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Abstract 
Wave transmission is a very important design parameter for submerged porous breakwater 

design, as it defines the dimensions of the breakwater as well as the cost and construction 

process. The spatial distribution of the wave transmission parameter influences the current 

pattern on the lee of the breakwater and therefore the sediment transport process. For this 

reason it is important to create a design tool capable of predicting the variation in wave 

height around detached submerged breakwaters.  

This study has been conducted as an extension of the work completed by Amir Ahmadian for 

his PhD project the University College of London under the supervision of Professor Richard 

Simons. During his research a large number of experiments were conducted in order to 

create an extensive database on wave transmission around semi-infinite impermeable 

breakwaters. The results of these experiments where then used to create an ANN model 

capable of predicting the 3D wave transmission coefficients around submerged breakwaters.  

This thesis therefore aims to create an ANN model capable of predicting the 3D wave field 

around permeable submerged breakwaters, by using the algorithm architecture proposed by 

Ahmadian. To the author’s knowledge there are a limited number of experimental studies 

on the field of 3D wave transmission of permeable breakwaters and therefore creating an 

ANN model based on physical measurements is impossible. For this reason a large number 

of 3D experiments where performed using MIKE21 BW in order to create a database that 

will then could be used to train and test the ANN model. Important evidence of the 

significance of diffraction and breakwater permeability on the wave transmission 

phenomenon for submerged porous breakwaters where obtained. In addition the results of 

the simulations where then cross validated against the empirical formula provided by 

Vicinanza et al (2009). This analysis showed that the quality of the data was very good and 

could be used for training a Neural Network. During this process it was proposed that the 

empirical prediction formula of Vicinanza could be improved by introducing a correlation 

factor, as the numerical simulations showed strong evidence that the diffraction and wave 

transmission over and through the breakwater have a negative correlation. With regards to 

ANN modeling the algorithm showed that it has an excellent capability to predict the test 

dataset (obtained from MIKE21 BW simulation). The analysis of the ANN model revealed 

that the model predictions are in very good agreement with the prediction method of 

Vicinanza. Finally the sensitivity analysis of implemented showed that the permeability 

factor introduced to account for the effects of permeability has the most important 

contribution to the models performance. 

Concluding this thesis suggests that the proposed model has the potential to become a 

valuable design tool for engineering purposes in the field of submerged breakwater design. 
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1 Introduction 
 

1.1 Background to the Research 
Wave action in the surf zone is responsible for many phenomena that influence the 

morphology of the coastline. The driving force for these morphological changes is sediment 

transport which results in the accretion or erosion along various parts of the coast. The need 

to protect coasts has increased dramatically over the last years as the result of the 

population growth and urbanization. Half of the world’s population lives in coastal regions, 

many of them exposed to the dangers of wave action as a result of the sea level rise. For 

that reason the need to protect the water boundaries of these areas has increased. Over the 

past decades numerous shoreline protection schemes have been proposed designed and 

implemented such as: dikes, revetments, groynes, nourishments, and detached submerged 

and emerged breakwaters. Over the past 30 years considerable amount of research has 

been conducted in the field of breakwater design and wave-structure interaction.  In recent 

years there has been a shift of preferences in coastal structures from structures that 

completely prevent wave transmission to submerged structures that only allow a restricted 

amount of energy to pass over them and allow waves to break at some distance from the 

shore. There are several reasons that contributed to this shift such as: 

 Low construction costs compared to other hard structures that completely block 

waves. 

 Aesthetics, submerged structures do not disturb the line of site (especially in regions 

where the tide variation is negligible, such as the Mediterranean and the Persian 

Gulf). 

 Environmental, SS’s allow create a mild wave environment on the lee side which 

provides a friendly environment for marine fauna and flora 

 Recreational, enhancing surfing conditions as in the artificial reef in the Golden 

Coast, Australia. 

 Effectiveness in trapping sediment and consequently protecting the shore from 

erosion. 

Despite the research that has been conducted many questions have still not been answered 

with respect to the hydrodynamic phenomena that occur on the lee side of SS’s. There is a 

lack of information regarding information about the wave steepness, spectral shape, wave 

period, current patterns, sediment transport etc. In order to find an answer, there is a need 

of developing a prediction tool that is capable of not only to predict average values of wave 

transmission but also the special distribution of the wave heights in the lee side of the 

structure. Very few studies have examined the 3D effects around detached breakwaters and 

even less the combined effects overtopping diffraction and permeability. The main reason 

behind this is that scaling both seepage and wave structure interactions are contradicting 

processes (Froude Number versus Weber number). Only a small number of studies can be 

found on the topic of near shore wave transmission at submerged breakwaters. This was the 

main stimulus and driving force behind the present report. 
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Artificial Neural Networks (hereafter ANN’s) which are data-driven algorithms have been 

used in the past to solve complicated nonlinear problems. A number of studies have 

implemented them in the area of coastal engineering (Mase et al. 1995, van Gent and van 

den Boogard 1998, Medina 1999, van der Meer et al. 2005, van Gent et al. 2007, Panizzo and 

Briganti 2007, Sharifahmanian 2013).  

The PhD project of Amir Sharif Ahmadian  under the supervision of professor Richard Simons 

at the University College of London (UCL) developed a design tool using an ANN that is 

intended to improve 3D wave prediction behind breakwaters (Sharif Ahmadian and Simons, 

2012). The model includes both diffraction and overtopping effects. Unfortunately the 

model did not include permeability effects. This tool may allow the more successful 

prediction of sediment and current patterns on the lee side of breakwaters.  

The study described in this report has the purpose of examining the effects of permeability 

on wave transmission at submerged breakwaters and to create a forecasting tool capable of 

predicting the spatial variation of the wave transmission coefficient behind submerged 

permeable breakwaters. 

 

1.2 Objectives 
This report has two main objectives which can be defined in the form of two questions and 

are presented below: 

1. Does the permeability of submerged breakwaters influence the wave transmission 

process? 

2. Is it possible to predict more accurately the wave field behind submerged breakwaters 

by incorporating permeability in an ANN program which is trained using data from a well 

calibrated 2DH Boussinsesq wave model? 

In the process required to answer the above questions several other problems arise. These 

are as follows: 

1. How can permeability be incorporated in an ANN model and how can we optimize the 

models predicting capabilities? 

2. Can data obtained from a wave model (e.g. MIKE 21 2DH Boussinsesq) be used in the 

training of an ANN algorithm without introducing a considerable error? 

3. Are the results obtained by the updated ANN model more accurate than the results 

produced by the ANN model developed by Sharifahmanian? 

 

1.3 Aim of this report 
The aim of this study is to develop a new design tool that will effectively predict the spatial 

distribution of the wave transmission coefficient by taking into account the combined effects 

of diffraction overtopping and permeability of submerged breakwaters. Until now it was 

believed that the governing phenomenon driving wave transmission in permeable 
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submerged breakwaters was overtopping. This report aims to provide proof that 

permeability has an effect on the wave transmission behind rubble mound breakwaters.  

