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We have studied two-dimensional superconducting networks coupled by Josephson junctions in the regime
where the Josephson coupling energy is comparable in magnitude to the capacitive energy of charging an
island with a Cooper pair. We have mapped out the dependence of quantum phase transitions on the ratio of
these two energies~for different values of the applied magnetic field! and on the applied field for arrays both
with square and triangular cells. Our experimental results are compared with existing theoretical predictions.
@S0163-1829~96!07737-5#

I. INTRODUCTION

In superconducting two-dimensional~2D! systems such as
Josephson-junction arrays1 and thin films2,3 the localization
of charge carriers and the corresponding enhancement of
quantum-mechanical fluctuations of the phase of the super-
conductor order parameter induces superconductor-to-
insulator~S–I! phase transitions. At the superconducting side
of the transition, dynamics is determined by vortices whereas
at the insulating side dynamics is determined by 2e charge
excitations. Near the S–I transition, vortex and charge dy-
namics compete. Here, vortices and charges must be viewed
as bosonic quantum particles with long-range interactions.
Artificially fabricated networks of superconducting islands
weakly coupled by tunnel junctions are model systems for
the study of these interacting bosons. Damping can be made
small; control parameters can be measured and to a large
extent be varied independently. Quantum interference of
vortices4 has been observed in a hexagon-shaped Josephson
array and the existence of quantum Hall states in Josephson
arrays has been predicted.5

At low temperatures there are two competing energy
scales in Josephson arrays; the Josephson coupling energy
EJ , the energy scale for the superconducting coupling be-
tween islands that permits transport of Cooper pairs and the
charging energyEC , the energy scale that tends to localize
charge carriers. WhenEJ is much larger thanEC , the num-
ber of Cooper pairs on the islands is undetermined but the
phase on the islands is well defined. In this regime, the clas-
sical motion of vortices determines the array dynamics. At
low temperatures vortices are pinned in the intrinsic lattice
potential and the arrays are superconducting. In the opposite
limit EC@EJ , the phase is undetermined so that vortices are
subject to strong quantum fluctuations and the Coulomb
blockade pins Cooper pairs to the islands; at low tempera-
tures arrays are insulating. This superconducting-to-
insulating~S–I! transition6–8 induced by the charging energy
is shown in Fig. 1~a!, where three current-voltage (I -V)
curves are plotted of three different samples of increasing
EC/EJ ratio.

A second control parameter that can be used to induce
quantum phase transitions is the magnetic field,9 which in
arrays is denoted with the indexf , the applied flux per cell
divided by the flux quantumF05h/2e. In Fig. 1~b!, I -V

characteristics of one sample are shown for three different
values of the applied magnetic field. For this sample, a field
of 1 G was used to drive the array from the superconducting
state with a small critical current to the insulating state with
a small Coulomb gap. Field-tuned S–I transitions occur in
arrays with EC'EJ ,

10,11 where quantum fluctuations are
strong. This field-tuned transition can be explained in terms
of a Bose-condensation of vortices.12 With increasing mag-
netic field, the number of vortices increases and above a
certain critical field Bose condensation occurs. The vortex
superfluid leads to insulating behavior.

The duality between vortices and charges in Josephson
arrays near the S–I transition13–16 is clearly illustrated by
Fig. 1. At the superconducting side of the transition, vortices

FIG. 1. Current-voltage characteristics measured at low tem-
peratures as a function of~a! the ratioEC/EJ and ~b! the applied
magnetic field~of a sample withEC/EJ51.25!, showing the cross-
over from superconducting behavior with a critical current to insu-
lating behavior with a charging gap. The curve in~a! taken at
EC/EJ51.7 has been scaled with a factor of 1/8 in they axis.
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remain pinned until the bias current exceeds a critical value
above which superconductivity is destroyed by the motion of
vortices. At the insulating side, charges are localized by the
Coulomb blockade until the bias voltage exceeds a certain
threshold value. Above the threshold voltage, charges are
able to move and a conductance can be measured across the
array.17–19This vortex-charge duality goes even further. Just
as in the classical regime additional vortices can be induced
by a magnetic field, in the insulating regime additional Coo-
per pairs can be brought onto the islands by applying a volt-
age between the ground potential and the array. The resulting
uniform charge distribution is known as charge frustration
and a charge-tuned S–I transition has been predicted
theoretically.20

In this paper, we present an overview of the quantum
phase transitions that occur in Josephson-junction arrays and
we compare our experimental results with existing theories.
The paper is organized as follows. In the next section, we
summarize some of the basics of Josephson-junction arrays
and comment on the similarities and differences with thin
films. In Sec. III we discuss the array characteristics and the
experimental details. Section IV summarizes the experimen-
tal results on the S–I transitions as a function of theEC/EJ
ratio in zero and commensurate magnetic fields. Section V
deals with the field-tuned S–I transitions and the determina-
tion of its critical exponents. We briefly comment on the
competing dynamics of vortices and charges near the S–I
transition and show that the bias current/voltage can be
viewed as a fourth~next to theEC/EJ ratio, the magnetic
field, and charge frustration! parameter to induce a S–I tran-
sition. In Sec. VI, our results of the S–I transitions as a
function ofEC/EJ and magnetic field are combined and two
models for vortex quantum tunneling will be tested against
the experimental data. We end in Sec. VII with some con-
clusions.

II. JOSEPHSON-JUNCTION ARRAYS

A Josephson array consists of a regular network of super-
conducting islands weakly coupled by identical tunnel junc-
tions. Compared to films, disorder is weak. With present
technology variations in junction parameters are below 20%
across the whole 2D array. In addition, different geometries
can be fabricated. A square array is obtained by coupling
islands to four neighbors and a triangular array by coupling
islands to six neighbors. In Fig. 2, we show scanning-
electron microscope~SEM! photographs of fabricated square
and triangular arrays.

Arrays are made in a planar geometry, in which each
island is coupled to a far away ground by its self-capacitance
C0 and to each of the other islands, also through the space
outside the 2D plane. Since junctions are made of two over-
lapping superconducting layers separated by a thin oxide
layer, the main contribution to the capacitance comes from
the junction capacitanceC. As a result,C dominates the
other elements of the capacitance matrix includingC0. In
Josephson-junction models, the influence ofC0 is taken into
account but the other capacitances are usually neglected.

