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Non-expert summary

This thesis is about building a model that creates specific types of networks. A network, in this case, is simply a collection
of elements (like people) and the connections between them (like friendships or communication). Mathematically, we
call this a graph. There already exists a method called the configuration model that randomly builds such graphs while
following certain rules—such as how many connections each person should have. When we use this model to make very
large graphs, something interesting happens: a large, connected group of ‘people’ almost always forms. We call this the
giant component, and it’s a bit like the main cluster in a social network where everyone is connected, directly or indirectly.
For a given setup, the giant component has a predictable–typical– size. It’s extremely rare—-almost impossible–for it to
be much smaller or larger than typically. But sometimes, we want to study what happens in those rare cases. This thesis
explores how to build a new model that can generate these unusual graphs on purpose; graphs that still look natural,
but where the giant component is either larger or smaller than the typical giant. This allows us to study networks in
extreme scenarios that we normally can’t access.
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Chapter 1

Introduction

Networks have been an integral part of human history. From the time of hunters and gatherers, where complex social
connections and thus networks were vital to survival [1], to modern times, where people use platforms like Instagram,
LinkedIn, and WhatsApp to maintain personal and professional connections [2]. As mankind evolved and society got
more complex, so did these social networks. For this reason it is important to understand properties of these (giant)
networks [3].
Graphs are an important mathematical tool to model these social networks. Graphs that model real-world social net-
works, such as LinkedIn, can be useful for studying emergent properties, but if we want to determine whether certain
properties emerge naturally from the degree distribution or are artifacts of structural bias, we have to make graphs at
random and inspect their properties. A very useful tool to create network graphs with such a distribution in mind is the
configuration model [4].

The configuration model is the setting of this thesis. More concise we will be looking at rare events of the model. When
using the configuration model to generate large graphs, a very large component emerges: a giant. Molloy and Reed
[5] published a paper on the density of the giant component. Their research focused on the emergence of the giant
component. They showed that the giant undergoes a phase transition based on a (now) well known condition. For a
given degree distribution {pk} a giant component will appear (for large enough n) only if:

∞∑
k=0

k(k − 2)pk > 0.

Moreover, they gave an explicit way of finding the density of the giant component. By solving a fixed point equation
involving the generating function of {pk} the fraction of vertices that belong to the giant component can be found. Hence
the typical size of the giant is inherently dictated by the degree distribution and not arbitrary.

But what if the giant does not realise this density? Bhamidi et al. have shown in their research that this is a rare event,
showing that the probability of the giant deviating, quickly diminishes as the graphs grow larger [6]. This is known as
the large deviation principle (LDP), which describes the exponential decay of probabilities for rare events as the system
size grows. Much research has been conducted on this area of random graphs; Andreis et al. published explicit LDPs for
component size distributions, talking about a full spectrum of component sizes [7], and later published similar results for
inhomogeneous graphs [8]. Agazzi et al. researched the asymptotic behaviour of rare paths in the graph, which relate to
the probability of observing atypical component configurations [9]. Jorritsma et al. recently (2024) published research
about LDP in scale-free graphs [10].

Importance sampling is a method used to efficiently estimate the probabilities of rare events, such as large deviations, by
simulating from an alternative distribution under which the rare event becomes typical [11]. In our context, this means
deviating from the standard configuration model to sample graphs more likely to exhibit atypical giant components. Be-
cause of the exponential decay in probability of seeing a deviant giant, as documented by Bhamidi et al. standard Monte
Carlo sampling is ineffective, making importance sampling a natural alternative. While a lot of research has been done
regarding LDPs as aforementioned, the use of importance sampling to practically simulate and estimate these rare-event
probabilities remains under-explored. Only a few works, by Guyader et al. [12] or by Dembo et al. for example [13],
touch on general importance sampling frameworks within the large deviation setting, but tailored schemes for random
graphs—particularly the configuration model—are limited.

The main goal of this thesis will be to realise importance sampling of a deviating giant component. After reviewing
the basics regarding random graphs, the configuration model, and the research on large deviation principles with respect
to the configuration model, we will explain in detail how we build a new model: Coloured half-edges model (CHEM).
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We begin by detailing the structure and algorithmic construction of the CHEM model. Then we prove that this model
realises the LDP stated by Bhamidi et al. and show simulation results of creating graphs using this model, along with
validation of this model.



Chapter 2

Preliminaries

2.1 Graph Theory

Figure 2.1: Example of a small
connected graph.

Graph theory studies a mathematical structure, conveniently called a graph. Graphs are
“simple” objects use to show networks. Graphs consist of nodes and edges, nodes describe
elements while edges describe some connection between them. We show in Figure 2.1
an example of a graph. Graphs come in more forms to convey different and/or more
information. For example the edges can be changed to have a direction, useful if one
would like to show car routes or likewise. Let us introduce some definitions for graphs,
which will be handy later on.

Definition 2.1 (Graph). A graph G is an ordered pair G = (V,E), where:
• V is a finite set of vertices (or nodes),
• E ⊆ {{u, v} | u, v ∈ V, u ̸= v} is a set of unordered pairs of distinct vertices, called
edges.

If {u, v} ∈ E, we say that u and v are adjacent, or that they are connected by an edge.

Remark 2.1.1. Definition 2.1 is about undirected, simple graphs.
Graphs are called simple when they contain no loops (edges from itself to itself), and no multi-edges (multiple edges
with the same start and end node). Furthermore, graphs are called directed when E is an ordered pair.

Definition 2.2 (Components). Let G = (V,E) be an undirected graph. A connected component (or simply a component)
of G is a maximal subset of vertices C ⊆ V such that for every pair of vertices u, v ∈ C, there exists a path in G connecting
u and v.

In other words, C is a connected subgraph of G, and no vertex in V \ C is connected to any vertex in C.

Remark 2.1.2. The term ‘maximal’ in definition 2.1 means that you cannot add any other vertex to the component
without expanding the subgraph.

A specific set of graphs we are interested in is random graphs.

2.1.1 Random Graphs
The field of random graphs is considered to be at the intersection of graph theory and probability. The goal is to study
properties of models coming from distributions (probability measures) on the set of graphs (simple or not).

Definition 2.3 (Random graph). A random graph is defined via a probability distribution over a set of possible graphs.

Remark 2.1.3. More concretely, one can write that a random graph is defined by a measure (or sequence of measures) on
the set of graphs. Where Gn denotes the realization of this measure (sequence). Here n indicates the number of vertices.

This topic was introduced by Hungarian mathematicians Paul Erdős and Alfred Rényi[14]– and at the same time
independently by American mathematician Edgar Gilbert[15]. They propose a graph G which depends on n nodes and
a probability p, this graph is generally known as an Erdős–Rényi graph.

Definition 2.4 (Erdős–Rényi Graph). An Erdős–Rényi graph G(n, p) is a random undirected graph with n ∈ N vertices,
where each of the

(
n
2

)
possible edges between distinct pairs of vertices is included independently with probability p ∈ [0, 1].

Formally, the vertex set is V = {1, 2, . . . , n}, and for each pair {i, j} with i < j, the edge {i, j} is present in the edge set
E with probability p, independently of all other pairs.

Remark 2.1.4. The expected amount of edges in the graph is E[E], so the average edge density is given by 1
nE[E]. By

the law of large numbers (and i.i.d. distribution), this converges exactly to p as n → ∞.

9
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Remark 2.1.5. There is a different way to define Erdős–Rényi graphs, where instead of a probability p you input a total
number of edges M such that G(n,M) has exactly M edges. This is done by uniformly choosing a subset of M edges,

where a subset is chosen with probability
(
n(n−1)/2

M

)−1
.

Another important concept regarding random graphs is the degree distribution of the graph.

Definition 2.5 (Empirical Degree distribution). Let G = (V,E) be a graph. The degree distribution of Gn is the
function pk(n) that gives the probability that a randomly chosen vertex has degree k, that is,

pk(n) =
|{v ∈ V : deg(v) = k}|

|V |
, k ∈ N0.

In other words, pk(n) is the fraction of vertices in Gn that have degree k. The collection {pk}k∈N0
defines the empirical

degree distribution of the graph.

2.1.2 Configuration model
Instead of the aforementioned method to make random graphs, based on a certain probability of connections forming,
there is a different way to make random graphs. The configuration model is a way to make random graphs based on a
given degree-distribution.

Configuration model (CM) random graphs are commonly defined as the realisation of a degree sequence.

Definition 2.6 (Configuration model random graph). Let n ∈ N and let d⃗ = (d1, . . . , dn) be a degree sequence with∑n
i=1 di even. The configuration model CMn(d⃗) is the random (multi-)graph constructed as follows:

• To each vertex i ∈ {1, . . . , n} attach di half-edges.

• Take a uniform random perfect matching of the 1
2

∑
i di unordered pairs of half-edges.

• For each matched pair of half-edges, join their incident vertices by an edge (allowing loops and multiple edges).

The resulting random multigraph on n vertices is denoted CMn(d⃗).

In this thesis we are mostly interested in the properties of the degree sequence d⃗, namely the proportion of each degree.
Thus we define the (limit) degree distribution.

Definition 2.7 (Degree distribution). Let n ∈ N and let d⃗ = (d1, . . . , dn) be a degree sequence with S =
∑n

i=1 di even.

The induced degree distribution p⃗(n) = {pk(n)}∞k=0 has the following relation to d⃗.

∀k pk(n) = 1
S

n∑
i=1

1di=k.

Furthermore, we consider the limiting degree distribution ⃗̄p = {p̄k}∞k=0. Where we say that for any limiting degree

distribution ⃗̄p there is a degree sequence d⃗ such that the induced degree distribution p⃗, converges to ⃗̄p as n → ∞.

Throughout this thesis we will consider graphs Gn with (limiting) degree distribution p⃗, since the specific degree sequence
is of little importance. Moreover, we define some regularity conditions for configuration model graphs.

Definition 2.8 (Regularity assumptions). For degree sequences d⃗ = {d1, · · · , dn} we assume it to be a realisation of the
random variable Dn with distribution function Fn. We assume the following regularity conditions:

I Weak convergence
There exists a distribution function F such that

Dn
d→ D,

where D has distribution function F .

II First moment convergence

lim
n→∞

E[Dn] = E[D].

III Second moment convergence

lim
n→∞

E[D2
n] = E[D2].

Remark 2.1.6. Configuration model random graphs depend on a degree sequence as described in definition 2.6, but
instead of given the degree sequence d⃗ we will often just talk about the degree distribution Dn or D.
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2.2 Branching Processes
Branching processes have an inherent relation to graphs. Giant components (which will be discussed in depth later)
can be described by a branching process. There is a simple way to relate the two concepts, but let us first get more
comfortable with branching processes.

Definition 2.9 (Branching process (Galton–Watson process)). Let Zi be the amount of offspring at time step i, and
let Xi be i.i.d.1 discrete2 random variables with distribution {pk} such that P(Xi = k) = pk and with k the amount of
offspring. A branching process starts with an ancestor, write Z0 = 1. Then

Zi+1 =

Zi∑
i=0

Xi.

For reasons which will become apparent in the rest of the thesis, we would rather look at a random tree created by a
branching process, called a Galton-Watson tree (See Fig. 2.2).

Figure 2.2: Example of a branching
tree.

Definition 2.10 (Galton-Watson tree). Let {Xi}i≥1 be a sequence of i.i.d. ran-
dom variables such that P(Xi = k) = pk for k = 0, 1, 2, · · ·. A Galton-Watson
rooted tree T is constructed in the following way:

I Start with the root vertex v0.

II The root has X1 offspring connected to it by edges. Label these offspring
arbitrarily.

III Each offspring independently has offspring of their own, according to inde-
pendent copies of X.
Thus, if a node has label v, its number offspring is an i.i.d. copy Xv of X,
and they are connected to v with an edge.

IV Repeat this process recursively for all newly created offspring.

Remark 2.2.1. For Galton-Watson (rooted) trees, the tree has positive probability
of being infinite if E[X] > 1, otherwise the tree dies out almost surely.

To relate these Galton-Watson trees to (random) graphs, we take a look at the local weak limit. We first introduce the
notion of rooted graph isomorphisms as they are an essential concept in the theorem on the local weak limit.

Definition 2.11 (Rooted graph-isomorphism.). Let T1 and T2 be rooted graphs with root ρ1, ρ2 respectively. G1 and
G2 are root isomorphic if there exists an isomorphism ϕ : T1 → T2 such that ϕ(ρ1) = ρ2.

Remark 2.2.2. An isomorphism maps from G → F by mapping edges to edges and non-edges to non-edges. Furthermore,
we denote rooted isomorphic with the symbol ∼=.

Theorem 2.1 (Local weak limit (Benjamini–Schramm convergence) [16]). Let BR(Gn, vn) be a ball of radius R of a
uniformly chosen vertex vn in Gn (w.r.t. graph-distance) and let Tn be a branching tree with root offspring distribution
D and with all other vertices having offspring distribution D̃.
If Gn has degree distribution D with finite second moment, then:

P(BR(Gn, vn) ∼= H(R, ρ)) → P(Bn(Tn, vn) ∼= H(R, ρ)) as n → ∞ for any finite rooted graph H(R, ρ). (2.1)

Where D̃ is such that P(D̃ = k − 1) = kpk/E[D]

A nice proof of this theorem is provided by Van der Hofstad [17].

1Independent, Identically, Distributed, thus Xi do not influence each other and they follow the same distribution.
2X will only take integer values.
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2.3 Giant Component
When creating random graphs, Erdős–Rényi graphs, configuration model graphs, and other random-graphs, large con-
nected components emergence as the number of vertices grows larger. Specifically giant components, which are very large
parts of the total graph. Let us give a proper definition of these giant components.

Definition 2.12 (Giant component). Let Gn be a graph sequence, and let C(1)
n , C(2)

n , C(3)
n be the largest/second largest/third

largest component. We call them a giant component if, |C(i)(n)|/n does not converge to zero in probability as n → ∞.

Remark 2.3.1. Notation
C(k)
n denotes the kth giant component of a graph according to size, where C(1)

n is the largest. Furthermore, we denote by
|C| the number of vertices in a component C.

Figure 2.3: Example of a
small connected graph.

Figure 2.3 shows a sketch of a giant component. The smaller components are coloured grey,
and we can see that the giant contains 11 of the 16 nodes. When these giant components do
or do not appear is a very interesting question, one that Erdős also asked [14].

