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SUMMARY

It is desirable to predict construction cost with a high level of accuracy in the early phase to compare
the budgetary with feasibility determinations. Additionally, it is required to be as quick as possible.
However, the accuracy of the cost estimation depends on the design details which are extremely
limited in such an early phase, rendering numerous uncertainties and dynamics which are hard to
control and foretell.

Currently, diverse approaches and techniques are being used and refined to reach the ultimate
goal; the cost estimation is to accurately forecast the final cost of a project with no design details
available. Generally, estimators’ experience plays a critical role here, and the availability of historical
cost data is also crucial. The process is significantly dependent on an export-driven approach. How-
ever, decisions made by experts can be subjective and error-prone especially when the relationships
between cost drivers and the target cost are not fully understood or even identified. Consequently,
cost estimation to a fair level of accuracy is hardly possible to achieve manually within a restricted
time. In recent years, civil engineering domain has begun to consider machine learning technique
as an optimal approach in tackling the predictive problem through a data-driven approach. Adap-
tive Network-based Fuzzy Inference System (ANFIS) (a hybrid model of Artificial Neural Network
and Fuzzy Inference System) is advantageous in managing uncertainties and representing knowl-
edge. This research aims at investigating the applicability of using the ANFIS for cost estimation
during the conceptual phase. The research outcome directs to the answer to the research question:

What are the potentials of the machine learning approach, Adaptive Network-based Fuzzy Inference
System, in predicting construction cost during the conceptual phase based on the historical cost

data?

Four sub-questions are correspondingly formulated to identify 1) the process of applying the
ANFIS in cost estimation based on a standard machine learning process, 2) the way of preparing the
dataset prior to the modelling phase, 3) the applicability of ANFIS in given circumstances, and 4)
the considerations for selecting an appropriate machine learning model.

First, the Cross-Industry Standard Process for Data Mining (CRISP-DM), as the leading method-
ology for data predictive analytics, is studied. Relevant literature concerning the machine learning
technique application in conceptual cost estimation is reviewed, and all of them have proved that
a desired level of accuracy can be achieved. Additionally, the ANFIS model structure is examined
to mainly focus on how to shorten the gap between the predicted value and observed value. Criti-
cal steps and components are distinguished to formulate a machine learning process in predictive
modelling using ANFIS. A toy dataset, which is fully structured and informative, contains related
data of residential buildings is used at the first place. The sensitivity of the model performance
to model parameters are evaluated to identify the significant ones that involved in the design of the
model. Subsequently, the analysis results distinguish that the methods of generating the fuzzy infer-
ence system, number, and shape of the membership functions, influence range, number of clusters,
and the training iteration are crucial inherent parameters.

Second, a brick pavement cost dataset is collected from Witteveen+Bos, followed by a data
cleansing process which is aimed at transforming the raw dataset into the final format dataset. Data
understanding is the foremost step to give an overview of the business environment, i.e., how the
unit price evolves from the year 2008 to 2016. Feature selection refers to identify the potential fac-
tors that can affect the final cost and their associated values, namely cost drivers. In this case study,
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four features, patter type, paving location, paving foundation and paving area, are selected to be
model inputs to predict the pavement cost.

Third, the ANFIS model is developed and validated based on the final dataset. The whole mod-
elling and evaluation process is fulfilled in the MATLAB environment. The training set gives the
result with RMSE 0.0623, MAE 0.0484, and R2 0.8444, while the validation set provides the result
with RMSE 0.0707, MAE 0.0612, and R2 0.9030. As for the test set, the average error is 7%, in an-
other word, 93% accurate. The applicability study of ANFIS model is conducted to evaluate the
interpretability, robustness, and ease of development.

Fourth, three other models, linear regression, random forest and support vector machine, are
developed to perform on the same dataset that applied to the ANFIS model. Prediction results are
compared, and three other aspects are respectively evaluated. Regarding the prediction accuracy,
ANFIS outperforms other three models. However, due to its complexity, the model development
phase requires much more effort than other comparatively more straightforward regression mod-
els. Moreover, ANFIS and random forest are outstanding models in explaining the reasoning process
and representing the knowledge discovered, which is valuable to provide insights into the engineer-
ing domain. In the real-life situation, features can be related to each other and a linear regression
simplifies the relationships in a real-world problem. Therefore, ANFIS and support vector machine
is found to be advantageous in modelling non-linear relationships. This assessment provides the
conclusion that when selecting an appropriate machine learning model, it is essential to consider
the business environment, data structure, data richness, and prediction objectives.

Next, the research approach and conclusions are compared with existing research with regard
to the following aspects: 1) project type, 2) machine learning model, 3) data source/richness/type,
and 4) validation approach. The main contribution of this research is distinguished. First, reviewed
literature mainly focuses on comparing the prediction accuracy level while neglecting other aspects
to evaluate the model applicability. In addition to the accuracy level, this research also examines its
robustness when being fed with erroneous data, ability to represent the discovered knowledge, ef-
forts needed to develop an applicable model, and suitable data types to be modelled. These aspects
are also significant in our construction management domain when considering whether to adopt a
new approach in the future.

This research has several limitations. The final format dataset is a thoroughly cleaned dataset,
rendering informative instances might be removed. Other features might also be strong predictors,
but they are not involved in the brick pavement cost modelling because they are unavailable form
the raw dataset. Moreover, three other models are not comprehensively trained, optimizations are
not applied to them but applied to the ANFIS model. Therefore, the prediction accuracy might
be different if specific optimizations are used. The discovered knowledge represented by IF-THEN
rules is not validated by experts. This research only distinguishes that the model can discover hid-
den patterns, but those patterns are not confirmed. Regarding the generalizability of the ANFIS
model to other construction systems, the conclusion cannot be made whether it can remain appli-
cable or not.

A recommendation is given to further investigate other machine learning models in the con-
struction cost estimation field for future research. Practitioners are recommended to update the
way of documenting historical cost data. For the reason that some conceptual information related
to a project can also influence the project cost significantly. Advanced and comprehensive data
documentation can promote the adoption of the machine learning approach.

Keywords: conceptual cost estimation, machine learning, Adaptive Network-based Fuzzy Inference
System, fuzzy inference system, artificial neural networks, brick pavement
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1
INTRODUCTION

The cost estimation function inherent in project design is a complex fundamental component,
which is performed at different project phases with different goals (i.e., pre-design, design, con-
struction, operation, and maintenance). The U.S. Government Accountability Office (GAO) defines
a cost estimation as, the summation of individual cost elements, using established methods and
valid data, to predict the future costs of a project, based on what is known today [4]. As illustrated in
Figure 1.1, conceptual estimates start with the feasibility or order of magnitude estimate and then
progress to schematic, design development and construction bid stages. The accuracy range is rel-
atively large in the initial design stage, and it narrows down later as the scope becomes more defini-
tive. It is only in the later phase can a comprehensive design be available to support cost-related
decisions in order to achieve a high level of accuracy.

Figure 1.1: Estimate error bandwidth in different project phases

1.1. CHARACTERISTICS OF CONCEPTUAL ESTIMATING
Conceptual estimations are strategically important because it is an essential part of project plan-
ning. They are needed by the owner, contractor, designer, or even lending organization for purposes
such as feasibility study of a project, the financial evaluation of alternatives, or the formulation of
an initial budget[5]. However, the accuracy of the cost estimation depends on the design details
which are extremely limited in such an early phase, thus uncertainties are caused. Moreover, the
estimating needs to occur within a restricted time period. Therefore, the availability of historical
data is important, and the estimator’s subjective judgment plays a critical role in estimations [6].

1.2. CURRENT PRACTICE
The difficulty in cost estimation comes from the wish to be able to predict a more or less uncertain
future situation. An ideal dream for cost estimation is to accurately foretell the final cost of a project
with no design details available [7]. Both in the field of research and practice, diverse approaches
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2 1. INTRODUCTION

and techniques are being refined and used to reach the ultimate goal. Generally, the approaches are
classified into top-down, bottom-up and parametric.

Generally speaking, to estimate a new project, a similar project is often selected and adapted
based on its recognized similarities or differences, depending on the estimators’ experiences. There-
fore, human professional is highly demanded in the application of traditional methods in cost es-
timation process which is a knowledge-intensive engineering task. Years of experience are indis-
pensable to develop the necessary expertise to conduct the cost estimation process. It is therefore
the decisions are prone to subjectivity. According to Shane et al. [8], accuracy and comprehensive-
ness in cost estimation are delicate issues and can be easily affected by many different factors; in
addition, each parameter must be properly addressed in order to maintain an acceptable level of
accuracy which hardly possible to achieve manually.

1.3. PROBLEM STATEMENT
During the conceptual phase of a construction project, cost estimation task comprises numerous
uncertainties because there is a lack of details in the design. The level of accuracy can be easily af-
fected by many different factors, and each factor should be properly addressed in order to maintain
an acceptable level. Estimators’ subjective judgments play a critical role here, and the availability of
historical data is also crucial. However, decisions made by experts can be subjective and error-prone
especially when the relationships between cost drivers and target cost are not fully understood or
not even discovered. Consequently, cost estimation to a fair level of accuracy is hardly possible to
achieve manually within a restricted time period.

1.4. MACHINE LEARNING FOR PREDICTIVE ANALYTICS
The development of an effective prediction model needs to comprehend the characteristics of con-
ceptual estimating: strategic importance, limited and vague information, limited time allowed for
estimating, low accuracy, and the dependency on estimators’ subjective judgments and histori-
cal data [9]. With the emergence of computerized learning techniques, information technology
(IT) plays a vital role in dealing with challenges in construction management activities. Massive
amounts of data are being collected by organizations to build their in-house databases. For data to
be of value, they must be analyzed to extract insights that can be in better usage. In recent years,
civil engineering domain has begun to consider machine learning (ML) technique as an optimal
approach in tackling predictive problems through a data-driven approach. Prediction involves esti-
mating the unknown value of an attribute of a system given the values of other measured attributes.
Predictive data analytics is the art of building and using models that can make predictions based
on patterns extracted from historical data, and machine learning techniques are here to train these
models [3]. For the construction industry which is highly experience-oriented, construction solu-
tions mostly based on previous data of similar cases. The main strengths of ML techniques are the
abilities 1) to deal with uncertainty, 2) to work with incomplete data, and 3) to judge new cases based
on acquired experiences from similar cases [10].

ADAPTIVE NETWORK-BASED FUZZY INFERENCE SYSTEM

In construction management field, artificial neural networks (ANNs) and fuzzy inference system
(FIS) are commonly used ML methods. ANNs are capable of learning from past data and general-
izing solutions for future application, but the existence of imperfection indicates that they are not
good at explaining how they reach their decisions, which is called black box.

FIS is excellent in tolerating real-world imprecision and uncertainties and are able to explain the
decisions with IF-THEN rules. These rules are valuable in shedding light on causality. However, they
cannot automatically acquire the rules used for making the decision. Fuzzy logic is a method of se-
mantic reasoning that resembles human reasoning. These limitations act as a driving force behind
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the creation of hybrid systems where two techniques are synergized in a manner that overcomes the
imperfections of individual techniques.

The Adaptive Network-based Fuzzy Inference System (ANFIS), first proposed by Jang [11], is one
of the examples of hybrid systems. It has been tested and validated in various civil engineering tasks,
and it has gained more attention than other types of hybrid systems because the results obtained
from it are equally robust as of the statistical methods [12]. Moreover, ANFIS is easy to understand,
flexible, tolerant to imprecise data and to handle non-linear functions. It constructs an input-output
mapping based both on human knowledge (in the form of fuzzy if-then rules) and on generated
input-output data pairs by using a hybrid algorithm [13].

MOTIVATION

The conceptual cost estimate is an experience oriented activity which is characterized as full of dy-
namics, uncertainties and imprecisions. Management of uncertainty is an intrinsically important
issue in the design of an expert-driven practice because much of the information in the knowledge
base of a typical expert system is imprecise, incomplete or not totally reliable. The way of ANFIS in
managing uncertainties is through fuzzy logic which is the inherent logic of fuzzy inference system.
A feature of fuzzy logic is of particular importance to the uncertainty management in the expert sys-
tem is that is provides a systematic framework for dealing with fuzzy quantifiers, e.g., most, many,
few, not very much, almost all, infrequently, about 0.8, etc. In this way, fuzzy logic subsumes both
predictive logic and probability theory, and it makes it possible to deal with different types of uncer-
tainty within a single conceptual framework [14].

A machine learning method, Adaptive Network-based Fuzzy Inference System, has been widely
applied in different predictions tasks in construction management in dealing with uncertainties.
However, limited research has been found that applying ANFIS in construction cost estimation dur-
ing the early phase. Therefore, it is still questionable whether such machine learning method is
applicable in construction cost prediction task which also comprehends numerous uncertainties
and different types of data, not only quantitative but also qualitative.





2
RESEARCH DESIGN

Formulation of the research question is fundamental to a research project. This chapter presents
the main research question based on the problem identified in the previous chapter; also the sub
research questions are formulated to stepwise answer the underlying elements of the main research
question. Subsequently, the research approach is presented in order to resolve subquestions and
progressively answer the main research question ultimately.

2.1. RESEARCH QUESTION
The focal point of the research is the cost estimation in the conceptual phase of infrastructure works.
Furthermore, the machine learning method, ANFIS, will be investigated concerning the ability in
performing the prediction task which is powered by the historical cost database.

RESEARCH OBJECTIVE

This research does not aim to discuss the situation where experts can be replaced in the estimating
process. Nevertheless, it aims to assist the experts with an applicable technique, thus exploiting
and deploying the database in hand effectively. Focusing on the research problem, this research
discusses the elements that are essential to conceptual cost estimating in the context of the machine
learning approach:

• applicability of ANFIS;
• data requirements;
• role of the expert.

MAIN RESEARCH QUESTION

What are the potentials of the machine learning approach, namely Adaptive Network-based Fuzzy
Inference System, in predicting construction cost during the conceptual phase based on historical

cost data?

SUB-QUESTIONS

a. How to apply the machine learning approach to conceptual cost prediction?

The first sub-question aims to outline the process of performing a machine learning modelling
task. Additionally, existing research is surveyed on how machine learning models are applied to the
construction cost estimation, and what are their main conclusions. Moreover, the ANFIS model will
be studied concerning its structure and adaptive parameters, and be incorporated with the standard
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machine learning process to formulate a basis for the following analysis. This subquestion will be
answered at the end of Chapter 3.

b. How to prepare data for machine learning modelling?

The second sub-question focuses on the first step of a machine learning process, data prepro-
cessing. Details related to the data preparation will be further investigated to obtain a final format
dataset which has a right quality level. This subquestion will be answered at the end of Chapter 4.

c. In which aspects the model is applicable in predicting brick pavement cost?

The third sub-question attempts to investigate the applicability of the ANFIS model in predict-
ing the cost estimation during the conceptual phase. The performance of the model is evaluated
from various aspects both qualitatively and quantitatively. This subquestion will be answered at the
end of Chapter 5.

d. What needs to be considered in selecting an appropriate machine learning model?

The last sub-question intends to compare the modelling results given by the ANFIS model and
other models. It is considered as a back reflection process to investigate whether other models can
outperform the first-choice model in specific aspects. The fourth subquestion will be answered at
the end of Chapter 6.

2.2. RESEARCH METHODOLOGY
From the literature study, it is evidenced that the ANFIS model is capable of performing predic-
tion tasks that involve linguistic variables which are commonly seen in the cost estimation process.
This research aims to investigate the potentials of the machine learning approach in construction
cost estimation during the early stage. The research methodology is illustrated in Figure 2.1, and it
focuses on realizing the research objective systematically.

