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Quantum phase transitions in two dimensions: Experiments in Josephson-junction arrays
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We have studied two-dimensional superconducting networks coupled by Josephson junctions in the regime
where the Josephson coupling energy is comparable in magnitude to the capacitive energy of charging an
island with a Cooper pair. We have mapped out the dependence of quantum phase transitions on the ratio of
these two energiedor different values of the applied magnetic fieithd on the applied field for arrays both
with square and triangular cells. Our experimental results are compared with existing theoretical predictions.
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[. INTRODUCTION characteristics of one sample are shown for three different
values of the applied magnetic field. For this sample, a field
In superconducting two-dimension@D) systems such as of 1 G was used to drive the array from the superconducting
Josephson-junction arrdyand thin filmg?2 the localization ~ state with a small critical current to the insulating state with
of charge carriers and the corresponding enhancement & small Coulomb gap. Field-tuned S-I transitions occur in
quantum-mechanical fluctuations of the phase of the supeTays with Ec~E; "> where quantum fluctuations are
conductor order parameter induces Superconductor_tcﬁtrong. This field-tuned transition can be eXplaiHEd in terms
insulator(S—) phase transitions. At the superconducting side®f @ Bose-condensation of vortic&swith increasing mag-
of the transition, dynamics is determined by vortices wherea8etic field, the number of vortices increases and above a
at the insulating side dynamics is determined lBycharge ~ Certain critical field Bose condensation occurs. The vortex
excitations. Near the S—I transition, vortex and charge dysuperfluid leads to insulating behavior.
namics compete. Here, vortices and charges must be viewed The duality between vortices and charges in Josephson
as bosonic quantum particles with long-range interactionsairays near the S—I transitith*® is clearly illustrated by
Artificially fabricated networks of superconducting islands Fig- 1. At the superconducting side of the transition, vortices
weakly coupled by tunnel junctions are model systems for
the study of these interacting bosons. Damping can be made
small; control parameters can be measured and to a large 2)

extent be varied independently. Quantum interference of 2r 125 {17
vorticed has been observed in a hexagon-shaped Josephson —~ 1
array and the existence of quantum Hall states in Josephson E 0

arrays has been predictad.

At low temperatures there are two competing energy -1t
scales in Josephson arrays; the Josephson coupling energy
E;, the energy scale for the superconducting coupling be- .
tween islands that permits transport of Cooper pairs and the 50 0 50
charging energy¥., the energy scale that tends to localize
charge carriers. WheB; is much larger tharf, the num-
ber of Cooper pairs on the islands is undetermined but the
phase on the islands is well defined. In this regime, the clas-
sical motion of vortices determines the array dynamics. At
low temperatures vortices are pinned in the intrinsic lattice
potential and the arrays are superconducting. In the opposite
limit Ec>E;, the phase is undetermined so that vortices are
subject to strong quantum fluctuations and the Coulomb
blockade pins Cooper pairs to the islands; at low tempera- :
tures arrays are insulating. This superconducting-to- 40 20 0 20 40
insulating(S—1) transitiorf ®induced by the charging energy V (V)
is shown in Fig. 1a), where three current-voltagd-{)
curves are plotted of three different samples of increasing FiG. 1. Current-voltage characteristics measured at low tem-
Ec/E, ratio. peratures as a function ¢8) the ratioE/E; and (b) the applied

A second control parameter that can be used to inducgagnetic fieldof a sample withE/E;=1.25, showing the cross-
quantum phase transitions is the magnetic fleldhich in  over from superconducting behavior with a critical current to insu-
arrays is denoted with the inddx the applied flux per cell lating behavior with a charging gap. The curve (@ taken at
divided by the flux quantuniby=h/2e. In Fig. 1b), I-V Ec/E;=1.7 has been scaled with a factor of 1/8 in thaxis.
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remain pinned until the bias current exceeds a critical value
above which superconductivity is destroyed by the motion of
vortices. At the insulating side, charges are localized by the
Coulomb blockade until the bias voltage exceeds a certain
threshold value. Above the threshold voltage, charges are
able to move and a conductance can be measured across the
arrayl’~°This vortex-charge duality goes even further. Just
as in the classical regime additional vortices can be induced
by a magnetic field, in the insulating regime additional Coo-
per pairs can be brought onto the islands by applying a volt-
age between the ground potential and the array. The resulting
uniform charge distribution is known as charge frustration
and a charge-tuned S-I transition has been predicted
theoretically?°

In this paper, we present an overview of the quantum
phase transitions that occur in Josephson-junction arrays and
we compare our experimental results with existing theories.
The paper is organized as follows. In the next section, we
summarize some of the basics of Josephson-junction arrays
and comment on the similarities and differences with thin
films. In Sec. lll we discuss the array characteristics and the
experimental details. Section IV summarizes the experimen-
tal results on the S—I transitions as a function of li¢E;
ratio in zero and commensurate magnetic fields. Section V
deals with the field-tuned S—I transitions and the determina-
tion of its critical exponents. We briefly comment on the
competing dynamics of vortices and charges near the S-I
transition and show that the bias current/voltage can be
viewed as a fourthinext to theE./E; ratio, the magnetic
field, and charge frustratigpmparameter to induce a S—I tran-
sition. In Sec. VI, our results of the S—I transitions as a
function of Ec/E; and magnetic field are combined and two

models for vortex quantum tunneling will be tested against g 2. Scanning-electron microscope photographs of a square

the prenmental data. We end in Sec. VIl with some con<g) and a triangularb) array. In the photographs, the schematic

clusions. drawings of the arrays are also shown; crosses represent the junc-
tions and arrows the way current is injected.