Theorem 2.2. Let G(n, p) be an Erdős–Rényi graph with n ∈ N. If p > 1
n , then there is a

single giant component with high probability. If p < 1
n , there is no giant component, with high

probability.

Erdős proves this theorem in his original paper.

Definition 2.13 (With high probability). Let {γn}n∈N be a sequence of events. We say that
γn holds with high probability if,

lim
n→∞

P(γn) = 1.

For the configuration model the question on the appearance of the giant component was answered by Molloy [5], who
found a specific criterion. Before we give this criterion, we define the degree proportion of a graph, which makes the
criterion much easier to read.

Definition 2.14 (Degree distribution). Let Gn be a graph and let ρk(n) denote the proportion of degree k vertices in
G. Call DG the distribution of degrees in Gn, and define it as the random variable (r.v.) representing the degree of a
uniformly randomly chosen node in G such that P(DG = k) = ρk(n)

Theorem 2.3 (Molloy Criterion). [5]

Let Gn = CMn(d⃗) be an instance of the configuration model with degree distribution DG that satisfies the regularity
assumptions given in Definition 2.8, and let Q be as follows:

Q(DG) :=

∞∑
i=1

k(k − 2)pk = E[DG(DG − 2)]. (2.2)

If Q(DG) > 0 a unique giant component emerges. While if Q(DG) < 0 there will not be any giant component.3

Remark 2.3.2. The proof of Theorem 2.3 is given by Molloy and Reed [5]. The uniqueness stated comes from the fact
that, with high probability, we have

|C(1)
n |
n

↛ 0 in probability
|C(2)

n |
n

→ 0 in probability. (2.3)

2.3.1 Giants Proportion
Further important properties of giant components is their relative size in a graph. Let us introduce a few more definitions
to get familiar with this.

Definition 2.15 (Giant component density). Let Gn be a graph4 with n vertices and let C(1)
n be the largest giant

component of Gn. Then, if the first and second moment of the related degree distribution are finite, we have:

|C(1)
n |
n

p→ θ.

For some constant θ ∈ R.
3The case where Q(D) = 0 is the critical case, which is beyond the scope of this thesis.
4Can also be an instance of the configuration model
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Now we use the nice approximation that locally the giant is like a Galton–Watson branching process (Thm. 2.1), to
further look at these proportions. First, we introduce the size-biased distribution. If we have a graph G with degree
distribution DG as in Definition 2.5 we have a corresponding size-biased distribution: D̃G. The probability is given by

P(D̃G = k) =
kP(DG = k)

E[DG]

We connect this to the branching process by imagining a graph G and picking a random edge in G and choosing one
of its end-nodes v. Then the distribution of the degree of v is a size-biased version of the degree distribution of G. Let
ZD = D̃ − 1 so,

P(ZDG
= k) = P(D̃G = k + 1) =

(k + 1)P(DG = k + 1)

E[DG]
. (2.4)

This ZDG
corresponds to the amount of edges you will get to when you follow an edge to its end-node [4].

Before we continue to connect this to the giant component, we have to introduce the extinction rate of a branching
process.

Theorem 2.4 (Extinction rate [18]). Consider a branching process with offspring distribution {pk}k≥0 and probability
generating function g(s) =

∑∞
k=0 pks

k. The extinction probability x is then the smallest solution (on [0, 1]) to the fixed
point equation:

x =

∞∑
k=0

pkx
k.

Remco van der Hofstad has a very detailed proof about this theorem [19].

For the giant component, we will now imagine we are exploring a graph G. Pick a random node in G, then explore
the neighbours of this node, the amount of ‘new’ nodes we discover is D̃ − 15 = ZDG

distributed. We keep repeating
this process until we run out of nodes. If we do not run out of nodes, we find ourselves in the giant component. The
probability that this process never dies out is exactly 1 − x, where x is the ultimate extinction rate (Def 2.4). Now, for
a random node, we can determine the probability that all its edges lead to finite components as follows: a random node
has k neighbours, the probability that they all lead to dead ends is xk, so we take a weighted average over all degrees in
G. Hence the probability of a random node being in a finite component is g(x) =

∑
k≥0 pkx

k [20][19]. Thus we conclude
that the giant’s proportion is 1 − g(x).

This is not the full story, while the conclusion is true, we actually need a condition for it to hold. To this end we present
here the main result of Molloy and Reed [5][21].

Theorem 2.5. Let CMn(d⃗) be an instance of the configuration model with degree distribution Dn → D and size-biased
distribution D̃n → D̃. Furthermore, let GD be the generating function of D. If E[D(D − 2)] > 0 then there exists a
unique solution x ∈ (0, 1) to the fixed point equation s = GZD

(s) and,

|C(1)
n |
n

p→ 1 −GD(x) =: θ > 0 as n → ∞.

The important takeaway here is that the giant has a typical density within the graph: this θ. But what if the giant is
bigger than θ in the limit? For Erdős–Rényi graphs it is clear when the giant gets really big, so big it is the entire graph
in fact. Erdős proved the following theorem in his original paper [14].

Theorem 2.6. Let G be an Erdős–Rényi graph and let C(1)
n be the largest giant component.

If p >
ln(n)

n
then lim

n→∞

|Cn|
n

= 1 a.s.

For the configuration model, no such theorem exists, unfortunately. There is however research done on large deviations
of the configuration model.

2.3.2 Large deviations
The probability that the giant component of an instance of the configuration model is larger than θ is exponentially
decreasing. [19] Thus a giant greater than θ is a rare event, also known as a large deviation. Essential to large deviation
theory is Cramér’s theorem, which determines the rate function for a series of i.i.d events.

5This −1 comes from the fact that we ‘entered’ the node via one edge, thus one is already discovered.
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Theorem 2.7 (Cramér’s theorem). [22]
Consider a series of i.i.d. variables Xi. Assume that there is an open interval containing 0 where the moment-generating
function M(t) = E[etX1 ] is finite. Define Λ(t) as follows

Λ(t) := ln(M(t)), Λ∗(t) := sup
t∈R

{tx− Λ(t)}, (2.5)

Then the sequence Xi satisfies the large deviation principle on R with speed n and good 6 rate function Λ∗. Equivalently

For every closed subset F of R
lim sup
n→∞

1

n
lnP(X̄n ∈ F ) ≤ − inf

x∈F
Λ∗(x). (2.6)

For every open subset G of R
lim sup
n→∞

1

n
lnP(X̄n ∈ G) ≥ − inf

x∈G
Λ∗(x). (2.7)

In particular, for any a > E[X1]
P(X̄n ≥ a) ≈ exp(−nΛ∗(a)) n → ∞. (2.8)

A very nice proof of this theorem is given by Dembo et al. [23].

Remark 2.3.3. An intuitive way to interpret the equations in Theorem 2.7 is as follows. In any case, (2.6) tells us that
the function cannot decay slower than the worst rate in F . While (2.7) says the converse: the rate function cannot decay
faster than the infimum. Lastly, (2.8) tells us that the probability of overshooting (or undershooting) the expected value
goes to 0 exponentially fast.

In our case, the sequence of i.i.d. variables, are the graphs. Each CM-graph is independent of each other, and they are
created equally. Bhamidi et al. [6] published results which are closely related to the rate function of the configuration
model.
Let us give some context and relevant notation to better understand those results. Starting with the special event that
we are interested in. In a typical CM random graph, the giant component is unique and of a certain proportion as stated
before (Thm. 2.5). Let us define an event, where the giant component is larger than it typically is.

Definition 2.16 (Large giant). Consider a graph Gn with n vertices. Let Gn have degree distribution which converges
to p⃗ = {pk}k∈N. Then for every vector q⃗ = {qk}k∈N such that 0 ≤ qk ≤ pk for all k, we consider the event

En,ε(q⃗) = {There exist a component in Gn with mk degree k vertices where mk ∈ [n(qk − ε, n(qk + ε)], k ∈ N} (2.9)

The probability of (2.9) happening will be denoted by ϕn,ε
q . Bhamidi et al. provided a theorem on the lower and upper

bound of ϕn,ε
q .

Theorem 2.8 (Bhamidi lower bound). [6]
Let Gn be a configuration model random graph with degree distribution that converges to p⃗ and let 0 ≤ q⃗ ≤ p⃗ then

lim inf
ε→0

lim inf
n→∞

ln(ϕn,ε
q ) ≥ −nI(p⃗, q⃗) (2.10)

The proof of this theorem is given as the main result in the paper by Bhamidi et al.[6].

Remark 2.3.4. The upper-bound of P(ϕn,ε
q ) is given by the lim supε→0 lim supn→∞ and is less or equal to −nI(p⃗, q⃗)

The function I(p⃗, q⃗) is the rate (or entropy) function: see Cramér’s theorem 2.7.

2.3.3 Rate function
In this section we will closely examine this rate function, which appears in (2.10). The function has the following form.

I(p⃗, q⃗) = H(q⃗) + H(p⃗− q⃗) −H(p⃗) + K(q⃗) (2.11)

The H function is closely related to the graph exploration we discussed in Section 2.3.1. Imagine doing multiple explo-
ration walks in the graph: you choose a random node to start and explore until you have uncovered the entire component,
then pick a new node which you have not explored yet and repeat. Eventually, you will have discovered the entire graph.

6Good refers to the fact that the level-sets of the rate function are compact.
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For each component you explored, you encountered a certain configuration of offspring degrees. Since we are essentially
forcing the graph to display the event En,ε(q⃗) we take away from the freedom. The function H describes the ‘cost’ of
limiting this freedom. The first part of H is the cost of seeing nqk degree k degrees in those components, which is the
sum of qk ln qk over all k. When distributing the degrees across all nodes, we are essentially assigning half-edges. Thus,
after handing out the half-edges, one still has to decide how to connect all these half-edges into actual edges. The average
degree of a node is 1

2

∑
k≥1 kqk, and then there are ln (1

2

∑
k≥1 kqk) many ways of connecting the initial half-edges. These

many ways of connecting can be seen as a “bonus” since we again allow for some freedom, thus this part will decrease
the cost a bit.

So we obtain the following expression for H:

H(v⃗) =

∞∑
k=1

kvk ln (kvk) − 1

2

∞∑
k=1

kvk ln

(
1

2

∞∑
k=1

kvk

)
(2.12)

When substituting in q⃗ into H we get the cost of forcing the graph to have qk degree k vertices. While plugging in
p⃗ into H, obtains the cost of just getting a configuration model random graph with degree distribution p⃗. There is a
middle ground between these two distributions, which comes from the fact that we could have made a configuration
model random graph with limit degree distribution p⃗− q⃗.

The H functions in the rate function I in the following way. As can be gathered from Cramér’s theorem 2.7 the rate
function comes from taking the log of the probability that the event En,ε(q⃗) and dividing by n. That probability is given
by the following equation:

P(En,ε(q⃗)) =

∞∏
k=1

npk!

(nqk)!(n(pk − qk))!
·
(n
∑

k kqk)!!(n
∑

k k(pk − qk))!!

(n
∑

kpk)!!
·P(The ‘inside’ vertices form a single component).

(2.13)
The first part of (2.13) counts the ways of prescribing which degree k vertices are or are not inside the giant component.
The second part is the essentially probability that the vertices which were assigned ‘inside’ and the vertices which where
assigned ‘outside’ form separate matchings. Thus they do not connect together somewhere. When taking the log of this
probability and dividing by n, the three H functions appear.

Before we continue to the K function, we first talk about typicality. We are trying to obtain the special event En,ε(q⃗),
where this q⃗ is a desired degree distribution. When this degree distribution is implemented, we essentially have to tilt
the configuration model, in such a way that seeing degree distribution q⃗ is typical. If we tilt each qk to qkβ

k for a specific
parameter β our degree proportion becomes typical in the new model. Finding this tilt β can be done by forcing the
tilted profile to be critical. Solving (2.14) yields the tilt parameter β.

∞∑
k=1

kqk = (1 − β2)

∞∑
k=1

kqk
1 − βk

. (2.14)

Lemma 2.1. The parameter β that solves (2.14) uniquely exists if E[D] > 2.

Proof. Let us start by defining f(β):

f(β) :=
∑
k

kqk − (1 − β2)

∞∑
k=1

kqk
1 − βk

= β

( ∞∑
k=3

β − βk−1

1 − βk
kqk − q1

)
.

We are looking for a β ∈ (0, 1) for which f(β) = 0. The term (β−βk−1/(1−βk) we define as fk(β). From the definition
of fk(β) it is clear that it is strictly increasing on (0, 1).

Furthermore, we see limβ→0+ fk(β) = 0 and limβ→1− f(β)
l′Hôpital

= limβ→1−
1−(k−1)βk−2

−kβk−1 = k−2
k . Thus we see

−q1 = f(0+) < f(β) < f(1−) =

∞∑
k=3

(k − 2)qk − q1. (2.15)

Since f is continuous on (1, 0) we use the intermediate value theorem [24] to obtain that there exists a unique value β
such that f(β) = 0, which concludes the proof.

Remark 2.3.5. The right hand side in (2.15) is exactly
∑

k≥1(k − 2)qk, which must be positive since
∑

k≥1(k − 2)qk =
E[D − 2] > 0 ⇐⇒ E[D] > 2 as stated in the lemma.
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The function K hence comes from the last part of (2.13). This function can be related to a “tilt” for which the branching
process becomes typical. To express the function K we star by tilting some of the costs of H. First the term 1

2

∑
k≥1 kqk

which is the amount of half-edges to match up, as seen before. Now the weight of each half-edges is altered under the
critical tilt, and we take the natural log to account for the amount of ways we can combine these half-edges under this
tilt. So the term becomes ( 1

2

∑
k≥1 kqk) ln (1 − β2). Furthermore, K also has a cost build in for forcing some degrees to

be outside the giant. Each vertex with degree k lives outside the giant if all of its half-edges lead to extinction nodes.
The probability to die out, i.e. eventually connect to the giant and “kill” the finite component, is β. The chance that
this happens is βk and equivalently the chance this does not happen is 1 − βk. Thus we add the cost for each qk giving
the term

∑
k≥1 qk ln (1 − βk). Equation 2.16 gives the formula for K(q⃗).

K(q⃗) =

1

2

∑
k≥1

kqk

 ln (1 − β2) −
∑
k≥1

qk ln (1 − βk). (2.16)

Now let us look at the rate function again and summarize what each part of the equation contributes in (2.17).