Figure 2.1: Research approach

After the problem has been identified, a literature study process is conducted with regard to
the machine learning approach and also the theory of the ANFIS model. Moreover, existing related
research will be examined about how such a method can be used in cost estimation task and what
results they obtained. In the next phase, a toy dataset which is well-structured and informative will
be utilized to uncover the factors that can affect the model performance in a trial-and-error process.
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The machine learning standard process and significant influential factors will be the basis for the
next phase, the real-life dataset application.

Fundamentally, the raw brick pavement dataset will be analyzed and cleaned to obtain a final
format dataset at the end of the preprocessing phase. Diverse methods regarding the data cleansing
process will be studied and selectively used in this phase. Subsequently, the final format dataset
will be applied in developing, validating and evaluating the model. Modelling results are analyzed
to demonstrate the model practicability. As a consequence, other regression models are going to be
deployed on the same dataset to compare their performance with ANFIS model. Furthermore, the
findings of this research will be compared to those of existing research surveyed formerly.

In the end, the main research question will be answered based on the research findings given
in the previous phases. Additionally, limitation, discussion, and recommendation will be featured
fundamentally at the end of the thesis.





3
MACHINE LEARNING APPROACH AND

MODEL THEORY

This chapter provides a review of the machine learning approach for predictive modelling also the
existing research on how machine learning techniques are utilized in conceptual cost estimation.
Notably, the structure information and modelling process of Adaptive Network-based Fuzzy Infer-
ence System (ANFIS), a hybrid system of Fuzzy Inference System (FIS) and Artificial Neural Network
(ANN), are examined and outlined. The first sub-question is answered at the end of this chapter.

3.1. MACHINE LEARNING APPROACH FOR PREDICTIVE MODELLING
The recent survey categories machine learning into three aspects, supervised learning, unsuper-
vised learning and reinforcement learning. According to Kelleher et al. [3], supervised learning
requires labeled data to train models and make predictions, unsupervised learning finds patterns
from unlabeled data, and reinforcement learning allows learning from feedback received from in-
teraction with external environments. In this research, the supervised learning is adopted because
the input features (value of cost drivers) and target feature (amount of cost) are already defined. Su-
pervised learning uses training set to fit the parameter of models and predicts the target values in the
test set. In this case, since the construction cost is a continuous value, it falls under the regression
problem in machine learning.

The European Strategic Program on Research established the Cross-Industry Standard Process
for Data Mining (CRISP-DM) [1] in Information Technology initiative with an aim to create an un-
biased methodology that is not domain dependent. It is conceived as the leading methodology
for data predictive analytics. There are six significant phases identified as illustrated in Figure 3.1.
While the name CRISP-DM refers to data mining (a field that overlaps significantly with predictive
modelling), it is equally applicable to predictive modelling.

The sequence of the phases is not rigid. Moving back and forth between different phases is al-
ways required. The outcome of each step determines which phase, or particular task of a phase, has
to be performed next. First of all the business understanding focuses on the project objectives and
requirements from a business perspective then converting this knowledge into a machine learning
problem definition. In the field of construction cost estimation, the goal is to make a quick estimate
but also with a fair level of accuracy to assess the project feasibility. Therefore, the historical cost
data can be utilized to find hidden relationships between project features and target cost.

Data understanding phase starts with initial data collection and proceeds with activities that
enable the analyst to become familiar with the data, identify data quality problems, discover first
insights. Subsequently, the data preparation phase covers all events that needed to construct the
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Figure 3.1: Cross-Industry Standard Process for Data Mining (CRISP-DM) [1]

final format of the dataset (feeding data into the modelling tool) from the initial raw dataset. After-
ward, in the modelling phase, modelling techniques are selected and applied, and their parameters
are calibrated to optimal values to fit the training dataset. In the evaluation phase, it is significant
to thoroughly evaluate the built model and review the steps executed to build it. If the model is
deemed that important issues have been sufficiently considered, then it proceeds to the deploy-
ment phase where the knowledge gained will be organized and presented in a way that facilitates
the decision-making process for the users.

3.2. MACHINE LEARNING IN CONCEPTUAL COST ESTIMATION
A 10-year survey of using machine learning techniques in construction project cost estimation has
been conducted by Elfaki et al. [10]. Five questions will be discussed here based on the existing
research in this field. What is the project type? Which intelligent technique is used? How have data
been collected? Which construction cost estimation factors have been used? How are the results
validated?

Petroutsatou et al. [15] proposed the ANN as a technique for early cost estimation of road tunnel
construction. The research data were collected from 149 tunnel sections that constructed between
1998 and 2004. Also, the collection strategy was based on structured questionnaires from different
tunnel construction sites. Regarding the factors, five geotechnical properties of quantifying the rock
mass properties, and five work quantities of per excavated tunnel meter were used. The modelling
results of this research were compared with other models in the literature.

An et al. [2] introduced the Support Vector Machine for assessing conceptual cost estimates.
This method was developed from 62 completed building construction projects. Twenty factors were
used to evaluate the conceptual cost, where three of them are numeric data, and the rest of them
are ordinal data. The results of this research were compared with the results of other assessment
methods regarding accuracy level.

Yu and Skibniewski [16] proposed integrating a neuro-fuzzy system with conceptual cost esti-
mation to discover cost-related knowledge from residential construction projects. The data used
in this research was based on historical data of 110 high-rise projects that were collected from the
Ministry of Construction in the years between 1996 and 2002. Five factors were used in predicting
the final cost, and the developed model has been validated with the case study.

Cheng et al. [17] proposed an evolutionary fuzzy neural inference model for conceptual cost
estimates of construction projects. Data were collected from 28 construction projects spanning the
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years from 1997 to 2001. Ten factors were identified where six of them were quantitative factors, and
four of them were qualitative factors.

Wang et al. [18] proposed a model which combines the FIS, ANN, fast, messy genetic algorithm,
regression method and component ratio method for conceptual cost estimation of construction
projects. Data concerning forty-six residential building projects were collected from a single con-
tractor from 1991 to 2004. In this research, the intelligence model was applied to cost division first,
i.e., foundation, structure, internal finishes and mechanical and engineering separately. Afterward,
the regression method was used to obtain the final project total cost. The results have shown a high
level of accuracy with three projects validated.

3.3. ADAPTIVE NETWORK-BASED FUZZY INFERENCE SYSTEM
ANFIS is a hybrid system of FIS and ANN. In this section, the theory of each model is introduced,
and then the structure information of ANFIS is provided.

3.3.1. FUZZY INFERENCE SYSTEM

Human reasoning comprises various linguistic information and which assists them in making deci-
sions. Similarly, the capacity of the fuzzy system to handle semantic information adds an extra di-
mension to the knowledge identification and modelling because the inference process will be based
not only on quantitative but also on qualitative criteria. The fuzzy logic is deployed of the form "IF

x is A AND y is B, THEN z is C" when inferencing. This IF-THEN logic is called fuzzy
rule where x, y and z are linguistic variables (e.g., brick paving area, stone size, price, etc.) and A,
B, C are semantic values but in the fuzzified form (e.g., small, medium, large, etc.) to simulate the
reasoning process. The knowledge represented as a set of IF-THEN rules where the antecedents and
the consequences can capture the deducing of human working environment where comprehends
uncertainty and imprecision [19].

Figure 3.2: Fuzzy inference system

As the inference process illustrated in Figure 3.2, 1) numerical information is converted into
linguistic variables employing fuzzification process, 2) semantic information is processed using a
rule base and 3) a numerical result is generated from the conclusions of the rules by means of the
defuzzification process [19].

3.3.2. ARTIFICIAL NEURAL NETWORKS

Discovering underlying patterns in data is considered essential as the amount of data keeps grow-
ing. The ultimate goal is to extract high-level knowledge from low-level data, which leads to the
idea: shift heap of data to nuggets of knowledge. While the fuzzy system performs a reasoning
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mechanism under cognitive uncertainty, ANN possesses impressive capabilities such as learning,
adaption, fault-tolerance, parallelism and generations [20].

ANNs are commonly used for difficult tasks involving intuitive judgment or requiring the detec-
tion of data patterns that elude conventional analytic techniques [21]. ANNs consist of a large set
of interconnected neurons and these neurons are arranged in many layers and interact with each
other through weighted connections. Figure 3.3 represents a typical structure of a network in which
three layers are assembling. The input nodes receive the data that representing model parameters,
whereas the output nodes produce the network outputs which rendering the decisions associated
with the parameters. The hidden nodes internally represent the relationships in the data and their
number usually determined in a trial-and-error manner. At the end of the training phase, the net-
work represents a model, which should be able to predict a target value given by the input value.

Figure 3.3: Structure of Artificial Neural Network

3.3.3. THE HYBRID MODEL

As stated in the previous two sections, fuzzy systems are excellent in tolerating real world impre-
cision and uncertainty and can explain the decisions with IF-THEN rules. However, they cannot
automatically acquire the rules used for making the decision. That means experts are indispens-
able in specifying rules to the system primarily. ANNs are capable of learning from past data and
generalizing solutions for future application, but the existence of imperfection indicates that they
are not good at explaining how they reach the decisions, which is called a black box. Nevertheless,
fuzzy if-then rules are valuable in shedding light on causality. These limitations act as a driving force
behind the creation of intelligent hybrid systems where two techniques are united to overcome the
imperfections of the individual method.

FEATURES OF ANFIS
ANFIS was initially presented by Jang [11], which is denoted in Figure 3.4. ANFIS is a data learning
technique that uses fuzzy logic to transform given inputs into the desired output through highly in-
terconnected ANN processing elements and information connections, which are weighted to map
the numerical inputs into an output. It is a fuzzy inference system that uses a learning algorithm
derived from or inspired by the artificial neural networks theory (heuristically learning strategies)
to determine its parameters (fuzzy sets and fuzzy rules) through pattern processing [22]. In other
words, the learning ability of ANNs can tune the parameters. The synergy of two machine learning
techniques endows ANFIS with valuable benefits to achieve great success in data predictive analyt-
ics, especially for linguistic variables.

STRUCTURE INFORMATION OF ANFIS
The network structure of ANFIS is capable of calibrating the antecedents parameters and the con-
sequence parameters by minimizing the discrepancies between predicted output and provided a
target. It is a feed-forward neural network with five layers as illustrated in Figure 3.4.
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Figure 3.4: A five-layer ANFIS with two input variables and two membership functions per variable

Layer 1. Each node in this layer generates a membership grades of a linguistic label. For instance,
the node function of the i-th node may be a generalized bell membership function:

O1
i =µAi (x) = 1

1+| x°ci
ai

|2bi
(3.1)

Where x is the input to node i; Ai is the linguistic label (large, medium, small, etc.) associated
with this node; and ai ,bi ,ci is the parameter set that changes the shapes of the membership func-
tion. Parameters in this layer are referred to as the antecedent parameters.

Layer 2. Each node in this layer calculates the firing strength of a rule via multiplication:

O2
i =!i =µAi (x) ·µBi (y), i = 1,2. (3.2)

Layer 3. Node i in this layer calculates the ratio of the i-th rule’s firing strength to the total of all
firing strengths:

O3
i =!i =

!i

!1 +!2
(3.3)

Layer 4. Node i in this layer computes the contribution of i-th rule towards the overall output, with
the following node function:

O4
i =!i fi =!i (pi x +qi y + ri ) (3.4)

where !i is the output of layer 3, and pi , qi ,ri is the parameter set. Parameters in this layer are
referred to as the consequent parameters.

Layer 5. The single node in this layer computes the overall output as the summation of contribution
from each rule:

O5
i =

X

i
!i fi =

P
i !i fiP

i !i
(3.5)
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Given the values of premise parameters, the overall output O5
i can be expressed as a linear com-

bination of the consequent parameters:

O5
i =!1 f1 +!2 f2 = (!1x)p1 + (!1 y)q1 + (!1)r1 + (!2x)p2 + (!2 y)q2 + (!2)r2 (3.6)

FORWARD PASS AND BACKWARD PASS

As mentioned earlier, both the premise (non-linear) and consequent (linear) parameters of the AN-
FIS should be tuned using the learning process, to represent the exact mathematical relationship
between the input space and output space optimally [13]. Typically, as a first step, an approximate
fuzzy model is initiated by the system and then improved through an iterative adaptive learning
process. An initial fuzzy inference system is generated and then took by ANFIS to tune the internal
parameters using a hybrid learning algorithm combining the least squares estimator and gradient
descent method.

In the forward pass, the antecedents are determined initially, and the parameters of the con-
sequence are calculated through least squares estimator algorithm. When the first forward pass is
completed, and the overall output is obtained, the error associated with the predicted output and
the provided target is propagated backward through the network. In the duration, the consequent
parameters are fixed, and the gradient descent method is applied to fulfill the backpropagation to
update the antecedent parameters. Antecedents and consequences will be optimized by repeating
the forward and backward pass until certain a number of the epoch.

At each epoch, an error, usually defined as the sum of the squared difference between actual
and desired output, is reduced. Training stops when either the predefined epoch number or error
rate is obtained. There are two passes in the hybrid learning procedure for ANFIS. In the forward
pass of the hybrid learning algorithm, functional signals go forward to layer 4, and the least squares
identify the consequent parameters estimate [13]. In the backward pass, the error rates propagate
backward, and the gradient descent updates the premise parameters.

Details concerning the two learning methods are provided in Appendix I.

3.4. CONCLUSION
This chapter first discusses the machine learning approach in predictive modelling, which formu-
lates a standard process for conducting such a data-driven approach. Six major phases are deter-
mined to carry out the machine learning approach for predictive modelling from an application-
focused and a technical perspective. Afterward, the existing research about the machine learning
technique in conceptual cost estimation are reviewed. Different factors that used as features to pre-
dict the construction cost are assessed to establish the reference of identifying relevant features in
this research. Generally, the results of their proposed model have shown a desired level of accuracy
and applicability. Subsequently, the ANFIS model is presented with its structure information and
learning algorithms. Therefore, to answer the first sub-question:

How to apply the machine learning approach to conceptual cost prediction?

As indicated in the flowchart (Figure 3.5), data has to be collected from the organizational database
at the very beginning. In the preparation phase, construction cost-related features are extracted and
organized. Especially, those features are the information that can be determined in the conceptual
project phase. Afterward, a data preprocessing is indispensable in ensuring the data quality. In the
next model development phase, the structured final format dataset will be entered to generate an
initial fuzzy inference system where the parameters of the model are not tuned yet. Subsequently,
the number and shape of membership functions of each input feature, the number of training epoch
(i.e., iteration) and the optimization method (i.e., hybrid learning algorithm) will be determined.
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Then, the original fuzzy inference system will be entered into ANFIS to start the training process.
When the training process is finished, the validation data will be introduced to examine the gen-
eralizability of the model. An overfitting check will be performed here. If the performance of the
model does not reach the right level, then it should go back to the phase before training to reset spe-
cific parameters. Otherwise, the test data can be entered to examine how precise can the developed
model predict given by values of input features which the model has never seen. In the last phase,
the modelling results will be evaluated from the aspects of model structure, prediction accuracy and
IF-THEN rules (i.e., knowledge representation).

Figure 3.5: The machine learning approach in predictive modelling using ANFIS.