The physics of quantum phase transitions in artificially
fabricated Josephson-junction arrays is related to work on
thin granular and amorphous~homogeneous! films.2,3 In

granular films, superconducting grains form a irregular pat-
tern, and are coupled by Josephson junctions of different
strength. Their self-capacitance to ground is of the same or-
der as the intergrain capacitance. In amorphous films, the
normal-state resistance plays the role of the Josephson cou-
pling and the localizing effect on charges of random disorder
can be compared to the charging effects in a Josephson-
junction array. Near the S–I transition the order parameter
itself is suppressed and fluctuations in its amplitude play a
role.2 In contrast, for the fields and temperatures of interest
Josephson-junction arrays only exhibit phase fluctuations of
the order parameter.

A disadvantage of artificial arrays on the other hand is
that finite size effects play a more important role than in
films; typical arrays have sizes of 100 by 100 cells. For in-
stance, in classical vortex arrays the Kosterlitz-Thouless-
Berenzinskii ~KTB! phase transition is smeared out. Ther-
mally activated single vortices can cross the array so that a
finite resistance is measured below the KTB transition.21 An-
other consequence of the small array sizes is that in quantum
arrays withEC'EJ the possibility of vortex tunneling across
the whole array width needs to be considered.

When in the classical limit (EC!EJ) a magnetic field is
applied perpendicular to the islands and junctions, vortices

FIG. 2. Scanning-electron microscope photographs of a square
~a! and a triangular~b! array. In the photographs, the schematic
drawings of the arrays are also shown; crosses represent the junc-
tions and arrows the way current is injected.
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enter the array above some small critical field.21 Just as in
films their density increases with increasing magnetic field.
In junction arrays the periodic lattice potential prevents vor-
tices to move at low temperatures. However, above the de-
pinning current, there is a flux-flow branch of which the
resistance is found to increase approximately linearly withf
up to u f u50.2. A phenomenological model22 analogous to the
Bardeen-Stephen model to describe flux-flow in films is in
good agreement with experiments providing that enough dis-
sipative damping is present.23,24

In larger magnetic fields the behavior of junction arrays is
richer than that of films. At fractional values off the mag-
netic vortices form a lattice which is commensurate to the
underlying junction network. The stability of the vortex lat-
tice against a bias current leads to a decrease in the small-
bias resistance. In order to their relative strength, one expects
dips at f51/2,1/3,1/4,2/5,. . . in square arrays25,26 and at
f51/2,1/4,1/3,3/8,. . . in triangular arrays27,28as is illustrated
for our arrays in Fig. 3. Near these fractional values off ,
defects from the ordered lattice~excess single vortices or
domain walls! are believed to determine the array dynamics
in a similar way as the field-induced vortices determine array
dynamics nearf50. Therefore, arrays near commensurate
values with high stability such asf51/2 may qualitatively
behave in a similar way as near zero magnetic field. Because
all properties are periodic inf with period f51 an increase
beyondf51/2 does not lead to new physics.

III. EXPERIMENTAL DETAILS

Arrays in this study are fabricated of all-aluminum high-
quality Josephson-tunnel junctions with a shadow-
evaporation technique. The evaporation mask is a three-layer
resist system consisting of two electron sensitive resist layers
separated by a thin germanium layer. Junctions are formed

by evaporating 25 nm aluminum as bottom electrode fol-
lowed by in situ oxidation in oxygen and evaporation of the
counter electrode of 50 nm from an opposite angle.29

Along their widths, arrays are connected to narrow super-
conducting strips~busbars!. Current is injected through these
busbars and they also serve as probes to measure the voltage
across the array. To reduce the influence of phase distortions
near the busbars, arrays are generally made longer than wide.
All our arrays are 190 cells long~M5190! and 60 cells wide
~N560!. A cell of the array has an area (S) of 4 mm2 and
one island has an area of about 1mm2.

We measure the arrays in a dilution refrigerator insidem
metal and lead magnetic shields at temperatures down to 10
mK. At the entrance of the cryostat, electrical leads are fil-
tered with radio-frequency interference~RFI! feedthrough
filters. Arrays are placed inside a closed, grounded copper
box ~microwave tight!. All leads leaving this box are filtered
with RC filters for low-frequency filtering~R51 kV and
C5470 pF! and with microwave filters. A microwave filter
consists of a coiled manganin wire~length;5 m!, put inside
an grounded copper tube that is filled with copper powder
~grains,30 mm!. The resistance of the wire in combination
with the capacitance to ground via the copper grains provide
an attenuation over 150 dB at frequencies higher than 1
MHz. The copper box with theRC and microwave filters is
situated in the inner vacuum chamber and is mounted on the
mixing chamber in good thermal contact. The extensive fil-
tering and the copper box are minimum requirements against
the influence of high-energy photons from room-temperature
electromagnetic noise and radiation.

A small perpendicular magnetic field can be applied by
two coils of superconducting wire, placed in a Helmholtz
configuration. A frustration off5BS/F051/2 corresponds to
an applied magnetic field ofB52.6 G. The setup is sche-
matically shown in Fig. 4. In Table I, we summarize the
characteristics of the arrays that have been measured.

FIG. 3. Zero-bias resistance versus magnetic frustration for a
square~a! and triangular array~b!. In both graphs the dip atf51/2
is the most pronounced feature, but in a square array the dip at
f51/3 is more pronounced than the dip atf51/4 whereas in the
triangular array this is the opposite.

FIG. 4. Schematic drawing of the experimental setup. The RFI-
feedthrough filters are at room temperature; the RC and microwave
filters are at mixing chamber temperatures.
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A. Junction parameters

The junction capacitanceC determines the charging en-
ergy,EC5e2/2C. An independent estimate ofC is obtained
from measuring the voltage offset~Voffset! at high bias cur-
rents atT510 mK in a magnetic field of 2T. Using the so-
called local rule30 and neglecting possible parasitic contribu-
tions ~capacitance to ground and capacitances between
islands further away! C5Me2/2Voffset. We findC to be 1.1
fF for our smallest junctions of 0.01mm2. We have used the
local rule instead of the global rule to describe the coupling
of tunneling processes to the environment because we mea-
sure the voltage offset at high-bias currents in which case the
local rule is more applicable. The local rule is commonly
used to determine the junction capacitance in small series
arrays. From measurements on many small series arrays,
variations in the junction area and thereforeC are estimated
to be within 20%. Likewise, we estimate the variation in the
junction critical currentI c to be also in the 20% range or
less.

