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Abstract

Voluntary carbon markets are at an early stage of development, characterized by low and irregular
trading frequency. Such limited activity results in extended periods of unchanged prices and a high
incidence of zero returns, making voluntary carbon markets a typical example of illiquid financial
markets. To model dependence in such settings, we propose a multivariate zero-inflated GARCH-X
model. The model extends the existing zero-inflated GARCH model to a multivariate setup, incor-
porating both a GARCH-X component with binary trading indicators as exogenous covariates and a
time-step specification that updates only when trades occur.

The multivariate extension incorporates two different types of dependence. First, cross-dependence
in trading activity is modeled using Markov networks applied to binary trading indicators. Second,
cross-dependence in returns is analyzed using a copula-GARCH framework applied to residuals,
with residuals corresponding to zero returns treated as undefined values. To make copula meth-
ods applicable to zero-inflated data, we introduce a joint probability integral transform approach.
In this construction, the univariate marginals are defined conditional on the simultaneous trading
activity of each asset, rather than conditioning only on each asset’s own trading activity. We prove
that this method yields a consistent copula estimator when applied to the subset of observations
where all assets have simultaneous non-zero trading activity. Dependence is quantified using both
unconditional and conditional Kendall’s tau, estimated via kernel-based methods.

Theoretical results include consistency and asymptotic normality of the quasi-maximum likelihood
estimator for the multivariate model under stationary covariates. The empirical study covers seven
voluntary carbon credits and six conventional financial assets. We find no significant dependence
between carbon credits and conventional assets, but observe strong correlation within the carbon
market, especially among nature-based credits. Results suggest that voluntary carbon markets may
operate independently of more liquid assets and are influenced by peer pricing due to a lack of
standardization.

Keywords: Zero-inflated GARCH, Copula-GARCH, Illiquid markets, Voluntary Carbon Credits,
Dependence modeling
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1
Introduction

The global climate crisis has created an urgent need for decarbonization across all industries. Under
the Paris Agreement, limiting global warming to 1.5°C requires a 50% reduction in emissions by 2030
and net-zero emissions by 2050 [5, 9]. Achieving these targets demands not only direct emission
reductions but also innovative financial mechanisms that drive climate progress.

Carbon markets have emerged as a promising tool in the fight against climate change by assigning a
price to carbon emissions and incentivizing projects that reduce or remove greenhouse gases. These
markets facilitate the trading of carbon credits, each representing the reduction or removal of one
metric ton of CO2 equivalent elsewhere. In this way, participants can meet climate targets more
cost-effectively [30].

In this context, financial institutions are becoming key players in scaling carbon markets. Rabobank,
one of the largest Dutch banks, has taken a leading rolewith the launch of Rabo Carbon Bank in 2021.
The bank engages in both the development and brokerage of voluntary carbon credits. It generates
nature-based removal credits via programs like Acorn, which focus on smallholder agroforestry. At
the same time, it facilitates transactions by connecting credit suppliers to corporate buyers. This
research is carried out in collaboration with Rabobank. The bank provides access to proprietary
trading platforms and historical transaction data, which are used in the empirical part of this study.
Additionally, it offers domain expertise to support the interpretation of results, particularly in rela-
tion to market trends, regulation, and liquidity constraints.

There are two principal types of carbon markets: compliance markets and voluntary carbon mar-
kets (VCMs). Compliance markets, such as the EU Emissions Trading System, operate under legal
mandates requiring emitters to hold allowances, official permits to emit one ton of CO2, that match
their verified emissions. In contrast, VCMs are not legally binding; they facilitate the trade of carbon
offsets among firms and individuals pursuing voluntary climate commitments [3, 30]. Voluntary
carbon credits are offsets rather than allowances, meaning they compensate for emissions elsewhere
and do not grant the right to emit. Despite being smaller in scale, VCMs are rapidly growing. De-
mand for voluntary carbon credits is projected to reach 1.5–2 GtCO2 annually by 2030, a big increase
from under 0.1 Gt in 2020 [9]. Moreover, policy developments underscore the rising relevance of
VCMs. For instance, the EU has announced its intention to allow up to 3% of its 2040 emissions
reduction target to be met through international carbon credits, potentially amounting to 300–400
million credits [53].

1
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Despite the growing interest, VCMs face several structural challenges that complicate financial mod-
eling. A primary challenge is market illiquidity. Trading in carbon credits is largely conducted over-
the-counter, with infrequent transactions, limited price transparency, and heterogeneous projects
that vary across methodologies, locations, and certification standards. Consequently, many carbon
credit types exhibit days without trading, leading to constant prices and zero returns, resulting in
semi-continuous time series [9, 14]. A second issue is the limited availability and the low quality of
historical data. This limitation is illustrated by the fact that the voluntary carbonmarket only reached
an annual transaction volume of approximately $2 billion in 2021 [3], a relativelymodest figure com-
pared to other financial markets, and has since experienced a decline through 2024. Historical price
data are often sparse or inconsistent, driven by fluctuations in trading volumes, evolving certification
standards, and vintage-related differences. Although the average voluntary carbon credit price rose
to $6.37 in 2024 - more than twice the 2020 average - overall illiquidity in the market remains [3].
While these conditions present challenges for financial modeling, they also show the need for new
methods tailored to the unique characteristics of the carbon market. This represents a promising
area for research.

Illiquidity in financial time series appears as zero-inflated data: a high proportion of time points
where returns are exactly zero. The frequency of zero returns is often used as a proxy for asset illiq-
uidity, with a larger fraction indicating lower market activity [44]. Let 𝑟 𝑗,𝑡 denote the return of asset
𝑗 at time 𝑡. Then, for illiquid assets, it holds that P(𝑟 𝑗,𝑡 = 0) > 0 for some 𝑡. Essentially, zero-inflated
data have a mixed distribution: a positive probability mass at zero and a continuous distribution for
non-zero values. Standard time series models such as GARCH models, which assume continuous-
valued returnswith no pointmass at zero, are thusmisspecified in this context. Thismisspecification
can bias volatility estimation, particularly by overstating persistence or understating variance during
inactive periods [25, 60].

Despite this, it has been shown that GARCH parameters can still be consistently estimated by quasi-
maximum likelihood under certain conditions when zero returns are present. For instance, Escan-
ciano proved consistency and asymptotic normality of the QMLE for a broad class of GARCH mod-
els, provided the zero-return process is stationary [21].

Several extensions to classical GARCH models have been proposed to handle zero returns. A com-
mon approach is to introduce a two-part structure: one component handles the zero returns in a
certain way, and the other models the distribution of non-zero returns. For example, Sucarrat and
Escribano addressed the undefined log-volatility problem in log-GARCH models by treating zero
returns as missing and imputing them via an ARMA-based method [60]. More generally, Sucarrat
and Grønneberg introduced a class of models in which the probability of zero returns is modeled as
time-varying, rather than constant [61]. Francq and Sucarrat proposed anunivariate “zero-adjusted”
GARCH framework that augments the GARCH model with a binary trading indicator 𝐼𝑡 [25]. Re-
turns are modeled as 𝑟𝑡 = 𝐼𝑡 · 𝜎𝑡(𝜽) ·𝜂𝑡 , where 𝐼𝑡 ∈ {0, 1} is a binary indicator of trading activity, equal
to one if a non-zero return is observed. The function 𝜎𝑡(𝜽) denotes the conditional volatility evalu-
ated at parameter vector 𝜽, and 𝜂𝑡 is a standardized i.i.d. innovation. Their modified QMLE remains
consistent and asymptotically normal. Relatedly, Hudecová and Pešta developed hurdle-GARCH
models for nonnegative time series with many zeros [39]. In their setting, returns follow a mixed
discrete-continuous distribution: a structural zero may occur with a time-varying probability, and
if non-zero, the return follows GARCH dynamics. Importantly, their model allows for dependent
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zero occurrences, capturing the tendency of zeros to cluster in illiquid periods.

Recent work has extended GARCH modeling to multivariate settings. Xu proposed a multivariate
Exponential GARCH (EGARCH)model designed to accommodate zero returns by regularizing zero
observations to ensure a well-defined log-volatility process and incorporating asymmetric volatility
spillovers across assets [69]. While the theoretical properties of the quasi-maximum likelihood esti-
mator are not established, simulation results suggest consistency and asymptotic normality. Other
multivariate GARCHmodels appear mainly in the context of count time series, particularly through
Integer-GARCH (IGARCH) frameworks [57, 51].

To date, no multivariate GARCH-X framework has been developed that accounts for zero-inflated
return series in illiquid markets. This thesis addresses that gap by introducing a multivariate zero-
inflated multivariate GARCH-X model that captures the characteristics of illiquid financial assets
such as voluntary carbon credits. Our model extends the univariate zero-adjusted GARCH frame-
work developed by Francq and Sucarrat [25], where we have introduced three novel adaptations:

(i) Multivariate binary trading indicators 𝐼 𝑗,𝑡 , which explicitly model the occurrence of zero re-
turns, are modeled jointly using a Markov network to capture cross-dependence in trading
activity across assets.

(ii) The lagged indicator 𝐼 𝑗 ,𝑡−1 enters the conditional variance equation as an exogenous covariate.
This captures the intuition that the occurrence of a trade at time 𝑡 − 1 may influence volatility
at time 𝑡.

(iii) An irregular time-step specification, denoted by 𝑡∗, inwhich the conditional volatility recursion
is applied only at time points where trading occurs, i.e. when 𝐼 𝑗 ,𝑡 = 1. This time-filtered
updating mechanism ensures that volatility is not artificially smoothed over inactive periods,
and that it reflects more accurately the sparse and uneven structure of return observations in
illiquid markets.

Then, the returns of asset 𝑗 follow a zero-inflated GARCH(1,1)-X model, specified as follows:
𝑟 𝑗 ,𝑡 = 𝐼 𝑗 ,𝑡 · 𝜎𝑗 ,𝑡(𝜽★

𝑗 ) · 𝜂 𝑗,𝑡 ,
𝜎2
𝑗 ,𝑡(𝜽★

𝑗 ) = 𝛼★
𝑗,0 + 𝛼★

𝑗 ,1𝜎
2
𝑗,𝑡∗ + 𝛼★

𝑗,2𝑟
2
𝑗 ,𝑡∗ + 𝛼★

𝑗,3𝐼 𝑗,𝑡−1 ,

where 𝐼 𝑗,𝑡 ∈ {0, 1} is a binary indicator of trading activity, equal to one if a non-zero return is observed
and zero otherwise. The function 𝜎𝑗,𝑡(𝜽 𝑗) denotes the conditional volatility, evaluated at the true pa-
rameter vector 𝜽★

𝑗 . The term 𝜂 𝑗 ,𝑡 represents a standardized i.i.d. innovation. The model is specified
with respect to a set of true, real-valued parameters 𝜽★

𝑗 := (𝛼★
𝑗,0 , 𝛼

★
𝑗,1 , 𝛼

★
𝑗 ,2 , 𝛼

★
𝑗 ,3) ⊆ (0,+∞) × [0,+∞)3.

The index 𝑡∗ denotes the irregular time-step specification, which ensures that the volatility recur-
sion updates only at time points when trading occurs. Although the current specification follows a
GARCH(1,1) structure, it can be easily extended to a generalGARCH(𝑝, 𝑞) setting. TheGARCH(1,1)
model can thus be viewed as a special case of the more general GARCH(𝑝, 𝑞) framework.

While theoretical asymptotic properties such as consistency and asymptotic normality have been
established in the literature for univariate zero-inflated time series models, no such results exist
for the multivariate setting yet. This thesis fills that gap by proving consistency and asymptotic
normality of the quasi-maximum-likelihood estimator of our multivariate model.
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The multivariate extension of the zero-inflated GARCH-X model is a key contribution of this thesis,
which is implemented in two ways. As mentioned before, binary trading indicators are modeled
jointly using a Markov network to capture cross-asset dependence in trading activity. Second, fol-
lowing the copula-GARCH framework, each return series is estimated univariately, and copulas are
applied to the standardized residuals to model cross-asset dependence. However, modeling depen-
dence in zero-inflated financial data introduces specific challenges. Zero returns do not generate
residuals 𝜂 𝑗 ,𝑡 , and are therefore treated as undefined values. In addition, rank-based dependence
measures such as Kendall’s tau and Spearman’s rho become unreliable in an illiquid context due to
the high frequency of ties caused by zero returns, making tie-breaking procedures inconsistent and
sensitive to the chosen method [50].

To address this issue, recent research has extended both the copula framework and dependence
measures to accommodate zero-inflated data. A common copula-based strategy involves a two-part
structure: one component models the probability of a non-zero outcome, while the second mod-
els the distribution of positive values conditional on occurrence. Copulas are then used to capture
both joint occurrence and joint magnitude across variables. In practice, this is often simplified by
conditioning on time points where both variables are non-zero. In the context of illiquid assets,
Raïssi proposes estimating dependence only on trading days for both assets, as zero returns provide
no information on co-movement [56]. This conditional approach better captures the true depen-
dence structure, particularly when zeros occur independently. In terms of dependence measures,
Pimentel [52] introduced an adjusted Kendall’s tau estimator for zero-inflated continuous variables,
which was recently extended by Perrone [50] to the bivariate zero-inflated count setting. However,
dependence modeling in the context of illiquid financial assets remains a relatively new area of re-
search, with limited work conducted so far.

To apply copula methods in the presence of zero-inflated data, this thesis also adopts a two-step
procedure. First, for each asset pair, we remove all observationswhere there is an undefined residual
value for one of the assets. This corresponds to restricting attention to time points where both assets
have non-zero returns, i.e., 𝐼 𝑗,𝑡 = 𝐼𝑘,𝑡 = 1 for some asset pair (𝑗, 𝑘), which is related to the approach
of [56]. Second, we introduce a probability integral transform approach based on pairwise instead
of separate conditioning. In this construction, the univariate marginals are defined conditional on
the simultaneous trading activity of each asset, rather than each asset’s individual trading activity.
In Chapter 7, we prove that this method yields a consistent copula estimator when applied to the
subset of observations with non-zero trading activity. Lastly, due to the limited sample size, the
analysis is restricted to bivariate cross-dependence – both in trading activity and in asset residuals
– rather than higher-dimensional dependence structures.

An outline of the thesis is as follows. Chapter 2 introduces the necessary mathematical background.
We begin with classical time series models such as ARCH and GARCH, and then extend to GARCH-
X. The chapter also discusses estimation procedures and theoretical properties of the estimators,
including consistency and asymptotic normality. To model dependence structures, we introduce
copulas and dependence measures, with particular emphasis on Kendall’s tau. Additionally, we
review fundamental concepts such as the Law of Large Numbers and the Central Limit Theorem,
which are important for later theoretical results. The chapter concludes with a discussion of Markov
networks and statistical tests for dependence in binary trading indicators. Chapter 3 turns to car-
bon markets. We explain how carbon markets work, and summarize relevant existing literature
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on dependence modeling between carbon credits and other assets. The multivariate zero-inflated
GARCH-X model is introduced in Chapter 4. Alongside model formulation, we describe the data
and conduct a descriptive analysis to highlight key stylized facts that motivate modeling choices.
Chapter 5 focuses on illiquidity, a central theme in this thesis. We examine how illiquidity arises in
our dataset, and how cross-dependence among binary trading indicators can be captured in a bivari-
ate framework. The univariate case of the zero-inflated GARCH-X model is the subject of Chapter 6.
Here, we prove both consistency and asymptotic normality of the QMLE. In Chapter 7, we return to
the multivariate setting and explore cross-dependence in the residuals using copulas. We establish
the correct form of the probability integral transform for the zero-inflated multivariate framework
and apply the methodology to real data to investigate dependence structures among financial and
carbon assets. The conclusions of this thesis are summarized in Chapter 8.



2
Mathematical preliminaries

This chapter aims at providing the necessary fundamentals for the material discussed in subse-
quent chapters. We start with time series in Section 2.1 and how to deal with their statistical prop-
erties. Here, we present widely used models such as Autoregressive Moving Average (ARMA),
Generalized Autoregressive Conditional Heteroskedasticity (GARCH), and an extension of classical
GARCH models which are called GARCH-X models. In Section 2.2, we follow up with the standard
estimation of GARCH models which is quasi-maximum likelihood estimation. Next, in Section 2.3,
we describe the concept of copulas in order to understand the basics of dependence in multivariate
random variables. Then, we give some background on dependence measures, where we dive into
rank-based correlation. Weparticularly focus ondefiningKendall’s tau, including its conditional ver-
sion. In Section 2.4, wediscuss conditional non-parametric estimation, particularly kernel regression.
In Section 2.5, we discuss some concepts in asymptotic statistics such as stochastic convergence, con-
sistency, asymptotic normality, the Law of Large Numbers, and the Central Limit Theorem. Then,
we present Markov networks, also known as Markov random fields, as undirected graphical mod-
els for representing symmetric dependency structures among random variables. Lastly, we outline
hypothesis testing, including Fisher’s exact test for analyzing independence and dependence in con-
tingency tables.

2.1 Time series

Consider a sequence of real-valued random variables (𝑋𝑡)𝑡∈Z with index set 𝑇 ⊆ R, defined on the
same probability space (Ω,ℱ , P). Here, Ω represents the sample space, ℱ is a 𝜎-algebra of events,
and P is a probability measure assigning probabilities to events in ℱ . Such sequence is called a time
series. The time series is an example of a discrete-time stochastic process when 𝑇 = Z or 𝑇 = N.
On the other hand, it is a continuous time series when 𝑇 = R. The aim of time series analysis is to
construct a model for the underlying stochastic process.

Prior to time series analysis, we define the notions of 𝜎−algebras and the Borel set which are used
in time series analysis.

Definition 2.1 ((Borel-)𝜎-algebra). Let 𝑆 be a set. A family 𝒜 ⊆ 𝒫(𝑆) is called a 𝝈-algebra if

(i) ∅, 𝑆 ∈ 𝒜

6
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(ii) 𝐴 ∈ 𝒜 ⇒ 𝐴𝑐 ∈ 𝒜
(iii) 𝐴1 , 𝐴2 , . . . ∈ 𝒜 ⇒ ⋃∞

𝑗=1 𝐴 𝑗 ∈ 𝒜 .

Here, 𝒫(𝑆) denotes the power set of 𝑆. That is, the set of all subsets of 𝑆, including ∅ and 𝑆 itself.

Letℬ(𝑆) be the 𝜎-algebra generated by the open sets in 𝑆, i.e. ℬ(𝑆) = 𝜎{open sets in 𝑆}. The 𝜎-algebra
ℬ(𝑆) is called the Borel 𝝈-algebra of 𝑆.

We start with the preliminary concepts of stationary and ergodic sequences, andwhite noise. First, a
time series (𝑋𝑡)𝑡∈Z is strictly stationary if its joint distribution remains unchanged under time shifts.
There exists also a slightly weaker form which is called second-order or weak stationarity.

Definition 2.2 (Strict and weak stationarity). Consider (𝑋𝑡)𝑡∈Z is a time series.

• A time series is called strictly stationary if the vector (𝑋𝑡1 , . . . , 𝑋𝑡𝑘 )′ and the time-shifted vector
(𝑋𝑡1+ℎ , . . . , 𝑋𝑡𝑘+ℎ)′ have the same joint distribution, for any 𝑘 ∈ N and ℎ ∈ Z. Hence, for all
𝑡1 , . . . , 𝑡𝑘 , it holds that

P(𝑋𝑡1 ≤ 𝑥1 , . . . , 𝑋𝑡𝑘 ≤ 𝑥𝑘) = P(𝑋𝑡1+ℎ ≤ 𝑥1 , . . . , 𝑋𝑡𝑘+ℎ ≤ 𝑥𝑘).

• A time series is said to be weakly stationary if for all ℎ ∈ Z, we have that

(i) The second moments are finite, i.e. E[𝑋2
𝑡 ] < ∞.

(ii) The mean is constant over time, i.e. E[𝑋𝑡] = 𝑚 for some constant 𝑚 ∈ R.
(iii) The covariance between 𝑋𝑡 and 𝑋𝑡+ℎ depends only on the lag ℎ and not on 𝑡.

Note that if a process is strictly stationary, then it is also weakly stationary [24]. In general, both
forms of stationarity imply that the time series exhibits similar behavior across any two equally
spaced time intervals [13]. Hence, stationarity is a necessary assumption to justify aggregating data
across different time periods to estimate return values [27]. Importantly, there may exist a bias
when the assumption of stationarity fails, as it would suggest that the model changes over time. It
is therefore common to assume that the return series of financial instruments are weakly stationary.
A special case of weak stationary series is White Noise (WN), defined as a process with zero mean
and uncorrelated observations.

Definition 2.3 (White Noise). A weakly stationary time series (𝑤𝑡) with mean 𝜇𝑤 = 0 and autoco-
variance defined as

𝛾𝑊 (ℎ) =

𝜎2
𝑊 , ℎ = 0

0, ℎ ≠ 0,

is called aWhite Noise series, denoted as𝑤𝑡 ∼𝑊𝑁(0, 𝜎2
𝑤). Here, 𝜎2

𝑊 represents the constant variance
of thewhite noise process. Remark that the autocovariance is defined as 𝛾𝑋(ℎ) = cov(𝑋𝑡+ℎ , 𝑋𝑡)which
will be further discussed later this section.

Another important concept in time series analysis is ergodicity. Intuitively, ergodicitymeans that the
time average computed along a single realization of a stochastic process converges to the expected
value over the distribution of the process. Furthermore, an ergodic process must be stationary, but
not all stationary processes are ergodic. Formally, a stationary sequence is called ergodic if it satisfies
the Strong Law of Large Numbers [24].
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Definition 2.4 (Ergodicity). A real-valued strictly stationary sequence process (𝑋𝑡)𝑡∈Z is said to be
ergodic if and only if for any Borel set ℬ and any 𝑘 ∈ Z, it holds with probability one that

1
𝑛

𝑛∑
𝑡=1

1(𝑋𝑡 ,𝑋𝑡+1 ,...,𝑋𝑡+𝑘 )∈ℬ
𝑎.𝑠.−−→ P

(
(𝑋𝑡 , 𝑋𝑡+1 , . . . , 𝑋𝑡+𝑘) ∈ ℬ

)
General transformations of ergodic sequences preserve ergodicity [28]. More precisely, ergodicity
is preserved under measurable functions 𝑓 : R∞ → R, where R∞ = RZ = {(𝑧𝑡)𝑡∈Z | 𝑧𝑡 ∈ R ∀𝑡 ∈ Z} .
A point in R∞ is thus an infinite two-sided sequence like (. . . , 𝑋−2 , 𝑋−1 , 𝑋0 , 𝑋1 , 𝑋2 , . . .). A formal
statement and proof of this result can be found in for example [8].

The concepts of stationarity, ergodicity and white noise form the basis for many time series models.
Now, let us introduce some traditional time series models which assume stationarity and are often
constructed using Autoregressive (AR), Moving Average (MA), or a combination of both, the Au-
toregressive Moving Average (ARMA) model. First, let us define the AR(𝑝) process, where 𝑋𝑡 is
expressed as a linear function of past values.

Definition 2.5 (Autoregressive Model (AR(𝑝))). An Autoregressive Model of order 𝑝 is a real-
valued process (𝑋𝑡) of the form

𝑋𝑡 = 𝛼★ +
𝑝∑
𝑖=1

𝜙★
𝑖 𝑋𝑡−𝑖 + 𝑤𝑡 .

Here, 𝛼★ and 𝜙★
𝑖 are the (unknown) true real-valuedparameters for 𝑖 = 1, . . . , 𝑝, and𝑤𝑡 ∼𝑊𝑁(0, 𝜎2

𝑤).

AR models exhibit autocorrelation and can capture gradual mean-reverting dynamics. Now, let us
define a MA(𝑞) model which is a process that expresses 𝑋𝑡 as a function of past shocks.

Definition 2.6 (Moving Average Model (MA(𝑞))). A Moving Average model of order 𝑞 is a real-
valued process (𝑋𝑡) of the form

𝑋𝑡 = 𝑤𝑡 +
𝑞∑
𝑗=1

𝜃★
𝑗 𝑤𝑡−𝑗 .

Here, 𝜃★
𝑗 are the (unknown) true real-valued parameters for 𝑗 = 1, . . . , 𝑞, and 𝑤𝑡 ∼𝑊𝑁(0, 𝜎2

𝑤).
Contrary to the AR model, the finite MA model is always stationary. Time series with constant
volatility can also be described using ARMA(𝑝, 𝑞) models, which are a combination of AR and MA
models. Both time series imply a linear relationship with past observations of the stationary time
series and are characterized by the orders 𝑝 (number of autoregressive terms), and 𝑞 (number of
lagged forecast errors).

Definition 2.7 (AutoregressiveMovingAverage (ARMA(𝑝,𝑞))). An autoregressivemoving average
model of order (𝑝, 𝑞) is a real-valued process (𝑋𝑡) of the form

𝑋𝑡 = 𝛼★ +
𝑝∑
𝑖=1

𝜙★
𝑖 𝑋𝑡−𝑖 + 𝑤𝑡 +

𝑞∑
𝑗=1

𝜃★
𝑗 𝑤𝑡−𝑗 ,

for some (unknown) true real-valued parameters 𝛼★, 𝜙★
1 , · · · , 𝜙★

𝑝 , 𝜃
★
1 , · · · , 𝜃★

𝑞 , and 𝑤𝑡 ∼𝑊𝑁(0, 𝜎2
𝑤).
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While the ARMAmodels are classical for stationary time series, they fall short in describing financial
data. Financial time series, such as stock prices, exchange rates, and interest rates, exhibit diverse
dynamics and are recorded at varying observation frequencies, ranging from high-frequency (sec-
onds) to low-frequency (days), which complicates statistical modeling. In a financial context, 𝑝𝑡
denotes the asset price at time 𝑡, and the log return is defined as

𝑟𝑡 := log
(
𝑝𝑡
𝑝𝑡−1

)
≈ 𝑝𝑡 − 𝑝𝑡−1

𝑝𝑡−1
.

Themain challenge lies in the statistical regularities (stylized facts) common tomany financial series,
which are difficult to capture using stochastic models. Below, we discuss some of themost important
stylized facts, mentioned in [24]:

1. Tiny Autocorrelation of Returns: Stock market returns exhibit very small autocorrelation,
meaning past returns provide little predictive power for future returns. This behavior is of-
ten compared to white noise. However, at intraday time scales (minutes or seconds), some
autocorrelation may appear due to microstructure effects.

2. Large Autocorrelations of Squared and Absolute Returns: While raw returns show little au-
tocorrelation, their squared (𝑟2

𝑡 ) and absolute (|𝑟𝑡 |) values exhibit strong autocorrelation. This
suggests that return amplitudes are somewhat predictable over short periods, contradicting
the white noise assumption. The slow decay of autocorrelation in squared returns is indicative
of long memory in volatility.

3. Volatility Clustering: Large price variations tend to be followed by further large variations,
and small variations by small ones. This results in clustered periods of high and low volatility,
a well-documented feature in financial time series.

4. Fat-Tailed Distributions: The empirical distribution of returns deviates from the normal dis-
tribution, showing a higher probability of extreme values. This leptokurtic distribution has
fatter tails and a sharper peak than a Gaussian distribution. The kurtosis of stock returns is
significantly higher than 3 (the value for a normal distribution), indicating a higher occurrence
of extreme events.

5. Gain/Loss Asymmetry: Stock prices exhibit asymmetry in their up and down movements.
Large drawdowns, such as those seen during financial crises, tend to be more abrupt, whereas
upward trends are usually more gradual.

6. Leverage Effect: There is a negative correlation between volatility and stock returns: during
market downturns, volatility increases significantly, whereas duringmarket upturns, volatility
tends to decrease more gradually. This effect implies that negative shocks impact volatility
more than positive shocks of similar magnitude.

7. Seasonality and Non-trading Periods: Stock markets do not trade continuously; they are
closed during weekends and holidays. As a result, volatility often spikes after nontrading
periods due to the accumulation of information. Furthermore, seasonal effects, such as the
day-of-the-week effect, can influence returns.

8. Spillover Effect: Volatility and market movements often spill over across stocks, sectors, and
international markets. Events in one market can significantly impact others, as seen in global
financial crises like the 2008 meltdown.

According to [24], a reliablemodel for financial time seriesmust capture key stylized facts, especially
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volatility clustering and time-varying variance. Traditional models like ARMA assume constant
volatility. The property of non-constant conditional variance is called conditional heteroscedasticity,
where return variance changes over time. To model the time-varying volatility of financial returns,
Engle introduced the Autoregressive Conditional Heteroscedasticity (ARCH)model in 1982. ARCH
models allow the conditional variance to depend on past squared errors, formalized as follows:

Definition 2.8 (Autoregressive Conditional Heteroscedasticity Model (ARCH(𝑞))). An ARCH(𝑞)
model for a return series (𝑟𝑡) is defined as

𝑟𝑡 = 𝜇★ + 𝜖𝑡 ,

𝜖𝑡 = 𝜎𝑡𝜂𝑡 ,

𝜎2
𝑡 = 𝛼★

0 +∑𝑞
𝑖=1 𝛼

★
𝑖 𝜖

2
𝑡−𝑖 ,

(2.1)

where 𝑟𝑡 represents the asset returns, 𝜇★ is the (unknown) truemean return, and 𝜖𝑡 is the innovation
with volatility 𝜎𝑡 . The term 𝜂𝑡 is an i.i.d. sequence with zero mean and unit variance, often assumed
to follow a standard normal distribution but this is not necessarily the case. The (unknown) true
parameters satisfy 𝛼★

0 > 0 and 𝛼★
𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑞.

The conditional variance 𝜎2
𝑡 depends on past squared errors, and captures the empirical observation

that large price movements tend to be followed by further large movements. However, one limita-
tion of ARCH models is its reliance on a potentially large number of lagged terms 𝑞 to adequately
capture volatility persistence. To address the limitations of ARCH, Bollerslev introduced the Gener-
alized ARCH (GARCH) model in 1986, which extends ARCH by incorporating lagged conditional
variances. This parallels the generalization of an AR process to an ARMA process in time series
analysis.

Definition 2.9 (Generalized ARCH Model (GARCH(𝑝,𝑞)). A GARCH(𝑝, 𝑞) model for a return se-
ries (𝑟𝑡) is defined as 

𝑟𝑡 = 𝜇★ + 𝜖𝑡 ,

𝜖𝑡 = 𝜎𝑡𝜂𝑡 ,

𝜎2
𝑡 = 𝜔★ +∑𝑞

𝑖=1 𝛼
★
𝑖 𝜖

2
𝑡−𝑖 +

∑𝑝
𝑗=1 𝛽

★
𝑗 𝜎

2
𝑡−𝑗 ,

(2.2)

where 𝑟𝑡 represents the asset return, 𝜇★ is the (unknown) true mean return, 𝜎2
𝑡 is the conditional

variance at time 𝑡, 𝜖𝑡 is the innovation, and the (unknown) true parameters are 𝜔★ > 0, 𝛼★
𝑖 ≥ 0 for

𝑖 = 1, . . . , 𝑞, and 𝛽★𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑝. The term 𝜂𝑡 is an i.i.d. sequence with zero mean and unit
variance, often assumed to follow a standard normal distribution but this is not necessarily the case.

The constraint,
∑max(𝑝,𝑞)
𝑖=1 (𝛼★

𝑖 + 𝛽★𝑖 ) < 1, prevents the variance from diverging over time. The inclu-
sion of past conditional variances improves the model’s ability to capture long memory in volatility,
reducing the need for a high number of ARCH terms [24].

Standard GARCH models describe the conditional variance of returns as a function of past squared
returns and past conditional variances. In practice, however, additional information is often avail-
able that may improve the modeling of the conditional volatility. This information can take the form
of an exogenous covariate such as daily trading volume, high-frequency intraday indicators, or the
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returns of other related assets. To incorporate such additional information, GARCH-type models
can be extended by adding such explanatory variables directly into the volatility equation. We refer
to this different class as GARCH-X models.

Definition 2.10 (GARCH-X Model). A GARCH-X(𝑝, 𝑞, 𝑟) model for a return series (𝑟𝑡) is defined as


𝑟𝑡 = 𝜇★ + 𝜖𝑡 ,

𝜖𝑡 = 𝜎𝑡𝜂𝑡 ,

𝜎2
𝑡 = 𝜔★ +∑𝑞

𝑖=1 𝛼
★
𝑖 𝜖

2
𝑡−𝑖 +

∑𝑝
𝑗=1 𝛽

★
𝑗 𝜎

2
𝑡−𝑗 +

∑𝑟
𝑘=1 𝛾

★
𝑘 𝑥𝑡−𝑘 ,

(2.3)

where 𝑟𝑡 represents the asset return, 𝜇★ is the (unknown) true mean return, 𝜎2
𝑡 is the conditional

variance at time 𝑡. Here, 𝑥𝑡−𝑘 is an exogenous covariate observed at time 𝑡 − 𝑘, and 𝛾★
𝑘 the corre-

sponding (unknown) true parameter. The (unknown) true parameters satisfy 𝜔★ > 0, 𝛼★
𝑖 ≥ 0 for

𝑖 = 1, . . . , 𝑞, 𝛽★𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑝, and 𝛾★
𝑘 ≥ 0 for 𝑘 = 1, . . . , 𝑟. The term 𝜂𝑡 is an i.i.d. sequence with

zero mean and unit variance, often assumed to follow a standard normal distribution but this is not
necessarily the case.

The exogenous covariates are not necessarily dynamicallymodeledwithin the GARCH-X framework
and are treated as predetermined. This imposes the practical requirement that they must be known
or predictable. Note that the term exogenous does not refer to the concepts of weak or strong exogene-
ity introduced in the econometric literature. This term is used because the dynamics of the vector 𝑥𝑡
are not specified by the GARCH-X model [24]. To ensure 𝜎2

𝑡 > 0 with probability one, it is assumed
that the covariates are almost surely positive and that the coefficients satisfy 𝛼 ≥ 0, 𝛽 ≥ 0, 𝜔 > 0, and
𝛾 = (𝛾1 , . . . , 𝛾𝑟)⊤ ≥ 0 component-wise. In GARCH-type models, the sequence (𝜂𝑡) is traditionally
assumed to be i.i.d. with mean zero and unit variance. However, this assumption is not strictly nec-
essary for establishing the stationarity and ergodicity of the GARCH-X model. Under appropriate
conditions such as the stationarity and ergodicity of the joint process (𝜂𝑡 , 𝑥𝑡), the GARCH-X model
admits a unique strictly stationary and ergodic solution. A more detailed discussion can be found
in Francq and Zakoïan [24].

Note that we explicitly included the (unknown) true parameters, indicated with a star symbol, in
Definitions (2.5)–(2.3) to emphasize that these processes represent the true data-generating pro-
cesses. In the following section, we examine in detail how to estimate these parameters. Furthermore,
note that the time series models, as defined in Equations (2.1)-(2.3), generally contain a conditional
mean 𝜇★. However, we will restrict ourselves to the case of the subclass of GARCH-X models where
𝜇★ = 0. This assumption is formalized as follows

Assumption 2.1 (𝜇★ = 0). In this thesis, we restrict ourselves always to the subclass of GARCH-X models
with zero conditional mean, i.e. 𝜇★ = 0, resulting in the following GARCH-X model:

𝑟𝑡 = 𝜎𝑡𝜂𝑡 ,

𝜎2
𝑡 = 𝜔★ +∑𝑞

𝑖=1 𝛼
★
𝑖 𝑟

2
𝑡−𝑖 +

∑𝑝
𝑗=1 𝛽

★
𝑗 𝜎

2
𝑡−𝑗 +

∑𝑟
𝑘=1 𝛾

★
𝑘 𝑥𝑡−𝑘 .

(2.4)

Hence, estimation of 𝜇★ later is not needed.

Next, we would like to focus on concepts closely related to time series. Let us start with analyzing
temporal dependence in the levels of a time series. We consider the concept of autocorrelation.
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Autocorrelation quantifies the degree of linear dependence between observations separated by a
fixed temporal lag. Formally, it is defined as follows [7]:

Definition 2.11 (Autocorrelation function (ACF)). For a stationary process (𝑋𝑡), the theoretical au-
tocorrelation coefficient at lag ℎ ∈ N, denoted 𝜌(𝑘), is defined as the Pearson correlation between 𝑋𝑡
and 𝑋𝑡−𝑘 , and is given by

𝜌(𝑘) = Cov(𝑋𝑡 , 𝑋𝑡−𝑘)
𝜎𝑋𝑡 · 𝜎𝑋𝑡−𝑘

A usual estimator of it is

𝜌̂(ℎ) =
∑𝑛−ℎ
𝑖=1 (𝑥𝑖+ℎ − 𝑥̄)(𝑥𝑖 − 𝑥̄)

(𝑛 − ℎ)𝑠2
𝑥

,

where 𝑥̄ := 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 is the sample mean and 𝑠2

𝑥 := 1
𝑛

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)2 is the sample variance.

Positive autocorrelation implies that future values tend to move in the same direction as recent past
values. On the other hand, negative serial correlation indicates a tendency for values to reverse
direction relative to their recent history. In financial time series, high autocorrelations at low lags in
squared or absolute returns are a characteristic of volatility clustering. Moreover, the autocorrelation
function helps to determine the appropriate order when specifying AR(𝑝) and MA(𝑞) models.

Next to the ACF, the partial autocorrelation function (PACF) is used to separate direct lag dependen-
cies from indirect (spurious) ones. It measures the correlation between 𝑋𝑡 and 𝑋𝑡−𝑘 after removing
the effects of intermediate lags 𝑋𝑡−1 , . . . , 𝑋𝑡−𝑘+1. Formally, the PACF at lag 𝑘, denoted 𝜙𝑘𝑘 , is the
coefficient of 𝑋𝑡−𝑘 in the best linear prediction of 𝑋𝑡 using (𝑋𝑡−1 , . . . , 𝑋𝑡−𝑘). While the ACF reflects
overall correlation at each lag, the PACF isolates the direct influence of each lag. Thismakes the PACF
especially useful for identifying the order of autoregressivemodels [24]. To estimate the partial auto-
correlation at lag ℎ, one fits an ordinary least-squares regression of 𝑋𝑡 on its ℎ previous observations
(𝑋𝑡−1 , 𝑋𝑡−2 , . . . , 𝑋𝑡−ℎ) and takes the coefficient of 𝑋𝑡−ℎ from this regression as the estimate of the
partial autocorrelation at lag ℎ.

In time series analysis, understanding the behavior of distribution tails is essential, especially when
modeling financial returns or other forms of data exhibiting volatility clustering. Previously, we have
seen that financial time series typically deviate from the Gaussian assumption and display heavy
tails. This behavior indicates a higher likelihood of extreme values than predicted by the normal
distribution. One widely used statistical measure to capture this aspect is the kurtosis coefficient,
which quantifies tail heaviness and can provide insight into the presence of volatility dynamics such
as those modeled by ARCH or GARCH processes. This coefficient is defined as the ratio of the
fourth central moment (assumed to exist) to the square of the second central moment. In the case
of the normal distribution, the kurtosis coefficient equals 3, a value often used as a benchmark for
comparison with other distributions. Mathematically, this can be expressed as follows:

Definition 2.12 (Kurtosis coefficient). Let 𝑋 be a random variable. The kurtosis coefficient of 𝑋 is
the fourth standardized moment of 𝑋, defined as

𝜅 = E

[(
𝑋 − 𝜇

𝜎

)4
]
=

E
[(𝑋 − 𝜇)4](

E
[(𝑋 − 𝜇)2] )2 =

𝜇4

𝜎4 ,
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where 𝜇 = E[𝑋] is the mean of 𝑋, 𝜎 is the standard deviation of 𝑋, and 𝜇4 = E[(𝑋 − 𝜇)4] is its fourth
central moment.

In the context of GARCH processes, it is particularly insightful to examine the distinction between
the tails of the marginal and conditional distributions. Consider a strictly stationary solution (𝜖𝑡) of
a GARCH(𝑝, 𝑞) model. For such a process, the conditional moments of order 𝑘 are proportional to
𝜎2𝑘
𝑡 :

E(𝜖2𝑘
𝑡 | 𝜖𝑢 , 𝑢 < 𝑡) = 𝜎2𝑘

𝑡 E(𝜂2𝑘
𝑡 )

where 𝜂𝑡 is, as in Definition 2.9, an i.i.d. sequence with zero mean. Consequently, the kurtosis coef-
ficient of the conditional distribution is constant and equal to that of 𝜂𝑡 .

For a general process of the form 𝜖𝑡 = 𝜎𝑡𝜂𝑡 , where 𝜎𝑡 is a functionmeasurable with respect to the past
of 𝜖𝑡 , and 𝜂𝑡 is independent of this past and i.i.d. with zero mean and finite variance, the kurtosis
coefficient of the stationary marginal distribution, provided it exists, is given by [24]:

𝜅𝜖 :=
E(𝜖4

𝑡 )[
E(𝜖2

𝑡 )
]2 =

E
[
E(𝜖4

𝑡 | 𝜖𝑢 , 𝑢 < 𝑡)][
E

[
E(𝜖2

𝑡 | 𝜖𝑢 , 𝑢 < 𝑡)] ]2 =
E(𝜎4

𝑡 )[
E(𝜎2

𝑡 )
]2𝜅𝜂 ,

where 𝜅𝜂 = E(𝜂4
𝑡 ) denotes the kurtosis coefficient of the innovations (𝜂𝑡). This expression reveals

that the marginal distribution of (𝜖𝑡) exhibits heavier tails when the variability of 𝜎2
𝑡 is large relative

to the square of its mean [24]. The lower bound, which corresponds to the absence of ARCH effects
(i.e., when 𝜎2

𝑡 is almost surely constant), is precisely 𝜅𝜂, implying:

𝜅𝜖 ≥ 𝜅𝜂 ,

with equality if and only if 𝜎2
𝑡 is almost surely constant.

2.2 Estimation of GARCH models

This section introduces quasi-maximum likelihood estimation, the usual method for estimating the
model parameters of GARCH models and its extensions such as GARCH-X [24]. Essentially, this
method allows us to estimate the conditional volatility dynamics consistently even if 𝜂𝑡 is not nor-
mally distributed [24]. The idea is to construct a likelihood function as if 𝜂𝑡 is Gaussian, leading to
what is known as the Gaussian quasi-likelihood.

Recall, for a GARCH(𝑝,𝑞) model, we observe a series 𝑟𝑡 = 𝜖𝑡 = 𝜎𝑡𝜂𝑡 , where 𝜎2
𝑡 is the conditional

variance and 𝜂𝑡 is an i.i.d sequencewith zeromean andunit variance. The orders 𝑝 and 𝑞 are assumed
to be known. The parameter vector 𝜽 := (𝜃1 , . . . , 𝜃𝑝+𝑞+1)⊤ := (𝜔, 𝛼1 , . . . , 𝛼𝑞 , 𝛽1 , . . . , 𝛽𝑝)⊤ belongs
to a parameter space of the form 𝚯 ⊆ (0,+∞) × [0,+∞)𝑝+𝑞 . The true value of the parameter is
unknown and is denoted by 𝜽★ := (𝜃★

1 , . . . , 𝜃
★
𝑝+𝑞+1)⊤ := (𝜔★, 𝛼★

1 , . . . , 𝛼
★
𝑞 , 𝛽

★
1 , . . . , 𝛽

★
𝑝 )⊤. The parameter

is estimated by maximizing the quasi-log-likelihood function. To write the likelihood of the model,
a distribution for the i.i.d. variables 𝜂𝑡 needs to be specified. In quasi-maximum likelihood we do
not make any assumption on the distribution of these variables, as opposed to maximum likelihood.
We work with a function called the (Gaussian) quasi-likelihood that - conditionally on some initial
values - coincides with the likelihood when 𝜂𝑡 is standard Gaussian. Specifically, given the initial
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values 𝜖0 , . . . , 𝜖1−𝑞 , 𝜎2
0 , . . . , 𝜎

2
1−𝑝 , the Gaussian quasi-log-likelihood is given by

𝐿𝑛(𝜽) = 𝐿𝑛(𝜽 | 𝜖1 , . . . , 𝜖𝑛) =
𝑛∏
𝑡=1

1√
2𝜋𝜎2

𝑡 (𝜽)
exp

(
− 𝜖2

𝑡

2𝜎2
𝑡 (𝜽)

)
, (2.5)

where 𝜎2
𝑡 (𝜽) follows the same recursive form as the true volatility 𝜎2

𝑡 , but with the true parameter
𝜽★ replaced by 𝜽.

For a given value of 𝜽 ∈ 𝚯 under the second-order stationarity assumption, the unconditional vari-
ance is a reasonable choice for the unknown initial values [24]. These are given by

𝜖2
0 = · · · = 𝜖2

1−𝑞 = 𝜎2
0 = · · · = 𝜎2

1−𝑝 =
𝜔

1 −∑𝑞
𝑖=1 𝛼𝑖 −

∑𝑝
𝑗=1 𝛽 𝑗

(2.6)

Note that such initial values are not suitable when second-order stationarity is not satisfied. In this
case, Francq and Zakoïan propose alternative initial values; we refer the reader to their work for
further details [24]. Then, a quasi-maximum likelihood estimator 𝜽̂𝑛 is defined as any measurable
solution of

𝜽𝑛 = arg max
𝜃∈Θ

𝐿𝑛(𝜽),
Taking the logarithm, it is seen that maximizing the likelihood is equivalent to minimizing with
respect to 𝜽,

𝐼̃𝑛(𝜽) = 1
𝑛

𝑛∑
𝑡=1

(
𝜖2
𝑡

𝜎2
𝑡 (𝜽)

+ log 𝜎2
𝑡 (𝜽)

)
.

So, a quasi-maximum likelihood estimator is a measurable solution of the equation

𝜽̂𝑛 = arg min
𝜃∈Θ

𝐼̃𝑛(𝜽)

An important remark is the distinction between the true conditional variance process 𝜎2
𝑡 and the

data-dependent recursive function 𝜎2
𝑡 (𝜽), which is used in the quasi-likelihood estimation. The true

volatility dynamics are given by

𝜎2
𝑡 = 𝜔★ +

𝑞∑
𝑖=1

𝛼★
𝑖 𝜖

2
𝑡−𝑖 +

𝑝∑
𝑗=1

𝛽★𝑗 𝜎
2
𝑡−𝑗 ,

where 𝜽★ = (𝜔★, 𝛼★
1 , . . . , 𝛼

★
𝑞 , 𝛽

★
1 , . . . , 𝛽

★
𝑝 ) denotes the true (unknown) parameter vector. On the other

hand, we define the data-dependent recursive conditional volatility function as

𝜎2
𝑡 (𝜽) = 𝜎2

𝑡 (𝜔, 𝛼1 , . . . , 𝛼𝑞 , 𝛽1 , . . . , 𝛽𝑝) = 𝜔 +
𝑞∑
𝑖=1

𝛼𝑖𝜖
2
𝑡−𝑖 +

𝑝∑
𝑗=1

𝛽 𝑗𝜎
2
𝑡−𝑗(𝜽),

which is computed recursively for any 𝜽 ∈ Θ, using the same initialization scheme as in Equation
(2.6). In quasi-maximum likelihood estimation, we evaluate the likelihood using this function 𝜎2

𝑡 (𝜽),
as it depends on the data and the parameter values. We overload the notation of 𝜎2

𝑡 by writing

𝜎2
𝑡 = 𝜎2

𝑡 (𝜽★),
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which emphasizes that the true conditional variance 𝜎2
𝑡 is equal to the data-dependent recursive

function evaluated at the true parameter𝜽★. Therefore, tomake the difference explicit, we denote the
conditional volatility process at time 𝑡 as 𝜎2

𝑡 (𝜽), and reserve the notation 𝜎2
𝑡 for the true conditional

volatility process.