4
BRICK PAVEMENT COST DATA

PREPROCESSING

In the previous chapter, the steps of applying machine learning approach in cost prediction have
been discussed. To systematically perform a machine learning approach on cost prediction task,
this chapter shows an early step, data preprocessing. In this chapter, a real-life dataset about the
brick pavement cost is collected and presented. First, the economic aspect is analyzed. Afterward,
features and associated values obtained from the raw dataset are fully understood by data sampling.
Then, a data cleansing process is conducted, which aims to detect and remove errors and anomalies
to increase the value of data in predictive modelling. The final result of this procedure is a well-
prepared and workable dataset for modelling in the next phase. The second sub-question will be
answered at the end of this chapter.

4.1. DATA COLLECTION AND UNDERSTANDING
The brick pavement cost data is collected from the cost database of company Witteveen+Bos. Brick
pavement is commonly seen in paving road because individual bricks can later be lifted up and
replaced, which makes brick pavement outperforms other materials regarding the repaving cost.

The cost database from the consultancy and engineering firm, like Witteveen+Bos, only has the
estimated price provided by consultancy and the bid price offered by the contractor. However, the
post-calculation price is unknown since the amount is confidential with the contractor. Therefore,
the bid price is utilized here as the target construction cost. Additionally, cost data in the database is
all related bottom data, namely the unit price of items. That means it is quite challenging to collect
cost information about the project level, for example, a road, bridge or tunnel. Total cost is broken
down to item level, such as the quantity of reinforcement, concrete, brick paving, and attached with
unit prices respectively.

4.1.1. ECONOMIC UNDERSTANDING

There are 449 examples in the raw dataset where contains the unit price of brick pavement from the
year of 2008 to 2016. Figure 4.1 plots the cases entered in each year. It can be seen from the figure
that in the year between 2013 and 2016, the recorded examples are decreasing. Especially in 2013
and 2015, only four and six examples are recorded respectively. Figure 4.2 plots the average price
of each year and the average price of nine years in total. Figure 4.3 plots both the highest and the
lowest unit price in each year. It can be seen from the Figure 4.2 and Figure 4.3 that the unit price of
brick pavement cost presents a downward trend since the year of 2013. Also, the highest unit price in
2013 only costs e8.41. Limited documented examples during the latest years lead to the situation,
and a lot of informative examples may be missing or wrongly recorded. Another possible reason
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Figure 4.1: Number of examples in each year (2008 - 2016)

Figure 4.2: Average price of brick pavement in each year (2008 - 2016)

Figure 4.3: Comparison of the lowest and highest unit price in each year (2008 - 2016)

behind is that the new brick paving activities were rarely conducted and the repaving activities were
not documented here. Consequently, the statistic result shows an unusual manner.

4.1.2. FEATURE ILLUSTRATION

The raw dataset is unfolded, and six descriptive features are identified to be potential cost drivers,
they are Pattern Type (PT), Paving Location (PL), Paving Foundation (PF), Brick Size (BS), Paving
Width (PW) and Total Area (TA). Moreover, according to Kelleher et al. [3], six types of data can be
utilized in preparing a table which is ready for modelling. The presence of different types of de-
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Table 4.1: Different data types [3]

Type Description Example
Numeric Allow arithmetic operation Price, age
Interval Allow ordering and subtraction Data, time
Ordinal Allow ordering but do not permit arithmetic Small, medium, large

Categorical Cannot be ordered and allow no arithmetic Country, product type
Binary Just two values Gender
Textual Free-form, usually short, text data Name, address

scriptive features and target feature can have a big impact on how an inherent algorithm of a model
works. Different types of data are listed in Table 4.1. This section gives illustrations for categories of
each feature to obtain a better understanding of the brick paving dataset.

Table 4.2 listed the input and output variables that are going to be modeled in ANFIS. Categories
for each cost driver are identified and collected from the raw dataset. Nevertheless, there are more
categories than those listed in the table, but they are not taken into consideration because their
frequencies of occurrence are comparatively much lower than those listed categories.

Table 4.2: Input and output variables of paving dataset.

Variables Categories Data Type Unit

Cost Drivers
(descriptive
features)

Pattern type
(PT)

1) 90 Degree Herringbone
2) 45 Degree Herringbone
with "hat"
3) 45 Degree Herringbone
without "hat"
4) Stretcher bond
5) Basket weave

Categorical N/A

Paving location
(PL)

1) Roadside
2) Footpath
3) Bike path
4) Parking
5) Driveway
6) Entrance

Categorical N/A

Paving foundation
(PF)

1) Street layer
2) Sand

Categorical N/A

Brick size
(BS)

1) Keiformaat
(KF, 200*100*80)
2) Dikformaat
(DF, 210*80*70)
3) Waalformaat
(WF, 200*80*50)

Categorical N/A

Paving width
(PW)

1) Within 1.5 m
2) 1.5 to 3 m
3) Above 3.0 m

Ordinal N/A

Total are
(TA)

Numeric m2

Target
(target feature)

Total material cost
(TMC)

Numeric e

PATTERN TYPE

There are mainly four types of paving pattern in the paving project. As illustrated in Figure 4.4,
from left to right they are named as 90 Degree Herringbone (90H), 45 Degree Herringbone (45H),
Stretcher Bond (SB) and Basketweave (BW). Concerning with the pattern of 45 Degree Herringbone,
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sometimes this pattern is paved with "hats", as indicated in the north-west corner of "45 Degree
Herringbone". Hats are paved at the edge of the paving area to strengthen the weak lines.

Figure 4.4: Brick paving patterns

Figure 4.5: Brick paving locations

PAVING LOCATION

Six main paving locations are identified. They are roadside, footpath, bicycle path, driveway, park-
ing place, and entrance. Four locations are presented in the figure except for parking place and
entrance. As illustrated in Figure 4.5, the roadside locates on the middle of two driveways. It can
also locate on the side of the driveway, and it serves as a dividing line between driveways or be-
tween driveway and paths. The driveway is used for car traffic mostly, bicycle path and footpath are
for cyclists and pedestrians respectively.

PAVING FOUNDATION

Two types of foundation are identified. As seen in Figure 4.6, street layer (straatlaag in Dutch) is
the surface of the road foundation. Paving bricks directly on the surface of the road or sometimes a
layer of sand is used to cover the surface and be the underlying foundation of bricks.

BRICK SIZE

Three types of brick commonly used in the brick paving project. As presented in Figure 4.7, they are
Keiformaat (KF), Dikformaat (DF) and Waalformaat (WF). KF is mainly used for paths, squares, and
entrances. It also has a hat format which in a shape of triangular. This triangular shape is commonly
called "hat" as explained in paragraph Pattern Type. DF is mostly for ornamental paving, but also
applied on roads and paths. WF stones are mainly used for terraces, paths, squares, and entrances.

OTHERS

The width of the paving area measures paving width, and there are three levels to determine, within
1.5 m, 1.5 m to 3 m and above 3 m. Square meters of the paving area measures the total area. Total
material cost refers to the price of the paving bricks. Labor costs are not included in this value.
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Figure 4.6: Brick paving fundations

Figure 4.7: Brick types and corresponding sizes

4.2. DATA PREPROCESSING AND VISUALIZATION
There are 449 instances in the raw dataset. However, most of them lack information regarding the
six features as mentioned above. Therefore, instances without further descriptions or contain am-
biguities are eliminated, rendering 253 instances (56.6%) are determined to be usable because of
informativeness. The ratio of each category in each feature is obtained to examine their frequen-
cies.

DATA VISUALIZATION (INDIVIDUALLY )
Stretcher bond is the most popular used paving pattern among other four types, as seen in the bar
plot (a) of Figure 4.8. The reason behind this might be that the paving work of stretcher bond is
comparatively less complicated than of herringbone. For a reason, that herringbone type needs a
certain degree of alignment when paving. Additionally, the cohesion degree is higher compared to
basketweave which is paved in a manner of a square. Concerning the paving locations, brick paving
on driveways is the most frequent application which shares 27%. 26% of the examples have unclear
definitions for the paving locations. 47% of brick paving is conducted on the street layer directly,
while 28% of is processed on the sand.

As bar plot (d) Brick size indicates, DF and WF are outliers because they only comprise 10 per-
cent of the total while KF is much more frequently applied, which shares 75%. In the bar plot (e),
almost 47% of paving works have the area more extensive than three meters.

In each one of the subplots, there is a bar named "unknown" which stands for the unclear or
missing information from the raw dataset. Therefore, they are classified into one single group.

DATA VISUALIZATION (PAIRWISE)
Box plot is used to visualize the relationships between input features and the unit price. The struc-
ture of the box plot is illustrated in the Figure 4.9. Offending outliers will be removed if they locate
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Figure 4.8: Data visualizations of categorical variables

below the 1st quartile minus 1.5 times the inter-quartile range (IQR) and beyond the 3rd quartile
plus 1.5 times IQR. Outliers are values that lie far away from the central tendency of a feature [3].
The box plot approach is used here to handle outliers of categorical features.

Figure 4.9: Box plot structure

In Figure 4.10, paving locations and their related unit paving prices are illustrated with box plots.
It shows that the roadside has the highest average unit price among other locations. In Figure 4.11,
stretcher bond has the most expensive unit price in average contributes to its complicated paving
procedure. Figure 4.12 plots the unit price of paving foundation, brick size, and total width. It can
be seen that when paving on the street layer, the average unit price is higher than paving on the
sand. However, there are three outliers of the sand foundation, and the most extreme outlier has a
unit price of 57.8 which is abnormal. In the second subplot, DF has the highest average unit price.
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Figure 4.10: Box plot of paving location and unit price

Figure 4.11: Box plot of paving pattern and unit price

Figure 4.12: Box plot of unit price and paving foundation, brick size and total width
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On the other hand, attitudes vary widely toward the method of removing outliers. Many ar-
gue that this type of transformation method may eliminate the most interesting examples, from
the point of practice, the most informative examples [3]. The performance depends on the model
specifically. Some models may perform poorly due to the existence of outliers, but some others have
the strong resilience to outliers.

As Figure 4.13 indicates, the pattern of 45 Degree Herringbone is mostly preferred when paving
driveways, which composes 68% in total. Additionally, bricks with hats are more frequently used
than those without hats. Regarding the parking space, 75% of paving projects utilize 90 Degree Her-
ringbone as the paving pattern, and Stretcher Bond is followed. Stretcher Bond is regularly applied
in bicycle paths, footpaths, and roadside, which has 83%, 73%, and 100% frequency respectively.

Figure 4.13: Frequencies of paving pattern in each paving location

Considering the different locations, driveways are built for car traffic which is a moving load.
Parking space is bearing dead weight and also a bit of moving weight. On the other hand, bicycle
paths and footpaths only carry the load from pedestrians and bikes, which are relatively low than
driveways and parking spaces. Moreover, roadside does not bear the load from cars, but it might
shoulder the pressure from bikes and pedestrians occasionally. Therefore, concerning the ability to
bear the load, the Herringbone pattern is comparatively stronger than stretcher bond and basket
weave.

Figure 4.14: Trend of total area and total material cost

There is no doubt that the total area is the primary cost driver of the total material cost. How-
ever, according to the illustration given by Figure 4.14, with the increment of the entire paving area,
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the total material cost increases generally but with certain fluctuations. In other words, the relation-
ship between the total area and the total material cost is not entirely linear. Therefore, additional
features might also contribute to the TMC in addition to TA. As well as visually inspecting scatter
plots, formal measures can also be used to calculate the relationship using correlation [3]. For two
features, a and b, in a dataset of n instances, the correlation can be calculated as

cor r (a,b) = cov(a,b)
sd(a)£ sd(b)

(4.1)

cov(a,b) = 1
n °1

nX

i=1
((ai °a)£ (bi °b)) (4.2)

where ai and bi are values of features a and b for the i th instance in a dataset, and a and b are
the sample means of features a and b. Correlation values fall into the range [-1,1], where values
close to -1 represent a very strong negative correlation, and values close to 1 represent a very strong
positive correlation and values around 0 represent no correlation. Correspondingly, the correlation
value between TA and TMC is 0.8704 which represents a strong positive correlation.

4.3. FEATURE SELECTION
In the previous section, the data sampling process has been completed, and the relationships within
the dataset have been examined. In our real-life case, there can be a large number of features to
describe a target feature. They can be used in predictive modelling as well. However, not all of
them are needed, relevant or critical to the target that the model wants to predict. Some of them do
not contribute to the accuracy of the predictive model, or worse, decrease the prediction accuracy.
Fewer features are desirable because it reduces the dimensions of the model and also saves the
computational time to build a model which is easy to understand and interpret. Therefore, it is
necessary to choose representative samples for training data effectively, and this process is called
dimensionality reduction [23].

According to Guyon and Elisseeff [24], the objective of feature selection can be explained in
three-fold: improving the prediction performance, providing faster and more cost-relevant features,
and providing a better understanding of the underlying process that modelling the data. Corre-
spondingly, several features will be removed from the analysis in this research due to the reasons
followed. An outlier is an observation that lies an abnormal distance from other values in a random
sample from a population. A complete case analysis which is introduced by Kelleher et al. [3] to han-
dle data outliers is applied here to remove all the instances that featured with DF and WF because
they only composite ten percent in total of the brick size.

Moreover, the feature "Total Width" is measured by the paving width which has a strong correla-
tion with Paving Area (m2). Therefore, this feature will be removed from the analysis table and only
potential independent cost drivers should be kept to achieve better performance. Additionally, the
feature "paving location" has a category named "entrance." However, it is hard to tell from the raw
dataset that whether the entrance is used for pedestrians, for cars or other applications. Therefore,
the category "entrance" will be removed from the analysis table.

After the data preprocessing, four features are determined to be applied in the network, i.e. Pat-
tern Type (PT), Paving Location (PL), Paving Foundation (PF) and Total Area (TA), and the target will
be the Total Material Cost (TMC):

Input = {PT, PL, PF, TA}, Target = {TMC}
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4.4. PREPARING ANALYTICS BASE TABLE
After the input features are determined and their associated values are arranged, a final format
dataset can be initialized after normalizing the data. The range normalization method is introduced
to normalize numeric and ordinal data. However, it is inappropriate when it encounters to categor-
ical data since there is no internal relationship between different categories. Most machine learning
libraries are designed to work well with numeric variables. But categorical variables in their original
form of text description cannot be directly used for model development [25].

ANALYTICS BASE TABLE

An Analytics Base Table (ABT) where data is structured will be used to build, evaluate, and ultimately
deploy the machine learning model [3]. An ABT is a simple, flat, tabular data structure made of rows
and columns. A schematic of ABT is shown in Table 4.3.

Table 4.3: Example of Analytics Base Table [3]

Descriptive Features
Target

Feature
____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____
____ ____ ____ ____ ____ ____

NORMALIZING CONTINUOUS FEATURES

Having continuous features that cover very different ranges can cause difficulties [3]. Normalization
techniques can be used to change a continuous feature to fall within [0,1] while maintaining the
relative differences between the values for the feature. The function of the range normalization is:

a
0

i =
ai °mi n(a)

max(a)°mi n(a)
(4.3)

where a
0

i is the normalized feature, ai is the original value, mi n(a) is the minimum value of
feature a, and max(a) is the maximum value of feature a.

NORMALIZING CATEGORICAL FEATURES

The most common approach to handle categorical features in a regression model is to use a trans-
formation that converts a single categorical descriptive feature into many continuous descriptive
feature values that can encode the levels of the categorical feature [3]. For example, when normaliz-
ing the value of Paving Foundation feature, it will be converted into two new continuous descriptive
features, as the paving foundation can have one of two distinct types: street layer or sand. As illus-
trated in the Figure 4.15, for instances in which the original paving foundation feature had a value
of street layer, the new Paving Foundation street layer feature has a value of 1, and the Paving Foun-
dation Sand is set to 0. The rule is used similarly for instance with the paving foundation sand. The
downside of this approach is that it introduces extra descriptive features and hence the training time
is mounted. One way to mitigate the impact is to reduce the number of newly added features by one
by assuming that a zero in all the new features. For example, when Paving Foundation street layer
has a value of 0, Paving Foundation Sand is implicitly set.