It is known that the physical phenomena governing wave transmission are: 

 Wave overtopping 

 Diffraction 

 Permeability 

It is therefore important to develop a design tool that will take into account all three driving 

forces responsible for the phenomenon of wave transmission. This will allow predicting 

accurately the spatial distribution of the transmitted wave field. This in turn will allow 

describing more accurately the flow circulation and sediment transport around the 

breakwater. 

 

1.4 Methodology 
The purpose of this report is to update an existing ANN algorithm capable of predicting the 

spatial wave height distribution around submerged breakwaters (Sharif Ahmadian and 

Simons, 2012) by including effects of permeability. 

 The wave field around submerged breakwaters is attributed to the following phenomena: 

 Overtopping  

 Diffraction 

 Permeability 

 Sub-harmonic generation due to non-linear interaction within the breakwater itself 

The latter has a negligible effect on the wave heights but contributes more to the shift of 

energy to higher/lower frequencies. 

The original model includes the effects of overtopping and diffraction. In this study the 

possibility of including the effects of permeability in the ANN model, by training it with 

pseudo-data obtained from MIKE21BW will be examined. It is therefore essential for this 

study to calibrate and validate the wave model as well as possible.  

Database description 

It is not possible to obtain three dimensional data for permeable breakwaters within the 

short period of this study therefore an indirect way of obtaining training and testing data for 

the ANN is applied. Available two dimensional data are obtained from the DELOS project, 

which includes datasets for permeable/impermeable, smooth/rough, emerged and 

submerged breakwaters. 2D and 3D measurements for impermeable and smooth 

submerged breakwaters are available from Sharif Ahmadian and Simons, 2012.  The 

following table demonstrates a summary of the available data: 
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Dataset Name 

 

 
  

DELOS UCL   

 

M
ai

n
 C

h
ar

ac
te

ri
st

ic
s 

o
f 

d
at

a 

2D included included 

 

 

3D 
not 

included 
included 

 

 

Impermeable included included 

 

 

Permeable included 
not 

included 
 

 

Smooth included included 

 

 

Rough included included 

 

      Table 1.1: Summary of most important characteristics of datasets included in this study 

 

Approach to the study  

Initially a number of datasets will be collected from various sources. The next phase of the 

study includes a filtering process where all unnecessary information will be discarded. 

Additionally a preliminary analysis based on curve fitting was conducted in order to 

determine which parameters from the datasets could potentially help describing the 

phenomenon of wave transmission; particular focus was given on finding a new 

dimensionless parameter that could account for permeability effects. Following this, the 

wave model (MIKE21 BW) was calibrated for the scenarios where the breakwater heads are 

not included (2-D) using the DELOS database. Based on the equations that MIKE21 BW uses, 

it can be safely assumed that if the calibrated model can reproduce correctly the wave field 

behind the breakwater for the scenario where diffraction is excluded, then it can be applied 

to a scenario where diffraction is included (3-D), giving realistic output. The outputs of the 3-

D model are then tested against the 3-D theory developed by Vicinanza et al. (2009) in order 

to verify the above mentioned assumption. Following that a new dataset will be created, 

using the wave model in order to train and validate the ANN. The next step will be to test 

the accuracy of the ANN model using several statistical measures and examine its sensitivity 

to several parameters. Finally the layout of future physical experiments that will allow 

training the ANN with a dataset that includes physical variability is proposed. 
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Figure 1.1: Flow chart presenting the methodology followed in this report 

 

1.5 Layout of Report 
As described in the previous section this thesis deals with the numerical modelling of wave 

fields around submerged breakwaters in two ways, first with the numerical a hydrodynamic 

model used to create an extensive database that includes information of the spatial 

distribution of the wave field around submerged porous breakwaters and then with the an 

ANN algorithm capable of predicting the 3D wave transmission around breakwaters. The 

structure of this thesis is as follows.  

Chapter 1 gives an outline of the structure of the report and provides an introduction to the 

main objectives and aims of this study. It also provides a description of the methodology 

that was used in order to complete this research. 

Chapter 2 provides an introduction to the wave transmission phenomenon followed by an 

extensive literature review of previous publications relevant to this study which include 

prediction formulation and numerical studies. This chapter concludes with an outline of the 

most relevant parameters to the wave transmission process based on previous studies. 
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Chapter 3 presents all the theory relevant to this study. First the key equations and theory 

used by the numerical wave model (MIKE21 BW) will be presented, followed by an 

introduction to ANN modelling in general and finally an overview of several diffraction 

theories and the 3D wave transmission theory used for verifying the results of this study will 

be presented. 

Chapter 4 provides the procedure followed in order to obtain the data used for validation of 

MIKE21 BW and the ANN model training. In addition it presents the key finding of the 2D 

and 3D wave transmission modelling. 

Chapter 5 contains the results of the validation process of the 2D and 3D experiments. The 

validation of the 3D experiments has been performed with the use of the traditional and 

modified empirical method proposed by Vicinanza et al. (2008). 

Chapter 6 presents the process followed to create the ANN model. In addition the results of 

two different sensitivity analyses and the validation process are also presented. 

Finally chapters 7 and 8 will provide an outline of the conclusions of this project along with 

the recommendations for improving the results and knowledge on this subject. 
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2 Literature review 
 

2.1 The Wave Transmission phenomenon 
Detached breakwaters, reef breakwaters and spurs are all shore parallel structures 

constructed to reduce the wave climate on the lee side of the breakwater or to obstruct the 

sediment transport along the coast. This report will focus on submerged breakwaters which 

are a special subcategory of the shore-parallel structures, where the crest is located below 

the water surface. Within this category two main structure types are distinguished, namely 

the reef type and the detached type. Reef type breakwaters are wide crested rubble mounds 

consisting of large rocks; they are designed in order to deform and to adjust to the local 

wave climate. Detached submerged breakwaters are structures of similar nature to the reef 

type, with their main difference located to the fact that they are usually constructed out of 

prefabricated material and are not allowed to deform. 

As stated above the primary purpose of breakwaters is to reduce the transmitted wave 

energy on the lee side. “Wave transmission” refers to the wave energy that is allowed to 

travel over and past the breakwater. The three governing mechanisms transporting this 

energy are seepage, overtopping and diffraction. The wave energy that is attenuated is 

either dissipated by the structure through friction, turbulence, wave breaking and armor 

unit movement or reflected back creating a weak standing wave pattern in front of the 

breakwater. 

Submerged breakwaters have been proven to be a popular tool against coastal erosion, 

especially in areas with low tidal range. The main advantages of these structures are the low 

construction cost and the negligible impact they have on the landscape. Also in some cases 

reef type breakwaters have been designed in order to improve the local wild life by 

providing corals and fish with favorable conditions for reproduction. 

This chapter will present the most relevant studies associated with this thesis. Literature 

related to submerged breakwaters and the associated wave transmission around them will 

be presented in two main groups: 

 Literature related to wave transmission prediction formulae, which cover the 

physical processes of seepage (permeability) and overtopping. 

 Literature related to numerical models designed for treating wave transmission 

problems. 