I(p⃗, q⃗)︸ ︷︷ ︸
Cost of forcing

En,ε(q⃗)

= H(q⃗)︸ ︷︷ ︸
Cost to force
giants degrees

+ H(p⃗− q⃗)︸ ︷︷ ︸
Cost for finite
components

− H(p⃗)︸ ︷︷ ︸
Profit from
baseline

+ K(q⃗).︸ ︷︷ ︸
Cost of forcing

a single component

(2.17)

Now that we have our expression for this rate function I in equation 2.10 from theorem 2.8, we can continue with its
implication. The implication is rather easily said; the event En,ε(q⃗) is extremely rare. If one would like to research
graphs with the event En,ε(q⃗), they would have to simulate a configuration model random graph, enI amount of times
on average to have En,ε(q⃗) happen once. Since this is ridiculous (without quantum computing), we would like a better
and faster way to simulate this. That is where the theory of importance sampling comes in.

2.4 Importance Sampling
Importance sampling is a way of evaluating properties of a certain distribution, by repeated random sampling7 of a
different distribution. As discussed in section 2.3.3 repeated random sampling is futile for an exponentially decaying
probability. Thus one would like to sample from a different distribution, where a special event turns up with much higher
probability, specifically with probability 1 almost surely.

In essence, we are looking for a way of building configuration model random graphs with the event En,ε(q⃗) always
happening, while still keeping the process random. This is the main goal, to give a way of creating a configuration model
random graph with the event En,ε(q⃗) happening almost surely.

7i.e. Monte Carlo method



Chapter 3

Coloured half-edges model

In this chapter we will design an augmented configuration model. This model, which we call the coloured half-edges
model (CHEM for short) depends on a degree distribution (Def. 2.5) and a vector of desired giant component degree
proportions. Furthermore, this model should achieve importance sampling for the rare event En,ε(q⃗) (2.9). The aug-
mentation is a change in degree distribution, and a different matching of half-edges.

We will build the model in four steps. The first two steps focus on the degree distribution; the first section will explain
how to manipulate an original degree distribution. The second section then complements this by building the ‘bridge’
between the distribution and the matching.
Section three and four explain the matching method and tweaking the matching to obtain a valid graph.
The final section of this chapter will give a step-by-step algorithm to make a CHEM graph.

3.1 Labelling
The first step of creating a coloured half-edges model random graph (CHEM-graph), is to create n nodes and label them.
Before we can investigate the labelling, we take a step back and review some standard parameters. The giants size θ
introduced in definition 2.15 is related to the event En,ε(q⃗) by this q⃗. They share the following simple relation shown in
(3.1), for the typical degree proportions qTk .

∞∑
k=1

qTk = θ (3.1)

This means that increasing one or more qTk will lead to a giant component that is larger than θ. The challenge at hand is
finding the typical degree proportions (qTk ) and increasing them. In a configuration model random graph with n nodes,
the giant component has approximately n · qTk degree k vertices.
This relates back to (3.1), the giant component consist of n ·

∑
qTk vertices, so the proportions in the giant component

are clearly given by qTk .
Let us remark that the relation between qTk and pk is given by the extinction rate z of the giant component (ZDG

). In the
limit the proportion of degree k vertices in the giant, is the probability of a degree k vertex multiplied by the probability
of not all edges “dying”. So we obtain the relation noted in (3.2).

qTk = pk(1 − zk) (3.2)

Thus we only need to solve the fixed point equation GZDG
(z) = z to obtain the values of qTk . If we then select our own

proportions qk (often shortened to qk as qTk represents the typical values), to be such that
∑

qk > θ, we obtain a deviant
giant. For this, we introduce the following condition:

∀k ≥ 0,∀qk ∈ q⃗, pk ∈ p⃗ : qTk ≤ qk ≤ pk. (3.3)

When we talk about CHEMn(p⃗, q⃗) graphs, p⃗ refers to some degree distribution (Def. 2.5) and some q⃗ that satisfies
condition (3.3).

The next step is to make sure our qk also make the giant a branching procedure. For this we solve (3.4) for x, which is
comparable to the β from (2.14).

n∑
k=1

kqk = (1 − x2)

n∑
k=1

kqk
1 − xk

. (3.4)

17
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With this x, we relate qk to pk with an extra (new) normalization parameter based on x.

qk =
pk(1 − xk)

γk(x)
⇐⇒ γk(x) =

pk(1 − xk)

qk
. (3.5)

Since pk, qk, and x are known, we can solve for γk(x). This normalization parameter is crucial for the labelling. For
now, we will continue with the next step, as the parameter γ will come back later.
The proportions of the giant component are now known, thus we can make a giant with said proportions. The next step
is to introduce the labelling.
For a graph Gn of n nodes, we define the label mn(i, j) which denotes the amount of nodes that have i extinction
half-edges, and j survival half-edges. Two conditions that must hold to build a graph of size n and degree proportion
ρk(n) are given below in equations 3.6 and 3.7.

n =

∞∑
i=0

∞∑
j=0

mn(i, j). (3.6)

ρk(n) =

∞∑
j=0

mn(k − j, j)

n
, ρk(n)

n→∞→ ρk (3.7)

Next, we define the variable ρ(i, j) which symbolizes the limiting proportion of vertices with i extinction half-edges and
j survival half-edges. The conditions for this variable are shown in (3.8) and (3.9).

∞∑
i=0

∞∑
j=0

ρ(i, j) = 1. (3.8)

mn(k − j, j)

n
→ ρ(k − j, j) as n → ∞. (3.9)

Later on, these labels will be what we base our colouring on. For now, we will explore how to label the nodes. First, we
remark that we mainly use mn(k− j, j) and ρ(k− j, j). Secondly, note that the ρk should be equal to qk. From there we
calculate how large the proportions of different j values should be for the corresponding mn(k − j, j) labels. For every
mn(k− j, j) there are k+ 1 ways of filling the brackets. For every j there are k− j extinction edges and j survival edges,
so for each j there is a total of

(
k
j

)
ways to make such a node. This needs to be taken into account, so each ρ(k − j, j) is

calculated by taking this into account, along with the parameter x and γk(x). Equation 3.10 shows the general formula
for ρ(k − j, j).

ρ(k − j, j) =
pk
(
k
j

)
xk(1 − xj)

γk(x)
. (3.10)

In this way, we have assured that
∑

ρ(k− j, j) = qk, so when we multiply by n we find the amount of mn(k− j, j) labels
we assign for every k and j.

To connect all these terms and formulae, and build some intuition, let us build a graph together. To illustrate how to
compute x and ρ(i, j) in the special case where the graph only has nodes of degree one, two, or three.

Example 3.1. Suppose we build a graph. There is some initial p⃗ = (p1, p2, p3) degree distribution known to us. Step
one is to find the typical proportion of degrees in the giant component, thus we need to find z.

z = GZDG
(z) = z

p1
E[DG]

+ z2
2p2

E[DG]
+ z3

3p3
E[DG]

⇐⇒ z(p1 + 2p2 + 3p3) = p1z + 2p2z
2 + 3p3z

3 (3.11)

⇐⇒ z =
6p3 − 2p1

6p3
= 1 − p1

3p3
.

As long as 3p3 > p1 this solution is valid, also z = 0 is disregarded as it is a trivial solution. With this z the typical
proportions can be calculated. We can now choose our qk such that the sum is larger than the sum over qTk . Then we
solve (3.12) for x.

3∑
k=1

kqk = (1 − x2)

3∑
k=1

kqk
1 − xk

⇐⇒ q1 + 2q2 + q3 = (1 − x2)

[
q1

1 − x
+

2q2
1 − x2

+
3q3

1 − x3

]
(3.12)

⇐⇒ x2q1 + x(q1 + 3q3) + q1 = 0 ⇐⇒ x =
−q1 + 3q3) ±

√
9q23 + 6q1q3 − 3q21

2q1
.
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Given that x should be positive, we can take the positive root to be our x in this case. With the formula given in (3.5)
the normalization parameter γk(x) can be calculated. Combining everything together allows us to find the proportions
ρ(k − j, j) for this instance of the graph, and hence the amount of each label to distribute. Figure 3.1 shows a possible
outcome of this procedure.

Figure 3.1: Possible start to an coloured half-edges model random graph, showing the degree, s, x labelling and the final mn(k−j, j)
naming.

Now that all labels can be assigned, it is time for the next step: colouring half-edges. The next section will analyse this
step of the coloured half-edges model.

3.2 Colouring
Colouring the half-edges is based on their label. The colouring has to do with the structure of the giant component.
Typically the giant has a very dense, interconnected part, and then some appendages. In graph theory we consider such
an interconnected part a k-core.

Definition 3.1 (k-core). Let G = (V,E) be a graph. A subgraph S = (Ṽ , Ẽ) of G is called a k-core if

I S is induces: Ẽ = { {u, v} ∈ E | u, v ∈ Ṽ },

II Every vertex of S has degree at least k in S: ∀v ∈ Ṽ , degS(v) ≥ k,

III S is maximal with regard to II: there is no strictly larger ˜̃V ⊃ Ṽ such that the induced subgraph on ˜̃V also has
minimum degree ≥ k.

Remark 3.2.1. The intuitive way to think about a k-core, is to take a graph, and iteratively “pealing” off all the nodes
with degree less than k. Thus after every peal, you update the degree and continue if necessary. So if we consider
a 2-core, we remove all the nodes that have degree 0, and then all nodes with degree 1. We are then left with very
connected pieces of the graph, since all remaining nodes have two or more connections.

For the whole graph, besides the giant there are some smaller components, those are made up from the loose extinction
only nodes. Thus all nodes with an mn(k, 0 label (with k ≥ 2 are outside of the giant, and those will be Colour D. The
half-edges for the giant component are a bit more elaborate. The dense interconnected part is made up of Colour A, and
the appendages of Colour B and Colour C. For each combination of k and j in a label, there is a set way of colouring the
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extinction and/or survival half-edges. The symbol ∼ shows that half-edges will be a certain colour. Equations 3.13–3.15
show the colouring rules.

∀j ≥ 2 ∀(k − j) ≥ 0 : s ∼ Colour A, x ∼ Colour B. (3.13)

∀(k − j) ≥ 1 j = 1 : s ∼ Colour C, x ∼ Colour B. (3.14)

∀(k − j) ≥ 1 j = 0 x ∼ Colour D. (3.15)

When making a CHEM random-graph, we need to make sure the mn(i, j) satisfy some conditions, such that the half-edges
can be matched later on.

I The number of Colour A half-edges is even:

∞∑
j=2

∞∑
i=0

mn(i, j)j ∈ 2N. (3.16)

II The number of Colour D half-edges is even:

∞∑
i=1

mn(i, 0)i ∈ 2N. (3.17)

III The number of Colour B half-edges is equal to the number of Colour C half-edges.

∞∑
j=1

∞∑
i=1

mn(i, j)i =

∞∑
i=0

mn(i, 1). (3.18)

With these rules, Figure 3.1 from Example 3.1 can be continued: the labelled framework can be coloured. Figure 3.2 is
the coloured version of the labelled graph (Fig. 3.1).

Figure 3.2: CHEM graph with labels and coloured half-edges.
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3.3 Matching
Theoretically, matching the coloured half-edges is the last step of the CHEM procedure. Sometimes the half-edges are
a bit out of balance, but we will discuss that at length in Section 3.4. The matching procedure is done by following
three rules. The rules are simple, Colour A half-edges always connect to other Colour A half-edges. Colour B half-edges
always connect to Colour C half-edges, and vice-versa. Lastly, Colour D half-edges always connect to Colour D half-
edges. This is of course a random matching, so select a random half-edge in the graph, then based on its colour randomly
select any of the appropriate coloured half-edges and connect them.
Figure 3.2 is nicely coloured, so we implement these three rules and start matching the edges. Rearranging the nodes a
bit yields our CHEM-random graph shown in Figure 3.3. Two problems stand out from this graph.

Figure 3.3: Matched, un-tweaked, coloured half-edges model random graph of 12 nodes.

There are two Colour B half-edges unconnected, and there are two nodes which have a double connection between them
(Colour D nodes). Section 3.4 will focus on the unconnected half-edges, while this section will discuss the simplicity of
the graph.
The CHEM random graph should be a simple graph, so no self-loops or multi-edges (see Remark 2.1.1). The easiest way
to solve those problems is by simply removing those “illegal” edges. A paper from 2013 solved this problem for a directed
configuration model random graph.[25] The authors proved that in the limit changing a “small” amount of edges does
not influence the empirical degree distribution. First, analysing the amount of edges that are non-simple is in order.

Let S be the total amount of self-loops in an instance of a CHEM-graph. Furthermore, let L(n) be the amount of
half-edges in a graph. When it causes no ambiguity, we write L instead of L(n). To make a self-loop, the algorithm has
to pick two half-edges from the same node. When it has selected a half-edge, the probability of picking another half-edge
from that node is 1

L−1 , since it already selected one edge. Then we consider the fact that it could select those two edges

in
(
di

2

)
ways, by shuffling between all the half-edge combinations of the node. Considering this, we obtain 3.19 for the

expected number of self-loops.

E[S] =

n∑
i=1

(
di
2

)
1

L− 1
=

n∑
i=1

di(di − 1)

2(L− 1)
=

1

2L− 2

n∑
i=1

di(di − 1). (3.19)

Note that the total amount of half-edges L in a graph is defined as
∑n

i=1 di. Substituting this in (3.19) and rearranging
some terms yields (3.20).
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E[S] =
1

2L

n∑
i=1

d2i −
1

2
. (3.20)

Theorem 3.1. Let Gn be a CHEM-graph with n nodes where DG is the degree distribution of the graph. Let S denote
the total amount of self-loops in Gn. If D has finite second moment then,

E[S] = Θ(1).

Thus the total amount of self-loops is a finite amount, independent of n.

Proof. Assume E[D2] < ∞. By the strong law of large numbers we obtain:

1

n

n∑
k=1

d2i
a.s.→ E[D2] < ∞. (3.21)

So equivalently, we can write

n∑
k=1

di = nE[D] + o(n) = O(n). (3.22)

n∑
k=1

d2i = nE[D2] + o(n) = O(n). (3.23)

Combining these identities, we calculate the following:

1

2L

n∑
k=1

d2i =
1

2
∑

di

n∑
k=1

d2i =
nE[D2] + n · o(n)

2nE[D] + 2n · o(n)
=

E[D2]

2E[D]
. (3.24)

⇐⇒ E[S] =
O(n) + o(n)

2O(n) + 2o(n)
= Θ(1).