II. JOSEPHSON-JUNCTION ARRAYS . . . .
granular films, superconducting grains form a irregular pat-

A Josephson array consists of a regular network of supettern, and are coupled by Josephson junctions of different
conducting islands weakly coupled by identical tunnel junc-strength. Their self-capacitance to ground is of the same or-
tions. Compared to films, disorder is weak. With presentder as the intergrain capacitance. In amorphous films, the
technology variations in junction parameters are below 20%ormal-state resistance plays the role of the Josephson cou-
across the whole 2D array. In addition, different geometriepling and the localizing effect on charges of random disorder
can be fabricated. A square array is obtained by couplingan be compared to the charging effects in a Josephson-
islands to four neighbors and a triangular array by couplingunction array. Near the S—I transition the order parameter
islands to six neighbors. In Fig. 2, we show scanning-itself is suppressed and fluctuations in its amplitude play a
electron microscopéSEM) photographs of fabricated square role? In contrast, for the fields and temperatures of interest
and triangular arrays. Josephson-junction arrays only exhibit phase fluctuations of

Arrays are made in a planar geometry, in which eachthe order parameter.
island is coupled to a far away ground by its self-capacitance A disadvantage of artificial arrays on the other hand is
C, and to each of the other islands, also through the spadhat finite size effects play a more important role than in
outside the 2D plane. Since junctions are made of two overfilms; typical arrays have sizes of 100 by 100 cells. For in-
lapping superconducting layers separated by a thin oxidstance, in classical vortex arrays the Kosterlitz-Thouless-
layer, the main contribution to the capacitance comes fronBerenzinskii(KTB) phase transition is smeared out. Ther-
the junction capacitanc€. As a result,C dominates the mally activated single vortices can cross the array so that a
other elements of the capacitance matrix includ®dg In finite resistance is measured below the KTB transitioAn-
Josephson-junction models, the influenceCgfis taken into  other consequence of the small array sizes is that in qguantum
account but the other capacitances are usually neglected. arrays withE-~ E; the possibility of vortex tunneling across

The physics of quantum phase transitions in artificiallythe whole array width needs to be considered.
fabricated Josephson-junction arrays is related to work on When in the classical limitE-<E;) a magnetic field is
thin granular and amorphouthomogeneous films.22 In applied perpendicular to the islands and junctions, vortices
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FIG. 3. Zero-bias resistance versus magnetic frustration for a FIG. 4. Schematic drawing of the experimental setup. The RFI-
square(@) and triangular arrayb). In both graphs the dip dt=1/2 feedthrough filters are at room temperature; the RC and microwave
is the most pronounced feature, but in a square array the dip diters are at mixing chamber temperatures.
f=1/3 is more pronounced than the dip fat1/4 whereas in the

triangular array this is the opposite. by evaporating 25 nm aluminum as bottom electrode fol-

. ! : lowed byin situ oxidation in oxygen and evaporation of the

enter the array above some small critical figldlust as in counter electrode of 50 nm from an opposite artgle

films their density increases with increasing magnetic field. Along their widths, arrays are connected to narroW super-

I_n junction arraysI the periodic lattice potential prevents Vor'conducting strip$busi3ar$ Current is injected through these

g?r?rir:g g]l?r\rlsn?t tﬁ\évrée?;paerﬁtl;(rﬁlso.ng\:\;v;r, ;b\?v\rl]?cah?hzebusbars and they also serve as probes to measure the voltage
' across the array. To reduce the influence of phase distortions

resistance is found to increase approximately linearly wWith X
up to|f|=0.2. A phenomenological mod&lanalogous to the near the busbars, arrays are generally made longer than wide.

Bardeen-Stephen model to describe flux-flow in films is in/ll Our arrays are 190 cells lon@ =190 and 60 cellg wide
good agreement with experiments providing that enough dis(N=§0)- A cell of the array has an are®) of 4 um® and
sipative damping is presefit?* one island has an area of abouj.fn®.

In larger magnetic fields the behavior of junction arrays is We measure the arrays in a dilution refrigerator inside
richer than that of films. At fractional values 6fthe mag- metal and lead magnetic shields at temperatures down to 10
netic vortices form a lattice which is commensurate to themK. At the entrance of the cryostat, electrical leads are fil-
underlying junction network. The stability of the vortex lat- tered with radio-frequency interferend®FI) feedthrough
tice against a bias current leads to a decrease in the smafilters. Arrays are placed inside a closed, grounded copper
bias resistance. In order to their relative strength, one expecBpx (microwave tight. All leads leaving this box are filtered
dips at f=1/2,1/3,1/4,2/5,. .. in square array4® and at Wwith RC filters for low-frequency filtering(R=1 kQ and
f=1/2,1/4,1/3,3/8,. . . in triangular arréy$3as is illustrated C=470 phH and with microwave filters. A microwave filter
for our arrays in Fig. 3. Near these fractional valuesfpf consists of a coiled manganin witength~5 m), put inside
defects from the ordered lattio@xcess single vortices or an grounded copper tube that is filled with copper powder
domain wall$ are believed to determine the array dynamics(grains<30 um). The resistance of the wire in combination
in a similar way as the field-induced vortices determine arrayvith the capacitance to ground via the copper grains provide
dynamics nearf =0. Therefore, arrays near commensuratean attenuation over 150 dB at frequencies higher than 1
values with high stability such as=1/2 may qualitatively ~MHz. The copper box with th&®C and microwave filters is
behave in a similar way as near zero magnetic field. Becausgituated in the inner vacuum chamber and is mounted on the
all properties are periodic ih with periodf=1 an increase mixing chamber in good thermal contact. The extensive fil-
beyondf=1/2 does not lead to new physics. tering and the copper box are minimum requirements against
the influence of high-energy photons from room-temperature
electromagnetic noise and radiation.

A small perpendicular magnetic field can be applied by

Arrays in this study are fabricated of all-aluminum high- two coils of superconducting wire, placed in a Helmholtz
quality Josephson-tunnel junctions with a shadow-configuration. A frustration of =B S®,=1/2 corresponds to
evaporation technique. The evaporation mask is a three-layan applied magnetic field d8=2.6 G. The setup is sche-
resist system consisting of two electron sensitive resist layemnatically shown in Fig. 4. In Table I, we summarize the
separated by a thin germanium layer. Junctions are formecharacteristics of the arrays that have been measured.

Ill. EXPERIMENTAL DETAILS
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TABLE |. Sample parameters for our squd® and triangular(T) arrays.