Finally an overview of the main parameters influencing wave transmission will be presented. 
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2.2 Prediction Formulas 
This section will present an extensive literature review on empirical formulations. 

Goda et al. (1967) conducted a series of experiments on vertical and composite breakwaters 

in a wave flume. They found that the wave transmission was most dependent on the 

submergence ratio (
  

  
) and proposed the following wave formula: 
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)                        Eq. 2.1  

Where   and   are dimensionless coefficients that depend on the structure type and 

ranging from 2 to 2.2 and 0.1 to 0.5 respectively. 

Under Allsop’s (1983) study LCS’s were tested in order to determine the influence of wave 

overtopping to the wave transmission phenomenon.  Allsop recommended that a 

dimensionless overtopping parameter should be introduced to the formula developed by 

Goda. The modified formula was now: 
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         Eq. 2.2 

Ahrens (1987) conducted an extensive number of experiments in order to examine the 

stability of reef type breakwaters. During his research he derived the following formula for 

wave transmission using regression analysis: 
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  (
 

 
)
  

(
  

   
)
  

 (

 
 

  (
  
  

)   (
  

 
 

     
 )

)

 
 

     
  

  
                     Eq. 2.4 

In the above                are dimensionless constants with values of 1.188, 0.2611,           

-0.592 and 0.00551 respectively. Also      
   is the breakwater cross sectional area,        

the peak wave length,         nominal stone diameter of the breakwater,       is the 

height of the breakwater measured from the bed,        is the still water level and        

the submergence depth of the breakwater measured. It should also be mentioned that 

Ahrens was the first researcher who understood that porosity could potentially influence the 

wave transmission process and for that reason measured it in his experiments. In his 

experiment the porosity (n) was determined to be 0.40. 
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Van der Meer (1991) collected data from previous studies on wave transmission and 

developed a wave transmission formula in which the wave transmission coefficient is 

determined based on their submergence to incoming wave height ratio: 

             
  

  
      

            
  

  
          

  

  
                             Eq. 2.5 

               
  

  
      

 

In 1994 Daemen and Van der Meer proposed a new relationship for the determination of 

the wave transmission coefficient. They observed that the ratio 
  

   
 gave the best fit to the 

measured data up to that period and proposed the following formula: 
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       (
  

  
)      (

  

   
)                                                        Eq. 2.9        

The validity of the above formula is restricted to the range of the following dimensional 

parameters:  

  
  

   
  ,      

  

  
     . Rivero et al. (1997) showed that both equations proposed by 

Van der Meer under-predicted the wave transmission coefficient. 

D’ Angremond et al. (1996) reanalyzed the experimental results collected by Van der Meer 

and proposed an new empirical formula, which proved to give very accurate results for non-

breaking waves (information for extremely steep waves were discarded). The new empirical 

formula was: 
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Where   is a dimensionless coefficient that equals 0.64 for rubble mound breakwaters and 

0.8 for impermeable breakwaters. 

Seabrook and Hall (1998) performed a large number of two and three dimensional 

experiments. Their work was focused strictly on submerged breakwater and they concluded 

that the width of the structure is the governing parameter determining the wave 

transmission coefficient. Their new formula proved to be capable of predicting accurately 

the wave transmission coefficient and particularly in the case where the breakwaters had a 

relatively wide crest: 
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     Eq. 2.11 

This function is valid for the following ranges:   
   

     
       and                                      

  
    

    
     . Additionally their work showed that the equation given by Ahrens (1987) 

and Van der Meer (1991) did not predict accurately    for structures with wide crests. The 

findings also showed evidence of energy shift to higher harmonics for waves passing over 

breakwaters, based on their work the parameter determining the extent of this energy shift 

was the crest width. 

Gironella and Sanchez-Arcilla (1999) reanalyzed several experimental data and found that 

the dimensionless parameter that best described the wave transmission coefficient was 
  

  
. 

The new empirical formula gave a very high accuracy of        . The domain in which the 

proposed formula is valid is:               
  

  
      and 

  

  
. Finally the new equation 

reads as:  
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            Eq. 2.12 

Bleck and Oumeraci (2001) conducted a series of experiments on submerged rectangular 

breakwaters. During their analysis they found that the dimensionless submergence ratio 

(
  

  
) was the most influential parameter. This finding agreed with the findings of Van der 

Meer (1990) and Goda (1967). The formula reads as follows: 

          
 

      
           Eq. 2.13 

Calabrese et al. (2002) proposed a formula based on information obtained from large scale 

experiments. 
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      Eq. 2.14 

The range of validity is as follows:      
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Briganti et al. (2004) recalibrated the formula for rubble mound breakwaters proposed by d’ 

Angremond et al. (1996). They recommended that the equation should remain the same for 

the range of 
 

  
    and for the range of 

 

  
    should become: 
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    (        )      Eq. 2.14 

Also a new upper limit of the equation was proposed improving the accuracy in the region of 

high   ; the new limit was: 

       
       

 

  
             Eq. 2.15 

In the same study the equation for smooth impermeable structures was recalibrated as well 

but it is out of the scope of this report and therefore will not be demonstrated. 

Buccino and Calabrese (2007) in their paper presented a semi empirical model capable of 

predicting the wave transmission coefficient very accurately. The method used is based on a 

crude schematization of the physical processes that they believed governs wave 

transmission. In their work they treated emerged and submerged breakwaters separately. 

Unfortunately one of their main assumptions for submerged breakwaters is that seepage is 

not a phenomenon that influences wave transmission significantly. As emerged barriers do 

not fall within the scope of this study only the equation for submerged structures will be 

presented: 
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      Eq. 2.16 

Goda and Ahrens (2008) developed a new prediction formula that treats separately emerged 

and submerged breakwaters. Their study was based on field measurements in observation 

sites around Japan. In their formulation wave transmission due to seepage and overtopping 

is calculated separately. Based on this the proposed prediction formula reads as: 
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where: 
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With       
 denoting the wave transmission coefficient passing over the breakwater, 

     
                 

 
 the effective width of submerged breakwater and                        
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)} which is a dimensionless measure of the run-up limit. 
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, for the transmission coefficient of wave passing through the breakwater 

     , for submerged breakwaters and represents a proportionality factor. 

The formula presented above has the advantage that it is designed specifically for 

submerged porous breakwaters, in contrast with the majority of the others presented 

above. Again its disadvantage is that it is not capable of predicting the 3D effects of wave 

transmission behind semi-infinite breakwaters. 

In order to get a feel of how the functions above behave at different conditions two 

different plots of the most widely used formulas have been created. 

 

Figure 2.1: Kt versus dimensionless incoming wave height for different prediction formulae 
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Figure 2.2: Kt versus Dimensionless wave length for different prediction formulae 

 

From the graphs above it can be seen that all formulae follow a different path and are 

influenced differently by each parameter. In figure 2.1 the equation of Seabrook and Hall 

(1998) follows a completely different path as the others as is the case for the Buccino and 

Calabrese (2007), and Alsop (1983) equations in figure 2.2. These evident discrepancies may 

be attributed to the different ranges of validity that each formula has. Therefore when 

designing, one should always be aware under what conditions each formula has been 

calibrated in order to have reliable results. In addition two important conclusions may be 

drawn from the figures presented above. Firstly the dimensionless parameter 
  

  
 has a very 

strong influence an all prediction formulae except in the one proposed by Allsop (1983). 