The amount of self-loops is thus constant, independent of the total number of nodes. Now let M be the total amount of
multi-edges in an CHEM-graph. The goal is to count the amount of parallel edges between two nodes, denoted by m.
Start by selecting two nodes at random: i, j. Very similar to the self-loop case, the probability of connecting them once
is given by 1

L−1

(
di

2

)(
dj

2

)
. For more than one connection, say m, the probability becomes something of the form

m!

(L− 1)(L− 3) · · · (L− (2m− 1))

(
di
m

)(
dj
m

)
.

The only thing missing from this equation is the probability of not having more than m matches, since we are looking at ex-

actly m multi-edges. Let us write R
(m)
i,j for P(No remaining half-edge from “i” is matched to a remaining half-edge of “j”).

Lemma 3.1. Let Gn be a CHEM-graph, M the number of multi-edges in the graph, and R
(m)
i,j the probability that the

amount of multi-edges between nodes “i” and “j” is exactly m. Then ∀m ∈ N we have

R
(m)
i,j = 1 −O

(
di + dj

L

)
. (3.25)

Proof. Consider 1−R
(m)
i,j , the probability that one of the di−m half-edges of i does match one of the dj−m half-edges of

j. Label the remaining half-edges of i (WLOG) v1, v2, · · · vdi−m. Suppose we start matching those remaining half-edges,
say (WLOG) in order of increasing index. The point at which vr is matched, 2(r − 1) half-edges have already been
matched. The total number of “free” edges left is L− 2m− 2(r − 1), of which dj −m belong to node j. Thus Equation
3.26 shows the probability of matching vr to one of node j’s remaining edges.

dj −m

L− 2m− 2(r − 1)
≤ dj

L− 2m− 2(r − 1)
≤ dj

L− 2m− 2(di −m− 1)
≤ dj

L− 2di
. (3.26)

If we calculate this probability over every r, we get the probability that there is at least one r for which node i and j
have an extra edge between them. This gives us Equation 3.27.
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1 −R
(m)
i,j ≤

di−m∑
r=1

dj
L− 2di

=
dj(di −m)

L− 2di
≤ didj

L− 2di
≤ didj

L/2
. (3.27)

Finally, we use the fact that didj ≤ 1
2 (di + dj)

2, we find a bound of O(
di+dj

L ). Symmetrically we would have found the
same bound when we would have started with node j. Thus the conclusion is indeed,

R
(m)
i,j = 1 −O

(
di + dj

L

)
.

Furthermore, we state lemma 3.2. This lemma says that multi-edges made up of two parallel edges are the dominant
term. Thus once can essentially ignore other types of multi-edges when counting, which is precisely what we want.

Lemma 3.2. Let Gn be a CHEM-graph, M the number of multi-edges in the graph.

O(P(Exactly m between i, j)) = O(P(Exactly 2 between i, j)).

Proof. For any m ∈ N, we have

P(Exactly m edges between i and j) =

(
di

m

)(
dj

m

)
m!

(L− 1)(L− 3) · · · (L− (2m− 1))
R

(m)
i,j . (3.28)

By Lemma 3.1 R
(m)
i,j is of order 1 −O

(
di+dj

L

)
. We calculate

E[Number of matches between i and j] = (m−1)P(Exactly m edges between i and j)). For the case m = 2 this becomes:(
di
2

)(
dj
2

)
2!

(L− 1)(L− 3)

(
1 −O

(
di + dj

L

))
. (3.29)

As L grows larger with n, the leading term in Equation 3.29 is:

di(di − 1)dj(dj − 1)

2L2
= O

(
d2i d

2
j

2L2
.

)
(3.30)

For the case where m ≥ 3, we remark the following things:

(L− 1)(L− 2) · · · (L− (2m− 1)) = Lm

(
1 + O

(
m2

L

))
, (3.31)

(
di
m

)(
dj
m

)
m! ≤

dmi dmj
m!

. (3.32)

Substituting (3.31) and (3.32) into (3.28), yields (3.33).

P(exactly m edges) ≤
dmi dmj
m!

· 1

Lm
(
1 + O

(
m2

L

)) · (1 −O

(
di + dj

L

))
(3.33)

didj is at least of order O(L) thus

(
didj
L

)m

= O

(
1

Lm

)
. (3.34)

Recombining terms in (3.33), and summing over all m ≥ 3, where didj/L is at most O(L−3), yields (??).

min{di,dj}∑
m=3

P(exactly m edges) = O

(
d3i d

3
j

L3

)
. (3.35)

Comparing (3.30) to (3.35) shows that all the contribution of multi-edges with three or more connections between nodes
is of smaller order than the double parallel edges between nodes. Thus the m = 2 term strictly dominates the m ≥ 3
contributions.
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Theorem 3.2. Let Gn be an CHEM-graph with n nodes where DG is the degree distribution of the graph. Let M denote
the total amount of multi-edges in Gn. If D has finite second moment then,

E[M ] = Θ(1).

Thus the total amount of multi-edges is a finite amount, independent of n.

Proof.

E[excess parallel edges between i, j] =

min{di,dj}∑
m=2

(m− 1)P(Exactly m edges between i and j). (3.36)

From Lemma 3.2 we know that this probability is dominated by the term m = 2. Thus for large enough n we can rewrite
(3.36) to:

E[excess parallel edges between i, j] = E[two parallel edges between i, j] + O

(
d3i d

3
j

L3

)
= (3.37)

(
di

m

)(
dj

m

)
(L− 1)(L− 3)

+ o

(
1

L2

)
.

Combining (3.36) with (3.37) gives the expected value of M .

E[M ] =

n∑
i=1

n∑
j=1

(
di

m

)(
dj

m

)
(L− 1)(L− 3)

≈ 1

2L2

∑
i<j

di(di − 1)dj(dj − 1). (3.38)

The last term in (3.38) can be split into two sums as follows, 1
2 [(
∑

di(di − 1))2 −
∑

(di(di − 1))2]. Working this term
into (3.38), yields the following equation:

E[M ] =
1

4L2

( n∑
i=1

di(di − 1)

)2
−O

(∑n
i d

2
i (di − 1)2

L2

)
as n → ∞. (3.39)

The first term in (3.39) can be rewritten a bit, where we also use the assumption that E[D2] < ∞ ⇐⇒
∑

d2i = O(L).(
1

L

n∑
i=1

di(di − 1)

)
=

∑
d2i −

∑
di

L
=

∑
d2i
L

− 1 = λ− 1 =⇒ E[M ] =
(λ− 1)2

4
= Θ(1). (3.40)

Where λ in (3.40) comes from lim 1
L

∑
d2i = λ.

We have proven that the amount of self-edges and multi-edges in our CHEM graph is constant, thus we can surely say
that we can make our graph simple without disrupting the degree distributions. Let us formalize this in a theorem.

Theorem 3.3. Let Gn be an CHEM random graph of n vertices, and degree distribution p⃗. By removing self-loops and
multi-edges from Gn we obtain the simple CHEM graph G̃n with degree distribution ⃗̃p. If E[D2] < ∞ then

|p⃗− ⃗̃p| → 0 as n → ∞. (3.41)

Proof. By Theorem 3.1 and Theorem 3.2 we have that E[S+M ] = Θ(1). Thus we remove a constant number of self-loops

and multi-edges, so the degree distribution ⃗̃p is given by

p̃k =
npk − Θ(1)

n

n→∞→ pk, (3.42)

for every p̃k in ⃗̃p and for every pk in p⃗.

Making a CHEM graph simple does not influence the degree distribution in the limit. Thus the graph in Figure 3.3 can
be made simple, yielding Figure 3.4.
The last issue visible in Figure 3.4 is the two loose Colour B half-edges. These signal that we generated either too many
Colour B half-edges, or too few Colour C half-edges. The next section will focus on tweaking the CHEM-graph, such
that it is possible to ‘complete’ the matching.
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Figure 3.4: Matched, un-tweaked, CHEM graph of 12 nodes, made simple.

3.4 Tweaking
The labelling of a CHEM graph has to satisfy conditions (3.16)-(3.18). However, due to fluctuations/rounding errors
the conditions are not always satisfied when creating the labelling mn(i, j). The maximum error in the Colour A and
Colour D half-edges is one for each, which would make them uneven. For the Colour B and Colour C half-edges, the
maximum error is K where K is the amount of degrees in the graph, which we will state in the following lemma.

Lemma 3.3. Let Gn be a CHEM graph of n nodes. Let ∆ denote the difference in the amount of Colour B and Colour C
half-edges. Then for all n, |∆| ≤ K where K is the amount of different degrees in Gn.

Proof. mn(i, j) = ⌊nρ(i, j)⌋ = ⌊nρ(k− j, j)⌋. Because mn(i, j) is always an integer, and we can only calculate ρ(k− j, j)
via (3.10). All Colour B half-edges come from labels with at least one survival edge. Thus for all K degrees K − 1 can
have Colour B half-edges. All Colour C half-edges come from labels with at most one survival edge. Thus all Colour C
half-edges come from two of the total degrees. There is one label that is shared by Colour B and Colour C half-edges,
which is the mn(1, 1) label. This case can be ignored, because any error in this label will add/remove as many Colour B
as Colour C half-edges.
In the worst-case scenario, for each ρ(i, j) with j ≥ 1 we have:

|mn(i, j) − ρ(i, j)| < 1,

and for each ρ(i, j) with j ≤ 1

|mn(i, j) − ρ(i, j)| < 1.

This shows that the over-/undershoot of Colour B/Colour C half-edges is in any case less than K, since e.g. the
overshoot of Colour B is at most K − 1 and the undershoot of Colour C is at most 1 (or vice-versa). Thus we conclude
that ∆ ≤ K

Since the amount of degrees in a CM/CHEM graph is independent of the amount of vertices, the amount of half-edges
that need to be tweaked is of order 1.

The goal of our tweaking algorithm is to make sure the labelling satisfies conditions (3.16)-(3.18) in one manoeuvre.
Thus all conditions will be “fixed” at the same time. Before we get into the algorithm, we need a very useful lemma
regarding graphs.
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Lemma 3.4 (Handshake lemma[26]). Let G = (V,E) be a finite undirected graph. Then∑
v∈V

deg(v) = 2|E|. (3.43)

Equivalently, the amount of nodes of odd degree is even.

The handshake lemma tells us that the amount of half-edges is always even. We can relate this to the difference in
Colour B and Colour C half-edges (= ∆). If ∆ is even, then the amount of Colour A half-edges plus the amount of
Colour D half-edges is also even.
Recall that we write p2(n) (p2 in short) for the proportion of vertices in a graph Gn with degree equal to two. Now let
us introduce our tweaking algorithm.

Definition 3.2 (Tweaking algorithm). Consider a CHEM random-graph Gn with limit degree distribution p⃗ = {pk}∞k=1.
Furthermore, let q⃗ = {qk}∞k=1 be such that, for all k we have 0 ≤ qk ≤ pk.
Assume that p2 ̸= 0, q2 ̸= 0, and that n is large enough such that nρ(1, 1) is sufficiently large. Denote the difference
in Colour B and Colour C half-edges by ∆, and denote by Â, D̂ the amount of Colour A and Colour D half-edges,
respectively. For a labelling of the graph which does not satisfy conditions (3.16)-(3.18), we consider the following cases;

I Suppose ∆ > 0.

i Suppose Â, D̂ are both even.
Randomly choose ∆ many mn(1, 1) nodes, and relabel them to mn(0, 1).

ii Suppose Â is even, D̂ is odd.
We know that Â + D̂ is odd, so ∆ is odd too. Thus we can write ∆ = 2ℓ + 1 for some ℓ ∈ Z. Randomly choose
2ℓ+2 many mn(1, 1) nodes, and change them to mn(0, 1). Then randomly choose one mn(0, 1) node and change
it to mn(1, 0).

iii Suppose Â is odd, D̂ is even.
We know that Â + D̂ is odd, so ∆ is odd too. Thus we can write ∆ = 2ℓ + 1 for some ℓ ∈ Z. Randomly choose
one mn(1, j) node, where j ≥ 2, and relabel it to mn(0, j + 1). Then choose 2ℓ many mn(1, 1) nodes and relabel
them to mn(0, 1).

II Suppose ∆ < 0.

i Suppose Â, D̂ are both even.
Randomly choose ∆ many mn(0, 1) nodes, and relabel them to mn(1, 1).

ii Suppose Â is even, D̂ is odd.
We know that Â + D̂ is odd, so ∆ is odd too. Thus we can write ∆ = 2ℓ + 1 for some ℓ ∈ Z. Randomly choose
2ℓ many mn(0, 1) nodes, and change them to mn(1, 1). Then randomly choose one additional mn(0, 1) node and
change it to mn(1, 0).

iii Suppose Â is odd, D̂ is even.
We know that Â + D̂ is odd, so ∆ is odd too. Thus we can write ∆ = 2ℓ + 1 for some ℓ ∈ Z. Randomly choose
one mn(0, j) label with j ≥ 3 and change it to mn(1, j−1). Then randomly choose 2ℓ many mn(0, 1) and relabel
them to mn(1, 1).

In this way any way of not satisfying conditions (3.16)-(3.18) is covered. Thus we are able to tweak any labelling such
that the new labelling does satisfy (3.16)-(3.18).

Getting back to Example 3.1 for the last time, we see that Figure 3.4 (originally Fig. 3.1) is a variant of case (I:i), thus
we use the tweaking algorithm to change two m12(1, 1) labels to m12(0, 1). If we then rematch we obtain Figure 3.5.

3.5 CHEM graph algorithms
Let us summarize the key aspects of this chapter, and give a formal way of creating a CHEM-random graph.

Definition 3.3 (CHEM labelling algorithm). Let n ∈ N and consider a known degree distribution p⃗(n) = {pk(n)}∞k=0.
Create a labelling LCHEM (n) by;

I Find z that solves:

z = GZDG
(z).
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Figure 3.5: Matched and tweaked CHEM-random graph of 12 vertices.

II Calculate qTk for every k:
qTk = pk(n)(1 − zk).

III Select qk such that 0 ≤ qk ≤ pk(n).

IV Find x that solves:
n∑

k=1

qk = (1 − x2)

n∑
k=1

qk
1 − xk

.

V Compute γk(x):

γk(x) =
pk(1 − xk)

qk
.

VI Calculate the fraction of label:

ρ(k − j, j) =
pk
(
k
j

)
xk−j(1 − x)j

γk(x)
.

VII Make mn(k − j, j) labels by:
mn(k − j, j) = ⌊nρ(k − j, j)⌋ ∀k, j.