The Josephson coupling energy of a junctionEJ
@5F0I c/~2p!# is inversely proportional to the normal-state
junction resistanceRn . Rn follows from the normal-state ar-
ray resistancer n measured at 4.2 K,Rn5(N11)r n/M . The
maximum junction critical current in the absence of charging
effects and thermal fluctuations (I c) is assumed to be given
by the Ambegaokar-Baratoff value31 with a measured critical
temperatureTc of 1.35 K. At low temperatures,I cRn5322
mV. The degree of damping in junctions is commonly
defined through the McCumber parameter
bc(T)52pI c(T)CRe

2/F0 , whereRe is the effective damp-
ing resistance for each junction. In Table I, we have listed
the value ofbc~0! calculated withRe5Rn .

One should realize that there is a lower limit to the junc-
tion normal-state resistance. For small junctions with low
Rn , the oxide barrier is of the order of one atomic layer.
Such thin layers may produce leaky junctions. We find that
for our 1 fF junctions, this lower limit is about 1 kV. Thus,
our aluminum tunnel junctions may become leaky when

RnC,10212 s. For very small junctions withC,0.1 fF, this
criterion indicates thatRn.Rq ~5h/4e256.45 kV!.

B. Array properties

Many array properties depend on the ratio between the
Josephson and the charging energy. In comparing properties
of square and triangular arrays some care is necessary. The
actual energy required to store an additional electron on an
island ise2/2CS , whereCS is the sum of the capacitances to
other islands and to ground. As in triangular arrays all is-
lands are coupled withz56 instead ofz54 junctions, the
energy required is 2/3 times smaller than that of an island in
a square lattice. Similarly, the freedom of the phase on a
particular island is determined by the Josephson coupling
energy of all junctions connected to the island and therefore
it seems reasonable to assume that in a triangular array the
effective Josephson coupling energy is 3/2 times that of a
square array. To take these effects into account we define an
effective ratiox5(EC/EJ)eff . In a square arrayx5EC/EJ
but the corresponding value in a triangular array is defined as
x54EC/9EJ . Different x ratios are obtained by varyingRn
while keepingC in the order of 1–3.5 fF. In this paper, we
present data on arrays withRn values ranging from 1 to 36
kV and x ranging from 0.1 to 4.6. Apart from systematic
errors that are the same for all samples~such as the use of the
local rule to determineEC!, we estimate our error in deter-
mining EC/EJ to be 10%.

The self-capacitanceC0 of individual islands is estimated
from separate measurements on small series arrays with high
EC/EJ ratio. A magnetic field of 2 T is applied so that the
series arrays are in the normal state.C0 is measured by vary-
ing the potential of the circuit with respect to the ground
potential. Recording the current through the circuit yields a
periodic signal with periode/C0 . For islands of 1mm31
mm, C0'12310218 F. We take this value of 12 aF as an
estimate forC0 in our 2D arrays.

In small series arrays it is known that all islands carry
random offset charges that are presumably caused by defects

TABLE I. Sample parameters for our square~S! and triangular~T! arrays.

Sample
Rn

~kV!
C

~fF! bc(T50)
EJ/kB
~K! EC/EJ tV( f50)

S1 36.0 1.1 96 0.21 4.55
S2 15.3 1.1 17.4 0.50 1.82
S3 14.5 1.1 15.6 0.53 1.67 ~0.28!
S4 11.5 1.1 12.4 0.66 1.25 0.4
S5 10.5 1.1 11.3 0.73 1.11 0.7
S6 5.0 1.1 5.4 1.5 0.56 0.83
S7 8.0 2.0 15.6 0.96 0.48 0.85
S8 6.8 1.7 11.3 1.1 0.45 0.88
S9 2.5 1.1 2.7 3.1 0.27 0.90
S10 3.3 3.5 11.3 2.3 0.14
S11 1.14 1.1 1.2 6.7 0.13 0.95

T1 25.7 1.2 29 0.30 2.6 1.15
T2 23.8 1.7 39 0.32 1.7 1.6
T3 8.3 1.1 8.7 0.92 0.9 1.51
T4 4.7 1.1 7.2 1.6 0.35 1.85
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in the junctions or substrate. Electron or quasiparticle tunnel-
ing will partly compensate these offset charges so that their
value lies between2e/2 and1e/2. These charges can be
nulled out by the use of a gate for each island. In a 2D array
similar offset charges are expected. Here in practice they
cannot be compensated because too many gate electrodes
would be necessary, requiring complicated fabrication proce-
dures. Therefore, some degree of disorder is intrinsically
present in our arrays but only near the S–I transition and on
the insulating side will this charge disorder affect physical
properties. The presence of the frozen-in offset charges also
means that a uniform charge frustration is difficult to realize
experimentally.

In the description of phase transitions in 2D supercon-
ducting systems, the influence of dissipation needs to be
taken into account. In a single small junction, the high-
frequency coupling to the environment determines the effec-
tive damping, yielding an effective impedance of the order of
100V. This impedance can be increased, i.e., a single junc-
tion can be decoupled from its environment by placing high-
ohmic resistors or arrays of small junctions in the leads close
to the junction. From the latter we expect that junctions in-
side a 2D array are decoupled from the leads.

At low temperatures one would not expect quasiparticle
tunneling to play a role in our samples sinceEc is smaller
than the superconducting gapD. Experiments on small ar-
rays, however, indicate that even at milliKelvin temperatures
a small but finite amount of quasiparticles is always present.
This is apparent, for example, in the vortex interference
experiment4 where vortices move around a charge with the
periodicity e instead of 2e. The quasiparticles may be gen-
erated by the environment~e.g., by photons!.

Quasiparticles may also be generated by the moving vor-
tices themselves. When vortices cross junctions, the
junction-phase difference changes abruptly byp in square
arrays and 4p/3 in triangular arrays. According to the Jo-
sephson relation, these phase changes lead to voltage spikes
of which the amplitude depends on the time the vortex
spends crossing the junctions. Precise values of this time are
not known. Nevertheless, due to the highly nonlinear char-
acter of the junction dynamics, coupling to voltages larger
thenD/e can be expected and hence the creation of quasipar-
ticles. This mechanism of quasiparticle generation is a result
of the discrete nature of Josephson arrays. It would therefore
be difficult to eliminate quasiparticles completely.