Secondly, that the dimensionless wave length has a strong influence on the wave 

transmission coefficient when the width of the structure is in the same order of magnitude 

as the wave length. For this reason it is sensitive to examine in some more detail the physical 

processes governing wave transmission though permeable breakwaters.  
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2.3 Numerical Studies 
Massel’s (1980) analysis was undertaken in order to extend a previous simplified theory for 

the determination of transmission and reflected characteristics of porous breakwaters 

subjected to the action of the wind - induced waves. The key points of his study were: 

 The original nonlinear equation of motion into porous structure was linearized using 

statistical linearization techniques.  

 The computed output consists of the spectral density functions for the reflected and 

transmitted waves.  

 The statistical transmission and reflection coefficients are introduced in terms of the 

standard deviations and the wave spectra.  

Even though this model gave good results in 2D, it was not capable of predicting 3D wave 

transmission. Nevertheless this model was the first of its kind and opened the road for 

developing more sophisticated programs that eventually could be used to predict three 

dimensional wave transmission phenomena. 

Kobayashi and Warjanto (1989) developed a numerical model based on the nonlinear 

shallow water equations under the hypothesis of hydrostatic conditions by integrating the 

Navier-Stokes equations in the vertical column. This method presents a main limitation as it 

cannot be applied in shallow waters and produces poor results when dealing with high 

frequencies. The semi-empirical formulation for wave breaking and porous flow introduces 

an additional source of error and makes the model less reliable for determining wave 

transmission coefficients. 

Rojanakamthorn (1990) developed a mathematical model capable of predicting wave 

transformation over submerged permeable breakwaters. The model relies on the equations 

for waves on a porous layer which were derived under the mild-slope assumption. The 

model equation is given as a two-dimensional elliptic. Wave breaking over the barrier is 

modeled via the modified mild-slope equation. Finally the numerical model is validated using 

experiments for trapezoidal breakwaters. The method yielded excellent prediction capacity. 

Unfortunately as for all previous models this was developed only for 2D scenarios, as the 

computation capacity of computers was limited. 

Battjes (1994) developed a numerical model based on a one-dimensional time domain 

Boussinesq model with improved dispersion characteristics. The model was designed to 

simulate long, unidirectional waves propagating over submerged barriers. The model had 

the capability to mimic relatively well the phenomena of harmonic generation and wave 

decomposition. The model was validated against experimental data for non-breaking waves 

and showed good agreement.  
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Van Gent (1994) designed a PC-model named ODIFLOCS capable of predicting the wave 

conditions behind several types of structures. The model had the ability to deal with several 

types of structures such as: 

 Dikes 

 Revetments 

 Submerged and emerged breakwaters 

 Permeable and impermeable breakwaters 

The model was capable of simulating two dimensional external and internal flows. Also the 

model was able to take into account several one dimensional phenomena such as: 

reflection, permeability, infiltration, seepage, overtopping, varying roughness along the 

slope, linear and non-linear porous friction (Darcy and turbulent friction), added mass, 

internal set-up and the disconnection of the free surface and the phreatic surface. Again the 

model was not capable of predicting the spatial variation of the wave heights behind the 

breakwater. 

Lossada (1995) developed a model that successfully predicted the transformation and 

interaction of regular wave trains with submerged permeable barriers. Special attention was 

given to the influence of wave characteristics including oblique incidence, structure 

geometry and porous material properties on the hydrodynamics outside and inside the 

breakwater. The model had two modes: 

 3-D mode, which was based on eigenfunction expansions. 

 2-D mode, based on a mild-slope equation for porous media to account for 

breakwater slope.  

Lin and Liu (1998) developed COBRA (Cornell Breaking and Structures). COBRA is a RANS 

(Reynolds Average Navier-Stokes) model based on a previous developed model by Kothe et 

al. (1991) called RIPPLE. This model is an extensively validated model capable of simulating 

breaking waves and wave-structure interactions. In addition it has been the most tested 

model of its kind and one of the most reliable tools for examining the wave-structure 

interactions of porous elements as it takes into account the turbulent generation and 

dissipation mechanisms within the structure itself. This method as well requires 

considerable computation time. 

Lynett et al. (2000) introduced a new model in which the shallow limit problem encountered 

by solving the nonlinear shallow water equations was solved by using the modified 

Boussinesq equations. The results presented had a high level of accuracy. Despite the 

encouraging findings of Lynett et al. the computational time required to solve the modified 

Boussinesq equations made it very difficult to use in real life applications. 

Dalrymple et al. (2001) developed a new Smoothed Particle Hydrodynamics (S.P.H.) model 

for free surface flows. It is based on the grid-less Langrangian method which is capable of 

tracking deformations of free surface flows. As the Boussinesq equations the S.P.H. method 

requires high computation times and makes it an unfavorable choice for researchers. 
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Additionally this model requires high numbers of particles as well as fixed particle spacing 

which makes the model very hard to validate. 

Van Oosten and Peixo (2005) developed a neural network based on the concept of a 

homogeneous database that was capable of predicting 2D wave transmission behind a large 

number of LCS’s, based on the DELOS database. The method proved to be more successful 

than any previous established prediction formula. The shortcoming of this model was it was 

not designed to predict the 3D spatial variation of the wave field. 

The last relevant study was by Panizzo and Briganti (2007). As Van Oosten and Peixo (2005) 

they developed a new ANN model capable of forecasting the wave transmission behind 

breakwaters. The project successfully developed a more accurate and robust method for 

predicting the wave transmission coefficient for two dimensional situations. 

Summarizing, even though several models were developed over the fifty years, literature 

lacks a comprehensive model capable of predicting the three dimensional effects related to 

wave structure interaction. The literature review shows that only 2D effects have been 

studied with high detail. The accuracy of these models is high and allows them to be used for 

simple engineering applications and desk studies, in order to obtain a first order 

understanding of the transmitted wave height. On the other side 3D effects have not been 

studied due to their complexity and high computational demand. Producing a model capable 

of predicting 3D wave transmission seems to be difficult and computationally expensive. For 

this reason in this thesis an attempt will be made to produce a tool capable of predicting the 

wave field behind the breakwater that could be used as a simple design tool. The model will 

have the capability to give a first feel about the wave pattern behind the breakwater without 

the need to use a time consuming hydrodynamic model. 
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3 Theoretical Background Relevant to the Study 
 

3.1 Introduction 
In this chapter all relevant theories that are related to this study will be presented. The 

purpose of this section is to provide the reader with all the background knowledge 

associated with this study that is required in order to understand the analysis to be followed. 