Looking at the asymptotic properties of estimators, the choice of initial values is unimportant for the
QMLE’s limiting behavior [24]. There are two key asymptotic results: consistency and asymptotic
normality. We refer to [24] for detailed proofs. Below, we state both results, including the required
assumptions.

Theorem 2.1 (Consistency of the quasi-maximum likelihood method for GARCH models). Let
(
𝜃𝑛

)
be a sequence of quasi-maximum likelihood estimators that satisfy the following assumptions:

(i) 𝜃★ ∈ Θ and Θ is compact.

(ii) Strictly negative Lyapunov exponent: 𝜁(𝐴★) < 0, where

𝜁(𝐴★) := inf
𝑡∈N\{0}

1
𝑡
E
[
log




𝐴0𝑡𝐴0𝑡−1 · · · 𝐴01




] = lim
𝑡→∞

1
𝑡

log



𝐴0𝑡𝐴0𝑡−1 · · · 𝐴01




,
where ∥·∥ denotes the matrix norm defined by ∥𝐴∥ :=

∑ |𝑎𝑖 𝑗 | for all matrices 𝐴 = (𝑎𝑖 𝑗), and

𝐴★ = 𝐴★
𝑡 =

©­­­­­­­­­­­­­­­­­­­­«

𝛼★
1𝜂

2
𝑡 · · · 𝛼★

𝑞𝜂
2
𝑡 𝛽★1𝜂

2
𝑡 · · · 𝛽★𝑝𝜂

2
𝑡

1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

. . . . . .
...

. . .
...

0 · · · 1 0 · · · 0
𝛼★

1 · · · 𝛼★
𝑞 𝛽★1 · · · 𝛽★𝑝

0 · · · 0 1 · · · 0
0 · · · 0 0 1 · · ·
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 1

ª®®®®®®®®®®®®®®®®®®®®¬

(2.7)

Then, the GARCH model, as defined in Definition (2.9), admits a strictly stationary solution.

(iii) 𝜂2
𝑡 has a non-degenerate distribution and E[𝜂2

𝑡 ] = 1

(iv) If 𝑝 > 0, 𝒜𝜃★(𝑧) and ℬ𝜃★(𝑧) have no common roots, where

𝒜𝜃(𝑧) =
𝑞∑
𝑖=1

𝛼𝑖𝑧 𝑖 and ℬ𝜃(𝑧) = 1 −
𝑝∑
𝑗=1

𝛽 𝑗𝑧 𝑗 .

Moreover, 𝒜𝜃★ ≠ 0, and 𝛼★
𝑞 + 𝛽★𝑝 ≠ 0.

Under assumptions (𝑖) − (𝑖𝑣), almost surely

𝜽̂𝑛 → 𝜽★, as 𝑛 → +∞
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It is not assumed that the true value of the parameter belongs to the interior of the parameter space.
Thus, Theorem 2.1 allows handling cases where some coefficients are null. Next, we state asymptotic
normality for GARCH processes.

Theorem 2.2 (Asymptotic normality of the quasi-maximum likelihoodmethod for GARCHmodels).
Let

(
𝜽̂𝑛

)
be a sequence of quasi-maximum likelihood estimators satisfying the following assumptions:

(a) Assumptions (i)–(iv) from Theorem 2.1 hold.
(b) 𝜽★ ∈ int(𝚯), where int(𝚯) denotes the interior of the parameter space𝚯.
(c) The fourth moment of the innovations exists: 𝜅𝜂 := E[𝜂4

𝑡 ] < ∞.

Then, the QMLE is asymptotically normal:

√
𝑛(𝜽̂𝑛 − 𝜽★) 𝑑−→ 𝒩 (

0, (𝜅𝜂 − 1)𝐽−1) ,
where the matrix 𝐽 is defined as

𝐽 := E𝜽★

(
𝜕2𝑙𝑡(𝜽★)
𝜕𝜽𝜕𝜽′

)
= E𝜽★

(
1

𝜎4
𝑡 (𝜽★)

𝜕𝜎2
𝑡 (𝜽★)
𝜕𝜽

𝜕𝜎2
𝑡 (𝜽★)
𝜕𝜽′

)
,

and is positive definite.

Instead of in the case of consistency, the asymptotic normality requires that the true value of the
parameter belongs to the interior of the parameter space. This is generally not the case when com-
ponents of 𝜽★ are equal to zero [66].

Note that these asymptotic results do not immediately extend to models such as GARCH-X. The
asymptotic properties for the GARCH-X model have been established by Kristensen and Han, see
also [36]. In Chapter 5, we show that the QMLE of our proposed zero-inflated GARCH-X model is
both consistent and asymptotically normal, extending on the results of [24] and [36].

2.3 Copulas

The concept of copulas, first introduced by Sklar in 1959, establishes a link between multivariate
distributions and their one-dimensional marginal distributions. Copulas capture the dependence
structure among the components of a random vector, and have become a powerful tool for modeling
multivariate dependence. They are especially popular since they allow one to easily model and
estimate the distribution of random vectors by estimating marginals and copulas separately [38].

In probabilistic terms, a 𝑑-dimensional copula is a multivariate distribution function on the hyper-
cube [0, 1]𝑑, where the marginals are uniform. In analytic terms, this can be written as follows:

Definition 2.13 (d-dimensional copula). Let 𝑑 ≥ 2 be an integer. A copula is a function 𝐶 : [0, 1]𝑑 →
[0, 1] with the following properties:

1. For any 𝑗 = 1, . . . , 𝑑 and all 𝑢𝑗 ∈ [0, 1], 𝐶(𝑢1 , . . . , 𝑢𝑗−1 , 0, 𝑢𝑗+1 , . . . , 𝑢𝑑) = 0

2. For any 𝑗 = 1, . . . , 𝑑 and all 𝑢𝑗 ∈ [0, 1], 𝐶(1, . . . , 1, 𝑢𝑗 , 1, . . . , 1) = 𝑢𝑗
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3. 𝐶 is 𝑑-increasing, i.e. for each hyper-rectangle 𝐴 = Π𝑑
𝑗=1[𝑎 𝑗 , 𝑏 𝑗] ⊆ [0, 1]𝑑 the 𝐶-volume of A is

non-negative: ∫
𝐴
d𝐶(u) ≥ 0.

Transforming marginal distributions to a uniform scale on [0, 1] is essential in copula modeling as it
separates the dependence structure from individualmarginal characteristics. Without this standard-
ization, dependencemeasures would be influenced by specific properties of themarginals [16]. This
transformation is achieved using the probability integral transform, which states that for a continu-
ous randomvariable𝑋 with cumulative distribution function 𝐹𝑋(𝑥), the randomvariable𝑈 := 𝐹𝑋(𝑋)
follows a standard uniform distribution. Once the dependence structure ismodeled via a copula, the
quantile transformation reverses this process, mapping uniform samples back to the original scale
using the inverse CDF: 𝑋 = 𝐹−1

𝑋 (𝑈). The following theorem shows how a copula effectively connects
the the joint CDF of any multivariate random variable with its one-dimensional marginals.

Theorem 2.3 (Sklar’s theorem). Let X be a d-dimensional continuous random vector taking values in R𝑑,
with joint distribution function 𝐹, marginal distribution functions 𝐹𝑗 , and marginal density functions 𝑓𝑗 for
𝑗 = 1, . . . , 𝑑. Then the joint distribution function can be expressed as

𝐹(𝑥1 , . . . , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), . . . , 𝐹𝑑(𝑥𝑑)). (2.8)

Conversely, given a copula 𝐶 and marginals 𝐹𝑗 , then (𝑥1 , . . . , 𝑥𝑑) ↦→ 𝐶(𝐹1(𝑥1), . . . , 𝐹𝑑(𝑥𝑑)) defines a 𝑑-
dimensional cumulative distribution function of a random variable on R𝑑, with marginal distributions 𝐹𝑗 .
Moreover, if the marginals are continuous, then 𝐶 is unique.

Clearly, Sklar’s theorem states that any multivariate joint distribution function can be decoupled
in terms of univariate marginal distribution functions and a copula that describes the dependence
structure between the variables [38].
Basic concepts in probability, such as densities, also apply to the concept of copulas. If a copula exists
and it has a density, then it can be obtained in the usual manner as follows,

𝑐(𝑢1 , . . . , 𝑢𝑑) = 𝜕𝑝𝐶(𝑢1 , . . . , 𝑢𝑑)
𝜕𝑢1 , . . . , 𝜕𝑢𝑑

,

where 𝑐 is the copula density function. Furthermore, one of the key characteristics of copulas is that
they are invariant under monotonic transformations of the marginal distribution [38]. In particular,
the following theorem holds.

Theorem 2.4 (Invariance of copulas). LetX = (𝑋1 , . . . , 𝑋𝑑) be a random vector with continuous marginal
cumulative distribution functions 𝐹1 , . . . , 𝐹𝑑 and a continuous copula 𝐶. Let 𝐻𝑖 : R → R, for 𝑖 = 1, . . . , 𝑑,
be strictly increasing functions. Then the dependence structure of the random vector

(𝐻1(𝑋1), . . . , 𝐻𝑑(𝑋𝑑))
is also given by the copula 𝐶.

For theoretical results on copulas, the following general bounds are useful. Any copula 𝐶 is point-
wise bounded from below by the lower Fréchet-Hoeffding bound𝑊 and from above by the upper
Fréchet-Hoeffding bound 𝑀 [16].
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Theorem 2.5 (Fréchet-Hoeffding bounds). For any d-dimensional copula 𝐶, it holds that

𝑊(u) ≤ 𝐶(u) ≤ 𝑀(u), u ∈ [0, 1]𝑑

where𝑊(u) = max
{∑𝑑

𝑗=1 𝑢𝑗 − 𝑑 + 1, 0
}
and 𝑀(u) = min𝑖≤ 𝑗≤𝑑{𝑢𝑗}.

Note that the upper bound 𝑀𝑑 is a copula, whereas the lower bound𝑊𝑑 is a copula only for 𝑑 ≥ 2.
Generally, copulas fall into three families: elliptical copulas, Archimedean copulas, and quadratic
copulas [2]. First, elliptical copulas are widely favored in finance literature due to their straightfor-
ward implementation [38]. This family includes the normal and Student-t copulas, which are based
on elliptical distributions like the multivariate Gaussian or Student-t distribution. The Gaussian
copula is symmetric and lacks tail dependence, whereas the Student-t copula can capture extreme
dependence between variables. In contrast, Archimedean copulas, such as the Gumbel and Clayton
copulas, are not derived frommultivariate distribution functions and are useful for capturing asym-
metry between lower and upper tail dependencies. The Clayton copula shows greater dependence
in the negative tail than in the positive tail, while the Gumbel copula exhibits stronger dependence in
the upper tail than in the lower tail. All Archimedean copulas are asymmetric, except for the Frank
copula, which can capture the full range of dependence for marginals with weak tail dependence
[46]. Similar to the Frank copula, the Plackett copula family is symmetric and can accommodate all
possible positive and negative dependence. This is an example of a quadratic copula. However, in
this thesis, we will not further focus on Archimedean and quadratic copulas.

Let us now transition to a conditional framework by introducing a 𝑑-dimensional conditioning vari-
able Z, formally introduced by [48]. In this context, we can extend the definition of copulas and
Sklar’s theorem to accommodate the conditional setting as follows using the work of [58].

Definition 2.14. Let 𝑝 ≥ 2 and Z be a conditioning vector taking values in 𝒵 ⊂ R𝑑. A conditional
copula is a measurable function 𝐶 : [0, 1]𝑝 × 𝒵 → [0, 1] such that for PZ-almost every z ∈ 𝒵 the
following properties are satisfied:

1. For any 𝑗 = 1, . . . , 𝑝 and all 𝑢𝑗 ∈ [0, 1],

𝐶(𝑢1 , . . . , 𝑢𝑗−1 , 0, 𝑢𝑗+1 , . . . , 𝑢𝑝 | Z = z) = 0.

2. For any 𝑗 = 1, . . . , 𝑝 and all 𝑢𝑗 ∈ [0, 1],

𝐶(1, . . . , 1, 𝑢𝑗 , 1, . . . , 1 | Z = z) = 𝑢𝑗 .

3. For each hyperrectangle 𝐴 =
∏𝑝

𝑗=1[𝑎 𝑗 , 𝑏 𝑗] ⊆ [0, 1]𝑝 , the 𝐶-volume of 𝐴 is non-negative:∫
𝐴
𝑑𝐶(u | Z = z) ≥ 0.

Clearly, conditional copulas are defined as the conditional joint CDF of a multivariate random vector
on the unit cube with uniform marginals (conditionally to Z). Next, let us simply state the condi-
tional version of Sklar’s theorem. For a proof we refer to [48].

Theorem 2.6 (Sklar’s Theorem for Conditional Copulas). Let X and Z be random vectors taking values
in respectively R𝑝 and 𝒵 ⊂ R𝑑. Let the conditional joint CDF of X given Z = z, denoted by 𝐹X|Z=z, have
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conditional marginals 𝐹1|Z=z , . . . , 𝐹𝑝|Z=z. Then, there exists a conditional copula, denoted by 𝐶X|Z=z, such that
for all x ∈ R𝑝 and all z ∈ 𝒵,

𝐶X|Z=z(𝑢1 , . . . , 𝑢𝑝) = 𝐹X|Z=z

(
𝐹−1

1|Z=z(𝑢1), . . . , 𝐹−1
𝑝|Z=z(𝑢𝑝)

)
, (2.9)

where 𝐹−1
𝑗|Z=z denotes the generalized inverse of 𝐹𝑗|Z=z for 𝑗 = 1, . . . , 𝑝. Therefore, if X|Z = z is continuous,

then 𝐶X|Z=z is unique.

Similarly to the unconditional case, we can combine any set of continuous conditionalmarginal CDFs
with any conditional copula to form a well-defined conditional CDF. Lastly, it is important to high-
light that the dependence of the conditional copula 𝐶X|Z=z on the conditioning variable z introduces
challenges in both model specification and inference. To address this, the so-called simplifying as-
sumption is often imposed. This assumption tells that 𝐶X|Z=z is independent of z. Note that this does
not imply that the conditional copula coincides with the unconditional copula; rather, it means that
the conditional dependence structure does not vary with the conditioning point. For a comprehen-
sive discussion of the simplifying assumption, and methods for testing it, we refer to [17].

2.4 Dependence measures

With applications in mind, it is often desirable to summarize the dependence between components
of a random vector by a real number. Such numerical summaries of dependence are known as de-
pendence measures and are mostly studied in bivariate cases [38].

Pearson’s rho is a widely used measure of linear dependence. Essentially, it is a normalized version
of the covariance with values within [−1, 1]. Its mathematical definition and sample version are
given in the following definition.

Definition 2.15 (Pearson’s rho). Let 𝑋1 and 𝑋2 be real-valued random variables. The population
Pearson correlation coefficient of 𝑋1 and 𝑋2 is defined by

𝜌𝑋1 ,𝑋2 =
cov(𝑋1 , 𝑋2)

𝜎𝑋1𝜎𝑋2

where 𝜎 denotes the standard deviation. Further, let {(𝑋1,1 , 𝑋2,1), . . . , (𝑋1,𝑛 , 𝑋2,𝑛)} be paired obser-
vations, then a classical sample Pearson correlation coefficient is defined by

𝜌̂𝑋1 ,𝑋2 =

∑𝑛
𝑖=1(𝑋1,𝑖 − 𝑋̄1)(𝑋2,𝑖 − 𝑋̄2)√∑𝑛

𝑖=1(𝑋1,𝑖 − 𝑋̄1)2 ∑𝑛
𝑖=1(𝑋2,𝑖 − 𝑋̄2)2

.

Despite its popularity, it has several key limitations. First, it is only defined for random vectors with
finite second moments, meaning it does not exist for all distributions. Additionally, even for con-
tinuous distributions, it depends on the marginal distribution of the random vector and cannot be
expressed solely in terms of the underlying copula. This makes it less suitable for studying depen-
dence structures in a copula-based framework. Furthermore, Pearson’s correlation is invariant only
under strictly increasing linear transformations but not under strictly increasing transformations in
general. These limitations highlight its restricted applicability, particularly in cases where nonlinear
dependencies or varying marginal distributions play a significant role.
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Contrary to usual linear correlations, rank correlationmeasures have the advantage of being defined
without any condition on moments and being invariant to changes in the underlying marginal dis-
tributions [18]. Rank-based correlation measures provide a broader characterization of dependence
by focusing on themonotonic association between variables. More precisely, measures of rank corre-
lation indicate the similarity of the orderings of the data when ranked by each of the quantiles [58].
Two widely used measures of rank correlation are Spearman’s rho and Kendall’s tau. Additional
rank-based dependence measures can be found in [46].

Let us start with Kendall’s tau which is based on the concepts of concordance and discordance be-
tween data points. Informally, a pair of random variables is concordant if large values of one variable
tend to be associated with large values of the other and, conversely, small values of one variable are
associated with small values of the other [46]. Formally, the definitions of concordance and discor-
dance are as follows:

Definition 2.16 (Concordance and discordance). Let (𝑋1,1 , 𝑋2,1) and (𝑋1,2 , 𝑋2,2) be two independent
copies of a random vector X ∈ R2. A pair is:

• Concordant if (𝑋1,1 − 𝑋2,1)(𝑋1,2 − 𝑋2,2) > 0,
• Discordant if (𝑋1,1 − 𝑋2,1)(𝑋1,2 − 𝑋2,2) < 0.

A pair of bivariate observations is concordant when both elements of one observation are either
greater than or less than the corresponding elements of another observation. A pair is discordant
when only one of the elements in one observation is greater than the corresponding element in the
other [46]. Using these concepts, Kendall’s tau is defined as the difference between the probability
of concordance and the probability of discordance between two independent versions of (𝑋1 , 𝑋2).
Formally, this can be expressed as follows:

Definition 2.17 (Kendall’s tau). Let 𝑋1 and 𝑋2 be real-valued random variables. The population
Kendall’s tau is given by:

𝜏𝑋1 ,𝑋2 = P((𝑋1,1 − 𝑋2,1)(𝑋1,2 − 𝑋2,2) > 0) − P((𝑋1,1 − 𝑋2,1)(𝑋1,2 − 𝑋2,2) < 0),

where (𝑋1,𝑖 , 𝑋2,𝑖)𝑖=1,2 are two independent copies of (𝑋1 , 𝑋2). A classical sample version can be ex-
pressed as,

𝜏̂𝑋1 ,𝑋2 =
2

𝑛(𝑛 − 1)
∑
𝑖1<𝑖2

sign((𝑋1,𝑖1 − 𝑋1,𝑖2)(𝑋2,𝑖1 − 𝑋2,𝑖2)).

Hence, Kendall’s tau always falls within the interval [−1, 1]. A value of −1 indicates perfect negative
correlation, while a value of 1 signifies perfect positive correlation. If the value of Kendall’s tau
is equal to zero, the variables are independent. However, the converse does not necessarily hold,
i.e. having a Kendall’s tau of zero does not imply that the variables are completely independent [7].
Furthermore, Kendall’s tau is often linked to copulas. Denoting by𝐶1,2 the unique underlying copula
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of (𝑋1 , 𝑋2), which is assumed to be continuous, Kendall’s tau has several equivalent representations:

𝜏𝑋1 ,𝑋2 = 2P((𝑋1,1 − 𝑋2,1)(𝑋1,2 − 𝑋2,2) > 0) − 1

= 4P(𝑋1,1 < 𝑋2,1 , 𝑋1,2 < 𝑋2,2) − 1

= 1 − 4P(𝑋1,1 < 𝑋2,1 , 𝑋1,2 > 𝑋2,2)
= 4

∫
[0,1]2

𝐶(𝑢1 , 𝑢2)𝑑𝐶(𝑢1 , 𝑢2) − 1.

Kendall’s tau provides significant insights into the underlying dependence structure. For conve-
nience, the notation 𝜏1,2 will be used instead of 𝜏𝑋1 ,𝑋2 whenever the variables are clear from the
context.

Now, let us discuss the other rank-based correlation coefficient, Spearman’s rho. Consider random
variables𝑋1 , 𝑋2 withmarginals 𝐹1 , 𝐹2. Essentially, Spearman’s rho is the linear correlation coefficient
of the random vector (𝐹(𝑋1), 𝐹(𝑋2)) obtained from (𝑋1 , 𝑋2) by marginally applying the probability
integral transform [38]. In comparison with the linear correlation coefficient, Spearman’s rho thus
always exists. Since the distribution of (𝐹(𝑋1), 𝐹(𝑋2)) is in fact the copula 𝐶, it is clear Spearman’s
rho depends on the underlying copula, and not on the marginals 𝐹1 and 𝐹2. Formally, Spearman’s
rho is defined as follows:

Definition 2.18 (Spearman’s rho). Let 𝑋1 and 𝑋2 be real-valued continuous random variables. The
population Spearman’s rho of 𝑋1 and 𝑋2 is defined as:

𝜌𝑋1 ,𝑋2 := 𝜌𝑈1 ,𝑈2 =
Cov(𝑈1 , 𝑈2)

𝜎𝑈1𝜎𝑈2
=
𝐸[𝑈1𝑈2 − 1

4 ]
1
12

which simplifies to:

𝜌𝑋1 ,𝑋2 = 12
∫
[0,1]2

𝑢1𝑢2𝑑𝐶(𝑢1 , 𝑢2) − 3,

where 𝜎𝑈1 , 𝜎𝑈2 denote the standarddeviations of𝑈1 , 𝑈2 and𝐶 is the copula corresponding to (𝑋1 , 𝑋2).
Further, given paired observations {(𝑋1,1 , 𝑋2,1), . . . , (𝑋1,𝑛 , 𝑋2,𝑛)} with distinct integer ranks, the sam-
ple Spearman’s rho is defined as:

𝜌̂𝑋1 ,𝑋2 = 1 − 6
∑𝑛
𝑖=1(𝑅(𝑋1,𝑖) − 𝑅(𝑋2,𝑖))2

𝑛(𝑛2 − 1) ,

where 𝑅(𝑋1,𝑖) and 𝑅(𝑋2,𝑖) denote the ranks of observations 𝑋1,𝑖 and 𝑋2,𝑖 for 𝑖 = 1, . . . , 𝑛.

The corresponding sample statistic is robust to outliers since it depends only on ranked data. The
same robustness property also applies to other rank correlation coefficients, such as Kendall’s rank
correlation coefficient [58].

Lastly, we will discuss the conditional setup for Kendall’s tau, as we will only use this conditional
dependence measure throughout this thesis. Generally, conditional dependence measures are of
interest because they allow us to summarize the evolution of the dependence between 𝑋1 and 𝑋2,
when the covariate is changing [18]. Indeed, the goal is now tomeasure the dependence between the
two components 𝑋1 and 𝑋2, given the vector of covariates Z. Starting with the conditional Kendall’s
tau, this is a conditional dependence measure used to predict whether a pair of random variables
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is concordant or discordant conditionally on Z. We define the conditional Kendall’s tau in a similar
manner as its unconditional counterpart.

Definition 2.19 (Conditional Kendall’s tau). Let 𝑋1 and 𝑋2 be real-valued random variables and Z
be a random vector taking values in Z ⊂ R𝑑. For any point z ∈ Z, we define Kendall’s tau of 𝑋1 and
𝑋2 conditional on Z = z by

𝜏1,2|Z=z = P ((𝑋1,1 − 𝑋1,2)(𝑋2,1 − 𝑋2,2) > 0 | Z1 = Z2 = z)
− P ((𝑋1,1 − 𝑋1,2)(𝑋2,1 − 𝑋2,2) < 0 | Z1 = Z2 = z) ,

where (𝑋1,𝑖 , 𝑋2,𝑖 , 𝑍𝑖)𝑖=1,2 are two independent versions of (𝑋1 , 𝑋2 ,Z).
For every point z ∈ Z, the conditional Kendall’s tau takes values in [−1, 1], while the underlying
conditional copula is a bivariate function for each z ∈ Z. Similarly as in the unconditional setup,
when the conditional marginal distributions of 𝑋1 and 𝑋2 given Z = z are continuous, Definition
2.19 is equivalent to any of the following expressions:

𝜏1,2|Z=z = 4P(𝑋1,1 < 𝑋1,2 , 𝑋2,1 < 𝑋2,2 | Z1 = Z2 = z) − 1,

= 1 − 4P(𝑋1,1 < 𝑋1,2 , 𝑋2,1 > 𝑋2,2 | Z1 = Z2 = z),
= 4

∫
[0,1]2

𝐶1,2|Z=z(𝑢1 , 𝑢2) 𝑑𝐶1,2|Z=z(𝑢1 , 𝑢2) − 1.

Note that, as conditional copulas themselves, conditional Kendall’s tau are invariant with respect to
monotonic transformations [18]. Of course, if Z is independent of (𝑋1 , 𝑋2) then, for every z ∈ R𝑑 the
conditional Kendall’s tau is equal to the unconditional Kendall’s tau.

2.5 Conditional dependence estimation

In this section, we introduce the notion of kernel regression for construction of non-parametric con-
ditional estimators. Let us be interested in the estimation of the expectation of a random variable
𝑌 conditional on some covariate Z ∈ R𝑑, taking values in a measurable state space 𝒵 ⊆ R𝑑. Then,
in the case of a continuously distributed covariate we will almost surely never observe that Z = z,
for any z ∈ 𝒵. Therefore a method is needed with which it is still possible to compute reasonable
estimates. Most natural is the concept of kernel regression, or also known as kernel smoothing. That
is, to consider adjacent observations in which the variate Z is close to the points z at which we want
the estimate. Recall the definition of the conditional expectation:

𝑚(z) = E[𝑌 | Z = z] =
∫

𝑦 𝑓𝑌|Z=z(𝑦)d𝑦 =

∫
𝑓Z,𝑌(z,𝑦)(𝑦)d𝑦
𝑓Z(z) (2.10)

In kernel regression, the estimates of 𝑓Z,𝑌(z, 𝑦) and 𝑓Z(z) are computed by kernel density estimation.
That is, the density functions are approximated by adjacent observations of 𝑍 in the following way

𝑓Z,𝑌(z, 𝑦; ℎ) := 1
𝑛

𝑛∑
𝑖=1

1
ℎ𝑑
𝐾1

(
z − Z𝑖
ℎ

)
1
ℎ
𝐾2

(
𝑦 − 𝑌𝑖
ℎ

)
,

𝑓𝑍(z; ℎ) := 1
𝑛

𝑛∑
𝑖=1

1
ℎ𝑑
𝐾1

(
z − Z𝑖
ℎ

)
,

(2.11)
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where 𝐾1 : R𝑑 → R and 𝐾2 : R → R are kernel functions, assumed to be symmetric, unimodal
at zero, and satisfying

∫
𝐾 = 1. The parameter ℎ is the bandwidth and 𝑛 is the sample size. The

bandwidth controls the sensitivity of the density estimates towards observations further away from
z, whereas the kernel function defines the form of the dependency. Commonly used kernels are the
Gaussian and Epanechnikov kernels. Then, the smoothed estimate of 𝑚(z) is obtained by replacing
𝑓Z,𝑌(z, 𝑦) and 𝑓Z(z) in (2.10) with their respective kernel density estimates. By using the respective
kernel density estimates from (2.11), we obtain

𝑚(z; ℎ) :=

∫
𝑦 𝑓̂Z,𝑌(z, 𝑦; ℎ) 𝑑𝑦

𝑓̂Z(z; ℎ)

=

∫
𝑦 1
𝑛

∑𝑛
𝑖=1

1
ℎ𝑑𝐾1

(
z−Z𝑖
ℎ

)
1
ℎ𝐾2

(
𝑦−𝑌𝑖
ℎ

)
𝑑𝑦

1
𝑛

∑𝑛
𝑖=1

1
ℎ𝑑𝐾1

(
z−Z𝑖
ℎ

)
=

1
𝑛

∑𝑛
𝑖=1

1
ℎ𝑑𝐾1

(
z−Z𝑖
ℎ

) ∫
𝑦 1
ℎ𝐾2

(
𝑦−𝑌𝑖
ℎ

)
𝑑𝑦

1
𝑛

∑𝑛
𝑖=1

1
ℎ𝑑𝐾1

(
z−Z𝑖
ℎ

) .

(2.12)

We can work out (2.12) by a change of variable 𝑢𝑖 = 𝑦−𝑌𝑖
ℎ . This derivation is originated from [32]

and also mentioned in [58]. We find that∫
𝑦

1
ℎ
𝐾2

(
𝑦 − 𝑌𝑖
ℎ

)
𝑑𝑦 =

∫
(ℎ𝑢 + 𝑌𝑖)𝐾2(𝑢)𝑑𝑢

= ℎ
∫

𝑢𝐾2(𝑢)𝑑𝑢 + 𝑌𝑖
∫

𝐾2(𝑢)𝑑𝑢
= 𝑌𝑖 ,

(2.13)

where we used that 𝐾2 is symmetric and that
∫
𝐾2 = 1. By combining Equations (2.13) and (2.12),

we obtain

𝑚(𝑧; ℎ) =
1
𝑛

∑𝑛
𝑖=1

1
ℎ𝑑𝐾1

(
𝑧−𝑍𝑖
ℎ

)
𝑌𝑖

1
𝑛

∑𝑛
𝑖=1

1
ℎ𝑑𝐾1

(
𝑧−𝑍𝑖
ℎ

)
=

𝑛∑
𝑖=1

𝑤𝑖 ,𝑛(𝑧)𝑌𝑖 ,
(2.14)

where
𝑤𝑖,𝑛(𝑧) :=

𝐾ℎ(𝑍𝑖 − 𝑧)∑𝑛
𝑘=1 𝐾ℎ(𝑍𝑘 − 𝑧)

, (2.15)

with 𝐾ℎ := ℎ−𝑑𝐾(·/ℎ). The resulting estimator𝑚(z; ℎ) can be seen as a weighted average of𝑌1 , · · · , 𝑌𝑛
by means of the so-called Nadaraya-Watson weights 𝑤𝑖 ,𝑛(z). Furthermore, note again that the band-
width ℎ controls the estimator’s sensitivity towards observations Z𝑖 that are further away from point
𝑧. It will have a strong influence on the characteristics of the estimator and is closely related to the
sample size. Reducing the bandwidth will decrease the estimator’s bias and increase its variance,
which is known as the bias-variance tradeoff [7] [19]. Hereby, larger sample sizes will allow for a
smaller choice of the bandwidth. Further note that the volume of the space 𝒵 grows exponentially
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fast when increasing the dimensionality of𝒵. As such, the density of observations within that space
decreases at the same rate, calling for an exponentially increasing bandwidth. In practice, this so-
called curse of dimensionality means that we can only consider covariates of a few dimensions at
most.

In this thesis, kernel estimation is carried out on the basis of the Epanechnikov kernel and simu-
lations are performed with the help of the R package CondCopulas [20]. Specifically, the function
CKT.kernel implements a kernel-based nonparametric estimator for the conditional Kendall’s tau
𝜏1,2|z as proposed by Derumigny and Fermanian [18]. This estimator is defined by

𝜏̂1,2|𝑧 =
𝜏̂∗1,2|𝑧
1 − 𝑠𝑛 ,

where,

𝜏̂∗1,2|z =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑤𝑖 ,𝑛(z)𝑤 𝑗 ,𝑛(z)
[
1
{
(𝑋𝑖,1 − 𝑋𝑗 ,1)(𝑋𝑖 ,2 − 𝑋𝑗,2) > 0}

− 1{(𝑋𝑖 ,1 − 𝑋𝑗,1)(𝑋𝑖 ,2 − 𝑋𝑗 ,2) < 0
}]

𝑠𝑛 =
𝑛∑
𝑖=1

𝑤2
𝑖 ,𝑛(z).

Here, the weights 𝑤𝑖 ,𝑛(𝑧) are defined as Nadaraya–Watson kernel weights. The estimator 𝜏̂1,2|𝑧 in-
cludes a correction factor 1− 𝑠𝑛 such that the estimate only takes values in [−1, 1]. In fact, 𝜏̂∗1,2|z takes
values in [−1+ 𝑠𝑛 , 1+ 𝑠𝑛]. The implementation supports both univariate and multivariate condition-
ing variables Z, and allows for the choice of kernel functions (e.g. Epanechnikov or Gaussian) and
bandwidth ℎ.

2.6 Asymptotic statistics

Asymptotic statistics studies the limiting behavior of statistical procedures as the sample size tends to
infinity. Central to this theory is stochastic convergence, which describes how sequences of random
variables behave in the limit. While the classical limit 𝑓𝑛(𝑥) → 𝑓 (𝑥) as 𝑛 → ∞ refers to pointwise or
uniform convergence of deterministic functions on a fixed domain, stochastic convergence formalizes
convergence in a probabilistic sense. There are several distinct modes of stochastic convergence.
These include convergence in distribution, in probability, almost surely, and in 𝐿𝑝 . Each captures a
different level of probabilistic control over the sequence and forms part of a natural hierarchy.

This section begins with the formal definitions of these convergence concepts. We then develop the
notions of consistency and asymptotic normality. These properties are important for the theoretical
analysis of estimators and play a role in large-sample inference. All definitions and results in this
section are based on the work of [7] and [66].

A random vector in R𝑘 is a vector X = (𝑋1 , . . . , 𝑋𝑘) of real random variables. Recall that the distri-
bution function of X is the map x ↦→ P(X ≤ x). Let (X𝑛)𝑛∈N be a sequence of random vectors defined
on the same probability space (Ω,ℱ , P). Let 𝑑(𝑥, 𝑦) be a distance function on R𝑘 , for example the
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Euclidean distance:

𝑑(𝑥, 𝑦) = || 𝑥 − 𝑦|| =
(
𝑘∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2
) 1

2

.

Then, we define the following modes of stochastic convergence:

Definition 2.20 (Modes of stochastic convergence).

(i) Convergence in distribution: A sequence of random vectors (X𝑛)𝑛≥1 is said to converge in
distribution to a random vector X, denoted by X𝑛

𝑑−→ X, if

P(X𝑛 ≤ x) → P(X ≤ x), (2.16)

for every x at which the limit distribution function x ↦→ P(X ≤ x) is continuous.

(ii) Convergence in probability: A sequence of random variables (X𝑛)𝑛≥1 is said to converge in
probability, denoted by 𝑋𝑛

𝑝−→ 𝑋, if

∀𝜖 > 0, P(𝑑(X𝑛 ,X) > 𝜖) −→
𝑛→∞ 0. (2.17)

(iii) Almost sure convergence: A sequence of random variables (X𝑛)𝑛∈N is said to converge almost
surely to X, denoted by X𝑛

𝑎.𝑠.−−→ X, if

P( lim
𝑛→∞ 𝑑(X𝑛 ,X) = 0) = 1. (2.18)

(iv) 𝐿𝑝-convergence: A sequence of random variables (X𝑛)𝑛≥1 is said to converge in 𝐿𝑝 to X for
𝑝 ≥ 1, denoted by X𝑛

𝐿𝑝−→ X, if

lim
𝑛→+∞E [|X𝑛 − X|𝑝] = 0, (2.19)

given that the 𝑝-th absolute moments E[|𝑋𝑛 |𝑝] and E[|𝑋 |𝑝] of 𝑋𝑛 and 𝑋 exist for all 𝑛.

There exist relationships between the different modes of stochastic convergence. Specifically, almost
sure convergence implies convergence in probability, which in turn implies convergence in distri-
bution. Similarly, convergence in 𝐿𝑝 for 𝑝 ≥ 1 implies convergence in probability. However, these
implications are not generally reversible. For example, convergence in distribution does not imply
convergence in probability, unless there are additional assumptions. For proofs of the mentioned
implications, we refer to [66].

A useful result in stochastic convergence is the continuous mapping theorem. Essentially, it states
that if a sequence of random vectors (X𝑛)𝑛≥1 converges to a random vector X, and 𝑔 is a continuous
function, then the sequence of transformed random vectors (𝑔(X𝑛))𝑛≥1 converges to 𝑔(X). Impor-
tantly, this result holds for each of the three principal modes of stochastic convergence.

Theorem 2.7 (Continuous Mapping Theorem). Let 𝑔 : R𝑘 → R𝑚 be a function that is continuous at
every point of a set 𝐶 ⊂ R𝑘 , with P(X ∈ 𝐶) = 1. Then:

(i) If X𝑛
𝑑→ X, then 𝑔(X𝑛) 𝑑→ 𝑔(X).
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(ii) If X𝑛
𝑝→ X, then 𝑔(X𝑛) 𝑝→ 𝑔(X).

(iii) If X𝑛
𝑎.𝑠.→ X, then 𝑔(X𝑛) 𝑎.𝑠.→ 𝑔(X).

For a proof of Theorem 2.7, we refer to [66]. From these definitions of stochastic convergences,
one can define corresponding properties about estimators themselves: consistency and asymptotic
normality. Both of these properties will be proved for the estimators that we will propose in this
thesis, specifically in Chapter 5. In this setting, let Θ denote the parameter space, and 𝜃★ denote the
true parameter.

Definition 2.21 (Consistency). An estimator 𝜽̂𝑛 = 𝜃𝑛(𝑋1 , . . . , 𝑋𝑛) of the true parameter 𝜽★ ∈ 𝚯 is
said to be

(i) weakly consistent, if
𝜽̂𝑛

𝑝−→ 𝜽★, as 𝑛 → +∞.
(ii) strongly consistent, if

𝜽̂𝑛
𝑎.𝑠.−−→ 𝜽★, as 𝑛 → +∞.

Consistency guarantees that for large 𝑛, the estimator will be arbitrarily close to the parameter
value. Related to the definition of consistency is the following proposition of Kristensen and Rahbek,
adapted from [42, p. 961] to the notation used in this thesis. It shows that, under suitable conditions
such as the existence of a limiting criterion function defined via the stationary distribution of the pro-
cess, strong consistency of the estimator holds. This proposition forms the basis of the consistency
proof for the quasi-maximum likelihood estimator of zero-inflated GARCH-X models proposed in
Chapter 6. Formally, let (𝑟𝑡)𝑡≥1 denote a geometrically ergodic Markov sequence such that a station-
ary version (𝑟∗𝑡 )𝑡≥1 exists, representing for example financial returns of some asset 𝑗. Recall that 𝐿𝑛(𝜽)
is the average Gaussian quasi-log-likelihood function given by

𝐿 𝑗 ,𝑛(𝜽) = 1
𝑛

𝑛∑
𝑡=1

𝑙(𝑟𝑡 | 𝑟𝑡−1;𝜽), 𝑙(𝑟 𝑗 ,𝑡 | 𝑟 𝑗,𝑡−1;𝜽 𝑗) = log(𝜎𝑡) +
𝑟2
𝑗 ,𝑡

𝜎𝑡
.

We now state Proposition 2 from Kristensen and Rahbek [42].

Proposition 2.1 (Kristensen&Rahbek). Make the following assumptions for some asset 𝑗 ∈ {1, ..., 𝑁assets}:
(i) The parameter space Θ𝑗 is a compact Euclidean space, and the true parameter 𝜃★ belongs to Θ.
(ii) The mapping 𝜽 ↦→ 𝑙(𝑟 𝑗 ,𝑡 | 𝑟 𝑗 ,𝑡−1;𝜽) is continuous for all 𝑥, 𝑦 ∈ R𝑑.
(iii) For all 𝜽 ∈ 𝚯, the following exists

𝐿(𝜽) := E
[
𝑙(𝑟∗𝑡 | 𝑟∗𝑡−1;𝜽)] .

(iv) The true parameter minimizes uniquely, that is, 𝐿(𝜽★) < 𝐿(𝜽) for all 𝜽 ≠ 𝜽★.
(v) For any compact set 𝒟 ⊂ 𝚯 with 𝜽★ ∉ 𝒟 , we have

E
[
inf
𝜽∈𝐷 𝑙(𝑟𝑡 | 𝑟𝑡−1;𝜽)] > −∞.
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Then, the estimator 𝜽̂𝑛 defined by 𝜽̂𝑛 := arg min𝜽∈𝚯 1
𝑛

∑𝑛
𝑖=1 𝑙(𝑟𝑖 | 𝑟𝑖−𝑖;𝜽) is strongly consistent, that is,

𝜽̂𝑛
a.s.−−→ 𝜽★ as 𝑛 → ∞. (2.20)

In asymptotic theory, it is convenient to have short expressions for terms that converge in probability
to zero. The notations 𝑜𝑝(·) and 𝑂𝑝(·) are used to describe the limiting behavior of sequences of
random variables. The notation 𝑜𝑝(1) is short for a sequence of random vectors that converge to
zero in probability. On the other hand, the expression 𝑂𝑝(1) denotes a sequence that is bounded in
probability [66]. More generally, we define this concept as follows.

Definition 2.22 (Big-𝑂𝑝 and Small-𝑜𝑝). Let (𝑋𝑛) be a sequence of random variables and (𝑎𝑛) a se-
quence of positive constants. Then we have:

(i) Small-𝑜𝑝 .

𝑋𝑛 = 𝑜𝑝(𝑎𝑛), if 𝑋𝑛𝑎𝑛
𝑝−→ 0 as 𝑛 → +∞.

Equivalently, this may be written as 𝑋𝑛/𝑎𝑛 = 𝑜𝑝(1).

(ii) Big-𝑂𝑝 .

𝑋𝑛 = 𝑂𝑝(𝑎𝑛), if ∀𝜀 > 0, ∃𝑀 > 0, ∃𝑁 < +∞, ∀𝑛 > 𝑁, P
(����𝑋𝑛𝑎𝑛

���� > 𝑀

)
< 𝜀.

That is, the sequence 𝑋𝑛/𝑎𝑛 is stochastically bounded.

The difference between 𝑜𝑝(𝑎𝑛) and 𝑂𝑝(𝑎𝑛) lies in the strength of convergence. In addition to the for-
mal Definition 2.22, the notation 𝑋𝑛 = 𝑂𝑝(𝑎𝑛) intuitively means that, with high probability, 𝑋𝑛 does
not grow faster than some constant multiple of 𝑎𝑛 as 𝑛 → +∞. In contrast, the notation 𝑋𝑛 = 𝑜𝑝(𝑎𝑛)
expresses that 𝑋𝑛/𝑎𝑛 converges to zero in probability. So while 𝑂𝑝(𝑎𝑛) only requires boundedness
in probability, 𝑜𝑝(𝑎𝑛) requires the stronger condition of convergence in probability toward zero. As
a result, 𝑜𝑝(𝑎𝑛) always implies 𝑂𝑝(𝑎𝑛), but the reverse implication does not hold [66].

We use the 𝑂𝑝 and 𝑜𝑝 notations in the following result by Kristensen and Shin. The theorem of
Kristensen and Shin is the second theoremused in the consistency proof of the zero-inflatedGARCH-
X models proposed in Chapter 6, next to Proposition 2.1. Before stating the result, we introduce
additional notation: the score 𝑆𝑇 and the hessian 𝐻𝑇 , which are defined as the first and second
derivatives of the quasi-log-likelihood function with respect to the parameter vector 𝜽 respectively,
and are given by:

𝑆𝑇(𝜽) = 𝜕𝐿𝑇(𝜽)
𝜕𝜽

=
1
𝜈𝑇

𝑇∑
𝑡=1

𝜕𝑙(𝑟𝑡 | 𝑟𝑡−1;𝜃)
𝜕𝜽

∈ R𝑑 ,

𝐻𝑇(𝜽) = 𝜕2𝐿𝑇(𝜽)
𝜕𝜽𝜕𝜽′ =

1
𝜈𝑇

𝑇∑
𝑡=1

𝜕2𝑙(𝑟𝑡 | 𝑟𝑡−1;𝜽)
𝜕𝜽𝜕𝜽′ ∈ R𝑑×𝑑 ,

𝐺𝑇,𝑖(𝜽) = 𝜕3𝐿𝑇(𝜽
𝜕𝜽𝜕𝜽′𝜕𝜽𝑖

=
1
𝜈𝑇

𝑇∑
𝑡=1

𝜕3𝑙(𝑟𝑡 | 𝑟𝑡−1;𝜽)
𝜕𝜽𝜕𝜽′𝜕𝜽𝑖

∈ R𝑑×𝑑
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In addition, we define the diagonal matrix ℐ𝑇(𝜽) = diag{𝑖𝑇(𝜽)} ∈ R𝑑×𝑑, where 𝑖𝑇(𝜽) denotes the
vector of diagonal entries corresponding to the observed Fisher information. The Fisher information
measures the amount of information that an observable random variable carries about an unknown
parameter 𝜽. Formally, it is defined as the variance of the score function. In Kristensen and Shin, it
is defined as

𝑖𝑇(𝜽) = 1
𝜈𝑇

𝑇∑
𝑡=1

E
[
𝜕2𝐿𝑇(𝜽)
𝜕𝜽𝜕𝜽′

]
= E[𝐻𝑇(𝜽)] ∈ R𝑑×𝑑 .

Based on this, we define the standardized versions of the score and Hessian as

𝑈𝑇(𝜽) = 𝑙−1/2
𝑇 (𝜽)𝑆𝑇(𝜽), 𝑉𝑇(𝜽) = 𝑙−1/2

𝑇 (𝜽)𝐻𝑇(𝜽)𝑙−1/2
𝑇 (𝜽), 𝑊𝑇,𝑖 = 𝑙−1/2

𝑇 𝐺𝑇,𝑖(𝜽)𝑙−1/2
𝑇

The following theorem, originally from Kristensen and Shin [43], is adapted to the notation used in
this thesis. For the original formulation and the proof, we refer to [43].

Theorem 2.8 (Kristensen & Shin). Let 𝐿𝑇(𝜽) be the log-likelihood and let 𝜈𝑇 be a normalizing factor to
ensure 𝐿𝑇(𝜽) is well-behaved asymptotically. Assume that the following conditions hold:

(i) For some 𝜖 > 0 and 𝑙−1
𝑇 = 𝑂𝑝(1), the parameter space is given by a sequence of local neighborhoods,

𝚯 =

{
𝜽 :





 𝑙1/2
𝑇 (𝜽★ − 𝜽)





 ≤ 𝜖

}
⊆ R𝑑

(ii) 𝐿𝑇(𝜽) is three times continuously differentiable with its derivatives satisfying:

(a)
(√

𝜈𝑇 ·𝑈𝑇(𝜽★), 𝑉𝑇(𝜽★)
)

𝑑−→ (𝑆+∞ , 𝐻+∞), with 𝐻+∞ < 0 a.s.
(b) max 𝑗=1,...,𝑑 sup𝜽∈Θ𝑇

∥𝑊𝑇(𝜽)∥ = 𝑜𝑝(1)
(iii) For some sequence 𝜈𝑇 → +∞ it holds that

1
𝜈𝑇

sup
𝜽∈𝚯

|𝐿𝑇(𝜽) − 𝐿𝑇(𝜽)| = 𝑜𝑝(1/√𝜈𝑇),

Equivalently, this can be written as

sup
𝜽∈𝚯

|𝐿𝑇(𝜽) − 𝐿𝑇(𝜽)| = 𝑜𝑝(√𝜈𝑇)

Then, for the quasi-maximum likelihood estimator 𝜽̂ and the asymptotically equivalent estimator 𝜽∗, we have:

√
𝜈𝑇 · 𝑙1/2

𝑇 (𝜽̂ − 𝜽∗) = 𝑜𝑝(1).

Note that normalizing factor 𝜈𝑇 is only important for the theoretical derivations and not relevant for
the actual implementation of our estimator since 𝜈𝑇 does not depend on 𝜽. The standard choice is
𝜈𝑇 = 𝑇, as is the case when the model is stationary [43].