VIII Use the tweaking algorithm to make sure this labelling satisfies conditions (3.16)-(3.18).

Definition 3.4 (CHEM colouring algorithm). Let LCHEM (n) be a tweaked labelling. For each mn(i, j) ∈ LCHEM (n)
group it according to

I) j ≥ 1.

• j ≥ 2
The labelled node gets i Colour B half-edges and j Colour A half-edges.

• j = 1
The labelled node gets j Colour C half-edges and i Colour B half-edges.

II) j = 0.
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• i > 0.
The labelled node gets i Colour D half-edges.

Applying these steps yields a coloured CHEM foundation-graph1 according to the labelling LCHEM (n).

Definition 3.5 (CHEM matching algorithm). Let G̃n be a CHEM foundation-graph. Match half-edges in G̃n by the
following steps.

I For every Colour A half-edges, match it with another Colour A half-edge.

II For every Colour B half-edge, match it with a Colour C half-edge and vice-versa.

III For every Colour D half-edge, match it with another Colour D half-edge.

When the CHEM matching algorithm is applied to a CHEM foundation-graph, a CHEM random graph is obtained. As
discussed in Section 3.3 one can freely make this a simple CHEM graph by removing the self-loops and multi-edges, since
it will not affect the properties of the graph (for large n).

Definition 3.6 (CHEM random graph). For some n ∈ N let p⃗ be a degree distribution, and let q⃗ be a vector of
proportions satisfying condition (3.3). A CHEMn(p⃗, q⃗) random graph, is a graph created by using the three CHEM
algorithms: Def. 3.3, Def. 3.4, and Def. 3.5.
We often drop the (p⃗, q⃗) part, since in the general cases we do not give an explicit p⃗ or q⃗ anyway.

1Since the graph consists only of coloured half-edges it is not a true graph yet.



Chapter 4

Explicit CHEM graphs

This chapter will explore the CHEM graphs that we created. We want to know if CHEM graphs indeed reach the
Bhamidi lower-bound entropy (Thm. 2.8) for example. Furthermore, we will simulate making CHEM graphs to test
convergence of the degree proportions and giant density.

4.1 Entropy

Definition 4.1 (Remainder term). Consider a labelling LCHEM (n). We define the remainder term rk(x) by:

rk(x) = γk(x) − (1 − xk). (4.1)

Definition 4.2 (Half edges count). Let Gn be an CHEMn random graph. We denote by HA, HB , HC , HD the amount
of half-edges For each type of half-edge: Colour A, Colour B, Colour C, and Colour D respectively in Gn.

Before we express these half-edge counts, we introduce some short hand notation.

Definition 4.3 (Sum shorthand). Let p⃗ = {pk}k≥0 be a proportion vector, and let {zk}k≥0 be a sequence larger than
0. We introduce the following notation:

Hx =

∞∑
k=1

kpk
zk

xk−2. (4.2)

Nx =

∞∑
k=1

kpk
zk

. (4.3)

Now, let us derive expressions for these HA,B,C,D parameters. The idea for each is the same, for each k, j we take the
proportion of half-edges and count the permutations.

29
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HA =

∞∑
k=1

pk
γk(x)

k∑
j=2

(
k

j

)
(1 − x)jxk−j · j︸ ︷︷ ︸

=E[Bin(k,1−x)]−(k
1)x

k−1(1−x)

=

∞∑
k=1

kpk
γk(x)

(1 − x)(1 − xk−1)

= (1 − x)

∞∑
k=1

kpk
γk(x)

(1 − xk−1) = (1 − x)

[ ∞∑
k=1

kpk
γk(x)

−
∞∑
k=1

kpk
γk(x)

xk−1

]
= (1 − x) [Nx − xHx] . (4.4a)

HB =

∞∑
k=1

pk
γk(x)

k∑
j=1

(
k

j

)
(1 − x)jxk−j · (k − j)︸ ︷︷ ︸

=E[Bin(k,x)]−(k
0)x

kk

=

∞∑
k=1

kpk
γk(x)

(x− xk).

= x

∞∑
k=1

kpk
γk(x)

(1 − xk−1) = x

[ ∞∑
k=1

kpk
γk(x)

−
∞∑
k=1

kpk
γk(x)

xk−1

]
= x [Nx − xHx] . (4.4b)

HC =

∞∑
k=1

pk
γk(x)

k∑
j=1

(
k

1

)
(1 − x)xk−1 =

∞∑
k=1

kpk
γk(x)

(xk−1 − xk).

= x

∞∑
k=1

kpk
γk(x)

(xk−2 − xk−1) = x

[ ∞∑
k=1

kpk
γk(x)

xk−2 −
∞∑
k=1

kpk
γk(x)

xk−1

]
= x[Hx − xHx]. (4.4c)

Finally, since we defined the remainder term (Def. 4.1) exactly for this, we give the following simple expression for HD.

HD =

∞∑
k=1

pkrk(x)

γk(x)
. (4.5)

Now we look at the following lemma which introduces the consistency equation, which will help simplify the expressions
of the half-edge counts.

Lemma 4.1 (Consistency equation). For CHEM graphs it is essential to have equally many Colour B half-edges as
Colour C half-edges as aforementioned. This means that HB = Hc which is equivalent to Hx = Nx.

Proof. This is immediately obvious from the expression HB and HC themselves. See (4.4b) and (4.4c).

Definition 4.4 (Co-incision event). Let E({p(k − j, j}k≥1,j≤k) be the event that a configuration model random graph
coincides with an equally large CHEM random graph.

Theorem 4.1 (CHEM entropy). Let Gn be a CHEMn(p⃗, q⃗) random graph. The rate function/entropy of Gn is given by:

1

2
(1 − x2)Hx ln(Hx) +

1

2
HD ln(HD) − 1

2
E[D] ln(E[D]) +

∞∑
k=1

pk ln(γk(x)) −
∞∑
k=1

pkrk(x)

γk(x)
ln(rk(x)). (4.6)

Proof. The rate function is calculated by 1
nP(E({p(k− j, j}k≥1,j≤k). This probability consists of the following two parts.

P1 =

∞∏
k=1

 (npk)!∏k
j=0(nρ(k − j, j))!

k∏
j=0

(
k

j

)nρ(k−j,j)
 . (4.7)

P2 =
HA!! ·HB ! ·HD!!

(nE[D])!!
. (4.8)

Let us first focus on 1
n ln(P1). Using the product property of logarithms, we immediately start with:
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1

n
ln(P1) =

1

n

∞∑
k=1

ln(npk!) −
k∑

j=0

ln([nρ(k − j, j)]!) +

k∑
j=0

nρ(k − j, j) ln

(
k

j

) .

Here we use the Sterling approximation for the log of a factorial.

=
1

n

∞∑
k=1

npk ln(npk) − npk −
k∑

j=0

[nρ(k − j, j) ln(nρ(k − j, j)) − nρ(k − j, j)] +

k∑
j=0

nρ(k − j, j) ln

(
k

j

) .

We note that

k∑
j=0

nρ(k − j, j) = npk.

=

∞∑
k=1

pk ln(pk) −
k∑

j=0

ρ(k − j, j) ln(ρ(k − j, j)) + ρ(k − j, j) ln

(
k

j

) .

=

∞∑
k=1

pk ln(pk) −
k∑

j=0

ρ(k − j, j) ln(
ρ(k − j, j)(

k
j

) )

 .

Rewriting ρ(k − j, j) yields the following:

=

∞∑
k=1

pk ln(pk) −
∑
k,j

pk
γk(x)

(
k

j

)
xk−j(1 − x)j ln

(
pk

γk(x)
xk−j(1 − x)j

)
.

=

∞∑
k=1

pk ln(pk) −
∞∑
k=1

k∑
j=1

pk
γk(x)

(
k

j

)
xk−j(1 − x)j ln

(
pk

γk(x)
xk−j(1 − x)j

)
−

∞∑
k=1

pkrk(x)

γk(x)
ln

(
pkrk(x)

γk(x)

)
.

(4.9)

We collect terms for each logarithm, to see what the final expression will be. Denote by C{ln(· · · )} the coefficient of
ln(· · · ).

C{ln(pk)} =

pk −
k∑

j=1

(
pk

γk(x)

(
k

j

)
xk−j(1 − x)j

)
− pkrk(x)

γk(x)

 =

pk − pk
γk(x)

 k∑
j=1

(
k

j

)
xk−j(1 − x)j − rk(x)

 .

Note that the definition of rk(x) allows us to rewrite γk(x) to γk(x) = rk(x) + (1 − xk).

Furthermore,

k∑
j=1

(
k

j

)
xk−j(1 − x)j = 1 − xk.

=

[
pk − pk

γk(x)
((1 − xk) + rk(x))

]
=

[
pk − pk

γk(x)
γk(x)

]
= 0. (4.10)

C{ln(γk(x)} =

 k∑
j=1

(
pk

γk(x)

(
k

j

)
xk−j(1 − x)j

)
+

pkrk(x)

γk(x)


=

 pk
γk(x)

 k∑
j=1

(
k

j

)
xk−j(1 − x)j + rk(x)

 =
pk

γk(x)
γk(x) = pk (4.11)

C{ln(1 − x)} =

− ∞∑
k=1

k∑
j=1

pk
γk(x)

(
k

j

)
xk−j(1 − x)j · j


We recognize here the expectation of Bin(k, (1 − x))

=

∞∑
k=1

pk
γk(x)

k(1 − x) = −(1 − x)Hx. (4.12)
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C{ln(x)} =

− ∞∑
k=1

k∑
j=1

pk
γk(x)

(
k

j

)
xk−j(1 − x)j · (k − j)


We recognize here the expectation of Bin(k, x) where the first term is missing (j = 0).

=

∞∑
k=1

pk
γk(x)

kx(1 − x) = −x(1 − x)Hx. (4.13)

Let us now do the same thing for 1
n ln(P2). We will use the simpler forms for the HA,B,C,D parameters shown in (4.4a) -

(4.5). Moreover, we have Nx = Hx from Lemma 4.1. We use this fact to simplify the HA,B,C,D parameters even further.

HA = (1 − x)[Nx − xHx] = (1 − x)Hx(1 − x) = (1 − x)2Hx. (4.14)

HB = xHx(1 − x) = (x− x2)Hx. (4.15)

With these simplified forms, we start expanding 1
n ln(P2), using the product property again to start with the following:

1

n
ln(P2) =

1

n

∞∑
k=1

(
n

2
HA ln(HA) − n

2
HA + nHB ln(HB) +

n

2
HD ln(HD) − 1

2
nE[D] ln(E[D]) +

1

2
E[D]

)
.

=

∞∑
k=1

(
1

2
(1 − x)2Hx ln

(
(1 − x)2Hx

)
+ (x− x2)Hx ln (x(1 − x)Hx) +

1

2
HD ln(HD)

)
.

+

∞∑
k=1

1

2
E[D] − 1

2
E[D] ln(E[D]) − 1

2
(HA + 2HB + HD) .

We use the fact that E[D] = HA + HB + HC + HD to obtain E[D] = HA + 2HB + HD.

=

∞∑
k=1

(
1

2
(1 − x)2Hx ln

(
(1 − x)2Hx

)
+ (x− x2)Hx ln (x(1 − x)Hx) +

1

2
HD ln(HD) − 1

2
E[D] ln(E[D])

)
.

(4.16)

Now we again start collecting terms for each logarithm.

C{ln(Hx)} =

[
1

2
(1 − x)2Hx + (x− x2)Hx

]
=

1

2
(1 − x2)Hx. (4.17)

C{ln(x)} = x(1 − x)Hx. (4.18)

C{ln(1 − x)} =
[
(1 − x2)Hx + (x− x2)Hx

]
= (1 − x)Hx. (4.19)

Note that, (4.12) cancels with (4.18) and the same goes for (4.13) cancelling (4.19). Thus, the remaining terms are:

pk ln(γk(x)),−pkrk(x)

γk(x)
ln(rk(x)),

1

2
(1 − x2)Hx ln(Hx),

1

2
HD ln(HD),−1

2
E[D] ln(E[D]). (4.20)

Which finished the proof.

CHEM graphs should realise an entropy which exactly recovers the entropy lower-bound given as the Bhamidi lower-
bound, to be a true importance sampling of this rare event.

Theorem 4.2. Let Gn be a CHEMn(p⃗, q⃗) random graph. Then the entropy of Gn exactly recovers the lower bound given
by Bhamidi et al. in Theorem 2.8.
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Proof. From Theorem 4.1 we have the entropy of a CHEM graph. Let us now show that this entropy is exactly the rate
function I(p⃗, q⃗) by rewriting the rate function.

Before we start we remark some identities, which will make it much easier to rewrite certain terms.

qk =
pk(1 − xk)

γk(x)
. (4.21)

pk − qk =
pkrk(x)

γk(x)
. (4.22)

H(q⃗) =

∞∑
k=1

qk ln (qk) − 1

2

( ∞∑
k=1

kqk

)
ln

( ∞∑
k=1

kqk

)
.

=

∞∑
k=1

pk(1 − xk)

γk(x)
ln

(
pk(1 − xk)

γk(x)

)
− 1

2

( ∞∑
k=1

k
pk(1 − xk)

γk(x)

)
ln

( ∞∑
k=1

k
pk(1 − xk)

γk(x)

)
.

Note that

∞∑
k=1

kpk(1 − xk)

γk(x)
= Nx − x2Hx = (1 − x2)Hx.

=

∞∑
k=1

pk(1 − xk)

γk(x)
ln

(
pk(1 − xk)

γk(x)

)
− 1

2
(1 − x2)Hx ln

(
(1 − x2)Hx

)
. (4.23)

−H(p⃗) = −
∞∑
k=1

pk ln(pk) +
1

2

( ∞∑
k=1

kpk

)
ln

( ∞∑
k=1

kpk

)
.

= −
∞∑
k=1

pk ln(pk) +
1

2
(E[D]) ln (E[D]) . (4.24)

H(p⃗− q⃗) =

∞∑
k=1

(pk − qk) ln(pk − qk) − 1

2

( ∞∑
k=1

k((pk − qk)

)
ln

( ∞∑
k=1

k((pk − qk)

)
.

Recall the definition of HD =

∞∑
k=1

kpkrk(x)

γk(x)
.

=

∞∑
k=1

pkrk(x)

γk(x)
ln

(
pkrk(x)

γk(x)

)
− 1

2
HD ln(HD). (4.25)

We see that we have already recovered the terms 1
2E[D] ln(E[D]) and − 1

2HD ln(HD). Let us now collect coefficients of
the logarithms as we did before.

