiplying the number of hosted 2LDs by 10 due to
the log10 scale of the variable) multiplies the number of victims by
e1.050−0.338+0.198 = 2.48. Increasing the ‘Median Alexa Rank’ variable by
one unit (equivalent to multiplying the median Alexa rank of the con-
tent by 10 due to the logarithmic scale) multiplies the number of victims
by e0.305 = 1.35. Finally, note that in Model3 the number of routed IPs
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Table 6.3: Negative Binomial GLM regression models with ‘Loge’ link function
for number of Hosting Victims

Dependent variable:

# Victims per Hosting Provider

Models→ (1) (2) (3)

↓ Independent vars.

f1: Routed IPs 1.198
∗∗∗

0.507

(log10) (0.040) (0.354)

f2: Hosted Domains 1.237
∗∗∗

1.050
∗∗∗

(log10) (0.050) (0.243)

f3: IPs with Domains −0.415

(log10) (0.427)

f4: Median Alexa Rank 0.305
∗∗∗

(log10) (0.075)

f1 × f2 −0.338
∗∗∗

(Interaction term) (0.088)

f1 × f3 0.266
∗∗∗

(Interaction term) (0.044)

f2 × f3 0.198
∗∗

(Interaction term) (0.084)

Constant −1.120
∗∗∗ −0.988

∗∗∗ −3.859
∗∗∗

(0.177) (0.215) (1.093)

Observations 2,203 2,203 2,203

Log Likelihood −10,594.160 −10,703.310 −10,192.260

θ 0.421
∗∗∗ (0.011) 0.393

∗∗∗ (0.010) 0.546
∗∗∗ (0.014)

Akaike Inf. Crit. 21,192.330 21,410.620 20,400.520

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

is not a significantly contributing factor. This does not negate the size
effect as observed in Model1 and simply means that when considered
jointly with the other factors the number of routed IPs does not add
more information to the model that has not been already captured
by the other included factors. Based on these results we can conclude
that in addition to size factors, which have the strongest effect on the
number of victims per hosting provider, the popularity of content also
weakly contributes to this number.

To get a better sense of the actual victims, I have taken a closer look
at some of the hosting victims that are associated with domain names.
Many IP addresses are associated with multiple domains, obscuring
the target and potential motive of the attackers. However, a subset of
around 23,855 IP addresses are associated with just a single domain
name according to our passive DNS data. I took a random sample of
1% of this set (238 domains) and checked all of them manually to assess
what type of website was being attacked. Of the 238 domains, 107 no
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longer showed any content. Most of them could no longer be resolved,
others ran into connection issues or were replaced by parking pages.
Given that the victim data was collected over two years, some degree
of ‘link rot’ is to be expected, though this decay of domains is much
higher than those found in other studies (e.g. [185]), suggesting that a
lot of the victims had a somewhat fleeting presence on the web, rather
than being well-established businesses or organizations.

Of the 132 sites that offered content, 55 sites (42%) were directly
related to gaming. Of these, 27 were associated with a single game:
Minecraft (17), followed by Counterstrike (6) and Runescape (4). The
remaining 77 sites (58%) were highly heterogeneous, including but
not limited to a few large stores, an airline, two football clubs, two
schools, two escort services, one porn site, several hobby forums, a
casino, a nature conservancy, and Twitpic, owned by Twitter since
late 2014. In short: motives for DDoS attacks are highly varied, though
gaming-related feuds are the most dominant of motives it appears. In
the Minecraft community specifically, DDoS attacks seem to be part of
the culture.

We can summarize the results with respect to hosting providers
as follows. Hosting providers constitute the second largest group of
victims in the amplification honeypot data. Some providers are attacked
disproportionately more than others. This can be partially explained by
the size of their attack surface. Furthermore, hosting popular content
increases the number of victims. Finally, in agreement to what others
have also found I see a large victimization of gaming related resources
within the hosting provider networks.

6.7 attack duration

In previous sections I have examined the question of who gets attacked
more, whether that is disproportionate and if some factors can explain
the variance among victim counts. We can also approach the question
of who gets attacked more from the view point of time. That is, rather
than looking at victim counts we can also approach the question as who
gets attacked longer and possibly why?

To answer these questions, I take all victim IP addresses and measure
the intervals under which they were continuously attacked. These
intervals are calculated regardless of which AmpPot or protocol was
used to attack the victim IP. The resulting interval lengths are defined
as the attack duration. Note that here, I have merged attacks that are
closer than 600 seconds apart and consider them as one continuous
attack on the victim. Given these durations, the primary question is
whether the distribution of these durations differs per victim type. These
distributions are shown in Figure 6.8.



148 ddos victims and the externalities of security negligence

The median attack duration for broadband ISPs, hosting and the
other types of victims are 272, 285 and 300 seconds, respectively. One
surprising observation is the frequency of relatively short attack dura-
tions. The majority of attacks are shorter than 286 seconds long. For
attacks longer than 300 seconds, I observe similar distributions of at-
tack durations for all three types of victims. Interestingly, I observe
an increased number of attacks that last around 5, 10, 20, 60, or 120

minutes which correspond to the peaks observable in the figure. The
trend suggests that, in general, the attacks are largely originated from
booter services and are most possibly driven by attackers’ capabilities
rather than victim types (see Figure 6.8).
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Figure 6.8: Distribution of attack durations for various victim network types.

To further compare the differences in durations for different victim
types, I use a well established statistical technique that is commonly
referred to as survival analysis, which I also employed in ??. The tech-
nique is used to answer questions about the proportion of a population
that will survive past a certain point of time on a measurement timeline
and at what rate the individuals ‘survive’ or ‘die’. In our case, the event
that we analyze is the ‘end of an attack’ on a victim IP. Figure 6.9 demon-
strates the survival analysis results. I use the Kaplan-Meier estimator
to approximate the survival function [186], measuring the probability
of an attack exceeding a certain duration for various victim types.

A log-rank comparison of the survival probabilities indicates a sig-
nificant difference at a 0.99 confidence level between attack durations
on different victim types. The log-rank chi-square statistic comparison
between broadband/hosting, broadband/other and hosting/other are
equal to 2,131.8, 3,493.4, and 739.3 respectively. These results indicate
a significant difference among the attack durations per victim type,
however in terms of magnitude, the differences seem to be quite small
(see Figure 6.9).

We can also compare the survival rates of each victim type using
the Cox proportional hazards model. The Cox model does not depend
on distributional assumptions of survival time and allows to estimate
the hazard ratio defined as the relative risk based on a comparison of
event rates. The hazard ratios show that relative to hosting providers,
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Figure 6.9: Survival analysis of attack durations

attacks end 14% faster for broadband victims while 3% slower for the
other type of victims. While the results demonstrate that attacks are
statistically shorter on broadband ISP victims the magnitudes of the
differences are not large enough to have significant implications.

To conclude, all victim types experience attacks ranging from short
lived attacks in the order of several seconds to long attacks which last
several days. In other words, there is no significant variance among the
duration of attacks on victims of different types.

I have further manually analyzed victim IP addresses of the 100

longest attacks of which 98 lasted more than 24 hours. They were
launched against 87 unique IP addresses and 46 unique ASes. Interest-
ingly, I do not observe any domains historically hosted on as many as
41 IP addresses (47 attacks). Of these, 6 IP addresses were directly re-
lated to gaming, including two victims against which the attacks lasted
more than 16 days. Of the remaining 46 unique IP addresses, which
were identified to be hosting some content, 17 were mapped to just a
single domain name in passive DNS data. Of these, I have identified 6

victim IP addresses that hosted websites which provided torrent files to
facilitate P2P file sharing, 4 websites related to gaming, 2 chat websites,
one Internet banking website, and one TorGuard VPN website. By man-
ual analysis of 15 IP addresses for which I observed 2 or 3 domains, I
have further identified three victim IP addresses that mapped mainly
to torrent, gaming, and TorGuard websites, respectively. The remaining
14 victim IP addresses mapped to more than 3 domains; 4 among them
appeared to be used for shared web hosting and they mapped to 51,
346, 614, and 931 domains. To conclude, this manual analysis reveals
that not only gaming but also torrent sharing-related IP addresses are
among long-duration attacked victims.
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6.8 related work

Much research has been devoted to analyzing the technical properties
of amplificationDDoS attacks: which protocols can me misused and how;
how large the population of vulnerable reflectors is; how difficult or
easy it is to find and misuse these reflectors; and how they could be
mitigated [136, 139, 149, 187]. We know for example that many UDP
based protocols are prone to be misused (NTP, DNS, SNMP and Chargen)
and we know what their amplification factors are [139]. We also know
how large the populations of vulnerable devices running these proto-
cols are [139, 149, 168] and what kind of a threat they pose. Darknet
and honeypot traffic reveals how perpetrators are actively scanning for
such devices in the wild [139, 149, 166, 188]. Some have even attempted
attacking their own infrastructure in order to asses the potential dam-
age of booters and surprisingly find their damage to be much smaller
than the spectacular cases reported in the news [175]. Others have
examined the motives behind the provision of booter services through
interviews [189]. Analysis of trends also reveals how over time, specific
protocols rise and fall out of popularity among attackers and how
remediation and intervention has affected the landscape [149, 171].