Next, we will give the defintion of asymptotic normality and follow up with the Law of Large Num-
bers and the Central Limit Theorem for different cases.

Definition 2.23 (Asymptotic normality). An estimator 𝜽̂𝑛 = 𝜃𝑛(𝑋1 , . . . , 𝑋𝑛) is said to be asymptoti-
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cally normally distributed, if

𝑎𝑛(𝜽̂𝑛 − 𝜽★) 𝑑−→ 𝒩(0, 𝜎2(𝜽★)), as 𝑛 → +∞,

where 𝑎𝑛 is a scaling sequence that tends to +∞, and 𝜎2(𝜃★) denotes the so-called asymptotic vari-
ance, assumed to be strictly positive.

Note that in most cases 𝑎𝑛 =
√
𝑛. This form of convergence means that, for large 𝑛, the distribution

of 𝜽̂𝑛 can be approximated by a normal distribution centered at the true parameter 𝜽★, with variance
𝜎2(𝜽★)/𝑛.

Consistency and asymptotic normality of estimators are often justified by the Law of Large Numbers
and the Central Limit Theorem respectively [66]. For the Law of Large Numbers, we distinguish
three cases.

Theorem 2.9 (Law of Large Numbers).

(i) Weak Law of Large Numbers
Let (X𝑛)𝑛≥1 be a sequence of independent, identically distributed random vectors with a marginal dis-
tribution that has finite expected value 𝜇. For every 𝜀 > 0,

lim
𝑛→∞P

(
|𝑿 𝑛 − 𝜇| > 𝜀

)
= 0. (2.21)

In other words, 𝑿 𝑛 converges in probability to 𝜇.

(ii) Strong Law of Large Numbers
Let (X𝑛)𝑛≥1 be a sequence of independent, identically distributed random variables with a marginal
distribution that has finite expected value 𝜇. Then,

P
(

lim
𝑛→∞𝑿 𝑛 = 𝜇

)
= 1. (2.22)

In other words, 𝑿 𝑛 converges almost surely to 𝜇.

(iii) Law of Large Numbers for stationary and ergodic sequences:
Let (X𝑛)𝑛≥1 be a stationary and ergodic sequence of random variables with a marginal distribution that
has finite expected value 𝜇, and E[|𝑋𝑛 |] < +∞ for all 𝑛. Then,

P
(

lim
𝑛→∞𝑿 𝑛 = 𝜇

)
= 1. (2.23)

In other words, 𝑿 𝑛 converges almost surely to 𝜇.

Note that the Law of Large Numbers for stationary and ergodic sequences is a generalization of the
Strong Law of Large Numbers. Indeed, the Strong Law of Large Numbers is a special case where the
random vectors are independent and identically distributed. A generalization of the Law of Large
Numbers is the ergodic theorem, where the sequence (𝑋𝑡) is not independent, but stationary and
ergodic.
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Theorem 2.10 (Ergodic theorem for stationary sequences). Let (𝑋𝑡)𝑡∈Z be a strictly stationary and er-
godic sequence. Let 𝑓 be a measurable function and E

[��� 𝑓 (. . . , 𝑋𝑡−1 , 𝑋𝑡 , 𝑋𝑡+1 , . . . )
���] < +∞. Then,

1
𝑛

𝑛∑
𝑡=1

𝑓 (. . . , 𝑋𝑡−1 , 𝑋𝑡 , 𝑋𝑡+1 , . . . ) 𝑎.𝑠.−−→ E
[
𝑓 (. . . , 𝑋𝑡−1 , 𝑋𝑡 , 𝑋𝑡+1 , . . . )

]
A related concept is the generalization of theGlivenko-Cantelli theorem to the stationary and ergodic
setting, see [64] for a more general statement. This theorem will be used to prove asymptotic results
on copula estimators in Chapter 7.

Theorem 2.11 (Glivenko-Cantelli Theorem fromTucker). Let (𝑋𝑛)𝑛≥1 be a strictly stationary and ergodic
sequence of random variables. If (𝐹𝑛(𝑥))𝑛≥1 denotes the associated sequence of empirical distribution functions,
then

P
(

sup
𝑥∈(−∞,+∞)

|𝐹𝑛(𝑥) − 𝐹(𝑥)| → 0
)
= 1,

where 𝐹(𝑥) denotes the CDF of 𝑋1, and the empirical CDF is defined as 𝐹𝑛(𝑥) := 1
𝑛

∑𝑛
𝑖=1 1{𝑋𝑖≤𝑥} .

Next, we present the classical Central Limit Theorem.

Theorem 2.12 (Central Limit Theorem). Let (𝑋𝑛)𝑛≥1 be independent and identically distributed random
variables with finite mean 𝜇 and finite variance 𝜎2. Then,

√
𝑛(𝑋̄𝑛 − 𝜇) 𝑑−→ 𝒩(0, 𝜎2).

Equivalently, for all 𝑧 ∈ R,

lim
𝑛→∞P

(√
𝑛(𝑋̄𝑛 − 𝜇)

𝜎
≤ 𝑧

)
= Φ(𝑧),

where Φ(𝑧) denotes the cumulative distribution function of the standard normal distribution.

A generalization of the classical CLT, as stated in Theorem 2.12, is the CLT for martingales. This will
be used in proving asymptotic normality for our proposed estimator in Chapter 6. Prior to stating
themartingale CLT, we introduce the necessary supporting theory onmartingales based on [11] and
[31].

Let (Ω,ℱ , P; (ℱ𝑛)𝑛≥0) be a filtered probability space. This means that we equip the probability space
(Ω,ℱ , P) with a filtration (ℱ𝑛)𝑛≥0. A filtration is defined as a non-decreasing sequence of sub-𝜎-
algebras of the 𝜎-algebra ℱ , i.e. ℱ0 ⊆ ℱ1 ⊆ · · · ⊆ ℱ . The 𝜎-algebra ℱ𝑛 represents the information
available up to time 𝑛.

Definition 2.24 (Martingale). A sequence of real-valued random variables (𝑀𝑛)𝑛≥0 is called a mar-
tingale with respect to the filtration (ℱ𝑛)𝑛≥1 if it satisfies:

(𝑖) 𝑀𝑛 ∈ ℱ𝑛 , (𝑖𝑖) E[|𝑀𝑛 |] < ∞, (𝑖𝑖𝑖) E[𝑀𝑛 | ℱ𝑛−1] = 𝑀𝑛−1 , for all 𝑛 ≥ 1.

A related notion is that of a martingale difference sequence, which forms the basis for martingale
central limit theorems.
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Definition 2.25 (Martingale difference sequence). A sequence (𝑌𝑛)𝑛≥1 of real-valued random vari-
ables is called a martingale difference sequence with respect to (ℱ𝑛)𝑛≥1 if it satisfies:

(𝑖) 𝑌𝑛 ∈ ℱ𝑛 , (𝑖𝑖) E[|𝑌𝑛 |] < ∞, (𝑖𝑖𝑖) E[𝑌𝑛 | ℱ𝑛−1] = 0, for all 𝑛 ≥ 1.

An example of a martingale difference process is given by

𝑌𝑛 := 𝑀𝑛 −𝑀𝑛−1 ,

where 𝑀𝑛 is a martingale. In this case, the sequence (𝑌𝑛) captures the increments of the martin-
gale and satisfies the conditions of a martingale difference sequence. To analyze the variation of
a martingale or martingale difference sequence, we introduce the concept of predictable quadratic
variation.

Definition 2.26 (Predicable quadratic variation). Let (𝑌𝑛)𝑛≥1 be a martingale difference sequence
with respect to the filtration (ℱ𝑛)𝑛≥0, and let 𝑀𝑛 be a martingale such that 𝑌𝑛 := 𝑀𝑛 − 𝑀𝑛−1. The
predictable quadratic variation of (𝑀𝑛)𝑛≥0 is defined by

𝑉2
𝑛 := ⟨𝑀⟩𝑛 :=

𝑛∑
𝑗=1

E[𝑌2
𝑗 | ℱ 𝑗−1],

where each ℱ𝑗−1 represents the information available up to time 𝑗 − 1. The process ⟨𝑀⟩𝑛≥0 is a
predictable, right-continuous, and increasing process starting at zero.

Moreover, the unconditional variance is given by

𝑠2
𝑛 := E[𝑉2

𝑛 ] = E[⟨𝑀⟩𝑛] =
𝑛∑
𝑗=1

E[𝑌2
𝑗 ].

We now state the Central Limit Theorem for martingales. This formulation follows from the foun-
dational work of Brown [11].

Theorem 2.13 (Central Limit Theorem for Martingales). Let (Ω,ℱ , P) be a probability space equipped
with a filtration (ℱ𝑛)𝑛≥0). Let 𝑀𝑛 be a martingale, and (𝑌𝑛)𝑛≥1 be a martingale difference sequence both with
respect to (ℱ𝑛)𝑛≥1 such that 𝑆𝑛 = 𝑀𝑛 −𝑀𝑛−1 for all 𝑛. Let𝑉2

𝑛 denote the predictable quadratic variation, and
𝑠2
𝑛 denote the variance. Assume the following two conditions hold:

(i) Lindeberg condition. For all 𝜀 > 0,

1
𝑠2
𝑛

𝑛∑
𝑗=1

E
[
𝑌2
𝑗 · 1{|𝑆𝑗 |>𝜀𝑠𝑛}

]
−→ 0 as 𝑛 → ∞.

(ii) Stable predictable quadratic variation.

𝑉2
𝑛

𝑠2
𝑛

𝑝−→ 1 as 𝑛 → ∞.
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Then the normalized martingale converges in distribution to the standard normal distribution:

𝑀𝑛

𝑠𝑛

𝑑−→ 𝒩(0, 1).

2.7 Markov Networks

In probabilistic modeling, understanding the dependencies and independencies among random
variables is important. Markov networks, also known as Markov random fields, are a framework
to represent these relationships using graph theory. This section introduces Markov networks as a
tool that will be used modeling the dependency structures underlying the trade/no-trade behavior
of the voluntary carbon asset. In Chapter 5, we will discuss the trade/no-trade behavior among the
voluntary carbon credits in more detail. Unlike Bayesian networks, which are directed and are used
for causal inference, Markov networks use undirected graphs to capture symmetric dependency re-
lationships [49].

Let 𝑈 = {𝑋1 , 𝑋2 , . . . , 𝑋𝑛} represent a finite set of elements corresponding to random variables. A
dependency model 𝑀 is a collection of conditional independence statements among subsets of 𝑈 .
Specifically, for disjoint subsets 𝑋,𝑌, 𝑍 ⊆ 𝑈 , we write 𝐼(𝑋, 𝑍, 𝑌)𝑀 to denote that the variables in 𝑋
are conditionally independent of those in 𝑌 given the variables 𝑍, according to the model 𝑀. Here,
𝐼 denotes a subset of triplets (𝑋, 𝑍, 𝑌) for which the assertion of conditional dependence holds as
defined previously. Any joint probability distribution over 𝑈 implicitly defines such a dependency
model, since we can test the truth of each independence statement using the criterion P(𝑋 | 𝑌, 𝑍) =
P(𝑋 | 𝑍) whenever P(𝑌, 𝑍) > 0.

To formally approach Markov networks, we introduce some basic elements of graph theory. Let
𝐺 = (𝑉, 𝐸) be an undirected graph, where 𝑉 is a finite set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is a set of
edges. Here, each vertex 𝑣 ∈ 𝑉 corresponds to a random variable 𝑋𝑣 ∈ 𝑈 and an edge (𝑢, 𝑤) ∈ 𝐸

represents a direct dependency between 𝑋𝑣 and 𝑋𝑤 . Once this correspondence is established, we
will no longer distinguish between 𝑈 and 𝑉 , and will denote the graph as 𝐺 = (𝑈, 𝐸), and interpret
each edge (𝑋𝑣 , 𝑋𝑤) ∈ 𝐸 as representing a symmetric probabilistic dependency between 𝑣 and 𝑤 [49].
A central concept in this graphical framework is separation. For subsets 𝑋,𝑌, 𝑍 ⊆ 𝑈 , we say that
𝑍 separates 𝑋 and 𝑌 in the graph 𝐺, denoted by ⟨𝑋 | 𝑍 | 𝑌⟩𝐺, if every path from a node in 𝑋 to a
node in𝑌 passes through at least one node in 𝑍 [49]. This graph-theoretic notion corresponds to the
probabilistic notion of conditional independence. This is also known as the global Markov property
[12]. Furthermore, the local Markov propertymeans that each variable is conditionally independent
of all other non-neighboring variables given its neighbors. To formalize the graphical encoding of
dependencies, we define three types of maps.

Definition 2.27 (I-map, D-map, and P-map). Let 𝐺 be an undirected graph, 𝑀 be a dependency
model, then we distinguish the following maps:

• An undirected graph 𝐺 is an I-map (independency map) of the dependency model 𝑀 if:

⟨𝑋 | 𝑍 | 𝑌⟩𝐺 ⇒ 𝐼(𝑋, 𝑍, 𝑌)𝑀 .
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• Conversely, an undirected graph 𝐺 is a D-map (dependency map) of 𝑀 if:

𝐼(𝑋, 𝑍, 𝑌)𝑀 ⇒ ⟨𝑋 | 𝑍 | 𝑌⟩𝐺 .

• Lastly, an undirected graph 𝐺 is a P-map (perfect map), if 𝐺 is both a D-map and an I-map, or
equivalently:

𝐼(𝑋, 𝑍, 𝑌)𝑀 ⇔ ⟨𝑋 | 𝑍 | 𝑌⟩𝐺 .

These implications in Definition 2.27 define whether the graph captures all independencies (I-map),
all dependencies (D-map), or both. Note that the empty graph is a trivial D-map, and a complete
graph is a trivial I-map [49]. Moreover, it is important to mention that in a dependency map, neigh-
boring nodes represent variables that are dependent, though not all dependent variables are con-
nected in the graph. Similarly, in an independency map, non-neighboring nodes represent variables
that are independent, but not all independent variables appear as non-neighbors in the graph [49].
Now, let us formalize the concept of Markov Networks.

Definition 2.28 (Markov Network). A Markov network, or Markov random field, is a pair (𝐺, 𝑃),
where 𝐺 = (𝑈, 𝐸) is an undirected graph and 𝑃 is a joint probability distribution over the variables
𝑈 , such that 𝐺 is a minimal I-map of 𝑃:

⟨𝑋 | 𝑍 | 𝑌⟩𝐺 ⇒ 𝐼(𝑋, 𝑍, 𝑌)𝑃 ,

for all disjoint 𝑋,𝑌, 𝑍 ⊆ 𝑈 , and the removal of any edge in 𝐺 would invalidate this property.

Example 1 (Markov Network). A Markov Random Field can be represented by an undirected graph 𝐺 =

(𝑉, 𝐸). In this example, the set of vertices 𝑉 , and the set of edges 𝐸 are given by

𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} , 𝐸 = {{𝐴, 𝐵} , {𝐴, 𝐷} , {𝐵, 𝐷} , {𝐷, 𝐸} , {𝐶, 𝐸}} ,

where each edge indicates a conditional dependency between the connected variables. Here, we have that A
depends on B and D. B depends on A and D. D depends on A, B, and E. E depends on D and C. C depends
only on E.

A B

D C

E

However, undirected graphs have a limitation in representing certain dependency structures, such
as induced dependencies. Therefore, Pearl and Paz introduced five axioms that characterize a class
of models that can be faithfully represented graphically [23].



34 2. Mathematical preliminaries

Theorem 2.14 (Graph-isomorphism). Let 𝑊, 𝑋,𝑌, 𝑍 ⊆ 𝑈 be disjoint sets of random variables and let
𝛾 ∈ 𝑈 be a random variable. A necessary and sufficient condition for a dependency model 𝑀 to be graph-
isomorph is that 𝐼(𝑋, 𝑍, 𝑌)𝑀 satisfies the following five independent axioms. The subscript 𝑀 is removed for
clarity purposes:

(i) Symmetry: 𝐼(𝑋, 𝑍, 𝑌) ⇐⇒ 𝐼(𝑌, 𝑍, 𝑋), independence between 𝑋 and 𝑌 given 𝑍 mutual.
(ii) Decomposition: 𝐼(𝑋, 𝑍, 𝑌 ∪ 𝑊) ⇒ 𝐼(𝑋, 𝑍, 𝑌) ∧ 𝐼(𝑋, 𝑍,𝑊), independence from a union implies

independence from each part.
(iii) Intersection: 𝐼(𝑋, 𝑍 ∪𝑊,𝑌) ∧ 𝐼(𝑋, 𝑍 ∪ 𝑌,𝑊) ⇒ 𝐼(𝑋, 𝑍, 𝑌 ∪𝑊)
(iv) Strong Union: 𝐼(𝑋, 𝑍, 𝑌) ⇒ 𝐼(𝑋, 𝑍 ∪𝑊,𝑌), adding more disjoint subsets to the conditioning set

preserves independence.
(v) Transitivity: 𝐼(𝑋, 𝑍, 𝑌) ⇒ 𝐼(𝑋, 𝑍, 𝛾) or 𝐼(𝛾, 𝑍, 𝑌)

Since exact isomorphic representations of informational dependencies are often unattainable, we
restrict attention to I-maps that capture all independencies. While some true independencies may be
omitted, we require that such omissions be minimized to ensure the graph contains no superfluous
edges.

Two related concepts that are important are a Markov blanket 𝐵𝐿𝐼(𝛼) and a Markov boundary of 𝛼
denoted by 𝐵𝐼(𝛼). Formally, they are defined as

Definition 2.29 (Markov blanket and Markov boundary). AMarkov blanket 𝐵𝐿𝐼(𝛼) of a real-valued
random variable 𝛼 ∈ 𝑈 is any subset 𝑆 ⊆ 𝑈 of elements for which

𝐼(𝛼, 𝑆, 𝑈 − 𝑆 − 𝛼)). (2.24)

A set is called aMarkov boundary of 𝛼, denoted 𝐵𝐼(𝛼) if it is a minimalMarkov blanket of 𝛼, i.e. none
of its proper subsets satisfy (2.24). Essentially, the Markov blanket is equal to the neighbourhood of
a node.

The Markov boundary 𝐵𝐼(𝛼) can be seen as the smallest set of elements that shields 𝛼 from the
influence of all other elements. Note that the Markov boundary is nonempty [49]. The following
result links Markov networks to Markov boundaries:

Corollary 2.1. The Markov network 𝐺0 for any strictly positive distribution can be constructed by linking
each real-valued random variable 𝛼 to all members of its Markov boundary 𝐵𝐼(𝛼).
Corollary 2.1 is particularly useful because Markov boundaries 𝐵𝐼(𝛼) often represent the most direct
influences on a variable 𝛼. These influencesmay correspond to immediate effects, underlying causes,
or defining features of a concept. If the Markov boundary is known for each variable, the overall
structure of the distribution can be reconstructed by connecting each variable to the members of its
boundary. Intuitively, this is like assembling a global map from local neighborhoods. Importantly,
the resulting graph constitutes a valid I-map, meaning that many global independencies can be
inferred through local separation tests on the graph structure [49]. There are two standard methods
for constructing a minimal I-map given a dependency model:

• Edge deletion: Begin with a complete graph and remove any edge (𝛼, 𝛽) if there exists a sepa-
rating set 𝑍 such that 𝐼(𝛼, 𝑍, 𝛽)𝑀 holds.
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• Markov boundary aggregation: For each node 𝛼, determine 𝐵𝐺(𝛼) and connect 𝛼 to each of
its boundary nodes.

Once the graph structure is specified, the next step is to quantify the Markov network. This is
achieved by defining a Gibbs distribution over the network and using the concept of cliques. A
clique in graph theory refers to a subset of vertices such that every two distinct vertices are adjacent.
That is, a clique is a subset that is complete. A probability distribution over a set of variables 𝑋 forms
a Gibbs distribution relative to a graph 𝐺 if it can be factorized over the maximal cliques of 𝐺 as:

P(𝑋 = 𝑥) = 1
𝑍

∏
𝐶∈𝒞

𝜙𝐶(𝑥𝐶),

where 𝒞 denotes the set of maximal cliques in 𝐺, 𝜙𝐶(𝑥𝐶) : 𝑋𝐶 → (0,∞) are non-negative potential
functions defined over the variables within each clique 𝐶, and 𝑍 is a normalizing constant called the
partition function. Each potential function 𝜙𝐶(𝑥𝐶) captures the interaction strength among variables
within the clique 𝐶. The potentials need not integrate to one individually and are defined only up
to a multiplicative constant, because normalization is achieved globally through 𝑍. Specifically, the
partition function is given by:

𝑍 =
∑
𝑥∈𝒳

∏
𝐶∈𝒞

𝜙𝐶(𝑥𝐶),

where 𝒳 denotes the full state space of all variables, i.e. the space of all possible configurations of
the random variables. From Equation (2.7), it becomes clear that computing the joint probability
distribution is computationally intensive.

TheHammersley-Clifford theorem provides the theoretical bridge between the topological structure
of a Markov network and a consistent probabilistic interpretation.

Theorem 2.15 (Hammersley-Clifford). Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑋1 , . . . , 𝑋𝑛 be random
are random variables that take on a finite number of values. If 𝑃 a strictly positive probability distribution and
satisfies the local Markov property with respect to 𝐺, then it factors with respect to 𝐺. In other words, 𝐺 is an
I-map of 𝑃.

The important result following fromTheorem 2.15 is that for strictly positive distributions, the global
Markov property, the local Markov property, and factoring with respect to the graph 𝐺 are equiv-
alent [12]. In other words, the Hammersley-Clifford theorem formalizes the connection between
factorization and conditional independence in Markov random fields [49]. This factorization cap-
tures both the structure and strength of dependencies: the graph encodes which variables interact
directly, while the potentials quantify how different joint configurations are weighted relative to
each other. In this way, Markov networks provide a representation of multivariate dependencies,
avoiding the need to specify the full joint distribution explicitly.

2.8 Hypothesis testing for contingency tables

Hypothesis testing is a fundamental statistical procedure used tomake inferences about populations
based on sample data. In its basic form, it involves the formulation of two competing hypotheses.
The null hypothesis ℋ0, which represents a baseline or default assumption, and the alternative hy-
pothesisℋ1, which represents the presence of an effect or association [7]. One example of hypothesis
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testing that we will use in this research is Fisher’s exact test used in the analysis of contingency ta-
bles [7]. In the context of this research, we will use Fisher’s exact test to study temporal dependence
within assets and cross-dependence between assets in trade/no-trade data, as discussed in Chapter
4.

Fisher’s exact test is a method for testing the null hypothesis that two categorical variables are inde-
pendent, conditioned onfixedmarginal totals. Let us consider the following generalized contingency
table:

Category I Category II
Group 1 𝑥11 𝑥12 𝑛1· = 𝑥11 + 𝑥12
Group 2 𝑥21 𝑥22 𝑛2· = 𝑥21 + 𝑥22

𝑛·1 = 𝑥11 + 𝑥21 𝑛·2 = 𝑥12 + 𝑥22 𝑛·· = 𝑛1· + 𝑛2· = 𝑛·1 + 𝑛·2
Table 2.1: A general 2 × 2 contingency table

In the context of a 2 × 2 contingency table, the test statistic is a function of the observed cell counts.
To derive its asymptotic distribution, we must specify assumptions regarding the structure of the
table. In this setting, we treat the row totals 𝑛1· and 𝑛2· as fixed, while considering the cell counts
𝑥11 and 𝑥21 as realizations of random variables 𝑋11 and 𝑋21, respectively. Knowledge of 𝑥11 and 𝑥21,
together with the fixed row totals, fully determines the entire table [41]. To model the randomness,
we assume that 𝑋11 ∼ Binomial(𝑛1· , 𝜃1) and 𝑋21 ∼ Binomial(𝑛2· , 𝜃2), where we denote the unknown
parameters as 𝜃 = (𝜃1 , 𝜃2) ∈ Θ = [0, 1]2. This formulation allows us towrite the following hypothesis
test setup, where we test ℋ0 : 𝜃 ∈ Θ0 against ℋ1 : 𝜃 ∈ Θ1, with Θ0 = {(𝜃1 , 𝜃2) ∈ Θ : 𝜃1 = 𝜃2} and
Θ1 = Θ \ Θ0 [7]. Equivalently, the hypotheses can be stated as a two-sided test:

ℋ0 : 𝜃1 = 𝜃2 = 𝜃 against ℋ1 : 𝜃1 ≠ 𝜃2 , (2.25)

Although this binomial assumption seems quite natural, one can argue this is actually quite a strong
claim tomake. Indeed, recall that for a binomial trial, one should need a set of independent Bernoulli
experiments with the same probability of success in each experiment [41].

In general, for small sample sizes, the usual asymptotic methods such as the chi-square test may
not give accurate results. In these cases, exact inference methods provide a more reliable alternative
[70]. These methods are called exact because they are derived from the true sampling distribution
without relying on asymptotic approximations [41]. One of the most well-known exact methods is
Fisher’s exact test, originally introduced by Ronald Fisher in 1934 [22].

We now give a derivation of Fisher’s exact test in the context of a 2×2 contingency table, as defined in
Table 2.1. Assuming a binomial sampling framework, Fisher argues that under the null hypothesis
𝐻0 : 𝜃1 = 𝜃2 = 𝜃, the probability of observing 𝑥11 successes in group 1 is:

P𝜃(𝑋11 = 𝑥11) =
(
𝑛1·
𝑥11

)
𝜃𝑥11(1 − 𝜃)𝑥12 . (2.26)

An analogous expression holds for group 2. Thus, the joint probability of observing the table is:

P𝜃(X = x) = P𝜃

((
𝑋11

𝑋21

)
=

(
𝑥11

𝑥21

))
=

(
𝑛1·
𝑥11

) (
𝑛2·
𝑥21

)
𝜃𝑛·1(1 − 𝜃)𝑛·2 , (2.27)
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where 𝑛·1 = 𝑥11 + 𝑥21 and 𝑛·2 = 𝑥12 + 𝑥22. In this derivation, Fisher implicitly assumed that the row
margins (𝑛1· , 𝑛2·) are fixed. Fisher noted that the factor 𝜃𝑛·1(1−𝜃)𝑛·2 is constant across all tables with
the same column margins [41]. This leads to a conditional probability under the null hypothesis,
given the row margins:

P𝜃(X = x | 𝑋11 + 𝑋21 = 𝑛·1) = P𝜃(𝑋11 = 𝑥11 , 𝑋21 = 𝑛·1 − 𝑥11)
P𝜃(𝑋11 + 𝑋21 = 𝑛·1) .

Substituting fromEquation (2.27), and using the fact that the sumof independent binomial variables
with common success probability 𝜃 is again binomial, we obtain:

P𝜃(X = x | 𝑋11 + 𝑋21 = 𝑛·1) =
(𝑛1·
𝑥11

) ( 𝑛2·
𝑛·1−𝑥11

)
𝜃𝑛·1(1 − 𝜃)𝑛··−𝑛·1( 𝑛··

𝑛·1
)
𝜃𝑛·1(1 − 𝜃)𝑛··−𝑛·1

=

(𝑛1·
𝑥11

) ( 𝑛2·
𝑛·1−𝑥11

)( 𝑛··
𝑛·1

) .

(2.28)

Equation (2.28) corresponds to the probability mass function of the hypergeometric distribution
with parameters (𝑛·· , 𝑛1· , 𝑛·1), and serves as the basis for Fisher’s exact test. Clearly, the probability
distribution now no longer depends on 𝜃, and therefore we can denote this expression more simply
by:

P𝜃(X = x | 𝑋11 + 𝑋21 = 𝑛·1) =
(𝑛1·
𝑥11

) ( 𝑛2·
𝑛·1−𝑥11

)( 𝑛··
𝑛·1

) .

The test statistic 𝑇(𝑋) = 𝑋11 + 𝑋21 is thus a sufficient statistic for 𝜃 [7].

An important challenge in applying Fisher’s test arises when defining 𝑝-values for two-sided tests
such as (2.25). The discrete and possibly asymmetric nature of the hypergeometric distribution
complicates the notion of “more extreme” outcomes under the null hypothesis [70]. However, there
exists a general form for the two-sided 𝑝-value:

𝑝𝐹(𝑥) = 𝑝𝐹(𝑥11 , 𝑥21) =
∑
𝑖∈𝐸𝑥

P(𝑋11 = 𝑖 | 𝑋11 + 𝑋21 = 𝑛·1),

where the set 𝐸𝑥 of outcomes contains all the table outcomes for 𝑥11 that can be considered as more
extreme than 𝑥11. The definition of this set depends on the chosen criterion of extremeness. One
common definition, used in the R implementation of Fisher’s exact test, is:

𝐸𝑥 := {𝑖 ∈ {0, . . . , 𝑛1·} : 𝑇(𝑖 , 𝑛·1 − 𝑖) ≤ 𝑇(𝑥11 , 𝑥21)} , (2.29)

where 𝑇(𝑥11 , 𝑥21) = P(𝑋11 = 𝑥11 | 𝑋11 + 𝑋21 = 𝑛·1) is used as the test statistic. In this framework, the
null hypothesis is rejected when observing x such that 𝑇(x) is small [41].

An important concept in the context of the Fisher exact test is the odds ratio. In the context of a
general 2×2 contingency table as shown in Table 2.1, the odds ratio (OR) provides a natural measure
of association between the two groups and the two categories. Formally, it is defined as

OR =
𝑥11
𝑥12
𝑥21
𝑥22

=
𝑥11 · 𝑥22
𝑥12 · 𝑥21

,
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where 𝑥11 and 𝑥12 denote the counts of Group 1 in Categories I and II, and 𝑥21 and 𝑥22 the corre-
sponding counts for Group 2. An odds ratio equal to one indicates independence, values greater
than one suggest that the odds of belonging to Category I are higher for Group 1 than for Group 2,
and values below one imply the opposite [62]. Note that the odds ratio is symmetric in the two
events: whether we describe it in terms of groups or categories, the interpretation remains the same,
and no causal direction is implied [62]. In conclusion, in a Fisher test, the p-value assesses whether
the observed association is statistically significant, while the odds ratio quantifies its strength and
direction.
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CarbonMarkets

Carbon credits are tradable permits representing the offset of a specific amount of carbon dioxide
or other greenhouse gases (GHGs). They are a financially sustainable mechanism to handle climate
change. It allows organizations to offset their emissions by buying projects that reduce, remove, or
avoid GHG emissions elsewhere. The concept is rooted in the principle of carbon offsetting, where
companies, governments, and individuals invest in environmental projects to balance out their own
carbon footprints. In this chapter, we will explain carbon markets, specifically the Voluntary Carbon
Market (VCM), the pricing of carbon credits, and its dependency with other asset classes.

The evolution of carbon markets began with the Kyoto Protocol in 1997, which introduced mecha-
nisms like the Clean Development Mechanism (CDM) and Joint Implementation (JI) [65]. These
enabled emission reductions in one country to be used towards the targets of another. The Paris
Agreement in 2015 shifted the global approach to a more inclusive system of national pledges and
introduced Article 6, which provides a framework for international carbon trading. The VCM devel-
oped in parallel to the CDM and Article 6, which were always intended to only serve countries for
compliance purposes. The VCM did build on the CDM methodologies (some are still used today),
but made the project interventions available to private actors instead of governments.

Over time, the voluntary carbon market has seen rapid growth, especially post-2015, driven by cor-
porate net-zero commitments and the rise of ESG-investing [5]. This growth has been enabled by
technological innovations such as digital monitoring and satellite-based verification tools that en-
hance market transparency and efficiency. Despite their benefits, carbon markets face criticism over
issues such as additionality, permanence, leakage, double-counting, and greenwashing [3]. To ad-
dress these concerns, initiatives like the Integrity Council for the Voluntary CarbonMarket (ICVCM)
and the Voluntary Carbon Markets Integrity Initiative (VCMI) are working to enhance market in-
tegrity and transparency [65].

3.1 The structure of Carbon Markets

Formally, the carbon market consists of the compliance carbon markets and voluntary carbon mar-
kets. The compliance carbon market is a government-regulated system where companies must ad-
here to legally binding emission limits. It typically operates under cap-and-trade programs, where a
regulatory authority sets an overall cap on emissions and distributes or auctions allowances to emit-
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ters. These allowances represent the legal right to emit a specified amount of CO2, which is 1000kg
CO2 equivalent. Firms that emit less than their quota can sell surplus allowances, while those ex-
ceeding their cap must purchase additional credits or face penalties [3]. Key compliance markets
include the European Union Emissions Trading System (EU ETS), California’s Cap-and-Trade Pro-
gram, and China’s National ETS. Each of these systems has distinct rules for allowance distribution,
credit issuance, and trading, but all aim to drive emissions reductions in line with policy goals.

The voluntary carbon market operates independently of regulatory mandates, allowing entities to
purchase carbon credits as part of their sustainability strategies. Participation is typically driven by
corporate social responsibility, consumer expectations, investor pressure, and anticipation of future
regulations [3]. The key distinction between allowances in the compliance carbonmarket and carbon
credits in the voluntary carbon market lies in their function. Allowances in the compliance carbon
market grant the right to emit one ton of CO2eq, whereas carbon credits in the voluntary market
represent the offset of one ton of CO2eq elsewhere to compensate for emissions. Voluntary carbon
credits fall into three broad categories: removal, reduction, and avoidance. First, removal credits
come from projects that physically extract CO2 from the atmosphere, such as afforestation and direct
air capture. As of the end of 2023, these account for approximately 3% of certified credits on the VCM
[30]. Second, reduction credits are generated from activities that lower emissions at their source—
for example, through energy efficiency measures or fuel switching. They represent about 22% of
certified credits in themarket [30]. Lastly, avoidance credits are associatedwith projects that prevent
emissions from occurring, such as forest conservation efforts that avert deforestation and the release
of stored carbon. These make up the remaining 75% of certified credits [30].

The VCM can be further categorized into nature-based and technology-based solutions [5]. Nature-
based solutions include ARR (afforestation, reforestation, and revegetation), REDD+ (Reducing
Emissions fromDeforestation and Forest Degradation), mangrove restoration, IFM (improved forest
management), and biochar projects. In addition to carbon sequestration, they offer biodiversity and
ecosystem co-benefits but face challenges like land-use change and impermanence. Biochar is con-
tested as a nature-based solution because of the technology needed to create biochar. Technology-
based solutions, on the other hand, such as direct air capture, carbon capture and storage, enhanced
weathering, mineralization, andwaste-to-energy projects, typically offer greater permanence but are
often more expensive and less scalable in the short term.

Voluntary carbon credits (VCCs) are intangible assets, and unlike compliance allowances, they are
not standardized [3]. Each credit reflects the characteristics of its underlying project, including
co-benefits, vintage, verification standards, and geography. This heterogeneity results in over-the-
counter transactions being the dominant mechanism in the VCM, leading to limited price trans-
parency and liquidity [3]. We will discuss carbon credit pricing and trading in the next subsection.

Market participants include project developers, certification bodies (e.g. Verra, Gold Standard, ACR),
rating agencies (e.g. Sylvera, BeZero, Calyx Global), brokers, corporate buyers, and intermediaries
such as offsetting platforms. The lifecycle of a credit typically involves project design, validation,
issuance, trading, and eventual retirement.
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3.2 Pricing and trading of Carbon Credits

Pricing in the carbon creditmarket is influenced by bothmarket dynamics and project characteristics.
The two dominant pricing mechanisms are [3]:

• Over-the-counter (OTC) trading: Negotiated directly between project developers and end-
users, offering flexibility in pricing and contract terms but resulting in low transparency. In
fact, we do not know the price of an OTC carbon credit since this is not market-driven. Impor-
tantly, the majority of high-quality carbon credits are traded over-the-counter.

• Exchange-based trading: Conducted on standardized platforms such as the Chicago Climate
Exchange (CCX), Xpansiv CBL, and AirCarbon Exchange. These exchanges provide greater
transparency, standardization, and liquidity. Note that these platforms also often use stan-
dardized contracts, which is the key instrument that facilitates scalable and transparent ex-
change.

Voluntary credits are increasingly being treated as commodities, but they differ due to their lack of
standardization. Pricing is influenced by a mix of factors:

1. Credit quality: Verified and well-rated credits command higher prices due to trust in their en-
vironmental integrity. Key components of quality include permanence, additionality, leakage
and co-benefits.

2. Vintage: Recent credits are preferred as they reflect current standards and methodologies.
3. Project type: Each type of credit has different characteristics. For example, nature-based so-

lutions typically have higher co-benefits, and technology-based removals (like BECCS) can be
more expensive due to high implementation costs. However, tech-based credits often have a
longer permanence.

4. Location: Projects in jurisdictions with strong governance tend to command higher prices,
as they are perceived as more reliable. Additionally, projects in the Global North (EU, US,
AUS/NZ) often face higher opportunity costs, input prices, and labor costs, which contribute
to higher credit prices.

5. Supply and demand: Growing corporate demand against a limited supply of high-quality
credits creates upward price pressure. Moreover, there is a shift in demand from low to high
quality credits.

6. Policy landscape: Regulatory developments influence credit valuation.
7. Co-benefits and ESG alignment: Projects offering biodiversity, social, and economic benefits

tend to be valued higher by ESG-focused investors.

The primary challenge in pricing voluntary carbon credits is themarket’s diversity, including various
projects, methodologies, and geographies [3] [47]. This fragmentation makes it difficult to establish
a uniform price for voluntary carbon credits. To successfully compare the Voluntary Carbon Market
with other commodity markets, it is important to establish a standardized pricing approach. We
achieve this by categorizing VCM credits into removal and avoidance credits, recognizing the price
differentiation between these types [5]. We further subdivide these categories into three groups:
nature-based solutions, hybrid solutions, and technology-based solutions, as outlined in [5]. See
Figure 3.1 for a visualization of this categorization.
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In Chapter 4 and Appendix A, we describe which voluntary carbon credits we have chosen for our
research and provide some characteristics, also based on the categorization of Figure 3.1.

Figure 3.1: Non-exhaustive categorization of the Voluntary Carbon Credit market

3.3 Market dependencies between carbon credits and commodities

With carbon credits increasingly framed as a rising commodity class, a natural question arises: how
does this emerging market interact with traditional commodity and financial markets? This section
reviews existing literature and hypotheses regarding the dependence of voluntary carbon credit
prices on other commodity prices and macroeconomic variables. Given the relative novelty of the
voluntary carbon market, rigorous empirical studies remain limited, but academic and institutional
interest is growing. Researchers seek to understandwhether carbon credits behave like conventional
financial assets— such as correlatingwith energy prices or exhibiting systemic risk traits— or if they
remain largely idiosyncratic.

Research of MSCI shows there exists a positive seasonal correlation between EU ETS prices and oil,
ranging from –0.1 to 0.6 [68]. However, these conclusions primarily relate to compliance markets.
For voluntary credits, the extent of financial integration and price co-movement with other asset
classes remains an open question. A leading hypothesis is that as voluntary credits become more
standardized and liquid, their price behavior may begin to reflect broader market trends, such as
energy cycles or investor sentiment. In the following paragraphs, we discuss energy, agricultural,
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and metal commodities in relation with carbon credits.

Energy commodities such as oil, natural gas, and coal are affecting emissions and are known to in-
fluence compliance markets. For example, rising gas prices may lead power producers to substitute
toward coal, increasing emissions and driving up carbon allowance prices [68]. In 2022, high oil
and gas prices contributed to a notable shift in EU ETS market dynamics, with correlation patterns
changing accordingly [1]. On the other hand, in the voluntary market, the relationship with energy
prices is more indirect. For example, higher fossil fuel prices may increase the financial attractive-
ness of offset projects (such as renewables), or stimulate climate-related investments. On the other
hand, high energy costs may reduce corporate discretionary budgets, which decreases demand for
voluntary offsets. Empirical evidence of correlation between VCM prices and energy commodities
is scarce. The VCM has remained segmented from compliance and energy-linked markets—at least
thus far. However, as voluntary credits begin trading on commodity exchanges, these linkages may
intensify. This presents an important empirical hypothesis for research.

Shifting to agricultural commodities, many voluntary offset projects are inherently tied to land use,
such as REDD+, afforestation, and soil carbon initiatives. This suggests a potential connection to
agricultural commodity markets. The viability of forest conservation projects, for example, may
depend on the price of competing land uses such as soy, beef, or palm oil. If commodity prices
for these drivers are high, the financial incentive to deforest increases, undermining offset projects
or increasing the required carbon price to maintain conservation. Conversely, if agricultural com-
modity prices decline, landowners may be more willing to engage in carbon offsetting, increasing
supply of credits and potentially lowering credit prices. However, it is not easy to switch frequently
between agricultural commodities and carbon credits since a project developer has to commit to a
carbon program for several years. Although the link between carbon credits and agricultural com-
modities is recognized qualitatively - especially in the context of project leakage or permanence -
quantitative studies between agricultural commodity prices and voluntary carbon credits remain
absent from the literature. However, analogies can be drawn from fields like weather derivatives
or agricultural yield-linked instruments, where environmental variables and commodity economics
are intrinsically linked.

Following to metal as a commodity, voluntary carbon markets, particularly in their early form, have
exhibited characteristics of speculative trading environments. In thin, unregulated markets, price
spikes can be driven more by sentiment than fundamentals. A notable example occurred in 2021
when blockchain projects such as KlimaDAO contributed to a sharp rise in credit prices [4]. Carbon
credits in this context functioned more like speculative tokens than environmental instruments.

This raises questions about the potential correlation between carbon credits and other speculative as-
sets such as cryptocurrencies, or even with safe-haven commodities like gold. Some investors argue
that carbon credits can function as a hedge—similar to gold, but for climate transition risk. Re-
search on compliance markets has suggested that carbon allowances have low correlation with both
gold and equities, implying they may act as a separate asset class [67]. Although similar empirical
studies for voluntary credits are lacking due to data constraints, the hypothesis of carbon credits as
low-correlation instruments remains. This is increasingly attractive to institutional investors seeking
ESG-aligned, diversifying assets.
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3.3.1 Existing research and knowledge gaps

Academic research on the relation between voluntary carbon credits and conventional commodities
remains limited. Conte and Kotchen conducted one of the few early econometric studies of vol-
untary carbon credit prices. They used hedonic regression to identify drivers such as project type,
certification standard, and geographic region [14]. However, their study did not examine macroe-
conomic or cross-market dependencies. More recently, Trencher et al. found that a substantial share
of corporate offset purchases was linked to low-quality credits that undermine the climate integrity
of the VCM [63]. The study suggests that there was a demand-side preference for cheaper credits,
rather than a sophisticated, quality-driven procurement strategy. However, currently, there is a shift
to high-quality carbon credit demand. In conclusion, this demand-driven nature may explain why
VCM prices have not tracked commodity cycles or broader financial markets.

As of our understanding, there are no existing studies researching the dependency between volun-
tary carbon credits and cross-market assets such as energy, agricultural or metal commodities. This
creates a valuable opportunity for further empirical work. Interesting research directions we will
dive into are:

• Testing for correlation or cointegration between VCM prices and energy commodities (e.g. oil,
coal, gas).

• Assessing linkages with agricultural commodities relevant to nature-based projects.
• Evaluating the impact of macroeconomic variables (e.g. equity indices, volatility indices) on

voluntary carbon demand.
• Investigating price convergence or divergence between voluntary and compliance carbon mar-

kets.
• Comparing volatility levels across VCM, compliance markets, and traditional commodities.

Understanding these relationships will be interesting for investors, regulators, and climate policy-
makers. This thesis contributes to this upcoming field by examining the statistical properties and
dependencies of voluntary carbon credits in relation to broader commodity and financial markets.

3.4 Risks and trends in the voluntary market

The voluntary carbon credit market has experienced changes, transitioning to a more mature and
quality-driven market. However, the VCM can still be seen as an early-stage market dealing with
notable risks. One major concern is market uncertainty and price volatility, which have become
particularly pronounced due to the widening price gap between removal and avoidance credits.
Removal credit prices have remained stable at around $21 per tonne, whereas avoidance credit prices
have continued to decline, falling below $4 per tonne [47]. This divergence signals a fundamental
revaluation of credit types; buyers are more looking into high-quality removal credits. However,
this situation also creates hesitancy among corporate buyers who seek price stability and predictable
returns.

Another persistent challenge is ensuring the quality and integrity of carbon credits. An investiga-
tion by Guardian in 2023 revealed that over 90% of rainforest carbon offsets certified by Verra may
be worthless [34]. This significantly undermined market confidence and contributed to a drop in
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carbon credit prices. With increased scrutiny on project additionality, permanence, and co-benefits,
many buyers are wary of accusations of greenwashing [3]. The introduction of frameworks such
as the ICVCM’s Core Carbon Principles and VCMI’s Claims Code of Practice aims to address these
concerns, yet enforcement remains inconsistent. The ongoing development of methodologies for
monitoring, reporting, and verification is essential to building trust in the market and preventing
the issuance of low-quality credits.

Regulatory uncertainty further complicates market participation. One of the key debates revolves
around the role of voluntary credits in Scope 3 emissions accounting [47]. While voluntary markets
offer companies a tool to offset emissions beyond their immediate operations, regulatory bodies
such as the Science-Based Targets initiative (SBTi) have yet to establish clear guidelines on how
these credits can be applied within net-zero commitments. At the same time, the integration of
voluntary credits into compliancemarkets throughArticle 6.4 of the Paris Agreement remains awork
in progress, raising questions about how voluntary credits can align with national decarbonization
strategies.

Despite these risks, several trends signal the continued evolution of the voluntary carbon market.
One of the most notable shifts is the growing preference for carbon removal credits. Permanent
removal solutions such as direct air capture (DAC) and bioenergy with carbon capture and stor-
age (BECCS) have seen a 300% increase in purchased volumes, reflecting corporate demand for
long-term climate strategies. Similarly, nature-based removal solutions, such as afforestation and
enhanced weathering, are becoming more attractive due to their relative affordability and scalabil-
ity.

Another key trend is the diversification of buyer portfolios. Companies aremoving away from short-
term, one-off purchases and instead adopting multi-year procurement strategies that blend high-
quality removal and avoidance credits. This transition ensures a balanced approach to immediate
emission reductions while securing long-term access to durable removal solutions. Additionally,
many buyers are integrating risk diversification strategies by sourcing credits from multiple geogra-
phies and technologies, mitigating potential project failures or policy shifts.

Market infrastructure and quality standards are also improving. The adoption of ICVCM’s CCP has
set a benchmark for high-integrity credits. Also, there have been several advancements in digital
monitoring technologies, such as satellite imagery and blockchain tracking, to increase transparency
and accountability. These improvements are important in differentiating high-quality projects from
those with weaker verification processes.

Furthermore, the potential integration of voluntary and compliance markets continues to be ex-
plored. Regulatory bodies are examining ways to bridge these markets under Article 6.4 of the Paris
Agreement, potentially allowing voluntary credits to be used within compliance frameworks. While
this transition could bring greater liquidity and price stability, it also introduces new complexities
in standardization and governance.

Corporate engagement in supply chain decarbonization represents anothermajor development. With
growing pressure to address Scope 3 emissions, companies are increasingly leveraging carbon mar-
kets as a tool for supplier engagement. New digital tools and market platforms are making it easier
for suppliers to participate, enablingmore seamless collaboration on emissions reduction initiatives.
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Model formulation and financial asset

data analysis

This chapter provides the data and modeling framework used to study the dynamics of voluntary
carbon credits and conventional financial assets. We begin in Section 4.1 with a description of the
dataset. It consists of seven voluntary carbon credit assets and six conventional financial assets. The
carbon credits differ by project type and vintage. The conventional assets include equity indices,
commodities, and fixed income instruments, chosen to represent mature and liquid markets. Asset
selection was conducted in collaboration with TU Delft and Rabobank.