Concerning other categorical features, the normalization rule applies the same to them. The
range normalization is applied on numeric features which are total area and total material cost.
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Figure 4.15: Approach of normalizing categorical data

CONSTRUCTION COST INDEX

In consideration of the time series of the cost data, which range from the year of 2008 to 2016, it
is necessary to discount the cost in different years into one base year. Construction Cost Index
(Figure 4.16) is applied here and the index of each year is retrieved from https://opendata.cbs.nl/.
Correspondingly, costs from different years are adapted to the year of 2010 according to the index.

Figure 4.16: Construction cost index from the year 2008 to 2016

TRAINING AND VALIDATION SETS

Table 4.4 exhibits a part of the ABT which is prepared for applying to ANFIS. In comparison with
the raw dataset (an example is illustrated in Table 4.5) which is obtained from Witteveen+Bos, the
ABT is fully structured and can be deployed for modelling. Additionally, the goal of a good machine
learning model is to generalize well from the training data to any data from the problem domain.
This allows making predictions in the future on data the model has never seen, which refers to the
validation data in the development phase. Underfitting occurs when the prediction model selected
by the algorithm is too simplistic to represent the underlying relationship in the dataset between
the descriptive features and the target feature [3]. Overfitting, by contrast, occurs when the predic-
tion model selected by the algorithm is so complex that the model fits the dataset too closely and
becomes sensitive to noise in the data.
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Table 4.4: ABT of paving cost data (partial).

ID Paving Pattern Paving Location
Paving

Foundation
Toal Area Total Price

Stretcher 90H 45H Footpath Bikepath Parking Driveway Street layer
1 1 0 0 0 0 0 0 0 0.0060 0.0229
2 1 0 0 0 1 0 0 1 0.0076 0.0178
3 0 0 0.5 0 0 0 1 1 0.0003 0.0013
4 1 0 0 0 0 0 1 0 0.0726 0.1707
5 0 0 0.5 0 0 0 1 1 0.0093 0.0300
6 0 0 0 0 0 0 1 1 0.4470 0.6188
7 0 1 0 0 0 0 1 1 0.0969 0.1110
8 1 0 0 0 0 1 0 0 0.0026 0.0115
9 0 0 1 0 0 0 1 1 0.0103 0.0115

10 0 1 0 0 0 1 0 1 0.1240 0.3980
11 0 0 0.5 0 0 0 1 1 0.0009 0.0019
12 1 0 0 1 0 0 0 0 0.0140 0.0368
13 0 0 0 0 0 0 1 1 0.0020 0.0045
14 0 0 1 0 0 0 1 1 0.0004 0.0014
15 1 0 0 0 0 0 0 0 0.1183 0.3240
16 1 0 0 0 0 0 0 1 0.0009 0.0026
17 1 0 0 0 0 1 0 1 0.0061 0.0088
18 0 1 0 0 0 1 0 1 0.0090 0.0318
19 0 0 1 0 0 0 1 0 0.0140 0.0195
20 1 0 0 0 1 0 0 0 0.0883 0.2572
21 1 0 0 0 1 0 0 1 0.0097 0.0229
22 0 0 1 0 0 0 1 1 1.0000 1.0000
23 0 0 0 1 0 0 0 0 0.0043 0.0038
24 0 1 0 0 0 0 1 0 0.0109 0.0427
25 0 0 0.5 0 0 0 1 1 0.0612 0.0756
26 1 0 0 0 0 1 0 1 0.1883 0.2163
27 1 0 0 0 0 1 0 0 0.0983 0.3891
28 0 0 0.5 0 0 0 1 1 0.0126 0.0395
29 1 0 0 0 0 0 0 1 0.0161 0.0494
30 0 0 0 0 0 0 1 1 0.0090 0.0270

Table 4.5: Raw dataset from cost database
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Correspondingly, an approach named k-fold cross validation is applied that attempts to address
overfitting and underfitting issues [3]. 5-fold cross validation is applied here. To briefly introduce,
when 5-fold cross validation is used, the available data is divided into five equal-sized folds, and
five separate evaluation experiments are performed. Figure 4.17 illustrates how the available data is
partitioned and how the process is performed.

Figure 4.17: The division of data for 5-fold cross validation process. Black boxes represent validation sets and white boxes
represent training sets.

The ABT is partitioned into three sets separately. A training set is used to fit the parameters ini-
tially. Subsequently, a validation set measures the generalizability of the after-trained network and
halts training when generalization stops improving. According to the measurement results given
by validation set, the model can then be used on a testing set which serves here without effect on
training and provides an independent measure of network performance during and after training.
The ratio between training, validation, and the testing dataset is 70/20/10. A part of the final for-
mat dataset is presented in Table 4.4, a complete ABT of the pavement cost data can be found in
Appendix III.

4.5. CONCLUSION
Cost data that owned by the cost department of Witteveen+Bos is characterized as bottom data. In
other words, project conceptual information is not fully available, but only the unit price of items
are recorded in the database. Additionally, since consultancy firms have only estimated price and
the bid price data entered, the post-calculation is confidential with contractors. This chapter sys-
tematically follows the step to collect relevant data and preprocess the data from raw format to the
final format, which leads to the answer of the second sub-question:

How to prepare data for machine learning modelling?

The cost dataset obtained is unstructured for the use of modelling. Values for each cost driver
are not organized. Thus an extended period is spent in cleaning the dataset and gathering the in-
formative examples. There are three critical steps involved in data preparation phase are identi-
fied to affect the final format dataset considerably. They are data understanding, feature selection,
and normalization. Data understanding is the first step after collecting the raw dataset. It gives an
overview of the business environment, in this research it refers to the brick pavement cost trend.
The relationship between the potential cost drivers and the target cost can be preliminarily identi-
fied, and the first insights can be gained.

The second step refers to the feature selection. In the field of construction cost estimation, this
process includes identifying the potential factors that can affect the final cost and their associated
values, namely cost drivers. However, in our real life case, numerous cost drivers can exist, and it is
hard to rank them in accordance with the importance level quantitatively. Therefore, we would like
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to engage cost drivers as more as possible to both uncover their significance and achieve a higher
level of prediction accuracy. Nevertheless, in the machine learning approach, including a lot of
features (cost drivers) resulting in increasing the dimensionality which can substantially adversely
impact the prediction accuracy.

In consequence, only those features that are identified as the most potentially effective ones will
be distinguished and extracted as machine learning model inputs. In this research, available poten-
tial features are limited as examined from the raw dataset. Therefore, only features are identified to
be the model inputs, i.e., pattern type, paving location, paving foundation and paving area. Others,
for instance, brick size and total paving width are removed because of considering the outlier issue
and a strong correlation between other input.

The third step is data normalization. In this brick pavement cost data, categorical data is in
the majority. Methods of handling numeric data and categorical data are different in scaling values
within [0,1]. The range normalization method can be applied to the numeric data. Extra effort is
needed in preprocessing the categorical data to fit in the analytics base table due to their subjec-
tivity to numerical conversion in a continuous manner. For doing so, the dimensionality will be
increased by transforming each category of one categorical feature in a binary mode. In a nutshell,
three reasons have contributed to the considerable time spent in preparing cost data to make it ap-
plicable for the next modelling phase. First, cost data is not structured in the way of being modelled.
Second, descriptions associated with instances are missing a lot. Third, additional effort is brought
for processing categorical data.
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The previous chapter presented the data preprocessing phase of the cost data that transformed the
raw dataset obtained from the organization into a workable ABT for machine learning model. This
chapter aims to investigate the applicability of the ANFIS model on the after-processed dataset
which contains brick paving cost data during the year of 2008 to 2016. In the previous chapter, a
cleaned and structured Analytics Base Table is formulated, which will be used to develop and eval-
uate the model performance. This chapter is aimed at exploring the effectiveness of such machine
learning method in pavement construction project during the early project phase.

5.1. MODEL DEPLOYMENT
Three methods can be utilized to generate a fuzzy inference system, namely the grid partition method,
subtractive clustering method, and fuzzy c-means method. When the number of input features is
limited to four or five, the grid partition method can be used to generate fuzzy rules universally.
However, there are four cost drivers, and the one-hot coding expands the number of input features
into nine because of categorical characteristics. Therefore, in order to decrease the computation
time and increase the prediction accuracy, Fuzzy C-Means (FCM) data clustering algorithm is ap-
plied in which each data point belongs to a cluster to a degree specified by a membership grade.

Nevertheless, there is no prior knowledge regarding the number of clusters. Hence four tests
(two vs. three vs. four vs. five clusters) are designed to investigate how many clusters there will
contribute to the best performance. With the 51 training sets, the different number of clusters are
specified to each input, which leads to the different number of rules and parameters to be learned.
Table 5.1 elucidates the structure design of each model structure.

Table 5.1: Information of different structures.

Number
of Clusters

Number of
membership

functions

Number of
if-then rules

Number of
parameters

Number
of nodes

2 2 2 56 52
3 3 3 84 72
4 4 4 112 92
5 5 5 140 112

The model development process can be fulfilled in MATLAB Toolboxes “Neuro-Fuzzy Designer”
and “Fuzzy Logic Designer.” Command window is also possible for performing the development.
Figure 5.1 shows one of the ANFIS model structures that are to be built for brick paving cost predic-
tion in this study.

31
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Figure 5.1: Model structure of ANFIS (three clusters)

The developed ANFIS model for brick paving cost prediction learns knowledge between cost
drivers and total price from the past projects and memorizes them for generalization and prediction
in the new data. Thanks to the self-learning ability of the neural network, no prior knowledge is
required in indicating the relationships between cost drivers and target cost. Rules are learned by
the model through training and validated in the new dataset that the model has never seen. When
the model construction and validation are completed, IF-THEN rules are visible to experts to re-
evaluate whether rules, namely relationships, are conforming to our real-life practice.

5.1.1. MODELLING RESULTS

TRAINING AND VALIDATION

Figure 5.2: Training error vs. Validation error
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Figure 5.2 illustrated how the error evolves with the training and validation progressing. In the
figure of validating error, it shows that validation error reaches the lowest point at 17th epoch. That
is the point where the training process stops in order to avoid overfitting problem. Since the Gra-
dient Descent method is used in training and optimizing the model to find the best weights that
minimize loss. Step size is the factor that used to modify the weights, and it decides how far of each
step while trying to go downhill to get the minimum loss.

Figure 5.3: Step size in each epoch

Figure 5.3 presents the step size of the modelling process when trying to search for the optimum
parameters. A good sign of step size is that shows an increasing manner at the beginning, but it
starts to decrease at some point. Accordingly, the learning rate determined initially is optimal for
the modelling.

MEASUREMENTS

The model performance is evaluated by three statistical methods to measure how accurately the
predicted values match the observed target values. The first one, Root Mean Squared Error (RMSE)
is defined as:

r oot mean squar ed er r or =

vuuut
nX

i=1
(ti °M(di ))2

n
(5.1)

where ti is a set of n observed target values, and M(di ) is a set of n predictions for a set of test
instances.

Root mean squared error values are in the same units as the target value, and thus it allows
to present something more meaningful about what the error for predictions made by the model
will be [3]. The smaller the RMSE, the better the performance. However, due to the squared term,
the RMSE tends to give a slightly higher error because it is sensitive to individual errors which are
comparatively large. Another approach that addresses this problem is using Mean Absolute Error
(MAE):

mean absolute er r or =

nX

i=1
abs(ti °M(di ))

n
(5.2)

where abs refers to the absolute value. MAE falls within the range of [0,1] since the values of
each feature are normalized to [0,1]. As the same with RMSE, the closer the MAE to the 0, the better
the performance.

The fact that RMSE and MAE are in the same units as the target feature itself can be attractive
as it gives a very intuitive measure of how well a model is performing [3]. The problem here is that
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these two measures are not sufficient enough to judge the prediction accuracy given by a specific
model without deep knowledge of a domain. Consequently, a domain-independent measure is in-
troduced, the Coefficient of Determination (R2). It is calculated as:

R2 = 1° sum o f squar ed er r or s
tot al sum o f squar es

(5.3)

where the sum of squared errors is computed by

sum o f squar ed er r or s = 1
2

nX

i=1
(ti °M(di )n) (5.4)

moreover, the total sum of squares is computed by

tot al sum o f squar es = 1
2

nX

i=1
(ti ° t )2 (5.5)

R2 values fall within the range [0,1]. In contrast with RMSE and MAE, the larger values imply
better model performance. A useful interpretation of R2 is as the amount of variation in the target
feature that is explained by the descriptive features in the model [3].

Accordingly, the best performance given by this model is presented in Table 5.2.

Table 5.2: modelling results

Set RMSE MAE R2

Training 0.0623 0.0484 0.8444
Validation 0.0707 0.0612 0.9030

Figure 5.4: Training and validation output (target vs. predicted)

In Figure 5.4, each blue circle represents a pair of data which groups the target value and the
predicted value for each instance. The more the circles appear to a 45 degree linear, the better the
performance is given by the model. It can be seen from the first subplot, training set output, the
ANFIS model has more accurate outputs for those target values are relatively small. As seen in the
comparison in the validation set, discrepancies between target values and predicted values are quite
small, which means the generalizability of the after-trained model is acceptable.
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TESTING

The parameters are trained on the training set and tuned on the validation set. Subsequently, the
testing set is used to evaluate the expected performance of the model on future unseen data. Figure
5.5 presents the results of test set modelling. Comparatively large discrepancies are identified in the
orange circles, which is contributed by data unavailability. In other words, the training dataset is
not comprehensive enough to include all the feature information; thus when it comes to totally new
information, it is unable to give an accurate prediction because the hidden relationships have not
been learned yet. Regarding the rest five instances, the model performs quite good.

Figure 5.5: Results of modelling test set (target vs. predicted)

Table 5.3 presents the performance of the test set individually. The second column records the
target value which refers to the normalized real paving cost. The third column indicates the pre-
dicted value given by the ANFIS model. The fourth column gives the discrepancy between the two
values mentioned above. After-trained ANFIS model gives the closest prediction on the sixth in-
stance with only 0.79% error. However, it performs worse on the second and seventh instance with
15.9% and 16.2% error respectively. Averagely, the error is limited to 6.9% which is acceptable.

Table 5.3: Model prediction performance on test set

ID Target Value Predicted value
Error =
(Predicted
- Target)

1 0.0809 0.1049 0.0319
2 0.0088 -0.1507 0.1594
3 0.0318 0.0556 0.0239
4 0.1467 0.0570 0.0897
5 0.0358 0.0566 0.0208
6 0.0229 0.0308 0.0079
7 0.3505 0.1889 0.1616
Average 0.0696

5.2. MODEL EVALUATION
In addition to the prediction accuracy, the model is evaluated from diverse aspects. In this section,
the interpretability and robustness are evaluated. Moreover, the results of ANFIS are compared
with the ANN modelling results to obtain insights on the different models. Subsequently, the four
features, namely cost drivers, are assessed with regard to their importance to the target cost.
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5.2.1. IF-THEN RULES

According to Magdalena [26], the quality of a model can be measured regarding how accurately
reproduces the behavior, but also concerning how clearly it explains or describes the underlying
knowledge, input-output relations. For the latter purpose, the knowledge discovered is later used to
provide insights into the domain. For example, a decision support system is built in order to provide
recommendations to people with regard to a decision. People may not trust the recommendations
made by the system unless they can understand the reasons behind the decision-making process.
From this point of view, it is required to have an expert system which works in a white box manner
[23]. This is in order to make the expert system transparent so that people can understand the
reasons why the output is derived from the system.