Earlier work on amplification DDoS attacks have focused less on
studying the victims. The most in-depth understanding comes from
the special case of NTP attacks, which allows probing the amplifier for
victim IP addresses. Czyz et al. [149] provided the most comprehensive
overview. The analysis of the smaller subset of victims from leaked
booter databases [169, 170] also point towards gaming-related victims.
In this chapter I corroborate earlier findings, especially [149, 171], that
many of the victims are end hosts and gaming-related resources, but
I also expand on this and show that the distributions have shifted.
Moreover, I provide a wholly novel contribution by developing victim-
ization rates and providing an explanatory analysis of key determinants
behind victimization patterns.

Finally, part of what we know about victims is based on industry
reports from DDoS mitigation providers [172, 173, 174, 176]. These
mostly provide information on the type of industry that is affected
most by DDoS attacks and point to the gaming industry and software
industry as main victims. The results presented in this chapter paint a
rather different picture, agreeing only with those reports in that many
victims are gaming-related. Industry reports seems to be vulnerable
to biases related to the fact that data collection often takes place in
networks of the customers of DDoS mitigation providers.
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6.9 discussion and implications

This study discussed in this chapter has presented the first in-depth
look at victimization patterns of DDoS amplification attacks — and thus
of the booter services that drive the bulk of these attacks. I found that
broadband networks harbored most of the victims (62%), followed
by hosting networks (26%). Educational, governmental and enterprise
networks make up just a small fraction of the victim population (12%),
contrary to industry reports and news items about high-profile attacks.

The population of victims is predictably distributed across broad-
band and hosting networks. To a large extent, the size of the user
population drives the victimization rate – in broadband around 60% of
the variance in victim counts can be explained from just the number
of subscribers of the provider. Further explanatory factors are ICT de-
velopment and GDP PPP per capita. I also see significant differences
among countries however, that are not explained by these institutional
factors. Remarkably, within most countries, ISP victimization rates are
clustered together. This implies there are specific country-level effects at
play, perhaps the result of geographically concentrated network effects
among attackers and victims.

In hosting provider networks, the size effect is also visible, though
less pronounced. The popularity of content, as measured by Alexa
rankings, had a small effect. When I looked at victims IP addresses
associated with a single domain, I found that 42% of the sites I could
identify were related to gaming, most notably to Minecraft.

Attack duration did not differ significantly across the victim popu-
lations. When I examined the 100 longest attacks, 98 of which lasted
more than 24 hours, I found, again, mostly gaming-related content
rather than high-profile targets.

What do these findings mean for the consequences of the so-called
commoditization of DDoS attacks? Rather than going after high-value
targets, DDoS-as-s-service has invited attackers to go after regular users.
With the commoditization of attacks, victimhood has democratized.
And so has criminality, in all likelihood. Assuming that the users
are targeted by someone that actually knows them, rather than by a
random stranger, my findings imply that the attacker population has
also broadened. In short, booters have indeed drawn more attackers
into the DDoS ecosystem, as commoditization theory suggests, and this
has led to a an expansion of victims among regular users, who now
make up the bulk of all victims.

Overall, the fact that most victims are regular users suggests that
profit is not a dominant motive anymore, assuming it ever was. The
commoditization provided by booters has enabled attacks for as little
as one U.S. dollar. This type of cybercrime is priced in the same range
as, or even below, many entertainment products. It is now cost-effective
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to pursue many more motives than profit, even very frivolous ones
– like harassing your schoolmates during Minecraft games or online
chats. Many of the new attackers probably do not see themselves as
cybercriminals. Everyone is doing it, and they are not making any
money from it.

The fact that attack patterns are so proportional to the number of
users might seem unsurprising, but it has far-reaching implications.
Rather than a phenomenon of motivated attackers with specific objec-
tives and targets, DDoS has become a cultural phenomenon. The closest
parallel to the observed pattern seems to be wide-spread use of torrents
and file lockers to download copyright-infringing materials. This sug-
gests a new route of action for fighting the DDoS problem: rather than
using criminal law to go after motivated attackers, a better approach
might be what criminologists call situational crime prevention [24]. It
shifts the focus from identifying and penalizing attackers to taking
away the opportunities that trigger crime. It can draw on a much
broader mix of measures, often based on civil rather than criminal
law. It can range from soft measures, such as awareness campaigns for
youngsters, to harder ones, like the takedown of booter accounts by
providers such as PayPal [171].

What are the implications of the findings for the wider commoditi-
zation of cybercrime? Should we expect an influx of attackers and an
expansion of victims in other criminal markets as well? Not per se. As
Florencio and Herley have argued, cybercrime is often harder than it
looks and it scales less well than one would assume at first glance [87,
190]. Indeed, in many markets, we do not see the rapid expansion
of crime that effective commoditization would cause. This can be ex-
plained by the fact that many of these service models do not supply
complete criminal value chains. Take fraud using banking Trojans for
example. It is one thing to buy malware-as-a-service and distribute it
via pay-per-install, but that doesn’t mean one can successfully execute
online banking fraud. There are bottlenecks elsewhere, especially in the
use of money mules and other cash-out channels. Mules-as-a-service
did not manage to solve this bottleneck yet.

We see the predicted effects of commoditization in DDoS attacks,
because here the booter provides the value chain end-to-end. In other
forms of cybercrime this seems much harder or even impossible, though
some might come close, like ransomware-as-a-service using bitcoin.
And indeed, we did recently see an explosion of ransomware attacks.
We can only hope that for many other forms of cybercrime, bottlenecks
will remain resistant to successful commoditization.
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The objective of my research has been to reduce the information asymmetry
surrounding the security efforts of hosting providers. It seeks to measure
and quantify how effective providers are in securing their infrastructure, in
addressing the problem of harmful Internet content, and dealing with the
negative externalities caused by the abuse of their services towards cybercrime.
In other words create transparency around the security efforts of hosting
providers. As such, the main question that it answers is as follows:

How can we quantify the effectiveness of hosting provider

security practices?

This research question was broken down into five smaller sub-questions
which were then answered in each of the preceding chapters.

In this concluding chapter, I connect what I have learned in the previous
chapters to my dissertation’s objective and its main question, summarize the
findings, and reflect on their implications for the hosting market, in addition to
discuss broader implications for the more general problem of harmful Internet
content and how the market may be governed towards more desirable outcomes.
I conclude this work by highlighting some of its limitations, in addition to
discuss directions that future research may take.

7.1 summary of findings

At the onset of my studies, multiple industry and academic efforts to
quantify and compare the security of hosting providers were identified.
It became clear that these did not adequately address the challenges
of empirically measuring the state of security in the hosting market
as a whole. Of particular importance are questions of how to identify
hosting providers, how to quantify their exposure to abuse, and how to
characterize the various types of hosting services that they offer, which
are all essential to draw meaningful comparisons of their security
efforts. In colloquial terms to compare apples with apples.

Within my work I define two types of metrics for comparing the
security efforts of hosting providers.

First are a set of metrics based on how frequently abuse incidents
occur by counting the number of observed incidents for providers over
a period of time. These metrics, which capture incident frequencies,
are reflective of proactive security efforts since they signal how well
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security incidents are prevented from occurring in the first place They
capture the idea that if providers proactively secure their infrastructure,
they should have to deal with less incidents, something which should
be reflected in a lower number of abuse incidents.

The second type is a set of metrics based on how timely incidents
are remediated by the providers over that period. These metrics, which
capture incident remediation times, reflect the reactive security efforts
of providers once incidents have already occurred. They capture the
idea that once incidents occur, independent of how secure the providers’
infrastructures are, more secure providers should remediate incidents
faster.

The first three studies of my thesis mainly focus on how to develop
metrics for each of these types of provider security effort. My next two
studies then extend the work in two directions. I first examine where
and how the application of metrics may fail by closely examining how
Bullet-Proof Hosting (BPH) providers operate as a special case study.
Next, I examine the broader impacts of hosting provider negligence by
closely examining the phenomenon of Distributed Denial of Service
(DDoS) for hire services, i.e. so-called “booter” websites, and study how
broad the set of victims of such abusive hosted websites may be.