Section 4.2 introduces the multivariate zero-inflated GARCH-X (MZIGARCH-X) model, which is
developed to accommodate zero-inflated time series data as found in illiquid financial markets. In
such markets, including voluntary carbon credit markets, trading is irregular and many days show
no price movement, resulting in zero returns. Standard GARCH models are not well-suited to this
context, as they assume continuously evolving return series. The MZIGARCH-X model addresses
this limitation by combining a multivariate trading indicator function with a multivariate GARCH-
X structure. This allows us to model both return dynamics and the presence or absence of trading
activitywithin a unified framework. The focus is on aGARCH(1,1)-X specification, but the extension
to a general GARCH(𝑝,𝑞)-X model is also discussed.

In Section 4.3, we study the different types of dependence across assets. This is important for the
multivariate modeling in later chapters. Finally, Section 4.4 presents a descriptive analysis of the
voluntary carbon credit return series. We examine key time series properties such as stationarity
and volatility clustering.

4.1 Structure of the data

The dataset consisting of the historical spot prices for voluntary carbon credits is obtained from
Quantum Commodity Intelligence [54]. In this thesis, we consider the following voluntary carbon
credits, categorized according to the classification shown in Figure 3.1:
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Table 4.1: Overview of voluntary carbon credit assets

Asset Type Description
Nature-Based
Offset Index

Nature-based,
avoidance

An index aggregates land-use sector credits like REDD+ and
wetland restoration.

REDD+ Nature-based,
avoidance

A credit linked to projects that prevent deforestation across
tropical regions in Africa, Asia and Latin America

Cookstoves
Africa V2021

Tech-based,
avoidance

A credit generated from clean cooking technologies that re-
duce fuel use and emissions.

Water
Filtration
Africa V2021

Tech-based,
avoidance

A credit generated fromwater filtration projects that cut emis-
sions by replacing traditional water boiling.

US IFM V2020 Nature-based,
hybrid

A credit generated from improved forest management in U.S.
forests, improving carbon sequestration.

Latin America
ARR V2021

Nature-based,
removal

A credit generated from afforestation and ecosystem restora-
tion projects across Latin America.

Uruguay ARR
V2021

Nature-based,
removal

A credit generated from afforestation and reforestation efforts
in Uruguay.

Additional information on the selected carbon credits can be found in Appendix A. As mentioned
in Chapter 3, the voluntary carbon market is still in an early stage of development and remains
relatively illiquid compared to established asset classes. Prices are not centrally regulated and often
lack the standardization observed in traditional markets. As such, the dataset used in this thesis
represents, to our knowledge, the most comprehensive set of market-based VCC price observations
currently available. The number of observations per VCC asset ranges from approximately 450 to
1,050 historical price points. The price series have different starting dates, as trading for each VCC
asset begins on different dates based onwhen the underlying offset projects were issued and verified.
The earliest available carbon credit price series begins in 2021. To ensure consistency in our analysis,
the series of the conventional assets are alignedwith the earliest available date among the first traded
VCC asset. Observations from the conventional assets that occur before this date are excluded, as
no carbon credit data are available for that period.

The price data for the conventional assets are obtained from Yahoo Finance. In contrast to the VCCs,
these conventional assets exhibit almost no zero returns, which indicates regular trading. The his-
torical prices are available from 2007 to the present. This difference highlights the greater maturity
of traditional financial markets compared to the emerging voluntary carbon market. The conven-
tional assets included in our analysis are listed in Table 4.2. Additional information on the selected
conventional assets can be found in Appendix A.

The six conventional assets listed in Table 4.2 are selected to investigate potential relationships be-
tween voluntary carbon credits and more liquid financial markets. The selection is grounded in
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Table 4.2: Overview of conventional financial assets
Asset Type Description
EU ETS Financial,

carbon market
The European Union Emissions Trading System is the
largest carbon market in the world, and serves as a bench-
mark for compliance carbon pricing.

NASDAQ Financial,
equity index

A stock market index including over 3,000 companies,
serving as a barometer for U.S. equity performance, espe-
cially within the technology sector.

Natural Gas
Futures

Energy,
fossil fuel

Reflects spotmarket prices for natural gas, which iswidely
used in power generation and heating. Prices are sensitive
to seasonal, geopolitical, and demand-supply dynamics.

Soybean Futures Agricultural,
soft commodity

Soybeans are amajor global crop traded on commodity ex-
changes. Prices reflect agricultural yields, export demand,
and biofuel policy interactions.

Renewable
Energy Contract

Energy,
green market

Represents a synthetic index of renewable energy sources
such as wind and solar, indicating shifts in clean energy
investment and policy incentives.

Volatility Index
(VIX)

Financial,
market sentiment

The CBOE Volatility Index measures market expectations
of near-term volatility conveyed by S&P 500 option prices.
It is widely used as a proxy for market uncertainty.

hypotheses developed in collaboration with Rabobank, based on macroeconomic trends. On the
demand side, the cost of decarbonization plays an important role: as companies face rising costs
for internal emission reductions, the use of VCCs becomes a relatively more attractive alternative.
This substitution mechanism suggests potential links with macro indicators such as the VIX, which
reflects risk sentiment, and with the EU ETS, the largest compliance carbon market. In addition,
indices like the NASDAQ may also show potential links since this index captures large U.S. technol-
ogy companies, many of which set voluntary climate targets. A declining stock performance may
signal reduced capacity or willingness to invest in VCCs, whereas strong performance may support
higher participation. As discussed in Chapter 3, demand-side shocks are expected to have the most
immediate impact on VCCpricing, as supply adjusts only gradually due to long project development
cycles, typically ranging from five to seven years.

On the supply side, agricultural commodity prices affect the relative attractiveness of land-based
carbon projects: high prices for crops such as soy can reduce the economic appeal of conservation
or reforestation, thereby limiting the supply of nature-based credits. Conversely, lower agricultural
returnsmay increase the availability of such credits. Similarly, the development of renewable energy
technologiesmay influence the issuance of tech-based credits, aligning themwith clean energy ETFs.

Each selected asset is thus linked to voluntary carbon credits through a specific hypothesis: soybean
futures are expected to correlate with nature-based credits due to their influence on land-use eco-
nomics; the NASDAQ index and a clean energy ETF are associated with tech-based credits through
their shared exposure to developments in clean technology; the EU ETS and natural gas are included
based on their well-documented interdependence and their broader signaling effects on carbonmar-
kets; and the VIX is used to capture fluctuations in market risk sentiment that may influence corpo-
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rate demand for offsets.

Recall that 𝑝 𝑗 ,𝑡 denotes the price of asset 𝑗 at time 𝑡, where 𝑗 = 1, . . . , 𝑁asset, and 𝑡 = 𝑇𝑗 , . . . , 𝑇final.
Here, 𝑁asset represents the number of assets and 𝑇𝑗 is the first date for which we have an observation
of asset 𝑗. Hence, 𝑇final−𝑇𝑗 +1 is the number of observations for asset 𝑗. To ensure comparability and
stationarity in the time series analysis, we consider logarithmic returns, defined as

𝑟 𝑗 ,𝑡 = log
(
𝑝 𝑗,𝑡
𝑝 𝑗,𝑡−1

)
≈ 𝑝 𝑗,𝑡 − 𝑝 𝑗,𝑡−1

𝑝 𝑗 ,𝑡−1
,

which are commonly used in financial applications due to their desirable mathematical properties
[24].

4.2 Multivariate model setup and estimation

In an univariate case, each asset 𝑗 ∈ {1, . . . , 𝑁assets} is associatedwith a time index set𝒯𝑗 := {𝑇𝑗 , . . . , 𝑇final},
where𝑇𝑗 denotes the first time at which returns for asset 𝑗 are observed, and𝑇final is the common final
time across all assets. To define a common multivariate time index set, we consider only time steps
for which all assets have observed returns. Let

𝒯 multivariate := {𝑇start , . . . , 𝑇final} , (4.1)

where 𝑇start := max 𝑗 𝑇𝑗 is the latest starting point among all assets. For notational convenience and
without loss of generality, we define 𝑁 := 𝑁assets and 𝑇start = 0. We now define the multivariate
zero-inflated GARCH(1,1)-X model as follows.

Definition 4.1 (Multivariate zero-inflated GARCH(1,1)-X model). Let 𝑁 denote the number of as-
sets and let 𝒯 multivariate = {0, . . . , 𝑇final} denote the common time index set over which all assets are
observed. A multivariate zero-inflated GARCH(1,1)-X model for 𝑁 assets is defined by


r𝑡 = I𝑡 ⊙ 𝝈𝑡(𝜽★) ⊙ 𝜼𝑡 ,

𝜎2
𝑗 ,𝑡(𝜽★

𝑗 ) = 𝛼★
𝑗,0 + 𝛼★

𝑗 ,1 𝜎
2
𝑗,𝑡∗ + 𝛼★

𝑗 ,2 𝑟
2
𝑗 ,𝑡∗ + 𝛼★

𝑗,3 𝐼 𝑗 ,𝑡−1 , for all 𝑗 ∈ {1, . . . , 𝑁} ,
(4.2)

for all 𝑡 ∈ 𝒯 multivariate, where ⊙ denotes the Hadamard (element-wise) product. The components of
the model are defined as follows:

• r𝑡 = (𝑟1,𝑡 , . . . , 𝑟𝑁,𝑡)⊤ ∈ R𝑁 is the vector of asset returns,

• 𝝈𝑡 = (𝜎1,𝑡 , . . . , 𝜎𝑁,𝑡)⊤ ∈ R𝑁+ is the vector of conditional standard deviations,

• I𝑡 = (𝐼1,𝑡 , . . . , 𝐼𝑁,𝑡)⊤ ∈ {0, 1}𝑁 is the vector of binary trading indicators,

• 𝜼𝑡 = (𝜂1,𝑡 , . . . , 𝜂𝑁,𝑡)⊤ ∈ R𝑁 is the vector of standardized innovations,
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• 𝑡∗ := 𝑡∗(𝑗 , 𝑡) := max{𝑠 < 𝑡 : 𝐼 𝑗 ,𝑠 = 1} is the most recent trading time before 𝑡 at which asset 𝑗 was
traded,

• 𝜽★ := (𝜽★⊤
1 , . . . , 𝜽★⊤

𝑁 )⊤ ∈ 𝚯 is the true (unknown) parameter vector, where each asset-specific
parameter vector is given by 𝜽★

𝑗 := (𝛼★
𝑗,0 , 𝛼

★
𝑗,1 , 𝛼

★
𝑗 ,2 , 𝛼

★
𝑗 ,3)⊤ for 𝑗 ∈ {1, . . . , 𝑁}.

The model can also be expressed in matrix form over the full time horizon. Let R ∈ R(𝑇final+1)×𝑁 be
the matrix of returns, defined by R = I ⊙ Σ(𝜽★) ⊙ E. This can be explicitly written as

R =


𝐼1,0 · · · 𝐼𝑁,0
...

. . .
...

𝐼1,𝑇final · · · 𝐼𝑁,𝑇final

︸                      ︷︷                      ︸
∈ {0,1}(𝑇final+1)×𝑁

⊙


𝜎1,0 · · · 𝜎𝑁,0
...

. . .
...

𝜎1,𝑇final · · · 𝜎𝑁,𝑇final

︸                        ︷︷                        ︸
∈ (0,+∞)(𝑇final+1)×𝑁

⊙

𝜂1,0 · · · 𝜂𝑁,0
...

. . .
...

𝜂1,𝑇final · · · 𝜂𝑁,𝑇final

︸                        ︷︷                        ︸
∈ (R⊔{undefined})(𝑇final+1)×𝑁

(4.3)

This expression should be interpreted element-wise. That is, for all 𝑗 ∈ {1, . . . , 𝑁} and 𝑡 ∈ 𝒯 multivariate,

𝑟 𝑗 ,𝑡 = 𝐼 𝑗 ,𝑡 · 𝜎𝑗 ,𝑡 · 𝜂 𝑗 ,𝑡 ,

with the convention 0 × undefined = 0.

As in a univariate setting, we see that if asset 𝑗 is not traded at time 𝑡 the corresponding return 𝑟 𝑗 ,𝑡
is zero. Otherwise, the return equals the product of volatility and innovation, as in the standard
GARCH framework. Each element of the conditional variance vector 𝝈2

𝑡 = (𝜎2
1,𝑡 , . . . , 𝜎

2
𝑁,𝑡)⊤ evolves

according to a component-wise zero-inflated GARCH(1,1)-X specification:

𝜎2
𝑗,𝑡 = 𝛼 𝑗,0 + 𝛼 𝑗 ,1 𝜎

2
𝑗,𝑡∗ + 𝛼 𝑗 ,2 𝑟2

𝑗,𝑡∗ + 𝛼 𝑗,3 𝐼 𝑗 ,𝑡−1 , ∀𝑗 ∈ {1, . . . , 𝑁} ,

Thus, volatility updates depend only on non-zero return observations. Compared to a classical
GARCH specification, we make two adjustments in Equation 4.2 to ensure that volatility dynam-
ics evolve only when relevant information becomes available, which is essential in illiquid markets
where trading is infrequent but highly informative. First, we include the binary trading indicator
𝐼 𝑗,𝑡−1 directly in the variance equation as a GARCH-X component. Second, we account for the fact
that trading does not occur at every time step. We therefore define 𝑡∗ := max{𝑠 < 𝑡 : 𝐼 𝑗,𝑠 = 1}, which
is the most recent time before 𝑡 at which asset 𝑗 was traded.

Parameter estimation is carried out using quasi-maximum likelihood (QMLE),which is the standard
method in the GARCH literature [24]. Chapter 6 provides a detailed description of the univariate
version of the zero-inflated GARCH-X model, how QMLE is applied, and its asymptotic properties.
For further details, the reader is referred to that chapter.

A key feature of the zero-inflated GARCH-X model from Definition 4.2 is its multivariate exten-
sion. The multivariate nature of the model is defined by the cross-asset dependencies in both I𝑡
and E𝑡 . To fully explain this extension, Chapter 5 focuses on the trading indicator functions I𝑡 and
their contemporaneous cross-dependence in trading activity. The dependencies among trading in-
dicators are modeled using Markov Networks, as introduced in Section 2.7. In addition, Chapter 7
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is dedicated to cross-dependence among assets based on their return innovations. Here, a copula-
GARCH framework is employed, in which the dependencies among the residuals 𝜼𝑡 are quantified
using (conditional) Kendall’s tau, estimated via kernel-based methods as described in Sections 2.4
and 2.5.

4.2.1 Extension to general models

Up to this point, we have considered only themultivariate zero-inflatedGARCH(1,1)-X specification.
However, themodel can be naturally extended to a generalmultivariate zero-inflatedGARCH(𝑝, 𝑞, 𝑟)-
X framework. This leads to the following definition:

Definition 4.2 (Multivariate zero-inflated GARCH(𝑝, 𝑞, 𝑟)-X model). Let 𝑁 denote the number of
assets and let 𝒯 multivariate = {0, . . . , 𝑇final} denote the common time index set over which all assets
are observed. Let 𝑝, 𝑞, 𝑟 ∈ N be the lag order of the model. A multivariate zero-inflated GARCH(𝑝,
𝑞, 𝑟)-X model for 𝑁 assets is defined by

r𝑡 = I𝑡 ⊙ 𝝈𝑡(𝜽★) ⊙ 𝜼𝑡 ,

𝜎2
𝑗,𝑡(𝜽★

𝑗 ) = 𝛼★
𝑗,0 +

𝑝∑
ℓ=1

𝛼★
𝑗,1,ℓ 𝜎

2
𝑗,𝑡∗(ℓ ) +

𝑞∑
𝑚=1

𝛼★
𝑗 ,2,𝑚 𝑟

2
𝑗 ,𝑡∗(𝑚) +

𝑟∑
𝑛=1

𝛼★
𝑗 ,3,𝑛 𝐼 𝑗,𝑡−𝑛 , for all 𝑗 ∈ {1, . . . , 𝑁} ,

(4.4)
for all 𝑡 ∈ 𝒯 multivariate, where ⊙ denotes the Hadamard (element-wise) product. The components of
the model are defined as follows:

• r𝑡 = (𝑟1,𝑡 , . . . , 𝑟𝑁,𝑡)⊤ ∈ R𝑁 is the vector of asset returns,

• 𝝈𝑡 = (𝜎1,𝑡 , . . . , 𝜎𝑁,𝑡)⊤ ∈ R𝑁+ is the vector of conditional standard deviations,

• I𝑡 = (𝐼1,𝑡 , . . . , 𝐼𝑁,𝑡)⊤ ∈ {0, 1}𝑁 is the vector of binary trading indicators,

• 𝜼𝑡 = (𝜂1,𝑡 , . . . , 𝜂𝑁,𝑡)⊤ ∈ R𝑁 is the vector of standardized innovations,

• 𝑡∗(𝑘) := 𝑡∗(𝑘)(𝑗 , 𝑡) := max{𝑠 < 𝑡∗(𝑘−1) : 𝐼 𝑗,𝑠 = 1}, with the convention 𝑡∗(0) := 𝑡; this defines the 𝑘-th
most recent trading time before 𝑡 for asset 𝑗, i.e. 𝑡∗(1) is the last trading time before 𝑡, 𝑡∗(2) the
second last, and so on,

• 𝜽★ := (𝜽★⊤
1 , . . . , 𝜽★⊤

𝑁 )⊤ ∈ 𝚯 is the true (unknown) parameter vector, where each asset-specific
parameter vector is given by

𝜽★
𝑗 :=

(
𝛼★
𝑗,0 , 𝛼

★
𝑗 ,1,1 , . . . , 𝛼

★
𝑗 ,1,𝑝 , 𝛼

★
𝑗,2,1 , . . . , 𝛼

★
𝑗,2,𝑞 , 𝛼

★
𝑗 ,3,1 , . . . , 𝛼

★
𝑗 ,3,𝑟

)⊤ ∈ R1+𝑝+𝑞+𝑟 for 𝑗 ∈ {1, . . . , 𝑁}.

Themodel can also be expressed inmatrix form over the full time horizon similar as in Definition 4.2.
Let R ∈ R(𝑇final+1)×𝑁 be the matrix of returns, defined by R = I ⊙ Σ𝑝,𝑞,𝑟(𝜽★) ⊙ E. The only difference
from Equation (4.3) is that Σ𝑝,𝑞,𝑟(𝜽★), while having the same dimensions as Σ(𝜽★), now specifies the
conditional volatilities according to the GARCH(𝑝, 𝑞, 𝑟)-X formulation in Equation (4.4).
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Clearly, the setting 𝑝 = 𝑞 = 𝑟 = 1 gives the multivariate zero-inflated GARCH(1,1)-X model in-
troduced in Definition 4.2. It is important to note that estimation is still performed asset-wise using
QMLE, and the asymptotic properties remain conceptually equivalent to those of the univariate zero-
inflated GARCH(1,1)-X model. For notational simplicity, we therefore restrict our detailed analysis,
estimation procedure, and asymptotic theory to the univariate case, as described in Chapter 6.

4.3 Structure of asset dependence

The conceptual framework for temporal and cross-asset dependence is illustrated in Figure 4.1. We
consider by means of an example the returns of three representative assets 𝑟 𝑗 , 𝑟𝑘 , and 𝑟𝑙 observed
over three temporal lags 𝑡−1, 𝑡, and 𝑡+1. The graph captures three forms of dependencies:

1. Temporal dependence (blue edges): dependency of a single asset across different time lags.
2. Cross-dependence (orange edges): contemporaneous dependence between distinct assets.
3. Lagged cross-dependence (gray edges): dependencies involving different assets across differ-

ent time lags.

In this thesis, we only take into account temporal and contemporaneous cross-dependence, i.e. the
blue and orange connections in Figure 4.1. The gray edges are excluded based on two practical
modeling assumptions.

Assumption 4.1 (Modeling simplifications for dependency analysis). In this research, we assume the
following two statements:

• Single-lag memory
Trading behavior at time 𝑡 is assumed to depend only on behavior at time 𝑡−1. Dependencies on earlier
time points (e.g., 𝑡−2, 𝑡−3, etc.) are ignored.

• Contemporaneous cross-asset influence only
Cross-asset effects are considered only within the same time step. That is, influences such as 𝑟 𝑗 ,𝑡−1 ↔ 𝑟𝑘,𝑡
are excluded.

These assumptions are imposed to avoid the curse of dimensionality and to prevent reliance on increasingly
sparse data, as accounting for all lagged inter-asset dependencies would require evaluating 2𝑁lags×𝑁assets possible
configurations. More information about this can be found in Subsection 5.4.1.

Consequently, the analysis is limited to bivariate contemporaneous relationships between assets at
the same time point. This simplification is both computationally efficient and statistically appropri-
ate, given the illiquidity of the voluntary carbon credit market; the data is too limited to support
reliable estimation of dependencies across multiple time lags. Including additional lags or model-
ing lagged cross-dependence would not yield meaningful improvements in the results. The cross-
dependence in trading activity is further examined in Chapter 5, while the cross-dependence among
residuals is discussed in Chapter 7.
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Figure 4.1: Temporal and cross-asset dependence structure of returns, residuals 𝜂 𝑗 ,𝑡 , and trading indicators 𝐼 𝑗 ,𝑡 for assets
𝑗 , 𝑘, 𝑙 over time lags 𝑡 + 1, 𝑡 , 𝑡 − 1
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4.4 Descriptive analysis financial assets

4.4.1 Descriptive analysis Carbon Credit assets

We begin by analyzing the spot prices and corresponding daily returns for the selected voluntary
carbon credit assets, organized by project category. The visualizations in Figures 4.2–4.5 present
the price levels and log returns across four representative groups: Avoidance Nature, Avoidance
Technology, Hybrid Nature, and Removal Nature.

Across all groups, the price data show a structural trend of declining valuations in voluntary carbon
credits. Return behavior varies across assets; some assets show extreme episodic movements and
others exhibit lower-magnitude but persistent fluctuations. For all assets, the returns seem to be
constant around zero, indicating stationarity. This is classical in financial time series, where price
series are typically non-stationary, while log returns are stationary. Moreover, in contrast to prices,
returns do not depend on monetary units, which facilitates comparisons between assets [24]. It
becomes also clear that the returns show volatility clustering. Interestingly, all assets exhibit more
active market behavior with fewer zero returns in the earlier part of the sample period, particularly
prior to 2023. This initial phase of greater price variability is followed by an extended period of
price constancy, resulting in an increase in zero returns across assets. This pattern is somewhat
counterintuitive, as one would typically expect market maturation over time to lead to increased
liquidity and reduced incidence of zero returns.

Let us now look into each carbon asset group specifically. Figure 4.2 shows the price and return dy-
namics of the two assets in the Avoidance Nature group: the Nature-Based Offset (CCB-approved)
and the VCS REDD+ CCB Gold Vintage 2021. Both assets have a general upward price trend until
early 2022, followed by a sustained decline. This trajectory reflects a broader market revaluation,
likely influenced by changing market sentiment toward nature-based credits and increased credit
issuance, as discussed in Chapter 3. Return series in this group show high volatility, particularly for
the Nature-Based Offset. Several extreme daily returns, exceeding ±1.5 USD per credit, suggest the
presence of illiquidity and the impact of isolated trades in a thin market.

Figure 4.3 presents the price and return dynamics of the two assets in the Avoidance Technology
group: the GS Clean Cookstoves Africa V2021 and the GS Water Filtration Africa V2021. Both assets
exhibit a gradual devaluation over time, but unlike the nature-based credits, the price trajectories
consist of a series of downward steps. This pattern likely reflects sporadic trading and delayed price
discovery in an illiquid market. The return series are relatively bounded in magnitude but show
periods of clustered volatility, particularly throughout 2023 and 2024. Furthermore, the frequency
of zero returns is higher than in other groups. This indicates lower trading activity and a higher
degree of illiquidity.

Figure 4.4 shows the price and return dynamics for the Hybrid Nature group, represented by the
ACRUS IFM 2020 carbon credit. The price trajectory shows irregularities in the early trading period,
with sudden jumps and sharp corrections. From mid-2023 onwards, however, the asset enters a
phase of near-constant pricing, with a few observable spikes in price adjustments. Notably, a sharp
price drop of nearly 3.5 USD per offset occurs in early 2024. Such a singular and abrupt adjustment is
not observed in any of the other selected carbon credit assets. Among all assets analyzed, this group
exhibits the highest concentration of zero returns, indicative of minimal recent trading activity and
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substantial illiquidity. The transition from early price volatility to prolonged stability likely reflects
a structural decline in market activity or a reduction in demand for this credit type.

Figure 4.5 presents the price and return dynamics of the Removal Nature group, consisting of the
VCS CCB/GS LatamARR 2021 and the VCSUruguayARRVintage 2021 credits. Over the full sample
period, both assets exhibit a general downward trend. In early to mid-2024, however, both credits
experience a notable upward price adjustment, with the Latam ARR credit showing a sudden in-
crease of nearly 3 USD per offset. Despite originating from distinct projects, the two assets display
highly similar trajectories, indicating the influence of common market factors or a convergence in
the valuation of ARR project types. Following these price adjustments, both series enter a phase of
relative stability extending through 2025. This is reflected in the return series, which show reduced
volatility and a higher concentration of zero returns, consistent with lower trading activity.

4.4.2 Descriptive analysis conventional assets

In this section, we examine the characteristics of a selected group of conventional or liquid financial
assets, as introduced in Section 4.1. Our analysis focuses on their price and return dynamics to gain
insight into the time series properties of more liquid markets.

Figure 4.6 shows the price series of the conventional financial assets. For all assets except the EU ETS,
the historical price series start in 2007, based on availability from Yahoo Finance. The EU ETS starts
from mid-2020, as it was sourced from Quantum Commodity Intelligence. To ensure a consistent
comparison across all assets, we align the time series by using a common starting point. Formally,
we define the common starting point as 𝑇start = max{𝑇𝑗 : 𝑗 ∈ {1, . . . , 𝑁asset}} , where 𝑇𝑗 denotes the
first available date for asset 𝑗, and 𝑁asset is the total number of assets considered. In other words, the
common starting point is the latest date on which all selected assets have data available.

The NASDAQ index shows the highest overall price levels among the selected assets, with a gener-
ally upward trend over the full time horizon. A notable drawdown occurs between 2021 and 2023,
followed by a gradual recovery. This decline reflects global inflation and tighter monetary policy.
After the COVID-19 pandemic began in 2020, inflation escalated inmid-2021 due to supply chain dis-
ruptions, strong demand, and economic support measures. In early 2022, the war in Ukraine pushed
up prices for, among other things, energy and food. Central banks raised interest rates sharply in
response. Higher rates especially affected tech stocks, contributing to the decline in the NASDAQ.

Turning to the EU ETS, the EU ETS price series begins in mid-2020 and shows a rapid increase fol-
lowed by a more volatile regime. This coincides with the tightening of the EU’s emissions trading
rules under the European Green Deal and Fit-for-55 legislative packages, along with energy market
disruptions following the onset of the war in Ukraine.

To analyze the statistical properties such as stationarity and volatility clustering of the conventional
liquid financial assets, we examine their log return series, as presented in Figure 4.7. First, the return
series for EU ETS shows moderate variability compared to more volatile assets such as Natural Gas
and the VIX. A few sharp return spikes are visible, likely reflecting short-term market reactions to
regulatory changes, COVID-19, the Ukraine war, and the energy crisis in late 2022. Returns fluctuate
around zero without any visible trend, suggesting weak stationarity in the first moment. Volatility
appears relatively stable over the sample period, with some visual evidence of volatility clustering.
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Figure 4.2: Price and log return plot for Group 1: Avoidance Nature Carbon Credits
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Figure 4.3: Price and log return plot for Group 2: Avoidance Tech Carbon Credits
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Figure 4.4: Price and log return plot for Group 3: Hybrid Nature Carbon Credits
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Figure 4.5: Price and log return plot for Group 4: Removal Nature Carbon Credits
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Figure 4.6: Plots of the price series of the liquid financial assets. EU ETS is measured in EUR/tCO2eq, and all other
asset’s prices are in USD.

The NASDAQ return series showsmoderate volatility relative to the other assets. Returns are tightly
clustered around zero, with occasional spikes. These may be driven by macroeconomic events such
as the financial crisis in 2008, the COVID-19 pandemic, and the Russia–Ukraine war. The series
appears stationary in both mean and variance, and there is clear evidence of volatility clustering.

The return series for Natural Gas exhibits relatively high variability compared to the other assets.
Several pronounced spikes are observed, particularly in 2022–2023, likely corresponding to geopo-
litical shocks such as the Russia–Ukraine war and the corresponding natural gas crisis. The series
appears stationary inmean, and it seems that the variance changes over time, suggesting the presence
of time-varying volatility. The occurrence of consecutive large return deviations indicates volatility
clustering and supports the use of conditional heteroskedastic models.

The Renewable Energy ETF shows moderate return variability, higher than that of NASDAQ but
lower than that of Natural Gas and the VIX. Spikes are observed particularly in the early part of
the sample and during the 2020–2021 period. These may reflect investor sentiment driven by clean
energy policies, the 2008 financial crisis, or COVID-19-related uncertainty. The series appears sta-
tionary inmean, and the temporal clustering of high return values suggests the presence of volatility
clustering. Moreover, the volatility seems to be time-varying as well, which supports the use of con-
ditional heteroskedastic models.

The Soy futures return series exhibits lower overall variability, with occasional extreme spikes, par-
ticularly in the earlier part of the sample. These may be linked to agricultural supply shocks, such as
adverseweather conditions or trade policy changes, aswell as during periods of financial stress, such
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Figure 4.7: Plot of the return values of the liquid financial assets

as the 2008 crisis and the 2022–2023 economic slowdown. The series appears stationary. Volatility
is less persistent than in the case of Natural Gas or the Renewable Energy ETF.

The VIX return series exhibits the most extreme fluctuations among the assets studied. These events
correspond to periods of market stress, including the 2008 financial crisis and the COVID-19 shock
in early 2020. The series fluctuates around zero, and high levels of volatility persist throughout
the entire sample. Unlike other assets, the VIX does not show clear alternation between high- and
low-volatility periods. Instead, volatility remains consistently elevated, indicating less pronounced
volatility clustering and time-varying volatility. This behavior aligns with the nature of the VIX,
which reflects implied market volatility and is inherently sensitive to ongoing uncertainty.



5
Illiquidity andmultivariate analysis of

trading activity

The presence of zero returns in the data creates challenges for statistical analysis, as it reflects a
non-continuous time series. It is therefore essential to evaluate the degree of illiquidity among the
selected voluntary carbon credit assets. In this chapter, we focus on the illiquidity features of these
assets. As introduced in the previous chapter, we use a binary trading indicator 𝐼 𝑗,𝑡 to explicitly cap-
ture zero returns resulting from an absence of trading activity. We adopt a multivariate perspective
on trading activity, distinguishing between temporal dependence (within each asset over time) and
cross-sectional dependence (across different assets). We begin by formally explaining the concept
of zero-inflated data and how it manifests in our setting. This is followed by a descriptive analysis
of the binary indicators. To examine temporal dependence, we apply Fisher’s exact test to assess
whether past trading activity significantly influences current trading. We then analyze cross-asset
dependence, starting with pairwise co-trading patterns and extending to a higher-dimensional per-
spective using UpSet plots to visualize overlapping trade activity across multiple assets. Finally, we
introduce Markov Networks to formally model the multivariate dependence structure in trade/no-
trade behavior.

5.1 Zero-returns analysis

Zero-inflation indicates that a dataset contains an excessive number of zeros. In finance, zero-inflated
data typically manifests as periods of constant prices, resulting in sequences of zero returns. This
is particularly common in illiquid markets, where irregular trading leads to extended periods of
constant prices. In the literature, the fraction of zero-return days is widely used as a proxy formarket
illiquidity; a higher proportion of zero returns generally indicates lower trading activity [35, 44].
From a statistical perspective, these data are modeled as a mixture distribution: a discrete mass at
zero and a continuous distribution over non-zero values. This violates the assumptions of standard
continuous time series models and, therefore, we need alternative modeling approaches.

In our study of voluntary carbon credit assets, we observe similar zero-inflated return patterns,
confirming the illiquid nature of carbon credit assets. To explicitly model the presence or absence of
trading, we define a binary trading indicator, as introduced in Chapter 4. This allows us to analyze
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illiquidity separately from the magnitude of returns. Recall that for each asset 𝑗 ∈ {1, . . . , 𝑁} and
time point 𝑡 ∈ 𝒯𝑗 , the indicator is defined as:

𝐼 𝑗,𝑡 =


1, if asset 𝑗 is traded at time 𝑡 ,
0, otherwise.

To make sure that zero returns are solely interpreted as the result of no trading activity, and not due
to other market mechanisms, we introduce the following assumption:

Assumption 5.1 (Zero-inflated financial data). Let 𝑟𝑡 denote the return of an asset at time 𝑡. Then,

𝑟𝑡 = 0 ⇐⇒ no trading activity occurred at time 𝑡 ,
𝑟𝑡 ≠ 0 ⇐⇒ at least one trade occurred at time 𝑡.

Under this assumption, a zero return directly indicates an absence of trading. This interpretation is
natural, as it is highly unlikely that trades occur in such a way that their effects perfectly cancel out,
resulting in an exact zero return. This understanding was further supported by expert discussions
with professionals at Rabobank.

Since the frequency of zero returns serves as a proxy for illiquidity, we begin by examining the
financial data. Table 5.1 highlights variation in trading activity across different project types. Projects
such as Clean Cookstoves and Water Filtration show extremely high illiquidity, with over 85% zero
returns, indicating that trading occurs only rarely. In contrast, credits like REDD+ exhibit a lower
proportion of zero returns, suggesting comparatively higher liquidity and more frequent trading.
Overall, it becomes clear that all carbon credit types in the dataset exhibit an excessive number of
zero returns, ranging from approximately 12% to 85%. For comparison, liquid financial markets
typically show less than 5% zero returns on daily data.

Table 5.1: Number of zero and non-zero returns among the selected voluntary carbon credit types

Asset (Spot $/offset) Non-zero returns Total returns Zero returns (%)

Nature Based Offset Index 642 1074 40.2
REDD+ Vintage 2021 734 841 12.7
Clean cookstoves Africa Vintage 2021 89 738 87.9
Water filtration Africa Vintage 2021 97 654 85.2
US IFM Vintage 2020 215 654 67.1
Uruguay ARR Vintage 2021 533 654 18.5
Latam ARR Vintage 2021 363 569 36.2

Table 5.2 presents the number of zero and non-zero returns across these conventional assets. The
conventional financial assets show far fewer zero-return observations than the carbon credit assets,
which confirms that they are more liquid. The highest proportion of zero returns among them is
seen in the Renewable Energy ETF (ICLN), at about 3%. These low percentages are typical for
liquid markets, where prices tend to change daily due to regular trading activity. These occasional
zero returns are not a sign of illiquidity but aremost likely due to non-trading days such asweekends
or public holidays.
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Table 5.2: Number of zero and non-zero returns for selected conventional liquid assets

Asset (Ticker) Non-zero returns Total returns Zero returns (%)

Soybean Futures (ZS.F) 4409 4455 1.03
Volatility Index (VIX) 4768 4786 0.38
Renewable Energy ETF (ICLN) 3963 4088 3.06
Natural Gas Futures (NG.F) 4432 4456 0.54
NASDAQ (IXIC) 4446 4447 0.02
EU ETS 1051 1052 0.10

5.2 Kurtosis

Kurtosis measures the degree of tail risk in a distribution. It indicates the likelihood of extreme
outcomes relative to a normal distribution, which has a kurtosis of 3. Higher values suggest fat-
tailed, leptokurtic behavior, a common feature in financial return series where extreme values occur
more frequently than standard models would predict. Table 5.3 reports the kurtosis of each carbon
asset’s return distribution bothwith andwithout zero returns. Clearly, all assets exhibit high degrees
of kurtosis. This suggests that extreme price movements are a persistent feature of return dynamics
in the voluntary carbon market. Excluding zero returns reduces kurtosis among all assets. This
result reinforces looking into the dependency of the trade/no-trade data in the subsequent sections.

Table 5.3: Kurtosis of the returns of all voluntary carbon assets with and without zero returns

Asset (Spot $/offset) Kurtosis (All Returns) Kurtosis (No Zeros)

Nature Based Index 154.40 92.66
REDD+ 18.62 16.25
Cookstoves Africa 38.48 4.44
Water Filtration Africa 28.90 4.08
US IFM 44.89 14.82
Uruguay ARR 8.90 7.25
Latam ARR 19.80 12.72

For instance, the Nature Based Offset asset retains a high kurtosis of 92.66 even after filtering out
zeros. This means an extreme deviation from normality and a high degree of tail risk. Similarly,
assets like Cookstoves, IFM, and Water Filtration continue to exhibit strong leptokurtic behavior.
Assets such asWater Filtration andCookstoves, which have the highest share of zero returns (around
85%), show a notable drop in kurtosis after excluding those zeros. While still slightly elevated, their
distributions become much closer to normal. This suggests a reduction in extreme outcomes once
inactive days are removed. Overall, however, all assets remain clearly non-normally distributed,
highlighting persistent tail risk in voluntary carbon markets and the need for models that account
for non-Gaussian behavior.

In addition, we examine the kurtosis of the selected conventional assets, as shown in Table 5.4. All
assets exhibit high kurtosis values, confirming the heavy tails typical of financial return distributions.
Notably, these values are lower thanmost kurtosis values observed for the carbon credit assets when
zero returns are included, as shown in Table 5.3. OnlyUruguayARRhas a comparable kurtosis value
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to those of the conventional assets. When zero returns are excluded from the carbon credit assets,
the kurtosis values of most assets move closer to those of the conventional assets. However, the
Nature-Based Index still exhibits an exceptionally high kurtosis of 92.66.

Table 5.4: Kurtosis of daily returns for selected liquid assets

Asset (Ticker) Kurtosis (All Returns)

Soy (ZS.F) 23.93
Volatility Index (VIX) 9.98
Renewable Energy ETF (ICLN) 13.59
Natural Gas (NG.F) 10.39
NASDAQ Composite (IXIC) 10.95
EU ETS 7.97

5.3 Temporal dependence for the trading activity

Understanding how trading activity evolves over time assets is essential in the context of illiquid
markets. Having established the presence of zero-inflated returns, we now examine the transitions
between trade (T) and no-trade (NT) states to assess whether these shifts influence return behavior.
Specifically, we compare return distributions conditional on trading activity—i.e., before and after
trade versus no-trade days. This analysis helps determine whether trading activity is independently
distributed or follows a more structured pattern within assets.

First, we examine the frequency of trades, no-trades, and particularly the transitions between them,
as reported in the first four columns of Table 5.5. The distribution of trade and no-trade transi-
tions is clearly not uniform, which indicates temporal dependence in trading activity. If trading
and non-trading days were independent events, we would expect the transition counts to be more
evenly spread across the four possible states. However, the observed data show clear asymmetries.
For instance, in the Nature-Based Index, there are 503 consecutive trading day transitions (T →T),
compared to only 139 transitions from a trade to a no-trade day (T→NT). This indicates that once
trading occurs, it is likely to continue. A similar pattern is seen in the LatamARRproject, where T→T
transitions (294) also exceed T→ NT transitions (69). This strengthens the hypothesis of temporal
dependence in the trading activity.

Table 5.5: Trade (T) / No-Trade (NT) transition counts for each carbon credit asset combined with Fisher Test results

Asset (Spot $/offset) T → T T → NT NT → T NT → NT p-value Odds Ratio

Nature Based Index 503 139 139 292 < 2.2e-16 7.58
REDD+ 658 75 75 32 4.34e−7 3.74
Cookstoves Africa 23 66 66 582 1.01e−4 3.07
Water Filtration Africa 30 67 67 489 8.86e−6 3.26
US IFM 161 54 54 384 < 2.2e-16 21.06
Uruguay ARR 476 57 56 64 < 2.2e-16 9.49
Latam ARR 294 69 68 137 < 2.2e-16 8.54

To formally test the hypothesis of temporal dependence in trading activity among carbon credit
assets, we apply Fisher’s exact test which is introduced in Section 2.8. The resulting 𝑝-values and
odds ratio are reported in the final columns of Table 5.5.
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To apply the Fisher’s Exact test, we constructed for each asset a binary time series reflecting the pres-
ence (1) or absence (0) of trading activity on a given day. From this, we derived 2 × 2 contingency
tables that denote the frequency of daily state transitions, specifically: trade-to-trade, trade-to-no
trade, no trade-to-trade, and no trade-to-no trade. The results in Table 5.5 reveal statistically sig-
nificant dependence structures across all voluntary carbon credit assets. All assets reject the null
hypothesis of independence at the 5% significance level. These findings strongly suggest that trad-
ing behavior is not memoryless, i.e. the probability of an asset trading on a given day is conditioned
on whether it traded the previous day. Moreover, the odds ratios reflect the strength and direction
of this dependence. All assets report odds ratios greater than one, indicating a positive temporal
association. This implies that a trade on day 𝑡 increases the likelihood of observing a trade on day
𝑡 +1. The effect is particularly strong for assets such as US IFM Vintage 2020 (odds ratio around 21),
Uruguay ARR (odds ratio around 9.5) and Latam ARR (odds ratio around 8.5), where past trading
boosts the likelihood of continued trading activity.

This path dependence may be driven by market interest, coordinated trades, or data reporting prac-
tices, and has important implications formodeling volatility and return processes, particularly when
applying conditional variance models like GARCH. To further investigate the implications of this
dependence, we analyze the distribution of daily returns conditional on the previous day’s trading
state.
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Figure 5.1: Conditional return distribution by trading activity for a REDD+ Vintage 2021 carbon credit.

Figure 5.1 and 5.2 show the conditional return distributions for the REDD+ and Cookstoves assets,
respectively. These two assets are shown as representative examples, though similar patterns are
observed across the other carbon credit types. As expected in financial applications, both distribu-
tions are centered around zero. However, the volatility differs depending on whether the previous
day involved a trade or not.

Returns conditioned on a trade exhibit higher dispersion, while those following a no-trade day are
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more tightly concentrated around zero. This observation supports the concept of volatility cluster-
ing: periods of trading are associated with increased return variability. Importantly, similar patterns
are observed across all assets in the dataset, suggesting that volatility clustering persists even in illiq-
uid markets such as the voluntary carbon market. On the other hand, it is important to note that the
observed difference in dispersion may not capture the full dynamics of volatility. In particular, pe-
riods of latent volatility, where market uncertainty is present but not reflected in observed returns
due to the absence of trading, can distort the interpretation of return-based volatility measures.
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Figure 5.2: Conditional return distribution by trading activity for a Cookstoves Africa Vintage 2021 carbon credit.

5.4 Cross-asset dependence for the trading activity

Having discussed temporal dependence within individual assets, we now turn to the contempora-
neous cross-dependence among the voluntary carbon credit assets. These relationships are shown
by the orange edges in Figure 4.1. To statistically validate cross-dependence, we use Fisher’s Exact
Test between binary trade/no-trade indicators 𝐼 𝑗,𝑡 and 𝐼𝑘,𝑡 , for each asset pair (𝑗 , 𝑘). Table 5.6 presents
the resulting 𝑝-values for the combinations of all carbon credit assets. Most asset pairs show strong
statistical cross-dependence, with 𝑝-values below the 0.05 threshold. This indicates that the trading
activity of one asset is statistically related to that of another; when one asset trades, the other is also
more likely to trade. This suggests interlinked trading behavior across voluntary carbon credits.

There are, however, a few exceptions where independence cannot be rejected. These include: Cook-
stoves - REDD+, Cookstoves - Uruguay ARR, Cookstoves - LatamARR, andWater Filtration - Latam
ARR. For these combinations, p-values exceed the 0.05 level, indicated in bold in Table 5.6. One pos-
sible explanation is that they differ in project type, geographic focus, or buyer demand. Another
possible reason is that Cookstoves Africa andWater Filtration are the most illiquid assets in the sam-
ple, with very few trading days, as shown in Table 5.1. The lack of statistical significance is therefore
likely due to limited data, rather than the absence of actual cross-dependence. Thus, while most
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assets exhibit interconnected trade behavior, a few operate differently.

Table 5.6: Fisher Test p-values for independence between 𝐼 𝑗 ,𝑡 (trade/no-trade behavior) and 𝐼𝑘,𝑡 (trade/no-trade behav-
ior) for every pair (𝑗 , 𝑘) of voluntary carbon credit assets. Non-significant p-values are shown in bold.

Nature REDD+ Cookstoves Water US Uruguay Latam
Index Africa Filtration IFM ARR ARR

Nature Index NA 1.16e-12 1.08e-04 5.55e-03 < 2.2e-16 < 2.2e-16 4.65e-10
REDD+ 1.16e-12 NA 7.56e-02 1.43e-02 1.51e-08 < 2.2e-16 < 2.2e-16

Cookstoves Africa 1.08e-04 7.56e-02 NA < 2.2e-16 5.18e-04 9.00e-02 2.72e-01
Water Filtration 5.55e-03 1.43e-02 < 2.2e-16 NA 6.79e-03 1.04e-02 1.07e-01

US IFM < 2.2e-16 1.51e-08 5.18e-04 6.79e-03 NA 8.66e-15 8.11e-12
Uruguay ARR < 2.2e-16 < 2.2e-16 9.00e-02 1.04e-02 8.66e-15 NA < 2.2e-16
Latam ARR 4.65e-10 < 2.2e-16 2.72e-01 1.07e-01 8.11e-12 < 2.2e-16 NA

Table 5.7: Odds ratios from Fisher’s Test for independence of trade/no-trade behavior between 𝐼 𝑗 ,𝑡 and 𝐼𝑘,𝑡 for each pair
(𝑗 , 𝑘) of voluntary carbon credit assets.

Nature REDD+ Cookstoves Water US Uruguay Latam
Index Africa Filtration IFM ARR ARR

Nature Index NA 4.84 2.60 2.08 22.69 8.63 3.29
REDD+ 4.84 NA 2.13 2.75 5.41 14.05 11.20

Cookstoves Africa 2.60 2.13 NA 607.63 2.32 1.88 1.39
Water Filtration 2.08 2.75 607.63 NA 2.14 2.64 1.54

US IFM 22.69 5.41 2.32 2.14 NA 10.52 5.21
Uruguay ARR 8.63 14.05 1.88 2.64 10.52 NA 16.97
Latam ARR 3.29 11.20 1.39 1.54 5.21 16.97 NA

Table 5.7 presents the odds ratios from Fisher’s Exact Test for each pair of voluntary carbon credit as-
sets. Most asset pairs exhibit odds ratios well above one, indicating positive dependence in trade ac-
tivity. The strongest associations are observed between US IFM and Nature Index (22.69), Uruguay
ARR and LatamARR (16.97), andUruguayARR and REDD+ (14.05), highlighting the tight connec-
tions among nature-based credits. In contrast, Cookstoves Africa and Water Filtration Africa show
only weak associations with most other assets, with odds ratios closer to one. Yet, they are strongly
associatedwith each other (607.63), likely reflecting a few rare instances of joint trading. Theweaker
association with the other carbon credits may be explained by their limited liquidity. Overall, the
results confirm broad cross-asset trade activity dependence.