One advantage of a fuzzy inference system is that the reasoning process is interpretable by IF-
THEN rules. An example is indicated in Figure 5.6; a comparison is made between two pattern types
to show how the total material cost changes with regard to different patterns. The first figure denotes
that the pattern is 90 Degree Herringbone since its value is set to 1. The second figure denotes the
pattern of 45 Degree Herringbone with a hat. In this case, the only variable is pattern type while
others remain the same. In the format of if-then rules, they can be demonstrated as:

• IF {the pattern is 90 Degree Herringbone, and it is applied on Footpath, and the paving foun-
dation is Street Coat, and the Area is 0.2 (1401.6 m2)},

THEN {the paving total cost is 0.447 (e37,207 =e26.55/m2 £1401.6m2 )}.

• IF {the pattern is 45 Degree Herringbone with hat, and it is applied on Footpath, and the paving
foundation is Street Coat, and the Area is 0.2 (1401.6 m2)},

THEN {the paving total cost is 0.505 (e42,031 =e29.99/m2 £1401.6m2)}.

Figure 5.6: IF-THEN rule viewer of brick paving cost modelling

When all other conditions remain constant, a 45 Degree Herringbone paving pattern is more
expensive than a 90 Degree Herringbone paving pattern. This logic brings into correspondence
with the box plot in Figure 4.11.
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5.2.2. ANN MODELLING

As stated in Chapter 3, ANFIS is a fuzzy inference system which deploys the learning ability and
model structure of ANN. In this section, Artificial Neural Network is applied on the same dataset
that modeled in ANFIS to compare the results given by two models. The dataset which compre-
hends 71 instances is divided into three sets, training set (70%), the validation set (15%) and testing
set (15%). Additionally, a 5-fold cross validation method is utilized in order to avoid overfitting prob-
lem as the same with previous applications. Figure 5.7 presents the evolvement of Mean Squared
Error associated with three sets, training, validation and test. Figure 5.8 gives the comparison of the
regression test set performed on ANFIS and ANN.

Figure 5.7: The validation performance of ANN model

Figure 5.8: Regression plot for test set of ANFIS and ANN model

As indicated in Figure 5.7, the best validation performance is MSE 0.0067, which is 0.0818 when
converted into RMSE (RMSE =

p
MSE). The training process stops at the 16th epoch because after

which the error of the validation set begins to increase. In Table 5.2, the results given by ANFIS
model where RMSE (training) is 0.0568, RMSE (validation) is 0.0592. Moreover, Figure 5.8 presents
the regression plot for the test set to compare the fit of predicted value and the target value. It
is obvious that the ANFIS model outperforms ANN model on the validation set. In another word,
being strengthened by Fuzzy Inference Engine, a machine learning model has better generalizability
on completely new data.

5.2.3. ROBUSTNESS EVALUATION

In consideration of a machine learning model or machine learning algorithm, robustness refers to
its ability to cope with errors during execution and cope with erroneous input. In this section, a
certain scenario is designed to evaluate the model robustness when encountering erroneous data.

Concerning the real-life case, values can be wrongly documented because of occasional issues.
Hundreds of words and thousands of numbers are being processed and entered in a daily manner.
Maintaining absolute accuracy is impossible. Moreover, a less detailed management process may
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lead to the situation where the wrong information being entered into the wrong field. Additionally,
data did not get transmitted accurately from one system to the other, and this frequently happens
because Architecture, Engineering and Construction domain is well-known for its complex and col-
laborative process participated by many parties who are using various systems. Therefore, human
issue, management process, system errors or some other reasons which can happen occasionally
also they are unavoidable. It is crucial to evaluate a machine learning model to see if it can toler-
ate such fault data and still provide optimal predictions. Correspondingly, in this section, data is
manipulated based on the original ABT to change the original data into the wrong data within rea-
sonable limits. Model prediction errors are recorded and compared with the original result. The
input features and target feature remain the same with the previous analysis:

Input = {PT, PL, PF, TA}, Target = {TMC}

ABILITY OF HANDLING ERRONEOUS DATA

Table 5.4: Design of erroneous data

ID
Instance
number

Descriptive
feature

Original
value

Manipulation
Resulting

value
1 29 PT 45H without hat Including hat 45H with hat
2 8 PL Parking Change Driveway
3 57 PF Street coat Change Sandbed
4 65 TA 100 m2 -5% 95 m2

5 69 TMC 8521 euro -5% 8095 euro

In the first step, one data is manipulated resulting in one instance has data quality issue. Af-
terward, erroneous data is added up step by step until the dataset contains five erroneous data
included by five instances respectively. Based on the design Table 5.4, the first step takes the first
manipulation, the second step takes the first and second manipulation, and so forth. Data manip-
ulation process covers all five features including input features and target feature. Instances that
being manipulated are randomly selected from the training set.

Figure 5.9: Results of performance evolvement when data is manipulated to erroneous
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The results are illustrated in Figure 5.9, an X-axis indicates the number of incorrect input data
and the Y-axis indicates the corresponding prediction error. The orange line represents the original
result which is produced by the cleaned dataset without manipulation.

At first glance, the results of datasets contain one and three erroneous data are even slightly
better than the original result. This can be contributed by random reasons, or such values con-
tain low informativeness. Another possible reason behind is that the original dataset also encloses
erroneous values, and which leads to the performance instability.

5.2.4. FEATURE EVALUATION

In the previous model deployment and evaluation part, four features are used to predict the target.
In this section, three other different combinations of features are established to evaluate their con-
tributions to the prediction target separately. The dataset is partitioned in the same way as the first
modelling process.

FEATURE COMBINATION A
In the Feature Combination A, paving foundation is not taken into account and to investigate how
prediction performance would change without this feature. The target cost will be predicted by
pattern type, paving location and total area.

Input = {PT, PL, TA}, Target = {TMC}

As a result, values of the three measurements are listed in Table 5.5. Comparing with the predic-
tion results when incorporating the paving foundation, the new cost driver combination does not
improve the performance. However, the prediction error does not change to a great extent when
comparing the three indicators. Hence, the feature "Paving Foundation" does not contribute to the
target to a considerable degree.

Table 5.5: modelling results of Feature Combination A

Set RMSE MAE R2

Training 0.0690 0.0429 0.8614
Validation 0.0730 0.0605 0.8517

FEATURE COMBINATION B
In the second combination, the input feature Paving Location is not considered. Thus the model
only predicts the target cost based on values of paving pattern and paving area.

Input = {PT, TA}, Target = {TMC}

Table 5.6 summarizes the prediction error given by the model when only two features, pattern
type, and paving area, are considered. In this case, validation set has an RMSE with 0.2255, MAE
with 0.1787 and R2 with 0.6260. Therefore, when applying ANFIS to predict the brick paving cost,
only specify the brick paving pattern and the total paving area is not sufficient in making an accurate
prediction.

Table 5.6: modelling results of Feature Combination B

Set RMSE MAE R2

Training 0.1589 0.1117 0.7490
Validation 0.1681 0.1787 0.6260
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FEATURE COMBINATION C
In the previous two paragraphs, two feature combinations are examined. In this paragraph, the
combination of paving location and paving area is investigated about its predictability of total ma-
terial price.

Input = {PL, TA}, Target = {TMC}

Table 5.7 summarizes the prediction error on both datasets. In so far, driver combination C
reaches the lowest error in modelling the contribution of cost drivers and target cost.

Table 5.7: modelling results of Feature Combination C

Set RMSE MAE R2

Training 0.560 0.0313 0.9067
Validation 0.0624 0.0360 0.8875

COMPARISON WITH ORIGINAL RESULT

The validation results given by the original feature set and three other feature combinations are
illustrated and compared in Figure 5.10. In the first and second subplot, driver combination C has
the lowest RMSE and MAE value associated with the validation set. Additionally, combination C
scores the second place in the rank of R2 where three other combination sets do not differ too much
expect feature combination B.

Figure 5.10: Comparison of results given by each feature combination set.

Through the feature evaluation, two points can be drawn from the results. First, driver combina-
tion C outperforms other three sets in the cost driver evaluation process. The reason behind might
be that the determination of paving location can contribute to the pavement cost estimation mostly
beside the total area. The capability of bearing the load that generated from various directions is var-
ied in different pattern types. Hence, if the paving location is specified in the first place, then the
paving pattern can be decided correspondingly. Subsequently, brick size can be established based
on pattern type. Therefore, in the conceptual phase when the road design is not mature enough,
cost estimators can approximate the road brick paving cost by specifying the paving location and
paving area with the historical database in hand. Second, comparing the results given by two cost
driver sets that one of them comprehends two more drivers, it can be seen that including more
potential cost drivers may negatively impact the modelling process, thus impairing the prediction
results and decreasing the cost estimation accuracy.
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5.3. FINDINGS
In this chapter, a brick pavement data is deployed in the machine learning model to predict the
target cost given by several potential cost drivers. Findings are made from the modelling process
and results.

PREDICTION ACCURACY

In the first modelling where four cost drivers (pattern type, paving location, paving foundation and
total area) are modeled in the prediction analysis to approximate total material cost. The result is
given in Table 5.2 provided by ANFIS. Regarding the ANN model where there is no fuzzy inference
system, the result is given in Figure 5.7 and Figure 5.8. Consequently, in this research, the ANFIS
model was able to produce closer cost values to actual cost than the ANN model.

INTERPRETABILITY

According to the modelling result presented in subsection 5.2.2, ANN is recognized to be powerful
in predicting, but it does not present critical insights into the relative influence of cost drivers in the
prediction. It works in a black box manner with regard to providing an output, and the transparency
is reduced, i.e., users cannot see explicitly the reason why the output is given. Therefore, ANN can
be regarded as poorly interpretable, i.e., less potent in gaining knowledge of the causal relationship.

Comparatively, ANFIS appears to explain its reasoning process advantageously. Figure 5.6 de-
picts the IF-THEN rules denoted by the expression IF cause (antecedent) THEN effect (consequent).
Cost estimators can examine how the change of antecedents in the "IF" part can affect the conse-
quence in the "THEN" part. Indeed, conflicts can exist when analysts find that the knowledge pre-
sented by the model is not in line with real practice. Experts can measure the quality of the rule base.
Project cost can be contributed by many factors that the dataset used to build such machine learn-
ing model may not comprehensively include such characteristics to arrive the prediction. It has a
call for collaboration and interaction between experts and cost prediction model. ANFIS model has
such advantage that its inherent rule base can interpret the reasoning process and allow experts to
check and calibrate in order to reach a higher level of accuracy.

ROBUSTNESS

In the real practice case, data can be recorded erroneously due to a lot of reasons, such as human
errors, defective management process and system errors as demonstrated in Subsection 6.2.3. Ro-
bustness Evaluation. Correspondingly, it is necessary to evaluate the robustness of a machine learn-
ing model when erroneous data has been included. Five tests were conducted successively to exam-
ine the model performance, i.e., prediction accuracy when the different number of erroneous data
is added. Figure 5.9 indicates that the performance does not being affected a lot when there are
only three and less incorrect data. When the number increases to four and five, model performance
gets affected obviously. However, even though there is an apparent accuracy decrement when the
number reaches five, the discrepancy between the results and first modelling results is limited to
1.51% (RMSE), 1.34% (MAE) and 6.42% (R2). In considering the percentage of instances containing
erroneous data is 7% (five out of seventy-one), the model is deemed to be highly reliable and robust.

EASE OF DEVELOPMENT

It is necessary to evaluate how much effort is required to build the prediction system to generate
useful results. Concerning the preprocessing effort mentioned previously for conversion of data, the
data type is the main driver for how much effort needed. However, model development is a more
complex issue than entering and converting data. The ANN model needs specifying the number of
hidden layers, hidden neurons, bias nodes, and learning algorithm, whereas ANFIS needs specify-
ing the type and number of the membership function, number of iterations, method of generating
initial fuzzy inference system and optimization learning algorithm. Although various papers and
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books have been published on ANN and ANFIS modelling, the process is still agreed to be largely
one of trial and error. A satisfied performance can only be obtained by times of trials. Therefore, it
is obvious that it takes considerable effort in developing such models.

Fortunately, toolbox in MATLAB provides a convenient user interface for modelling. However,
it has limited capabilities in adapting parameters of the model structure, thus deploying the syntax
in the command window is indispensable. During the process, an analyst has to manually enter
the values, evaluate the performance and then accordingly rebuild the model again and again until
an optimum solution is obtained. Nevertheless, a learning curve plays an important role here. At
the first beginning, it can take quite a long time in initializing the modelling process. As the skills
with regard to MATLAB and knowledge associated with machine learning model get augmented,
the trial-and-error process can be accelerated in the meantime.

Additionally, no prior knowledge is required in initializing the IF-THEN rules because the learn-
ing ability provided by neural networks can help in identifying such rules through modelling train-
ing set. In the real practice, cost estimators without much experience can also make predictions by
utilizing the machine learning model and historical project data and also to get to know the rela-
tionships between cost drivers and target cost.

COST DRIVER IMPORTANCE IDENTIFICATION

A cost driver is any factor which causes a change in the cost of an activity. They are the structural
determinants of the cost of an activity, reflecting any linkages or interrelationships that affect it.
Cost drivers are essential for construction cost estimation and commonly refer to construction work
items, economic factors, stakeholder requirements, project factors, and resource factors. Both iden-
tifying and utilizing the proper relationship between cost drivers and construction cost are signifi-
cant in delivering an accurate cost estimation. As a result of evaluations concerning four different
sets of cost drivers (features), prediction accuracy varies accordingly. In the real practice, practi-
tioners are trying to identify cost drivers as much as possible in order to perform an excellent cost
engineering. However, in the perspective of a data-driven approach, increasing the number of cost
driver means increasing the dimensionality in the machine learning model. The identification of ac-
tual relationships will be inefficient. The importance degree analysis of each cost driver is substan-
tial in ranking them, and the intra-relationships among cost drivers can also affect the prediction
results.

Moreover, those cost drivers determined may not be the real force behind the cost. There is a
possibility that the real drivers have not been entered into the database yet.

5.4. CONCLUSION
This chapter has investigated the applicability of the machine learning method in cost estimation
of brick paving project. The following sub research question can be answered given by the findings
of this chapter:

In which aspects the model is applicable in predicting brick pavement cost?

First of all, the modelling results show that the desired level of prediction accuracy has been
reached when the most effective cost drivers are utilized. However, the level of accuracy can be af-
fected when irrelevant cost drivers, which are strongly correlated with other drivers, are included.
Additionally, the level of accuracy varies from different instances where large discrepancies can hap-
pen in some instances. This is because there is a lack of data availability in the training set where
enables the model to learn the hidden relationships. If the relationships are absent, then the perfor-
mance cannot reach the desired level.

Second, it is found that the fuzzy inference system can make approximations based on both
linguistic and numeric information. Explanations of how to make such decisions are significant in
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cost estimation activity. For the reason that it is the only interface between the machine learning
model and the experts. Interactions between them are indispensable for the reason that the hidden
relationship identified by the model can be biased when the provided data is biased. Under this
circumstance, experts can calibrate the knowledge that learned by the model based on their project
experience.