R, c E,/kg
Sample (k) (fF) B:(T=0) (K) Ec/E; 7y(f=0)
S1 36.0 11 96 0.21 4.55
S2 15.3 11 17.4 0.50 1.82
S3 145 11 15.6 0.53 1.67 (0.28
S4 115 11 12.4 0.66 1.25 0.4
S5 105 1.1 11.3 0.73 1.11 0.7
S6 5.0 11 5.4 15 0.56 0.83
S7 8.0 2.0 15.6 0.96 0.48 0.85
S8 6.8 1.7 11.3 11 0.45 0.88
S9 2.5 11 2.7 3.1 0.27 0.90
S10 3.3 3.5 11.3 2.3 0.14
S11 114 11 1.2 6.7 0.13 0.95
T1 25.7 1.2 29 0.30 2.6 1.15
T2 23.8 1.7 39 0.32 1.7 1.6
T3 8.3 11 8.7 0.92 0.9 151
T4 4.7 11 7.2 1.6 0.35 1.85
A. Junction parameters R,C<10 *?s. For very small junctions wit€<0.1 fF, this

i /A —
The junction capacitanc€é determines the charging en- C'iterion indicates thak,>R, (=h/4e°=6.45 K)).

ergy, Ec=€%/2C. An independent estimate 6f is obtained
from measuring the voltage offsé€¥ ) at high bias cur-
rents atT=10 mK in a magnetic field of 2T. Using the so-  Many array properties depend on the ratio between the
called local rulé® and neglecting possible parasitic contribu- Josephson and the charging energy. In comparing properties
tions (capacitance to ground and capacitances betweeof square and triangular arrays some care is necessary. The
islands further awayC=Me?/2V ... We findC to be 1.1  actual energy required to store an additional electron on an
fF for our smallest junctions of 0.0am?. We have used the island iseZIZCE, whereCy is the sum of the capacitances to
local rule instead of the global rule to describe the couplingother islands and to ground. As in triangular arrays all is-
of tunneling processes to the environment because we meknds are coupled witlz=6 instead ofz=4 junctions, the
sure the voltage offset at high-bias currents in which case thenergy required is 2/3 times smaller than that of an island in
local rule is more applicable. The local rule is commonlya square lattice. Similarly, the freedom of the phase on a
used to determine the junction capacitance in small seriegarticular island is determined by the Josephson coupling
arrays. From measurements on many small series arraysnergy of all junctions connected to the island and therefore
variations in the junction area and theref@ere estimated it seems reasonable to assume that in a triangular array the
to be within 20%. Likewise, we estimate the variation in theeffective Josephson coupling energy is 3/2 times that of a
junction critical currentl; to be also in the 20% range or square array. To take these effects into account we define an
less. effective ratiox=(Ec/E;)e. In @ square arrax=Ec/E;

The Josephson coupling energy of a junctidsy but the corresponding value in a triangular array is defined as
[=®l/(2m)] is inversely proportional to the normal-state x=4E/9E;. Different x ratios are obtained by varying,
junction resistanc®,, . R, follows from the normal-state ar- while keepingC in the order of 1-3.5 fF. In this paper, we
ray resistance, measured at 4.2 KR,=(N+1)r,/M. The present data on arrays witR, values ranging from 1 to 36
maximum junction critical current in the absence of chargingk() and x ranging from 0.1 to 4.6. Apart from systematic
effects and thermal fluctuation$.] is assumed to be given errors that are the same for all samplgsch as the use of the
by the Ambegaokar-Baratoff valtiewith a measured critical local rule to determiné& ), we estimate our error in deter-
temperatureT, of 1.35 K. At low temperatured,.R,=322  mining E-/E; to be 10%.

mV. The degree of damping in junctions is commonly The self-capacitanc€, of individual islands is estimated
defined through the McCumber parameterfrom separate measurements on small series arrays with high
Bc(T)=2ml(T)CR3/®,, whereR, is the effective damp- E(/E; ratio. A magnetic field b2 T is applied so that the

ing resistance for each junction. In Table I, we have listedseries arrays are in the normal stag.is measured by vary-
the value of3.(0) calculated withR,=R,, . ing the potential of the circuit with respect to the ground

One should realize that there is a lower limit to the junc-potential. Recording the current through the circuit yields a
tion normal-state resistance. For small junctions with lowperiodic signal with period/C,. For islands of 1umXx1
R, the oxide barrier is of the order of one atomic layer. um, C,~12x10 8 F. We take this value of 12 aF as an
Such thin layers may produce leaky junctions. We find thaestimate forC, in our 2D arrays.
for our 1 fF junctions, this lower limit is about 1(k Thus, In small series arrays it is known that all islands carry
our aluminum tunnel junctions may become leaky whenrandom offset charges that are presumably caused by defects

B. Array properties
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in the junctions or substrate. Electron or quasiparticle tunnel-  1IV. S—I TRANSITIONS AS A FUNCTION OF E(/E;
ing will partly compensate these offset charges so that their In zero magnetic field, classical arrays undergo a

value lies between-e/2 and +e/2. These charges can be  osterlitz-Thouless-BerenzinskiKTB) phase transitioH to
nulled out by the use of a gate for each island. In a 2D arrayhe superconducting state. Below the KTB transition tem-
similar offset charges are expected. Here in practice theperature T,~E,/kg, arrays are superconducting because
cannot be compensated because too many gate electrodégre are no free vortices. Only pairs of vortices and antivor-
would be necessary, requiring complicated fabrication procetices may be present. A necessary condition for a clear ob-
dures. Therefore, some degree of disorder is intrinsicallygervation of a KTB phase transition is that vortices interact
present in our arrays but only near the S—I transition and o#Pgarithmically over large distances. In arrays, vortices inter-
the insulating side will this charge disorder affect physical@ct logarithmically over distances . ,
properties. The presence of the frozen-in offset charges also WhenEc>E;, a dual KTB transition for 2 charl S

means that a uniform charge frustration is difficult to realizeeXpeCted at a transition temperatu'rl'%fEQMkB.
experimentally When onlyC, is considered &-charge pairs interact loga-

In the description of phase transitions in 2D supercon—mhmlc‘ijIIy over a normalized screening length(Z/Co. In

) . S our arrays,C/Cy~10 so that the KTB transition will be
ducting systems, the influence of dissipation needs to b'§meared out. However, when the full capacitance matrix is

taken into account. In a single small junction, the high-cqnsidered Iosgarithmic interactions persist over lengths of

frequency coupling to the environment determines the effecorderc/c,,®i.e., of the order of the array size. Therefore,

tive damping, yielding an effective impedance of the order ofone expects to observe the distinct features of a KTB transi-

100€). This impedance can be increased, i.e., a single junction for charges in our arrays.

tion can be decoupled from its environment by placing high- At T=0 in zero field, theoretical studies indicate a S—I

ohmic resistors or arrays of small junctions in the leads clos#ansition as a function of thE./E, ratio. Quantitative stud-

to the junction. From the latter we expect that junctions in-ies have mostly been concentrated on infinite, square arrays

side a 2D array are decoupled from the leads. in the a_\'bsizlence of disorder. From duality arguments, Fazio
At low temperatures one would not expect quasiparticle?nd Scha ™™ have estimated the critical valug, separating

tunneling to play a role in our samples sinEg is smaller superconducting and insulating behaviorTat0. In the ab-

than the superconducting gdp Experiments on small ar- S€nce of damping, their analysis.gi\pQFnz_IZa. The factor _
&a arises from a symmetry breaking term, i.e., from the spin-

wave contribution to the charge correlation functi@®1).