Tunneling of quasiparticles leads to dissipation character-
ized by the dimensionless parameterae5Rq/Re . This Re
cannot be smaller thanRn nor larger than the subgap resis-
tance. In tunnel junctions at low temperatures, the subgap
resistance is orders of magnitude larger thanRn . It is impor-
tant to realize that the parameteran5Rq/Rn is not indepen-
dent of theEC/EJ ratio becauseEC/EJ5(2EC/D)a n

21.
At low temperatures, the 2D flux penetration depth

l'(T)5F0/2pm0I c(T) is much larger than the array sizes
so that the magnetic field is essentially uniform over the
whole array. Thus, self-induced magnetic fields can be ne-
glected in our arrays. A similar conclusion can be drawn by
considering the ratio of the cell inductance~we estimate the
geometrical inductance to be of the order of 1 pH! to the
Josephson inductance~.1 nH!.

IV. S–I TRANSITIONS AS A FUNCTION OF EC/EJ

In zero magnetic field, classical arrays undergo a
Kosterlitz-Thouless-Berenzinskii~KTB! phase transition32 to
the superconducting state. Below the KTB transition tem-
peratureTV;EJ/kB , arrays are superconducting because
there are no free vortices. Only pairs of vortices and antivor-
tices may be present. A necessary condition for a clear ob-
servation of a KTB phase transition is that vortices interact
logarithmically over large distances. In arrays, vortices inter-
act logarithmically over distancesl' .

WhenEC@EJ , a dual KTB transition for 2e charges is
expected at a transition temperatureTC;EC/4kB .

14,33,34

When onlyC0 is considered 2e-charge pairs interact loga-
rithmically over a normalized screening length ofAC/C0. In
our arrays,AC/C0'10 so that the KTB transition will be
smeared out. However, when the full capacitance matrix is
considered logarithmic interactions persist over lengths of
orderC/C0 ,

1,35 i.e., of the order of the array size. Therefore,
one expects to observe the distinct features of a KTB transi-
tion for charges in our arrays.

At T50 in zero field, theoretical studies indicate a S–I
transition as a function of theEC/EJ ratio. Quantitative stud-
ies have mostly been concentrated on infinite, square arrays
in the absence of disorder. From duality arguments, Fazio
and Scho¨n14 have estimated the critical valuexcr separating
superconducting and insulating behavior atT50. In the ab-
sence of damping, their analysis givesxcr5p2/2a. The factor
a arises from a symmetry breaking term, i.e., from the spin-
wave contribution to the charge correlation function~a>1!.
In the presence of quasiparticles arrays with strong dissipa-
tion ~ae.0.45! are expected to be in the superconducting
state atT50.1 Other authors have used other methods to
calculatexcr . Analytical calculations

36 yield xcr'10, a varia-
tional approach37 xcr'2, and two studies based on Monte
Carlo simulations indicate thatxcr'1.7,38 andxcr'3.39

In superconducting films as well as in arrays, it has also
been argued that the zero-temperature resistanceR0* at the
critical point is finite so that the array acts like a metal right
at the S–I transition.13 From the vortex-charge duality one
expects the resistance per junction to be the quantum resis-
tance of pairs,Rq . This value of the resistance can be
thought of as due to the simultaneous passing of one Cooper
pair and one vortex through the system. More detailed cal-
culations on short-range interacting bosons on a 2D lattice
~Bose-Hubbard model! have shown that in the absence of
disorder and dissipationR0* has a universal value of 8Rq/p
per square.40 When resistive shunting of the junctions is in-
cluded,R0* is expected to be higher and equal toRq/0.12 per
square.20

In a magnetic field off51/2 in the absence of resistive
shunts, the zero-temperature critical behavior of the square
XY model has been analyzed by Granato and Kosterlitz.41

They find that hereR0* has a universal value of 4Rq/p, half
the value of the zero-field critical resistance. Recent
calculations42 on the Bose-Hubbard model in a magnetic
field show thatR0*51.9Rq at f51/2 andR0*51.2Rq at f5
1/3.

A. Experiments at f50

Figure 5 shows the resistive transitions of six different
square arrays in zero magnetic field. The zero-bias resistance
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per junction ~R0! is measured with a very small transport
current ~,1023I c per junction! in the linear part of the
current-voltage characteristic. Three arrays become super-
conducting, two arrays insulating and one array that lies very
close to the S–I transition shows a double reentrant depen-
dence. The horizontal dashed line in Fig. 5 is the critical
resistance value of 8Rq/p.

For the three arrays that become superconducting, we
have fitted our data to the predicted square-root cusp depen-
dence on temperature,R0/Rn5c exp@2b/(t2tV)

1/2# with b
andc constants of order one. To compensate for the tempera-
ture dependence ofEJ , a normalized temperature is defined
ast5kBT/EJ . From these fits we have determined the nor-
malized KTB transition temperaturetV for our arrays. Re-
sults are listed in Table I. We find that near the S–I transition
tV is substantially smaller than the classical value of 0.90.
Note that at low resistance levels (R0,1023Rn), deviations
from the square-root cusp dependence are found and that the
resistance decreases exponentially. As mentioned in Sec. II,
this is indicative of thermal activation of single vortices
across the whole array width.

Two arrays become insulating, showing a continuous in-
crease ofR0 asT is lowered. From the vortex-charge duality,
one now expects the conductance to follow a square-root
cusp dependence on temperature. We do not observe this
square-root cusp dependence characteristic for the KTB tran-
sition. Instead we observe an exponential decrease of the
conductance. The activation barrier is equal to 0.25EC1D.
The same exponential behavior with exactly the same barrier
has been reported by the Harvard and Chalmers groups.17,18

This exponential decay can be explained as thermal acti-
vation against the sum of two barriers: the superconducting
energy gap~D! to break a Cooper pair andEC/4 to separate
this pair to create a charge anticharge pair on two adjacent
islands. Like with vortices in arrays at the superconducting
side of the S–I transition, one expects that separating this
pair further apart would lead to an additional term to the

energy barrier proportional to the logarithm of their separa-
tion. The absence of this logarithmic term indicates that the
interaction is screened at lattice spacing distances. This en-
hanced screening is not understood yet.

The resistance of sampleS3 has a very remarkable depen-
dence on temperature. Starting at high temperatures,R0 first
decreases when the temperature is lowered. Over two orders
of magnitude it follows the square-root cusp expression. Be-
low T5150 mK, however,R0 increases by more than three
orders of magnitude and at the same time a charging gap
develops in theI -V curve. Finally at 40 mK,R0 starts to
decrease again. The second reentrant transition at 40 mK
seems to be a more general feature of arrays near the S–I
transition which is also present in a magnetic field. Different
explanations for reentrant transitions from S-like to I-like
behavior have been proposed in the literature.20,43–46In the
absence of quantitative predictions, we cannot discriminate
between the different theories.