Since the dataset contains most categorical information, there is a lack of interpretability within
the IF-THEN rules. For the reason that the characteristics of the fuzzy logic are to describe a situa-
tion using a degree of truth. However, about the categorical data, categories can only be specified
in a manner of binary. In consideration of the real practice when describing a project, a lot of cat-
egorical definitions can be made to approximate the cost. The fuzzy inference system may not be
the most optimal choice to perform the predictive modelling. However, on the other hand, fuzzy
IF-THEN rules are advantageous in explaining the relationships concerning numeric and ordinal
data.

Third, the robustness evaluation shows that the ANFIS model can tolerate erroneous data and
still maintain the prediction accuracy at the desired level. It is crucial to examine whether a data-
driven approach is robust to erroneous inputs. Things happen everywhere that erroneous data can
be entered due to human errors, defective management process, and system errors. If the developed
model is sensitive to the erroneous data, then the final prediction given by the model cannot be
reliable to support decision making in real practice.

Fourth, the effort spent in developing the model is evaluated. One valuable point here is that no
prior knowledge is required in initializing the IF-THEN rules. In other words, fresh cost estimator
who starts the career can also deploy model when he or she does not have sufficient knowledge
in identifying and quantifying the relationship between cost drivers and final cost. Nevertheless,
developing a machine learning model is a trial-and-error process. Thus a satisfied performance can
only be obtained by times of trials. Analysts who are new to such a model would spend much effort
in understanding the model and then proceed to the development phase.
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MODEL COMPARISON

In the previous chapter, the applicability of the ANFIS model in predicting the brick pavement cost
has been analyzed concerning prediction accuracy, interpretability, robustness, ease of develop-
ment and importance identification of cost features. In this chapter, three other models, i.e., linear
regression, random forest, and support vector machine, will be respectively implemented on the
same dataset. Subsequently, the results will be compared with ANFIS to obtain insights on their
advantages and disadvantages.

6.1. LINEAR REGRESSION
Linear regression (LR) is a statistic approach to modelling the linear relationship between a response
(dependent variable) and one or more features (independent variables). A simple linear regres-
sion refers to the modelling of one independent variable. When there is more than one feature, the
approach is called multiple linear regression. It is a linear modelling technique for analyzing the
relationship between a continuous dependent variable, and more independent variables, which
enables predictions for new inputs [27].

LR is a quick and straightforward method to attain the relationship between cost drivers and
target cost about the cost estimation practice. It has been used for estimating cost since the 1970s
because it has the advantage of a clear mathematical basis as well as measures of how well a curve
matches a given data set [28]. Generally, it takes the form of

Y =Ø0 +Ø1X1 +Ø2X2 + . . .+Øn Xn (6.1)

where Y is the total estimated cost, and X1, X2, . . . Xn , are measures of independent variables that
may contribute in estimating Y. Ø0 is the estimated constant, and Ø1,Ø2, . . . ,Øn are the coefficients
estimated by regression analysis, given the availability of relevant data.

Following the case of brick pavement cost modelling, the LR model can be represented in the
form of

Yi =Ø0 +Ø1[Str etcher ]+Ø2[90H ]+Ø3[45H ]+Ø4[Foot path]+Ø5[Bi kepath]+
Ø6[Par ki ng ]+Ø7[Dr i vew ay]+Ø8[Str eet l ayer ]+Ø9[Pavi ng ar ea]

(6.2)

where the yi denotes the target cost for each instance. Øi , i = 1,2,3...9 denotes the effects of each
independent variable. Ø0 refers to the intercept. Equivalently, a 5-fold cross validation method is
deployed here to train and validate the linear regression model to avoid overfitting issue. Accord-
ingly, the linear regression model is formed as

45
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yi = 0.1048+0.0120[Str etcher ]+0.0019[90H ]+0.0006[45H ]

°0.0703[Foot path]°0.0511[Bi kepath]°0.0356[Par ki ng ]°0.0506[Dr i vew ay]

°0.0187[Str eet l ayer ]+1.1675[Pavi ng ar ea]

(6.3)

Table 6.1 presents the residuals between predicted values and target values are plotted about
an individual instance. Also, the RMSE, MAE and R2 errors are calculated for the training set and
validation set respectively. In the validation set, the 10th instance shows relatively larger residual
between the target value and predicted value. This circumstance can be contributed by data un-
availability in the training set, namely knowledge absent.

Table 6.1: Residuals plot and error - Linear Regression Model.

6.2. RANDOM FOREST
Random Forest (RF) is an ensemble machine learning algorithm, which is best defined as a “com-
bination of tree predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest” [29]. Compared to the deci-
sion tree, RF reduces the structural complexity, and it is a collection of decision trees whose results
are accumulated into one final result. RF has such ability to limit overfitting problem without sub-
stantially decreasing the prediction accuracy because of bias.

RF can process a large number of input features given by a dataset because it uses a random
subset of features. In other words, when there are 20 features determined at first, RF will only take
a certain number of those features in each module, for instance, five. In that way, 15 other features
are neglected that they might be useful. Fortunately, RF is a collection of decision trees. Hence five
random features can be utilized in each tree. Accordingly, if we use many trees in the modelling,
most or all of the features can be included eventually.
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Limited research has been found in applying RF to construction cost estimation field. However,
in considering that the brick pavement dataset contains features most are the categorical type, and
RF is recommended in dealing with categorical features both in classification and regression case.
Therefore, RF is deployed here to investigate its capabilities and to compare with ANFIS model.

Table 6.2 presents two residual plots for the training set and validation set each. Also, the cal-
culated errors are given in the first column. Regarding the residual plot of the validation set, the
10th instance resembles the performance that provided by LR. However, the RF performs poorer.
Moreover, the 6th instance shows the most significant inconsistency while LR limits it within 0.1.

Table 6.2: Residuals plot and error - Random Forest Model.

Figure 6.1: View of one regression tree (one example).

Figure 6.1 illustrates one tree example of the RF modelling. As stated before, RF is a collection of
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decision trees. Therefore it selects features randomly to build many trees which formulate a forest.
In this illustration, X6 refers to Parking, X7 refers to Driveway, X8 refers to Paving Foundation and
X9 refers to the Paving Area. The end leaf in each branch denotes the brick pavement cost, in a
normalized value.

6.3. SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) is a geometric method that uses linear models to implement non-
linear class boundaries, through finding a hyperplane that is able to create binary classification [30].
Figure 6.2 illustrates the hyperplane in a two-dimensional environment where it separates the data
into two clusters. When the line cannot be easily identified in the two-dimensional plane, SVM
transforms this nonlinear decision boundary (i.e., input space) into a new linear decision surface
(i.e., feature space) in three-dimensional space, by means of a hyperplane.

Figure 6.2: Illustration of SVM [2].

Table 6.3: Residuals plot and error - Support Vector Machine Regression Model.



6.4. PERFORMANCE COMPARISON

6

49

SVM was first widely investigated and used for classification cases. Recently, it has been con-
sidered in various research which related to construction cost estimation, i.e. regression problem
[2][31][32]. It has been proved that SVM provides excellent generalization performance and sparse
representation, making it more advantageous than other machine learning algorithms. Table 6.3
presents the modelling results of the SVM model for both training and validation set. In compar-
ison to the prediction results on the same validation set performed by LR and RF, it imparts the
highest generalizability. Comparably, the relationships within the sixth and tenth instance are not
fully seized by the after-training model.

6.4. PERFORMANCE COMPARISON
In this section, the modelling process and the results of LR, RF, and SVM will be compared with the
counterparts of ANFIS. Besides the prediction accuracy, other aspects, ease of development and use,
interpretability and modelling non-linear relationship, are also essential when deploying the model
in cost prediction activity. Table 6.4 gives the overall performance level comparison concerning the
four models. It is important to indicate, a high, medium or low-performance levels assigned for
each model are comparatively determined. For example, only when comparing with LR and SVM,
ANFIS and RF have higher interpretability.

Table 6.4: Performance level comparison between ANFIS, LR, RF and SVM.

PREDICTION ACCURACY

The prediction accuracy level with regard to each model is illustrated in Figure 6.3. ANFIS has the
lowest RMSE which means that individual errors within the validation set are comparatively small.
SVM provides a higher RMSE, but smaller MAE can also approve that there are several large individ-
ual errors given by SVM modelling. Moreover, ANFIS has the highest R2 value than the other three
results. The interpretation of R2 0.903 is as the same amount of variation in the target feature that
is explained by the descriptive features in the model. However, LR, RF, and SVM cannot give such
high level of explanation for variation. Overall, in consideration of the prediction accuracy, ANFIS
outperforms other three models and followed by the SVM. It can be the reason that the inherent
learning ability of ANN and SVM enables the model to identify the pattern between cost drivers and
target cost while LR and RF are not active learners comparably.

EASE OF DEVELOPMENT AND USE

In the conceptual phase, cost estimation is required as quickly as possible. Correspondingly, besides
the prediction accuracy, the ease of development and use should also be examined. First of all,
LR and RF are characterized as simple and quick methods. In this comparison study, it is proved
that less effort needed in developing and deploying the LR and RF models. Comparatively, when
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Figure 6.3: Comparison between ANFIS model and other three models

developing an ANFIS model, attentions are indispensable in identifying the most appropriate model
structure to suit the dataset we have and to meet our business requirements, in this case, shortening
the gap between the actual cost and predicted cost. Therefore, a trade-off occurs here to choose an
approach according to the prioritization between quick and accurate. LR and RF can fit the training
set and give predictions on the new set faster than building an ANFIS. On the other hand, ANFIS
provides a higher accuracy level. After that, the user can determine priority, and the subordinate
has to be sacrificed a little bit.

INTERPRETABILITY

We know that appropriate representation of rules is significant for both knowledge discovery and
predictive modelling. Additionally, model interpretability is the key to establish trust with engi-
neers or other data analysts who will be deploying, maintaining, updating the inherent code lines.
It is essential for business clients or project managers who will be deriving insights, making deci-
sions according to the model. In chapter 5, section 5.2.1 stressed the significance of interpretability
for knowledge representation and evaluated the interpretability of the ANFIS model in providing
insights between cost drivers and target brick pavement cost. In this part, a comparison is made
between four models with regard to how clearly they explain the reasoning process and they de-
scribe the underlying patterns between features and target cost. It is found that ANFS and RF are
outstanding models in terms of model transparency.

Comparatively, RF provides an understandable illustration for the line of reasoning, as indi-
cated in Figure 6.1. It reduces the redundancy that can be resulted by a single decision tree through
branching on several features in one tree structure. The transparency offers the opportunity to ex-
perts and users to view the internal relationships. However, there is one problem that when there
are massive trees in this forest, the descriptive ability is impeded in integral.

ANFIS model has a more transparent representation for knowledge obtained, as shown in Figure
5.6. Rules can be listed in a linear structure with IF-THEN manner in each line. In the rule viewer
of FIS, users can set the values for each input feature and obtain the value of target cost directly.
However, it would become very cumbersome and challenging when transforming all the rules into
a linear rule set to interpret for knowledge usage. A large number of complex rules represented in
a linear list is like a large number of long paragraphs in an article, which would be very difficult
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for people to read and understand [23]. In this sense, a graphical representation of rules would be
expected to improve the interpretability of patterns identified from data. For instance, a network
diagram.

MODELLING NON-LINEAR RELATIONSHIP

LR has limitations in describing nonlinear relationships. Results given by LR did not outperform
the results given by ANFIS. One reason can be that the relationship between the features and the
target feature are non-linear, while LR is good at modelling a linear relationship. A linear regression
performance simplifies the real-world problem where a lot of factors, both qualitative and quanti-
tative, are influencing the target value. For example, in this research, only paving pattern, location,
foundation, and area are taken into consideration. Other features, brick color, material strength,
manufacturing process or paving technique, can also contribute to the pavement cost. Experts can
identify the most significant ones, but that does not mean the rest of the factors are irrelevant. Lin-
ear relationship does not suit every feature to the target value. Therefore, it is recommended to
apply the LR to data processing and analysis instead of cost prediction. There is a lack of accuracy,
and its simplicity decreases the reliability.

6.5. CONCLUSION
In this chapter, the performances of four models, namely LR, RF, SVM, and ANFIS, are compared
in terms of prediction accuracy, ease of development and use, interpretability and modelling non-
linear relationship. First, ANFIS and SVM achieved higher prediction accuracy in comparison with
LR and RF. It can be the reason that the inherent advantageous learning abilities of ANN and SVM
enable them to identify the non-linearity between features, while LR and RF are not active learners
comparably. Second, in order to obtain a quick cost estimation in the conceptual phase, the simpler
the model, the faster the outcome. LR is the most straightforward one among the four models. RF
needs more computational time since it is an ensemble of trees which comes with the drawback
of being slower in achieving higher performance. ANFIS requires considerable effort in develop-
ing an appropriate model structure which suits the dataset best. This can be a drawback when we
consider to use it in the conceptual phase where an answer is asked within the limited time. Both
tree representation and IF-THEN rule base are valuable for clients, engineers, and cost estimators
to understand the reasoning process of the model. Even though LR also imparts understandable ex-
pression form, but it finds quite challenging in modelling non-linear data. Accordingly, the fourth
sub question can be answered:

What needs to be considered in selecting an appropriate machine learning model?

It can never be stated definitely in the first place which model is superior. The choice of the
model depends on various given circumstances. First, the goal of the business problem to be solved
can be identified first, which is the accurate pavement cost prediction in this research. Second, the
structure of the data. The structure refers to the feature types, binary feature, categorical feature
or numerical feature. Models, for instance, RF and ANFIS, able to handle various feature types are
advantageous. Third, the data richness is also a point to consider. ANFIS and SVM, they require
many data to achieve a high prediction accuracy. In our real world, most situations where a mass
of is not available rendering us to deploy other models which can work on small dataset cases. For
the last point, the business requirements and stakeholder requirements are also essential. There is
no perfect model fit for all problems. A model can give a quick answer, but the level of prediction
accuracy might be sacrificed. A model gives the valuable explanation of knowledge discovered an
accurate prediction, but it needs considerable time to develop and then for usage. It is suggested to
consider the factors mentioned above when choosing a model to perform the predictive analysis.
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COMPARE WITH EXISTING RESEARCH

In chapter 3, relevant papers were examined to investigate how did existing research perform the
cost estimation in the conceptual phase through the machine learning approach. In this chapter,
a comparison is made between the current study and this research. Four aspects are examined: 1)
what is the type of the target project? 2) what techniques are used? 3) what is the source of the
collected data and how many examples? , and 4) what are the data types?

7.1. COMPARISON
The comparison is made and presented in Table 7.1. It can be seen that building project has been
frequently used and the data was collected from administrations or contractors in the existing re-
search. In this research, the target project is brick pavement which is much less sophisticated than
residential buildings and road tunnels. Additionally, according to the features that were applied in
predicting the target construction cost, mostly were ordinal and numeric data. However, categorical
data is the dominant data type in this research, thus resulting in extra effort for the preprocessing
phase and less interpretability for model evaluation.

Table 7.1: Comparison between the existing research and master thesis.

Project type Technique
Data source

/ richness
Data type of features

Existing
research

Petroutsatou et al. [15]
Road tunnel
construction

ANN
Contractors
/149

Ordinal, numeric

An et al. [2] Buildings SVM
Administration
/62

Ordinal, numeric

Yu and Skibniewski [16]
Residential
constructions

ANN, FIS
Ministry of
Construction
/110

Ordinal, numeric

Cheng et al. [17] Building ANN, FIS
Contractor
/28

Ordinal, numeric,
categorical

Wang et al. [18] Building ANN, FIS
Conractor
/46

Ordinal, numeric

This
research

Master thesis Brick pavement ANN, FIS
Consultancy firm
/71

Categorical, ordinal,
numeric

7.2. CONCLUSION
The main difference between the existing research and my thesis is that the data type of collected
data is mainly categorical while they have numeric and ordinal data for modelling. At the very be-
ginning, it was found that the fuzzy inference system is superior to other methods in dealing with
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vague and linguistic terms for decision making according to the literature study. Nevertheless, there
is no explanation related to whether the ANFIS model remains powerful when being provided with
categorical data. Based on the modelling results and findings of this research, the performance of
the ANFIS model gets hampered. First, the dimension of the input features was increased because
the binary method should be used to normalize the categorical data.