a small but finite amount of quasiparticles is always presentl.n the oresence of auasivarticles arravs with strona dissioa
This is apparent, for example, in the vortex interference P q P y 9 P

experimertt where vortices move around a charge with thetlon (@e>0.49) are expected fo be in the superconducting

odicity e instead of 2. Th inarticl b state atT=0.! Other authors have used other methods to
periodicily € instead of £, The quasiparticles may be gen- calculatex,. Analytical calculation® yield x,,~10, a varia-
erated by the environmerfi.g., by photons

J i tional approacH x.~2, and two studies based on Monte
Quasiparticles may also be generated by the moving Vorcaiio simulations indicate thad, ~1.738 and x,~3.3

tices themselves. When vortices cross junctions, the |5 syperconducting films as well as in arrays, it has also
junction-phase difference changes abruptly dyn square  peen argued that the zero-temperature resist®icat the

arrays and #/.3 in triangular arrays. According to the ‘]O'. critical point is finite so that the array acts like a metal right
sephspn relation, th_ese phase changes Iead_ to voltage Sp'k:ftsthe S—1 transitioh® From the vortex-charge duality one
of which the amplitude depends on the time the vorte

spends crossing the junctions. Precise values of this time ;(expects the resistance per junction to be the guantum resis-
' tince of pairs,R,. This value of the resistance can be

not knofwr;. I\_Iever_thelgss, dl.Je to thel_hlghly nolnllnearl Char’[hought of as due to the simultaneous passing of one Cooper
acter of the junction dynamics, coupling to voltages larger, ;- 504 one vortex through the system. More detailed cal-

th(lanA/$hqan be ﬁxp_ectedfand h_encg tlhe creation ofquasma ulations on short-range interacting bosons on a 2D lattice
tlgg]s. di IS nt1ec etmlsmfoJ quasr:par'uce gentlatrat|or;d|sﬂ? refsu ose-Hubbard modglhave shown that in the absence of
ot the diScrete hature of JOSEphson arrays. t wou EreloGisorder and dissipatioR5 has a universal value of/g/

be difficult to eliminate quasiparticles completely. er squard® When resistive shunting of the junctions is in-
Tunneling of quasiparticles leads to dissipation characteroc' >4 ) 9 J

. .
ized by the dimensionless parametgr=R,/R.. This R, CIUdeiz’oRO is expected to be higher and equaRgi0.12 per
cannot be smaller thaR, nor larger than the subgap resis- square.

tance. In tunnel junctions at low temperatures, the subgag In a magnetic field off =1/2 iq _the absenpe of resistive
resistance is orders of magnitude larger tRan It is impor- hunts, the zero-temperature critical behavior of the square

tant to realize that the parametef=R,/R, is not indepen- XY model has been analyzed by Granato and Kostéflitz.

dent of theEo/E, ratio becaus&€c/E,=(2E/A)a ;L. They find that herdRj has a univer;al valug ofRy/, half

At low temperatures, the 2D flux penetration depththe val_ue 2of the zero-field critical re5|s_tance. Rece_nt
A, (T)=® /27l (T) is much larger than the array sizes galculatloné on*the Bose-Hubbard mogel in a magnetic
so that the magnetic field is essentially uniform over thefi€ld show thatRy =1.9R, at f=1/2 andRy =1.2R, at f=
whole array. Thus, self-induced magnetic fields can be nel/3.
glected in our arrays. A similar conclusion can be drawn by
considering the ratio of the cell inductangge estimate the
geometrical inductance to be of the order of 1)pH the Figure 5 shows the resistive transitions of six different
Josephson inductangge-1 nH). square arrays in zero magnetic field. The zero-bias resistance

A. Experiments at f=0
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0 ‘ 500 1000 FIG. 6. Measured phase diagram of our square arfaghd

squarep and triangular(solid triangle$ in zero magnetic field,

showing the  superconductor-to-insulator  transition at

(Ec/Ejer=1.7. The solid line is a guide to the eye connecting the
FIG. 5. The zero-field linear resistance per junction measured agata points and the dotted line at the superconducting side is the

a function of temperature for six different arrays. Dotted lines areresult of a recent calculatiofRef. 39.

fits to the vortex-KTB square-root cusp formula. The dashed hori-

zontal line shows the zero-temperature universal resistance . . . .
(8R,/m=16.4 k) of the S—I transition af =0. energy barrier proportional to the logarithm of their separa-

tion. The absence of this logarithmic term indicates that the
interaction is screened at lattice spacing distances. This en-

T (mK)