To explore contemporaneous cross-dependence between multiple voluntary carbon assets beyond
bivariate relationships, we use an UpSet plot [15, 45]. This is implemented in R through the UpSetR
package [15]. AnUpSet plot is a visualizationmethoddesigned to represent intersections ofmultiple
sets in order to offer an alternative to Venn diagramswhen analyzingmore than three groups. In this
context, each set corresponds to a specific carbon asset, and intersections indicate instances where
those assets are simultaneously traded. The binary trade/no-trade data used in the plot are based
on time series aligned to the first date on which the last asset began trading, i.e. the earliest point
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from which all assets show trading activity. We restrict the analysis to this common starting point
to ensure a fair comparison across assets. This results in a total of 569 observations.
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Figure 5.3: UpSet plot of the trade/no-trade data for all voluntary carbon credits explaining joint trading activity

TheUpSet plot in Figure 5.3 presents themost frequent combinations of simultaneous trading among
voluntary carbon assets. The most common pattern, observed on 131 occasions, involves the joint
trading of three assets: REDD+, Uruguay ARR, and Latam ARR. The second most frequent combi-
nation, occurring 83 times, extends this set to include Nature-Based Offset and IFM US, while Cook-
stoves and Water filtration are still not traded. Notably, the top five intersections all include REDD+
and consist solely of these five nature-based carbon credit assets. This consistent co-occurrence sug-
gests a degree of cross-dependence in trading behavior and points to a structural interconnectedness
among nature-based credits. In contrast, other asset combinations appear very rarely, usually fewer
than 20 times. This low frequency is still meaningful: it shows that joint trading between assets
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outside the nature-based group is rare, which may indicate weaker links or less overlap in market
activity among them.

The results of the UpSet plot align well with the findings from the Fisher tests. Nature-based car-
bon credits such as REDD+, Nature Index, Uruguay ARR, and Latam ARR frequently trade to-
gether. This is confirmed by the low p-values in the Fisher tests and high odds ratios between these
pairs, such as REDD+–Uruguay ARR (14.05) and Nature Index–US IFM (22.69). These frequent
co-occurrences are also visible in the top intersections of the UpSet plot, which are dominated by
combinations of nature-based credits. In contrast, assets like Cookstoves Africa and Water Filtration
Africa appear less frequently in joint trading combinations. This matches their low odds ratios and
non-significant p-values with most other assets. Interestingly, although they show a very strong
odds ratio with each other (607.63), they do not appear together often in the UpSet plot. This likely
reflects their high illiquidity.

5.4.1 Cross-asset trading dependencies via Markov networks

Recall that for each asset 𝑗, we observe a binary trading indicator 𝐼 𝑗 ,𝑡 ∈ {0, 1} over discrete time
periods 𝑡 = 𝑇𝑗 , . . . , 𝑇final, where 𝐼 𝑗 ,𝑡 = 1 denotes the presence of a trade and 𝐼 𝑗,𝑡 = 0 indicates the
absence of trading activity. Subsections 5.3 and 5.4 provide statistical evidence of significant co-
trading behavior, both temporal dependence over time lags and across the assets at the same time.
We focus on bivariate dependence only due to curse of dimensionality. To formally quantify the
cross-dependence in trading activity, we consider a bivariate indicator vector (𝐼 𝑗 ,𝑡 , 𝐼𝑘,𝑡) ∈ {0, 1}2 for
a given pair of assets (𝑗 , 𝑘). At each time 𝑡, this pair can take one of four possible values. We define
the population joint probabilities

𝑝(𝑗 ,𝑘)00 = P(𝐼 𝑗,𝑡 = 0, 𝐼𝑘,𝑡 = 0),
𝑝(𝑗 ,𝑘)10 = P(𝐼 𝑗,𝑡 = 1, 𝐼𝑘,𝑡 = 0),
𝑝(𝑗 ,𝑘)01 = P(𝐼 𝑗,𝑡 = 0, 𝐼𝑘,𝑡 = 1),
𝑝(𝑗 ,𝑘)11 = P(𝐼 𝑗,𝑡 = 1, 𝐼𝑘,𝑡 = 1),

where 𝑝(𝑗,𝑘)00 + 𝑝(𝑗 ,𝑘)10 + 𝑝(𝑗,𝑘)01 + 𝑝(𝑗,𝑘)11 = 1. These are treated as parameters of the true but unknown data-
generating process of the joint distribution of the binary indicators for assets 𝑗 and 𝑘. We denote the
full parameter vector as p(𝑗 ,𝑘) := (𝑝(𝑗 ,𝑘)00 , 𝑝(𝑗,𝑘)10 , 𝑝(𝑗,𝑘)01 , 𝑝(𝑗 ,𝑘)11 )⊤ ∈ 𝒫 (𝑗,𝑘) ⊆ R4, where 𝒫𝑗,𝑘 is the parameter
space and the true parameter vector is denoted as p★

𝑗,𝑘 = (𝑝(𝑗 ,𝑘)★00 , 𝑝(𝑗,𝑘)★10 , 𝑝(𝑗 ,𝑘)★01 , 𝑝(𝑗,𝑘)★11 )⊤ ∈ 𝒫 (𝑗,𝑘). This
can also be denoted in a contingency table:

𝐼𝑘,𝑡 = 0 𝐼𝑘,𝑡 = 1
𝐼 𝑗,𝑡 = 0 𝑝(𝑗,𝑘)00 𝑝(𝑗,𝑘)01
𝐼 𝑗,𝑡 = 1 𝑝(𝑗,𝑘)10 𝑝(𝑗,𝑘)11

Table 5.8: Contingency table of joint trading activity between assets 𝑗 and 𝑘

To model cross-dependence among these indicators, we use Markov Networks, or Markov Random
Fields. As described in Section 2.7, an MRF is defined by an undirected graph 𝐺 = (𝑈, 𝐸), where
each vertex 𝑗 ∈ 𝑈 corresponds to a random variable. In our setting each vertex corresponds to
𝐼 𝑗,𝑡 . Each undirected edge (𝑗 , 𝑘) ∈ 𝐸 represents a pairwise dependency between 𝐼 𝑗 ,𝑡 and 𝐼𝑘,𝑡 . The PC
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Figure 5.4: Markov Network of binary trading indicators 𝐼 𝑗 ,𝑡 for all voluntary carbon credits, with estimated Mutual
Information values provided on the edges

algorithm, implemented in the function pc.stable of the R package bnlearn, is used to estimate𝐺 by
testing conditional independence between variables. This is a non-parametric procedure that tests
conditional independence between variables using contingency tables such as the Fisher’s test as
described in Section 2.8. In Figure 5.4, the estimated cross-dependence structure among the trading
indicators for voluntary carbon credits are visualized. Overall, the figure suggests that nature-based
credits are more interconnected with each other than with technology-based credits like Cookstoves
and Water Filtration.

Once the graph structure is estimated, the strength of each edge is quantified by computing mutual
information. For each connected pair (𝑗, 𝑘), we construct the empirical joint distribution

𝑝̂(𝑗,𝑘)𝑎𝑏 =
1
𝑇

𝑇final∑
𝑡=𝑇𝑗

1{𝐼 𝑗,𝑡 = 𝑎, 𝐼𝑘,𝑡 = 𝑏} , for 𝑎, 𝑏 ∈ {0, 1} ,

which represents the relative frequency of joint occurrences of trading activity and non-activity over
time. The corresponding empirical marginal distributions are given by

𝑝̂(𝑗,𝑘)𝑎· =
1∑
𝑏=0

𝑝̂(𝑗 ,𝑘)𝑎𝑏 , 𝑝̂(𝑗,𝑘)·𝑏 =
1∑
𝑎=0

𝑝̂(𝑗 ,𝑘)𝑎𝑏 . (5.1)

Note that (5.1) are empirical estimates of the true marginal probabilities P(𝐼 𝑗 ,𝑡 = 𝑎) and P(𝐼𝑘,𝑡 = 𝑏),
respectively. The estimated mutual information is then defined as

MI(𝐼 𝑗,𝑡 ; 𝐼𝑘,𝑡) =
1∑
𝑎=0

1∑
𝑏=0

𝑝̂(𝑗 ,𝑘)𝑎𝑏 log

(
𝑝̂(𝑗,𝑘)𝑎𝑏

𝑝̂(𝑗 ,𝑘)𝑎· 𝑝̂(𝑗,𝑘)·𝑏

)
.
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Mutual information is always non-negative and equals zero if and only 𝐼 𝑗 ,𝑡 and 𝐼𝑘,𝑡 are independent.
In our setting, mutual information is a descriptivemeasure of marginal association strength between
trading indicators and is used to assign interpretable weights to the edges in the estimated Markov
network. The empirical joint and marginal distributions, as well as the mutual information values
between each pair of trading indicators, are computed using the infotheo package in R.

Figure 5.4 shows estimated mutual information values on the edges, representing the strength of
dependence in trading activity between pairs of binary trading indicators. Higher values indicate
stronger co-movement. We observe relatively strong dependencies between Clean Cookstoves and
Water Filtration Africa, REDD+ and Uruguay ARR, and Uruguay ARR and US IFM. The strongest
connection appears between Uruguay ARR and Latam ARR, likely reflecting their similarity in both
credit type and geographic region. In contrast, Nature-Based Offset shows relatively weak associa-
tions with its connected credits.

Once the Markov network structure is estimated and the mutual information is used to quantify
marginal association strength between connected nodes, we turn to building a probabilistic model
of the joint behavior. The key insight is that the global joint distribution of the trading indicators fac-
torizes according to the structure of the graph: under the Markov property, each indicator variable
𝐼 𝑗,𝑡 is conditionally independent of all other nodes given its immediate neighbors 𝒩(𝑗). This con-
ditional independence structure allows us to express the high-dimensional joint distribution using
only low-dimensional conditional distributions of the form

𝑝(𝐼 𝑗 ,𝑡 | 𝐼𝒩(𝑗),𝑡).

These local conditional distributions can be directly estimated from the binary trading indicator
data. For each asset 𝑗, and for each observed configuration of its neighbors at time 𝑡, we compute
the empirical frequency with which 𝐼 𝑗 ,𝑡 = 1 occurs, conditional on that configuration. Formally, for
a given neighbor state i ∈ {0, 1} |𝒩 ( 𝑗)| , we compute

𝑝̂(𝐼 𝑗,𝑡 = 1 | 𝐼𝒩(𝑗),𝑡 = i) =
∑𝑇final
𝑡=𝑇𝑗

1{𝐼 𝑗,𝑡 = 1, 𝐼𝒩(𝑗),𝑡 = i}∑𝑇final
𝑡=𝑇𝑗

1{𝐼𝒩(𝑗),𝑡 = i}
. (5.2)

Example 2. Suppose we consider three assets: asset 𝑗, and its two neighbors 𝑘 and ℓ , with a binary trading
indicator 𝐼𝛼,𝑡 ∈ {0, 1} for each asset 𝛼 ∈ { 𝑗 , 𝑘, ℓ} at time 𝑡. Assume we observe data over 10 time periods, and
the neighborhood of asset 𝑗 is given by 𝒩(𝑗) = {𝑘, ℓ}. That is, we want to estimate how likely asset 𝑗 trades,
given the trade/no-trade configuration of assets 𝑘 and ℓ on the same day. We record the observed values of the
indicators for these three assets in the following table:
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𝑡 𝐼 𝑗,𝑡 𝐼𝑘,𝑡 𝐼ℓ ,𝑡
1 1 1 0
2 0 0 1
3 1 1 1
4 0 1 0
5 0 0 0
6 1 1 1
7 0 1 0
8 1 0 1
9 0 0 0
10 1 1 0

We now estimate the empirical conditional probability 𝑝̂(𝐼 𝑗,𝑡 = 1 | 𝐼𝒩(𝑗),𝑡 = i) for each possible configuration
i = (𝐼𝑘,𝑡 , 𝐼ℓ ,𝑡) ∈ {0, 1}2. There are four such configurations:

• Configuration (1, 0):
This occurs at 𝑡 = 1, 4, 7, 10, with corresponding values 𝐼 𝑗,𝑡 = 1, 0, 0, 1. Thus, two out of four times
asset 𝑗 trades. Hence, 𝑝̂(𝐼 𝑗 ,𝑡 = 1 | 𝐼𝑘,𝑡 = 1, 𝐼ℓ ,𝑡 = 0) = 2

4 = 0.5.

• Configuration (0, 1):
This occurs at 𝑡 = 2, 8, with 𝐼 𝑗 ,𝑡 = 0, 1. One out of two times asset 𝑗 trades. Hence, 𝑝̂(𝐼 𝑗,𝑡 = 1 | 𝐼𝑘,𝑡 =
0, 𝐼ℓ ,𝑡 = 1) = 1

2 = 0.5.

• Configuration (1, 1):
This occurs at 𝑡 = 3, 6, with 𝐼 𝑗,𝑡 = 1, 1. In both cases asset 𝑗 trades. Hence, 𝑝̂(𝐼 𝑗 ,𝑡 = 1 | 𝐼𝑘,𝑡 = 1, 𝐼ℓ ,𝑡 =
1) = 2

2 = 1.0.

• Configuration (0, 0):
This occurs at 𝑡 = 5, 9, with 𝐼 𝑗 ,𝑡 = 0, 0. Asset 𝑗 never trades. Hence, 𝑝̂(𝐼 𝑗 ,𝑡 = 1 | 𝐼𝑘,𝑡 = 0, 𝐼ℓ ,𝑡 = 0) =
0
2 = 0.0.

Putting these results together, we obtain the full local conditional distribution for 𝐼 𝑗 ,𝑡 , conditional on its neigh-
bors’ configuration:

(𝐼𝑘,𝑡 , 𝐼ℓ ,𝑡) 𝑝̂(𝐼 𝑗 ,𝑡 = 1 | 𝐼𝑘,𝑡 , 𝐼ℓ ,𝑡)
(1, 0) 0.5
(0, 1) 0.5
(1, 1) 1.0
(0, 0) 0.0

While mutual information tells us whether an edge exists and how strong the marginal dependency
is, it does not specify a generative process. For this, we require the local conditional probabilities,
which allow us to simulate new configurations of the full indicator vector {𝐼 𝑗,𝑡} 𝑗∈𝑈 using Gibbs sam-
pling. For Gibbs sampling, at each step, a node 𝐼 𝑗,𝑡 is updated by sampling from a Bernoulli distribu-
tion with success probability given by Equation 5.2. Here, 𝑆 denotes the fixed number of simulated
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observations generated using the Gibbs sampling algorithm. In this way, the estimated local distri-
butions fully determine the multivariate dependence structure, consistent with the graphical model.
From these simulated draws, the empirical joint probabilities

𝑝̂(𝑗,𝑘)𝑎𝑏 =
1
𝑆

𝑆∑
𝑠=1

1{𝐼(𝑠)𝑗 ,𝑡 = 𝑎, 𝐼(𝑠)𝑘,𝑡 = 𝑏} , 𝑎, 𝑏 ∈ {0, 1} ,

are obtained, which approximate the true parameters 𝑝(𝑗 ,𝑘)★𝑎𝑏 . In this way, the estimated Markov
Network, combined with Gibbs sampling, provides both a conditional dependence structure and
consistent estimates of the bivariate joint probabilities that describe co-trading behavior.

Lastly, we have restricted attention to bivariate interactions due to the curse of dimensionality. The
number of joint probabilities required to fully describe the distribution of trading indicators grows
exponentially with the number of involved variables. If we consider 𝑁assets assets and include 𝑁lags

time lags, then the number of distinct joint binary configurations is 2𝑁assets×𝑁lags . As this grows quickly
our analysis focuses on bivariate contemporaneous interactions between asset pairs and on univari-
ate temporal dependence structures up to lag one.



6
Univariate model set-up, estimation,

and asymptotic properties

In this chapter, we present the univariate formulation of the zero-inflated GARCH-X model for illiq-
uid financial markets. For clarity and simplicity, we focus on the zero-inflated GARCH(1,1)-X spec-
ification, although the approach can be extended to general zero-inflated GARCH(𝑝,𝑞)-X models
without conceptual difficulty. In Section 6.1, we conduct a descriptive analysis of both the carbon
credit data and the selected liquid financial assets. We examine key time series properties, includ-
ing stationarity, autocorrelation, and partial autocorrelation. Section 6.2 introduces the univariate
model setup and details the estimation procedure, which is carried out using quasi-maximum like-
lihood estimation. Finally, we establish the consistency and asymptotic normality of the resulting
estimator.

6.1 Descriptive analysis: ACF and PACF

Before presenting the univariate zero-inflated GARCH-X model, it is helpful to first examine some
fundamental time series properties of the financial data introduced in Chapter 4. In particular, un-
derstanding features such as stationarity, autocorrelation, and partial autocorrelation provides valu-
able insight into the temporal structure of each return series. As a first step, we analyze the serial
dependence of individual assets, as indicated by the blue edges in Figure 4.1. This helps to determine
whether the data exhibit stylized facts commonly observed in financial time series, such as volatility
clustering, which motivate the use of conditional heteroskedasticity models like GARCH. To assess
temporal dependence, we compute the autocorrelation function (ACF) up to 30 lags for each asset.
Figure 6.1 shows the autocorrelation of raw returns, squared returns, and their zero-filtered variants
across the selected voluntary carbon credit assets. As defined in Section 2.1, the ACF measures lin-
ear dependence between lagged observations. In the ACF plots, autocorrelation at a non-zero lag
is statistically significant if it exceeds the 95% confidence bounds, shown as dotted orange lines in
Figures 6.1 - 6.3. Mathematically, the 95% confidence interval for the sample autocorrelation at each
lag is computed by 1.96/√𝑛, where 𝑛 is the sample size. This expression is derived under the null
hypothesis that the underlying time series follows a white noise process, i.e. independently and
identically distributed with zero autocorrelation; see also Definition 2.3. Significant values indicate

75
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that past observations contain information relevant for future dynamics. For raw returns, this im-
plies return predictability. In contrast, squared returns capture dependence in return magnitude.
Significant autocorrelation in squared returns reflects volatility clustering.

In general, Figure 6.1 reveals consistent features that align with the stylized facts of financial time
series. This supports the use of conditional heteroskedasticity models, such as GARCH or its exten-
sions, as a natural next step in capturing the dynamics of carbon credit price.

To examine these features in more detail, we now turn to each row of Figure 6.1. Starting with
the top row, the ACF of raw returns has minimal significant autocorrelation beyond lag zero for all
carbon credit assets. This is expected in financial markets where asset returns are often modeled as
serially uncorrelated but not independent. The absence of significant linear autocorrelation suggests
that past returns provide limited predictive power for future returns in a linear sense. If significant
autocorrelation had been present, this would have implied potential predictability and may have
created opportunities for statistical arbitrage.

The second row of Figure 6.1, which shows the autocorrelation of returns excluding zero values,
further confirms these stylized facts. In most assets, the autocorrelation remains close to zero and
within the confidence bounds, although a few minor spikes are observed. These spikes are likely
due to short-term illiquidity, data irregularities, or temporary distortions caused by the exclusion of
zero returns, rather than reflecting genuine or persistent market autocorrelation.
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Figure 6.1: Autocorrelation of the returns and the squared returns with and without zeros for all carbon credit assets

The third and fourth rows, showing the ACF of squared returns (with and without zero returns),
reveal statistically significant and gradually declining autocorrelation across several lags. This is
particularly pronounced in ARR Latam and IFM, and is indicative of volatility clustering. The effect
becomes slightly more apparent when zero returns are excluded. This suggests that non-trading
days, which appear as zero returns, can weaken the visible pattern of volatility over time. These
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zero returns interrupt sequences of high or low return magnitudes, which makes it harder to detect
how volatility persists. In contrast, Water Filtration, REDD+, and ARR Uruguay show weaker au-
tocorrelation in squared returns, though small positive values persist at short lags. Cookstoves and
the Nature-Based Index show almost no autocorrelation, pointing to onlymild volatility persistence.
While less pronounced, these patterns still justify the application of GARCH-type models to capture
time-varying risk.

Figure 6.2 shows the autocorrelation functions of both raw and squared returns for the selected
conventional assets. Across all assets, the raw return series exhibit patterns close to white noise,
with most autocorrelations lying within the 95% confidence bounds. Again, this is consistent with
the stylized facts of financial return series.
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Figure 6.2: Autocorrelation of the returns and the squared returns for the selected conventional assets

In contrast, the ACFs of the squared returns show significant autocorrelation, often with a gradual
decay pattern. This is indicative of time-varying volatility and supports the presence of conditional
heteroskedasticity. Notably, the Soybean Futures series deviates from this pattern: it exhibits sig-
nificant autocorrelation at the first lag and a few isolated lags later, but the smooth decay structure
is not observed. Overall, the absence of serial correlation in the raw returns and the stationarity of
higher-order moments suggest that these return series are weakly stationary.

Lastly, we turn to the partial autocorrelation function (PACF). Asmentioned in Section 2.1, the PACF
isolates the immediate contribution of each lag. This contrasts with the autocorrelation function,
which reflects both direct and indirect correlations. In the context of financial returns, the PACF
is particularly useful for identifying the appropriate lag structure in autoregressive models and for
identifying both linear dependencies and latent structures in volatility dynamics. Figure 6.3 presents
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the PACF plots for the selected voluntary carbon credit assets in a similar setup as in Figure 6.1.

ARR Latam ARR Uruguay Cookstoves IFM US Nature Index REDD+ Water Filtration

R
eturns

R
eturns (N

o Z
eros)

S
quared R

eturns
S

quared R
eturns (N

o Z
eros)

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

0.4

Lag

PA
C

F

Figure 6.3: Partial autocorrelation of the returns and the squared returns with and without zeros for all carbon credit
assets

According to Figure 6.3, the raw returns (top row) show that most lags lie within the confidence
bounds. This suggests little to no direct partial autocorrelation in the majority of return series. How-
ever, some exceptions are present. In assets such as ARR Uruguay, Water Filtration, and Nature In-
dex, the first lag is insignificant, but unexpected spikes occur at later lags. These delayed correlations
are atypical and may point to irregular trading patterns or delayed reactions to market information.

After removing zero returns (second row), the PACF remains overall weak across most assets. Some
series exhibit slightly stronger partial autocorrelation, while others become weaker, generally still
within bounds of statistical insignificance. For instance, Nature Index and Water Filtration show
marginally stronger effects, whereas ARR Latam and ARR Uruguay show weaker partial autocorre-
lation.

Looking at the squared returns in the third row, we see several assets show clear and significant
PACF values at the first lag. This indicates the presence of volatility clustering. However, this effect
is not visible across all assets. For assets such as Cookstoves, Nature Index and REDD+, significant
lags start later. For the Nature Index all lags even stay within the confidence bounds, suggesting a
more stable volatility profile or a lack of clear temporal structure in their variance.

Lastly, the squared returns after zero-removal in the last row show that all assets except of Water
Filtration exhibit partial autocorrelation across multiple lags. Assets such as IFM US, and REDD+,
retain similar PACF patterns before and after zero-return exclusion. The similarity in PACF structure
before and after zero-return removal suggests that return dynamics are not distorted by non-trading
days, which is typically a feature of more liquid markets. For some assets, such as Cookstoves,
Nature Index, and Water Filtration, unexpected spikes appear at certain lags.
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6.2 Univariate model setup and estimation

In this section, we derive the univariate zero-inflated GARCH(1,1)-X model as a special case of the
general multivariate framework introduced in Chapter 4. Let 𝑗 ∈ {1, . . . , 𝑁asset} denote an asset,
and let 𝑡 ∈ 𝒯𝑗 := {𝑇𝑗 , . . . , 𝑇final} be a discrete time step index, where 𝑇𝑗 and 𝑇final denote the first and
the last time step at which the 𝑗-th asset price is observed respectively. We aim to model the return
dynamics and conditional volatility of asset 𝑗 using a zero-inflated GARCH(1,1)-X specification,
defined as follows:

Definition 6.1 (Univariate zero-inflated GARCH(1,1)-X Model). The returns and the conditional
volatility of an asset 𝑗 ∈ {1, . . . , 𝑁asset} for 𝑡 ∈ 𝒯𝑗 following a zero-inflated GARCH(1,1)-X model,
can be written as 

𝑟 𝑗 ,𝑡 = 𝐼 𝑗 ,𝑡 · 𝜎𝑗 ,𝑡(𝜽★
𝑗 ) · 𝜂 𝑗,𝑡 ,

𝜎2
𝑗 ,𝑡(𝜽★

𝑗 ) = 𝛼★
𝑗,0 + 𝛼★

𝑗 ,1𝜎
2
𝑗,𝑡∗(𝜽★

𝑗 ) + 𝛼★
𝑗 ,2𝑟

2
𝑗 ,𝑡∗ + 𝛼★

𝑗,3𝐼 𝑗 ,𝑡−1 ,
(6.1)

where

• 𝑟 𝑗 ,𝑡 ∈ R is the observed return of asset 𝑗 at time 𝑡,

• 𝐼 𝑗,𝑡 ∈ {0, 1} is a binary indicator equal to one if there was any trading activity for asset 𝑗 at time
𝑡, and zero otherwise.

• 𝜎𝑗,𝑡 ∈ R+ is the conditional volatility of 𝑟 𝑗 ,𝑡 ,

• 𝜂 𝑗 ,𝑡 is the innovation for asset 𝑗 at time 𝑡 which is i.i.d and takes values in domain (−∞,+∞),

• 𝑡∗ ∈ 𝒯𝑗 is the most recent time before 𝑡 ∈ 𝒯𝑗 such that 𝐼 𝑗 ,𝑡∗ = 1. Formally, it is defined as
𝑡∗ := max{𝑠 < 𝑡 : 𝐼𝑠 = 1},

• 𝜽★
𝑗 := (𝛼★

𝑗,0 , 𝛼
★
𝑗,1 , 𝛼

★
𝑗 ,2 , 𝛼

★
𝑗,3)⊤ denotes the true (unknown) parameter vector, belonging to the

parameter space 𝚯𝑗 ⊆ (0,∞) × R3.

Recall that three key modifications were introduced to the classical GARCH(1,1)-X specification in
Definition 2.3 to better capture the characteristics of irregular trading activity and illiquid financial
markets. These extensions result in the zero-inflated GARCH(1,1)-X model presented in Defini-
tion 6.1. First, we have introduced a binary trading indicator 𝐼 𝑗,𝑡 for each asset 𝑗, which equals one if
trading occurs at time 𝑡, and zero otherwise. Note that the actual sample size now becomes a random
variable, defined as

𝑁𝑗 =
𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗,𝑡 . (6.2)

Next, we ensure that the volatility dynamics evolve only when relevant information becomes avail-
able. This is especially important in illiquid markets where trading is infrequent but informative.
To achieve this, we make two other adjustments: we introduce an exogenous binary indicator 𝐼 𝑗 ,𝑡−1,
which enters the volatility dynamics as GARCH-X component; and we define 𝑡∗ < 𝑡 as the most
recent time before 𝑡 at which trading occurred, i.e. 𝑡∗ := max{𝑠 < 𝑡 : 𝐼 𝑗,𝑠 = 1}. Although returns are
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observed at regular time intervals, this construction allows the model to respond only when actual
trading occurs, making full use of the limited but informative signals available in illiquid markets.

Let us now examine the parameters involved in the conditional volatility dynamics. The terms
𝛼★
𝑗 ,1𝜎

2
𝑗,𝑡∗ and 𝛼★

𝑗 ,2𝑟
2
𝑗 ,𝑡∗ capture the classical GARCH(1,1) dynamics, where current volatility depends

on past volatility and past squared returns. Persistence in volatility is modeled via 𝛼★
𝑗 ,1, while 𝛼★

𝑗 ,2
accounts for the impact of large past returns. The third term, 𝛼★

𝑗 ,3𝐼 𝑗 ,𝑡−1, is the exogenous component,
which captures the effect of recent trading activity regardless of return magnitude. Intuitively, this
allows the model to distinguish between periods of market activity and inactivity. For instance, if
a trade occurred yesterday, today’s volatility will increase through this additional term. To ensure
non-negativity of the conditional variance and to reflect that trading generally introduces additional
uncertainty, it is common to assume 𝛼★

𝑗,3 ≥ 0. Note that the trading indicator function 𝐼 𝑗 ,𝑡 influences
both the conditional variance dynamics and the sample of returns used for estimation.

To estimate the parameters of the zero-inflated GARCH(1,1)-X model, we use the quasi-maximum
likelihood estimation method, which is the usual estimation method for GARCH-type models [26].
Unlike classical maximum likelihood estimation, quasi-maximum likelihood does not require spec-
ifying the true distribution of the innovation sequence (𝜂 𝑗,𝑡)𝑡≥1. Instead, it proceeds by maximizing
a pseudo log-likelihood function, which is in this case constructed as if the innovations were Gaus-
sian – without necessarily assuming that this is the case. For more information on quasi-maximum
likelihood estimation, the reader is referred to Section 2.2.

As seen in Section 2.2 on quasi-maximum likelihood estimation, it is standard to initialize a zero-
inflated GARCH(1,1)-X model with

𝑟2
𝑗,start = 𝜎2

𝑗 ,start =
𝛼 𝑗 ,0

1 − 𝛼 𝑗 ,1 − 𝛼 𝑗,2
.

Note that we do not initialize the exogenous covariate, since this part is assumed to be known.

Since the conditional variance depends on both past returns and on the exogenous trading indicators,
the quasi-likelihood must also be constructed conditionally on the realized sequence of indicators
(𝐼 𝑗 ,𝑡)𝑡≥1. This conditioning is important because 𝐼 𝑗 ,𝑡−1 directly affects the value of 𝜎2

𝑗,𝑡 . The Gaussian
likelihood function for asset 𝑗, conditional on the return series (𝑟 𝑗,𝑡)𝑡≥1 and the indicator process
(𝐼 𝑗 ,𝑡)𝑡≥1, is given by:

ℒ 𝑗,𝑇final

(
𝜽 𝑗

��� (𝑟 𝑗 ,𝑡), (𝐼 𝑗 ,𝑡)) =
𝑇final∏
𝑡=𝑇𝑗

©­­«
1√

2𝜋𝜎2
𝑗 ,𝑡(𝜽 𝑗)

exp

(
−

𝑟2
𝑗 ,𝑡

2𝜎2
𝑗 ,𝑡(𝜽 𝑗)

)ª®®¬
𝐼𝑗 ,𝑡

. (6.3)

This means that the Gaussian log-likelihood function becomes:

ℒlog, 𝑗 ,𝑇final

(
𝜽 𝑗

��� (𝑟 𝑗,𝑡), (𝐼 𝑗 ,𝑡)) =
𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗 ,𝑡

[
−1

2
log(2𝜋) − 1

2
log(𝜎2

𝑗,𝑡(𝜽 𝑗)) −
𝑟2
𝑗,𝑡

2𝜎2
𝑗 ,𝑡(𝜽 𝑗)

]
(6.4)

= −1
2

𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗 ,𝑡

[
log(2𝜋) + log(𝜎2

𝑗 ,𝑡(𝜽 𝑗)) +
𝑟2
𝑗,𝑡

𝜎2
𝑗,𝑡(𝜽 𝑗)

]
(6.5)
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Then, the quasi-maximum likelihood estimator 𝜽̂ 𝑗 is defined as any measurable solution to the opti-
mization problem:

𝜽̂ 𝑗 ∈ arg max
𝜽 𝑗∈𝚯𝑗

ℒlog, 𝑗 ,𝑇final(𝜽 𝑗). (6.6)

For the estimation of the parameter 𝜽 𝑗 , we use the garchx package in R, see also [59]. The es-
timation procedure implemented in the garchx package uses quasi-maximum likelihood estima-
tion, as discussed in Section 2.2. Specifically, it minimizes the negative (average) Gaussian log-
likelihood function as defined in Equation (6.5). The conditional variance is recursively defined and
depends on exogenous variables which are in our case the indicator functions 𝐼 𝑗,𝑡−1. This objective
function is evaluated by garchxObjective() and relies on the recursively computed variance via
garchxRecursion(). Optimization is done iteratively through the nlminb() function, a gradient-
based optimizer, that minimizes the negative Gaussian quasi-log-likelihood, subject to constraints
such as the non-negativity of variance parameters. After the optimal parameters are found, the pack-
age uses optimHess() to compute the hessianmatrix of second derivatives numerically. This hessian
is then used to calculate standard errors and confidence intervals.

However, two issues arise during estimation using the garchx package. First, the dataset contains
a large number of zero return values that reflect periods of illiquidity where no trades occur, as
discussed in Chapter 5. Second, several non-defined values, indicated by NA, are present due to
asynchronous start dates across assets and further illiquidity-driven gaps. The garchx package, in
its current implementation, does not accommodate time series containing zeros or missing values;
estimation fails when such entries are present. To ensure themodel can be estimated, we pre-process
the data by first removing NA observations. Subsequently, we omit the zero return values which is
consistent with the log-likelihood as defined in Equation (6.5). Moreover, this approach aligns with
the model specification in Equation (6.1), where the conditional volatility recursion is only updated
at the most recent trading time 𝑡∗, whenever a trade occurs. This mechanism is formalized in the
following proposition.

Proposition 6.1 (Time-filtered GARCH-X volatility dynamics). Let (𝑟𝑡)𝑡≥1 be a time series following
a zero-inflated GARCH(1,1)-X model. Let 𝐼𝑡 := 1{𝑟𝑡≠0} for 𝑡 ≥ 1. Let 𝑡1 = min{𝑡 ≥ 1 : 𝐼𝑡 = 1}, and
recursively, 𝑡𝑖 := min{𝑡 > 𝑡𝑖−1 : 𝐼𝑡 = 1} for 𝑖 > 1. For 𝑖 ≥ 1, define 𝑟𝑖 := 𝑟𝑡𝑖 .

Then, the process (𝑟𝑖)𝑖≥1 follows a (classical) GARCH(1, 1)-X model with exogenous covariate (𝐼𝑡𝑖−1)𝑖≥1 in
the sense that {

𝑟𝑖 = 𝜂̃𝑖 𝜎̃𝑖 ,

𝜎̃2
𝑖 = 𝛼0 + 𝛼1𝜎̃2

𝑖−1 + 𝛼2𝑟2
𝑖−1 + 𝛼3𝐼𝑡𝑖−1 ,

(6.7)

where 𝜂̃𝑖 := 𝜂𝑡𝑖 is (still) i.i.d. and 𝜎̃𝑖 := 𝜎𝑡𝑖 .

Proof. We fix 𝑖 ≥ 1 and remark that 𝐼𝑡𝑖 = 1 by construction. Since the sequence (𝑡𝑖) indexes only the
times when trades occur, the most recent observed time prior to 𝑡𝑖 is

𝑡∗ := max{𝑠 < 𝑡𝑖 : 𝐼𝑠 = 1} = 𝑡𝑖−1.

By Equation (6.1), replacing 𝑡 by 𝑡𝑖 and 𝑡∗ by 𝑡𝑖−1, we know that
𝑟𝑡𝑖 = 𝐼𝑡𝑖𝜎𝑡𝑖𝜂𝑡𝑖 ,

𝜎2
𝑡𝑖
= 𝛼0 + 𝛼1𝜎2

𝑡𝑖−1
+ 𝛼2𝑟2

𝑡𝑖−1
+ 𝛼3𝐼𝑡𝑖−1 ,
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Because 𝐼𝑡𝑖 = 1, we obtain 𝑟𝑡𝑖 = 𝜎𝑡𝑖𝜂𝑡𝑖 , which completes the proof.

6.3 Consistency of the QMLE for zero-inflated GARCH-X models

This section establishes the consistency of the quasi-maximum likelihood estimator for zero-inflated
GARCH(1,1)-X models. We begin by outlining the assumptions required for consistency, followed
by stating the consistency theorem and its proof. Essentially, the proof consists of two steps, each
corresponding to a distinct lemma. The first step applies Theorem 2.1 fromKristensen and Rahbek to
establish that the estimator 𝜽̂

∗
𝑗 of a stationary and ergodic process that is asymptotically equivalent

to the process of interest, converges in probability to the true parameter 𝜽★
𝑗 . In the second step,

we apply Theorem 2.8 from Kristensen and Shin to show that the estimator 𝜽̂
∗
𝑗 is asymptotically

equivalent to the QMLE 𝜽̂ 𝑗 . This asymptotic equivalence implies that the consistency established in
the first step extends to the QMLE 𝜽̂ 𝑗 .

The consistency and asymptotic normality of the QMLE have been studied for standard GARCH
models and various extensions, including GARCH-X models (e.g., [27], [36], [40]). This thesis
extends these results to the setting of multivariate zero-inflated GARCH-X models. Specifically,
our theoretical contribution extends the proof frameworks developed by Han and Kristensen [36].
They examined the asymptotic properties of QMLE in GARCH-X models and proved results for
both stationary and non-stationary covariates. Their findings show that QMLE remains consistent
regardless of whether a covariate is stationary or not. However, the rate of convergence and the
limiting distribution of the estimator are shown to be sensitive to the stationarity properties of the
covariate [36].

The consistency result for GARCH-X models, as established by Han and Kristensen, requires adap-
tation in our setting due to two key differences. First, our framework is based on a modified version
of the classical GARCH-X model. Second, the actual sample size is a random variable, as defined in
Equation (6.2). Furthermore, we restrict attention to the case where the exogenous covariates are
stationary. In particular, the binary trading indicator 𝐼 𝑗,𝑡 is included in the model as the exogenous
covariate. The assumption of stationarity is motivated by the observed patterns in trading activity,
as illustrated in Figures 4.2–4.5 in Chapter 4. The case involving non-stationary covariates within
the zero-inflated GARCH-X framework remains an open question and is left for future research.

We now outline the set of assumptions required to prove consistency of the quasi-maximum likeli-
hood estimator. The notation ℱ𝑡 refers to the natural filtration:

Assumption 6.1 (Assumptions for consistency of the QMLE).

(i) {(𝜂 𝑗,𝑡 , 𝐼 𝑗,𝑡)} is stationary and ergodic with E[𝜂 𝑗 ,𝑡 | ℱ𝑡−1] = 0 and E[𝜂2
𝑗,𝑡 | ℱ𝑡−1] = 1.

(ii) E
[
log

(
𝛼★
𝑗 ,1𝜂

2
𝑗 ,𝑡 + 𝛼★

𝑗,2

)]
< 0 and E[𝐼 𝑗,𝑡] > 0.

(iii) Given that 0 < 𝛼 𝑗 ,0 ≤ 𝛼 𝑗 ,0 < +∞, 𝛼 𝑗 ,1 < +∞, 𝛼 𝑗 ,2 < 1, and 𝛼 𝑗 ,3 < +∞, we have that

𝚯𝑗 =
{
𝜽 𝑗 = (𝛼 𝑗,0 , 𝛼 𝑗 ,1 , 𝛼 𝑗 ,2 , 𝛼 𝑗,3)⊤ : 𝛼 𝑗,0 ≤ 𝛼 𝑗,0 ≤ 𝛼 𝑗,0 , 0 ≤ 𝛼 𝑗 ,1 ≤ 𝛼 𝑗 ,1 , 0 ≤ 𝛼 𝑗,2 ≤ 𝛼 𝑗,2 , 0 ≤ 𝛼 𝑗 ,3 ≤ 𝛼 𝑗 ,3

}
.
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The true value 𝜃★
𝑗 ∈ Θ𝑗 with (𝛼★

𝑗 ,0 , 𝛼
★
𝑗 ,3) ≠ (0, 0).

(iv) For any (𝑎, 𝑏) ≠ (0, 0): 𝑎𝜂2
𝑗,𝑡 + 𝑏𝐼2𝑗,𝑡 | ℱ𝑡−1 has a non-degenerate distribution.

Assumption 6.1(i) is a generalization of the conditions found in [21], where asymptotic properties of
the quasi-maximum likelihood estimator are derived for classical GARCHprocesseswithmartingale
difference errors. The assumption is weaker than the i.i.d. assumption from [42]. In our context,
we have adapted the covariate from a general covariate, for example x𝑗 ,𝑡 , to the trading indicator
function 𝐼 𝑗 ,𝑡 .

The moment conditions in Assumption 6.1(ii) guarantee the existence of a strictly stationary solu-
tion to Equation (6.1) at the true parameter value 𝜽★

𝑗 . They also ensure that this solution has finite
polynomial moments. In particular, these conditions allow for integrated GARCH (IGARCH) pro-
cesses, where 𝛼 + 𝛽 = 1. Moreover, they impose only mild moment restrictions on the regressors to
allow a broad class of exogenous covariates. We do exclude explosive volatility when the trading
indicator 𝐼 𝑗,𝑡 is stationary. In this case, we expect that the arguments of [42] extend to GARCH-X
models with E

[
log(𝛼★

𝑗,1𝜂
2
𝑗,𝑡−1 + 𝛼★

𝑗 ,2)
]
> 0. This would imply that the estimated parameters remain

consistent, while the intercept 𝛼̂ 𝑗,0 is inconsistent. This inconsistency arises because, in IGARCH-
type models, there is no finite unconditional variance, which makes 𝛼 𝑗 ,0 unidentified in the long
run. This restriction is important to prevent non-ergodic or explosive behavior and to ensure that
the volatility dynamics remain meaningful in illiquid markets.

The compactness condition in Assumption 6.1(iii) could be weakened by the arguments of [42].
However, this would lead tomore complicated proofs, and sowemaintain the compactness assump-
tion here for simplicity. The requirement that (𝛼★

𝑗 ,1 , 𝛼
★
𝑗,3) ≠ (0, 0) is needed to ensure the identification

of 𝛼★
𝑗 ,2. Indeed, in the case where (𝛼★

𝑗,1 , 𝛼
★
𝑗 ,3) = (0, 0), we have 𝜎2

𝑗,𝑡 := 𝜎2
𝑗,𝑡(𝜽★

𝑗 )
𝑎.𝑠.−−→ 𝛼★

𝑗,0/(1 − 𝛼★
𝑗,2), and

so we would not be able to jointly identify 𝛼★
𝑗 ,0 and 𝛼★

𝑗,2.

Lastly, the non-degeneracy condition in Assumption 6.1(iv) is also needed for identification, as
it rules out (dynamic) collinearity between 𝑟2

𝑗 ,𝑡−1 and 𝐼2𝑗,𝑡 . This assumption is similar to the no-
collinearity restriction described in [42]. Intuitively, this assumption provides that the past returns
and exogenous covariates have separate and independent information about volatility. In other
words, it prevents these variables frommoving perfectly together in such a way that their individual
effects on the conditional variance could not be separated.

Note that the random sample size increases and remains non-degenerate as 𝑇final → ∞. This follows
from Assumption 6.1(i), which states that the joint process {(𝜂 𝑗 ,𝑡 , 𝐼 𝑗 ,𝑡)} is stationary and ergodic. As
a direct consequence, the marginal process (𝐼 𝑗,𝑡)𝑡≥1 is itself stationary and ergodic. By the ergodic
theorem, we have

1
𝑇final

𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗,𝑡
a.s.−−→ E[𝐼 𝑗,𝑡] > 0, (6.8)

which implies that the number of non-zero observations 𝑁𝑗 diverges to infinity almost surely as the
total sample size 𝒯𝑗 → ∞ . This condition is important for proving consistency, since extremum es-
timators such as the quasi-maximum likelihood estimator require the objective function to be based
on a growing number of observations. Without this, the Law of Large Numbers cannot be applied
and convergence to the true parameter is not guaranteed.
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To derive the asymptotic properties of 𝜽̂ 𝑗 , we establish some preliminary results. The first lemma
states that a stationary solution to the model at the true parameter values exists:

Lemma 6.1. Under Assumption 6.1, there exists a stationary and ergodic solution to Equation (6.1) at 𝜽★
𝑗

satisfying E[𝜎2𝑠
𝑗,𝑡] < +∞ and E[𝑟2𝑠

𝑗,𝑡] < +∞ for some 0 < 𝑠 < 1.

The proof of Lemma 6.1 can be found inAppendix B,wherewe have adapted the existing proof to our
specific model setting. In what follows, we work under the implicit assumption that the stationary
solution of the process has been observed. The next lemma shows that, for any parameter value of 𝜽 𝑗
within the parameter space, the volatility-ratio process 𝑠 𝑗 ,𝑡(𝜽 𝑗) is well-approximated by a stationary
version. Here, we define 𝑠 𝑗 ,𝑡(𝜽 𝑗) as the variance-ratio process given by

𝑠 𝑗 ,𝑡(𝜽 𝑗) :=
𝜎2
𝑗,𝑡(𝜽 𝑗)
𝜎2
𝑗 ,𝑡

,

where 𝜎2
𝑗 ,𝑡 := 𝜎2

𝑗 ,𝑡(𝜽★
𝑗 ). We denote 𝑠∗𝑗,𝑡 as the stationary version of 𝑠 𝑗 ,𝑡 . Here, 𝑠∗𝑗,𝑡 is a stationary

sequence which is asymptotically equivalent to 𝑠 𝑗 ,𝑡(𝜽 𝑗)which will be formally defined in Lemma 6.2.
By definition of asymptotic equivalence, it holds that

lim
𝑇final→+∞

𝑠∗𝑗,𝑡(𝜽 𝑗)
𝑠 𝑗,𝑡(𝜽 𝑗) = 1 almost surely.

Lemma 6.2 shows that the expected deviation between 𝑠 𝑗,𝑡(𝜽 𝑗) and 𝑠∗𝑗 ,𝑡(𝜽 𝑗), uniformly over the pa-
rameter space, is bounded above by a term that decreases exponentially in time, since 𝛼 𝑗 ,2 < 1 by
assumption.

Lemma 6.2. Under Assumption 6.1, with 𝑠 > 0 given in Lemma 6.1, there exists some 𝐾𝑠 < +∞ such that

E
[
sup𝜽 𝑗∈𝚯𝑗

��� 𝑠 𝑗,𝑡(𝜽 𝑗) − 𝑠∗𝑗,𝑡(𝜽 𝑗) ���𝑠 ] ≤ 𝐾𝑠𝛼𝑠𝑡𝑗,2.

where

𝑠∗𝑗 ,𝑡(𝜽 𝑗) =
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

𝜎2
𝑗,𝑡(𝜽★

𝑗 )
, 𝜎̃2

𝑗 ,𝑡(𝜽 𝑗) :=
+∞∑
𝑖=1

𝛼𝑖−1
𝑗 ,2 (𝛼 𝑗,0 + 𝛼 𝑗 ,1𝑟2

𝑗,𝑡 + 𝛼 𝑗,3𝐼2𝑗 ,𝑡−1).

The process 𝜎̃2
𝑗 ,𝑡(𝜽 𝑗) is stationary and ergodic with E[sup𝜽 𝑗∈𝚯𝑗

𝜎̃2𝑠
𝑗,𝑡(𝜽 𝑗)] < +∞.

The proof of Lemma 6.2 can be found inAppendix B,wherewe have adapted the existing proof to our
specific model setting. We can now show the first asymptotic main result, showing the consistency
of the quasi-maximum likelihood estimator of a zero-inflated GARCH(1,1)-X model.

Theorem I (Consistency quasi-maximum likelihood estimator zero-inflated GARCH-X). Under As-
sumption 6.1, the QMLE 𝜽̂ 𝑗 is consistent for all 𝑗 ∈ {1, · · · , 𝑁assets}, i.e. 𝜽̂ 𝑗 𝑝−→ 𝜽★

𝑗 .