Consequently, the model can suffer from the curse of dimensionality which is commonly seen
in the machine learning approach. Second, the interpretability got influenced. Fuzzy inference
system can explain the ordinal and numeric data in a good way because the inherent fuzzy logic
is designed for reasoning a degree of truth. Correspondingly, numeric data can be partitioned into
several degrees (i.e., small, medium, large) and ordinal data is another type of categorical data type
where variables have ordered categories. Conversely, there is no internal order for pure categorical
data which stands for 0 or 1 without gradual in between.

According to the findings, it is hard to make predictions for new projects when the project fea-
tures cannot be explicitly determined. Fuzzy logic can perform reasoning with a degree of assump-
tion, but categorical data is offering a deterministic assumption. Therefore, even though the fuzzy
inference system can give the desired level of accuracy for cost prediction, but the in consideration
of the dynamic characteristics within the conceptual phase, ANFIS may not be the most appropriate
method in handling categorical data compare to ordinal and numeric data.

The comparison findings also distinguish the main contribution of this research. First, reviewed
literature mainly focuses on comparing the prediction accuracy level while neglecting other aspects
to evaluate the model applicability. In addition to the accuracy level, this research also examines its
robustness when being fed with erroneous data, ability to represent the discovered knowledge, ef-
forts needed to develop an applicable model, and suitable data types to be modelled. These aspects
are also significant in our construction management domain when considering whether to adopt a
new approach in the future.
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CONCLUSION

This research has presented the developments and findings of the machine learning approach,
namely ANFIS, for the prediction of the total material cost of brick pavement. For doing so, the
basics of Fuzzy Inference System and Artificial Neural Networks are studied at the very beginning.
As a result, a workflow of such machine learning model is constructed based on the study of ANFIS.
Subsequently, the model is analyzed in the context of conceptual cost prediction and is developed
in the MATLAB environment. A toy dataset associates with residential building projects has been
applied to investigate what factors can be effective for the model performance. In the next phase,
cost data belonging to Dutch brick paving projects, which are documented by the cost department
of company Witteveen+Bos, have been used to evaluate the model applicability in the real-life case.
Correspondingly, prediction accuracy, robustness, interpretability, preprocessing effort and ease of
development are investigated.

Moreover, an assessment relates to cost drivers is conducted to examine their significance to the
target cost. Next, linear regression, random forest and support vector machine are applied to the
same dataset, the results are compared with ANFIS to assess its applicability further. Afterward, the
findings of this research are compared with that given by related literature to analyze the differences
and identify the main contributions of this research.

This chapter concludes on the main research question based on the results and conclusions
presented in previous chapters. Construction cost estimation can be predicted with the use of his-
torical data and project related conceptual information in the early phase. Optimal performance of
conceptual cost estimation is quick and can reach an acceptable level. However, depending on the
experts’ judgment and project experience can be subjective and error-prone. Thus the performance
does not reach the desired level to support the project feasibility study. A machine learning model,
Adaptive Network-based Fuzzy Inference System has been investigated with regard its potentials in
such situation and to answer the main research question:

What are the potentials of the machine learning approach, Adaptive Network-based Fuzzy Inference
System, in predicting construction cost during the conceptual phase based on the historical cost

data?

WORKING ON HISTORICAL COST DATA

The historical cost data related to the brick pavement is collected from the cost database of the
company, Witteveen+Bos. However, it is found that the cost data is entered in the form of unit rates.
Cost regarding the project level or structure level is unavailable. Therefore, the data preprocessing
phase took a considerable time to extract useful information for each brick pavement instance. The
way of documenting historical cost data currently in the company does not comprehensively suit-
able for conducting a machine learning approach in the conceptual phase. For the reason that, in
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the conceptual stage, the quantity of the work cannot be determined precisely but to give an ap-
proximation. Besides the unit price and the work quantity, other cost drivers can also influence the
project cost, but they are not documented in the database. In order to adopt a machine learning
approach, there are few challenges for construction cost estimation. Currently, there is a mixture
of data types, and they are documented in the same database. Information is missing a lot thus
hampering the informativeness. Moreover, the naming issue can be a problem. These issues might
be the obstacles for deploying a data-driven approach. As for an appropriate dataset for machine
learning, a structured table is required to perform the prediction analysis.

QUICK AND ACCURATE

Concerning the estimation in the conceptual phase, it is expected to be quick and in an accept-
able level of accuracy. The development of the machine learning model consumes a long process
since it is deemed as trial-and-error. For the analyst who does not feel familiar with the machine
learning approach, extra effort is needed in understanding the whole standard process, choosing
the appropriate model (i.e., algorithms) and constructing the model which is specific for cost esti-
mation. However, when it comes to the use phase, the level of difficulty decreases. Users can collect
and define the information for the new project which cost is going to be estimated, and then en-
ter the data into the developed and refined model to obtain the approximation given by the model.
The result can be used to compare with the results produced by other techniques. In the analysis of
the brick pavement cost, the accuracy level reaches 93% in average of seven test examples, which is
acceptable in the conceptual phase.

DEALING WITH LINGUISTIC INFORMATION

The conceptual cost estimate is an experience-oriented activity which is characterized as full of dy-
namics, uncertainties, and imprecision. Linguistic information is everywhere within the conceptual
phase when making a cost estimation for a project. Fuzzy logic can provide a systematic framework
for dealing with fuzzy quantifiers, e.g., most, many, few, not very much, almost all, infrequently,
about one third, etc. In this way, the fuzzy inference system mimics the logic of the human brain,
utilize linguistic information and to make decisions. Concerning the brick pavement cost data, cat-
egorical data types are the majority. This does not highly match the capability of fuzzy logic which
describes information in a level of truth. A category is identified in a binary manner, true or false.
However, according to the model comparison analysis, a random forest is found and verified to be
useful in dealing with categorical data. Therefore, even though fuzzy logic is superior in handling
linguistic information, but the ability is limited when the inputs are categorical types.

TOLERATING ERRONEOUS INFORMATION

In the domain of Architecture, Engineering and Construction, various systems are used by various
parties. Data in diverse formats are being exchanged during the process. Accordingly, under the cir-
cumstance of human error, defective management process and system error, erroneous data can be
entered in the cost database, thus hampering the reliability of the historical cost data. A robustness
evaluation is performed to investigate whether the model can tolerate erroneous data. As a result,
the model maintains a desired level of accuracy when the number of fault data is limited within
three. When the number grows to four erroneous data, RMSE increases from 0.0707 to 0.0835. When
it grows to five erroneous data, RMSE increases to 0.0858. Obviously, even though the performance
gets affected, the accuracy level is still acceptable.

IDENTIFYING HIDDEN RELATIONSHIPS AND EXPLAINING DECISIONS

The decision-making process of ANFIS is based on a rule system which is called IF-THEN rules. Ac-
cording to the evaluation of the model performance, IF-THEN rules denoted by the expression IF
cause (antecedent) THEN effect (consequent) are the representation of the knowledge that learned
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by the model in the training phase. The relationships between cost drivers and the target cost are
identified and represented. Unlike Artificial Neural Networks, without the inference engine of fuzzy
logic, the network cannot give exact reasons how each cost drivers affect the final construction cost.
The reasoning process is hidden in a black box which hampers the calibration from experts. Ad-
ditionally, a random forest is also found to be capable of explaining the reasoning process by the
tree structure. On the other hand, linear regression can only present the final regression equation
and support vector machine model does not provide the explanation, which is less transparent for
a decision-making process like cost prediction.

EXPERTS-FRIENDLY

Cost estimators can examine how the change of antecedents in the "IF" part can affect the conse-
quence in the "THEN" part. Certainly, conflicts can exist when analysts and that the knowledge
presented by the model is not in line with real practice. Experts can measure the quality of the rule
base. Therefore, ANFIS has such a potential that a collaboration platform between experts and ma-
chine learning model is provided to calibrate the knowledge and enhance the model performance.
Additionally, no prior knowledge related to quantifying the relationship between cost drivers and
target cost is required. This is beneficial for cost estimators who have a lack of project experience
and want to start with applying this machine learning model.





9
DISCUSSION AND LIMITATION

The previous chapter concluded the findings of this research and answered the research question.
Applying the machine learning approach in conceptual cost estimation is a relatively new topic
within the construction industry. It has been recognized that there are many limitations to this re-
search. I sought to follow the process recommended by existing research on the same topic, but I
acknowledge that it is always hard to do so. In this chapter, the limitations of the design, methodol-
ogy, application to practice and generalizability are discussed.

9.1. COST DATA
The dataset was collected from the cost database of Witteveen+Bos, and the collecting phase was
a time-consuming process. A thorough cleaning process was performed in preprocessing the raw
dataset. Consequently, there can be a loss of informativeness for the final format dataset that is used
for modelling. Additionally, features that used in the model were extracted from the raw dataset.
However, they might not be the most effective cost drivers to predict the final brick pavement cost.
Other features, such as brick color, material strength, manufacturing process were not considered
because the relative information was unavailable. But that does not mean that they are unimpor-
tant.

Moreover, the target cost determined in this research is the price provided by contractors. The
final cost that can only be known when the project is completed. The post calculations are confiden-
tial and not available for clients and engineering firms. Therefore, there can be a large discrepancy
between the bid price, that was used in modelling, and the actual cost.

9.2. MACHINE LEARNING MODEL
Predictive modelling is entirely dependent on the richness and quality of the dataset. Models can
be considered effective when the fed dataset possesses a high level of quality. Machine learning
algorithms remain a manner of garbage-in-garbage-out. In other words, no matter how state-of-art
the machine learning models and the algorithms are, they can fail to discover a high-quality and
useful pattern in giving accurate predictions when a low-quality dataset is applied. Users should
never blindly perceive what the model presents. The validation of the findings with experts is crucial
to overcoming such problems. However, the knowledge (IF-THEN rules) obtained from the analysis
of brick pavement cost was not externally validated by experts. It was verified through examining the
data statistics that performed based on the whole raw dataset at the very beginning. Nevertheless,
the validation feedback from experts can be more constructive and reliable.

In this research, a hybrid algorithm (Least Square Estimator and Gradient Descent method) was
used only. Other optimization algorithms were not considered nor applied. Consequently, the
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learning process can be stuck in local minima which resulting in less optimized prediction accu-
racy. Method, such as genetic algorithm, might be applied to optimize the model in searching for
the optimal parameters. Nevertheless, this requires a significant amount of time with thousands of
iterations. Thus it can be inefficient due to the increase in computational time.

The potentials of the model were only addressed according to the evaluation of the model itself.
Practically, the overall performance should be compared with other cost prediction approach, such
as purely expert-driven or parametric estimating. The amount of saved time and saved money can
be indicators in comparing different methods in predicting the cost of the same project.

9.3. NO OPTIMIZATION FOR LR, RF, AND SVM
In chapter 6, three models are used to compare their capabilities of performing the prediction on
the same dataset. However, specific optimization measures are adopted when developing the AN-
FIS model. As for the other three models, optimization is not considered due to the time limit.
Correspondingly, the resulting prediction accuracy might be different if optimization measures are
applied to them. Rendering they outperform the ANFIS model. Another possibility is that the ANFIS
model remains the highest prediction accuracy.

9.4. THE PROCEDURE OF MACHINE LEARNING APPROACH
Due to my limited knowledge background concerning the machine learning field at the beginning
of this research. A reverse approach was performed in the situation where the machine learning
model was first determined, namely the fuzzy inference system and artificial neural networks, be-
fore collecting and structuring the data. A systematic machine learning approach should start with
defining the purpose of the predictive modelling and proceeding to data collection. However, at
the second stage where after the object was established, the research continued with studying the
model and applying the model on a structured dataset. In the real practice, the decision regard-
ing which machine learning model to use should be based on the collected data and the business
problem. In other words, the type of data, the amount of data, the quality of data (outliers and miss-
ing information) and the target feature are all preconditions of selecting an appropriate machine
learning model correspondingly.

During the process of reviewing existing literature, comparing with them to examine what data
they have collected, what are the data types, what machine learning system they used and how
they perform the predictive modelling. It was found that they had numeric data mostly and some
were ordinal data which highly suit the capability of fuzzy inference system and artificial neural
networks. Moreover, they had a considerable number of input features to assess the sensitivity to
the final construction cost respectively. In this research, useful information was unavailable thus
rendering different findings were recognized. The data collected from the database was identified
that most features were categorical data which differs from the ordinal and numeric data. Therefore,
the combination of the fuzzy inference system and artificial neural networks might not be the most
suitable system for performing the cost prediction task when being provided with categorical data.

9.5. GENERALIZABILITY OF THE SYSTEM
In this research, only brick pavement cost data were studied and evaluated by applying the machine
learning approach. From the perspective of the system internally, the developed model can be gen-
eralized to new brick pavement data that the model has never seen in predicting cost. However, the
cost data was provided by a Dutch company. Therefore the applicability that has been verified can-
not be fully generalized to the same use in other countries where different standards are deployed.

Additionally, other project types or different complexity levels were not investigated in this re-
search. Take a bridge as an example, the volume is much larger, rendering the construction work is
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much more complicated than performing brick pavement task. Therefore, the findings and the con-
clusion made for this system can only be applied for brick pavement cost prediction. Nevertheless,
the front-end machine learning process that how to collect data in the domain, how to structure a
workable dataset, and how to apply such machine learning model to predict project cost, can be
generalized to other types of project.

9.6. WHAT WOULD BE DIFFERENT NEXT TIME?
If another opportunity can be offered to design the research again, there are several changes I would
like to make. Most importantly, a long period would be spent on collecting the data from not only
the cost database but also project managers to obtain more information related to cost estimation
in the conceptual phase. The choice of the machine learning system should be determined after
performing a preliminary statistic analysis to the collected data. Different types and richness lev-
els of data are significant indicators for selecting an appropriate machine learning system. In this
research, the choice only depends on the qualitative study about the characteristics of the cost es-
timation in the conceptual phase. One critical point was neglected that the data should also be an
important indicator.

Moreover, the interaction with cost engineers should be established. This research tends that it
has been implemented with a strong technical favor. Optimal performance of the cost estimation
activity should be in a collaborative manner between the system and experts. Even though the
analysis results testified that a user interface was provided allows experts to calibrate the knowledge
learned by the system, the potential was presented without further practical implementation. This
can be an essential point for synergizing the data-driven approach and expert-driven approach.
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RECOMMENDATION

The previous chapter discussed the limitations of the data, methodology, and execution during the
research process. Recommendations are given in this chapter for both future research and practical
application related to applying the machine learning approach to cost prediction task.

10.1. FUTURE RESEARCH

• Improving the data . The amount of data can be crucial to the performance of the model
and the further generalizability. To some point, the more the data available, the comprehen-
sive the model can be developed. Better data implies more data; on the other hand, it also
implies cleaner data, more relevant data, and better features engineered from the data.

• Exploring more features . In this research, a limited number of features were used to pre-
dict the target cost. However, there might be some key features that have not been collected
and documented.