per junction(Ry) is measured with a very small transport o
current (<10 3l per junction in the linear part of the hanced screening Is not understood yet.
current-voltage characteristic. Three arrays become super- The resistance of samp%.hasav.ery remarkable qepen-
conducting, two arrays insulating and one array that lies ver)?ience on temperature. Starting at, high temperatigsrst
close to the S—I transition shows a double reentrant deperfl€creases when the temperature is lowered. Over two orders
dence. The horizontal dashed line in Fig. 5 is the critical®f Magnitude it follows the square-root cusp expression. Be-
resistance value of R /. low T=150 mK, howeverR, increases by more than three
For the three arrays that become superconducting, werders of magnitude and at the same time a charging gap
have fitted our data to the predicted square-root cusp depefevelops in the-V curve. Finally at 40 mKR, starts to
dence on temperatur®y/R,=c exg —b/(7— ) ¥?] with b decrease again. The second reentrant transition at 40 mK
andc constants of order one. To compensate for the tempersseems to be a more general feature of arrays near the S—|
ture dependence @ ;, a normalized temperature is defined transition which is also present in a magnetic field. Different
as r=kgT/E;. From these fits we have determined the nor-explanations for reentrant transitions from S-like to I-like
malized KTB transition temperaturg, for our arrays. Re- behavior have been proposed in the literafif€=*In the
sults are listed in Table I. We find that near the S—I transitiorabsence of quantitative predictions, we cannot discriminate
7, IS substantially smaller than the classical value of 0.90between the different theories.
Note that at low resistance levelRd<10 °R,), deviations Summarizing the zero-field results we have plotted our
from the square-root cusp dependence are found and that tidata in a phase diagram and compared this with theoretical
resistance decreases exponentially. As mentioned in Sec. predictions. In Fig. 6 the superconducting—normal phase
this is indicative of thermal activation of single vortices boundary is the vortex-KTB phase transition. Temperature
across the whole array width. on the vertical axis in this figure is given in units of
Two arrays become insulating, showing a continuous in-—=kgT/E; and scaled tay,, the KTB transition temperature
crease oR, asT is lowered. From the vortex-charge duality, in the classical limitx=0. We find r,=0.95 for our square
one now expects the conductance to follow a square-roarrays which is close to the value of 0.90 determined from
cusp dependence on temperature. We do not observe thidonte Carlo simulationd® For our triangular arrays,
square-root cusp dependence characteristic for the KTB trans,,=21.7 which should be compared to the Monte Carlo
sition. Instead we observe an exponential decrease of thealue of 1.45*" As a function ofx a clear, systematic de-
conductance. The activation barrier is equal to B25A.  crease of the KTB transition temperatures is observed. In the
The same exponential behavior with exactly the same barrignsulating side of the figure no phase transition was ob-
has been reported by the Harvard and Chalmers groufis. served. The dashed line therefore is somewnhat arbitrary. It
This exponential decay can be explained as thermal actirepresents the crossover to the low-temperature region with
vation against the sum of two barriers: the superconductingry> 10°R,,.
energy gagA) to break a Cooper pair arfel-/4 to separate Our measurements indicate thaj~1.7. This value is in
this pair to create a charge anticharge pair on two adjacer@greement with the Monte Carlo simulations and the calcu-
islands. Like with vortices in arrays at the superconductingations based on the variational approach. The calculation
side of the S—I transition, one expects that separating thibased on duality arguments agrees with our experiments if
pair further apart would lead to an additional term to thea~3.
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value of the S—I transition is shifted by 2, which is close

06 to the observed reduction of 0.7.
=1/2 Like in thef =0 case, the dashed line in Fig. 7 is the result
04l y . 1 of quantum Monte Carlo calculatiof$For x—0, the calcu-
' .. fesistive /conductive lated values extrapolate to the expected value of 0.44. The
[ Sud

experimental points of the transition temperatures are lower
than the calculated ones. At present, we have no explanation
for this discrepancy. It would require a more detailed study

0.2t

supercondu:ﬁng insulating and better u_nderstan_ding of the phase transitiorﬁ:al/_z.
0.0 : The calculations do indicate, on the other hargz=1, in
0 v v=psm 2 agreement with the experiment.
¢ There are no detailed calculations yet for the phase tran-

sition at other commensurate fields. &t 1/3 in arrayS5 we
FIG. 7. Measured phase diagram of our square arrajs &2,  find a double reentrant dependence of the resistance similar
showing the superconductor-to-insulator transitiorEatE;~1.2. o the curve of sampl83 in Fig. 5. The minimum and maxi-
The solid line is a guide to the eye and the dotted line at the Supeimum resistances occur at the same temperatures but the re-
conducting side is the result of a recent calculatigef. 39. sistance only varies between 3.8 and 5(b Rhis array lies
very close to the S—1 transition for this value ff so that
In the quantum Monte Carlo study of Ref. 39, the reduc—xcrwl_1 andR% ~4.5 k) at f =1/3. Note, that af =1/2 array

t_|on Qf . has t_)een calculated asa functiorxofThe dotte.d S5 becomes superconducting when lowering the tempera-
line in Fig. 6 is the result of this study. The calculations

show a larger value ok but there is a good agreement
between the calculations and the experiment for small

Here, the reduction of the KTB transition temperature fol-
lows the expression/ 7y~ 1— 2.9/z*> wherez is the num- V. FIELD-TUNED TRANSITIONS

ber of neighboring islands. This expression indicates that |n arrays which are in the superconducting statd a0
7yo Of triangular arrays and square arrays are expected tgut have an E/E,)e ratio close to the critical value, a
coincide if thex values for the triangular arrays are scaledmagnetic field can be used to drive the array into the insu-
with 16/36. This is in fact the scaling we used for our ex-|ating state. This field-tuned transition has been considered
perimental points in Fig. 6. theoretically by Fishéf in disordered systems and has been
For our 1 fF junctions, the S—I transition of Fig. 6 could opservef” in InO, films. At low magnetic fields vortices at
have been induced by dissipation. Supp&se= yR, with  T=0 are pinned but for higher fields, the vortex density in-
y=1. Then, the criterior,>0.45 translates intec/E;<2y,  creases and at some critical density, vortices Bose condense.
i.e.,X=2y. To match our experimental data,has to be 1. The vortex superfluid leads to an infinite resistance. The
Thus, our data do not exclude the possibility that the S—kharge-vortex duality near the S—I transition indicates that
transition is influenced by the normal-state resistance. Anyhis transition can also be thought of as Bose condensation of
other resistance value for the damping can be ruled out. Aharges that occurs with decreasing magnetic field. In
systematic study on samples with larger capacitances coulibsephson-junction arrays withc~E; disorder is intro-
be used to test this influence; arrays with 5 fF junctionsguced by the random offset charges and therefore we believe
should have a criticaEc/E; ratio of 0.4 if the transition is  that the predictions of the critical behavior are also adequate

driven by dissipation withR,, as damping resistance. for our Josephson system.
The general characteristic of this S—I transition is that
B. Experiments at commensuratef values (f=1/2,1/3 whenf is increased from zero, the temperature derivative of

élge resistance changes sign at critical valdefs . This is

We have measured the S—I transition of square arrays at-, "~ . "
f=1/2 in detail and in Fig. 7 its experimental phase diagramVISIbIe in theR,(T) plots of Fig. 8. Below a critical valug,

is shown. Atf =1/2 the interaction between domain-wall ex- (e resistance decreases upon cooling d¢dR,/dT>0).

citations with 1/4 fractionally charged vortices at the corners PoVe fc the re5|sthance mclreasﬁdsRo/ _d-:;<g) anéi for I?W .
and excess single integer vortices is believed to trigger i£MPeratures reaches a value that might be orders of magni-

combined KTB-Ising transition. The classical Monte CarlotuhdeS higheL than the normgl-statg resistance. Th(ijs sign
simulations indicate a transition temperatureref0.44 for change in the temperature dependence corresponds to a
x=025 change in thd-V characteristics shown in Fig(4).