Summarizing the zero-field results we have plotted our
data in a phase diagram and compared this with theoretical
predictions. In Fig. 6 the superconducting–normal phase
boundary is the vortex-KTB phase transition. Temperature
on the vertical axis in this figure is given in units of
t5kBT/EJ and scaled totV0, the KTB transition temperature
in the classical limitx50. We findtV050.95 for our square
arrays which is close to the value of 0.90 determined from
Monte Carlo simulations.25 For our triangular arrays,
tV051.7 which should be compared to the Monte Carlo
value of 1.45.27 As a function ofx a clear, systematic de-
crease of the KTB transition temperatures is observed. In the
insulating side of the figure no phase transition was ob-
served. The dashed line therefore is somewhat arbitrary. It
represents the crossover to the low-temperature region with
R0.103Rn .

Our measurements indicate thatxcr'1.7. This value is in
agreement with the Monte Carlo simulations and the calcu-
lations based on the variational approach. The calculation
based on duality arguments agrees with our experiments if
a'3.

FIG. 5. The zero-field linear resistance per junction measured as
a function of temperature for six different arrays. Dotted lines are
fits to the vortex-KTB square-root cusp formula. The dashed hori-
zontal line shows the zero-temperature universal resistance
~8Rq/p516.4 kV! of the S–I transition atf50.

FIG. 6. Measured phase diagram of our square arrays~solid
squares! and triangular~solid triangles! in zero magnetic field,
showing the superconductor-to-insulator transition at
~EC/EJ!eff'1.7. The solid line is a guide to the eye connecting the
data points and the dotted line at the superconducting side is the
result of a recent calculation~Ref. 39!.
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In the quantum Monte Carlo study of Ref. 39, the reduc-
tion of tV has been calculated as a function ofx. The dotted
line in Fig. 6 is the result of this study. The calculations
show a larger value ofxcr but there is a good agreement
between the calculations and the experiment for smallx.
Here, the reduction of the KTB transition temperature fol-
lows the expressiont/tV0;122.9x/z2 wherez is the num-
ber of neighboring islands. This expression indicates that
t/tV0 of triangular arrays and square arrays are expected to
coincide if thex values for the triangular arrays are scaled
with 16/36. This is in fact the scaling we used for our ex-
perimental points in Fig. 6.

For our 1 fF junctions, the S–I transition of Fig. 6 could
have been induced by dissipation. SupposeRe5gRn with
g>1. Then, the criterionae.0.45 translates intoEC/EJ,2g,
i.e., xcr52g. To match our experimental data,g has to be 1.
Thus, our data do not exclude the possibility that the S–I
transition is influenced by the normal-state resistance. Any
other resistance value for the damping can be ruled out. A
systematic study on samples with larger capacitances could
be used to test this influence; arrays with 5 fF junctions
should have a criticalEC/EJ ratio of 0.4 if the transition is
driven by dissipation withRn as damping resistance.

B. Experiments at commensuratef values „f51/2,1/3…

We have measured the S–I transition of square arrays at
f51/2 in detail and in Fig. 7 its experimental phase diagram
is shown. Atf51/2 the interaction between domain-wall ex-
citations with 1/4 fractionally charged vortices at the corners
and excess single integer vortices is believed to trigger a
combined KTB-Ising transition. The classical Monte Carlo
simulations indicate a transition temperature oft50.44 for
x50.25

As in f50, our measurements indicate a superconductor-
to-insulator transition atT50. FromR0(T) curves we find a
S–I transition forf51/2 which occurs around 11 kV ~at low
temperatures, sampleS5 becomes superconducting, whereas
sampleS4 becomes insulating!. The criticalEC/EJ ratio is
about 1.2, a factor 0.7 lower than the zero-field value. This
decrease ofxcr is consistent with the simple model that at
f51/2 the effective Josephson coupling energy is modified:
the interaction energy of a vortex pair is a factor& smaller
than in zero field. With this lower effective coupling thex

value of the S–I transition is shifted by 221/2, which is close
to the observed reduction of 0.7.

Like in the f50 case, the dashed line in Fig. 7 is the result
of quantum Monte Carlo calculations.39 For x→0, the calcu-
lated values extrapolate to the expected value of 0.44. The
experimental points of the transition temperatures are lower
than the calculated ones. At present, we have no explanation
for this discrepancy. It would require a more detailed study
and better understanding of the phase transition atf51/2.
The calculations do indicate, on the other hand,xcr'1, in
agreement with the experiment.

There are no detailed calculations yet for the phase tran-
sition at other commensurate fields. Atf51/3 in arrayS5 we
find a double reentrant dependence of the resistance similar
to the curve of sampleS3 in Fig. 5. The minimum and maxi-
mum resistances occur at the same temperatures but the re-
sistance only varies between 3.8 and 5.5 kV. This array lies
very close to the S–I transition for this value off , so that
xcr'1.1 andR0*'4.5 kV at f51/3. Note, that atf51/2 array
S5 becomes superconducting when lowering the tempera-
ture.

V. FIELD-TUNED TRANSITIONS

In arrays which are in the superconducting state atf50
but have an (EC/EJ)eff ratio close to the critical value, a
magnetic field can be used to drive the array into the insu-
lating state. This field-tuned transition has been considered
theoretically by Fisher12 in disordered systems and has been
observed47 in InOx films. At low magnetic fields vortices at
T50 are pinned but for higher fields, the vortex density in-
creases and at some critical density, vortices Bose condense.
The vortex superfluid leads to an infinite resistance. The
charge-vortex duality near the S–I transition indicates that
this transition can also be thought of as Bose condensation of
charges that occurs with decreasing magnetic field. In
Josephson-junction arrays withEC'EJ disorder is intro-
duced by the random offset charges and therefore we believe
that the predictions of the critical behavior are also adequate
for our Josephson system.

The general characteristic of this S–I transition is that
when f is increased from zero, the temperature derivative of
the resistance changes sign at critical values6f c . This is
visible in theR0(T) plots of Fig. 8. Below a critical valuef c ,
the resistance decreases upon cooling down~dR0/dT.0!.
Above f c the resistance increases~dR0/dT,0! and for low
temperatures reaches a value that might be orders of magni-
tudes higher than the normal-state resistance. This sign
change in the temperature dependence corresponds to a
change in theI -V characteristics shown in Fig. 1~b!.