Proof. First, let us define
𝜽̂
∗
𝑗 = arg max

𝜽 𝑗∈𝚯𝑗
ℒ̃∗

log, 𝑗 ,𝑇final(𝜽 𝑗),

where

ℒ̃∗
log, 𝑗 ,𝑇final(𝜽 𝑗) :=

𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗,𝑡

[
− log

(
𝑠∗𝑗,𝑡(𝜽 𝑗)

)
−

(
1

𝑠∗𝑗 ,𝑡(𝜽 𝑗)
− 1

)
𝜂2
𝑗 ,𝑡

]
=
𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗,𝑡 · 𝑙∗(𝜽 𝑗),
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Note that we have the decomposition

𝜽̂ 𝑗 − 𝜽★
𝑗 =

(
𝜽̂ 𝑗 − 𝜽̂

∗
𝑗

)
︸     ︷︷     ︸

a.s.−−→ 0

+
(
𝜽̂
∗
𝑗 − 𝜽★

𝑗

)
︸      ︷︷      ︸

p−→ 0

.

Therefore, the proof is finished as a consequence of Lemma I and Lemma II.

Lemma I establishes the consistency of the auxiliary estimator 𝜽̂
∗
𝑗 under the assumption that the un-

derlying process is stationary and ergodic. Lemma II then establishes the asymptotic equivalence
between the quasi-maximum likelihood estimator 𝜽̂ 𝑗 and the auxiliary estimator 𝜽̂

∗
𝑗 . Taken together,

these results imply the consistency of the quasi-maximum likelihood estimator 𝜽̂ 𝑗 for the true pa-
rameter 𝜽★

𝑗 . To formulate and prove Lemma I and Lemma II, we elaborate on the introduced notation
and its interpretation. First of all, we consider a normalized version of the quasi-log-likelihood func-
tion, denoted by ℒ̃log, 𝑗 ,𝑇final(𝜽 𝑗). This expression is obtained by subtracting the quasi-log-likelihood
evaluated at the true parameter value 𝜽★

𝑗 . That is,

ℒ̃log, 𝑗 ,𝑇final(𝜽 𝑗) := ℒlog, 𝑗 ,𝑇final(𝜽 𝑗) − ℒlog, 𝑗 ,𝑇final(𝜽★
𝑗 )

=


𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗 ,𝑡

[
−1

2
log(2𝜋) − 1

2
log(𝜎2

𝑗,𝑡(𝜽 𝑗)) −
𝑟2
𝑗,𝑡

2𝜎2
𝑗 ,𝑡(𝜽 𝑗)

]
−


𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗 ,𝑡

[
−1

2
log(2𝜋) − 1

2
log(𝜎2

𝑗,𝑡) −
𝑟2
𝑗 ,𝑡

2𝜎2
𝑗 ,𝑡

]
=
𝑇final∑
𝑡=𝑇𝑗

𝐼 𝑗,𝑡

[
− log(𝑠 𝑗,𝑡(𝜽 𝑗)) −

(
1

𝑠 𝑗,𝑡(𝜽 𝑗)) − 1
)
𝜂2
𝑗,𝑡

]
where ℒlog, 𝑗 ,𝑇final(·) denotes the quasi-log-likelihood function associated with asset 𝑗, and

𝜎2
𝑗 ,𝑡(𝜽 𝑗) = 𝛼 𝑗,0 + 𝛼 𝑗,1𝜎

2
𝑗 ,𝑡∗(𝜽 𝑗) + 𝛼 𝑗,2𝑟2

𝑗,𝑡∗ + 𝛼 𝑗 ,3𝐼 𝑗,𝑡−1.

Remember that we have the

𝜎2
𝑗,𝑡 := 𝜎2

𝑗 ,𝑡(𝜽★
𝑗 )

where 𝜎2
𝑡 denotes the true data-generating conditional volatility process, and 𝜎2

𝑗 ,𝑡(𝜽 𝑗) denotes the
conditional variance function evaluated at a given parameter vector 𝜽 𝑗 . More precisely, for each time
point 𝑡, the volatility model generates a value for the conditional variance based on the parameter
values 𝜽 𝑗 . Although notationally expressed as a function, 𝜎2

𝑗 ,𝑡(𝜽 𝑗) should be interpreted as a random
variable once a specific parameter vector is fixed. Note that this normalization does not affect the
QMLE, since the subtracted term − log 𝜎2

𝑡 − 𝑟2
𝑡 /𝜎2

𝑡 is only depending on the ”true values” 𝑟 𝑗 ,𝑡 and 𝜎𝑗 ,𝑡 ,
and is therefore independent of the parameter 𝜽 𝑗 [36]. It should be noted, however, that the process
𝑠 𝑗,𝑡(𝜽 𝑗) is non-stationary process generally. This is due to the fact that 𝜎2

𝑡 (𝜽 𝑗) is initialized at a fixed
value, and the covariate process 𝐼 𝑗,𝑡 may itself be non-stationary [36].
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We now proceed to state and prove the two lemmas using the notation introduced above.

Lemma I (Consistency of 𝜽̂
∗
𝑗). Let 𝑠∗𝑗,𝑡 be a stationary and ergodic process that is asymptotically equivalent

to the process 𝑠 𝑗,𝑡 , as defined in Lemma 6.2. Under Assumption 6.1, the QMLE 𝜽̂
∗
𝑗 of 𝑠∗𝑗,𝑡 is strongly consistent

for all 𝑗 ∈ {1, . . . , 𝑁assets}, i.e.

𝜽̂
∗
𝑗

a.s.−−→ 𝜽★
𝑗 .

Proof. To show the consistency of 𝜽̂
∗
𝑗 , we apply Theorem 2.1 from Kristensen and Rahbek. We need

to verify the following five conditions:

(i) Compact parameter space
The parameter space 𝚯𝑗 is a compact Euclidean space. This holds by assumption.

(ii) Continuity of log-likelihood
We need to have that

𝜽 𝑗 ↦→ −𝐼 𝑗 ,𝑡
[
− log(𝑠∗𝑗,𝑡(𝜽 𝑗)) −

(
1

𝑠∗𝑗,𝑡(𝜽 𝑗)
− 1

)
𝜂2
𝑗 ,𝑡

]
,

is continuous almost surely. This follows directly from the continuity of the mapping 𝜽 𝑗 ↦→
𝑠∗𝑗,𝑡(𝜽 𝑗), as given in Lemma 6.2. Note that continuity of each individual term in the infinite sum,
defining 𝜎̃2

𝑗 ,𝑡(𝜽 𝑗), alone does not imply that the sum is continuous. In general, an infinite sum
of continuous functions is continuous if the convergence is uniform. Lemma 6.2 directly ad-
dresses this by providing a uniform bound uniformly over the parameter space. In particular,
the lemma states that

E

[
sup
𝜽 𝑗∈𝚯𝑗

��� 𝑠 𝑗 ,𝑡(𝜽 𝑗) − 𝑠∗𝑗,𝑡(𝜽 𝑗) ���𝑠 ] < +∞,

and that the infinite sum decays geometrically, while also ensuring that

E

[
sup
𝜽 𝑗∈𝚯𝑗

𝜎̃2𝑠
𝑗,𝑡(𝜽 𝑗)

]
< +∞.

This implies that the sequence of partial sums converges uniformly to 𝜎̃2
𝑗,𝑡(𝜽 𝑗). Consequently,

Lemma 6.2 is sufficient to guarantee the continuity of 𝑠∗𝑗 ,𝑡(𝜽 𝑗), and therefore the continuity of
the log-likelihood function.

(iii) Existence and finiteness of limit
We will show that

lim
𝑇final→+∞

ℒ̃∗
log, 𝑗 ,𝑇final

(𝜽 𝑗)
𝑇final

𝑝−→ ℒ̃∗
log, 𝑗 ,𝑇final(𝜽 𝑗),

where the limit exists, for all 𝜽 𝑗 ∈ 𝚯𝑗 . This follows by the Law of Large Numbers for stationary
and ergodic sequences if the limit exists. Indeed, the limit is well-defined, since

− log(𝑠∗𝑗 ,𝑡(𝜽 𝑗)) −
(

1
𝑠∗𝑗,𝑡(𝜽 𝑗)

− 1

)
𝜂2
𝑗 ,𝑡 < log(𝛼 𝑗 ,0/𝛼★

𝑗 ,0)
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such that,

E
[
𝐼 𝑗,𝑡

]
· E

[(
− log(𝑠∗𝑗 ,𝑡(𝜽 𝑗)) −

(
1

𝑠∗𝑗 ,𝑡(𝜽 𝑗))
− 1

)
𝜂2
𝑗,𝑡

)+ ����� 𝐼 𝑗 ,𝑡 = 1

]
< +∞.

This follows from the fact that 𝑠∗𝑗,𝑡(𝜽 𝑗) ≥ 𝛼 𝑗,0/𝛼★
𝑗,0, and therefore− log

(
𝑠∗𝑗,𝑡(𝜽 𝑗)

)
≤ − log(𝛼 𝑗,0/𝛼★

𝑗 ,0).

(iv) Identification (unique maximizer)
We want to show that ℒ̃∗

log, 𝑗 ,𝑇final
(𝜽 𝑗) < ℒ̃∗

log, 𝑗 ,𝑇final
(𝜽★

𝑗 ) = 0 for all 𝜽𝒋 ≠ 𝜽★
𝒋
, i.e. the expected

log-likelihood is uniquely maximized at the true parameter. This result is independent of the
choice of the Gaussian surrogate likelihood for quasi-maximum likelihood.

Observe that by construction 𝑠∗𝑗,𝑡(𝜽★
𝑗 ) = 1, which implies

− log(𝑠 𝑗 ,𝑡(𝜽★
𝑗 )) −

(
1

𝑠 𝑗 ,𝑡(𝜽★
𝑗 ))

− 1

)
𝜂2
𝑗 ,𝑡 = 0,

resulting in the log-likelihood ℒ̃∗
log, 𝑗 ,𝑇final

(𝜽★
𝑗 ) = 0. Moreover, it holds that

𝛼★
𝑗,0 ≤ log

(
𝜎̃2
𝑗,𝑡(𝜽★

𝑗 )
)

such that E
[(

log
(
𝜎̃2
𝑗,𝑡(𝜽★

𝑗 )
) )−]

< +∞.

By Jensen’s inequality and Lemma 6.2, we then obtain

E
[(

log
(
𝜎̃2
𝑗,𝑡(𝜽★

𝑗 )
))+] ≤

(
log

(
E
[
𝜎̃2𝑠
𝑗,𝑡(𝜽★

𝑗 )
] ))+ /𝑠 < +∞.

Therefore, E
[��� − log(𝑠∗𝑗,𝑡(𝜽★

𝑗 )) −
(

1
𝑠∗𝑗,𝑡 (𝜽★

𝑗 ))
− 1

)
𝜂2
𝑗,𝑡

���] < +∞ is well-defined. We distinguish two

cases, having 𝜽 𝑗 ≠ 𝜽★
𝑗 :

(a) ℒ̃∗
log, 𝑗 ,𝑇final

(𝜽 𝑗) = −∞ (the log-likelihood diverges). Then, clearly

ℒ̃∗
log, 𝑗 ,𝑇final(𝜽★

𝑗 ) > −∞ = ℒ̃∗
log, 𝑗 ,𝑇final(𝜽 𝑗).

(b) ℒ̃∗
log, 𝑗 ,𝑇final

(𝜽 𝑗) ∈ (−∞,+∞) (the log-likelihood is finite). If this holds, we can write the
following:

ℒ̃∗
log, 𝑗 ,𝑇final(𝜽 𝑗) = E

[
𝐼 𝑗 ,𝑡

]
· E

[
− log(𝑠∗𝑗 ,𝑡(𝜽 𝑗)) −

(
1

𝑠∗𝑗,𝑡(𝜽 𝑗))
− 1

)
𝜂2
𝑗,𝑡

���� 𝐼 𝑗 ,𝑡 = 1

]
= −E

[
𝐼 𝑗 ,𝑡

]
· E

[
log(𝑠∗𝑗,𝑡(𝜽 𝑗)) +

(
1

𝑠∗𝑗,𝑡(𝜽 𝑗))
− 1

) ���� 𝐼 𝑗 ,𝑡 = 1

]
,

where we have used that E[𝜂2
𝑗 ,𝑡 |ℱ𝑡−1] = 1 by assumption. Thus, ℒ̃∗

log, 𝑗 ,𝑇final
(𝜽 𝑗) ≤ 0 =

ℒ̃∗
log, 𝑗 ,𝑇final

(𝜽★
𝑗 ), with equality if and only if 𝑠2

𝑗 ,𝑡(𝜽 𝑗) = 1 almost surely under the assumption
E[𝐼 𝑗 ,𝑡] > 0.

Now suppose that 𝑠2
𝑗,𝑡(𝜽 𝑗) = 1 almost surely ⇐⇒ 𝜎̃2

𝑗 ,𝑡(𝜽 𝑗) = 𝜎̃2
𝑗 ,𝑡(𝜽★

𝑗 ) almost surely. With
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𝑐𝑖(𝜽 𝑗) := (𝛼 𝑗 ,1𝛼𝑖−1
𝑗 ,2 , 𝛼 𝑗 ,3𝛼

𝑖−1
𝑗,2 )′, we claim that 𝛼 𝑗,0 = 𝛼★

𝑗 ,0 and 𝑐𝑖(𝜽 𝑗) = 𝑐𝑖(𝜽★
𝑗 ) for all 𝑖 ≥ 1. This

in turn implies the aimed result 𝜽 𝑗 = 𝜽★
𝑗 . We show this by contradiction.

Let 𝑚 > 0 be the smallest integer for which 𝑐𝑖(𝜽★
𝑗 ) ≠ 𝑐𝑖(𝜽 𝑗) for all 𝑖 ≥ 1. Then, we obtain:

𝑎 𝑗,0𝑟2
𝑗 ,𝑡−𝑚 + 𝑏 𝑗,0𝐼2𝑡−𝑚 = 𝛼 𝑗,0 − 𝛼★

𝑗 ,0 +
+∞∑
𝑖=1

𝑎 𝑗 ,𝑖𝑟2
𝑗,𝑡−𝑚−𝑖 +

+∞∑
𝑖=1

𝑏 𝑗 ,𝑖 𝐼2𝑗,𝑡−𝑚−𝑖 (6.9)

where 𝑎 𝑗,𝑖 := 𝛼★
𝑗,1(𝛼★

𝑗,2)𝑖−1 − 𝛼 𝑗 ,1𝛼𝑖−1
𝑗 ,2 and 𝑏 𝑗 ,𝑖 := 𝛼★

𝑗 ,3(𝛼★
𝑗,2)𝑖−1 − 𝛼 𝑗,3𝛼𝑖−1

𝑗,2 . The right hand side
of Equation (6.9) belongs to ℱ𝑡−𝑚−1. Therefore, 𝑎 𝑗,0𝑟2

𝑗,𝑡−𝑚 + 𝑏 𝑗,0𝐼2𝑡−𝑚 | ℱ𝑡−𝑚−1 is constant.
This is ruled out by Assumption 6.1(iv). Hence, we have a contradiction.

So, the only way we have 𝑠∗𝑗 ,𝑡(𝜽 𝑗) = 1 almost surely, is when 𝜽 𝑗 = 𝜽★
𝑗 . Hence, the expected

log-likelihood is uniquely maximized at 𝜽★
𝑗 , and identification holds.

(v) Uniform integrability

Lastly, we need to verify that E[𝐼 𝑗,𝑡] ·E[sup𝜽 𝑗∈𝚯𝑗
− log(𝑠∗𝑗,𝑡(𝜽 𝑗))−

(
1

𝑠∗𝑗 ,𝑡 (𝜽 𝑗)) − 1
)
𝜂2
𝑗 ,𝑡 | 𝐼 𝑗,𝑡 = 1] < +∞.

This follows from:

sup
𝜽 𝑗∈𝚯𝑗

{
− log(𝑠∗𝑗 ,𝑡(𝜽 𝑗)) −

(
1

𝑠∗𝑗 ,𝑡(𝜽 𝑗))
− 1

)
𝜂2
𝑗 ,𝑡

}
≤ − sup

𝜽 𝑗∈𝚯𝑗

log(𝛼 𝑗,0) ≤ log(𝛼 𝑗 ,0) < +∞.

Because the parameter space𝚯𝑗 is compact and 𝑠∗𝑗,𝑡(𝜽 𝑗) is continuous and bounded away from
zero and infinity by assumption, the supremum over 𝜽 𝑗 ∈ 𝚯𝑗 is well-defined and finite almost
surely. Using Lemma 6.2, we obtain

sup
𝜽 𝑗∈𝚯𝒋

��� ℒlog, 𝑗 ,𝑇final(𝜽 𝑗) − ℒ̃∗
log, 𝑗 ,𝑇final(𝜽 𝑗)

��� ≤ 𝐾
𝛼 𝑗 ,02

𝑇final∑
𝑡=𝑇𝑗

𝛼 𝑗,2
𝑡𝑟2
𝑗 ,𝑡−1 +

𝐾
𝛼 𝑗,02

𝑇final∑
𝑡=𝑇𝑗

𝛼 𝑗 ,2
𝑡 < +∞. (6.10)

The finiteness in (6.10) comes from Lemma 6.1 and 𝛼 𝑗 ,2 < 1 from Assumption 6.1.

Therefore, 𝜽̂
∗
𝑗 is a consistent estimator of 𝜽★

𝑗 .

Lemma II (Asymptotic equivalence between 𝜽̂
∗
𝑗 and 𝜽̂ 𝑗). Let us assume that it holds that

1
𝑇final

���ℒ̃∗
log,𝑇final , 𝑗(𝜽 𝑗) − ℒlog,𝑇final , 𝑗(𝜽 𝑗)

��� = 𝑜𝑝

(
1√
𝑇final

)
.

Under Assumption 6.1, it then holds that


𝜽̂∗
𝑗 − 𝜽̂ 𝑗




 = 𝑜𝑝

(
1√
𝑇final

)
. (6.11)
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Proof. To show the asymptotic equivalence between 𝜽̂
∗
𝑗 and 𝜽̂ 𝑗 , we apply Theorem 2.8 from Kris-

tensen and Shin. We need to verify the following three conditions:

(i) Condition 1 of Theorem 2.8
By compactness of the parameter space 𝚯𝑗 , clearly Condition 1 is satisfied.

(ii) Condition 2 of Theorem 2.8
Condition 2(a) is satisfied because the log-likelihood is smooth for our model. Hence, the
log-likelihood is three times differentiable. Condition 2(b) is satisfied by the Law of Large
Numbers for ergodic and stationary processes.

(iii) Condition 3 of Theorem 2.8
By Equation (6.10), we get

sup
𝜽 𝑗∈𝚯𝒋

���ℒ̃∗
log,𝑇final 𝑗 − ℒlog,𝑇final 𝑗

��� = 𝑂𝑝(1) = 𝑜𝑝
(√
𝑇final

)
.

Therefore, it holds that,

1
𝑇final

���ℒ̃∗
log,𝑇final , 𝑗(𝜽 𝑗) − ℒlog,𝑇final , 𝑗(𝜽 𝑗)

��� = 𝑜𝑝

(
1√
𝑇final

)
Then, it follows by Theorem 2.8 that the difference between the two estimators satisfies


𝜽̂ 𝑗 − 𝜽̂

∗
𝑗




 = 𝑜𝑝

(
1√
𝑇final

)
.

6.4 Asymptotic normality for zero-inflated GARCH-X models

Next, we will prove the asymptotic normality of the quasi-maximum likelihood estimator. We will
first give a sketch of the proof, followed by the formulation of the theorem and its proof.

6.4.1 Sketch of the proof

To derive the asymptotic distribution of 𝜽 𝑗 , we proceed to analyze the score and hessian of the quasi-
log-likelihood. We denote the score vector by 𝑆 𝑗 ,𝑛(𝜽 𝑗) ∈ R4, and the hessian matrix is given by
𝐻𝑗 ,𝑛(𝜽 𝑗) ∈ R4×4. For notational convenience, we write the sample size as 𝑛, although in our specific
setting this corresponds to 𝑇final. We define the score vector and the hessian matrix as follows:

𝑆 𝑗,𝑛(𝜽 𝑗) =
𝜕ℒ̃log, 𝑗 ,𝑛(𝜽 𝑗)

𝜕𝜽 𝑗
=



𝜕ℒ̃log, 𝑗 ,𝑛
𝜕𝛼 𝑗,0

𝜕ℒ̃log, 𝑗 ,𝑛
𝜕𝛼 𝑗,1

𝜕ℒ̃log, 𝑗 ,𝑛
𝜕𝛼 𝑗,2

𝜕ℒ̃log, 𝑗 ,𝑛
𝜕𝛼 𝑗,3


, 𝐻𝑗 ,𝑛(𝜽𝒋) =

𝜕2ℒ̃log, 𝑗 ,𝑛(𝜽 𝑗)
𝜕𝜽𝒋𝜕𝜽𝒋

′ =


𝜕2ℒ̃log, 𝑗 ,𝑛

𝜕𝛼2
𝑗 ,0

· · · · · · 𝜕2ℒ̃log, 𝑗 ,𝑛
𝜕𝛼 𝑗 ,0𝜕𝛼 𝑗,3

...
. . . . . .

...
𝜕2ℒ̃log, 𝑗 ,𝑛
𝜕𝛼 𝑗 ,3𝜕𝛼 𝑗,0

· · · · · · 𝜕2ℒ̃log, 𝑗 ,𝑛

𝜕𝛼2
𝑗,3


.
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A standard first-order Taylor expansion of the score vector yields

𝑆 𝑗 ,𝑛(𝜽̂ 𝑗) = 𝑆 𝑗,𝑛(𝜽★
𝑗 ) + 𝐻𝑗,𝑛(𝜽 𝑗)(𝜽̂ 𝑗 − 𝜽★

𝑗 ),

where 𝜽 𝑗 lies on the line segment connecting 𝜽̂ 𝑗 and 𝜽★
𝑗 . Assuming that 𝜽★

𝑗 lies in the interior of
the parameter space, 𝜽̂ 𝑗 must be an interior solution with probability approaching one. That is,
P({𝜽̂ 𝑗,𝑛 ∈ int(𝚯𝑗)}) → 1 as 𝑛 → ∞. It remains to derive the limiting distribution of 𝑆 𝑗,𝑛(𝜽★

𝑗 ) and
𝐻𝑗 ,𝑛(𝜽 𝑗). We can use the Law of LargeNumbers for stationary and ergodic sequences and the Central
Limit Theorem for martingales to show that

1√
𝑛
𝑆 𝑗,𝑛(𝜽★

𝑗 )
𝑑−→ 𝒩(0,𝚺𝑗), and − 1

𝑛
𝐻𝑗,𝑛(𝜽 𝑗) 𝑝−→ 𝑯 𝑗 > 0, (6.12)

where 𝚺𝑗 ,𝑯 𝑗 ∈ R4×4 are constant, positive definite matrices. This implies that

√
𝑛

(
𝜽̂ 𝑗 − 𝜽★

𝑗

)
𝑑−→ 𝒩

(
0,𝑯−1

𝑗 𝚺𝑗𝑯−1
𝑗

)
.

6.4.2 Theorem and proof

We proceed to verify that Equation (6.12) holds under the following assumption:

Assumption 6.2 (Additional assumptions for asymptotic normality).

(i) 𝜅4 = E
[ (

𝜂2
𝑗,𝑡 − 1

)2 ���ℱ𝑡−1

]
< ∞ is constant.

(ii) 𝜽★
𝑗 is in the interior of𝚯𝒋 , i.e. 𝜽★

𝑗 ∈ int(𝚯𝑗).

Assumption 6.2(i) is used to ensure that the variance of the score exists. While it could be weakened
to allowE

[ (
𝜂2 − 1)2 | ℱ𝑡−1

) ]
to be time-varying, as in [21], we retainAssumption 6.2(i) for simplicity.

Assumption 6.2(ii) is required to guarantee that 𝑆𝑛(𝜽̂) = 0 holds with probability approaching one.

As a first step toward Equation (6.12), the following lemma is useful. Essentially, it shows that the
derivatives of the volatility-ratio process 𝑠∗𝑡 (𝜽) are stationary under some conditions.

Lemma 6.4.1. Under Assumptions 6.1-6.2, the first and second derivatives of the volatility-ratio process
𝑠∗𝑗,𝑡(𝜽), given by

𝜕𝑠∗𝑗,𝑡 (𝜽)
𝜕𝜽 and

𝜕2𝑠∗𝑗 ,𝑡 (𝜽)
𝜕𝜽𝜕𝜽′ , are stationary and ergodic for all 𝜽 𝑗 ∈ 𝚯𝑗 . Moreover, there exist station-

ary and ergodic sequences 𝐵𝑘,𝑡 ∈ ℱ𝑡−1, for 𝑘 = 0, 1, 2, which are independent of 𝜽 𝑗 , such that the following
bounds hold for all 𝜽 𝑗 in a neighborhood of 𝜽★

𝑗 :

1
𝑠∗𝑗 ,𝑡(𝜽 𝑗)

≤ 𝐵0,𝑡 ,






𝜕𝑠∗𝑗 ,𝑡(𝜽 𝑗)𝜕𝜽 𝑗






 ≤ 𝐵1,𝑡 · 𝑠∗𝑗 ,𝑡(𝜽 𝑗),





𝜕2𝑠∗𝑗,𝑡(𝜽 𝑗)

𝜕𝜽 𝑗𝜕𝜽
′
𝑗






 ≤ 𝐵2,𝑡 · 𝑠∗𝑗,𝑡(𝜽 𝑗).

where it holds that

E
[
𝐵1,𝑡 + 𝐵2

2,𝑡
]
< +∞, and E

[
𝐵0,𝑡 ·

(
𝐵1,𝑡 + 𝐵2

2,𝑡

)]
< +∞.
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The proof of Lemma 6.4.1 can be found in Appendix B, where we have adapted the existing proof to
our specificmodel setting. Lemma 6.4.1 is used to construct suitable bounds for the score and hessian
that allow us to use the Central Limit Theorem for martingales and the Law of Large Numbers for
stationary and ergodic sequences. We now proceed to establish the second main asymptotic result.

Theorem II (Asymptotic normality quasi-maximum likelihood estimator zero-inflated GARCH-X).
Under Assumptions 6.1 - 6.2, the QMLE 𝜽̂ 𝑗 satisfies

√
𝑛(𝜽̂ 𝑗 − 𝜽★

𝑗 )
𝑑−→ 𝒩

(
0,𝑯−1

𝑗 𝚺𝑗𝑯−1
𝑗

)
,

where 𝚺𝑗 = 𝜅4𝑯 𝑗 , and 𝑯 𝑗 = E
[
𝜕𝑠∗𝑗 ,𝑡 (𝜽★

𝑗 )
𝜕𝜽 𝑗

𝜕𝑠∗𝑗 ,𝑡 (𝜽★
𝑗 )

𝜕𝜽′
𝑗

]
.

Proof. Recall from the result on consistency in Theorem I, that it holds that || 𝜽̂∗
𝑗 − 𝜽̂ 𝑗 || = 𝑜𝑝

(
1√
𝑁𝑗

)
.

Therefore, it suffices to analyze 𝜽̂
∗
𝑗 . Without loss of generality, we denote the time index by 𝒯𝑗 =

{1, . . . , 𝑛}. First, we compute the score vector:

𝑺∗
𝑗,𝑛(𝜽 𝑗) =

𝜕ℒ̃∗
log, 𝑗 ,𝑛(𝜽 𝑗)
𝜕𝜽 𝑗

=
𝑛∑
𝑡=1

𝐼 𝑗 ,𝑡 ·
𝜕ℓ ∗𝑗,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

=
𝑛∑
𝑡=1

𝐼 𝑗 ,𝑡 ·
{
− 1
𝜎̃2
𝑗,𝑡(𝜽 𝑗)

𝜕𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

−
(
− 1
𝜎̃4
𝑗,𝑡(𝜽 𝑗)

)
𝑟2
𝑗 ,𝑡

𝜕𝜎̃2
𝑗,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

}
=

𝑛∑
𝑡=1

𝐼 𝑗 ,𝑡 ·
{(

− 1
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

+
𝑟2
𝑗 ,𝑡

𝜎̃4
𝑗 ,𝑡(𝜽 𝑗)

)
𝜕𝜎̃2

𝑗,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

}
=

𝑛∑
𝑡=1

𝐼 𝑗 ,𝑡 · 1
𝜎̃2
𝑗,𝑡(𝜽 𝑗)

𝜕𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

(
𝑟2
𝑗 ,𝑡

𝜎̃2
𝑗,𝑡(𝜽 𝑗)

− 1

)
,

where the derivatives with respect to 𝜎̃2
𝑗 ,𝑡(𝜽 𝑗) can be found in the proof of Lemma 6.4.1. Next, we

compute the hessian matrix:

𝑯 ∗
𝑗 ,𝑛(𝜽 𝑗) =

𝜕2ℒ̃∗
log, 𝑗 ,𝑛(𝜽 𝑗)

𝜕𝜽 𝑗𝜕𝜽
′
𝑗

=
𝑛∑
𝑡=1

𝐼 𝑗,𝑡 ·
{

𝜕

𝜕𝜽 𝑗

[(
− 1
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

+
𝑟2
𝑗,𝑡

𝜎̃4
𝑗,𝑡(𝜽 𝑗)

)
𝜕𝜎̃2

𝑗 ,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

]}
=

𝑛∑
𝑡=1

𝐼 𝑗,𝑡 ·
{(

2
𝜎̃3
𝑗,𝑡(𝜽 𝑗)

−
4𝑟2
𝑗,𝑡

𝜎̃5
𝑗,𝑡(𝜽 𝑗)

)
𝜕𝜎̃2

𝑗 ,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

(
𝜕𝜎̃2

𝑗,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

) ′
+

(
− 1
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

+
𝑟2
𝑗,𝑡

𝜎̃4
𝑗,𝑡(𝜽 𝑗)

)
𝜕2𝜎̃2

𝑗,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗𝜕𝜽

′
𝑗

}
=

𝑛∑
𝑡=1

𝐼 𝑗,𝑡 ·
{(

1
𝜎̃2
𝑗,𝑡(𝜽 𝑗)

𝜕2𝜎̃2
𝑗,𝑡(𝜽 𝑗)

𝜕𝜽 𝑗𝜕𝜽
′
𝑗

− 1
𝜎̃4
𝑗 ,𝑡(𝜽 𝑗)

𝜕𝜎̃2
𝑗,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

𝜕𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)
𝜕𝜽′

𝑗

) (
𝑟2
𝑗 ,𝑡

𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

− 1

)
−
𝜕𝜎̃2

𝑗 ,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

𝜕𝜎̃2
𝑗,𝑡(𝜽 𝑗)
𝜕𝜽′

𝑗

𝑟2
𝑗,𝑡

𝜎̃6
𝑗,𝑡(𝜽 𝑗)

}
=

𝑛∑
𝑡=1

𝐼 𝑗,𝑡 · ℎ∗𝑗 ,𝑡(𝜽 𝑗),
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where we applied the product rule, and we denote ℎ∗(𝜽 𝑗) as follows:

ℎ∗𝑗 ,𝑡(𝜽 𝑗) =
(

1
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

𝜕2𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

𝜕𝜽 𝑗𝜕𝜽
′
𝑗

− 1
𝜎̃4
𝑗,𝑡(𝜽 𝑗)

𝜕𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

𝜕𝜎̃2
𝑗,𝑡(𝜽 𝑗)
𝜕𝜽′

𝑗

) (
𝑟2
𝑗,𝑡

𝜎̃2
𝑗,𝑡(𝜽 𝑗)

− 1

)
−

𝜕𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)
𝜕𝜽 𝑗

𝜕𝜎̃2
𝑗,𝑡(𝜽 𝑗)
𝜕𝜽′

𝑗

𝑟2
𝑗,𝑡

𝜎̃6
𝑗,𝑡(𝜽 𝑗)

.

To derive the asymptotic distribution of 𝜽̂
∗
𝑗 , we expand the score around the true parameter using

Taylor expansion:

0 = 𝑺∗
𝑗,𝑛(𝜽̂

∗
𝑗) = 𝑺∗

𝑗,𝑛(𝜽★
𝑗 ) + 𝑯 ∗

𝑗 ,𝑛(𝜽̄ 𝑗)(𝜽̂
∗
𝑗 − 𝜽★

𝑗 ),

where 𝜽̄ 𝑗 lies on the line segment between 𝜽̂
∗
𝑗 and 𝜽★

𝑗 . Rewriting yields:

√
𝑛
(
𝜽̂
∗
𝑗 − 𝜽★

𝑗

)
=
√
𝑛 ·

(
− 𝑯 ∗

𝑗 ,𝑛(𝜽̄ 𝑗)−1 · 𝑺∗
𝑗,𝑛(𝜽★

𝑗 )
)

= −
[ 1
𝑛
𝑯 ∗
𝑗,𝑛(𝜽̄ 𝑗)

]−1
· 1√

𝑛
𝑺∗
𝑗,𝑛(𝜽★

𝑗 ).

We will verify the two related convergence results stated in Equation (6.12). We begin by applying
the Central Limit Theorem for martingale differences, as stated in Theorem 2.13 and originally de-
noted in the work of Brown [11], to show that the normalized score converges in distribution to a
multivariate normal distribution. To apply the Martingale Central Limit Theorem, we must verify
three conditions. Let us first define the sequence

𝑀 𝑗 ,𝑡 :=
𝜕𝑠∗𝑗,𝑡(𝜽★

𝑗 )
𝜕𝜽 𝑗

(𝜂2
𝑗,𝑡 − 1). (6.13)

By construction, 𝑺∗
𝑗 ,𝑛(𝜽★

𝑗 ) =
∑𝑛
𝑡=1 𝑀 𝑗 ,𝑡 which follows from 𝑠∗𝑗 ,𝑡(𝜽★

𝑗 ) = 1. Clearly, 𝑀 𝑗 ,𝑡 is a martingale
difference by Assumption 6.1(i). Now, it remains to prove the other two conditions according to
Theorem 2.13:

(i) Finite quadratic variation
The quadratic variation of 𝑺∗

𝑗,𝑛(𝜽 𝑗)/
√
𝑛 is defined as follows:

〈
𝑺∗
𝑗 ,𝑛(𝜽★

𝑗 )/
√
𝑛
〉

:= 1
𝑛

𝑛∑
𝑡=1

E
[
𝑀 𝑗 ,𝑡𝑀′

𝑗 ,𝑡

���ℱ𝑡−1

]
(6.14)

=
1
𝑛

𝑛∑
𝑡=1

{
𝜕𝑠∗𝑗,𝑡(𝜽★

𝑗 )
𝜕𝜽 𝑗

𝜕𝑠∗𝑗,𝑡(𝜽★
𝑗 )

𝜕𝜽′
𝑗

}
E
[
(𝜂2
𝑗 ,𝑡 − 1)2

���ℱ𝑡−1

]
(6.15)

= 𝜅4
1
𝑛

𝑛∑
𝑡=1

𝜕𝑠∗𝑗,𝑡(𝜽★
𝑗 )

𝜕𝜽 𝑗

𝜕𝑠∗𝑗,𝑡(𝜽★
𝑗 )

𝜕𝜽′
𝑗

(6.16)

𝑝−→ 𝜅4E

[
𝜕𝑠∗𝑗 ,𝑡(𝜽★

𝑗 )
𝜕𝜽 𝑗

𝜕𝑠∗𝑗,𝑡(𝜽★
𝑗 )

𝜕𝜽′
𝑗

]
(6.17)

= 𝜅4𝑯 𝑗 < +∞ (6.18)
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wherewehave used 𝜅4 = E[(𝜂2
𝑗,𝑡−1)2 | ℱ𝑡−1] fromAssumption 6.2, andLemma6.4.1. Lemma 6.4.1

ensures that the derivatives
𝜕𝑠∗𝑗,𝑡
𝜕𝜽 𝑗

and
𝜕2𝑠∗𝑗,𝑡
𝜕𝜽 𝑗𝜕𝜽

′
𝑗
of the volatility-ratio process 𝑠∗𝑗,𝑡(𝜽 𝑗) are stationary

and ergodic for all 𝜽 𝑗 ∈ 𝚯𝑗 . Moreover, the lemma provides uniform bounds on these deriva-
tives in terms of stationary and ergodic sequences 𝐵1,𝑡 , 𝐵2,𝑡 ∈ ℱ𝑡−1, such that




𝜕𝑠∗𝑗 ,𝑡(𝜽 𝑗)𝜕𝜽 𝑗






 ≤ 𝐵1,𝑡 · 𝑠∗𝑗 ,𝑡(𝜽 𝑗),





𝜕2𝑠∗𝑗,𝑡(𝜽 𝑗)

𝜕𝜽 𝑗𝜕𝜽
′
𝑗






 ≤ 𝐵2,𝑡 · 𝑠∗𝑗 ,𝑡(𝜽 𝑗).

The corresponding moment condition E[𝐵1,𝑡 + 𝐵2
2,𝑡] < ∞ ensures that these derivatives are

square-integrable. Consequently, we can apply the ergodic law of large numbers to show the
convergence of sample averages to their expectations in probability. This convergence step is
written in Equation (6.17).

(ii) Lindeberg condition
We need to show that:

1
𝑛

𝑛∑
𝑡=1

E
[
||𝑀 𝑗,𝑡 || 21{||𝑀𝑡 || > 𝑐

√
𝑛}

]
→ 0, for all 𝑐 > 0.

By assumption of stationarity of the process 𝑀 𝑗 ,𝑡 , this condition reduces to showing that:

E
[
||𝑀 𝑗 ,𝑡 || 21{||𝑀 𝑗,𝑡 || > 𝑐

√
𝑛}

]
→ 0 as 𝑛 → +∞ (6.19)

To prove this formally, we apply the Dominated Convergence Theorem. Let 𝑋𝑛 := ∥𝑀 𝑗 ,𝑡∥2 ·
1{∥𝑀𝑗 ,𝑡∥>𝑐√𝑛} . As 𝑐

√
𝑛 → ∞ and ∥𝑀 𝑗 ,𝑡∥ is almost surely finite, the indicator function eventually

vanishes. Hence, we have 𝑋𝑛 → 0 almost surely. Furthermore, by the square-integrability of
𝑀 𝑗 ,𝑡 , which follows fromAssumption 6.1(i) and Lemma 6.4.1, the function ∥𝑀 𝑗,𝑡∥2 is integrable
and thus serves as a valid dominating function. Therefore, the conditions of the Dominated
Convergence Theorem are satisfied, and we conclude that

lim
𝑛→+∞E

[
∥𝑀 𝑗,𝑡∥2 · 1{∥𝑀 𝑗 ,𝑡∥ > 𝑐

√
𝑛
}] = 0.

This verifies that the Lindeberg condition holds.

Therefore, we can conclude that:

1√
𝑛
𝑺∗
𝑛(𝜽★

𝑗 )
𝑑−→ 𝒩(0,𝚺𝑗), with 𝚺𝑗 = 𝜅4𝑯 𝑗 .

Next, we turn to the second convergence statement in Equation (6.12), i.e. − 1
𝑛𝐻𝑛(𝜽 𝑗) 𝑝−→ 𝑯 𝑗 . We need

to show that the hessian converges and that it is non-singular.

(a) Uniform convergence
Let us start by pointing out that the following bound holds for all 𝜽 𝑗 in a neighborhood of 𝜽★

𝑗 ,
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and that the right-hand side has finite first moment using Lemma 6.4.1:

∥ ℎ∗𝑡(𝜽 𝑗)∥ ≤
{
𝐵2,𝑡 + 𝐵2

1,𝑡
} {

1 + 𝐵0,𝑡 · 𝜂2
𝑘,𝑡

}
+ 𝐵2

1,𝑡𝐵0,𝑡 · 𝜂2
𝑘,𝑡 < +∞. (6.20)

By standard results on uniform convergence for averages of stationary sequences (see Kris-
tensen and Rahbek [42]), it then follows that:

sup
∥𝜽 𝑗−𝜽★

𝑗 ∥<𝛿




𝑯 ∗
𝑛(𝜽 𝑗) − 𝑯stat(𝜽 𝑗)




 𝑝−→ 0,

for some 𝛿 > 0, where
𝑯stat(𝜽 𝑗) = E

[
ℎ∗𝜽 𝑗 ,𝑡 (𝜽 𝑗)

]
.

Moreover, the mapping 𝜽 𝑗 ↦→ 𝐻stat(𝜽 𝑗) is continuous. Since both 𝜽̂
∗
𝑗
𝑝−→ 𝜽★

𝑗 and 𝜽̄ 𝑗
𝑝−→ 𝜽★

𝑗 , it
follows that these parameters lie in any arbitrarily small neighborhood of 𝜽★

𝑗 with probability
approaching one due to the convergence in probability. Hence, we have shown convergence
of the hessian to a non-random limit.

(b) Non-singularity
Lastly, it remains to show that the hessian 𝑯stat(𝜽★

𝑗 ) is non-singular, i.e. invertible. We prove
this by contradiction. First, let us define

𝚿𝑗 ,𝑡 :=
𝜕𝜎̃2

𝑗,𝑡(𝜽★
𝑗 )

𝜕𝜽 𝑗
∈ R4.

This process can be written recursively as:

𝚿𝑗,𝑡 = 𝛽𝚿𝑗 ,𝑡−1 + W𝑗 ,𝑡 ,

where W𝑗,𝑡 := [1, 𝑟 𝑗,𝑡−1 , 𝐼 𝑗,𝑡−1 , 𝜎̃2
𝑗,𝑡−1(𝜽★

𝑗 )]⊤ ∈ R4. Suppose that there exists a non-zero vector
𝝀 ∈ R4 \{0} and 𝑡 ≥ 1 such that 𝝀⊤𝚿𝑗 ,𝑡 = 0 almost surely. By stationarity of𝚿𝑗,𝑡 this must hold
for all 𝑡. Then, this implies that 𝝀⊤ W𝑗 ,𝑡 = 0 almost surely for all 𝑡. However, this contradicts
Assumption 6.1(iv). Therefore, it must hold that

𝝀⊤𝚿𝑗,𝑡

𝜎̃2
𝑗,𝑡(𝜽★

𝑗 )
= 0 almost surely ∀𝑡 ⇐⇒ 𝝀 = 0.

This gives that the hessian matrix 𝑯stat(𝜽★
𝑗 ) = E[𝚿𝑗 ,𝑡𝚿′

𝑗 ,𝑡/𝜎̃4
𝑗,𝑡(𝜽★

𝑗 )] is positive definite because
for every nonzero vector 𝝀 ∈ R4 \ {0}, it holds that 𝝀⊤𝑯stat(𝜽★

𝑗 )𝝀 > 0. Then, this implies that
𝑯stat is nonsingular [29].

Therefore, we conclude that √
𝑛(𝜽̂ 𝑗 − 𝜽★

𝑗 )
𝑑−→ 𝒩

(
0,𝑯−1

𝑗 𝚺𝑗𝑯−1
𝑗

)
.
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6.5 Real data application

Table 6.1 presents the estimated parameters for the univariate zero-inflated GARCH(1,1)-X model
across the seven voluntary carbon credit assets. The results confirm several expected features of fi-
nancial time series. Most notably, for all assets, the GARCH(1) parameter dominates the ARCH(1)
component, indicating strong persistence in volatility, a common feature in asset return modeling.
In particular, the Nature Based Offset and Uruguay ARR projects exhibit a high GARCH(1) coeffi-
cient around 0.90, suggesting that volatility shocks have long-lasting effects. The intercept terms are
generally close to zero, which reflects the low unconditional variance of returns in these markets.
The exogenous trading indicator, included as the Xreg term, is non-zero for most assets, albeit small
in magnitude. This supports the hypothesis that past trading activity provides some information
about volatility. Interestingly, the water filtration and Latam ARR projects show zero Xreg coeffi-
cients, suggesting that for these assets, volatilitymay not be strongly linked to recent trading activity.
Overall, the estimates support themodeling approach and show the relevance of accounting for both
persistence and trading behavior in capturing volatility dynamics in carbon credit markets.

Table 6.1: Estimated GARCH(1,1)-X parameters per carbon asset

Asset Intercept (𝛼̂ 𝑗 ,0) ARCH(1) (𝛼̂ 𝑗 ,1) GARCH(1) (𝛼̂ 𝑗,2) Xreg (𝛼̂ 𝑗,3)

Nature Based Offset 0.00000 0.02051 0.94852 0.00019
VCS REDD+ CCB Gold V2021 0.00001 0.34363 0.69034 0.00003
Clean Cookstoves Africa V2021 0.000000 0.18996 0.29075 0.00014
Water Filtration Africa V2021 0.000059 0.09739 0.52569 0.00000
ACR US IFM 2020 0.000001 0.15462 0.38702 0.00007
VCS Uruguay ARR V2021 0.000005 0.08684 0.90496 0.00000
VCS CCB/GS Latam ARR 2021 0.000000 0.52502 0.75340 0.00000

The estimation results in Table 6.2 show that, for all conventional assets, the GARCH(1) parameters
dominate the ARCH(1) terms. GARCH(1) values range from 0.68 to 0.93, which indicate strong
persistence in volatility and volatility clustering. The intercept terms are small, as expected for asset
return series. The estimated parameter for trading activity (Xreg) has a very limited effect across
most assets, with values close to zero or exactly zero in the case of Clean Energy ETF and EU ETS.
These estimated values are lower than those observed for the carbon credits, except for the volatility
index. This could indicate that illiquidity and irregular trading can play a more substantial role
in volatility dynamics in those markets. The Volatility Index is the only conventional asset where
trading intensity has a relatively larger coefficient (0.00047). Notably, the GARCH(1) coefficients for
carbon credit assetswere in general lower than those observed for the conventional assets, pointing to
less persistent volatility in the carbon market. This difference may reflect the more irregular trading
patterns typical of voluntary carbon credits, in which past volatility has less predictive power than
in more liquid markets.
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Table 6.2: Estimated GARCH(1,1)-X parameters for conventional assets

Asset Intercept (𝛼̂ 𝑗 ,0) ARCH(1) (𝛼̂ 𝑗 ,1) GARCH(1) (𝛼̂ 𝑗,2) Xreg (𝛼̂ 𝑗,3)

Soybean Futures 0.00000 0.07496 0.89907 0.00001
Volatility Index 0.00045 0.10778 0.72739 0.00047
Clean Energy ETF 0.00001 0.04999 0.92542 0.00000
Natural Gas Futures 0.00001 0.10893 0.89300 0.00001
NASDAQ 0.00003 0.09998 0.67632 0.00002
EU ETS 0.00002 0.09603 0.87539 0.00000

An important condition for the stationarity of GARCH-type models is that the sum of the ARCH(1)
and GARCH(1) coefficients remains below one. Tables 6.1 and 6.2 show that this condition is sat-
isfied for all conventional assets except Natural Gas Futures, where the sum slightly exceeds one.
Among carbon credit assets, the condition is violated in two cases: VCS REDD+ CCB Gold and VCS
CCB/GS Latam ARR. This may indicate potential model instability, possibly due to limited observa-
tions or irregular volatility patterns in these illiquid markets.



7
Cross-asset dependence among

residuals

The zero-inflated GARCH-Xmodel is presented in Chapter 4 in themultivariate setting and in Chap-
ter 6 in the univariate setting. A distinguishing feature of the model is its ability to capture cross-
asset dependence, both through the binary trading indicators 𝐼 𝑗 ,𝑡 and in the residuals 𝜂 𝑗,𝑡 for some
asset 𝑗. In this chapter, we focus on modeling the dependence structure of the residuals using a
copula-GARCH framework. The zero-inflated nature of the data introduces a specific complications
in copula-GARCH: when observed returns are exactly zero, residuals are not defined. To map the
residuals onto the copula scale, we apply the probability integral transform (PIT), restricting atten-
tion to time points where returns are non-zero, i.e. when 𝐼 𝑗 ,𝑡 = 1. This treatment ensures that the
zero-inflated structure can be properly handled in dependence modeling. In particular, we discuss
two ways of applying the PIT in a bivariate setting. We demonstrate that only the PIT with pairwise
conditioning on trading activity guarantees the copula estimator of interest.