C{ln(Hx)} = −1

2
(1 − x2)Hx. (4.26)

C{ln(γk(x))} =

[
−pk(1 − xk)

γk(x)
− pkrk(x)

γk(x)

]
.

= −

[
pk
(
(1 − xk) + rk(x)

)
γk(x)

]
= −pkγk(x)

γk(x)
= −pk. (4.27)

C{ln(rk(x)} =
pkrk(x)

γk(x)
. (4.28)
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C{ln(pk)} =

[
pk
(
1 − xk

)
γk(x)

− pk +
pkrk(x)

γk(x)

]
=

pk
γk(x)

[
(1 − xk) + rk(x) − γk(x)

]
=

pk
γk(x)

[0] = 0. (4.29)

Finally we look at K(q⃗).

K(q⃗) =

(
1

2

∞∑
k=1

kqk

)
(1 − x2) −

∞∑
k=1

qk ln
(
1 − xk

)
.

=
1

2
(1 − x2)Hx −

∞∑
k=1

pk(1 − xk)

γk(x)
ln
(
1 − xk

)
. (4.30)

We now collect the remaining coefficients.

C{ln
(
1 − xk

)
} =

[
pk
(
1 − xk

)
γk(x)

−
pk
(
1 − xk

)
γk(x)

]
= 0 (4.31)

So the terms that we have left over at the and of rewriting are:

−1

2
(1 − x2)Hx,−pk ln(γk(x)),

pkrk
γk(x)

ln(rk(x)),−1

2
HD ln(HD),

1

2
E[D] ln(E[D]). (4.32)

Which are exactly the negative five terms that make up the CHEM graph entropy. If we look back at Theorem 2.8 we see
that the rate function is given as −I(p⃗, q⃗), thus we where looking for the negative of the CHEM entropy, which finished
the proof.

4.2 Simulation
Testing our CHEM graphs is important. We want to see if it indeed realises the event En,ε(q⃗), and if so around what n
it does. We program the CHEM graph algorithms into Python[27], which is done in three parts.

First, we find x (the solution to (3.4)) and z (the extinction rate of the giant component). Furthermore, we compute the
typical giant density θ and typical giant degree distribution qTk . With those variables and parameters we pre-compute
the proportions ρ(i, j) needed for the CHEM graph, based on an initial degree proportion p⃗. Readers are referred to
Appendix A.1 for details.

A CHEM random graph can then be generated for a starting degree proportion p⃗, a size n and a goal giant degree
proportion q⃗T . Since this is a proof of concept, we limit the code and set a maximum degree of k = 3. The full encoded
CHEM can be found in Appendix A.2.

To test the code, we rely on the Monte Carlo method: We choose a p⃗ and a q⃗T . Then, for a range of n values, we make
R CHEM-graphs and track the empirical giant density and degree distribution. The code for this program is located at
Appendix A.3.

4.2.1 Validation
To validate the encoded CHEM model, we want to test two things in particular. If we pick q⃗T = q⃗T we would expect a
CMn(d⃗) graph to be outputted, where d⃗ is such that the degree proportions p⃗ match that of the CHEM model.

So, if we input a degree proportion vector p⃗ = {0.5, 0.2, 0.5} for example, we can calculate the typical giant density and
degree proportion via (3.1) and (3.2) respectively. In this instance, we have θ = 0.697 and qT1 = {0.222, 0.138, 0.249}.
Let us validate this by setting q⃗T = q⃗T .
We run simulations from n = 1.000 to n = 100.000 in 100 steps, and for each n value we take the average of 10 simulations.
Figure 4.1 shows the giant density graph (Fig. 4.1b) and the giant degree proportions (Fig. 4.1a).
Figure 4.1 shows that the encoded CHEMn graph converges in empirical properties to the theoretical properties of a
CMn graph. Furthermore, we need to verify that the theoretical values of the encoded CHEM match a configuration
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(a) Mean empirical giant degree proportions in a CHEMn graph of ten simulations at different n values.

(b) Mean empirical giant density in a CHEMn graph of ten simulations at different n values.

Figure 4.1: Validation of the encoded CHEM by comparing empirical to theoretical values.

model. To this end the Networkx package[28] us utilized to generate a CM graph, from which we check the giant density
and degree proportions. The code of this module is located at Appendix A.4. Figure 4.2 shows the mean empirical giant
density and degree proportion of a CM graph for different n values, where for each n the average over ten simulations
is taken. The weighted averages (Appendix A.5.1 for details) are extremely comparable to the theoretical values of the
CHEM graph.
To qualify the validation of the encoded CHEM we present some test statistics.

Definition 4.5 (Root mean square deviation / RMSD [29][30]). Let X1, · · · , Xn be a sample with true mean xt, then
the RMSD of the sample is given by √√√√ 1

n

n∑
i=1

(xi − xt)2. (4.33)

Low RMSD scores signify a small deviation between the sample and the true mean.

Definition 4.6 (Pearson’s Chi-squared [31]). Let {pemp
k }k≥1 be the empirical degree distributions and {pthk }k≥1 the

theoretical degree distribution. Define the test statistic χ2 as

χ2 :=
∑
k≥1

(pemp
k − pthk )2

pthk
. (4.34)

Statistic RMSE p−value
Giant 0.006 0.057
q1 0.002 0.035
q2 0.002 0.029
q3 0.002 0.035

Table 4.1: Validation statistics for gi-
ant density and degree proportions for
CHEM graphs seen in Fig. 4.1.

The Pearson’s Chi-squared test are on the null-hypothesis: the empirical results
are i.i.d. drawn from the theoretical distribution. We then test our statistic on
the lower-tail i.e. P(χ2

theory ≤ χ2
emp). Thus low p-value correspond to a good fit

of the empirical values.
To ensure the encoded CHEM works as intended, let us set the statistical signif-
icance at α = 0.05. In Table 4.1 we present the RMSD score, and p-value of the
Pearson’s Chi-squared test for the CHEM graphs shown in Figure 4.1.
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(a) Mean empirical giant degree proportions in a CMn graph of ten simulations at different n values. Dashed line
represents the weighted average over mean degree proportions.

(b) Mean empirical giant density in a CMn graph of ten simulations at different n values. Coloured dots show the
giant density in each of the ten simulations per n value. Dashed line represents the weighted average over mean
giant density.

Figure 4.2: Mean empirical values for a CMn graph of different sizes n.

4.2.2 Results
In the previous section we validated the encoded CHEM graph. Let us now
use this code to (try) simulate a deviant giant. Since we validated the code
for p⃗ = {0.5, 0.2, 0.3} let us keep this degree distribution. The corresponding, typical, giant degree proportions are
q⃗ = {0.22, 0.138, 0.249}, we now select our desired giant degree proportions. When selecting our q⃗ we have to keep in
mind conditions (3.3) and (??).
The target giant degree proportion vector {0.24, 0.18, 0.28} satisfies both aforementioned conditions, thus we move for-
wards with this vector q⃗.

Here we run simulations from n = 1.000 up to n = 10.000.000 in 100 steps, to get clear results. For each n-value we run
10 simulations and take the average, to get rid of any weird fluctuations. Figure 4.3 shows the giant degree proportions,
along with a dashed line representing the target proportions we defined.
Figure 4.4 shows the giant density, also with a dashed line representing the sum of our qk values, as that is the target
density. We can see that for large n-values the CHEM graphs converge nicely to the target values, showing that we have
(numerically) achieved importance sampling for the event En,ε(q⃗).
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Figure 4.3: Mean empirical giant degree proportion in a CHEMn({0.5, 0.2, 0.3}, {0.24, 0.18, 0.28}) graph of ten simulations at
different n-values.

Figure 4.4: Mean empirical giant density in a CHEMn({0.5, 0.2, 0.3}, {0.24, 0.18, 0.28}) graph of ten simulations at different n-
values.
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Chapter 5

Conclusion & Discussion

In this thesis, we developed the Coloured Half-Edges Model (CHEM), a construction designed to perform importance
sampling for the rare event that the size of the giant component in configuration model graphs deviates. Specifically,
we focused on the event En,ε(q⃗), were we force the giant to have atypical degree proportions and thus a deviating giant
distribution.
We began by introducing the CHEM algorithm in detail, explaining how to construct graphs that mimic the degree
distribution of the configuration model while being biased toward a desired (atypical) giant size. This approach offers
a way of increasing the likelihood of observing rare events without fundamentally changing the nature of the graphs
created.
We then showed that the entropy of the resulting graphs matches the rate function for the large deviation principle
(LDP) as derived by Bhamidi et al., confirming that CHEM targets the correct exponential tilt. This is a key result, as
it demonstrates that the model is not just heuristically motivated but is also theoretically significant.
Finally, we conducted simulations of CHEM graphs across varying parameters. These simulations confirmed the model’s
effectiveness: the generated graphs consistently exhibited the prescribed rare component size distributions, validating
both the theoretical and practical viability of the method.

This work provides one of the first constructive methods to simulate rare events in random graphs from the configuration
model using importance sampling. While the LDP describes the asymptotic decay rate of these rare events, standard
Monte Carlo methods are inefficient in capturing them. CHEM bridges this gap by enabling direct simulation of graphs
with atypical giants, which opens the door for empirical studies of rare but critical structural behaviours in networks.

While the results are of importance, several limitations should be acknowledged:

• Graph types: The current formulation is specific to the undirected configuration model. Extending CHEM to
more general models (e.g. directed graphs, models with clustering, or community structure) may require significant
adaptation.

• Focus on the giant: The model targets deviations in the size of the giant component. While this is a central
quantity in random graph theory, other types of rare events (e.g., large diameters, multiple giants, spectral outliers)
remain outside CHEM’s current scope.

• Restricted simulations: The simulations of CHEM graphs where limited to a degree distribution where only
degree one, two, and three nodes are considered.

Several future directions for research around this topic naturally emerge from this thesis:

• Alternative rare events: It would be valuable to investigate whether the principles of CHEM can be adapted
to simulate other rare events in the configuration model, like clustering or suppressed giant scenarios.

• Empirical validation: Applying CHEM to real-world networks, or to synthetic networks mimicking empirical
distributions, could provide insight into whether rare graph structures observed in practice correspond to LDP
predictions.

• Information-theoretic bounds: The entropy framework used in CHEM invites connections to information
theory. It would be interesting to explore whether there are tighter bounds or optimality guarantees that can be
derived for such importance sampling schemes.

• Expanding simulations: Extending CHEM simulations to larger degree distributions will be valuable as most
real-life networks/graphs feature a higher maximum degree than three.

39
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This thesis contributes both a theoretical and practical advancement in the study of rare events in random graphs. By
introducing an effective sampling method that aligns with the underlying large deviation structure, we provide researchers
with a new tool for probing the tails of the configuration model. In a world where extreme behaviours often carry the
greatest consequences — from network failures to viral outbreaks — such tools are not just mathematically interesting
but increasingly essential.
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Chapter A

Encoded CHEM

A.1 Precomputation code

#Bhamidi s o l v e r
from math import ∗
import numpy as np
from sc ipy . opt imize import brentq

de f f i n d e x t i n c t i o n r a t e ( q1 , q2 , q3 ) :
D = s q r t (3∗ q3∗∗2 − 2∗q1∗q3 − q1 ∗∗2)∗ s q r t (3 )
a = q1
b = q1 − 3∗q3
x1 = (−b + D)/(2∗ a )
x2 = (−b − D)/(2∗ a )
re turn 1−min ( x1 , x2 )

de f g e t p r o p o r t i o n ( p1 , p2 , p3 , q1 , q2 , q3 ) :
x = f i n d e x t i n c t i o n r a t e ( q1 , q2 , q3 )
beta1 = p1 ∗ (1−x ) / q1
beta2 = p2 ∗ (1−x∗∗2) / q2
beta3 = p3 ∗ (1−x∗∗3) / q3

p01 = p1 ∗ (1−x )/ beta1
p10 = p1 − q1

p02 = p2 ∗ (1−x )∗∗2/ beta2
p11 = p2 ∗ 2 ∗ (1−x )∗x / beta2
p20 = p2 − q2

p03 = p3 ∗ (1−x )∗∗3/ beta3
p12 = p3 ∗ 3 ∗ x ∗ (1−x )∗∗2 / beta3
p21 = p3 ∗ 3 ∗ x∗∗2 ∗ (1−x ) / beta3
p30 = p3 − q3
return p10 , p01 , p02 , p11 , p20 , p03 , p12 , p21 , p30

de f q maker ( p1 , p2 , p3 ) :
z = 1−(6∗p3 − 2∗p1 )/ (6∗p3 )
q1 = p1 ∗ (1−z )
q2 = p2 ∗ (1−z ∗∗2)
q3 = p3 ∗ (1−z ∗∗3)
re turn q1 , q2 , q3

# p1 , p2 , p3 = 0 . 5 , 0 . 2 , 0 . 3
# q1 , q2 , q3 = q maker ( p1 , p2 , p3 )
# pr in t (sum( g e t p r o p o r t i o n ( p1 , p2 , p3 , q1 , q2 , q3 ) ) )

43
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# # 1 . Check average degree
de f f i n d t h e t a ( p1 , p2 , p3 ) :

z = 1− (6∗p3 − 2∗p1 )/ (6∗p3 )
theta = p1∗(1−z ) + p2∗(1−z ∗∗2) + p3∗(1−z ∗∗3)
re turn theta

de f g i a n t f r a c t i o n 3 ( p1 , p2 , p3 , t o l=1e −12):
”””
Compute the giant−component f r a c t i o n f o r a degree law
that puts mass p1 , p2 , p3 on degree s 1 ,2 ,3 ( and p0 =0).
”””
# bu i ld P = [ p0 , p1 , p2 , p3 ]
P = np . array ( [ 0 . 0 , p1 , p2 , p3 ] , dtype=f l o a t )
ks = np . arange ( l en (P) )
mean k = np . dot ( ks , P)
i f mean k <= 1 :

re turn 0 .0

# G( s ) = sum k p k s ˆk
de f G( s ) :

r e turn np . dot (P, s ∗∗ ks )

# G1( s ) = (G’ ( s ) ) / G’ ( 1 ) = sum {k>=1} k p k s ˆ(k−1) / mean k
de f G1( s ) :

r e turn np . dot ( ks [ 1 : ] ∗ P [ 1 : ] , s ∗∗( ks [ 1 : ] − 1) ) / mean k

# f i n d x in ( 0 , 1 ) : G1( x ) = x
lo , h i = to l , 1 . 0 − t o l
x s t a r = brentq ( lambda x : G1( x ) − x , lo , hi , x t o l=to l , r t o l=t o l )