A. Scaling behavior

A detailed way of observing this field-tuned S–I transition
is by measuring the resistance versus magnetic field for dif-
ferent temperatures. For sampleT2 the result is shown in
Fig. 9. In the range 0,f,1/3, theR( f ) curves are very
similar to the ones measured in thin films. Below the critical
field f c50.14 the resistance becomes smaller when the tem-
perature is lowered and abovef c the resistance increases. In

FIG. 7. Measured phase diagram of our square arrays atf51/2,
showing the superconductor-to-insulator transition atEC/EJ'1.2.
The solid line is a guide to the eye and the dotted line at the super-
conducting side is the result of a recent calculation~Ref. 39!.
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Table II we give the values off c andR0 for the two square
and the two triangular samples that showed field-tuned tran-
sitions.

According to Fisher,12 the slopes of theR( f ) curves atf c
should follow a power-law dependence onT with power
21/(zBnB). The exponentszB andnB characterize the scaling
behavior of the field-tuned S–I transition. When on a double
logarithmic plot the slopes of theR( f ) curves at f c are
plotted versus 1/T, we find a straight line in the temperature
range 50,T,500 mK, as shown in Fig. 10 for sampleT2
andS5. From the reciprocal of this straight line the product
zBnB can be determined. In different samples, we find values
between 1.2 and 2 as listed in Table II. These values are
consistent with measurements by others on Josephson-

junction arrays,11 with the values found in InOx films
47 and

high-Tc films
48 as well as with the theoretical expectations

~zB51 andnB>1!.
The exponentzB can also be obtained form the measure-

ments by plottingf c as a function of the zero-field KTB
transition temperature,f c}TV

2/zB. Our two data points on the
triangular arrays yield a rough estimate ofzB'0.34 and the
two data points on the square arrays ofzB'1.4.49

In the original paper by Fisher12 the resistance per square
at the transition is predicted to be universal and of the order
of Rq . Measurements on different thin films show that the
resistance right at the transition is of the order ofRq but
measurements are not conclusive regarding the universality.
In our arrays, this resistance is again of orderRq , yet it
varies between 2.5 and 12.5 kV ~see Table II!. For triangular
arrays, one should probably take the resistance per square
which is 0.5 times the junction resistance. In that case, the
critical resistance at the transition varies between 2.5 and 6
kV.

A new feature introduced by Josephson-junction arrays is
the existence of field-tuned transitions near commensurate
values of the applied field, i.e., atf comm6f c .

10,11 Studying
theR( f ) curves of sampleT2 in more detail, we see critical
behavior not only aroundf50, but also aroundf561/4,
61/3,61/2,62/3, and63/4. Thus, in this sample in total 12
critical points can be observed when going fromf50 to61.
For sampleS5, similar transitions occur nearf561/3,61/2,
and62/3. For each commensuratef valuezBnB can be de-

FIG. 8. The linear resistance per junction of arrayS4 ~a!, and
array T2 ~b! measured as a function of temperature for various
values of the magnetic field. The field-tuned S–I transition occurs at
that frustration where the temperature dependence ofR0 changes
sign. For both arrays this sign change occurs betweenf50.10 and
f50.15.

FIG. 9. The linear resistance per square of arrayT2 measured as
a function of the magnetic field for three different temperatures,
T550 mK ~solid line!, 120 ~dotted!, and 160~dashed line!. Below
the critical field f c , the resistance decreases whenT is lowered;
above f c in the rangef c, f,0.25 the resistance increases. Near
fractional values off additional field tuned transition can be ob-
served.

TABLE II. Critical exponents and resistances of the field-tuned
transitions.

Sample f comm f c Rc ~kV! zBnB

S4 0 0.1 2.5 1.2
S5 0 0.22 2.5 1.5

1/3 0.015 4.6 0.6
1/2 0.05 3.4 1.2

T1 0 0.02 4.5 ~4.4!
T2 0 0.14 11 2.1

1/4 0.025 12–13 0.8
1/3 0.01 15
1/2 0.02 12 0.7

FIG. 10. The slopes of theR( f ) curves atf c plotted as a func-
tion of the inverse temperature for a square and triangular sample.
The slope of the dashed lines determines the product of the critical
exponentszBvB .

10 088 54van der ZANT, ELION, GEERLIGS, AND MOOIJ



termined as described above. In Table II we list the results
for sampleT2 and S5. For T2, we find values ofzBnB
around 1 and critical-resistance values of 11 kV. For the
square arrayS5, the values ofzBnB are about the same, but
the critical resistance is a factor of 3 smaller. Calculations on
the boson Hubbard model in a magnetic field42 show that the
productzBnB at f51/2 is close to 1 in agreement with our
measurement.

B. I -V characteristics

The changing nature of theI -V characteristic at the S–I
transition is shown in Fig. 11 in more detail and once more
illustrates the competing dynamics of vortices and charges.
Below f c the I -V shows a supercurrent branch with a finite
slope. When on the other hand the field is increased above
f c , a small charging gap opens up in the supercurrent branch.
The zero-bias conductance is measured within this gap and is
temperature independent forT,50 mK. We attribute this
metallic behavior on both sides of the S–I transition to quan-
tum tunneling of vortices and charges, respectively. We do
not expect the metallic behavior to be due to an effective
noise temperature of 50–100 mK in our heavily filtered
setup, because several samples do show a changing resis-
tance below these temperatures.

The metallic behavior is not in contradiction with the pic-
ture of Bose condensation as discussed in the beginning of
this section. Consider for instance, the tunneling of vortices
at the superconducting side of the S–I transition. With a
small current applied and in the absence of damping, a tun-
neled vortex would accelerate up to high velocities. When its
kinetic energy equals the gap energy, many quasiparticles
will be generated and damping will suddenly become impor-
tant. This process would lead to a highly nonlinearI -V char-
acteristic in contrast to our experimental findings of a linear
I -V aroundV50. The experiments therefore show that mov-
ing vortices always experience some damping independent
of their velocity. As discussed before in Sec. III B, this
damping is caused by the presence of quasiparticles. The
finite slope in the charging gap can be understood likewise.