As stated before only a little research related to three dimensional wave transmission by 

breakwaters has been conducted and even fewer on permeable breakwaters. For that 

reason obtaining reliable data that could be used for training an ANN model accurately is 

impossible. The way to overcome this obstacle is to create “artificial” data using a computer 

model capable of reproducing accurately the wave field around the breakwater, such as 

MIKE 21 BW. It is therefore very important for the precision of the A.N.N. model to create a 

training database that is as accurate as possible. Thus a large part of this report will be spent 

analysing the dataset created by MIKE 21 BW. The accuracy analysis of the training data set 

will be accomplished by the following two methods: 

 First a qualitative comparison with the 3 dimensional tests conducted by Sharif 

Ahmadian (2012) will be conducted in order to ensure that the overall behaviour of 

the model coincides with the actual physical measurements. 

 Secondly a direct comparison of the training dataset with the three dimensional 

prediction model proposed by Vicinanza et al. (2009) in combination with empirical 

formulations for the prediction of the wave transmission and wave diffraction. 

This chapter will first present the equations used by MIKE21 BW, following by a description 

of ANN models in general and will conclude with the diffraction theory and the 3D-

prediction method proposed by Vicinanza et al (2009). 
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3.2 Important wave transmission parameters 
For the sake of consistency this section will provide a description of the most important 

parameters for the wave transmission process along with the notation that will be used in 

this study.  

 

Figure 3.1:Physical parameters influencing the wave transmission process 

 

Incident wave height (  ) 

The wave height is defined as the vertical distance between the highest (crest) and the 

lowest (trough) part of the wave. The incident wave height is measured at the front toe of 

the breakwater. This parameter can be characterized as the most important of the entire 

dataset as it will be used to make dimensionless various other parameters. This will be 

demonstrated in the following chapters.   

 

Wave Period and Peak Wave Period (   and   ) 

The incident wave period is defined as the time interval between the start and the end of 

the wave (i.e. the interval between two zero crossings upward or downward). Wave period 

is connected with the wave length with the following relation, according to linear wave 

theory: 

        (
   

 
)         Eq. 2.20 

where: 

   
   

  
          Eq. 2.21 

The wave period influences the wave transmission process significantly as it has been 

observed that longer waves result in a higher wave height on the lee side of the structure. 

This can be explained in two ways: 
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 Longer waves have the capability to move through the breakwater without losing 

much energy due to turbulent losses. 

 If the breakwater is located in relatively deep water longer incident waves have a 

higher probability of not breaking. 

Furthermore it has been found the peak wave period describes better spectral waves. The 

relation between peak wave period and zero moment wave period is given by: 

                   Eq. 2.22 

 

Submergence Depth (  ) 

The submergence depth is defined as the vertical distance between the structur’s crest and 

the water surface. In the case of LCS’s the variable is defined as the crest freeboard (R) 

which is positive in the case of emerged breakwaters and negative in the case of submerged. 

This is one of the most contributing variables for the wave transmission process. A large 

submergence depth relative to the incoming wave height results in high wave transmission 

coefficients    and vice versa. 

 

Crest Width (B) 

Crest width is defined as the distance between the sea side edge of the crest and the lee 

side edge. The width of the structure is of significance as longer structures result in more 

wave energy dissipation due to turbulent losses and a higher probability of wave breaking.  

 

Slope of the structure ( ) 

The slope of the structure contributes to the overall wave transmission process in more than 

one ways. The slope angle influences significantly the Iribarren number ( ) which is a 

measure of the relative wave steepness over the structure, defined as:  

  
      

√
  
 

          Eq. 2.23  

A low value of   means that the slopes of the structure are gentle compared to the wave 

which results in a longer distance where energy is dissipated and therefore to a lower   . On 

the other hand a larger Iribarren number means that the slope is steep compared to the 

wave which then would result in more violent wave breaking that would finally create a 

larger disturbance on the lee side. Finally larger   values are associated with larger partial 

reflection coefficients (  ) of waves, which results in a lower transmission coefficient 

as    √                 . As can be understood these are contradicting phenomena 

and the influence of   on the transmission coefficient is very complex. 
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Nominal Stone Diameter (    
)  

The nominal stone diameter is defined as the mean value of the diameter of the stone 

comprising the breakwater core. This value influences the energy dissipation due to 

turbulence. It is expected that larger stones allow more energy to flow through the structure 

and therefore result is less energy dissipation, at the same time larger voids volumes are 

associated with larger eddies inside the breakwater which result is higher energy dissipation. 

The influence of the stone diameter in numerical modelling depends strongly on the 

turbulence theory applied for simulating the Non-Darcy friction losses. 

 

Porosity (n) 

The definition of porosity n is given by the ratio of the volume of voids to the total volume of 

the structure (
  

  
). It can be perceived as a measure of the degree of grading of the rock, as 

more wide grading will result in more small pores and therefore less voids vice versa. This 

parameter is also of importance as together with the nominal stone diameter it can describe 

successfully the degree of energy dissipation that is expected from the breakwater. 
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3.3 MIKE 21 BW 
MIKE 21 BW is a numerical modelling tool devoted to the study and analysis of wave 

disturbance in coastal areas. Its accuracy and wide range of applicability makes it a very 

powerful tool for analysing any coastal wave problems. MIKE 21 BW is capable of 

reproducing the combined effect of the most important wave processes that are important 

for the study of coastal engineering problems such as: 

 shoaling  

 refraction  

 diffraction  

 wave breaking  

 bottom dissipation  

 partial reflection  

 wave transmission  

 non-linear wave-wave interactions  
 
This model works by solving numerically the time domain Boussinesq equations based on 

the approximations of Madsen et al (1991, 1992, 1997a, b), Sørensen and Sørensen (2001) 

and Sørensen et al (2004). The enhanced Boussinesq equations make it possible to simulate 

the propagation of non-linear directional waves from deep to shallow water and also to 

reproduce accurately the combined effect of seepage and diffraction which are of significant 

importance for this study. 

MIKE 21 BW solves the enhanced Boussinesq equations expressed in two horizontal 
dimensions in terms of the free surface elevation, ξ, and the depth-integrated velocity-
components, P and Q. Using the Boussinesq dispersion coefficient B 
The Boussinesq equations are: 
 

 Continuity: 
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 X-momentum: 
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 Υ-momentum: 
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here: 
d is the still water depth 
h is the total water depth (d+ξ) 
α resistance coefficient of laminar flow through porous media 
β resistance coefficient of turbulent flow through porous media 
 
The simulation of wave breaking in the model is incorporated using the concept of surface 
rollers.                , which describe the excess momentum generated by the non-

uniform velocity distribution due to the roller. The above parameters are defined as follows: 
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         Eq. 3.8 

where: 
  is the thickness of the surface roller 
   and   are the components of the roller celerity 

 
This model will be used in order to construct the database in order to train the ANN model. 
1080 virtual experiments (with combinations of different structural and wave conditions) 
will be conducted in an environment mimicking that of the physical experiments described 
by Sharif Ahmadian (2012). The final database will include 10800 measurements 
corresponding to 10 different points in the virtual wave flume. 
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3.4 Artificial Neural Networks 
Artificial Neural Networks are mathematical models inspired by biological neural networks. 