As in f=0, our measurements indicate a superconductor-
to-insulator transition at =0. FromR,(T) curves we find a
S—I transition forf =1/2 which occurs around 11(k(at low
temperatures, sampfb becomes superconducting, whereas A detailed way of observing this field-tuned S—I transition
sampleS4 becomes insulating The critical EC/E; ratio is  is by measuring the resistance versus magnetic field for dif-
about 1.2, a factor 0.7 lower than the zero-field value. Thiderent temperatures. For sampl€ the result is shown in
decrease ok, is consistent with the simple model that at Fig. 9. In the range €f<1/3, theR(f ) curves are very
f=1/2 the effective Josephson coupling energy is modifiedsimilar to the ones measured in thin films. Below the critical
the interaction energy of a vortex pair is a fact@rsmaller field f,=0.14 the resistance becomes smaller when the tem-
than in zero field. With this lower effective coupling tike  perature is lowered and abovg the resistance increases. In

A. Scaling behavior
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TABLE II. Critical exponents and resistances of the field-tuned

106F o5 a) sample S4 ] transitions.
Sample f comm fe R. (kQ) Zgvg
S4 0 0.1 25 1.2
S5 0 0.22 2.5 15
1/3 0.015 4.6 0.6
1070016 1 172 0.05 3.4 12
=02 ' b) sample T2 1 0 002 25 @9
T T2 0 0.14 1 21
A/// 1/4 0.025 12-13 0.8
: 1/3 0.01 15

1/2 0.02 12 0.7

junction arrays! with the values found in InQfilms*’ and

103 high-T,, films*® as well as with the theoretical expectations

The exponentgg can also be obtained form the measure-

FIG. 8. The linear resistance per junction of ar@4 (), and  Ments by plottingf. as a function of the zero-field KTB
array T2 (b) measured as a function of temperature for varioustransition temperaturefcocT\z,'ZB. Our two data points on the
values of the magnetic field. The field-tuned S—I transition occurs agriangular arrays yield a rough estimate f~0.34 and the
that frustration where the temperature dependencBsofhanges two data points on the square arrayszg#1.4.49
sign. For both arrays this sign change occurs betwiee®.10 and In the original paper by Fish¥rthe resistance per square
f=0.15. at the transition is predicted to be universal and of the order

of Ry. Measurements on different thin films show that the
Table Il we give the values df; andR, for the two square resistance right at the transition is of the orderRyf but
and the two triangular samples that showed field-tuned tranmeasurements are not conclusive regarding the universality.
sitions. In our arrays, this resistance is again of ordgy, yet it

According to Fishef? the slopes of th&®(f ) curves aff,  varies between 2.5 and 12.5)Ksee Table ). For triangular
should follow a power-law dependence dnwith power arrays, one should probably take the resistance per square
—1/(zgvg). The exponentsg andvg characterize the scaling which is 0.5 times the junction resistance. In that case, the
behavior of the field-tuned S—I transition. When on a doublecritical resistance at the transition varies between 2.5 and 6
logarithmic plot the slopes of th&(f ) curves atf, are k(.
plotted versus T/, we find a straight line in the temperature A new feature introduced by Josephson-junction arrays is
range 56<T<500 mK, as shown in Fig. 10 for sample2  the existence of field-tuned transitions near commensurate
and S5. From the reciprocal of this straight line the productvalues of the applied field, i.e., &t .o Studying
zgvp can be determined. In different samples, we find valueshe R(f ) curves of sampl&2 in more detail, we see critical
between 1.2 and 2 as listed in Table Il. These values arbehavior not only around =0, but also around ==*1/4,
consistent with measurements by others on Josephsor=1/3,+1/2,+2/3, and*=3/4. Thus, in this sample in total 12
critical points can be observed when going frém0 to £1.

For samples5, similar transitions occur neée=*+1/3, =1/2,
and +2/3. For each commensuratevalue zgvg can be de-

20
o

10f _

g sample T2 oA
2| A&
= 10 . e
o L
% 0 0.2 0I4 g ,_,—1’"‘ sample S5
. . . -
frustration N
10"
FIG. 9. The linear resistance per square of affaymeasured as 1

. ran : T (K
a function of the magnetic field for three different temperatures,

T=50 mK (solid line), 120 (dotted, and 160(dashed ling Below

the critical fieldf., the resistance decreases wheris lowered,; FIG. 10. The slopes of thB(f ) curves aff . plotted as a func-
abovef. in the rangef,<f<0.25 the resistance increases. Neartion of the inverse temperature for a square and triangular sample.
fractional values off additional field tuned transition can be ob- The slope of the dashed lines determines the product of the critical
served. exponentsgug -
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FIG. 12. The width of the gap of a square and triangular array
FIG. 11. Two current-voltage characteristics of samfilemea-  Measured as a function of the frustratifin

sured in a field below (f=0.01) and above (f=0.2). Inset: the
current-voltage characteristic measuredfat0.2 on an expanded looks like anl-V measured at the superconducting side of
scale showing the “Bloch nose™ at the edge of charging gap.  the transition. With a small measuring current the resistance

is much larger than in the normal state, but with a large
termined as described above. In Table Il we list the resultgneasuring current the resistance is smaller. Studies on granu-
for Samp]eTz and S5. For T2, we find values OfZBVB lar Al films have shown a similar electric-field tuned S—I
around 1 and critical-resistance values of 10. K or the transition; a dc bias current and/or voltage was used to over-
square arrays5, the values ofzvg are about the same, but come the Coulomb barrier and at least partly recover Joseph-
the critical resistance is a factor of 3 smaller. Calculations or$on tunneling?

the boson Hubbard model in a magnetic ffélshow that the Just above the threshold field, the voltage across the array
productzgvg at f=1/2 is close to 1 in agreement with our decreases with increasing current as illustrated in the inset of
measurement. Fig. 11. In a single junction such a negative resistance is

known as the “Bloch nose®®! It is caused by a macro-
o scopic quantum effect due to the energy band structure for
B. I-V characteristics the junction charge states; for low currents, kh¥ follows a

The changing nature of theV characteristic at the S—1 high resistance brandhuasiparticle tunnelingbut at higher
transition is shown in Fig. 11 in more detail and once morecUrrents coherent Cooper pair tunneling proceg&h os-
illustrates the competing dynamics of vortices and chargesql"atlons) become important and decrease the averaged volt-
Below f, the I-V shows a supercurrent branch with a finite 2J€ across the junction. Then for larger currents, Zener tun-
slope. When on the other hand the field is increased abov@€ling causes the voltage to increase again.