Overall, my thesis yields a number of technical and methodological
contributions that improve the state of the art, in addition to arrive at
several empirical findings about security in the global hosting market.
I summarize these by drawing on a causal model of security incidents
that was developed and discussed in Chapter 3. The model serves as a
framework for understanding why security incidents, e. g., instances of
hosted harmful content, concentrate around certain hosting providers.
The framework allows meaningful inferences, and comparisons of the
security efforts of providers to be drawn from the metrics that I develop.

To recap, the model (see Figure 7.1) stipulates that security incidents
are caused by ‘attacks’ that compromise hosting services in various
ways. The extent to which such incidents may occur are moderated by
two factors. First, a provider’s ‘exposure’ to attacks - also referred to
as its attack surface - and second, the ‘security efforts’ of a provider to
combat attacks. The larger the attack surface, i.e. the more exposed the
provider is, the more likely it is to suffer from attacks and thus incur
losses from subsequent abuse incidents. One may think of exposure as
the number of customers that are served, resources that are utilized
or hosted, the types of hosting services offered to customers and even
the pricing of hosting services to name a few examples. On the other
hand, the more effective a provider’s security practices and efforts are,
the less likely it is to suffer security incidents. These may be thought
of as procedures to vet customers, monitor content and infrastructure
for signs of compromise or the placing of security and access controls
on hosting infrastructure and other resources to name a few examples.
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The causal relation between attacks, incidents, and the moderating
effects of exposure and security effort are captured by the causal model
reproduced in Figure 7.1.

Figure 7.1: Causal model of security incidents for hosting providers, discussed
in Chapter 3, which relates attacks to abuse events and the moder-
ating effects of defender exposure and its security efforts to curtail
potential attacks

Given this model, my research relies heavily on academic and in-
dustry efforts to collect security incident data that capture instances of
abuse most notably blocklists. I use this data to extract new insights
beyond the purpose for which the data is being collected. More specifi-
cally, I attribute discovered incidents to the specific providers that are
responsible for hosting the discovered harmful content, and use it to
empirically understand how attackers behave, understand the types
and volumes of security incidents that providers experience, as well as
infer how effectively hosting providers deal with abuse.

The first of my studies (Chapter 2) was concerned with developing
metrics to compare the security efforts of hosting providers from empir-
ical observations of abuse incidents. To this end, I employed data from
seven so-called ‘abuse feeds’ and identified systematic steps to trans-
late captured incident data into metrics reflective of hosting provider
security postures. Based on the abuse data, I found abuse incidents
to be mostly concentrated around a few hosting providers. Several
stand-alone metrics, as well as an overall score, were then produced as
point estimates, after taking into account the fact that more exposed
providers are more prone to being abused. That is, once the exposure
effects are explained away, this study assumed that differences among
providers should be driven by how effective their security practices are
and ranked providers on that basis.

Within the study I produced metrics to compare both the proactive
and reactive security efforts of providers. Here, the analysis of the
proactive and reactive security metrics suggested that these two dimen-
sions of security effort are largely uncorrelated. This meant that only a
small proportion of providers were observed to be both proactively and
reactively effective in combating abuse (relative to their counterparts)
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with most only performing relatively well on only one of these aspects.
Two subsequent studies, discussed shortly hereafter, therefore each
have focused on developing enhanced methods for producing metrics
and empirically measuring each of the two dimensions of security
effort independently.

In my first study, I adopted a pragmatic approach of identifying
hosting providers from Autonomous System Numbers (ASNs). This
was the typical approach taken within existing literature at the time.
ASNs are technical identifiers in Border Gateway Protocol (BGP) Internet
routing data signifying organizations that route Internet traffic to and
from IP addresses. In other words each hosting provider is assumed
to operate its infrastructure from within an Autonomous System (AS)
with a designated ASN. I attributed abuse incidents to specific hosting
providers by matching the IP addresses of servers on which harmful
content was discovered against ASes that routed traffic to and from
those servers. Moreover, by combining the same BGP routing data
and the AS information which it contains with passive DNS (pDNS)
data, and IP address geo-location data, I constructed a list of Dutch
hosting providers, estimated their attack surface size (exposure), and
characterized their hosting services via measurable quantities such as
the number of IP addresses routed by, the subset of IPs associated
with domains names, and the number of domain names operated from
within each hosting provider’s AS. One of the main contributions of
this study is that it was a first-of-a-kind to develop techniques for
measuring exposure based on pDNS data.

One unsolved problem in this study’s approach was the fact that AS

ownership information is not a perfect basis for identifying the provider
responsible for hosting harmful content on a certain IP address. Within
an AS, there can be multiple providers, each with their own IP space and
server infrastructure. Ownership of IP address ranges (a.k.a. IP prefixes)
is a better basis. And such IP prefix ownership is reflected in WHOIS data
as it captures organizations to which different IP prefixes have been
assigned to for use by various Regional Internet Registries (RIRs). WHOIS

data also containts the abuse contact information for IP addresses,
which also point to the providers who own the IP space, not to the AS
owner who might only route Internet traffic to/from specific IPs.

Thus, a subsequent study, by my colleagues and myself [44]
[44] Samaneh Tajalizadehkhoob

et al. “Apples, oranges and
hosting providers: Het-
erogeneity and security
in the hosting market.”

In: NOMS. IEEE, 2016

, devel-
oped a more valid and reliable way of identify hosting providers at
scale. The study resulted in improved methods for first, identifying
hosting providers through publicly available WHOIS IP allocation data,
and second, extended the use of pDNS data to derive additional infor-
mation about the business models of hosting providers, for example,
whether and how many of their hosted resources are on shared hosting
services versus how many resources are hosted on dedicated infras-
tructure of their own. The former improvements enhanced our ability
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to identify a larger number of hosting providers most notably so-called
hosting resellers - a significant yet smaller type of hosting business -
that do not necessarily have a designated ASN. The latter improvements,
allowed us to later also take into account how different types of hosting
services, i.e. business models, influence the moderating effects of a
provider’s exposure to attacks.

One of the limitations of my original study was its implicit assump-
tion that attackers may be seen as randomly attacking providers propor-
tional to their exposure. Only by making this simplifying assumption
about attacker behavior dynamics, would I have been able to attribute
the differences in abuse concentration among providers to differences
in their security efforts, of course after having taken exposure effects
into account. That is, if attacker behavior is seen as randomly attacking
providers proportional to their size, it should produce a heteroskedastic
noise pattern in the observed incident counts which grows proportional
to provider size. Thus by normalizing incident counts by provider expo-
sure, heteroskedastic noise is transfomed into a random noise pattern
equally affecting all providers, and therefore something which may be
overlooked.

A second limitation was the fact that the metrics I produced were
volatile point estimates of provider security postures as the metrics did
not take into account the inherent noise of the abuse data itself. No
error margins were produced to indicate the level of confidence that
we may instill in the metric values. Thus, the metrics were subject to
volatility, and even though sensitivity analysis suggested reasonable
metric stability, this limitation was something that I improved upon in
my subsequent studies.

My next study (discussed in Chapter 3), focused on developing en-
hanced metrics to compare the proactive dimension of hosting provider
security effort. Similar to my previous study I employed several abuse
feeds to collect incident data. Unlike the previous study however, the
improved technique for identifying hosting providers from WHOIS data
was used, thereby allowing to enlarge the scope of the study to a
global setting as well as better identify hosting providers, most notably
resellers. As such, irrespective of their type, more than 30K hosting
providers were identified in the global hosting market which were ana-
lyzed in this second study. As before, pDNS data was used to quantify
the exposure of the identified providers, in addition to identify the type
of their business and services that they offered. The causal model of
incidents that I discussed earlier was also more formally developed
here. The model was used in combination with a Bayesian statistical
inference technique and the collected incident data to derive a latent
quantity reflective of the proactive security efforts of providers.

In this study I also took an additional step to examine the distribu-
tion of incidents over the global hosting market and found that attacks
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may indeed be seen as randomly distributed over the global hosting
market. While the brunt of the attacks were observed to be targeted
at providers with larger exposure, the number of incidents for each
provider were consistent with a random attack pattern and largely ex-
plainable through the exposure of the providers alone. This confirmed
that the assumption about attacker behavior dynamics that I made in
my previous study were reasonable.