An ANN consists of an interconnected group of artificial neurons. It uses a method where 

interconnections are used in order to process information. Neural Networks are usually an 

adaptive system changing their structure during a learning phase. Neural networks have 

been used extensively for modeling complex relationships between inputs and outputs or to 

find patterns in data. Models such as the above have been successfully used to solve coastal 

engineering problems in the past, such as: 

 Prediction of near shore morphology (Bazartseren, 2005) 

 Study the stability of rubble mound breakwaters (Mase et al., 1995) 

 Study of run-up and overtopping (Medina 1999,2002 and Verhaeghe, 2005) 

 Tidal prediction (Mandal et al. 2001) 

 Prediction of surge (Lee, 2006) 

 Two dimensional wave transmission over low crested structures (Panizzo and 

Briganti, 2007; Van Oosten and Peixo, 2005) 

 

3.4.1 The framework of ANN’s 

Neural networks are comprised of a group of simple processing units (see figure 3.2). These 

elements are interconnected allowing them to communicate which enables them to send 

information to each other over a large number of weighted interconnections. According to 

McClelland and Rumelhart (1986) the most important features of a parallel distributed 

neural network are: 

 A set of processing units called the “neurons”; 

 A state of activation      for every unit, corresponding to the output of each unit; 

 The connections between the units. In general each connection is described by a 

weight factor       that determines the influence that unit j has on k; 

 A propagation rule that describes the effective input (    of a unit’s external inputs; 

 The activation function       which determines the new level of activation based on 

the effective input (    and current activation     ; 

 An external input (bias, error or offset)      for every unit. 

 A “learning rule”  

 An environment in which the model can operate which may include input signals 

and error signals 
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Figure 3.2: The basic components of an A.N.N (source: Liebovitch et al.) 

 

Processing Units 

In a neural network each unit receives information from its neighbours or from external 

sources and computes an output signal which in turn is propagated to the next unit and so 

on. At the same time the corresponding weight factors are adjusted as well. During 

operation, units can be updated at the same time (synchronously) or each unit can have a 

fixed probability of updating its activation at a time (asynchronously). 

Connections between units  

The most common connection between units assumes that each unit provides an additive 

contribution to the input of the unit with which it is connected; this propagation rule is 

named the “sigma rule”. The total input to the net unit (k) is then defined as: 

      ∑                          Eq. 3.9 

In addition to the above rule a second rule of propagation is popular among the field of ANN 

algorithms. It is called the sigma pi rule and it is described by the following relationship: 

      ∑       ∏                      Eq. 3.10 

In this rule     is usually weighted before the multiplication. 

Activation and output rules 

It is also important to create a function that gives the effect of the total input of the 

activation of the unit. This function takes the total input (  ) and the current activation (  ) 

and yields a new activation value for the unit k. 

                               Eq. 3.11 
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It is common practice to use non-decreasing functions to do the procedure described above. 

The activation function is usually a non-decreasing function of the total input of the unit: 

                     (∑                   )     Eq. 3.12 

In general, some kind of limiting function is used. Examples of such are (see fig. 3.3): 

 A hard limiting function; 

 A linear or semi-linear limiting threshold function; 

 A smooth limiting function such as a sigmoid; 

 Or the neuron input determines the probability p that a neuron will get a high 

activation value:         
 

   
 

  
 

 

 

Figure 3.3: Examples of activation functions 

 

3.4.2 Network Topologies 

There are two main types of topologies in artificial neural networks (i.e. patterns of 

connection between units). These are: 

i. The feed-forward networks at which information moves only in the forward 

direction. In this scheme the processing of data can extend over numerous units but 

no feedback is allowed, meaning that there is no loop at which outputs from one 

unit can be used as inputs in units of the previous layers (see fig. 3.4). 
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Figure 3.4: Feed-forward network (source: Liebovitch et al.) 

 

ii. Recurrent networks. These networks have feedback connections. In these types of 

topologies the activation values usually experience a relaxation process which allows 

the total network to converge to a stable state at which the activation values stop 

changing (see fig 3.5). 

 

Figure 3.5: Recurrent network (source: Liebovitch et al.) 
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3.4.3 Training of artificial neural networks 

There are numerous ways an ANN can be organized in order to produce the desired set of 

outcomes. There are two main learning methods: 

i. Supervised learning, in which a neural network is trained by providing it with a set of 

inputs and outputs pairs. These data can be provided externally or internally from 

the system (self-supervised networks). 

ii. Unsupervised learning, in which an output unit is trained to respond to groups of 

patterns originating from the inputs. The network is able to create its own way of 

representing the input information. 

The learning methods above describe certain ways in which the weights of the connections 

can be changed. This modification of the weights is defined by a rule. The most common 

rules for this procedure are: 

i. The Hebbian learning rule which basically states that the interconnection between 

two units must be reinforced by: 

                    Eq. 3.13 

With   corresponding to a predefined constant of proportionality describing the learning 

rate 

ii. The second rule uses the difference between the actual and desired activation, in 

order to re-adjust the weights. This method is called the Widrow-Hoff rule or the 

Delta rule and is commonly applied to supervised learning networks: 

                       Eq. 3.14 

 

Here    is the desired level of activation provided externally by the user. A very popular 

variant of this rule is the Mean Squared Error (MSE) 

    ∑
      ̅ 

 

 
 
            Eq. 3.15 

 

3.4.4 Networks used in this study 

This study will focus its attention on feed-forward supervised neural networks. The two most 

popular networks of this kind are: 

i. Multilayer perceptions networks (MLP) are nonlinear models which are very general 
and can represent almost anything. They are composed of an arbitrary number of 
neurons named perceptrons. The perceptron has the ability to compute a single 
output from multiple inputs by forming a linear combination according to its input 
weights and then possibly putting the output through some nonlinear activation 
function (Rosenblatt, 1958). The activation method is a sigmoid function which 
allows MLP’s to approximate very accurately linear and nonlinear sets of data. 



40 
 

 

Figure 3.6: MLP network (source: K. Suzuki 2013) 

 

ii. Radial basis function network (RBF) is a network which has universal approximation 

properties. RBF’s notion is derived from the theory of function approximation. They are 

two-layer feed-forward networks with hidden layers which implement a set of Gaussian 

functions (i.e. radial basis functions) with one output layer that uses a linear summation 

function as in an MLP network. The network training consists of two stages: 

 The hidden layer which undergoes unsupervised learning  

 The output layer which is trained using supervised learning 

The main advantages of this networks are that they are highly computational efficient and 

very efficient in interpolating. 

 

Figure 3.7: RBF network (source: K. Suzuki, 2013) 
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3.5 Combined Diffraction and Overtopping Methods 
The hydrodynamics of a submerged breakwater are contributed by several processes with 

the most important ones being overtopping, seepage and diffraction. The two first 

phenomena constitute the two dimensional phenomena associated with the wave 

transmission and the latter is the sole contributor to the three dimensional effect. The EU 

funded project DELOS brought together engineers and scientists from across Europe in order 

to develop a methodology for designing environmentally friendly low crested structures. 