7.1 Adaptation of copula techniques to illiquid markets

7.1.1 Cross-asset dependence in residuals

In this section, we study the bivariate joint behavior of the residuals (𝜂 𝑗,𝑡 , 𝜂𝑘,𝑡)𝑡≥0 for assets 𝑗, 𝑘 ∈
{1, . . . , 𝑁}. To capture this, we adopt a copula-GARCH framework: the marginal dynamics of
(𝜂 𝑗,𝑡)𝑡∈𝒯𝑗 and (𝜂𝑘,𝑡)𝑡∈𝒯𝑘 are handled by the zero-inflated GARCH-X models as defined in (6.1), while
their joint dependence structure is described through a copula, estimated in a nonparametric way.

For asset 𝑗, the standardized residuals are defined as

𝜂 𝑗,𝑡 :=
𝑟 𝑗 ,𝑡 − 𝜇𝑗 ,𝑡

𝜎𝑗 ,𝑡
=
𝑟 𝑗,𝑡
𝜎𝑗 ,𝑡

,

where 𝜇𝑗,𝑡 = 0 is assumed throughout this thesis. Here, the returns are observed, but the conditional
volatility is unknown and therefore estimated. For details on the estimation of the conditional volatil-
ity, we refer to Chapter 6. To study residual dependence empirically, we estimate the standardized
residuals from the fitted GARCH-X model. Formally, the estimated standardized residuals 𝜂̂ 𝑗,𝑡 are
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defined as
𝜂̂ 𝑗 ,𝑡 :=

𝑟 𝑗,𝑡 − 𝜇̂𝑗 ,𝑡

𝜎̂𝑗,𝑡
=

𝑟 𝑗,𝑡
𝜎̂𝑗 ,𝑡

,

where 𝜎̂𝑗 ,𝑡 is the estimated conditional standard deviation. Recall that we used the garchx package
in R, described in Chapter 6, that provides estimates of the conditional volatility 𝜎̂𝑗 ,𝑡 using quasi-
maximum likelihood. This package therefore also directly provides the corresponding estimated
residuals 𝜂̂ 𝑗 ,𝑡 .

To map these estimated residuals to the copula scale, we apply the probability integral transform.
Recall from Section 2.3 that the probability integral transform states that if a random variable 𝑋
has a continuous distribution for which the CDF 𝐹𝑋 exists, then the random variable 𝑌 := 𝐹𝑋 has a
standard uniform distribution. Recall that the presence of zero-inflated returns requires particular
care. More precisely, residuals are observed only when the corresponding asset is traded, otherwise
the residual is undefined. Let us first look at the univariate case, where we look at 𝜂 𝑗,𝑡 for some asset
𝑗. Then, the probability integral transform gives the pseudo-random variable

𝑈
{𝐼𝑗,𝑡=1}
𝑗 ,𝑡 := 𝐹𝑗|{ 𝐼𝑗,𝑡=1}(𝜂̂ 𝑗 ,𝑡), (7.1)

where 𝐹𝑗|{ 𝐼𝑗 ,𝑡=1} denotes the conditional marginal distribution function of the estimated standardized
residual 𝜂̂ 𝑗 ,𝑡 for asset 𝑗, given that a trade occurred. It is defined as

𝐹𝑗|{ 𝐼𝑗 ,𝑡=1}(𝑥) := P
(
𝜂̂ 𝑗,𝑡 ≤ 𝑥

��� 𝐼 𝑗,𝑡 = 1
)
.

Note that 𝑈 𝑗,𝑡 is uniformly distributed on [0, 1] conditional on asset 𝑗 being traded at time 𝑡, i.e.
conditional on 𝐼 𝑗,𝑡 = 1. As a result, the PIT is applied only on the days when asset 𝑗 was actively
traded and a nonzero return was observed.

The filtered time index set containing only non-zero returns for asset 𝑗 is defined as

𝒯𝑗 := {𝑡 ∈ 𝒯𝑗 : 𝐼 𝑗,𝑡 = 1} = {̃𝑡(𝑗)1 , . . . , 𝑡̃(𝑗)𝑁𝑗
} , (7.2)

where 𝑡̃(𝑗)1 denotes the first time point at which asset 𝑗 is traded and has a non-zero return, and 𝑁𝑗 is
the total number of such trading days, as defined in Equation (6.2). Next, we estimate the conditional
CDF non-parametrically based on the empirical distribution function:

𝐹𝑗|{ 𝐼𝑗,𝑡=1}(𝑥) := 1
|𝒯𝑗 |

∑
𝑡∈𝒯𝑗

1{𝜂̂ 𝑗,𝑡 ≤ 𝑥} . (7.3)

where |𝒯𝑗 | represent the cardinality of the set 𝒯𝑗 . In this sense, by this conditioning, we mean that
we restrict attention to the subset of the data for which 𝐼 𝑗,𝑡 = 1, effectively omitting all time points
where residuals are undefined due to zero returns.

We now turn our attention to the bivariate joint behavior of the residuals (𝜂 𝑗,𝑡 , 𝜂𝑘,𝑡)𝑡≥0 for assets
𝑗 , 𝑘 ∈ {1, . . . , 𝑁}. The zero-inflated nature of the data introduces an additional complication: how
should the probability integral transform be applied in this bivariate setting, given the presence of
undefined values due to the non-trading of one or both assets?
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In both approaches considered, the PIT is applied to each series of residuals individually. However,
the distinction lies in the conditioning strategy. One option is to apply the PIT separately for each
asset using only the time pointswhen that specific asset is traded, and thenmerge the resulting trans-
formed series by discarding time points where either asset is not traded. Alternatively, the PIT can
be applied to the subset of observations where both assets are traded simultaneously, conditioning
the transformation jointly on this co-trading activity.

Similar as in the univariate case in Equation (7.2), we introduce a filtered time index set for this
bivariate case, corresponding to the time points where both assets are traded, defined as

𝒯𝑖 𝑗 := {𝑡 ∈ 𝒯𝑖 ∩ 𝒯𝑗 : 𝐼𝑖 ,𝑡 = 1, 𝐼 𝑗,𝑡 = 1}. (7.4)

We distinguish the following two possible approaches for constructing the PIT in a multivariate
setting:

(i) Separate PIT approach
The probability integral transform is constructed separately for each asset by conditioning only
on its own trading activity, a procedure we refer to as marginal conditioning. Specifically, we
define

𝑈
{𝐼𝑗 ,𝑡=1}
𝑗 ,𝑡 := 𝐹𝑗|{ 𝐼𝑗,𝑡=1}(𝜂̂ 𝑗,𝑡), (7.5)

where 𝐹𝑗|{ 𝐼𝑗,𝑡=1} , as defined in Equation (7.3), denotes the empirical conditional distribution
function of the estimated standardized residuals 𝜂̂ 𝑗 ,𝑡 , restricted to the subset 𝒯𝑗 . Under this
approach, each asset is treated separately: we consider only those time points atwhich the asset
is traded, estimate its conditional distribution over this subset of the data, and subsequently
apply the PIT to obtain pseudo-observations on the copula scale. To analyze cross-sectional
dependence, the joint distribution is then approximated by selecting only those transformed
PIT values (𝑈𝑖,𝑡 , 𝑈 𝑗,𝑡) corresponding to time pointswhere both assets 𝑖 and 𝑗 are simultaneously
traded, i.e. restricted to time time set 𝒯𝑖 𝑗 as defined in Equation (7.4).

(ii) Joint PIT approach
The alternative approach, referred to as the pairwise conditioning method, incorporates joint
trading information by conditioning on the simultaneous trading of two assets. The conditional
empirical distribution of 𝜂̂ 𝑗 ,𝑡 is then given by

𝐹𝑗|{ 𝐼𝑗,𝑡=1, 𝐼𝑖,𝑡=1}(𝑥) := 1
|𝒯𝑖 𝑗 |

∑
𝑡∈𝒯𝑖 𝑗

1{𝜂̂ 𝑗 ,𝑡 ≤ 𝑥} ,

and the corresponding (estimated) PIT becomes

𝑈
{𝐼𝑗 ,𝑡=1, 𝐼𝑖 ,𝑡=1}
𝑗 ,𝑡 := 𝐹𝑗|{ 𝐼𝑗,𝑡=1, 𝐼𝑖,𝑡=1}(𝜂̂ 𝑗 ,𝑡). (7.6)

This approach explicitly incorporates the joint trading structure of assets 𝑖 and 𝑗.

The separate approach is a natural and intuitive choice, as it conditions only on an asset’s own trading
activity. However, the joint (or pairwise) approach is motivated by the observation that 𝐼𝑖 ,𝑡 may
carry additional information about the distribution of 𝜂̂ 𝑗 ,𝑡 beyond what is conveyed by 𝐼 𝑗 ,𝑡 alone.
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This is particularly relevant in settings with interdependent trading decisions across assets. Since
our primary interest is in modeling such cross-asset dependence, conditioning jointly on trading
activity before applying the PIT may offer a more informative transformation. The presence of zero
returns, giving undefined residuals, necessitates conditioning on time points where both assets are
actively traded. The resulting conditional copula of interest is then mathematically expressed as

𝐶𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝑢𝑖 , 𝑢𝑗) := 𝐹𝑖 𝑗|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}
(
𝐹−𝑖|{ 𝐼𝑖,𝑡=1}(𝑢𝑖) , 𝐹−𝑗|{ 𝐼𝑗,𝑡=1}(𝑢𝑗)

)
(7.7)

= P
(
𝜂̂𝑖,𝑡 ≤ 𝐹−𝑖|{ 𝐼𝑖,𝑡=1}(𝑢𝑖) , 𝜂̂ 𝑗 ,𝑡 ≤ 𝐹−𝑗|{ 𝐼𝑗,𝑡=1}(𝑢𝑗)

�� 𝐼𝑖 ,𝑡 = 1, 𝐼 𝑗 ,𝑡 = 1
)

= P
(
𝐹𝑖|{ 𝐼𝑗,𝑡=1, 𝐼𝑖,𝑡=1}(𝜂̂𝑖 ,𝑡) ≤ 𝑢𝑖 , 𝐹𝑗|{ 𝐼𝑗,𝑡=1, 𝐼𝑖,𝑡=1}(𝜂̂ 𝑗 ,𝑡) ≤ 𝑢𝑗

�� 𝐼𝑖 ,𝑡 = 1, 𝐼 𝑗 ,𝑡 = 1
)

= P
(
𝑈

{𝐼𝑗 ,𝑡=1, 𝐼𝑖 ,𝑡=1}
𝑖 ,𝑡 ≤ 𝑢𝑖 , 𝑈

{𝐼𝑗,𝑡=1, 𝐼𝑖,𝑡=1}
𝑗 ,𝑡 ≤ 𝑢𝑗

�� 𝐼𝑖,𝑡 = 1, 𝐼 𝑗,𝑡 = 1
)
, (7.8)

where the second equality comes from the definition of the joint conditional cumulative distribution
function

𝐹𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝑥𝑖 , 𝑥 𝑗) := P
(
𝜂̂𝑖,𝑡 ≤ 𝑥𝑖 , 𝜂̂ 𝑗 ,𝑡 ≤ 𝑥 𝑗

�� 𝐼𝑖 ,𝑡 = 1, 𝐼 𝑗 ,𝑡 = 1
)
,

and the third equality comes from the inversion of the marginal conditional cumulative distribution
functions. The last equality comes from the definition of the variables𝑈{𝐼𝑗 ,𝑡=1, 𝐼𝑖 ,𝑡=1}

𝑖,𝑡 and𝑈{𝐼𝑗,𝑡=1, 𝐼𝑖,𝑡=1}
𝑗 ,𝑡 .

The conditional copula of interest 𝐶𝑖 𝑗|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1} links the marginals 𝐹𝑖|{ 𝐼𝑗 ,𝑡=1, 𝐼𝑖 ,𝑡=1} and 𝐹𝑗|{ 𝐼𝑗 ,𝑡=1, 𝐼𝑖 ,𝑡=1}
to form the joint distribution 𝐹𝑖 𝑗 | { 𝐼𝑗 ,𝑡=1, 𝐼𝑖 ,𝑡=1} . Note, by Equation (7.8), that this conditional copula
is the joint distribution of

(
𝑈

{𝐼𝑗,𝑡=1, 𝐼𝑖,𝑡=1}
𝑖,𝑡 , 𝑈

{𝐼𝑗,𝑡=1, 𝐼𝑖,𝑡=1}
𝑗 ,𝑡

)
given the event {𝐼 𝑗 ,𝑡 = 1, 𝐼𝑖 ,𝑡 = 1}. The con-

struction of a consistent probability integral transform under this conditioning is formally stated and
proved in the next subsection.

7.1.2 Asymptotic results of the probability integral transform

We now formally analyze the asymptotic behavior of the copula estimators corresponding to the two
PIT approaches defined as in Equations (7.5) and (7.6). The aim is to determine which approach
– marginal or joint conditioning – yields a consistent estimator that converges to the conditional
copula of interest, as defined in Equation (7.7). We begin by stating and proving a general theorem
that provides the asymptotic result of the copula estimator based on the two probability integral
transformapproaches in amultivariate setting. It is followed by two corollaries that adapt the general
theorem to the specific bivariate setting used throughout this thesis.

Let (X𝑡 , Z𝑡)𝑡∈Z be a strict stationary and ergodic multivariate time series of dimension (𝑑 + 𝑝), dis-
tributed as (X, Z). Let 𝒯𝒜 denote the filtered time index set consisting of all time points at which 𝑑
assets trade simultaneously, defined as

𝒯𝒜 :=
{
𝑡 ∈ {𝑇start , . . . , 𝑇final} : Z𝑡 ∈ 𝒜

}
.

Recall that 𝑇start is defined as in Equation (4.1), i.e. 𝑇start := max𝑘 𝑇𝑘 . Here, 𝑁𝒜 denotes the total
number of observations for which Z𝑖 ∈ 𝒜 , which is defined as

𝑁𝒜 =
𝑇final∑
𝑡=𝑇start

𝑑∏
𝑘=1

𝐼 𝑗,𝑡 .
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Without loss of generality, we will work with 𝑇start = 1. For a measurable set 𝒜 ⊆ R𝑝 , and 𝑘 ∈
{1, . . . , 𝑑}, let 𝐹𝑘|𝒜 be the conditional CDF of 𝑋𝑘 given Z ∈ 𝒜 . For 𝑡 ∈ R, let

𝐹𝑘|𝒜 (𝑡) := 1
𝑁𝒜

𝑇final∑
𝑖=1

1{𝑋𝑘,𝑖 ≤ 𝑡 , Z𝑖 ∈ 𝒜} ,

For (𝑑 + 1) measurable sets 𝒜 ,𝒜1 , . . . ,𝒜𝑑 ⊆ R𝑝 , let the nonparametric copula estimator be defined
as

𝐶1,...,𝑑|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) := 1
𝑁𝒜

𝑇final∑
𝑖=1

1{𝐹1|𝒜1(𝑋1,𝑖) ≤ 𝑢1 , . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑,𝑖) ≤ 𝑢𝑑 , Z ∈ 𝒜} . (7.9)

Theorem III (Consistent conditional copula probability integral transform). For every u ∈ [0, 1]𝑑 and
every measurable sets𝒜 ,𝒜1 , . . . ,𝒜𝑑, such that all the conditional marginal CDFs 𝐹1|𝒜1(𝑋1), . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑)
are continuous, we have

𝐶1,...,𝑑|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) 𝑎.𝑠.−−−−−−−→
𝑇final→+∞ P

(
𝐹1|𝒜1(𝑋1) ≤ 𝑢1 , . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑) ≤ 𝑢𝑑 | Z ∈ 𝒜

)
(7.10)

= 𝐶X|Z∈𝒜 (𝜓1(𝑢1), . . . ,𝜓𝑑(𝑢𝑑)), (7.11)

where, for 𝑘 ∈ {1, . . . , 𝑑},
𝜓𝑘 := 𝐹𝑘|𝒜 ◦ 𝐹−𝑘|𝒜 𝑘

, (7.12)

𝐹−𝑘|𝒜 𝑘
is the inverse of 𝐹𝑖|𝒜 𝑖 , and 𝐶X|Z∈𝒜 is the conditional copula of X given that Z ∈ 𝒜 .

Note that in general, the convergence of the empirical copula 𝐶|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) is not guaran-
teed. This comes from the dependence between the pseudo-observations 𝑈𝑘,𝑡|𝒜 = 𝐹𝑘|𝒜 (𝑋𝑘,𝑡), even
when the original observations (X𝑡) are independent and identically distributed.

Proof. Note that we have the following decomposition

𝐶X|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) − P
(
𝑈1|𝒜1 ≤ 𝑢1 , . . . , 𝑈𝑑|𝒜 𝑑 ≤ 𝑢𝑑

��� Z ∈ 𝒜
)
= 𝐾1 + 𝐾2

where,

𝐾1 = 𝐶X|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) − 𝐶X|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑)
𝐾2 = 𝐶X|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) − P(𝑈1|𝒜1 ≤ 𝑢1 , . . . , 𝑈𝑑|𝒜 𝑑 ≤ 𝑢𝑑 | Z ∈ 𝒜) ,

where𝐶X|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) is the empirical copula based on the true pseudo-observations𝑈𝑘|𝒜 :=
𝐹𝑘|𝒜 𝑘 (𝜂𝑘,𝑡).
Under the assumption that the process (X𝑡 , Z𝑡)𝑡∈Z is stationary and ergodic, it follows that the trans-
formed process (U𝑡 , Z𝑡)𝑡∈Z is also stationary and ergodic, where U𝑡 := (𝑈1,𝑡 , . . . , 𝑈𝑑,𝑡). Moreover,
since that E[|U𝑡 |] < ∞ for all 𝑗 ∈ {1, . . . , 𝑑} and all 𝑡, the law of large numbers for stationary and
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ergodic sequences implies that

𝐶X|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) = 1
𝑁𝒜

𝑇final∑
𝑖=1

1{𝐹1|𝒜1(𝑋1,𝑖) ≤ 𝑢1 , . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑,𝑖) ≤ 𝑢𝑑 , Z ∈ 𝒜}

=
𝑇final
𝑁𝒜

× 1
𝑇final

𝑇final∑
𝑖=1

1{𝐹1|𝒜1(𝑋1,𝑖) ≤ 𝑢1 , . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑,𝑖) ≤ 𝑢𝑑 , Z ∈ 𝒜}
𝑎.𝑠.−−→ 1

P(Z ∈ 𝒜) × P(𝑈1|𝒜1 ≤ 𝑢1 , . . . , 𝑈𝑑|𝒜 𝑑 ≤ 𝑢𝑑 , Z ∈ 𝒜)
= P(𝑈1|𝒜1 ≤ 𝑢1 , . . . , 𝑈𝑑|𝒜 𝑑 ≤ 𝑢𝑑 | Z ∈ 𝒜) .

Therefore, 𝐾2
𝑎.𝑠.−−→ 0. Now it remains to show that 𝐾1 tends to zero. Note that we have

𝐾1 = 𝐶X|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) − 𝐶X|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑)

=
1
𝑁𝒜

𝑇final∑
𝑖=1

1{𝐹1|𝒜1(𝑋1,𝑖) ≤ 𝑢1 , . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑,𝑖) ≤ 𝑢𝑑 , Z ∈ 𝒜} − 1{𝐹1|𝒜1(𝑋1,𝑖) ≤ 𝑢1 , . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑,𝑖) ≤ 𝑢𝑑}

=
1
𝑁𝒜

𝑇final∑
𝑖=1

1{Z𝑖 ∈ 𝒜} 𝛿𝑖,𝑇final ,

where

𝛿𝑖 ,𝑇final := 1{𝐹1|𝒜1(𝑋1,𝑖) ≤ 𝑢1 , . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑,𝑖) ≤ 𝑢𝑑} − 1{𝐹1|𝒜1(𝑋1,𝑖) ≤ 𝑢1 , . . . , 𝐹𝑑|𝒜 𝑑 (𝑋𝑑,𝑖) ≤ 𝑢𝑑} .

By the generalization of the Glivenko-Cantelli theorem from Tucker, that we denoted in Chapter 2
as Theorem 2.11, we know that for any 𝑘 ∈ {1, . . . , 𝑑},

sup
𝑥∈(−∞,+∞)

��𝐹𝑘|𝒜 𝑘 (𝑥) − 𝐹𝑘|𝒜 𝑘 (𝑥)
�� → 0

with probability 1. Let 𝐸1 be the event of probability 1 where all these convergences occur. Let 𝐸2 be
the event defined by

𝐸2 = {∀𝑘 = 1, . . . , 𝑑, ∀𝑡 ≥ 1, ∀𝑠 ≠ 𝑡 , 𝑋𝑘,𝑡 ≠ 𝑋𝑘,𝑠}.

The event 𝐸2 is the event on which none of the marginals of X have ties. This event has probability
1 since all marginal distributions are continuous. Let 𝐸 = 𝐸1 ∩𝐸2. Then 𝐸 has still probability 1, and
we fix 𝜔 ∈ 𝐸.
Let 𝜀 > 0, and let 𝑛0 ∈ N such that for all 𝑇final ≥ 𝑛0, then for any 𝑘 ∈ {1, . . . , 𝑑},

sup
𝑥∈(−∞,+∞)

��𝐹𝑘|𝒜 𝑘 (𝑥) − 𝐹𝑘|𝒜 𝑘 (𝑥)
�� ≤ 𝜀.

On this event, we have that for all 𝑡 ∈ 𝒯𝒜 , for all 𝑘 ∈ {1, . . . , 𝑑},����𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡) − 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡)
���� ≤ 𝜀.
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Note that 𝛿𝑖 ,𝑇final = 0 if{
𝑘 ∈ {1, . . . , 𝑑} , 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡) ≤ 𝑢𝑘

}
=

{
𝑘 ∈ {1, . . . , 𝑑} , 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡) ≤ 𝑢𝑘

}
A sufficient condition for this to hold is:

∀𝑘 = 1, . . . , 𝑑,
��𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡) − 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡)

�� ≤ ��𝑢𝑘 − 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡)
��.

Indeed, let 𝑎, 𝑏, 𝑐 three numbers such that |𝑎 − 𝑏| ≤ | 𝑐 − 𝑎| . Then if 𝑎 ≤ 𝑐 we know that 𝑏 ≤ 𝑐, since
𝑏 = 𝑎+(𝑏−𝑎) ≤ 𝑎+(𝑐−𝑎) = 𝑐. And if 𝑎 > 𝑐we know that 𝑏 > 𝑐 too, since 𝑏 = 𝑎+(𝑏−𝑎) > 𝑎+(𝑐−𝑎) = 𝑐.
We can apply this principle with 𝑎 = 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡), 𝑏 = 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡), and 𝑐 = 𝑢𝑘 .
Remark that the numbers (𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡))𝑡∈𝒯𝒜 are ranks, i.e. they take the values 1/𝑁𝒜 , 2/𝑁𝒜 , . . . ,
𝑁𝒜/𝑁𝒜 . Here, we have used that 𝜔 ∈ 𝐸2, i.e. we have no ties. So, for all 𝑘 = 1, . . . , 𝑑,

𝐶𝑎𝑟𝑑

({
𝑡 ∈ 𝒯𝒜 :

��𝑢𝑘 − 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡)
�� > 𝜖

})
= 𝐶𝑎𝑟𝑑

({
𝑡 ∈ 𝒯𝒜 : 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡) ∉ (𝑢𝑘 − 𝜀, 𝑢𝑘 + 𝜀)

})
= 𝐶𝑎𝑟𝑑

({
𝑖 = 1, . . . , 𝑁𝒜 : 𝑖/𝑁𝒜 ∉ (𝑢𝑘 − 𝜀, 𝑢𝑘 + 𝜀)

})
= 𝐶𝑎𝑟𝑑

({
𝑖 = 1, . . . , 𝑁𝒜 : 𝑖 ∉ (𝑁𝒜𝑢𝑘 − 𝑁𝒜𝜀 , 𝑁𝒜𝑢𝑘 + 𝑁𝒜𝜀)

})
= 𝑁𝒜 − 𝐶𝑎𝑟𝑑

({
𝑖 = 1, . . . , 𝑁𝒜 : 𝑖 ∈ (𝑁𝒜𝑢𝑘 − 𝑁𝒜𝜀 , 𝑁𝒜𝑢𝑘 + 𝑁𝒜𝜀)

})
> 𝑁𝒜 − 2𝜖𝑁𝒜
= (1 − 2𝜖)𝑁𝒜 .

Therefore, by a union bound, we get that

𝐶𝑎𝑟𝑑

({
𝑡 ∈ 𝒯𝒜 : ∀𝑘 = 1, . . . , 𝑑,

��𝑢𝑘 − 𝐹𝑘|𝒜 𝑘 (𝑋𝑘,𝑡)
�� > 𝜖

})
> (1 − 2𝑑𝜖)𝑁𝒜 .

Hence,

𝐶𝑎𝑟𝑑

({
𝑡 ∈ 𝒯𝒜 : 𝛿𝑖 ,𝑇final = 0

})
> (1 − 2𝑑𝜖)𝑁𝒜 .

So

𝐶𝑎𝑟𝑑

({
𝑡 ∈ 𝒯𝒜 : |𝛿𝑖 ,𝑇final | = 1

})
= 𝑁𝒜 − 𝐶𝑎𝑟𝑑

({
𝑡 ∈ 𝒯𝒜 : 𝛿𝑖,𝑇final = 0

})
< 𝑁𝒜 − (1 − 2𝑑𝜖)𝑁𝒜 = 2𝑑 × 𝜖 × 𝑁𝒜 .

By the triangular inequality, we thus obtain

|𝐾1| ≤ 1
𝑁𝒜

𝑇final∑
𝑖=1

|𝛿𝑖 ,𝑇final | ≤
1
𝑁𝒜

× 2𝑑 × 𝜖 × 𝑁𝒜 = 𝜀 × 2𝑑.

This can be made arbitrary small by choosing 𝜀 small enough. Therefore, 𝐾1 → 0 as 𝑇final → +∞.
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Since this happens on 𝐸, which is an event of probability 1, we have proved that 𝐾1
𝑎.𝑠.−−→ 0.

We now prove the second part of Equation (7.10). We have

lim
𝑛→+∞𝐶|𝒜 ,𝒜1 ,...,𝒜𝑑 (𝑢1 , . . . , 𝑢𝑑) = P

(
𝑈1|𝒜1 ≤ 𝑢1 , . . . , 𝑈𝑑|𝒜 𝑑 ≤ 𝑢𝑑

��� Z ∈ 𝒜
)

= P
(
𝐹1|𝒜1(𝜂1) ≤ 𝑢𝑖 , . . . , 𝐹𝑑|𝒜 𝑑 (𝜂𝑑) ≤ 𝑢𝑗

��� Z ∈ 𝒜
)

= P
(
𝜂1 ≤ 𝐹−1|𝒜1

(𝑢1) , . . . , 𝜂𝑑 ≤ 𝐹−𝑑|𝒜 𝑑
(𝑢𝑑)

��� Z ∈ 𝒜
)

= 𝐹1,...,𝑑|𝒜
(
𝐹−1|𝒜1

(𝑢1) , . . . , 𝐹−𝑑|𝒜 𝑑
(𝑢𝑑)

)
= 𝐶X|Z∈𝒜 (𝜓1(𝑢1), . . . ,𝜓𝑑(𝑢𝑑)),

as claimed.

As an immediate application of Theorem III, we apply its general form to the zero-inflatedGARCH-X
model introduced in Chapter 4. The resulting statement is given in the following corollary.

Corollary 7.1 (Consistency of the copula estimator for pairwise conditioning). Let (𝜂 𝑗,𝑡)𝑡∈𝒯𝑗 be stan-
dardized residuals with indicators (𝐼 𝑗 ,𝑡)𝑡∈𝒯𝑗 taking values in {0, 1}. Let 𝒯𝑖 𝑗 denote the pairwise active trading
time index set as defined in (7.4). Let 𝐶pairwise

𝑖 𝑗 and 𝐶marginal
𝑖 𝑗 be the empirical copula estimators based on

pseudo-observations derived from the continuous conditional marginal distributions 𝐹𝑘|{ 𝐼𝑖 ,𝑡=1,𝐼𝑗,𝑡=1} and 𝐹𝑘|{ 𝐼𝑘,𝑡=1}
for 𝑘 ∈ { 𝑖, 𝑗} respectively. Then, it holds that

𝐶pairwise
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗) 𝑎.𝑠.−−−−−→

𝑛→+∞ 𝐶𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1,𝐼𝑗,𝑡=1}(𝑢𝑖 , 𝑢𝑗), (7.13)

whereas

𝐶marginal
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗) 𝑎.𝑠.−−−−−→

𝑛→+∞ 𝐶𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}
(
𝐹𝑖|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝐹−𝑖|{ 𝐼𝑖 ,𝑡=1}(𝑢𝑖)) ,

𝐹𝑗|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}(𝐹−𝑗|{ 𝐼𝑗 ,𝑡=1}(𝑢𝑗))
)

(7.14)

Proof. Remark we have conditioning sets {𝐼𝑖,𝑡 = 𝐼 𝑗,𝑡 = 1} , {𝐼𝑖 ,𝑡 = 1} , {𝐼 𝑗 ,𝑡 = 1}, which are measurable
sets. By applying Theorem III, we obtain

lim
𝑛→+∞𝐶

pairwise
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗) = lim

𝑛→+∞
1

|𝒯𝑖 𝑗 |
∑
𝑡∈𝒯𝑖 𝑗

1{𝑈{𝐼𝑗 ,𝑡=1, 𝐼𝑖 ,𝑡=1}
𝑖,𝑡 ≤ 𝑢𝑖 , 𝑈

{𝐼𝑗 ,𝑡=1, 𝐼𝑖 ,𝑡=1}
𝑗 ,𝑡 ≤ 𝑢𝑗}

= 𝐶𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝑢𝑖 , 𝑢𝑗)

Hence, the copula estimator based on pairwise conditioning converges almost surely to the true
conditional copula 𝐶𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝑢𝑖 , 𝑢𝑗). Next, we turn to the copula estimator constructed under
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marginal conditioning. By applying Theorem III, we obtain

lim
𝑛→+∞𝐶

marginal
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗) = lim

𝑛→+∞
1

|𝒯𝑖 𝑗 |
∑
𝑡∈𝒯𝑖 𝑗

1{𝑈{𝐼𝑖,𝑡=1}
𝑖 ,𝑡 ≤ 𝑢𝑖 , 𝑈

{𝐼𝑗,𝑡=1}
𝑗,𝑡 ≤ 𝑢𝑗}

= P
(
𝑈{𝐼𝑖 ,𝑡=1}
𝑖,𝑡 ≤ 𝑢𝑖 , 𝑈

{𝐼𝑗 ,𝑡=1}
𝑗 ,𝑡 ≤ 𝑢𝑗

�� 𝐼 𝑗,𝑡 = 1, 𝐼𝑖,𝑡 = 1
)

= P
(
𝐹𝑖|{ 𝐼𝑖,𝑡=1}(𝜂𝑖) ≤ 𝑢𝑖 , 𝐹𝑗|{ 𝐼𝑗,𝑡=1}(𝜂 𝑗) ≤ 𝑢𝑗

�� 𝐼 𝑗 ,𝑡 = 1, 𝐼𝑖,𝑡 = 1
)

= P
(
𝜂𝑖 ≤ 𝐹−𝑖|{ 𝐼𝑖,𝑡=1}(𝑢𝑖) , 𝜂 𝑗 ≤ 𝐹−𝑗|{ 𝐼𝑗 ,𝑡=1}(𝑢𝑗)

�� 𝐼 𝑗 ,𝑡 = 1, 𝐼𝑖,𝑡 = 1
)

= 𝐹𝑖 𝑗|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}
(
𝐹−𝑖|{ 𝐼𝑖,𝑡=1}(𝑢𝑖) , 𝐹−𝑗|{ 𝐼𝑗,𝑡=1}(𝑢𝑗)

)
= 𝐹𝑖 𝑗|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}

(
𝐹−𝑖|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}(𝐹𝑖|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝐹−𝑖|{ 𝐼𝑖 ,𝑡=1}(𝑢𝑖))) ,

𝐹−𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝐹𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝐹−𝑗|{ 𝐼𝑗,𝑡=1}(𝑢𝑗)))
)

(7.15)

= 𝐶𝑖 𝑗|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}
(
𝐹𝑖|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}(𝐹−𝑖|{ 𝐼𝑖 ,𝑡=1}(𝑢𝑖)) ,

𝐹𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝐹−𝑗|{ 𝐼𝑗 ,𝑡=1}(𝑢𝑗))
)
.

We used in Equation (7.15) the identity 𝑥 = 𝐹−𝑖|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝐹𝑖|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}(𝑥)).

Corollary 7.1 shows that the copula estimator for the separate conditioning, 𝐶marginal
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗), is in

general not a consistent estimator of the conditional copula 𝐶𝑖 𝑗|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}(𝑢𝑖 , 𝑢𝑗). This observation
motivates the question of whether the estimated copulas under separate or joint conditioning events
can coincide under some conditions. Corollary 7.2 answers this question. The proof relies on Re-
mark 7.1, which formalizes an independence property for conditional probabilities and specifies
when enlarging the conditioning set leaves the conditional distribution unchanged.

Remark 7.1. Let 𝐴, 𝐵, 𝐶 be events defined on a common probability space (Ω,ℱ , P). Suppose the pair (𝐴, 𝐵)
is independent of 𝐶, then P(𝐴 | 𝐵, 𝐶) = 𝑃(𝐴 | 𝐵). This identity follows from the definition of conditional
probability and the assumption of independence:

P(𝐴 | 𝐵, 𝐶) = P(𝐴 ∩ 𝐵 ∩ 𝐶)
P(𝐵 ∩ 𝐶) =

P(𝐴 ∩ 𝐵) · P(𝐶)
𝑃(𝐵) · P(𝐶) =

P(𝐴 ∩ 𝐵)
P(𝐵) = P(𝐴 | 𝐵),

where P(𝐶) ≥ 0.

Corollary 7.2. The probability integral transform using either a separate or a joint conditioning approach,
under the same conditions and notations as in Corollary 7.1, have the same limit if and only if 𝐹𝑖|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1} =
𝐹𝑖|{ 𝐼𝑖 ,𝑡=1} and 𝐹𝑗|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1} = 𝐹𝑗|{ 𝐼𝑖,𝑡=1} .

Proof. By Remark 7.1, for any (𝑢𝑖 , 𝑢𝑗) ∈ [0, 1]2, if 𝐹𝑖| 𝐼𝑖 ,𝑡=1,𝐼 𝑗 ,𝑡=1 = 𝐹𝑖| 𝐼𝑖 ,𝑡=1 and 𝐹𝑗| 𝐼𝑖,𝑡=1,𝐼 𝑗,𝑡=1 = 𝐹𝑗| 𝐼𝑗,𝑡=1, then
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the copula limits under marginal and joint conditioning clearly coincide:

lim
𝑛→+∞𝐶

marginal
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗) = 𝐹𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}

(
𝐹−𝑖|{ 𝐼𝑖,𝑡=1}(𝑢𝑖) , 𝐹−𝑗|{ 𝐼𝑗,𝑡=1}(𝑢𝑗)

)
(7.16)

= 𝐹𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}
(
𝐹−𝑖|{ 𝐼𝑖,𝑡=1, 𝐼 𝑗,𝑡=1}(𝑢𝑖) , 𝐹−𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗,𝑡=1}(𝑢𝑗)

)
(7.17)

= 𝐶𝑖 𝑗|{ 𝐼𝑖 ,𝑡=1, 𝐼 𝑗 ,𝑡=1}(𝑢𝑖 , 𝑢𝑗) (7.18)

= 𝐶pairwise
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗) (7.19)

The other direction is proved by contrapositive. We assume that that the conditional CDFs are not
equal, i.e. 𝐹{𝑖| 𝐼𝑖 ,𝑡=1,𝐼𝑗,𝑡=1} ≠ 𝐹{𝑖| 𝐼𝑖,𝑡=1} and 𝐹{ 𝑗| 𝐼𝑖 ,𝑡=1,𝐼𝑗,𝑡=1} ≠ 𝐹{ 𝑗| 𝐼𝑗,𝑡=1} . We show that this implies that the
limits of the estimated copulas are not equal. Without loss of generality, choose 𝑥 ∈ R such that
that 𝐹{𝑖| 𝐼𝑖 ,𝑡=1,𝐼𝑗,𝑡=1}(𝑥) ≠ 𝐹{𝑖| 𝐼𝑖,𝑡=1}(𝑥). Remember that we assume that 𝐹𝑖|{ 𝐼𝑖,𝑡=1,𝐼 𝑗 ,𝑡=1} and 𝐹𝑖|{ 𝐼𝑖,𝑡=1} are
continuous. Now fix

𝑢𝑖 := 𝐹{𝑖| 𝐼𝑖=1}(𝑥) ∈ (0, 1), 𝑢𝑗 := 1.

Thus, under the separate conditioning scheme, we have

lim
𝑛→+∞𝐶

marginal
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗) = 𝐹𝑖 𝑗|{ 𝐼𝑖,𝑡=𝐼𝑗 ,𝑡=1}

(
𝐹−𝑖|{ 𝐼𝑖=1}(𝑢𝑖), 𝐹−𝑗|{ 𝐼𝑗=1}(𝑢𝑗)

)
= 𝐹𝑖 𝑗|{ 𝐼𝑖,𝑡=𝐼𝑗 ,𝑡=1}

(
𝐹−𝑖|{ 𝐼𝑖=1}

(
𝐹𝑖|{ 𝐼𝑖=1}(𝑥)

)
, 𝐹−𝑗|{ 𝐼𝑗=1}(1)

)
= 𝐹𝑖 𝑗|{ 𝐼𝑖,𝑡=𝐼𝑗 ,𝑡=1}

(
𝑥, +∞)

= 𝐹𝑖|{ 𝐼𝑖,𝑡=𝐼𝑗 ,𝑡=1}(𝑥).

Then, under joint conditioning scheme, we obtain

lim
𝑛→+∞𝐶

pairwise
𝑖 𝑗 (𝑢𝑖 , 𝑢𝑗) = 𝐹𝑖 𝑗|{ 𝐼𝑖 ,𝑡=𝐼𝑗 ,𝑡=1}

(
𝐹−𝑖|{ 𝐼𝑖,𝑡=𝐼𝑗,𝑡=1}(𝑢𝑖), 𝐹−𝑗|{ 𝐼𝑖 ,𝑡=𝐼𝑗,𝑡=1}(𝑢𝑗)

)
= 𝐹𝑖 𝑗|{ 𝐼𝑖 ,𝑡=𝐼𝑗 ,𝑡=1}

(
𝐹−𝑖|{ 𝐼𝑖,𝑡=𝐼𝑗,𝑡=1}

(
𝐹𝑖|{ 𝐼𝑖 ,𝑡=1}(𝑥)

)
, 𝐹−𝑗|{ 𝐼𝑖 ,𝑡=𝐼𝑗,𝑡=1}(1)

)
= 𝐹𝑖 𝑗|{ 𝐼𝑖 ,𝑡=𝐼𝑗,𝑡=1}

(
𝐹−𝑖|{ 𝐼𝑖,𝑡=𝐼𝑗,𝑡=1}

(
𝐹𝑖|{ 𝐼𝑖 ,𝑡=1}(𝑥)

)
,+∞

)
= 𝐹𝑖|{ 𝐼𝑖 ,𝑡=𝐼𝑗,𝑡=1}

(
𝐹−𝑖|{ 𝐼𝑖,𝑡=𝐼𝑗,𝑡=1}

(
𝐹𝑖|{ 𝐼𝑖 ,𝑡=1}(𝑥)

) )
= 𝐹𝑖|{ 𝐼𝑖 ,𝑡=1}(𝑥)

By assumption, we have that 𝐹𝑖|{ 𝐼𝑖,𝑡=1}(𝑥) ≠ 𝐹𝑖|{ 𝐼𝑖,𝑡=𝐼𝑗,𝑡=1}(𝑥). Therefore, the limit of the copula estima-
tors are not the same for the separate and joint conditioning approaches. This completes the proof.

Corollary 7.2 states the precise condition under which the limit of the copula estimator based on
separate conditioning of two indicators is equal to the limit of the estimated copula under joint
conditioning: both continuity of all conditional marginals, and marginal invariance should hold.
With marginal invariance, we mean 𝐹𝑖|{ 𝐼𝑖,𝑡=1,𝐼 𝑗 ,𝑡=1} = 𝐹𝑖|{ 𝐼𝑖 ,𝑡=1} and 𝐹𝑗|{ 𝐼𝑖 ,𝑡=1,𝐼𝑗,𝑡=1} = 𝐹𝑗|{ 𝐼𝑗 ,𝑡=1} . Under
these assumptions the estimators for the two different conditioning approaches are consistent for the
same copula of interest. If marginal invariance fails, the limits differ (a marginal selection effect),
and only the joint–conditioning copula estimator remains consistent.
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7.2 Real data application: unconditional dependence

7.2.1 Kendall’s tau

In the unconditional case, we consider the estimated values of Kendall’s tau for each pair of assets.
Figure 7.1 shows these estimates, ranging from−1 (perfect negative correlation) to 1 (perfect positive
correlation), with 0 indicating no correlation.
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Figure 7.1: Estimated Kendall’s tau for each combination of financial assets

The results reveal three groups of relationships. First, the group of correlations among conventional,
more liquid assets (upper left). We see that the volatility indexVIX is negatively correlatedwith both
the Clean Energy ETF and the NASDAQ, while the Clean Energy ETF and the NASDAQ are posi-
tively correlated. Previous research has identified a negative correlation between the NASDAQ and
the volatility index VIX [33], which is consistent with the results of our study. Second, the group of
correlations between carbon assets and conventional assets (upper right). The carbon credits show
no associationwith the conventionalmarkets. Although no causal inference is drawn, this absence of
correlation could strengthen the hypothesis that illiquid or early-stage markets tend to behave inde-
pendently from established, highly liquid markets. Third, the group of correlations among carbon
credits (bottom right). Several positive correlations are observed. Nature-Based Offsets are posi-
tively correlated with both REDD+ and U.S. IFM credits. REDD+ is also positively correlated with
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ARR credits from Uruguay and Latin America, and these two ARR series are themselves strongly
correlated, likely due to the Uruguay ARR project being included in the broader Latin America ARR
dataset. This suggests that nature-based credits are closely linked. A similar pattern appears for
technology-based credits: Cookstoves andWater Filtration projects fromAfrica display the strongest
positive correlation in the entire sample. This may be explained by their common origin and the fact
that both are among the most illiquid assets in the dataset, with relatively few observations, which
reduces the robustness of the correlation estimates. Across all carbon credits, no negative correla-
tion is observed, not even weak negative dependence. Overall, the results for the correlation among
the carbon credits support the view within the market that their prices tend to move together, as
valuations frequently draw on the prices of comparable projects.

7.2.2 Copulas

Next, we present scatterplots with overlaid contour lines of the estimated copula densities, obtained
using the kdecop function from the kdecopula package in R. This package provides a nonparametric
estimate of a bivariate copula density via kernel smoothing techniques. Based on the correlation
plot from Figure 7.1, we focus on asset pairs that exhibit either positive or negative Kendall’s tau, in
order to examine their dependence structure in more detail.

For each selected pair, we plot the scatterplot of the corresponding pseudo-observations (uniformly
distributed on [0, 1]) alongside the kernel-estimated copula density. This approach reveals features
of the dependence structure that cannot be captured by a single summary statistic such asKendall’s 𝜏.
While Kendall’s tau measures the overall strength and direction of monotonic dependence, it does
not provide information on the form or asymmetry of the dependence, particularly in the tails. By
applying the probability integral transform, we separate the marginal distributions from the joint
dependence, and directly visualize the copula.

The unconditional copula analysis is conducted for the following asset combinations: X.VIX vs ICLN
(2–3), X.VIX vs X.IXIC (2–5), ICLN vs X.IXIC (3–5), Nature-Based Offset vs REDD+ CCB (7–8),
Nature-Based Offset vs U.S. IFM (7–11), REDD+ CCB vs Uruguay ARR (8–12), REDD+ CCB vs
LatamARR (8–13), Cookstoves Africa vsWater Filtration Africa (9–10), andUruguayARR vs Latam
ARR (12–13). The pseudo-observation scatterplots with copula density contours, presented in Fig-
ures 7.2 - 7.4, reveal distinct patterns of dependence for the different asset pairs.

In Figure 7.2, we see that for VIX–ICLN and VIX–NASDAQ, the plots show a clear negative trend: as
one variable increases, the other tends to decrease. The inverse relation between the equity index and
implied volatility is consistent with the leverage effect. The contour lines are smooth and elongated,
indicating a consistent monotonic relationship without strong signs of joint extreme movements,
meaning that simultaneous large increases or decreases are relatively rare. In contrast, theNASDAQ–
ICLN pair shows a strong positive trend, with the data points and density concentrated along the
main diagonal. This suggests that the two assets often move in the same direction, reflecting their
similar market drivers. However, the curvature of the contours suggests that this co-movement is
stronger during normal market conditions and weaker during extreme events, when the assets may
diverge more.

In Figure 7.3, the pseudo-observation scatterplots with estimated copula density contours for a se-
lection of carbon credits show a clear positive trend: higher ranks in one series tend to coincide



7.2. Real data application: unconditional dependence 109

Figure 7.2: Dependence plots for selected conventional asset pairs
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(a) Scatter plot of the pseudo-observations with copula density contours of the VIX and Clean Energy ETF
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(b) Scatter plot of the pseudo-observations with copula density contours of the VIX and NASDAQ
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(c) Scatter plot of the pseudo-observations with copula density contours of the NASDAQ and Clean Energy
ETF
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Figure 7.3: Dependence plots for selected carbon credit asset pairs (I/II)
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(a) Scatter plot of the pseudo-observations with copula density contours of the Nature Based Offset and
REDD+ credits

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nature Based Offset

U
S

 IF
M

Nature Based Offset

U
S

 IF
M

 0.5 

 0.5 
 1 

 1 

 1.5 

 1.5 

 2  2 

 2.5 

 2.5 

 3 

 3 

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

(b) Scatter and contour plot of the pseudo-observations of the Nature Based Offset and US IFM credits
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(c) Scatter and contour plot of the pseudo-observations of the Uruguay ARR and REDD+ credits
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Figure 7.4: Dependence plots for selected carbon credit asset pairs (II/II)
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(a) Scatter and contour plot of the pseudo-observations of the Latam ARR and REDD+ credits
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(b) Scatter and contour plot of the pseudo-observations of the Water filtration and Cookstoves Africa credits
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(c) Scatter and contour plot of the pseudo-observations of the Latam ARR and Uruguay ARR credits
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with higher ranks in the other. Comparing the three, NBO–REDD+ exhibits a positive but weaker
dependence than the other pairs, as seen in the more dispersed cloud of points and less concen-
trated contours. This indicates moderate concordance. ARR Uruguay–REDD+ shows the tightest
diagonal alignment and the narrowest contours, indicating the strongest monotone dependence in
this group. NBO–U.S. IFM also shows a positive trend, with contours that show a gentle S-shaped
curvature. This suggests that the strength of dependence varies across ranks: stronger around mid-
quantiles and weaker toward the extremes. There is no notable clustering of the contours in the
corners; at most there is a slight density near the extremes, so any tail dependence appears weak in
this sample. An S-shaped ridge means the dependence is state-dependent. This can occur in em-
pirical copulas when common drivers align prices under typical conditions but idiosyncratic factors
dominate in extremes. Given the low sample size in combination with the use of kernel smoothing,
these features should be read cautiously. The strong linkage between ARR and REDD+ may possi-
bly reflect ARR’s emergence being anchored to the historically important REDD+ price signal while
market preferences evolve; this interpretation is supported by discussions with Rabobank [55].