• Exploring other machine learning models . The potentials of the fuzzy inference sys-
tem and artificial neural networks were demonstrated in Chapter 8. There are a lot of machine
learning models available to be investigated concerning their capabilities in dealing with the
same construction management problem. For example, decision tree and support vector ma-
chine are also powerful models which are widely used in the construction domain. Addition-
ally, other inherent optimization methods can be used to optimize the adaptive parameters
to improve the model performance, such as genetic algorithm and the ant colony. The inves-
tigation results can be compared with each other to identify the most suitable model for the
specific problem.

• Investigating other project phases . This research focuses on the cost estimation dur-
ing the conceptual phase. Other phases, such as the bid phase and maintenance phase, can
also be investigated using the machine learning approach for cost estimation. Correspond-
ingly, specific characteristics in different project phases and the purpose of delivering the cost
estimation should be examined. Business understanding and data understanding are criti-
cal elements before identifying an appropriate machine learning model in order to meet the
project requirements.

• Investigating other project types . Commercial buildings, residential buildings, high-
way roads, tunnels, and bridges are all significant and major products of the construction do-
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main. When the availability level of data is high enough, it is recommended to investigate the
applicability and potentials of applying the machine learning approach to predict cost.

• Investigating other construction tasks . Besides the cost estimation, other tasks in-
volved in the construction process are also crucial for project success. The potentials of us-
ing the machine learning approach for scheduling activities, prioritizing risks, evaluating bid
documents provided by contractors, and monitoring the construction process can also be in-
vestigated.

10.2. PRACTICAL APPLICATION

• Adapting the way of documenting cost data . According to the findings and conclu-
sions made in Chapter 8, it is found that the historical cost database can provide limited useful
information with regard to conceptual cost estimation. Currently, the data is structured in the
way which suits the traditional approach, but does not suit a machine learning task. It is rec-
ommended here for practical application within organizations that the way of documenting
cost data should be adapted. During the conceptual phase, precisely determine the quantities
of a structure or a project is unrealistic because the project design is not completed and the
project scope is unclear. Therefore, other conceptual information that can be obtained and
determined in the conceptual phase may affect the amount of cost significantly. However,
our current practice for the cost department shows that that information is unavailable and
missing from the database.

• Sensitivity analysis for cost drivers . Sensitivity analysis is used to evaluate the ef-
fects of changes in system parameters on the system cost. It is recommended that a sensitivity
analysis is performed to identify the primary cost drivers (i.e., those design parameters whose
changes create the most considerable differences in the cost). By utilizing the experience of
the experts and the project files from past decades, this process can help in determining how
sensitive the estimate is to changes in assumptions, technology, or system design. It provides
the decision maker with added insights into how those decisions can change cost that the
predictive model produced. Organizations can utilize the machine learning approach in con-
ducting the sensitivity analysis between the cost drivers and the final price. Knowledge can be
obtained from the past project data, and hidden relationships can also be identified through a
data-driven approach. In somehow, decisions and judgments made by experts can be biased
or insufficient, data from the past can provide more insights thus stimulating the decision
making process.

• Evaluate models . The choice of the model depends on various given circumstances. First,
the goal of the business problem to be solved can be identified early, which is the accurate
pavement cost prediction in this research. Second, the structure of the data. The structure
refers to the feature types, binary feature, categorical feature or numerical feature. Models,
for instance, RF and ANFIS, able to handle various feature types are advantageous. Third, the
data richness is also a point to consider. Models like ANFIS and SVM, they require a lot of data
to achieve a high prediction accuracy. In our real world, most situations where a mass of data
is not available rendering us to deploy other models which can work on small dataset cases.
For the last point, the business requirements and stakeholder requirements are also essential.
There is no perfect model fit for all problems. A model can give a quick answer, but the level of
prediction accuracy might be sacrificed. A model provides the valuable explanation of knowl-
edge discovered an accurate prediction, but it needs considerable time to develop and then
for usage. It is suggested to consider the factors mentioned above when choosing a model to
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perform the predictive analysis.

• Start with less complex systems . In this research, the brick pavement project is set
as the target, which is less complex compared to other sophisticated systems, for instance,
housing, bridges or tunnels. The cost of a large project can be affected by numerous factors,
and it can be extremely difficult to collect all the data concerning each factor. With regard to
a less complex system, for example, a deck, the data collection and organization process is
relatively straightforward rendering that users can develop and evaluate such an approach in
providing analysis results.
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APPENDIX I - HYBRID LEARNING

ALGORITHM

LEAST SQUARES ESTIMATOR

The method LSE is a standard approach in regression analysis to approximate the solution. It is
aimed at adjusting the parameters of a model function to best fit a data set. Within the network of
ANFIS, before the overall output is obtained, the consequences parameters need to be optimized.
In Chapter 3, the overall output is written as:

O5
i =!1 f1 +!2 f2 = (!1x)p1 + (!1 y)q1 + (!1)r1 + (!2x)p2 + (!2 y)q2 + (!2)r2 (10.1)

If there are P training instances provided for the network training, thus the output of each in-
stance can be calculated by:
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where the dimensions of A and X are (P ·M) and (M ·1). M is the total number of consequence
parameters. Accordingly, above equation can be formulated as:

A£X = B (10.3)

B, with a dimension of (P · 1), contains all the predicted values given by the model. Since P
(number of training instances) is usually greater than M (number of linear parameters), this refers
to an overdetermined problem and generally there is not solution. A least squares estimate of X , X§,
is sought to minimize the squared error ||AX °B ||2:

X§= (AT · A)°1 · AT ·B (10.4)

where AT is the transpose of A.
Consequently, the X can be calculated iteratively using the sequential formulas:

(
Xi+1 = Xi +Si+1 ·ai+1(bT

i+1 °aT
i+1 ·Xi )

Si+1 = Si °
Si ai+1aT

i+1Si

1+aT
i+1Si ai+1

, i = 0,1, · · · ,P °1

)

(10.5)

where,
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Si = covariance matrix
LSE X§ = XM

X0 = 0
S0 = ∞I
∞ = positive large number
I = identify matrix of dimension (M £M)
aT

i = i th row vector of matrix A
bT

i = i th row vector of matrix B

Therefore, in every forward pass, the consequence parameters, namely X, are updated itera-
tively. The error rate can be calculated with

EM = (TM °OM )2 (10.6)

where TM is the target value and OP is the output value of the pth instance. The forward pass
is completed after the error rate is determined. Then, the error rate will be propagated backward
through the network to update the actecedent parameters in layer 2 by using gradient descent
method.

GRADIENT DESCENT METHOD

In the backward pass, the antecedent parameters are updated to lower the local error. An disadvan-
tage inherent of gradient descent method is that the updating can stuck within the local minima
and stops searching for global minima, which means the final updated parameters may not be the
most optimal ones.

One variable is very important in using gradient descent method: learning rate. The learning
rate is chosen heuristically and it determines the speed of convergence.

The Æ is updated according to:

¢Æ=°¥ ·
@Ep

@Æ
(10.7)

in which ¥ is the learning rate, the derivate is defined as:

@Ep

@Æ
=
@Ep

@O5

@O5

@O4

@O4

@O3

@O3

@O2

@O2

@O1

@O1

@Æ
(10.8)



APPENDIX II - TOY DATASET MODELING

A structured and informative dataset, which contains related data of residential buildings, was used
to get further understanding of how to deploy the ANFIS model and which inherent parameters are
decisive with regard to the model performance. The second sub question is answered at the end of
this chapter.

DATA UNDERSTANDING
This residential building dataset is retrieved from the machine learning repository of University of
California, Irvine. This dataset contains 372 instances, 27 input features and 2 output features. In
this study, only the actual construction cost is determined as the single output. Therefore, the other
input features which are strongly related to the final construction cost will be eliminated. For exam-
ple, the preliminary estimated construction cost in the early phase is removed. The input features
and the output feature are listed and described in Table 10.1. Moreover, there are two types of fea-
tures, project physical related (feature 1, 2, 3, 4) and economic related (feature 5 to 23).

FEATURE SELECTION

Project physical features are selected initially. Afterwards, a scatter plot matrix is performed to
quickly explore the relationships within the whole set of economics related features. Obviously seen
from Figure 10.1, not all the features have linear relationships with the construction cost.

Figure 10.1: Scatter plots of the target construction cost with other 23 features

Figure 10.2 plots the correlation values between economic related features and the construc-
tion cost. The 19th and 20th feature, namely the Consumer Price Index in the base year and the
Consumer Price Index of housing, water, fuel power in the base year, are highly correlated with the
construction cost than other economic related features. The value of the correlation is 0.78 for both
features. Therefore, six features are determined as the input features which can potentially predict
the construction cost, and they are highlighted in the green color in Table 4.1.

DATA PREPROCESSING
After getting to know the data, the second goal in the preparation phase is to identify any data quality
issues. First the dataset is visualized individually in order to handle outliers. As a result, there are
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Table 10.1: Input and output features of the toy dataset

ID Descriptions Unit
1 Project locality defined in terms of zip codes N/A
2 Total floor area of the building m2

3 Lot area m2

4 Duration of construction Quarter
5 The number of building permits issued N/A
6 Building services index (BSI) for a preselected base year N/A
7 Wholesale price index (WPI) of building materials for the base year N/A
8 Total floor areas of building permits issued by the city/municipality m^2
9 Cumulative liquidity 1 £m7IRRm

10 Private sector investment in new buildings 1 £m7IRRm
11 Land price index for the base year 1 £m7IRRm
12 The number of loans extended by banks in a time resolution N/A
13 The amount of loans extended by banks in a time resolution 1 £m7IRRm
14 The interest rate for loan in a time resolution %

15
average construction cost of buildings by private sector
at the time of completion of construction

10000 IRRm /m2

16
The average of construction cost of buildings by private sector
at the beginning of the construction

10000 IRRm /m2

17 Official exchange rate with respect to dollars IRRm
18 Nonofficial (street market) exchange rate with respect to dollars IRRm
19 Consumer price index (CPI) in the base year N/A
20 CPI of housing, water, fuel & power in the base year N/A
21 Stock market index N/A
22 Population of the city N/A
23 Gold price per ounce IRRm

Output Actual construction costs 10000 IRRm

Figure 10.2: Correlation between economic related features and the construction cost

368 instances left after removing offending outliers. As a result, there 335 instances left to formulate
the final format dataset.

DATA NORMALIZATION

Range normalization technique is used to normalize all the data. The final format ABT is presented
in Table below. The whole ABT can be found at the end of this Appendix.

TRAINING AND VALIDATION DATASET

In consideration that the deployment of this toy dataset does not aim to get insights from the data,
but to investigate the critical parameters inherent of the model. Therefore, the final format dataset
is partitioned into training set and validation set. The test set is not considered here. The partition
ratio is 80/20 to ensure that the training set is large enough to identify the hidden relationships and
the validation set is used to evaluate the model generalizability.
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Figure 10.3: Residential building dataset visualization and box plot structure

Table 10.2: Final format dataset (partial)

Input features Output

ID 1st 2nd 3rd 4th 19th 20th
Construction

Cost
1 0.4737 0.1928 0.2159 0.3750 0.3725 0.3293 0.2206
2 1.0000 0.5424 0.6136 0.2500 0.8261 0.7916 0.3824
3 0.0000 0.7301 0.6932 0.3750 0.6471 0.6057 0.6176
4 0.5789 0.0206 0.0227 0.8750 0.2765 0.2375 0.1765
5 0.1053 0.3033 0.3409 0.3750 0.1210 0.0803 0.1176
6 0.0000 0.3239 0.3636 0.3750 0.6696 0.6405 0.8382
7 0.2105 0.5578 0.6250 0.2500 0.1563 0.1162 0.1029
8 1.0000 0.2211 0.3068 0.2500 0.0949 0.0454 0.0147
9 0.9474 0.4679 0.4432 0.5000 0.5626 0.5264 0.2647

10 0.2632 0.3213 0.2955 0.6250 0.6696 0.6405 0.5735
11 0.3158 0.0386 0.0943 0.1250 0.9265 0.9163 0.5882
12 0.6842 0.1645 0.1761 1.0000 0.2318 0.1712 0.4853
13 0.2632 0.4165 0.3864 0.6250 0.6473 0.6123 0.6029
14 0.3158 0.5244 0.4205 0.7500 0.1984 0.1421 0.1029
15 0.1579 0.0617 0.0682 0.7500 0.0015 0.0016 0.0588
16 1.0000 0.1722 0.1932 0.3750 0.8719 0.8443 0.4412
17 0.0526 0.0643 0.0682 0.6250 0.2086 0.1544 0.2059
18 0.9474 0.2468 0.2273 0.6250 0.7103 0.7008 0.5882
19 0.1579 0.4357 0.5568 0.5000 0.1984 0.1421 0.3382
20 0.8947 0.1028 0.1136 0.5000 0.5207 0.4970 0.2059

MODEL DEVELOPMENT AND SENSITIVITY ANALYSIS
The model development process is characterized as trial-and-error. In other words, model param-
eters or settings are determined at the first place. The only way to obtain the most optimal settings
is to compare the corresponding results of model performance. With regard to the ANFIS model,
parameters that can be determined are 1) the shape of the membership functions, 2) the number
of the membership functions for each feature, 3) the method of generating fuzzy inference system,
and 4) the training epochs (iterations). In this section, a sensitivity analysis is conducted to examine
the aforementioned four parameters.

SENSITIVITY ANALYSIS

MEMBERSHIP FUNCTIONS

In this part, the method of generating FIS is set to "Grid Partition". The shape and the number of
membership functions will be evaluated here to investigate how sensitive will the model results be.

It can be seen from the figure that different shapes of membership functions will affect the
model performance. Also, when deploying the same shape of membership function, when different
numbers are assigned to each input feature, the model performance also gets influenced.
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Figure 10.4: Compare the results given by different numbers and shapes of membership functions.

METHOD OF GENERATING FIS
In the above paragraph, the modeling process is performed using Grid Partition. However, when
the number of input features is above five or six, the grid method may not suitable for modeling
because of the curse of dimensionality. Therefore, other two methods, Subtractive Clustering and
Fuzzy C-Means are deployed here to compare the prediction accuracy with Grid Partition method.

It is found that, with regard to the Grid Partition method, the number and the shape of member-
ship functions contribute significantly to the model performance. The number of clusters critically
affect the results when using the Fuzzy C-Means algorithm, and the influence range degree is the
critical parameter when employing the Subtractive Clustering. Moreover, in comparison with the
results given by Grid Partition, the clustering methods both give higher prediction accuracy in the
situation where the number of input features is quite large.

CONCLUSION
In this chapter, a toy dataset was deployed to examine the critical parameters involved in the de-
sign of the model. The sensitivity of the model performance to these parameters was evaluated to
identify the significant parameters that involved in the design of the model.

According to the results of the sensitivity analysis, it can be concluded that different methods
of generating the fuzzy inference system can affect the prediction accuracy significantly. When us-
ing the grid partition method, the shape and number of membership functions assigned for each
feature are critical parameters. When deploying the subtractive clustering method, the influence
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range, which represents the initial guess of the radius of the clusters. When using the fuzzy c-means
method, the number of clusters is the most critical inherent parameter. Additionally, the training
iteration can also influence the prediction accuracy. But the significance is comparatively smaller
than other parameters that identified before. In the next chapter, these significant parameters will
be taken into consideration in model development phase which is known as a trial-and-error pro-
cess.

FULL ABT OF THE TOY DATASET
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APPENDIX III - PAVE COST DATASET ABT

FULL ABT OF THE PAVE COST DATA
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