The main contribution of this study was a set of enhanced met-
rics represented as statistical distributions (as opposed to the point
estimates produced in the previous chapter) in addition to methodolog-
ically accounting for inherent biases and measurement noise that may
be present in incident data. Figure 7.2 which reproduces the resulting
metrics and comparisons of hosting provider security postures shows
some of the results. I briefly summarize these results here again. The
figure represents Individual hosting providers on the x-axis and their
estimated security performance levels on the y-axis as distributions.
Positive values on the y-axis reflect better security performance and
negative values poorer performance compared to the other providers,
while controlling for differences in exposure to the attacks. The mean
value for each provider’s estimated security performance distribution
is represented by the thick black line. Colored regions around this line
illustrate the [2.5− 97.5]% credible interval of the distributions. The
graph also distinguishes between providers for which incidents have
been empirically observed or not, by representing their security perfor-
mance distributions in orange and gray colored bands respectively.

As such, these metrics not only quantify the effectiveness of provider
security efforts but also reflect measurement uncertainty, or in other
words the level of confidence that we may instill in them. An important
result of this study is that it I showed that the produced metrics are
predictive of the number of incidents that providers experience over a
fixed period of time. That is, I was able to explain between 78 and 99

% of the variations in provider incidents numbers for empirical data
that was left out of the modeling phase to produce the metrics. Given
these metrics, I found that a large number of hosting providers exhibit
below average proactive security performance relative to their global
counterparts, even when exposure effects such as size and the business
models of hosting providers are taken into account. An interesting
observation was that the produced metrics appeared to be better at
reflecting provider failures as opposed to the opposite outcome of
successfully preventing abuse. This is observable by the fact that the
metrics exhibit higher confidence when providers performed poorly, i.e
the credible intervals for the orange colored regions are smaller than
the grey regions of the graph. This phenomenon is explainable by the
fact that my models were unable to distinguish between three scenarios.
First, that lack of incidents may be driven by good security practices,
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Figure 7.2: Comparison of estimated hosting provider security performance
discussed in Chapter 3. Security performance is reported on a latent
variable scale along the y-axis with positive numbers representing
better security performance and negative numbers vice versa. All
hosting providers identified across the market, are represented
along the x-axis in improving performance order. 95% credible
interval bands for security performance estimates are reported as
color bands with mean values as solid black line. Providers for
whom abuse has been empirically observed are orange color-coded
and providers with no empirically observed abuse event represented
in gray.

or second, driven by incomplete abuse data, or third, by having had
small exposure. Nevertheless, the produced metrics, correctly reflect
this uncertainty through wider spread credible intervals for the metric
distributions.

Next, the study discussed in Chapter 4, focused on developing met-
rics to compare the reactive dimension of hosting provider security
effort. I approached this by collecting incident data and comparing
the amount of time required to take action against discovered harmful
content on hosting provider networks. The approach yielded a more
direct measurement of security effort and had the added benefit of
its results not being affected by exposure effects. This meant that the
developed metrics did not have to account for provider exposure to
draw meaningful comparisons. Here, I find that complexities arise
from remediation times being additionally influenced by actors other
than the providers themselves, namely webmasters whose resources
may have been compromised in addition to the attackers who may at-
tempt to host harmful content directly themselves. As such, differences
among how webmasters may react, and how attackers behave, have to
be accounted for instead, to meaningfully compare the reactive security
efforts of providers.
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I first developed a framework to capture the various factors that
influence remediation times based on the literature. Figure 7.3 which
reproduces this framework summarizes the factors that may have an
influence on remediation times. For example, within this framework I
argue that if harmful content is directly hosted by an attacker it should
be expected that he/she will not willfully cooperate in its removal
thus prolonging remediation times. Moreover, certain types of content,
for example Command-and-Control (C&C) centers, are typically more
valuable assets which attackers will try to more carefully protect, more
so than for example transient phishing pages and thus increase the
security efforts required to take them down, i.e. increase remediation
times. On the other hand, successfully taking down harmful content
which has resulted from compromising resources assigned to legitimate
hosting customers, depends on cooperation between providers and
those customers and how well their security efforts combine. As such,
the causal factors that influence remediation time are entangled.

Figure 7.3: Analytical model of factors influencing abuse incident remediation
times.

Given this analytical model, my study draws on statistical survival
analysis techniques to model and explain the amount of time elapsed
for individual incidents to be resolved while controlling for the various
influencing factors to the extent possible. The statistical models which
I employed controlled for differences in remediation time that may
be attributed to differences between how webmasters and attackers
may have behaved. These models allow one to compare and draw
inferences about populations of providers and to infer which market
segments have more vigilantly reacted to abuse and how their reactive
security efforts relate to their structural properties such as size and
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their business models. Here, I found that larger providers generally
remediated incidents in a more timely fashion but that those with more
shared hosting resources on average took longer to remediate abuse.

An second contribution of this study is that it demonstrates how
widely used industry-sourced abuse data may be affected by various
types of measurement error and how such errors threaten the validity
of inferences that are drawn therefrom. I identified several such factors
within my causal framework. These may be observed in Figure 7.3 un-
der the heading measurement errors. Given their potential misleading
effects, the study developed a methodology to triangulate results across
multiple data sources and thus lessen the impact of measurement er-
rors. As such I arrived at more robust results and could more carefully
identify which providers had done a better job, in addition to provide
explanations of why it was so. Alas, a number of findings in this study
were found to be inconsistent after triangulation. This of course is to be
expected, given the noisy nature of the incident data that was collected
for this study.

My next study (Chapter 5) focuses on so-called Bullet-Proof Host-
ing (BPH) providers, a consistently difficult area of the hosting market
to tackle. These knowingly allow miscreants to host harmful content
and assist in its online persistence thereby enabling a large range of
cybercrime. BPH providers are interesting cases to examine as they
demonstrate the limitations of security metrics. They represents corner
cases for which security metrics begin to fail, and exemplify how met-
rics, including ones that I have discussed in previous chapters, may be
gamed and distorted. Understanding how such malicious providers
operate is an important challenge due to their pivotal role in enabling
cybercrime and may lead to better techniques for detecting and dis-
rupting their operations. Therefore chapter Chapter 5, a first-of-a-kind
study, undertakes a case-study of a recently taken-down BPH provider
called MaxiDed by examining ground-truth data that resulted from the
confiscation of its assets by law enforcement. The study provides a wide
range of empirical insights into the inner workings of BPH providers.

While many BPH providers were initially detected and disrupted by
relying on security metrics that reflect abuse concentration, I found that
their operators have adopted agile operational models which render
existing defenses and security metrics less effective. BPH operators heav-
ily rely on reselling the hosting services of larger legitimate parenting
hosting providers. They no longer necessarily own network assets with
associated ASNs nor physical server infrastructure. At the same time,
technical data that may potentially point to their organizations, for
example WHOIS data, is often not up to date and thus not accurately
indicate that certain IP prefixes may have been sub-delegated. That is,
WHOIS data they still may reflect the original owners of the IP prefixes
as the point of contact. Such inaccuracies lead to the concentrations of
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harmful content hosted by BPH providers, to appear as originating from
their often legitimate parenting hosting providers which sub-delegated
their IP prefixes. Effectively, abuse emanating from their BPH services
becomes diluted with that of their parenting organizations. I also found
that BPH operators react to abuse complaints just as legitimate hosting
providers would. That is, they forward abuse complaints to their cus-
tomers and suspend servers that host harmful content if and when they
are discovered, thus transferring risks of taking down abusive content
to their potentially criminal customers. For such BPH providers, metrics
that measure abuse concentration would often count abuse towards
parenting hosting providers, while metrics that measure remediation
times would typically observe reaction times that do not standout as
outliers. Such are the edge cases for which security metrics fail to
produce clear insights, demonstrating their limitations and how they
are actively gamed and distorted by BPH providers in the wild.

A unique aspect of my study from Chapter 5 is that it also provided
insights into the economics and profitability of BPH operations. I find
that the profitability of BPH may be much more limited than what is
widely assumed, but that other types of profitable cybercrime which
it enables, may in conjunction, turn them into profit centers for their
operators. The underwhelming profitability of BPH operations however,
suggests that there may be other ways to tackle their menacing side
effects, by targeting and applying economic pressure on their profits
for example. For instance, through forcing them to operate under
higher op-sec requirements thus increasing their operational costs and
hopefully rendering BPH even less profitable. This of course remains to
be seen.

My final study, discussed in Chapter 6, employs some of the method-
ological contributions of my previous work towards examining how
security failures in the hosting market negatively affect society as a
whole. It examines the negative externalities of so-called ‘booter’ web-
sites. Booter websites, package and sell the ability to kick arbitrary
targets offline by launching Distributed Denial of Service (DDoS) attacks
at the click of a button. In essence they provide DDoS-as-a-Service at
often low prices to anyone that is willing to pay regardless of their tech-
nical abilities. The empirical insights gained in this study demonstrate
the extent of harm that malicious content may create if not adequately
addressed, particularly by hosting providers that host them and are in
a unique position to take them offline.