# g iant f r a c t i o n = 1 − G( x s t a r )
re turn 1 .0 − G( x s t a r )

de f l i f t q a b o v e t h e t a ( p1 , p2 , p3 , e p s i l o n=1e −6, t o l=1e −12):
# 1) Compute o ld q and true theta
q o ld = np . array ( q maker ( p1 , p2 , p3 ) , dtype=f l o a t )
theta = g i a n t f r a c t i o n 3 ( p1 , p2 , p3 )
q = q o ld . copy ( )

# 2) Pack p in to an array
p = np . array ( [ p1 , p2 , p3 ] , dtype=f l o a t )

# 3) Set s t r i c t t a r g e t
t a r g e t = theta + e p s i l o n
# but cannot exceed sum(p ) ; cap i t i f nece s sa ry
t a r g e t = min ( target , p . sum ( ) )

# 4) Compute how much to add
d e l t a = t a r g e t − q . sum ( )
i f d e l t a <= t o l :

# a l ready theta + e p s i l o n ( or no room l e f t )
re turn q

# 5) W a t e r filling loop
cap = p − q
a c t i v e = cap > t o l
whi l e d e l t a > t o l and a c t i v e . any ( ) :
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C = cap [ a c t i v e ] . sum ( )
inc = np . z e r o s l i k e ( q )
inc [ a c t i v e ] = cap [ a c t i v e ] ∗ ( d e l t a / C)

# apply and c l i p
q += inc
q = np . minimum(q , p)

# recompute
d e l t a = t a r g e t − q . sum ( )
cap = p − q
a c t i v e = cap > t o l

r e turn q

de f l i f t q a b o v e t h e t a 2 ( p1 , p2 , p3 , eps = 0.000001 , seed= None ) :
q1 , q2 , q3 = q maker ( p1 , p2 , p3 )
q3N = np . random . uniform ( q3 , p3 )
q2N = np . random . uniform ( q2 , p2 )
q1N = np . random . uniform ( q1 , q3−eps )
Q=[q1N , q2N , q3N ]
re turn Q

A.2 Main code for CHEM graphs

import igraph as i g
import numpy as np
from Bhamid i so lver import ge t propor t i on , q maker
from c o l l e c t i o n s import Counter
from sc ipy . opt imize import brentq
import matp lo t l i b . pyplot as p l t

# Helper to p a r t i t i o n i n t e g e r
de f r a n d o m p a r t i t i o n i n t e g e r ( t o ta l , parts , rng ) :

i f pa r t s == 1 :
re turn [ t o t a l ]

i f t o t a l == 0 :
re turn [ 0 ] ∗ par t s

i f t o t a l < par t s :
a r r = [ 1 ] ∗ t o t a l + [ 0 ] ∗ ( par t s − t o t a l )
rng . s h u f f l e ( a r r )
re turn ar r

cuts = sor t ed ( rng . cho i c e (np . arange (1 , t o t a l ) , s i z e=part s − 1 , r e p l a c e=False ) )
re turn [ a − b f o r a , b in z ip ( cuts + [ t o t a l ] , [ 0 ] + cuts ) ]

# Generate i n i t i a l s p l i t p ropor t i on s f o r ( i , j ) node l a b e l s
de f f i x a n d s p l i t p r o p o r t i o n s ( p1 , p2 , p3 , n , q1=None , q2=None , q3=None , seed=None ) :

rng = np . random . d e f a u l t r n g ( seed )
p10 , p01 , p02 , p11 , p20 , p03 , p12 , p21 , p30 = g e t p r o p o r t i o n ( p1 , p2 , p3 , q1 , q2 , q3 )
prop array = np . array ( [ p10 , p01 , p02 , p11 , p20 , p03 , p12 , p21 , p30 ] , dtype=f l o a t )
prop array [ prop array < 0 ] = 0
prop array /= prop array . sum ( )
counts = np . round ( prop array ∗ n ) . astype ( i n t )
s p l i t = {

( 1 , 0 ) : counts [ 0 ] , ( 0 , 1 ) : counts [ 1 ] , ( 0 , 2 ) : counts [ 2 ] ,
( 1 , 1 ) : counts [ 3 ] , ( 2 , 0 ) : counts [ 4 ] , ( 0 , 3 ) : counts [ 5 ] ,
( 1 , 2 ) : counts [ 6 ] , ( 2 , 1 ) : counts [ 7 ] , ( 3 , 0 ) : counts [ 8 ] ,

}



46 APPENDIX A. ENCODED CHEM

re turn s p l i t , [ q1 , q2 , q3 ]

# Map ( i , j ) to stub l a b e l s
de f g e t s t u b s p e r n o d e ( i , j ) :

r e turn {
( 0 , 1 ) : [ ’C’ ] , ( 1 , 0 ) : [ ’D’ ] ,
( 0 , 2 ) : [ ’A’ , ’A’ ] , ( 1 , 1 ) : [ ’B’ , ’C’ ] , ( 2 , 0 ) : [ ’D’ , ’D’ ] ,
( 0 , 3 ) : [ ’A’ , ’A’ , ’A’ ] , ( 1 , 2 ) : [ ’B’ , ’A’ , ’A’ ] ,
( 2 , 1 ) : [ ’B’ , ’B’ , ’C’ ] , ( 3 , 0 ) : [ ’D’ , ’D’ , ’D’ ]

} . get ( ( i , j ) , [ ] )

# Tweaking a lgor i thm implementation
de f t w e a k l a b e l s ( s p l i t , node l abe l s , rng ) :

B = sum( s p l i t [ l b l ] ∗ g e t s t u b s p e r n o d e (∗ l b l ) . count ( ’B’ ) f o r l b l in s p l i t )
C = sum( s p l i t [ l b l ] ∗ g e t s t u b s p e r n o d e (∗ l b l ) . count ( ’C’ ) f o r l b l in s p l i t )

= B − C
A = sum( i ∗ count f o r ( i , j ) , count in s p l i t . i tems ( ) )
D = sum( j ∗ count f o r ( i , j ) , count in s p l i t . i tems ( ) )

de f c h o o s e a n d r e l a b e l ( frm , to , k ) :
i f k <= 0 or s p l i t . get ( frm , 0 ) == 0 :

re turn
cand idate s = [ node f o r node , l b l in n o d e l a b e l s . i tems ( ) i f l b l == frm ]
k2 = min (k , l en ( cand idate s ) )
i f k2 == 0 :

re turn
chosen = rng . cho i c e ( candidates , s i z e=k2 , r e p l a c e=False )
f o r node in chosen :

n o d e l a b e l s [ node ] = to
s p l i t [ frm ] −= k2
s p l i t [ to ] = s p l i t . get ( to , 0 ) + k2

i f > 0 :
i f A%2==0 and D%2==0:

c h o o s e a n d r e l a b e l ( ( 1 , 1 ) , ( 0 , 1 ) , )
e l i f A%2==0 and D%2==1:

=( −1)//2
c h o o s e a n d r e l a b e l ( ( 1 , 1 ) , ( 0 , 1 ) , 2∗ +2)
c h o o s e a n d r e l a b e l ( ( 0 , 1 ) , ( 1 , 0 ) , 1 )

e l s e :
=( −1)//2

f o r ( i , j ) , cnt in s p l i t . i tems ( ) :
i f i==1 and j>=2 and cnt >0:

c h o o s e a n d r e l a b e l ( ( 1 , j ) , ( 0 , j +1) ,1)
break

c h o o s e a n d r e l a b e l ( ( 1 , 1 ) , ( 0 , 1 ) , 2∗ )
e l i f < 0 :

a b s =−
i f A%2==0 and D%2==0:

c h o o s e a n d r e l a b e l ( ( 0 , 1 ) , ( 1 , 1 ) , a b s )
e l i f A%2==0 and D%2==1:

=( a b s −1)//2
c h o o s e a n d r e l a b e l ( ( 0 , 1 ) , ( 1 , 1 ) , 2∗ )
c h o o s e a n d r e l a b e l ( ( 0 , 1 ) , ( 1 , 0 ) , 1 )

e l s e :
=( a b s −1)//2

f o r ( i , j ) , cnt in s p l i t . i tems ( ) :
i f i==0 and j>=3 and cnt >0:
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c h o o s e a n d r e l a b e l ( ( 0 , j ) , ( 1 , j −1) ,1)
break

c h o o s e a n d r e l a b e l ( ( 0 , 1 ) , ( 1 , 1 ) , 2∗ )
re turn s p l i t , n o d e l a b e l s

# Build and analyze graph us ing n o d e l a b e l s
# Now s i g n a t u r e takes n o d e l a b e l s i n s t ead o f s p l i t
de f f a s t l i n e a r r u l e c o n s t r a i n e d c o n f i g m o d e l i g r a p h ( node l abe l s , seed=None ) :

rng = np . random . d e f a u l t r n g ( seed )
n nodes = len ( n o d e l a b e l s )
s t u b d i c t = { ’A’ : [ ] , ’B ’ : [ ] , ’C ’ : [ ] , ’D’ : [ ] }

f o r node , l b l in n o d e l a b e l s . i tems ( ) :
f o r s in g e t s t u b s p e r n o d e (∗ l b l ) :

s t u b d i c t [ s ] . append ( node )
f o r s in s t u b d i c t :

rng . s h u f f l e ( s t u b d i c t [ s ] )

edges = [ ]
# Pair A with A and D with D
f o r l a b e l in [ ’A’ , ’D ’ ] :

s tubs = s t u b d i c t [ l a b e l ]
f o r idx in range (0 , l en ( stubs ) − 1 , 2 ) :

edges . append ( ( stubs [ idx ] , s tubs [ idx +1]))
# Pair B with C
b stubs , c s t ub s = s t u b d i c t [ ’B ’ ] , s t u b d i c t [ ’C ’ ]
rng . s h u f f l e ( b s tubs ) ; rng . s h u f f l e ( c s t ub s )
f o r u , v in z ip ( b stubs , c s t ub s ) :

edges . append ( ( u , v ) )

g = i g . Graph ( n nodes )
g . add edges ( edges )

comps = g . connected components ( )
comp s izes = comps . s i z e s ( )
idx = np . argmax ( comp s izes ) i f comp s izes e l s e −1
g iant = comps . subgraph ( idx ) i f idx >= 0 e l s e None

s t a t s = {
’ nodes ’ : g . vcount ( ) ,
’ edges ’ : g . ecount ( ) ,
’ components ’ : l en ( comp s izes ) ,
’ g i a n t s i z e ’ : g i ant . vcount ( ) i f g i ant e l s e 0 ,
’ degree sequence ’ : g . degree ( )

}
re turn g , s ta t s , g i ant

# Theo r e t i c a l g i ant breakdown ( unchanged )
de f g iant degree breakdown ( p1 , p2 , p3 , t o l=1e −12):

P = np . array ( [ 0 . 0 , p1 , p2 , p3 ] )
ks = np . arange ( l en (P) )
mean k = np . dot ( ks , P)
i f mean k <= 1 :

re turn { ’ theta ’ : 0 , ’ a l l k i n g i a n t ’ : np . z e r o s l i k e (P)}
de f G( s ) : r e turn np . dot (P, s ∗∗ ks )
de f G1( s ) : r e turn np . dot ( ks [ 1 : ] ∗ P [ 1 : ] , s ∗∗( ks [ 1 : ] −1 ) ) / mean k
x = brentq ( lambda x : G1( x ) − x , to l , 1 − t o l )
theta = 1 − G( x )
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a l l k = P ∗ (1 − x∗∗ ks )
re turn { ’ theta ’ : theta , ’ a l l k i n g i a n t ’ : a l l k }

# Main execut ion
i f name == ” main ” :

p1 , p2 , p3 = 0 . 5 , 0 . 2 , 0 . 3
q1 , q2 , q3 = 0 .24 , 0 . 18 , 0 .28
n = 10000
seed = None
rng = np . random . d e f a u l t r n g ( seed )

# 1) i n i t i a l s p l i t & l i f t
s p l i t , Q = f i x a n d s p l i t p r o p o r t i o n s ( p1 , p2 , p3 , n , q1 , q2 , q3 , seed )

# 2) bu i ld n o d e l a b e l s
n o d e l a b e l s = {}
idx = 0
f o r l b l , cnt in s p l i t . i tems ( ) :

f o r in range ( cnt ) :
n o d e l a b e l s [ idx ] = l b l
idx += 1

# 3) tweak n o d e l a b e l s & s p l i t
s p l i t , n o d e l a b e l s = t w e a k l a b e l s ( s p l i t , node l abe l s , rng )

# 4) bu i ld graph from n o d e l a b e l s
g , s t a t s , g i ant = f a s t l i n e a r r u l e c o n s t r a i n e d c o n f i g m o d e l i g r a p h ( node l abe l s , seed )

# remaining a n a l y s i s u n c h a n g e d

# Theo r e t i c a l breakdown ( c l a s s i c a l )
breakdown = giant degree breakdown ( p1 , p2 , p3 )
o r i g i n a l q = np . array ( q maker ( p1 , p2 , p3 ) )
l i f t e d q = np . array (Q)

# Empir ica l breakdown i n s i d e the s imulated g iant
degs gc = g iant . degree ( )
counts = Counter ( degs gc )
t o t a l g c = len ( degs gc )
e m p i r i c a l p r o p s = {k : counts . get (k , 0) / n f o r k in so r t ed ( counts )}

# −−− Nice , s i n g l e −block pr in tout −−−
pr in t (”\n\n=== Conf igurat ion Model Ana lys i s Resu l t s ===”)
pr in t ( f ” Total nodes : { s t a t s [ ’ nodes ’ ] : , } Edges : { s t a t s [ ’ edges ’ ] : , } ” )
p r i n t ( f ”Number o f components : { s t a t s [ ’ components ’ ] } ” )
p r i n t ( f ”Giant component s i z e : { s t a t s [ ’ g i a n t s i z e ’ ] : , } ”

f ”({ s t a t s [ ’ g i a n t s i z e ’ ] / s t a t s [ ’ nodes ’ ] : . 4 % } o f nodes )” )
p r i n t ( f ”\nComputed t h e o r e t i c a l g i ant f r a c t i o n ( ) : {breakdown [ ’ theta ’ ] : . 6 f }”)

p r i n t (”\ nTheore t i ca l degree propor t i on s with in g iant : ” )
f o r k in range (1 , l en ( breakdown [ ’ a l l k i n g i a n t ’ ] ) ) :

prop = ( breakdown [ ’ a l l k i n g i a n t ’ ] [ k ] / 1
i f breakdown [ ’ theta ’ ] > 0 e l s e 0)

p r i n t ( f ” degree {k } : {prop : .4%}”)

p r i n t (”\ nEmpir ical degree propor t i on s with in s imulated g iant : ” )
f o r k , prop in e m p i r i c a l p r o p s . i tems ( ) :
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p r in t ( f ” degree {k } : {prop : .4%}”)

p r i n t (”\ nOr ig ina l q k va lue s : ” , o r i g i n a l q )
p r i n t (” L i f t e d q k va lues : ” , l i f t e d q )
p r i n t ( f ”Sum of l i f t e d q k : { l i f t e d q . sum ( ) : . 6 f }”)