Unfortunately even though a considerable amount of research was conducted during the 

DELOS project none of it focused on diffraction. 

This section serves as an introduction to the key theories that will be used in order to 

examine the accuracy of the data created by MIKE 21 BW which will eventually be used in 

order to train the A.N.N. model. The first part will explain the diffraction theory that will be 

used and the second part will demonstrate the theory developed by Vicinanza et al. (2009) 

that will allow uniting two dimensional wave transmission with the diffraction theory. This 

theory is based on the simple idea of summing the energies corresponding to wave 

transmission and diffraction. The aforementioned model will allow validating the data 

coming from the wave model. 

 

3.5.1 Wave diffraction 

Wave diffraction is a phenomenon which occurs when semi-infinite or finite structures 

interact with waves. Wave diffraction is the phenomenon in which wave energy is bent 

around the head of the breakwater into the “shadow zone”. The diffracted wave height 

depends on several parameters, with the most important being: 

 Porosity of the breakwater 

 Incident wave conditions 

 Submergence depth (in the case of submerged breakwaters) 
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Figure 3.8: Diffraction of water waves behind semi-infinite breakwater (source: cronodon.com) 

Wave diffraction has a significant role in the three dimensional wave transmission process 

and for that reason the most important wave diffraction theories will be discussed briefly in 

this section.  

 Penny and Price (1952) applied the diffraction theory for optical developed by Somerfield 

(1896) which is based on the Fresnel–Kirchhoff diffraction formula, to ocean wave 

diffraction. This theory makes use of the velocity potential theory. The results found have 

good agreement with experimental measurements in the “shadow zone” but tend to 

underestimate the diffraction coefficient (  ) outside of it.  

Dalrymple and Martin (1990) developed a similar approach to that developed by Penny and 

Price. They make use of an eigenvalue - expansion approach and variational methods that 

provided accurate approximations of the wavelength regardless of the breakwater gab 

width. This method gives accurate predictions for problems where the gap size is one order 

of magnitude larger than the incoming wave lengths. On the contrary for smaller gap sizes 

this method tends to give non-reliable results. 

Williams et al. (1993) used the Green’s function approach in order to solve the diffraction 

problem for segmented breakwaters. By implementing this function the problem reduces to 

a singular integral equation for the potential difference across a single screen element. The 

integral is then solved using the Chebyshev polynomials. This method produces very 

accurate results as well, but has the same disadvantage as the previous methods which is it 

cannot predict accurately the diffraction coefficient for absorbing breakwaters.  

McCornmick and Kreamer (2001) proposed a new approximation to the Fresnel integrals 

used by Penny and Price which were used to solve the wave diffraction problem and semi-
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infinite and finite breakwaters problem. This method allows calculating the diffraction 

coefficient for compliant and rigid breakwaters. The approximation over the entire range of 

arguments gives an error of 0.2% which allows one to characterize it as an excellent 

estimation tool.  

The Penny and Price (1952) theory gives a very good approximation of the diffraction 

coefficient (at a semi-infinite breakwater) when the peak period, Tp, is used instead of the 

regular one, T. In short-crested seas the agreement is reasonable only in a zone that extends 

behind the structure for about three times the peak wave length; shoreward, 

underestimations can reach 50% (Boccotti, 2000). As the wave conditions examined in this 

study are characterized as long crested waves the approximation given by McCornmick and 

Kreamer (2001) will be used in order to calculate the diffraction coefficient for every point 

for a number of different wave conditions. For the purpose of this study the approximation 

for compliant breakwaters will be presented as it will be the one used later on in this study 

The diffraction potential for the real part of the solution reads as: 

   
 

 
                                                               }

         Eq. 3.16 

And the imaginary part is: 

   
 

 
                                                   

                        Eq. 3.17 

where: 

     √
   

 
          √

   

 
 

 r is the radial coordinate. 

   and k the wave length which is the uniform in the entire domain and the wave 

number respectively. 

 y is the distance of the point from the head of the breakwater along the vertical axis. 
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and 
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                               Eq. 3.19 

The sine of   depends on the quadrant at which the point to be calculated is located. 

Finally the diffraction coefficient can be calculated using the following formula: 
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 |      |  √  

    
        Eq. 3.20 

 

3.5.2 Method for predicting the three dimensional wave field 

Calabrese et al. (2005) suggests that predictive equations have the tendency to 

underestimate wave heights on the lee side of the breakwaters in the three dimensional 

scenario; this fact is also supported by other authors such as Seabrook and Hall (1998) and 

Adams and Sonu (1987).  

Based on these findings Vicinanza et al. (2009) proposed the following simple predictive 

formula that allows incorporating diffraction with existing wave transmission formulae. They 

assume that there is no statistical correlation between the diffraction coefficient and the 

wave transmission coefficient (R=0). This statement seems to be a reasonable assumption 

since the two processes are completely different. This allows summing the two energies 

which yields the global wave transmission coefficient: 

     √  
    

         Eq. 3.21 

where: 

    is the wave diffraction coefficient calculated for each point in the domain of 

interest, which is calculated using the approximation given in the previous section.  

    is the wave transmission coefficient calculated by any empirical formulae that 

suits better the breakwater layout. For the purpose of this study four different wave 

transmission formulae will be used.  The criterion by which they were selected was 

their suitability to incorporate the structural properties of the breakwater 

considered in this study.  

o D’Angremond (1998) 

o Buccino Calabrese (2007) 

o Seabrook and Hall (1998) 

o Goda and Ahrens (2008) 

By the above it is noticeable that the influence of the diffraction coefficient should decrease 

with increasing wave overtopping or seepage. It is also obvious that the influence of    

decrease as the point of interest shifts deeper into the “shadow zone”. Finally this study 

shows evidence via numerical simulations that by assuming a negative correlation between 

the two phenomena the agreement of the results gets improved significantly. For this reason 

two individual analyses under the assumption of negative and no correlation will be 

conducted in chapter 5 
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4 Data Compilation 
This chapter will discuss the data obtained from the “virtual” experiments. A series of 

experiments were conducted in order to obtain the data required to train and test the ANN 

model. All experiments have been conducted using regular waves. The advantage of using 

regular waves in the analysis is that it gives a more clear understanding of the physical 

processes involved in 2D and 3D wave transmission (as opposed to random waves). These 

experiments can be divided into two groups: 

 2D experiments. These experiments were commenced in order to create a small 

data set that would allow validating MIKE 21 BW and examining its robustness. This 

step is important as a 3D model based on a robust 2D model will also be reliable, as 

the only additional phenomenon that would be simulated in the latter would be 

diffraction. In this way the only source of error for the 3D wave model would be the 

combined effects of diffraction with the other 2D effects. 

 3-D experiments. A large number of experiments using MIKE 21 BW were 

conducted. The data obtained from this process are aimed to train and test the ANN 

model. It is important to test the reliability of these data sets in order to ensure that 

the ANN is trained using data that correspond to actual physical circumstances. 