On a large scale, the twoI -V’s of Fig. 11 look similar.
Above f c , a small charging gap appears in theI -V charac-
teristic but at high currents and/or voltages the curve still

looks like anI -V measured at the superconducting side of
the transition. With a small measuring current the resistance
is much larger than in the normal state, but with a large
measuring current the resistance is smaller. Studies on granu-
lar Al films have shown a similar electric-field tuned S–I
transition; a dc bias current and/or voltage was used to over-
come the Coulomb barrier and at least partly recover Joseph-
son tunneling.50

Just above the threshold field, the voltage across the array
decreases with increasing current as illustrated in the inset of
Fig. 11. In a single junction such a negative resistance is
known as the ‘‘Bloch nose’’.6,51 It is caused by a macro-
scopic quantum effect due to the energy band structure for
the junction charge states; for low currents, theI -V follows a
high resistance branch~quasiparticle tunneling!, but at higher
currents coherent Cooper pair tunneling processes~Bloch os-
cillations! become important and decrease the averaged volt-
age across the junction. Then for larger currents, Zener tun-
neling causes the voltage to increase again.

For larger fields the gap becomes more pronounced and
we find that the gap width increases linearly withf as shown
in Fig. 12. The gap width is periodic inf . Theoretical studies
on the Bose-Hubbard model have considered the width of
this charging gap.20 The gap atT50 is proportional toAf . At
nonzero temperatures or in the presence of offset charges, the
gap is expected to be linear inf as observed in our experi-
ment. The absolute value of the gap is much smaller than
calculated without the presence of offset charges.

VI. DISCUSSION

Our results indicate that quantum S–I transitions occur as
a function of theEC/EJ ratio and applied magnetic field. The
critical resistance and criticalEC/EJ ratio of these S–I tran-
sitions depend on the magnetic field, i.e.,R0*5R0* ( f ) and
xcr5xcr( f ). In subsection A we combine our results of these
two S–I transitions and try to draw some general conclu-
sions.

For noncommensurate values off , our data indicate a
superconductor–normal–insulator transition atT50. For
T,100 mK, the array resistance of arrays ‘‘around’’ the S–I
transition is independent of temperature due to quantum tun-
neling of vortices/charges. In subsection B, we have col-
lected data of samples at the superconducting side of the S–I
transition and compared them to two quantum tunneling
models.

FIG. 11. Two current-voltage characteristics of sampleT1 mea-
sured in a field belowf c ~f50.01! and abovef c ~f50.2!. Inset: the
current-voltage characteristic measured atf50.2 on an expanded
scale showing the ‘‘Bloch nose’’ at the edge of charging gap.

FIG. 12. The width of the gap of a square and triangular array
measured as a function of the frustrationf .
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A. Critical properties of the S–I transitions

In Fig. 13, we have plotted the criticalEC/EJ ratio as a
function of applied magnetic field for our square arrays. We
have combined the three points atf50, 1/2, and 1/3 with the
two data points of the field-tuned S–I transition. After a
rapid decrease the critical ratio is almost constant forf.0.1.
The critical EC/EJ ratio at f51/2 is larger than at other
nearby values off , indicating once again the stability of the
phase configuration atf51/2. Figure 13 also shows that ar-
rays in the range 1.2,EC/EJ,1.7 do not show special be-
havior at commensuratef values~e.g., dips in the magne-
toresistance!; arrays are superconducting in zero field but
insulating atf51/2, 1/3, 1/4,. . . .

One expects the magnetic field to effectively lowerEJ so
that the S–I transition is shifted to lowerEC/EJ ratios. A
magnetic field also has a stronger influence in triangular ar-
rays because the total phase difference around a cell induced
by the flux is divided over three junctions instead of four. In
particular, this would mean that in a magnetic field the phase
boundary of Fig. 12 is different for triangular arrays; most
likely it will lie below the line of Fig. 12. Our measurements
are in agreement with this picture.

For the S–I transition at zero field, at commensuratef
values as well as for the field-tuned transitions it has been
argued that the zero-temperature resistance right at the tran-
sition should be universal. Of course zero temperature cannot
be reached in an experiment nor is the sample of infinite size,
but extrapolation of our data can still be used as an estimate
for the zero-temperature behavior. For the transition in zero
field, we find for an array that lies almost on the S–I transi-
tion, double reentrant behavior around the predicted resis-
tance value of 8Rq/p516.4 kV. For the field-tuned transi-
tions, the critical resistance per square is again of the order of
Rq but varies from 2.5 to 6 kV. In Fig. 14, we have plotted
the critical resistance per square for all our S–I transitions
together with four points taken from field-tuned transitions
measured in Chalmers.11 As can be seen, the critical resis-
tance varies withf . Interestingly, the data seem to indicate a
dependence of the critical resistance per square that goes as
the number of vortices per cell~5f ! times the critical resis-

tance~58Rq/p!. The dashed line indicates a resistance per
square and per vortex that is ‘‘universal’’ and equal to
8Rq/p. The data are not conclusive since error margins are
large.

B. Metallic behavior at noncommensuratef values

In a noncommensurate magnetic field~0,f,0.2!, all our
‘‘superconducting’’ arrays show a region with exponential
decay of the resistance. We have fitted our data in this re-
gime to a standard Arrhenius form with a frustration-
dependent energy barrier

R0~t!5c1Rne
~2g~ f !/t!. ~1!

An example of such a fit is shown in Fig. 15. In Table III, we
summarize the results of our samples giving the values of
g( f ) andc1 for f50.1 of all samples that showed a flatten-
ing off of the resistance and for somef values of one square
and triangular array in particular.

Below a certain critical temperature of about 100 mK
~1/t'10 in Fig. 15! the resistance becomes temperature in-
dependent and remains finite down to the base temperature
of 10 mK of our dilution refrigerator. In Table III we have
also listed the values of the finite resistance per junction
~R00!. We checked that varying the measuring current made
no difference inR00 so that self-heating effects can be ex-
cluded.

FIG. 13. Measured phase diagram for square arrays in a mag-
netic field. A sample with a certainEC/EJ ratio corresponds to a
horizontal line in this figure. Below the dotted line, samples become
superconducting at low temperatures; above this line samples be-
come insulating. At noncommensurate magnetic fields, the S–I
transition is not sharp because the superconducting region is sepa-
rated from the insulating region by a metallic region~this additional
normal phase is not shown in the figure!.

FIG. 14. The critical resistance per junction versus applied mag-
netic field for our arrays~solid symbols! as well as for four square
arrays~open squares! from a study at Chalmers~Ref. 11!.