This study revealed that the bulk of the targeted victims of DDoS
attacks emenating from booter websites are regular Internet users, most
notably online gamers. I find that victimization rates across broadband
Internet Service Provider (ISP) networks, i.e. the intermediaries that
provide Internet connectivity to the victims, is highly proportional
to the number of their subscribers. In fact, 60% of the variation in
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victimization rates across broadband ISPs is purely explainable by the
number of their subscribers. The observed pattern demonstrates how
often such attacks take place and target regular Internet users. I also
find that broadband ISPs from certain countries relatively experience
more attacks that others. This is only weakly related to those countries
having better developed ICT infrastructure.

Examining other types of vicitims in this study also revealed that
hosting providers themselves, and their content hosting servers, are also
occasionally attacked, although to a much lesser extent. Thus in terms
of negative externalities, the providers hosting the booter infrastructure
do not suffer the full cost of the DDoS attacks. In fact, most of the impact
is suffered outside the hosting sector itself. This clearly demonstrates
that the negative externalities that are caused by lax security practices
of providers. Here I found that attack rates are proportional to provider
exposure, for example the number of domains that they host or number
of servers that they operate. A weak relation between the popularity of
the hosted domains and suffering more attacks was also observed.

In terms of how damaging the DDoS attacks may have been I com-
pared attack duration across both broadband ISP networks and hosting
providers. Here I found both types of victims to experience similar
attack duration. Longer attacks of course result in longer service disrup-
tion and are more costly to defend against by for example, activating
protective measures such as traffic scrubbing.

In summary, the overall contribution of the set of studies is to improve
our understanding of security in the hosting market. They have helped
identify market areas where current security efforts fail, in addition
to demonstrate the impact of such failures. Through answering the
question of how the security performance of hosting providers may
be measured and compared, we are provided with a set of empirical
metrics as tools with which to identify the problematic areas and track
progress. In what follows, I expand on the implications of this work
and how security metrics may be employed to govern and steer the
hosting market towards more desirable outcomes.

7.2 implications for governance

In introducing my work, I have discussed how existing regulation
has shaped hosting provider security behaviors by establishing a legal
baseline of required security effort. I have also discussed how provider
economic incentive structures have lead the hosting market to fail in
addressing the problem of harmful content. Current regulation does
not place liabilities on hosting providers when their services are abused
to host harmful content. As a result, providers have mostly shifted
burdens on to their customers or other 3rd parties to deal with abuse.
While some providers take proactive and reactive countermeasures
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against abuse, many, as I have demonstrated via the security metrics
that I develop, do not adequately address the problem and exhibit
insufficient security effort relative to their counterparts, even after
taking other abuse influencing factors such as exposure and attacker
behavior into account.

Currently, combating harmful content heavily relies on voluntary no-
tice and take-down regimes through which third parties notify hosting
providers of abuse and providers are in turn expected to take action
against [53, 54]. In turn, providers typically notify the customers that
are responsible from their point of view. Providers mostly forward
abuse complaints with the expectation that customers would then take
down the harmful content. While in my own studies I have found
limited anecdotal evidence of some providers playing a more active
role, few providers appear to strictly enforce security countermeasures
or implement recommended anti-abuse policies to dissuade repeated
abuse of their services. The problem is exacerbated by the fact that
abusive customers may also migrate to other hosting providers with
lax security practices. Ultimately, if providers or their customers do not
take action against harmful content, court orders and law enforcement
agencies may compel them to take action as a last resort, albeit a costly
and non-scaling solution.

In short, the abuse of hosting services constitutes a collective action
problem which involves multiple actors, with a key actor, namely the
hosting providers themselves, not being adequately incentivized to
engage with it.

In this section, I reflect on how the security metrics produced in
this work, may support governance approaches seeking to incentivize
provides towards taking more effective steps against abuse. These
approaches may be categorized into four schemes typically identified
in governance literature [191, 192, 193, 194]: (i) community-driven
efforts, (ii) network-based efforts, (iii) self-regulatory or market-based
approaches and finally, (iv) hierarchical governance approaches. I will
reflect on each approach separately indicating how security metrics
may contribute within each governance scheme.

We have already seen the emergence of community-driven efforts
from within the hosting provider industry sector to address the nega-
tive externalities of harmful content. The Messaging Malware Mobile
Anti-Abuse Working Group (M3AAWG) and its proposed best security
practices for hosting providers which I discussed in Chapter 1 is a clear
example of such efforts. The M3AAWG community, with a clearly stated
aim of combating abuse, supports hosting providers by giving a wide
range of recommendations on how to prevent abuse, how to detect
and identify when/where abuse takes place, in addition to suggest
ways to remediate it. Hosting providers may voluntarily follow a sub-
set or all of these recommendations. Within such community driven
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efforts, security metrics may help identify the security practices that
are most effective by comparing providers based on the recommen-
dations that they follow, whether it be through natural experiments,
quasi-experiments or randomized control trials. As such, metrics may
provide empirical grounding for prioritizing security recommenda-
tions based on how effective they are along with cost benefit and risk
analysis. Security metrics also allow providers to individually track
their progress when new security practices are taken on-board, for
example by comparing to their own previous metric standings or in
comparison to other comparable providers that have not implemented
similar countermeasures.

We have also seen the emergence of network-based governance efforts
to combat abuse. For example in the Netherlands initiatives like the
abuseplatform.nl have brought together a network of organizations
with trust, reputation, or business relationships in an effort to collec-
tively commit to combating abuse. In this instance for example actors
across government, academia, industry (i.e. several ISPs and hosting
providers), in addition to several other stakeholders have come together
and committed to sharing abuse data and tracking security progress.
Members are asked to adopt a code of conduct that is based on the
M3AAWG best practices document. Joining the platform also means that
providers have to adopt this code. This particular platform for instance,
has directly employed the security metrics that have been developed in
this work. Here, the metrics are being used to privately communicate
each participating organization’s security stance relative to their coun-
terparts. As such they raise self-awareness, and function as a means to
incentivize each organization towards improving their security efforts.
Other local or non-local network based governance initiatives may take
advantage of existing network relations and employ security metrics
similarly to raise awareness, track progress and incentivize hosting
providers to implement more effective countermeasures.

Among the various governance approaches that I have mentioned,
self-regulatory market-based ones have probably been the most tried
out scheme as of yet. Security metrics, such as the ones produced in
this work, have often been at the center of these efforts. Some metrics
have been used to publicly name and shame bad hosting providers
thus affecting their market reputation in teh hope that reputational
effects may compel bad hosting providers to act against abuse. Other
efforts are being tied to cyberinsurance schemes as alternative means of
incentivizing market players to combat abuse. The premise being that
a poor security posture may justify setting higher insurance premiums.
In essence, security metrics are being used here to communicate that
certain hosting providers are to be avoided, or for example to signal
to customers, potential business partners, investors, and shareholders
that some providers’ services are excessively abused by cybercriminals.
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Within this governance scheme naming and shaming of bad hosting
providers have had some demonstrable effect in disrupting BPH oper-
ations for example. The use of security metrics to name and shame
McColo Corp. and the Russian Business Network, both instances of
BPH operations, is a concrete example which resulted in these provider’s
business partners severing their business ties. The use of security
metrics within other efforts, for example hostexploit or Google Safe
Browsing’s transparency report, which publicly list hosting providers
with high concentration of abuse are additional examples of naming
and shaming efforts. In general however, the effectiveness of employing
security metrics to communicate market signals are not yet clearly un-
derstood. Moreover, there has been certain pushback from the hosting
industry based on the fact that security metrics do not take provider
exposure into account, or based on arguments that the underlying
methodologies and data are not transparent. By taking provider expo-
sure into account, and openly communicating our methodology and
underlying data of this work, some of these concerns may be alleviated.
In fact, in communicating our metrics with Dutch hosting providers
we have observed a more accepting tone. With respect to alternative
approaches that go beyond naming and shaming, for example cyberin-
surance schemes, I am not currently aware of any concrete examples
beyond theoretical discussions of this approach. As such the effects
of using metrics to determine insurance premiums still remains to be
seen.