A.3 MonteCarlo code

import numpy as np
import matp lo t l i b . pyplot as p l t
from c o l l e c t i o n s import Counter
from Bhamid i so lver import l i f t q a b o v e t h e t a 2
from CHEM Simulation import f i x a n d s p l i t p r o p o r t i o n s ,

f a s t l i n e a r r u l e c o n s t r a i n e d c o n f i g m o d e l i g r a p h , t w e a k l a b e l s

# Fixed parameters
p1 , p2 , p3 = 0 . 5 , 0 . 2 , 0 . 3
seed = None

# compute the l i f t e d q k once
q1 , q2 , q3 = 0 .24 , 0 . 18 , 0 .28
# l i f t q a b o v e t h e t a 2 ( p1 , p2 , p3 )
theo the ta = q1 + q2 + q3
theo q = {1 : q1 , 2 : q2 , 3 : q3}

# range o f n to t e s t ( l o g space from 1e3 to 1e5 , 50 po in t s )
n va lue s = np . l og space (3 , 5 , 100 , dtype=i n t )

# how many independent s imu la t i on s per n
T = 10

# sto rage f o r e m p i r i c a l averages
emp theta = [ ]
emp qk = {1 : [ ] , 2 : [ ] , 3 : [ ] }

# Simulat ion loop
f o r n in n va lue s :

p r i n t ( f ”Now at n = {n}”)
theta sum = 0.0
q sums = {1 : 0 . 0 , 2 : 0 . 0 , 3 : 0 .0}

f o r in range (1 ,T+1):
p r i n t ( f ”T = { }”)
# bu i ld s p l i t us ing the same l i f t e d q ’ s
s p l i t , = f i x a n d s p l i t p r o p o r t i o n s ( p1 , p2 , p3 , n , q1 , q2 , q3 )
n o d e l a b e l s = {}
idx = 0
f o r l b l , cnt in s p l i t . i tems ( ) :

f o r in range ( cnt ) :
n o d e l a b e l s [ idx ] = l b l
idx += 1

rng = np . random . d e f a u l t r n g ( seed )
s p l i t , n o d e l a b e l s = tw e ak l a b e l s ( s p l i t , node l abe l s , rng )

g , s t a t s , g i ant = f a s t l i n e a r r u l e c o n s t r a i n e d c o n f i g m o d e l i g r a p h ( n o d e l a b e l s )
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# e m p i r i c a l g i ant f r a c t i o n
theta sum += s t a t s [ ’ g i a n t s i z e ’ ] / n

# e m p i r i c a l q k = (# nodes o f degree k in g iant ) / n
degs = g iant . degree ( )
cnt = Counter ( degs )
f o r k in (1 , 2 , 3 ) :

q sums [ k ] += cnt . get (k , 0) / n

# record the averages
emp theta . append ( theta sum / T)
f o r k in emp qk :

emp qk [ k ] . append ( q sums [ k ] / T)

# Plot 1 : Empir ica l vs t h e o r e t i c a l
# p l o t t i n g with y axis s c a l e d 1000 f o r ext ra p r e c i s i o n
s c a l e f a c t o r = 1000

# Plot 1 : Empir ica l vs Theo r e t i c a l
p l t . f i g u r e ( f i g s i z e =(8 ,5))
p l t . p l o t ( n va lues , np . array ( emp theta )∗ s c a l e f a c t o r , ’ o− ’ , l a b e l=f ’ e m p i r i c a l { s c a l e f a c t o r } ’ )
p l t . h l i n e s ( theo the ta ∗ s c a l e f a c t o r ,

xmin=n va lue s [ 0 ] , xmax=n va lue s [ −1] ,
c o l o r s =’r ’ , l i n e s t y l e s =’−−’, l a b e l=f ’ t h e o r e t i c a l { s c a l e f a c t o r } ’ )

p l t . x s c a l e ( ’ log ’ )
p l t . x l a b e l ( ’ n ( l og s c a l e ) ’ )
p l t . y l a b e l ( f ’ Giant f r a c t i o n { s c a l e f a c t o r } ’ )
p l t . t i t l e ( ’ Empir ica l vs Theo r e t i c a l Giant Fract ion ’ )
p l t . l egend ( )
p l t . g r id ( True , which=’both ’ , l s =’−−’)
p l t . t i g h t l a y o u t ( )

# Plot 2 : Empir ica l vs t h e o r e t i c a l q k
p l t . f i g u r e ( f i g s i z e =(8 ,5))
f o r k , c o l o r in z ip ( ( 1 , 2 , 3 ) , ( ’C0 ’ , ’ C1 ’ , ’ C2 ’ ) ) :

p l t . p l o t ( n va lues , np . array ( emp qk [ k ] ) ∗ s c a l e f a c t o r , ’ o− ’ , c o l o r=co lo r ,
l a b e l=f ’ e m p i r i c a l q {k} { s c a l e f a c t o r } ’ )

p l t . h l i n e s ( theo q [ k ]∗ s c a l e f a c t o r ,
xmin=n va lue s [ 0 ] , xmax=n va lue s [ −1] ,
c o l o r s=co lo r , l i n e s t y l e s =’−−’, l a b e l=f ’ t h e o r e t i c a l q {k} { s c a l e f a c t o r } ’ )

p l t . x s c a l e ( ’ log ’ )
p l t . x l a b e l ( ’ n ( l og s c a l e ) ’ )
p l t . y l a b e l ( f ’ Fract ion o f a l l nodes in g iant with degree k { s c a l e f a c t o r } ’ )
p l t . t i t l e ( ’ Empir ica l vs Theo r e t i c a l q k ’ )
p l t . l egend ( )
p l t . g r id ( True , which=’both ’ , l s =’−−’)
p l t . t i g h t l a y o u t ( )

p l t . show ( )

A.4 Configuration model code

import networkx as nx
import numpy as np
import matp lo t l i b . pyplot as p l t

def gene ra t e con f i g mode l (n , p l i s t , d e g r e e v a l u e s = [1 , 2 , 3 ] , seed=None ) :
”””
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Generate a s imple con f i gura t i on−model graph wi th a g iven degree d i s t r i b u t i o n .
”””
i f seed i s not None :

np . random . seed ( seed )
p = np . array ( p l i s t )
i f not np . i s c l o s e (p .sum( ) , 1 ) :

raise ValueError ( ” P r o b a b i l i t i e s  must  sum  to  1 . ” )
degree s = np . random . cho i c e ( degree va lue s , s i z e=n , p=p)
while degree s .sum( ) % 2 != 0 :

idx = np . random . rand int (n)
degree s [ idx ] = np . random . cho i c e ( degree va lue s , p=p)

Gm = nx . con f i gu ra t i on mode l ( degrees , seed=seed )
G = nx . Graph ( )
G. add nodes from (Gm. nodes ( ) )
for u , v in Gm. edges ( ) :

i f u != v :
G. add edge (u , v )

return G

def analyze g iant component (G, n ) :
”””
Return ( p rop in g i an t , d e g r e e d i s t w i t h i n g i a n t ) .
”””
comps = l i s t ( nx . connected components (G) )
i f not comps :

return 0 . 0 , {}
g iant = max( comps , key=len )
s i z e g c = len ( g iant )
prop gc = s i z e g c / n
degs = [ d for , d in G. subgraph ( g iant ) . degree ( ) ]
uniq , cnt = np . unique ( degs , r e tu rn count s=True )
d i s t = {k : v/n for k , v in zip ( uniq , cnt )}
return prop gc , d i s t

i f name == ” main ” :
# parameters
p l i s t = [ 0 . 5 , 0 . 2 , 0 . 3 ]
d e g r e e v a l u e s = [ 1 , 2 , 3 ]
n l i s t = np . unique (np . l og space (3 , 6 , 12 , dtype=int ) )
T = 10
seed = None

# c o l l e c t r e s u l t s
a l l g c p r o p s = [ ]
a l l d e g p r o p s = {k : [ ] for k in d e g r e e v a l u e s }

for n in n l i s t :
gc runs = [ ]
deg runs = {k : [ ] for k in d e g r e e v a l u e s }
for in range (T) :

G = gene ra t e con f i g mode l (n , p l i s t , deg ree va lue s , seed )
pgc , dd = analyze g iant component (G, n)
gc runs . append ( pgc )
for k in d e g r e e v a l u e s :

deg runs [ k ] . append (dd . get (k , 0 . 0 ) )
a l l g c p r o p s . append ( gc runs )
for k in d e g r e e v a l u e s :

a l l d e g p r o p s [ k ] . append ( deg runs [ k ] )



52 APPENDIX A. ENCODED CHEM

# compute w e i g h t e d average we i gh t s
weights = n l i s t / n l i s t .sum( )

# Plot 1 : g i an t propor t ion vs n
p l t . f i g u r e ( )
for i , n in enumerate( n l i s t ) :

p l t . s c a t t e r ( [ n ]∗ len ( a l l g c p r o p s [ i ] ) , a l l g c p r o p s [ i ] , a lpha =0.6)
mean gc = [ np . mean( x ) for x in a l l g c p r o p s ]
l i n e g c , = p l t . p l o t ( n l i s t , mean gc , ’ o− ’ , l a b e l=”Mean  prop  in  g i ant ” )
wavg gc = np . dot ( mean gc , weights )
p l t . h l i n e s ( wavg gc , n l i s t [ 0 ] , n l i s t [ −1] ,

c o l o r s=l i n e g c . g e t c o l o r ( ) , l i n e s t y l e s=’−− ’ ,
l a b e l=f ”Weighted  avg  = {wavg gc : . 3 f }” )

p l t . x s c a l e ( ’ l og ’ )
p l t . x l a b e l ( ’n ’ )
p l t . y l a b e l ( ’ Proport ion  in  Giant ’ )
p l t . t i t l e ( ’ Giant  Component  Proport ion  vs  n ’ )
p l t . g r i d ( True , which=’ both ’ , l i n e s t y l e=’−− ’ , l i n ew id th =0.5)
p l t . l egend ( )
p l t . t i g h t l a y o u t ( )

# Plot 2 : degree d i s t r i b u t i o n vs n wi th weigh ted averages
p l t . f i g u r e ( )
for k in d e g r e e v a l u e s :

means k = [ np . mean( r ) for r in a l l d e g p r o p s [ k ] ]
l i n e k , = p l t . p l o t ( n l i s t , means k , ’ o− ’ , l a b e l=f ”Degree  {k}” )
wavg k = np . dot ( means k , weights )
p l t . h l i n e s ( wavg k , n l i s t [ 0 ] , n l i s t [ −1] ,

c o l o r s=l i n e k . g e t c o l o r ( ) , l i n e s t y l e s=’−− ’ ,
l i n ew id th =1, l a b e l=f ”Weighted  avg  deg  {k}  = {wavg k : . 3 f }” )

p l t . x s c a l e ( ’ l og ’ )
p l t . x l a b e l ( ’n ’ )
p l t . y l a b e l ( ’ Degree  Proport ion  in  Giant ’ )
p l t . t i t l e ( ’ Degree  D i s t r i b u t i o n  in  Giant  vs  n ’ )
p l t . g r i d ( True , which=’ both ’ , l i n e s t y l e=’−− ’ , l i n ew id th =0.5)
p l t . l egend ( )
p l t . t i g h t l a y o u t ( )

p l t . show ( )

A.5 Validation
A.5.1 Weighted averages
Figure 4.2 featured weighted averages for the empirical proportions; these were calculated in the following manner:

For each graph size n that was simulated, the average over ten simulations was calculated and weighted by a factor wi

wi =
nj∑
i≥1 nj

. (A.1)

A.5.2 Validation code

# Va l i d i t y t e s t s
emp theta = np . array ( emp theta )

# 1) RMSE fo r g i an t propor t ion
g iant rmse = np . s q r t (np . mean ( ( emp theta − theo the ta )∗∗2) )
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# 2) Pearson and goodnessp f o r g i an t propor t ion ( d f=1)
g i a n t c h i 2 = np .sum( ( emp theta − theo the ta )∗∗2 / ( theo the ta + 1e −12))
g i an t p = ch i2 . cd f ( g i an t ch i 2 , df =1) # low = b e t t e r f i t

# 3) RMSE fo r q k va l u e s
q rmse = {}
# 4) Pearson and goodnessp f o r each q k ( d f=1 each )
q p = {}
for k in ( 1 , 2 , 3 ) :

a r r = np . array ( emp qk [ k ] )
q rmse [ k ] = np . s q r t (np . mean ( ( a r r − theo q [ k ] ) ∗ ∗ 2 ) )
ch i 2 k = np .sum( ( a r r − theo q [ k ] )∗∗2 / ( theo q [ k ] + 1e −12))
q p [ k ] = ch i2 . cd f ( ch i2 k , df =1)

# 5) Composite GOF s t ay s as b e f o r e
avg q rmse = np . mean( l i s t ( q rmse . va lue s ( ) ) )
compos i t e go f = 0 .5 ∗ g iant rmse + 0 .5 ∗ avg q rmse

print ( ”\ nVal idat ion  S t a t i s t i c s  ( low  p  = good ) : ” )
print ( f ”   Giant  RMSE:          { g iant rmse : . 6 f }” )
print ( f ”   Giant  g o o d n e s s p :    { g iant p : . 6 f }” )
for k in ( 1 , 2 , 3 ) :

print ( f ”   q {k}  RMSE:          {q rmse [ k ] : . 6 f }” )
print ( f ”   q {k}  g o o d n e s s p :    {q p [ k ] : . 6 f }” )

print ( f ”   Composite  GOF:       { compos i t e go f : . 6 f }” )
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