f., a small charging gap opens up in the supercurrent branch. For larger fields the gap becomes more pronounced and
The zero-bias conductance is measured within this gap and Y€ find that the gap width increases linearly witas shown
temperature independent far<50 mK. We attribute this N Fig. 12. The gap width is periodic i Theoretical studies
metallic behavior on both sides of the S—I transition to quan®n the Bose-Hubbard model have considered the width of
tum tunneling of vortices and charges, respectively. We ddhis charging gap’ The gap aff =0 is proportional to/f. At

not expect the metallic behavior to be due to an effectivenonzero temperatures or in the presence of offset charges, the
noise temperature of 50—100 mK in our heavily filtered9ap is expected to be linear fnas observed in our experi-
setup, because several samples do show a changing resigent. The absolute value of the gap is much smaller than

tance below these temperatures. calculated without the presence of offset charges.
The metallic behavior is not in contradiction with the pic-
ture of Bose condensation as discussed in the beginning of V1. DISCUSSION

this section. Consider for instance, the tunneling of vortices

at the superconducting side of the S—I transition. With a Our results indicate that quantum S—I transitions occur as

small current applied and in the absence of damping, a turg function of theE/E; ratio and applied magnetic field. The

neled vortex would accelerate up to high velocities. When itgritical resistance and critic&lc/E; ratio of these S—I tran-

kinetic energy equals the gap energy, many quasiparticlesitions depend on the magnetic field, i.B5 =Rj(f ) and

will be generated and damping will suddenly become imporx,=X.(f ). In subsection A we combine our results of these

tant. This process would lead to a highly nonlinea&¥ char-  two S-I transitions and try to draw some general conclu-

acteristic in contrast to our experimental findings of a linearsions.

[-V aroundV=0. The experiments therefore show that mov- For noncommensurate values bf our data indicate a

ing vortices always experience some damping independemsuperconductor—normal—insulator transition B&0. For

of their velocity. As discussed before in Sec. Ill B, this T<<100 mK, the array resistance of arrays “around” the S—I

damping is caused by the presence of quasiparticles. THeansition is independent of temperature due to quantum tun-

finite slope in the charging gap can be understood likewiseneling of vortices/charges. In subsection B, we have col-
On a large scale, the twibV's of Fig. 11 look similar. lected data of samples at the superconducting side of the S—I

Above f., a small charging gap appears in th&/ charac- transition and compared them to two quantum tunneling

teristic but at high currents and/or voltages the curve stillmodels.
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FIG. 14. The critical resistance per junction versus applied mag-
ic field for our arraygsolid symbol$ as well as for four square
earrays(open squargsrom a study at Chalmer@Ref. 11).

FIG. 13. Measured phase diagram for square arrays in a mag. .,
netic field. A sample with a certaiB/E; ratio corresponds to a
horizontal line in this figure. Below the dotted line, samples becom
superconducting at low temperatures; above this line samples be- L .
coﬁwe insulating. At noncongmensurate magnetic fields, tEe S_ﬁance(=8Rq/7-r). The dashed I|.ne“|nd_|cates ”a resistance per
transition is not sharp because the superconducting region is sep§lguare and per vortex that is _unl\{ersal and eql,*a' to
rated from the insulating region by a metallic regidinis additional 8Rq/77' The data are not conclusive since error margins are

normal phase is not shown in the figure large.

A. Critical properties of the S—1 transitions B. Metallic behavior at noncommensuratef values

In Fig. 13, we have plotted the criticBl-/E; ratio as a In a noncommensurate magnetic fié@<f<0.2), all our
function of applied magnetic field for our square arrays. We‘superconducting” arrays show a region with exponential
have combined the three pointsfat0, 1/2, and 1/3 with the  decay of the resistance. We have fitted our data in this re-
two data points of the field-tuned S-I transition. After agime to a standard Arrhenius form with a frustration-
rapid decrease the critical ratio is almost constanffe0.1.  dependent energy barrier
The critical Ec/E; ratio at f=1/2 is larger than at other
nearby values of, indicating once again the stability of the
phase configuration dt=1/2. Figure 13 also shows that ar-
rays in the range 12E./E;<1.7 do not show special be- An example of such a fit is shown in Fig. 15. In Table IIl, we
havior at commensurate values(e.g., dips in the magne- summarize the results of our samples giving the values of
toresistance arrays are superconducting in zero field but/{(f ) andc, for f=0.1 of all samples that showed a flatten-
insulating atf=1/2, 1/3, 1/4,. .. . ing off of the resistance and for soniesalues of one square

One expects the magnetic field to effectively lovilgrso  and triangular array in particular.
that the S—I transition is shifted to low&c/E; ratios. A Below a certain critical temperature of about 100 mK
magnetic field also has a stronger influence in triangular ar¢l/~10 in Fig. 15 the resistance becomes temperature in-
rays because the total phase difference around a cell inducé¢pendent and remains finite down to the base temperature
by the flux is divided over three junctions instead of four. Inof 10 mK of our dilution refrigerator. In Table Il we have
particular, this would mean that in a magnetic field the phaselso listed the values of the finite resistance per junction
boundary of Fig. 12 is different for triangular arrays; most(Rqo). We checked that varying the measuring current made
likely it will lie below the line of Fig. 12. Our measurements no difference inRy, so that self-heating effects can be ex-
are in agreement with this picture. cluded.

For the S—I transition at zero field, at commensurkte
values as well as for the field-tuned transitions it has been
argued that the zero-temperature resistance right at the tran- 10*
sition should be universal. Of course zero temperature cannot

Ro(7)=c4Rye! ™1 /7, (D)

sample S5

be reached in an experiment nor is the sample of infinite size, g 10°

but extrapolation of our data can still be used as an estimate &

for the zero-temperature behavior. For the transition in zero 10?

field, we find for an array that lies almost on the S—I transi- .