Finally, we have the category of hierarchical governance approaches
which rely on existing authorities to further regulate the hosting market.
Currently ongoing discussions of placing liability on Internet interme-
diaries within the EU, which I have pointed to earlier in Chapter 1,
are clear examples of such hierarchical governance approaches. Within
this context, security metrics may provide empirical basis to, and help
policy makers in proposing evidence based policies. A second concrete
example is the case of the CleanNL initiative in which Dutch law en-
forcement directly employed our metrics to identify the top 10 worst
Dutch hosting providers and engage in direct talks with them. These
efforts were a precursor to and may have had a positive effect on sev-
eral of these providers joining the abuseplatform.nl initiative that I
discussed earlier.

In short, security metrics may be employed to complement a wide
range of governance approaches to tackle the collective action problem
of hosting service abuse. While my own studies have largely focused
on developing the metrics themselves, the extent to which they may
complement each approach still remains to be seen. It goes without
saying of course, that security metrics also have their limitations. These
limitations and potential future research directions are topics which is
will discuss next.
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7.3 limitations and future work

Each of my studies discuss limitations and potential improvements
that future research may undertake within the context of the individual
study. Overall, these limitations stem from shortcomings in the empir-
ical data that I used, methodological choices and assumptions that I
made, as well as certain theoretical limitations, in addition to ethical
considerations.

Here, I will briefly discuss such limitations and place them within
the broader context of my research. I also discuss how future work
may advance this work, in addition to how ongoing research in areas
closely related to the problem of harmful Internet content may benefit
from some of its results.

Limitations in Data

My research relies on a range of third-party data sets of which I had
a black-box system view. These include a variety of abuse feeds that
capture security incidents, Internet operations data, statistical data
about companies, in addition to data collected from honeypot systems.
An opaque view of their collection methodologies inevitably lead to
limitations that are invariably linked to questions of data quality such
as measurement error, coverage and bias.

A clear example of limitations that I encountered in this respect were
challenges in utilizing Internet operations data such as WHOIS. A well
known problems with such data is that it may be incomplete. For in-
stance, for privacy reasons, portions of public WHOIS data are withheld,
a fact that is also misused by miscreants [72, 74, 75]. Additionally WHOIS

IP prefix allocation data may be inaccurate particularly with respect to
IP prefix delegations [37, 44, 100]. Such inaccuracies not only affect the
attribution of security incidents to specific hosting providers but also
limit our ability to identify and enumerate the hosting providers them-
selves, for instance those that resell hosting services which typically
operate from delegated IP prefix ranges. Notwithstanding its limita-
tions, the use of WHOIS data constitutes a methodological improvement
to the state-of-the-art in detecting and measuring security within the
hosting market.

Data coverage issues were also encountered in for example using
DNSDB’s passive DNS (pDNS) data and the numerous abuse feeds that I
employed in my studies. For the pDNS data, which I largely used to the
estimate hosting provider exposure to attacks and to characterize their
services, comparisons were drawn with a limited sets of authoritative
domain registration data to further understand the coverage question. I
found DNSDB data to provide reasonable coverage of the total number
of domains registered within several popular generic top-level-domains,
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for example .COM and .ORG in addition to several country top-level-
domains e.g. .NL [112]. As such, I found certain guarantees that using
DNSDB data results in only modest inaccuracies. With respect to data
from abuse feeds, similar coverage issues were anticipated. Yet, beyond
theoretically predicting how much of the existing abuse is covered
by abuse feeds, there are no practical ways of further understanding
coverage issues here as authoritative ground-truth data on the amount
of global abuse does exist. Even industry leading efforts to monitor for
abuse can only achieve very partial coverage at best and typically have
little overlap with data collection efforts of others [109, 114]. Hence,
my approach has been to employ data from multiple reputable and
widely used abuse feeds in anticipation of potential coverage issues.
The use of multiple higher quality and widely used abuse feeds in each
study not only increase coverage, but also ensure that my findings have
undergone corroboration and triangulation with existing literature that
also analyze the same or similar data, in addition to provide safeguards
against overtly confident claims based on low quality and low volume
data. Moreover, as long as the coverage of these feeds does not bias
against certain provider types quantifying security performance from
this observational data should still be possible.

Yet in some cases I have encountered evidence of bias in a subset
of the abuse feeds that I used. For instance, when studying incident
remediation times, I found that irregular and infrequent monitoring of
certain hosting providers, may have resulted in measurements errors
that deviate from a random pattern thus indicating the existence of
biases. More specifically, I found that my data sources may have moni-
tored certain data subjects more frequently than others thus leading to
biased measurements. In such cases I had to explicitly triangulate my
findings across multiple data sets to alleviate concerns about the results
being impacted by biased data. For some of the other abuse feeds that
I used in other studies, I lacked reliable information on their collection
methodology. However I also did not find clear evidence of bias within
these data sets based on the analysis that I did. Yet, unknown biases
may still exist which my analyses did not uncover.

Similar concerns of bias in honeypot data, which I used to study
DDoS attack victims, existed. In this instance, I found the honeypot data
to provide a less biased view of the DDoS attack phenomenon since my
findings were more aligned with findings from several other academic
studies that had also briefly touched upon the victimization question
based on other data sets. In contrast, comparisons that I drew with
DDoS protection industry reports on victimization patterns suggested
that such reports were mostly based on data collected from a limited
number of customer networks of the industry itself and as such resulted
in a more biased understanding of the phenomenon. As such the use
of honeypot data appeared to be a more sound theoretical choice.
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Overall, I have encountered various limitations in the empirical data
that I employed in my studies. While my approach of dealing with these
has largely been one of methodological grappling with the data itself,
for example removal of erroneous data points or triangulation across
multiple data sets, there are limitations to how issues of measurement
error, coverage and bias may be addressed methodologically. In light of
these issues, future research that is based on third party data sets may
emphasize more explicit corroboration and triangulation across studies,
to ensure that findings are robust and not affected by the idiosyncrasies
of particular data sets. To address data quality issues more directly
however, future work may emphasize a more direct approach of dealing
with the limitations. Collaborations with industry partners and third
party data providers, should provide a much clearer understanding of
the data generation processes behind each data set and help minimize
limitations by improving data collection processes. As such the black-
box perspective of the data which I had, may be opened up to produce
a more transparent understanding of collection processes in addition to
help address some of the limitations that I encountered more directly.

Methodological Limitations

In addition to the data-related limitations, there are also methodological
as well as certain theoretical limitations to my work.

A prime example hereof, which is also linked to the limitations
of WHOIS data that I discussed in the previous subsection, is the fact
that even with perfect WHOIS data, identifying hosting providers is
challenging. It is well known that due to the non-standard way by
which WHOIS data is structured, parsing and utilizing it is hard [195].
This is why I have opted to use commercial WHOIS data from MaxMind

which already deals with some of this complexity. There is also the
problem that reselling of hosting services can take place without an
agreement with an upstream provider, hence having no reflection in
WHOIS data as I have seen in examining BPH in Chapter 5. Therefore
there are methodological limitations to how much of the global hosting
market may be identified and enumerated through such data.

A second example is an incomplete causal understanding of factors
that drive the abuse of hosting services. The causal model of security
incidents that my work relies on, is by no means a comprehensive one.
There may be other causal factors that are currently unknown. At the
same time, a range of causal and moderating factors exist that I have not
been able to obtain data on because of practical limitations. For example,
the pricing of various hosting services is theorized to be an influencing
factor in provider exposure which I have not explicitly modeled or
considered in my studies. That is, cheaper hosting services are more
prone to abuse as attackers are rationally understood to minimize
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their operational costs. Collecting data on the price of various hosting
services was however infeasible at the scale of my studies. Similarly,
collecting data on the specific security countermeasures that hosting
providers may have adopted, a moderating factor in determining the
effectiveness of provider security practices, was likewise infeasible from
a scalability and external measurement perspective.

There are also certain limitations that stem from implicit or explicit
assumptions that I have made in my work. For example, my initial
study assumes that attacker behavior dynamics may be abstractly seen
as a random noise element after provider exposure effects have been
taken into account. And thus, due to their random noise characteris-
tics, may be seen as naturally occurring random measurement noise
which may be overlooked since statistical modeling techniques are well
equipped to deal with such random error patterns. Lack of empirical
data on attacker behavior is of course a practical limiting factor here.
Also note that while my later studies empirically test the validity of
this assumption, it is nevertheless a simplifying abstraction to enable
the use of certain statistical data modeling techniques.

There are also limitations in the time frames of my studies. My
studies are retrospective and observational in nature and by extension
the metrics that they produce are too. That is, the produced security
metrics do not reflect security performance in real-time but rather based
on observations from time frames in the past. Therefore, to observe the
effects of implementing new security countermeasures by particular
hosting providers, new incident data needs to be collected and effects
may only be observed with a time lag.