FIG. 15. The linear resistance per junction of sampleS5 versus
inverse normalized temperature measured for various values of the
applied magnetic field. At high temperatures, the resistance de-
creases exponentially; at low temperature the resistance is tempera-
ture independent indicative for quantum tunneling of vortices.
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While at higher temperatures vortices are expected to be
mobile due to thermal fluctuations, classically one would ex-
pect them to be pinned in the lattice at 10 mK. The fact that
we find a finite resistance at those temperatures signifies that
there exists a quantum transport mechanism for vortices
analogous to quantum tunneling of the phase in single junc-
tions. The exponential behavior at higher temperatures and
the flattening off of the resistance at low temperatures fits
well with the description of a single quantum-mechanical
particle in a potential well. Assuming particles to be
vortices23 with massMV5F 0

2C/2S tunneling through barri-
ers ofEb5g( f )EJ , one can estimateR00 from the analogy
with single junctions52 ~moderate damping regime!:

R00'7.2RqfA120pse2s, ~2!

wheres is given by

s5
7.2

\
A2EbM vS 11

0.87

Abc,v
D . ~3!

bc,v52gbc is the vortex McCumber parameter. We have
fitted our data to Eq.~2! and in Table III, the measured
values ofs are given assmeas.

In Table III we have listed the values of the tunnel rates
calculated from Eq.~3! as ssv . We used the quasistatically
calculated, classical massMV for a vortex, the measured
barrier height and an effective damping of the normal-state
resistance. We find that the measured tunnel rates are lower
than expected. As shown in Table III, the measured values of
s are about a factor of 4 higher than the ones calculated in
the simple approximation. This increase by a factor of 4 is
consistent with the single vortex model when using a mass
that is an order of magnitude higher than the one calculated
in the quasistatic approximation. One may expect large de-

viations from the statically calculated mass in the dynamical
situation if a vortex is not moving as a rigid object.

In the model discussed above, vortices in the array tunnel
from cell to cell. Alternatively, single vortices can also cross
the whole array width at once. The same model as above
applies, butR00 in Eq. ~2! is a factorN larger. This would
make the discrepancy between model and experiment a fac-
tor of 8 instead of 4.

Another possible model for quantum tunneling of vortices
that includes collective effects but also disorder, is variable-
range hopping as discussed by Fisheret al.53 In this model
the vortex-hopping length increases with decreasing tem-
perature. As the hopping length becomes larger than the dis-
tance between vortices the temperature dependence changes
from the classical Arrhenius behavior to a power law of the
form exp2(T0/T)

r , whereT0 is a function of the barrier
height andr is a constant between 2/3 and 4/5. In this model
a temperature-independent resistance arises at low tempera-
tures when the vortex hopping length equals the width of the
finite sample~60 cells in our case!. We have fitted the resis-
tance in the temperature-dependent regime to the predicted
Arrhenius behavior at high temperatures and the predicted
power law at lower temperatures. For most arrays this does
not improve the agreement. In view of the large number of
fitting parameters involved we do not want to draw definite
conclusions about the validity of this model.

VII. CONCLUSION

We have reported on measurements of quantum phase
transitions in Josephson-junction arrays at zero and nonzero
magnetic field. S–I transitions have been studied as a func-
tion of the EC/EJ ratio and as a function of the applied
magnetic field. For the S–I transitions as a function of

TABLE III. Summary of the resistive behavior of ‘‘superconducting’’ arrays close to the S–I transition.
g( f ) andc1 describe the exponential behavior at high temperature, whereg( f ) is the energy barrier in units
of EJ . R00 is the value of the temperature-independent resistance at low temperatures. The listed value is the
resistance per junction. The exponents of the tunnel rates which follow from the measurements, are given by
smeas. ssv is the calculated value in the single vortex model as discussed in the text@Eq. ~3!#.

Sample f
g( f )
(EJ) c1

R00
~V! smeas ssv smeas/ssv

S4 0.1 2200
S5 0.025 0.7 0.1 2.6 10.2 2.6 3.9

0.05 0.5 0.3 11 9.4 2.3 4.0
0.075 0.4 0.5 35 8.6 2.2 4.0
0.1 0.3 0.4 150 7.4 2.0 3.8
0.15 0.1 0.4 850 6.0 1.4 4.3
0.19 0.05 0.3 2300 5.1 1.2 4.4

S6 0.1 0.5 0.7 22 9.4 3.7 2.6
S7 0.1 1.8 0.1 0.02 16.7 5.7 2.9

T2 0.1 0.1 0.4 5067 3.5 0.7 5.1
T3 0.03 1.0 0.2 6.8 9.4 2.7 3.5

0.05 0.5 0.2 74.6 7.4 2.1 3.6
0.075 0.3 0.3 392 6.0 1.7 3.5
0.1 0.2 0.4 746 5.7 1.5 3.8
0.125 0.2 0.5 1057 5.5 1.5 3.6
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EC/EJ , we find qualitatively similar behavior for zero and
commensurate values of the applied field. Measurements in-
dicate a superconductor–insulator transition at the lowest
temperatures with a magnetic-field-dependent critical resis-
tance@R0* ( f )# and criticalEC/EJ ratio @xcr( f )#.

When quantum fluctuations are large already in zero field
~arrays withEC'EJ!, an applied magnetic field can drive a
superconducting array into the insulating regime. This
magnetic-field-tuned S–I transition arises from a collective
Bose-condensation of vortices and critical exponents of the
transitions near zero field are in good agreement with theo-
retical expectations. Field-tuned transitions also occur near
fractional values off with similar critical behavior.

From simple considerations, the influence of quantum
phase fluctuations on the vortex dynamics is a lowering of
the cell-to-cell barrier, the depinning current, and the vortex
mass. The trends that we observe in our arrays close to the
S–I transition are in agreement with this picture. Quantita-
tively, there are deviations from theoretical models indicat-
ing that the vortex dynamics near the transition is still not

completely understood. A similar conclusion can be drawn
for the dual experiments at the insulating side of the S–I
transition where 2e-charge excitations dominate dynamics.
Because junction parameters are so well known, it should be
possible to gain a more quantitative understanding of quan-
tum dynamics near the S–I transition. Studies should con-
sider the discreteness of the lattice, random offset charges,
the coupling to quasiparticles, and possibly edge effects. If
these effects can be incorporated, experiments on Josephson-
junction arrays could quantitatively test the validity of theo-
retical models describing two-dimensional systems of inter-
acting bosons.
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