tion, double reentrant behavior around the predicted resis- 10 E\‘\: 0025 ]
tance value of 8,/m=16.4 K). For the field-tuned transi- 100 L e

tions, the critical resistance per square is again of the order of 0 10 20 30

R, but varies from 2.5 to 6 K. In Fig. 14, we have plotted 1/7=E/kgT

the critical resistance per square for all our S—I transitions

together with four points taken from field-tuned transitions G, 15, The linear resistance per junction of sanfieversus
measured in Chalmef$.As can be seen, the critical resis- jnverse normalized temperature measured for various values of the
tance varies wittf. Interestingly, the data seem to indicate aapplied magnetic field. At high temperatures, the resistance de-
dependence of the critical resistance per square that goes @®ases exponentially; at low temperature the resistance is tempera-
the number of vortices per celi=f ) times the critical resis- ture independent indicative for quantum tunneling of vortices.
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TABLE lll. Summary of the resistive behavior of “superconducting” arrays close to the S—I transition.
y(f ) andc, describe the exponential behavior at high temperature, wiférg is the energy barrier in units
of E;. Ry is the value of the temperature-independent resistance at low temperatures. The listed value is the
resistance per junction. The exponents of the tunnel rates which follow from the measurements, are given by
Smeas Ssv IS the calculated value in the single vortex model as discussed in thEEgxt3)].

nF) Roo
Sample f (EJ) Cq (Q) Smeas Ssv Smeaés‘sv
S4 0.1 2200
S5 0.025 0.7 0.1 2.6 10.2 2.6 3.9
0.05 0.5 0.3 11 9.4 2.3 4.0
0.075 0.4 0.5 35 8.6 2.2 4.0
0.1 0.3 0.4 150 7.4 2.0 3.8
0.15 0.1 0.4 850 6.0 1.4 4.3
0.19 0.05 0.3 2300 51 1.2 4.4
S6 0.1 0.5 0.7 22 9.4 3.7 2.6
S7 0.1 1.8 0.1 0.02 16.7 57 2.9
T2 0.1 0.1 0.4 5067 3.5 0.7 51
T3 0.03 1.0 0.2 6.8 9.4 2.7 3.5
0.05 0.5 0.2 74.6 7.4 21 3.6
0.075 0.3 0.3 392 6.0 1.7 3.5
0.1 0.2 0.4 746 5.7 15 3.8
0.125 0.2 0.5 1057 55 15 3.6

While at higher temperatures vortices are expected to beiations from the statically calculated mass in the dynamical
mobile due to thermal fluctuations, classically one would ex=situation if a vortex is not moving as a rigid object.
pect them to be pinned in the lattice at 10 mK. The fact that In the model discussed above, vortices in the array tunnel
we find a finite resistance at those temperatures signifies thgfom cell to cell. Alternatively, single vortices can also cross
there exists a quantum transport mechanism for vorticeghe whole array width at once. The same model as above
analogous to quantum tunneling of the phase in single juncapplies, butRy, in Eq. (2) is a factorN larger. This would

tions. The exponential behavior at higher temperatures anghake the discrepancy between model and experiment a fac-
the flattening off of the resistance at low temperatures fitg,, of 8 instead of 4.

well with the description of a single quantum-mechanical
particle in a potential well. Assuming particles to be
vortice$® with massM = ® 3C/2S tunneling through barri-
ers of E,= y(f )E;, one can estimat®,, from the analogy
with single junction®’ (moderate damping regime

Another possible model for quantum tunneling of vortices
that includes collective effects but also disorder, is variable-
range hopping as discussed by Fiskernl> In this model
the vortex-hopping length increases with decreasing tem-
perature. As the hopping length becomes larger than the dis-
s tance between vortices the temperature dependence changes
Roo~7.2RqfV120mse >, (2} from the classical Arrhenius behavior to a power law of the
form exp—(T,/T)", where T, is a function of the barrier

wheres is given by height and' is a constant between 2/3 and 4/5. In this model

79 0.87 a temperature-independent resistance arises at low tempera-
s=— 2EM,| 1+ ——|. (3)  tures when the vortex hopping length equals the width of the
fi VBe.w finite sample(60 cells in our cage We have fitted the resis-

tance in the temperature-dependent regime to the predicted

Bco=27B. is the vortex McCumber parameter. We have arrhenius behavior at high temperatures and the predicted

fitted our data to Eq(2) and in Table Ill, the measured power law at lower temperatures. For most arrays this does
values ofs are given asyeas not improve the agreement. In view of the large number of
In Table IIl we have listed the values of the tunnel ratesfitting parameters involved we do not want to draw definite

calculated from Eq(3) asss, . We used the quasistatically conclusions about the validity of this model.
calculated, classical madd,, for a vortex, the measured

barrier height and an effective damping of the normal-state

resistance. We find that the measured tunnel rates are lower
than expected. As shown in Table Ill, the measured values of
s are about a factor of 4 higher than the ones calculated in We have reported on measurements of quantum phase
the simple approximation. This increase by a factor of 4 igransitions in Josephson-junction arrays at zero and nonzero
consistent with the single vortex model when using a massnagnetic field. S—I transitions have been studied as a func-
that is an order of magnitude higher than the one calculatetion of the E-/E; ratio and as a function of the applied

in the quasistatic approximation. One may expect large demagnetic field. For the S—I transitions as a function of

VIlI. CONCLUSION
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Ec/E;, we find qualitatively similar behavior for zero and completely understood. A similar conclusion can be drawn
commensurate values of the applied field. Measurements ider the dual experiments at the insulating side of the S—I
dicate a superconductor—insulator transition at the loweskansition where 2-charge excitations dominate dynamics.
temperatures with a magnetic-field-dependent critical resisBecause junction parameters are so well known, it should be
tance[Rg (f )] and critical E¢/E, ratio [x¢(f )]. possible to gain a more quantitative understanding of quan-

When quantum fluctuations are large already in zero fieldum dynamics near the S—I transition. Studies should con-
(arrays withEc~E;), an applied magnetic field can drive a sider the discreteness of the lattice, random offset charges,
superconducting array into the insulating regime. Thisthe coupling to quasiparticles, and possibly edge effects. If
magnetic-field-tuned S—I transition arises from a collectivethese effects can be incorporated, experiments on Josephson-
Bose-condensation of vortices and critical exponents of th@unction arrays could quantitatively test the validity of theo-
transitions near zero field are in good agreement with theoretical models describing two-dimensional systems of inter-
retical expectations. Field-tuned transitions also occur neajcting bosons.
fractional values of with similar critical behavior.

From simple considerations, the influence of quantum
phase fluctuations on the vortex dynamics is a lowering of ACKNOWLEDGMENTS
the cell-to-cell barrier, the depinning current, and the vortex
mass. The trends that we observe in our arrays close to the We thank R. Fazio, M. P. A. Fisher, J. V. Jo& Scha,
S—1 transition are in agreement with this picture. Quantita-and A. van Otterlo for valuable discussions. This work was
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