I should also note that certain fundamental theoretical limitations
exist as well. In principle, ‘security’ is not something that can be directly
measured in the absence of security incidents. In other words, what
metrics measure is more describable as the lack of security which is
indirectly observed through its manifestation as abuse and security
incidents. This is a fundamental limitation which I have encountered for
example when no incidents pertaining to certain hosting providers were
empirically observed in the abuse feeds. A lack of security incidents
here, of course do not imply perfect security, but may be attributed to a
number of other reasons, for example small exposure or incompleteness
of the incident data.

That being said, there are also limitations in the statistical techniques
that I have employed to model incident data and explain variations in se-
curity incident frequencies and the reaction times of hosting providers.
The use of Generlized Linear Models (GLMs), or Bayesian models in
conjunction with Item Response Theory, and even survival analysis
techniques may have had theoretical justifications, yet there is still
significant variance among hosting provider responses that remain
unexplained. This unexplained variance is linked to both limitations in
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our theoretical understanding of the causal drivers of (in)security as
well as a lack of empirical data.

Given such methodological limitations, future work may build a
more comprehensive causal understanding of the factors that drive
insecurity in the hosting market. Efforts to collect empirical data on
additional causal factors may also help to better explain the variance
among hosting providers and their responses to security incidents that
I have observed. Specifically, future research may focus on developing
more advanced statistical modeling techniques in addition to undertake
longitudinal analysis to better understand additional factors that drive
the abuse of hosting services and how security in the hosting market
evolves over time as new security countermeasures are adopted by
certain hosting providers.

Ethical and other Scientific Considerations

Several additional considerations regarding my research are also note-
worthy. These relate to the type of data that I have partly employed.

For example, to study the behavior of Bullet-Proof Hosting (BPH)
providers I have relied on sensitive forensic data that resulted from
the confiscation of servers by law enforcement. This data contains
personally identifiable information (PII). As such, its use may raise
ethical concerns. It should be noted that In researching this data I have
followed ethical guidelines set forth by the research community in the
Menlo Report [157] as well as obtain permission from several entities,
namely TU-Delft’s ethical board (HREC), Dutch law enforcement and
prosecutors. Note, however, that for additional ethical considerations I
have limited my research to only portions of this sensitive data, and
have avoided analyzing or reporting on parts of the data that contain PII.
As such the analysis is only partial. Moreover, due to its sensitive nature,
the underlying data is not openly available for others to replicate my
results. To alleviate potential concerns in this respect I have carried out
and reported on several extensive sanity checks.

I have also relied on several other froms of proprietary or commer-
cial data sets which create reproducibility limitations. These data sets
include DNSDB’s pDNS data, WHOIS data from Maxmind as well as mar-
ket analysis data on ISPs from Telegeography. The former two datasets
are either available under academic license agreements or have openly
available alternatives either through the same data provider or from
other sources. Market data from Telegeography on the other hand is
only commercially available.
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Future Research Directions

My research has focused on the problem of harmful hosted content in
relation to the abuse of online hosting services. The types of harmful
content that I have examined are admittedly limited to ones that are
more clearly distinguishable as such. For example, phishing pages,
malware, botnet command and control backends, child sexual abuse
material, and booter websites, to name a few. The metrics and method-
ologies that I have developed are, however, independent of the types
of abuse and security incidents, and are capable of incorporating ad-
ditional forms of abuse or vulnerability data to extend the research.
As such, future work may consider a wider range of harmful content
types particularly types which I have not considered here to produce
more accurate metrics of comparison.

With that said, abuse and the problem of harmful content appear to
be endemic to many other types of online services as well. For exam-
ple, domain name registration services are also regularly abused by
miscreants. Some of my other co-authored research has thus focused
on developing security metrics for these other types of Internet inter-
mediaries which do not fit within the focused context of this work [11,
112].

Such endemic abuse problems, combined with information asymme-
try about the security efforts of a wide range of Internet intermediaries,
have lead to wider spread calls to increase transparency around security
efforts. For example, on the 30th anniversary of the Web, its inventor
has called for governments to propose and enact regulation that is more
suitable for the digital age, as the Web has also created opportunities for
maligned groups to spread other forms of harmful content, for instance
disinformation and hate speech which are affecting our societies [50].
Targeted political advertising on walled-off social media platforms have
started to effect election outcomes, and extremist ideologies are being
openly advertised in our online discourse. While determining which
of the large volumes of online communication content are harmful is
not as clear cut as the types of harmful content that I have considered,
nonetheless the need to reduce information asymmetry about the se-
curity efforts of other Internet intermediaries is becoming also more
evident.

Against the back drop of recent news, numerous governments are
starting to demand other Internet intermediaries to also take more
effective steps in combating harmful online content whether they be
more clearly harmful examples such as phishing pages or less clear
content such as hate speech. Within the EU for instance, there are deals
that require social media platforms to remove hate speech by strict
deadlines [196, 197, 198]. As such, there are clear connections between
the remediation time metrics proposed in this work and what regula-
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tors are calling for in such instances. To hold social media platforms
accountable, reduce the existing information asymmetry about their
security efforts, and increase transparency, future work in this area
may be able to extend some of the methodologies developed in this
work to measure and quantify efforts in these new problematic areas
as well. However, clearly and justifiably so, civil rights advocates have
also expressed concerns about having Intermediaries policing online
content and the effects it may have on freedom of expression [199] as
determining certain content as hate speech is not as straight forward
as say identifying a botnet C&C. Therefore, in these instances a more
nuanced approach is certainly required. Empirical metrics may help
guide this discussion.

In conclusion, my hope is that the metrics and methodologies that
are developed in this work may help reduce the negative externalities of
cybercrime. I hope that through their application, hosting providers will
be incentivized to more effectively combat the abuse of their services.





B I B L I O G R A P H Y

[1] Karine Perset. The Economic and Social Role of Internet Intermedi-
aries. Tech. rep. April. OECD, 2010. doi: 10.1787/5KMH79ZZS8VB-
EN. url: http://www.oecd.org/dataoecd/49/4/44949023.pdf.

[2] Nick Nikiforakis, Wouter Joosen, and Martin Johns. “Abusing
locality in shared web hosting.” In: EUROSEC. 2011. doi: 10.
1145/1972551.1972553.

[3] Samaneh Tajalizadehkhoob, Carlos Gañán, Arman Noroozian,
and Michel van Eeten. “The Role of Hosting Providers in Fight-
ing Command and Control Infrastructure of Financial Mal-
ware.” In: ASIACCS. 2017. doi: 10.1145/3052973.3053023.

[4] Mark Felegyhazi, Christian Kreibich, and Vern Paxson. “On the
potential of proactive domain blacklisting.” In: USENIX LEET.
2010.

[5] H Liu, K Levchenko, M Félegyházi, Christian Kreibich, Gregor
Maier, Geoffrey M. Voelker, and Stefan Savage. “On the effects
of registrar level intervention.” In: USENIX LEET. 2011.

[6] Shuang Hao, Georgia Tech, Nick Feamster, and Georgia Tech.
“Monitoring the Initial DNS Behavior of Malicious Domains.”
In: IMC. 2011, pp. 269–278.

[7] Shuang Hao, Matthew Thomas, Vern Paxson, Nick Feamster,
Christian Kreibich, Chris Grier, and Scott Hollenbeck. “Under-
standing the domain registration behavior of spammers.” In:
IMC. 2013, pp. 63–76. doi: 10.1145/2504730.2504753.

[8] Janos Szurdi, Balazs Kocso, Gabor Cseh, M Felegyhazi, and C
Kanich. “The Long Taile of Typosquatting Domain Names.” In:
USENIX Security (2014).

[9] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Bal-
duzzi. “EXPOSURE: Finding Malicious Domains Using Passive
DNS Analysis.” In: NDSS. 2011.

[10] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher
Kruegel. “Prophiler : A Fast Filter for the Large-Scale Detection
of Malicious Web Pages.” In: WWW. 2011, pp. 197–206. doi:
10.1145/1963405.1963436.

177

http://dx.doi.org/10.1787/5KMH79ZZS8VB-EN
http://dx.doi.org/10.1787/5KMH79ZZS8VB-EN
http://www.oecd.org/dataoecd/49/4/44949023.pdf
http://dx.doi.org/10.1145/1972551.1972553
http://dx.doi.org/10.1145/1972551.1972553
http://dx.doi.org/10.1145/3052973.3053023
http://dx.doi.org/10.1145/2504730.2504753
http://dx.doi.org/10.1145/1963405.1963436


178 bibliography
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S U M M A RY

Cloud, hosting, and Internet Service Providers (ISPs), as well as social
media platforms, have made it very easy to for individuals to create and
place content online through their services. The streamlined services
of such so-called Internet intermediaries have also enabled miscreants
to misuse the Internet as a platform for cybercrime and illicit financial
gain.