In Figure 7.4, the pseudo-observation scatterplots with copula density contours all show a clear pos-
itive trend. Comparing the three, the Latam ARR–REDD+ pair exhibits an uneven spread of points,
with more clustering in the joint tails than in the middle ranks. This suggests that dependence
is particularly strong during extreme events, while in moderate conditions the relationship is less
tightly aligned. The Water Filtration Africa–Cookstoves Africa pair shows the strongest and most
concentrated positive dependence of the three, with data points and contours forming a dense, nar-
row diagonal band. This indicates a near one-to-one movement across the rank distribution. Latam
ARR–UruguayARR also shows tail clustering, though less pronounced than in LatamARR–REDD+,
and the contours here are straighter and less curved, suggesting a more uniform monotone depen-
dence throughout the distribution. The strong co-movement in the tails for Latam ARR–REDD+
and Latam ARR–Uruguay ARR could indicate that prices in these credit types react more similarly
during market extremes, potentially due to shared benchmarks or overlapping buyer interest when
volatility is high. The extremely tight dependence between Water Filtration and Cookstoves Africa
likely reflects shared origination channels and market participants, meaning their prices tend to
move together very closely in all market conditions.

Compared with the carbon credit pairs in Figure 7.3, the ARR pairs here (Latam–REDD+, Latam–
Uruguay) show stronger evidence of tail-driven dependence, whereas the other nature-based pairs
(NBO) tend to have steadier dependence across the distributionwithweaker tail effects. TheAfrican
technology-based credits stand out as the most strongly linked across all carbon credit pairs exam-
ined.

7.3 Real data application: conditional dependence

7.3.1 Conditioning on one event

We selected a subset of conditional Kendall’s tau plots where the estimated curve is not entirely flat.
A non-flat CKT curve indicates the existence conditional dependence between the pair (𝑋1 , 𝑋2) given
certain values of a third asset 𝑍. Formost combinations, however, the conditional Kendall’s tau curve
is essentially flat, suggesting that the conditioning variable has little or no effect on the dependence.
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We do not analyze these further. This observation also relates to the simplifying assumption, which
is discussed in more detail in the Appendix C. Moreover, with 13 assets, there are

(13
2
)
= 78 distinct

asset pairs, and for each we can condition on a selection of 10 assets, giving 78 × 10 = 780 possible
combinations. Listing all of them here would be excessive, so we focus only on the cases where
conditional Kendall’s tau shows notable variation. Therefore, we distinguish the following four
groups where the conditional correlation changes with the conditioning value.

(i) Cookstoves Africa or Water Filtration Africa as one of the assets or the conditioning variable,
where non-flat conditional Kendall’s tau often appears, likely due to the high proportion of
zero returns and small sample size.

(ii) Conditioning on U.S. IFM, which produces several irregular patterns worth further examina-
tion.

(iii) Conditioning on EU ETS or Natural Gas, given prior research suggesting a relationship be-
tween these assets.

(iv) Pairs already correlated in the unconditional analysis, for which specific conditioning variables
are chosen to highlight cases where the conditional Kendall’s tau departs from flatness.

The four groups under consideration are displayed in Figures 7.5–7.7. In each case, we employ
the two–sided pointwise asymptotic 95% confidence interval for the parameter of interest. More
precisely, for every fixed z, the construction satisfies

∀z ∈ Z, P
(
𝜏★z ∈ (𝑎𝑛(z), 𝑏𝑛(z))) −→ 0.95, as 𝑛 → +∞,

where 𝜏★z denotes the true conditional Kendall’s 𝜏 between X1 and X2 given Z = z, and (𝑎𝑛(z), 𝑏𝑛(z))
represents the 95% confidence interval𝐶𝐼𝑛(z) constructed froma sample of size 𝑛, for some 𝑎𝑛(z), 𝑏𝑛(z) ∈
R.

All conditional Kendall’s tau estimates were computed using the CKT.kernel function from the
CondCopulas package in R. The estimation relies on a nonparametric kernel smoothing approach,
where we used the Epanechnikov kernel and a fixed bandwidth of ℎ = 0.1 based on visual inspec-
tion.

In Figure 7.5, when considering Cookstoves Africa and Water Filtration Africa in the role of asset
1, asset 2, or conditioning asset, several distinct non-flat patterns in the conditional Kendall’s tau
are observed. In the case of Cookstoves Africa and Soybean Futures given REDD+, Kendall’s tau is
positive when REDD+ values are low but shifts to negative as REDD+ performance improves. For
Cookstoves Africa and the Volatility Index conditioned on the Nature-Based Offset, Kendall’s tau
becomes increasingly positive as the Nature-Based Offset performs well. The relationship between
Cookstoves Africa and Water Filtration Africa given the Clean Energy ETF is generally strongly pos-
itive in terms of Kendall’s tau but exhibits a pronounced drop at intermediate quantiles of the Clean
Energy ETF. Also, for the Volatility Index andNASDAQ conditioned onCookstoves Africa, Kendall’s
tau is more negative for intermediate values of Cookstoves Africa and weakens when Cookstoves
Africa performs poorly. Across all cases, the confidence intervals are relatively wide, which reflects
a substantial sampling variability. This is likely due to the limited number of observations within
each conditioning quantile, which reduces the precision of the estimated Kendall’s tau and results
in greater uncertainty around the point estimates.
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Figure 7.5: Conditional Kendall’s tau estimates for various asset pairs of Cookstoves Africa and Water Filtration Africa,
with 95% confidence intervals shown in blue
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Figure 7.6: Conditional Kendall’s tau for asset pairs involving EU ETS and Natural Gas Futures, as well as pairs
conditioned on US IFM credits, with 95% confidence intervals shown in blue
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Figure 7.7: Conditional Kendall’s tau for asset pairs reflecting both logically possible correlations and those already
present in the unconditional setting, with 95% confidence intervals shown in blue
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In Figure 7.6, when conditioning onUS IFM, differences appear particularly in the tails. For instance,
the relationship between Nature-Based Offset and REDD+ becomes weaker when US IFM performs
well. In contrast, Uruguay ARR and Latam ARR show a strong positive association when US IFM
performs well. This suggests that good US IFM outcomes coincide with tighter co-movement be-
tween these two series. Additionally, NASDAQ and the Volatility Index have a stronger negative
association when US IFM performs poorly. In the case of Natural Gas and EU ETS, the overall asso-
ciation is close to zero; however, when conditioning on Cookstoves Africa or Water Filtration Africa,
there is a slight upward spike in the association at mid-range values of the conditioning variable.

In Figure 7.7, we see that despite Soybean Futures, Uruguay ARR, and Latam ARR all belonging
to the nature-based category, there is no meaningful correlation observed across the range of the
conditioning variable. The relationship between the Volatility Index and Water Filtration Africa
shows a tendency toward positive correlation when Water Filtration Africa performs either poorly
or well, with little to no correlation in the mid-range. For Nature-Based Offset and US IFM credits
conditioned on Uruguay ARR, as well as for Nature-Based Offset and US IFM credits conditioned
on EU ETS, stronger associations appear in the distribution tails; however, in the EU ETS case, it
remains questionable whether this effect is genuinely driven by EU ETS, especially given the absence
of correlation between EU ETS and other selected assets in prior analyses. Lastly, Uruguay ARR and
Latam ARR credits become less positively correlated when NASDAQ performs well.

In Figures 7.5–7.7, the estimated conditional Kendall’s tau shows some variation across values of
the conditioning variable. However, the confidence intervals are wide throughout, which means
we cannot tell with high certainty whether the observed fluctuations reflect actual fluctuations of
the true conditional Kendall’s. In fact, the true dependence could plausibly be constant over the
conditioning range. As a result, we cannot draw firm conclusions about the precise effect of the
conditioning variable. See for more information on the simplifying assumption Appendix C.

7.3.2 Conditioning on two events

Now we turn into the conditioning on two events, where we have even more possible combinations.
Indeed now we have With 𝑛 = 13 assets, there are

(13
2
) × (11

2
)
= 4290 combinations we can consider.

We will show two examples for a nature-based pair of assets and a more tech-based pair of assets to
show how conditioning on two events looks like. These will be presented in Figure 7.8.

As in the case of conditioning on one event, the conditional Kendall’s tau estimates were obtained
using the CKT.kernel function from the CondCopulas package in R. The estimation relies on a non-
parametric kernel smoothing approach, where we used the Gaussian kernel and a fixed bandwidth
of ℎ = 0.3 based on visual inspection.

In Figure 7.8, the upper plot shows the conditional Kendall’s tau between Latam ARR and Uruguay
ARR, which are known to exhibit positive unconditional dependence (see Figure 7.1). The condi-
tional correlation is particularly strong when both Soybean Futures and US IFM credits perform
well. When these conditioning variables are in the mid-range, the correlation remains positive but
is weaker compared to the high-performance scenarios. There is also a slight increase in correlation
when both US IFM and Soybean Futures perform poorly, indicating that dependence tends to be
more pronounced in the tails of the conditioning distribution.
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Figure 7.8: Dependence plots conditioned on two events. The top plot shows the CKT between LatamARR and Uruguay
ARR, conditioned on Soybean Futures and US IFM. The bottom plot takes a more technology-oriented selection, showing
the CKT between the Clean Energy ETF and NASDAQ, conditioned on given values for Cookstoves andWater Filtration
Africa.
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The plot at the bottom presents the conditional Kendall’s tau between the Clean Energy ETF and
NASDAQ given Water Filtration Africa and Cookstoves Africa. In the unconditional setting, the
Clean Energy ETF and NASDAQ are already positively correlated. The conditional analysis reveals
that this positive correlation reaches its highest values when both conditioning assets perform well.
Conversely, the correlation is lowest when Cookstoves Africa performs poorly, particularly when
both Water Filtration Africa and Cookstoves Africa are at their lowest performance levels. For good-
performing Water Filtration Africa combined with poor or medium-performing Cookstoves Africa,
the correlation remains relatively low.

In the case of conditioning on two variables, confidence intervals are not provided by the function
CKT.kernel from the CondCopulas package, but they are expected to be wide as well due to the
increased dimensionality and reduced actual sample size. As a result, it remains difficult to deter-
mine whether the observed variation in conditional dependence reflects a true effect or whether the
underlying structure is effectively constant.
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Conclusion

The goal of this thesis was to explore dependence modeling in illiquid financial markets, with a
particular focus on voluntary carbon credit markets. To this end, we introduced a novel zero-inflated
GARCH-X model extending the recent work of [25] on zero-inflated GARCH processes. Our main
contribution lies in adapting this framework to a multivariate setting, tailoring the zero-inflated
GARCH to better capture the characteristics of illiquid financial assets such as carbon credits, and in
establishing the consistency and asymptotic normality of its estimators.

In this thesis, we considered seven voluntary carbon credits, covering nature-based and technology-
based projects, as well as avoidance and removal types. To investigate potential linkages with more
liquid markets, we selected six additional assets, including commodities, an ETF, and major equity
indices such as theNASDAQ. Togetherwith Rabobank, we formulated hypotheses onwhy voluntary
carbon credits might be correlated with the selected liquid assets. These hypotheses are discussed
in greater detail in Chapter 4. An example of such a hypothesis is the relationship between nature-
based credits and agricultural commodities, tech-based credits and clean energy ETFs, and carbon
credits and the EU ETS, reflecting potential links between the voluntary and compliance markets.
Another example is the relationship between natural gas and the EU ETS, which has been examined
in previous studies.

Illiquid financial assets are characterized by a high frequency of zero returns, often referred to in the
literature as zero-inflated data. Since voluntary carbon credits exhibit this property, they can be re-
garded as illiquid assets. To explicitly capture this feature, we introduced binary trading indicators
𝐼 𝑗,𝑡 to model the asset returns. To further model the characteristics of illiquid markets, we incorpo-
rated the lagged trading indicator 𝐼 𝑗 ,𝑡−1 as an exogenous covariate to account for the impact of trading
activity on volatility. In addition, we used a time-step specification in which the time index is ad-
vanced onlywhen trades occur, thereby focusing onmoments of relevant information. These compo-
nents together define the zero-inflated GARCH-X model presented in Chapter 4. Model parameters
were estimated using quasi-maximum likelihood, a standard approach for GARCH-X processes. We
proved that the quasi-maximum likelihood estimator is both consistent and asymptotically normal.
To our knowledge, these theoretical properties, established in a multivariate zero-inflated setting
such as ours, are not present in the existing literature.

The multivariate specification incorporates two different types of dependence; the multivariate ex-
tension combines trading indicators to capture cross-dependence in trading activity with copula-

120
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based structures that model the joint dependence among asset returns. Importantly, given the lim-
ited sample size, our analysis focused on bivariate copulas rather than higher-dimensional depen-
dence structures. Larger-scale dependencemodeling could be pursuedwhenmore transaction-level
carbon credit data becomes available. First, cross-dependence in trading activity is modeled through
binary trading indicators using Markov networks. Second, cross-dependence across assets is mod-
eled using a copula-GARCH approach applied to the residuals. Since zero-inflated returns do not
produce residuals 𝜂 𝑗 ,𝑡 , these cases were treated as undefined values. To apply copula techniques in
the presence of zero-inflated data, we did two things. First, for each asset pair, we removed all ob-
servations where either residual was undefined. Second, we introduced a joint probability integral
transform approach. In this construction, the univariate marginals are defined conditional on the
simultaneous trading activity of each asset, rather than conditioning only on each asset’s own trad-
ing activity. In Chapter 7, we proved that this joint conditioning PIT approach yields a consistent
estimator for the copula of the asset pair under study. Furthermore, we estimated Kendall’s tau both
unconditionally and conditionally using kernel-based methods.

The empirical findings highlight several important results. Most notably, we found no significant
dependence between voluntary carbon credits and the selected liquid financial assets. Although
these assets were selected based on plausible economic hypotheses, the data did not support them.
These results suggest that illiquid and mature markets may operate largely independently, although
identifying the exact cause is challenging. The absence of correlation between global natural gas
prices and the EU ETS may be due to our use of global rather than European-specific prices, given
that the EU ETS operates within the Europeanmarket. In contrast, we observed positive correlations
within the carbon creditmarket itself, particularly among nature-based credits. This clustering likely
reflects the absence of standardized pricing mechanisms in voluntary markets, where project devel-
opers, brokers, and other participants tend to reference each other’s prices. Such peer-driven pricing
behavior naturally gives rise to endogenous correlation structures. Importantly, the absence of de-
pendence with the selected conventional financial assets studied in this thesis does not imply that
no conventional asset is linked to carbon credits. Our framework can incorporate any chosen asset,
allowing future research, for example by Rabobank, to investigate potential dependence between
other conventional financial assets and carbon credits.

The limitations of our study are primarily data-driven. The reliance on bivariate copulas was neces-
sitated by the relatively short time series and the low frequency of trades. More granular transaction-
level data would enable higher-dimensional dependence modeling and potentially more robust esti-
mation of time-varying structures. Althoughwe have used the best available data to our knowledge,
improvements in data quality and access to longer historical series are essential for drawing stronger
conclusions.

A further important observation concerns the event-driven nature of illiquid markets. As illustrated
by the recent Guardian article [34] that significantly affected the reputation of carbon credits, critical
media coverage can sharply influence both demand and pricing. Modeling temporal shifts in depen-
dence offers a promising direction for quantifying the impact of specific events. This can be done,
for example, by comparing correlation structures before and after major events. This is particularly
relevant in volatile, thinly traded markets where exogenous shocks may drive endogenous pricing
dynamics.
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So, this thesis extends the current literature on modeling illiquid financial assets by proposing a
novel multivariate zero-inflated GARCH-X framework with proven asymptotic properties, specifi-
cally designed for markets with sparse trading activity. Methodologically, the framework integrates
Markov network modeling of trading activity with copula-GARCH modeling of returns, and adapts
copula techniques to zero-inflated data through a consistent joint PIT approach. Empirically, it pro-
vides new evidence on the independence of voluntary carbon markets from conventional financial
assets and the internal correlation structure of these credits. Future research could extend this work
by incorporating non-stationary covariates, modeling higher-dimensional dependence, and quanti-
fying the effect of discrete events on market correlations. These extensions would further improve
our understanding of how illiquid markets form prices and respond to information shocks.
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A
List of assets

This chapter describes the different assets, both carbon credit and other commodities, in more detail.
The description of the carbon credits comes from Quantum Commodity Intelligence.

A.1 Voluntary carbon credits

1. VCS ARR Uruguay Vintage 2021
This voluntary carbon credit corresponds to afforestation, reforestation, and restoration (ARR)
activities conducted in Uruguay under the Verified Carbon Standard (VCS). The credit is at-
tributed to the vintage year 2021 and typically originates from eucalyptus monoculture planta-
tions on degraded lands, as exemplified by the Guanaré project (VCS959). While this type of
ARR project is used as a benchmark, similar projects across Latin America may be considered
with appropriate normalization. The valuation reflects a standard deal size of 20,000 tonnes,
with adjustments made for smaller or larger volumes.

2. ACR US IFM
This credit represents a 2021 vintage voluntary carbon credit generated by an Improved For-
est Management (IFM) project in the United States and registered under the American Carbon
Registry (ACR). These projects aim to enhance carbon sequestration throughmore sustainable
forest management practices. The valuation is based on a standard transaction size of 20,000
tonnes, with normalization applied for different volumes. An indicative example of such a
project is ACR698.

3. VCS REDD+
This credit pertains to avoided deforestation projects under the REDD+ framework, carrying
additional Climate, Community, and Biodiversity (CCB) Gold certification. Registered under
the Verra emissions registry, this assessment aggregates data from ten benchmark projects—
including EnviraAmazonia, Katingan, Kariba, and SouthernCardamom—spanning LatinAmer-
ica, Africa, and Asia. Credits are of vintage 2021 or earlier, with recent inclusion of additional
projects such as Tambopata and Keo Seima from July 2023. This diversified composition en-
sures a representative valuation of high-quality REDD+ credits.
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132 A. List of assets

4. Clean Cookstoves Africa Vintage 2021
This voluntary carbon credit is generated from clean cookstove projects in Africa, accredited
under the Gold Standard and reflecting a vintage year of 2021. Projects in Kenya, Uganda,
Somalia, Nigeria, and Ghana are typically assessed at par, with normalization for other coun-
tries. All stove types are considered—ranging from charcoal and biomass to LPG and water
purifiers—though the lowest-cost technology generally sets the market value. These projects
commonly contribute to at least four United Nations Sustainable Development Goals (SDGs).
An indicative project is GS5642.

5. Nature-Based Offset Exchange Index
This credit represents a broader market index of voluntary carbon credits from the Agricul-
ture, Forestry and Other Land Use (AFOLU) sector, registered with Verra and including CCB
accreditation. Eligible projects span a range of methodologies including REDD, Improved For-
est Management, Wetland Restoration, and Avoided Grassland Conversion. The lowest-cost
qualifying project sets the daily reference price, ensuring a market-reflective valuation. An in-
dicative project included in this index is VCS934.

6. GS Water Filtration Africa Vintage 2021
This carbon credit reflects emissions reductions from water filtration projects across select
African countries, accredited under the Gold Standard and of vintage 2021. Countries such
as Kenya, Malawi, Togo, and Burkina Faso form the core reference group, with normaliza-
tion applied as necessary for other regions. The assessed projects typically address at least
four SDGs and contribute to both climate mitigation and public health. An example of such a
project is GS11207.

7. VCS CCB / GS ARR Latin America 2021
This assessment covers ARR projects located in Central and South America that are registered
either under the Verified Carbon Standard (with CCB certification) or the Gold Standard. The
credits are of vintage 2021 and reflect activities aimed at ecosystem restoration and afforesta-
tion. A standard transaction size of 20,000 tonnes is assumed, with adjustments made for scale.
An indicative project ID associated with this category is VCS2512.

A.2 List of commodity assets

Below, one can find amore detailed description of the selected conventional assets that we have used
in this thesis:

1. EU Emissions Trading System (EU ETS)
The EU ETS is the world’s most established cap-and-trade carbon market. It regulates green-
house gas emissions from power generators, industrial facilities, and aviation within the Eu-
ropean Union. Each EU Allowance permits the emission of one metric ton of CO2 equivalent.
The benchmark pricing instrument is the EUADecember futures contract, traded on platforms
such as ICE Endex and EEX. This contract is widely regarded as the standard reference for
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compliance carbon pricing in Europe and is sensitive to policy developments, energy prices,
and industrial activity levels.

2. iShares Global Clean Energy ETF (ICLN)
ICLN is an exchange-traded fund that tracks the performance of the S&P Global Clean Energy
Index. It includes approximately 100 companies involved in renewable energy generation and
related technologies such as solar, wind, hydroelectric, and fuel cells. With holdings spanning
North America, Europe, and Asia, the ETF offers diversified exposure to the global energy
transition. Key constituents include companies like Enphase Energy, Vestas Wind Systems,
and Ørsted. Traded in USD on the NASDAQ, ICLN is a widely used benchmark for clean en-
ergy equity investment.

3. NASDAQ Composite Index (IXIC)
The NASDAQ Composite is a broad-based equity index comprising over 3,000 common stocks
listed on the NASDAQ Stock Exchange. It is heavily weighted toward the technology, biotech,
and consumer growth sectors. Key constituents includeApple,Microsoft, Amazon, andNvidia.
The index is market-cap weighted and is considered the standard measure of performance for
U.S. growth and technology equities. It is frequently used as a benchmark for mutual funds,
ETFs, and derivatives linked to U.S. tech exposure.

4. Natural Gas Futures, Jun-2025 (NG=F)
This contract represents the NYMEX Henry Hub Natural Gas Futures for June 2025, the most
liquid and standardized pricing instrument for U.S. natural gas. Each contract corresponds to
10,000 million British thermal units (mmBtu), with delivery at the Henry Hub in Louisiana.
The June contract is typically used as a reference for early summer demand, especially for
cooling-related power generation. It is the primary benchmark for pricing physical and finan-
cial natural gas products in North America.

5. Soybean Futures, Jul-2025 (ZS=F)
This is the benchmark CBOT futures contract for U.S. soybeans, representing a standardized
trade of 5,000 bushels of No. 2 Yellow Soybeans, with July 2025 as the deliverymonth. The July
contract is classified as a “new crop” month and is the primary pricing reference for expected
harvest conditions in the U.S. Midwest. It is the standard price series used globally for soybean
risk management and speculative positioning, with prices quoted in USD.

6. CBOE Volatility Index (VIX)
The CBOE Volatility Index is a real-time index that measures market expectations for volatility
over the next 30 calendar days, derived from S&P 500 Index option prices. Often called the
“fear gauge,” it increases during periods of market stress and declines during stable or bullish
conditions. Though not directly tradable, the VIX serves as the benchmark measure of U.S.
equity market volatility and underpins a variety of derivatives including futures and ETFs. It
is closely followed by investors as an indicator of market sentiment.



B
Proofs

The following proofs are based on the supplemental material of Han and Kristensen’s paper on
asymptotic theory for theQMLE inGARCH-XModelswith stationary and non-stationary covariates.
See for more information [37].

B.1 Proof of Lemma 5.1

Lemma B.1.0. Under Assumption 6.1, there exists a stationary and ergodic solution to Equation 6.1 at 𝜽★
𝑗

satisfying E[𝜎2𝑠
𝑗,𝑡] < +∞ and E[𝑟2𝑠

𝑗,𝑡] < +∞ for some 0 < 𝑠 < 1.

Proof. Let us define 𝑎 𝑗,𝑡 := 𝛼★
𝑗,1𝜂

2
𝑗,𝑡−1 + 𝛼★

𝑗,2 ≥ 0, and 𝑏 𝑗,𝑡 := 𝛼★
𝑗 ,0 + 𝛼★

𝑗 ,3𝐼
2
𝑗 ,𝑡 ≥ 0. We can rewrite the true

data generating process as,
𝜎2
𝑗,𝑡 = 𝑎 𝑗,𝑡𝜎2

𝑗 ,𝑡−1 + 𝑏 𝑗 ,𝑡 .
This is a stochastic recursion where (𝑎 𝑗,𝑡 , 𝑏 𝑗,𝑡)𝑡≥1 is a stationary and ergodic sequence. The first
part of the result now follows from [10]. This is because Assumption 6.1(ii) implies that the Lya-
punov coefficient, i.e. E[log(𝑎 𝑗 ,𝑡)], associated with the above stochastic recursion is negative, and that
E

[
log+(𝑏 𝑗,𝑡)

]
< ∞. Next, the stationary solution can be written as 𝜎2

𝑡 = 𝑏 𝑗 ,𝑡 +
∑∞
𝑖=0 𝑎 𝑗,𝑡 · · · 𝑎 𝑗 ,𝑡−𝑖𝑏 𝑗,𝑡−𝑖−1.

Following [6], the negative Lyapunov coefficient implies that E[(𝑎0 · · · 𝑎𝑚)2𝑠] < 1 for some 𝑠 > 0 and
𝑚 ≥ 1. Hence, E[(𝑎 𝑗 ,𝑡 · · · 𝑎 𝑗 ,𝑡−𝑖)2𝑠] ≤ 𝑐𝜚 𝑖 for some 𝑐 < 1 and 𝜚 < 1. Clearly, it holds that E

[
𝑏2𝑠
𝑗,𝑡

]
< ∞.

Then,

E
[
𝜎2𝑠
𝑗,𝑡

]
≤ E[𝑏𝑠𝑗,𝑡] +

∞∑
𝑖=0

E
[
(𝑎 𝑗 ,𝑡 · · · 𝑎 𝑗,𝑡−𝑖)𝑠𝑏𝑠𝑗,𝑡

]
(B.1)

≤ E[𝑏𝑠𝑗,𝑡] +
√
E

[
𝑏2𝑠
𝑗,𝑡

] ∞∑
𝑖=0

√
E

[(𝑎 𝑗 ,𝑡 · · · 𝑎 𝑗,𝑡−𝑖)2𝑠 ] (B.2)

= E[𝑏𝑠𝑗,𝑡] + 𝑐
√
E

[
𝑏2𝑠
𝑗,𝑡

]
(1 − 𝜚)−1 (B.3)

< ∞. (B.4)

Note that E[𝑟2𝑠
𝑗,𝑡] < ∞ follows from 𝑟 𝑗 ,𝑡 = 𝐼 𝑗 ,𝑡𝜎𝑗 ,𝑡(𝜽 𝑗)𝜂 𝑗 ,𝑡 together with Assumption 6.1(ii).
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B.2 Proof of Lemma 5.2

Lemma B.2.0. Under Assumption 6.1, with 𝑠 > 0 given in Lemma 6.1, there exists some 𝐾𝑠 < +∞ such that

E
[
sup𝜽 𝑗∈𝚯𝑗

|𝑠 𝑗 ,𝑡(𝜽 𝑗) − 𝑠∗𝑗 ,𝑡(𝜽 𝑗)| 𝑠
]
≤ 𝐾𝑠𝛼𝑠𝑡𝑗,2 , (B.5)

where

𝑠∗𝑗,𝑡(𝜽 𝑗) =
𝜎̃2
𝑗,𝑡(𝜽 𝑗)

𝜎̃2
𝑗,𝑡(𝜽∗

𝑗)
, 𝜎̃2

𝑗,𝑡(𝜽 𝑗) :=
+∞∑
𝑖=1

𝛼𝑖−1
𝑗,2 (𝛼 𝑗 ,0 + 𝛼 𝑗 ,1𝑟2

𝑗,𝑡 + 𝛼 𝑗,3𝐼2𝑗 ,𝑡−1) (B.6)

The process 𝜎̃2
𝑗 ,𝑡(𝜽 𝑗) is stationary and ergodic with E[sup𝜽 𝑗∈𝚯𝑗

𝜎̃2𝑠
𝑗,𝑡(𝜽 𝑗)] < +∞.

Proof. We can rewrite 𝜎2
𝑗,𝑡 = 𝛼 𝑗,0 + 𝛼 𝑗 ,1 𝜎2

𝑗,𝑡∗ + 𝛼 𝑗 ,2 𝑟2
𝑗,𝑡∗ + 𝛼 𝑗,3 𝐼 𝑗,𝑡−1 as

𝜎2
𝑗,𝑡(𝜽 𝑗) := 𝛼 𝑗 ,2𝜎

2
𝑗,𝑡−1(𝜽 𝑗) + 𝑤 𝑗 ,𝑡(𝜽 𝑗), (B.7)

which is an AR(1) model with stationary errors

𝑤𝑡(𝜽 𝑗) = 𝛼 𝑗 ,0 + 𝛼 𝑗,1𝑟2
𝑗,𝑡−1 + 𝛼 𝑗 ,3𝐼2𝑗,𝑡−1. (B.8)

The first part of the result now follows by [6]. From Lemma 6.1 together with Assumption 6.1(ii),
we have

E
[

sup
𝜽 𝑗∈𝚯𝑗

𝑤𝑠
𝑗,𝑡(𝜽 𝑗)

]
≤ 𝛼𝑠𝑗,0 + 𝛼𝑠𝑗,1E[𝑟2𝑠

𝑗,𝑡−1] + 𝛼𝑠𝑗,3E[𝐼2𝑠𝑗,𝑡−1] < ∞. (B.9)

Thus,

E
[

sup
𝜽 𝑗∈𝚯𝑗

𝜎2𝑠
0,𝑡(𝜽 𝑗)

]
≤

∞∑
𝑖=0

(𝛼 𝑗 ,2)𝑖𝑠E
[

sup
𝜽 𝑗∈𝚯𝑗

𝑤𝑠
𝑗,𝑡(𝜽 𝑗)

]
< ∞. (B.10)

Therefore, we conclude that there exists a stationary and ergodic solution given by 𝜎̃2
𝑗,𝑡(𝜽 𝑗), where

𝜎̃2
𝑗,𝑡(𝜽 𝑗) :=

∑+∞
𝑖=0 𝛼

𝑖
𝑗 ,2𝑤𝑡−𝑖(𝜽 𝑗). Next, observe that 𝜎2

𝑡 (𝜽 𝑗) − 𝜎̃2
𝑗 ,𝑡(𝜽 𝑗) = (𝛼 𝑗,2)

{
𝜎2
𝑗,𝑡−1 − 𝜎̃2

𝑗 ,𝑡−1(𝜽 𝑗)
}

=

(𝛼 𝑗,2)𝑡
{
𝜎2
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𝑗,0(𝜽 𝑗)
}
, where 𝜎̄2

𝑗,0 > 0 is the fixed, initial value, used to compute the likelihood func-
tion. The result now follows with

𝐾𝑠 = E

[
sup
𝜽 𝑗∈𝚯𝑗

| 𝜎̄2
0 − 𝜎̃2

𝑗 ,0(𝜽 𝑗)| 𝑠
]
, (B.11)

which is finite, according to Lemma 6.1, since

E
[
sup
𝜽 𝑗∈Θ

𝜎̃2𝑠
𝑗,0(𝜽 𝑗)

]
< ∞. (B.12)
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B.3 Proof of Lemma 5.3

Lemma B.3.0. Under Assumptions 6.1 - 6.2, the first and second derivatives of the volatility-ratio process
𝑠𝑡(𝜽), given by 𝜕𝑠∗𝑡 (𝜽)

𝜕𝜽 and 𝜕2𝑠∗𝑡 (𝜽)
𝜕𝜽𝜕𝜽′ , are stationary and ergodic for all 𝜽 𝑗 ∈ 𝚯𝑗 . Moreover, there exist stationary

and ergodic sequences 𝐵𝑘,𝑡 ∈ ℱ𝑡−1, for 𝑘 = 0, 1, 2, which are independent of 𝜽 𝑗 , such that the following bounds
hold for all 𝜽 𝑗 in a neighborhood of 𝜽★

𝑗 :

1
𝑠∗𝑡 (𝜽 𝑗)

≤ 𝐵0,𝑡 ,





𝜕𝑠∗𝑡 (𝜽 𝑗)𝜕𝜽 𝑗





 ≤ 𝐵1,𝑡 · 𝑠∗𝑡 (𝜽 𝑗),





𝜕2𝑠∗𝑡 (𝜽 𝑗)
𝜕𝜽 𝑗𝜕𝜽

′
𝑗






 ≤ 𝐵2,𝑡 · 𝑠∗𝑡 (𝜽 𝑗). (B.13)

where it holds that:
E

[
𝐵1,𝑡 + 𝐵2

2,𝑡
]
< ∞, and E

[
𝐵0,𝑡 ·

(
𝐵1,𝑡 + 𝐵2

2,𝑡

)]
< ∞. (B.14)

Proof. Observe that
𝜕𝜎2

𝑗 ,𝑡(𝜽 𝑗)
𝜕𝛼 𝑗 ,0

= 1 + 𝛼 𝑗,2
𝜕𝜎2

𝑗 ,𝑡−1(𝜽 𝑗)
𝜕𝛼 𝑗 ,0

= . . . =
𝑡∑
𝑖=0

𝛼𝑖𝑗 ,2 , (B.15)

𝜕𝜎2
𝑗 ,𝑡(𝜽 𝑗)
𝜕𝛼 𝑗 ,1

= 𝑟2
𝑡−1 + 𝛼 𝑗,2

𝜕𝜎2
𝑡−1(𝜽 𝑗)
𝜕𝛼 𝑗 ,1

= . . . =
𝑡∑
𝑖=0

𝛼𝑖𝑗,2𝑟
2
𝑡−1−𝑖 , (B.16)

𝜕𝜎2
𝑗 ,𝑡(𝜽 𝑗)
𝜕𝛼 𝑗 ,3

= 𝐼2𝑗,𝑡−1 + 𝛼 𝑗,2
𝜕𝜎2

𝑗 ,𝑡−1(𝜽 𝑗)
𝜕𝛼 𝑗 ,3

= . . . =
𝑡∑
𝑖=0

𝛼𝑖𝑗 ,2𝐼
2
𝑗,𝑡−1−𝑖 , (B.17)

𝜕𝜎2
𝑡 (𝜽 𝑗)

𝜕𝛼 𝑗 ,2
= 𝜎2

𝑗,𝑡−1(𝜽 𝑗) + 𝛼 𝑗,2
𝜕𝜎2

𝑗 ,𝑡−1(𝜽 𝑗)
𝜕𝛼 𝑗 ,2

= . . . =
𝑡∑
𝑖=0

𝛼𝑖𝑗 ,2𝜎
2
𝑗,𝑡−1−𝑖(𝜽 𝑗). (B.18)

By the same arguments as in the proof of Lemma 6.2, these equations have stationary solutions.
The proof for the second-order partial derivatives with respect to 𝛼 𝑗 ,0, 𝛼 𝑗 ,1, and 𝛼 𝑗 ,2 proceeds along
the lines of [28, p. 619], since these do not involve 𝐼 𝑗,𝑡 . Regarding the second-order derivatives
involving 𝛼★

𝑗 ,3, using the above expressions of the first-order derivatives:

𝜕2𝜎2
𝑗 ,𝑡(𝜽 𝑗)

𝜕𝛼 𝑗,0𝜕𝛼 𝑗 ,3
= 𝛼 𝑗 ,2

𝜕2𝜎2
𝑗,𝑡−1(𝜽 𝑗)

𝜕𝛼 𝑗,0𝜕𝛼 𝑗,3
= . . . = 0, (B.19)

𝜕2𝜎2
𝑗 ,𝑡(𝜽 𝑗)

𝜕𝛼 𝑗,1𝜕𝛼 𝑗 ,3
= 𝛼 𝑗 ,2

𝜕2𝜎2
𝑗,𝑡−1(𝜽 𝑗)

𝜕𝛼 𝑗,1𝜕𝛼 𝑗,3
= . . . = 0, (B.20)

𝜕2𝜎2
𝑗,𝑡(𝜽 𝑗)

𝜕(𝛼 𝑗,3)2 = 𝛼 𝑗,2
𝜕2𝜎2

𝑗 ,𝑡−1(𝜽 𝑗)
𝜕𝛼 𝑗 ,2𝜕𝛼 𝑗 ,3

= . . . = 0, (B.21)

𝜕2𝜎2
𝑗,𝑡(𝜽 𝑗)

𝜕𝛼 𝑗,2𝜕𝛼 𝑗,3
=

𝜕𝜎2
𝑗 ,𝑡−1(𝜽 𝑗)
𝜕𝛼 𝑗 ,3

+ 𝛼 𝑗 ,2
𝜕2𝜎2

𝑗,𝑡−1(𝜽 𝑗)
𝜕𝛼 𝑗,2𝜕𝛼 𝑗,3

= . . . =
𝑡∑
𝑖=0

𝛼𝑖𝑗,2

𝜕𝜎̃2
𝑗 ,𝑡−1−𝑖(𝜽 𝑗)
𝜕𝛼 𝑗,3

. (B.22)

Again, there clearly exist stationary solutions to these equations. Moreover, by the same arguments
as in [28, p. 622], there exist constants 𝑐 < ∞ and 0 < 𝜚 < 1 such that for all 𝜽 𝑗 in a neighborhood of
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𝜽★
𝑗 and all 0 < 𝑟 ≤ 𝑠,

𝜎̃2
𝑗,𝑡(𝜽★

𝑗 )
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

≤ 𝑐
∞∑
𝑖=0

𝜚 𝑟𝑖𝑤𝑟
𝑗,𝑡 , (B.23)

where 𝑤 𝑗,𝑡 := 𝛼 𝑗 ,0 + 𝛼 𝑗,1𝑟2
𝑡−1 + 𝛼 𝑗,3𝐼2𝑗 ,𝑡 is stationary and ergodic with E[𝑤̄𝑟

𝑗,𝑡] < ∞. This in turn implies
that

∑∞
𝑖=0 𝜚

𝑖𝑠𝑤𝑟
𝑗,𝑡 is stationary and ergodic with first moment. Given the representations of the sta-

tionary solutions 𝜎̃2
𝑗 ,𝑡(𝜽★

𝑗 ) and 𝜕(𝜎𝑗 ,𝑡)2(𝜽★
𝑗 )/(𝜕𝜽 𝑗), it is easily shown that for some constant 𝑐 < ∞ the

following inequalities hold for all 𝜽 𝑗 in a neighborhood of 𝜽★
𝑗 [28, p. 619].

1
𝜎̃2
𝑗 ,𝑡(𝜽★

𝑗 )
𝜕𝜎̃2

𝑗 ,𝑡(𝜽★
𝑗 )

𝜕𝛼 𝑗,0
≤ 1

𝛼★
𝑗,0
,

1
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

𝜕𝜎̃2
𝑗,𝑡(𝜽 𝑗)
𝜕𝛼 𝑗,1

≤ 1
𝛼★
𝑗,1
,

1
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

𝜕𝜎̃2
𝑗,𝑡(𝜽 𝑗)
𝜕𝛼 𝑗,3

≤ 1
𝛼★
𝑗 ,3
, (B.24)

1
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

𝜕𝜎̃2
𝑗,𝑡(𝜽 𝑗)
𝜕𝛼 𝑗,2

≤ 𝑐
∞∑
𝑖=0

(𝛼 𝑗,2)𝑟𝑖𝑤𝑟
𝑗,𝑡 , (B.25)

Finally, by the same arguments as in [28, p. 620], it also holds that

1
𝜎̃2
𝑗 ,𝑡(𝜽 𝑗)

𝜕2𝜎̃2
𝑗,𝑡(𝜽 𝑗)

𝜕𝛼 𝑗 ,2𝜕𝛼 𝑗,3
≤ 𝑐

∞∑
𝑖=0

(𝛼 𝑗,2)𝑟𝑖𝑤𝑟
𝑗,𝑡 . (B.26)

By inspection of the definitions of 𝐵0,𝑡 , 𝐵1,𝑡 , and 𝐵2,𝑡 , one finds that the stated moment exists by
choosing 𝑟 > 0 sufficiently small.



C
Simplifying assumption

We investigate the simplifying assumption in our setting, using seven voluntary carbon credits and
six conventional assets as described in Chapter 4. The simplifying assumption states that a condi-
tional copula,

𝐶12|𝑍(𝑢1 , 𝑢2 | 𝑍 = 𝑧),
does not depend on the value of the conditioning variable 𝑧, i.e. the dependence between (𝑋1 , 𝑋2)
given 𝑍 is constant across all realizations of 𝑍. To formally test this property, we follow the nonpara-
metric framework ofDerumigny and Fermanian [17]. Specifically, we apply CondCopulas::simpA.NP
with the Kolmogorov–Smirnov–type statistic T1_KS_Cs3 (Equation (4) in [17]), where the condi-
tional copula is estimated nonparametrically by kernel smoothing. In our implementation we spec-
ify a Gaussian kernel with bandwidth ℎ = 0.5, and obtain 𝑝-values via a nonparametric bootstrap
with 𝐵 = 100 replications (typeBoot = "boot.NP"). For each asset triple (𝑋1 , 𝑋2 | 𝑍), the function
outputs the test statistic and its bootstrap 𝑝-value.

The null hypothesis is the simplifying assumption, i.e. the conditional copula does not depend on
the conditioning variable. Here, 𝑝-values smaller than 0.05 imply rejection, meaning that the depen-
dence between 𝑋1 and 𝑋2 changes with 𝑍. Larger 𝑝-values imply no evidence against simplification.

Table C.1 reports the outcomes of the simplifying assumption test, ordered by ascending 𝑝-values.
We focus on the lowest 𝑝-values, as these may provide the strongest evidence against the simpli-
fying assumption. Beyond the entries shown, all remaining asset triples yield 𝑝-values above 0.51,
suggesting no indication of conditional variation in their copulas. Overall, the results imply that for
the vast majority of asset combinations, we do not reject the simplifying assumption, meaning that
the cross-asset dependence appears stable with respect to the conditioning variable. Only a small
number of cases show weaker support, but even these remain far from conventional significance
thresholds.
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Table C.1: Nonparametric test of the simplifying assumption for selected triples (𝑋1 , 𝑋2 | 𝑍). Reported are the KS test
statistic and bootstrap 𝑝-value.

𝑋1 𝑋2 𝑍 Stat. 𝑝-value

VIX Renewable Energy Contract NASDAQ 0.0225 0.00
NASDAQ EU ETS Renewable Energy Contract 0.0165 0.08
NASDAQ VCS Uruguay ARR Renewable Energy Contract 0.0147 0.08
Nature Based Offset VCS REDD+ ACR US IFM 0.0509 0.10
NASDAQ Nature Based Offset VIX 0.0233 0.11
Nature Based Offset VCS REDD+ Renewable Energy Contract 0.0252 0.12
VIX Natural Gas EU ETS 0.0125 0.13
VIX Nature Based Offset Natural Gas 0.0236 0.13
Renewable Energy Contract VCS Latam ARR Natural Gas 0.0147 0.18
EU ETS VCS REDD+ Renewable Energy Contract 0.0201 0.18
Renewable Energy Contract NASDAQ EU ETS 0.0149 0.20
Renewable Energy Contract Nature Based Offset Renewable Energy Contract 0.0240 0.22
NASDAQ Renewable Energy Contract VCS Uruguay ARR 0.0469 0.27
Natural Gas ACR US IFM VCS REDD+ 0.0254 0.29
VIX Natural Gas Renewable Energy Contract 0.0122 0.29
VCS REDD+ Natural Gas Renewable Energy Contract 0.0243 0.30
ACR US IFM VCS Latam ARR VCS REDD+ 0.0596 0.31
Renewable Energy Contract Nature Based Offset VIX 0.0328 0.32
NASDAQ ACR US IFM Renewable Energy Contract 0.0103 0.34
ACR US IFM Renewable Energy Contract VCS Uruguay ARR 0.0104 0.34
Renewable Energy Contract Natural Gas VIX 0.0137 0.36
NASDAQ VIX VIX 0.0155 0.36
VIX Renewable Energy Contract Renewable Energy Contract 0.0146 0.36
Natural Gas Renewable Energy Contract Renewable Energy Contract 0.0221 0.36
ACR US IFM VCS Latam ARR Nature Based Offset 0.0590 0.36
Renewable Energy Contract VCS REDD+ VCS REDD+ 0.0121 0.37
NASDAQ Renewable Energy Contract Natural Gas 0.0102 0.45
NASDAQ EU ETS Natural Gas 0.0101 0.45
VIX NASDAQ VCS REDD+ 0.0159 0.45
Renewable Energy Contract NASDAQ VCS Uruguay ARR 0.0133 0.46
Renewable Energy Contract EU ETS Natural Gas 0.0102 0.46
EU ETS VCS Uruguay ARR VCS Latam ARR 0.0246 0.47
Renewable Energy Contract Natural Gas NASDAQ 0.0131 0.48
EU ETS VCS Uruguay ARR Renewable Energy Contract 0.0144 0.48
Renewable Energy Contract VCS Uruguay ARR Natural Gas 0.0162 0.49
Natural Gas VCS REDD+ EU ETS 0.0116 0.50
Renewable Energy Contract VCS REDD+ Natural Gas 0.0125 0.51






	Voorkant-Thesis-Job-FINAL
	MSc_Thesis_Job___v1_0 (87)
	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Mathematical preliminaries
	2.1. Time series
	2.2. Estimation of GARCH models
	2.3. Copulas
	2.4. Dependence measures
	2.5. Conditional dependence estimation
	2.6. Asymptotic statistics
	2.7. Markov Networks
	2.8. Hypothesis testing for contingency tables

	3. Carbon Markets
	3.1. The structure of Carbon Markets
	3.2. Pricing and trading of Carbon Credits
	3.3. Market dependencies between carbon credits and commodities
	3.3.1. Existing research and knowledge gaps

	3.4. Risks and trends in the voluntary market

	4. Model formulation and financial asset data analysis
	4.1. Structure of the data
	4.2. Multivariate model setup and estimation
	4.2.1. Extension to general models

	4.3. Structure of asset dependence
	4.4. Descriptive analysis financial assets
	4.4.1. Descriptive analysis Carbon Credit assets
	4.4.2. Descriptive analysis conventional assets


	5. Illiquidity and multivariate analysis of trading activity
	5.1. Zero-returns analysis
	5.2. Kurtosis
	5.3. Temporal dependence for the trading activity
	5.4. Cross-asset dependence for the trading activity
	5.4.1. Cross-asset trading dependencies via Markov networks


	6. Univariate model set-up, estimation, and asymptotic properties
	6.1. Descriptive analysis: ACF and PACF
	6.2. Univariate model setup and estimation
	6.3. Consistency of the QMLE for zero-inflated GARCH-X models
	6.4. Asymptotic normality for zero-inflated GARCH-X models
	6.4.1. Sketch of the proof
	6.4.2. Theorem and proof

	6.5. Real data application

	7. Cross-asset dependence among residuals
	7.1. Adaptation of copula techniques to illiquid markets
	7.1.1. Cross-asset dependence in residuals
	7.1.2. Asymptotic results of the probability integral transform

	7.2. Real data application: unconditional dependence
	7.2.1. Kendall's tau
	7.2.2. Copulas

	7.3. Real data application: conditional dependence
	7.3.1. Conditioning on one event
	7.3.2. Conditioning on two events


	8. Conclusion
	References
	A. List of assets
	A.1. Voluntary carbon credits
	A.2. List of commodity assets

	B. Proofs
	B.1. Proof of Lemma 5.1
	B.2. Proof of Lemma 5.2
	B.3. Proof of Lemma 5.3

	C. Simplifying assumption

	Achterkant-Thesis-Job-FINAL