Among the many Internet intermediary firms, hosting providers are
entities whose services are highly prone to abuse by miscreants. Their
services, which typically include the provisioning of servers, Internet
connectivity, and online storage capacity, function as the backbone of
many forms of cybercrime and have been shown to be abused regularly.
For instance, miscreants commonly attempt to steal banking details,
account credentials, or other forms of sensitive user data via hosted
phishing pages. Or they extort ransom money by spreading hosted
ransomware binaries or by launching distributed denial of service
attacks against online institutions via hosted command-and-control
infrastructure of botnets.

Such forms of cybercrime not only affect individuals, but also busi-
nesses globally, as well as society as a whole. Therefore an increasingly
important question discussed among academics and policy makers is
one concerning the role that hosting providers can (or should) play to
prevent the abuse of their services. Hosting providers are theoretically
in a key position to combat cybercrime as they are often the entities
renting out the abused resources. Yet, notwithstanding providers’ cur-
rent security measures to combat abuse, their response varies widely.
In many cases the response is lacking in effectiveness, as empirical
evidence suggests.

At its core, improving security within a global hosting market con-
stitutes a collective action problem. This means that it is unlikely for
individual hosting providers to be able to address the problem alone.
An abundance of insecure hosting providers would still allow miscre-
ants to conduct their illicit activities online even if smaller groups of
providers effectively prevent the abuse of their services. Moreover, this
matter is also an incentives problem due to the costs associated with
combating abuse within a highly competitive global market that typi-
cally operates under low profit margins. As a result, before solutions to
the abuse problem can be devised, it is critical to address the incentives
problem.

194
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Within the global hosting market, the apparent lack of incentives
to combat abuse is combined with information asymmetry about the
security efforts and practices of hosting providers. We currently lack
empirical information about key aspects of this market. For instance,
we lack information as basic as the list of providers that operate within
the market. We have inadequate techniques of identifying them, in-
sufficient information on the providers that are abused more often
than others, as well as a lack of information on the effectiveness of
current security practices of hosting providers against abuse. This type
of information asymmetry exacerbates the abuse problem and weak-
ens provider incentives to combat the cybercrime facilitated by their
services. And since we have no way of telling apart ‘good’ and ‘bad’
hosting providers, a predictable outcome where most providers do not
effectively combat abuse. This is a phenomenon driven by the misalign-
ment of their economic interests and the need for better security, i.e.
their security incentives.

Theoretically, various governance schemes may be devised to realign
provider security incentives in ways to steer the global hosting market
towards a more desirable security outcome. Regulation through top-
down hierarchical governance approaches may prove to be effective,
e.g., by placing liability onto providers for the negative externalities of
cybercrime facilitated through their services. This would undermine,
however, safe harbor mechanisms that have allowed online services to
innovate. Softer forms of regulation, for example market-based mecha-
nisms to reward good providers and/or punish frequently abused ones
may also steer the market in the right direction. Self-regulation and
voluntary forms of action through network-based or community-driven
efforts may also positively affect security in the hosting market albeit in
limited ways. Nevertheless, I argue that independent of any particular
governance scheme to realign provider security incentives, the critical
problem that needs to be solved first, is that of information asymmetry,
i.e. to overcome our knowledge shortcomings of this market and to de-
vise methods by which to distinguish good and bad hosting providers.
This leads to main question that this thesis attempts to answer, namely:

How can we quantify the effectiveness of hosting provider
security practices?

In summary, I propose to design and operationalize security metrics
as a means for quantifying and comparing the effectiveness of hosting
provider security practices. In each following chapter I breakdown and
explore multiple paths of inquiry into the main research question that
I pose above.

In Chapter 1 I first provide a more extensive discussion of the state
of security in the global hosting market and the motivation behind and
importance of the research question that I pose.
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Next, Chapter 2 is concerned with developing metrics to compare
the security efforts of hosting providers from empirical observations of
abuse incidents. Here, I employ empirical data from so-called ‘abuse
feeds’ and identify systematic steps to translate captured incident data
into metrics reflective of hosting provider security postures. The aim is
to produce metrics for comparing the security efforts of providers that
are meaningful and stable. Two types of metrics are defined. First are a
set of metrics based on how frequently abuse incidents occur. I argue
that these are reflective of proactive provider security efforts since they
signal how well security incidents are prevented from occurring in the
first place. Second are a set of metrics based on how timely incidents
are remediated by the providers which reflect their reactive security
efforts once incidents have already occurred. Based on the abuse data,
I find abuse incidents to be mostly concentrated around a few hosting
providers. I also find that proactive and reactive security efforts to
be only weakly correlated thus suggesting that each type of metric
captures an independent dimension of provider security effort. This
initial chapter then sets the agenda and serves as a road map for what
subsequent steps to take to answer the main research question.

In Chapter 3 I develop improved techniques for answering the ques-
tion of how the proactive dimension of provider security efforts can be
externally measured and how the inherent noisy nature of the abuse
data, on which much of my research relies, may be dealt with. Here
I combine Bayesian statistical methods and Item Response Theory to
estimate and compare the security efforts of hosting providers as a
latent trait indirectly observable through abuse data. The main con-
tributions here can be summarized as a set of estimates that more
robustly represent the proactive dimension of provider security with
associated confidence bounds, as well as demonstrating the power
of these estimates to explain and predict the concentration of abuse
incidents at the global hosting market scale. These results critically
depend upon a theoretical causal model of abuse that formalizes how
hosting provider characteristics, attacker behavior and security efforts
moderate and affect the observed frequencies provider abuse.

Subsequently, in Chapter 4 I investigate how hosting providers re-
act when incidents occur and how well they perform when notified
of security incidents, i. e. compare their reactive security efforts. I ap-
proached this by collecting incident data and comparing the amount
of time required to take action against discovered harmful content on
hosting provider networks. While the approach yields a more direct
measurement of security effort, I find that complexities arise from re-
mediation times being influenced by actors other than the providers
themselves, namely webmasters whose resources may have been com-
promised, attackers who may attempt to host harmful content directly
themselves, as well as other stakeholders that may notify providers of
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abuse through various means. Due to these additional complexities,
I formalize the factors that may influence remediation times through
an explanatory model which I then use to compare and explain the
differences among provider reactive security efforts. The main contri-
butions here may be summarized as a set of techniques to measure
and compare remediation times among providers as well as methods
to draw more robust inferences from the noisy abuse data.

Chapter 5 takes a closer look at the special case of criminal Bullet-
Proof Hosting (BPH) providers. These, which are a difficult area of
the hosting market to tackle, are hosting providers that knowingly
allow miscreants to host harmful content through their services and
even assist in its online persistence thereby enabling a large range of
cybercrime. In particular I investigate how such providers operate and
whether they can be identified through security performance metrics,
e. g. as metric outliers. BPH providers are interesting cases to examine as
they may demonstrate the limitations of security metrics. My findings
here include a wider range of unique insights into how BPH providers
operate internally, as well as insights regarding their economics and
profitability or rather lack thereof. Here, I demonstrate that due to their
modus operandi, more sophisticated ‘agile’ BPH providers may not be
detectable through the security metrics that I have developed and they
may be unsuitable tools to detect BPH.

In Chapter 6, I step back and examine the negative side-effects of
provider security negligence by studying the victims of cybercrime in
a case-study of Distributed Denial of Service (DDoS) attacks which
are facilitated in part by negligent hosting providers that host ‘booter’
websites. Booter websites package and sell the ability to kick arbitrary
targets offline by launching Distributed Denial of Service (DDoS) attacks
at the click of a button. The empirical insights gained in this study
demonstrate the extent of harm that malicious content may cause
if not adequately addressed, particularly by hosting providers that
host them and fail to to take them offline. This study reveals that the
bulk of the targeted victims of DDoS attacks emanating from booter
websites are regular Internet users, most notably online gamers. The
observed pattern demonstrates how often such attacks take place and
target regular Internet users. While security industry reports commonly
list high profile businesses as victims of DDoS attacks, this study
demonstrates that the consequences of negligence are much more wide
spread and go beyond business and affect society as a whole.

Finally, in Chapter 7 I bring together my findings and results and
discuss the implications of my findings along with my concluding
remarks. I examine how security metrics may help in devising gover-
nance strategies to move the hosting market towards more desirable
security outcomes and how they may be incentivized to take more
effective steps against abuse.
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