 

4.1 Calibration of the 2-D Model 
All tests are carried out in a 30m by 2.5m by 1.3m wave flume resembling the exact 

dimensions of the experiments conducted by Sharif Ahmadian (2012). The dimensions of the 

flume are representative of the dimensions of most of the flumes were wave transmission 

experiments have been conducted. For this reason it was decided that the numerical 

simulations should be conducted at flume with these dimensions. 
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Figure 4.1: Bathymetry of the 2-D numerical wave flume 

 

 
Extra caution should be given when setting up a numerical model such as MIKE 21 
BW, especially when the purpose of the simulations is to create a reliable data set. In 
this section the setup of the numerical model will be discussed. It is important to 
calibrate the model in such a way that it is able to resemble the actual physical 
conditions that are observed in the wave flume. This procedure is time consuming, 
involving an iterative process, where key parameters are adjusted until the model 
functions properly. A flow chart of the procedure is presented in figure 4.2. A 
detailed description of all the parameters that were required will be presented in the 
next section.  
 

Scale: 

10:0.4m 
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Figure 4.2: Flow chart of the calibration process 
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4.1.1 Basic Parameters 

 

Wave Module 

MIKE 21 BW has two options: 

 2DH Boussinesq wave module 

 1DH Boussinesq wave module 

In this report the 2DH was selected as it has an excellent capability of predicting wave fields 

of short and long waves in shallow and deep water. This module solves the enhanced 

Boussinesq equations in the horizontal space (x-y coordinates) using implicit finite difference 

techniques. 

 

Bathymetry 

As mentioned above a two dimensional matrix describing the topology of the wave flume as 

was used in the physical experiments of Sharif Ahmadian (2012) (see figure 4.2). Artificial 

land values coupled with sponge layers were subscribed on the north end south end of the 

flume in order to reduce the computation time. Two regions with different spatial 

resolutions were selected in order to make the model as computational efficient as possible. 

In the regions of no wave breaking the grid spacing was approximately 10 nodes per lowest 

wave length (0.026m). At the surf and swash zone where more energetic waves are found a 

dense resolution was selected corresponding to 40 nodes for the minimum wave length 

(0.014m). The denser grid is required as the enhanced Boussinesq equations models wave 

breaking based on the notion of surface roller which requires a very fine resolution in order 

to produce accurate results. The following grid spacing mesh results in a Courant number 

(        ) that fulfils the CFL criterion (    ).  

where: 

     
  

  
          Eq. 4.1 

 

Equation Type 

In order to produce a large range of wave conditions the deep water terms of the 

Boussinesq equations were included. This allowed to extend the application range of the 

model to situations were 
    

  
    .  
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Discretization Technique 

MIKE 21 offers 4 discretization techniques: 

 Central differencing with side feeding 

 Central differencing with simple upwinding at steep gradients and near land 

 Quadratic differencing with simple upwinding at steep gradients and near land 

 Simple upwinding differencing 

For the purpose of this research the central differencing with simple upwinding at steep 

gradients and near land technique was used with a time extrapolation factor of 1. This 

method is the most stable with the least numerical dissipation and therefore produces the 

most accurate results. It should be mentioned that the other methods introduce a lower 

time – extrapolation factor that produces more stable results by introducing more numerical 

dumping at the expense of accuracy. 

 

Simulation period 

The total simulation time is given by the following formula: 

                                   Eq. 4.2 

The total simulation time was selected to be 1400 sec. This period allows waves to reach all 

parts of the domain and continues the computation for more than 20 min which enables the 

model to produce statistically accurate results of the significant wave height. Additionally 

the time step (  ) should fulfil the CFL requirements. For that reason it was selected to be 

0.005 resulting in 1000000 time steps. 

 

4.1.2 Calibration Parameters 

 

Bathymetric Parameters 

The main bathymetric parameters included in MIKE 21 BW are the land value and the 

reference water level. The land value is the minimum value of the bathymetry which is 

considered as land and is excluded from the calculations in order to reduce the computation 

time. The reference water level is the main reference level for the Boussinesq wave 

simulation; changing this parameter allows to simulate different water levels without 

changing the bathymetry file. 

In this study the land value was selected to be 1m. The land value was assigned to all side 

walls of the numerical flume. Additionally it should be mentioned that the reference water 

level was shifted accordingly in order to simulate different breakwater submergence depths.  
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Boundary conditions 

Two types of boundaries exist: 

 Open boundaries are usually represented by time series of water elevation or flux 

densities, in the situation where no boundaries are present (open boundaries) 

 Closed boundaries which represent fully reflective vertical surfaces. 

Fully closed boundaries were applied to all walls of the numerical wave flume. This means 

that no flow is allowed to cross the boundaries. For this reason sponge layers are introduced 

at all walls which effectively absorb all the wave energy. An absorbing sponge layers in front 

of closed boundaries allows wave energy to pass out of the model area without allowing 

energy to reflect back in to the model domain (the construction of sponge layers will be 

elaborated further in the next sections). 

Internal wave generation 

The internal wave generation represents the wave maker in an ordinary wave flume. It is 

represented by a line equal to the width of the numerical wave flume. It creates waves by 

adding the discharge of the specified incident wave field along the line. In order to avoid 

resonance phenomena a sponge layer just behind the generation line was introduced. For 

the simulations produced in this study the internal wave generation line was defined along 

the line y = 201. 

 

Bottom friction 

Bottom friction can successfully be modeled in MIKE 21 BW using the bed friction rule 

derived by Chezy. This rule states that the bed shear stress equals to: 

   
   | |

            Eq. 4.3 

Where C is the Chezy number given by: 

  
 

  
√

  

  
          Eq. 4.4 

And    is the velocity at the bed and    is wave friction factor which for short waves reads 

as: 

    
            (

  
  

)
      

        Eq. 4.5 

In these simulations it was assumed that there is no damping due to bed friction as all 

surfaces in the flume are constructed with frictionless materials (glass and aluminum). 
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Eddy viscosity 

Eddy viscosity is introduced in the model for the purpose of modeling wave current 

interaction and mixing processes. The adoption of the concept of eddy viscosity allows us to 

simulate the turbulent fluctuations which lead to the corresponding stress terms in the 

governing equations. Therefore the momentum equations contain both turbulent and 

laminar stresses. 

The eddy viscosity can be calculated using the formulations by means of the eddy coefficient 

or by the Smagorinsky coefficient. As neither wave current interaction nor mixing will be 

treated in this report eddy viscosity will be excluded. 

 

Wave breaking 

The incorporation of wave breaking in MIKE 21 BW is achieved using the concept of the 

surface roller. Wave breaking is assumed to start when the wave exceeds a predefined 

value. The surface roller is assumed to be an isolated bulk of water travelling at the wave 

speed (c). The influence of the roller is then taken into account by the momentum equation 

using an additional convective term. Based on this concept: 

 The roller thickness is determined as the water thickness above the tangent of the 

wave slope multiplied by a shape factor (roller form factor) and has a value of 1.5.  

 The roller celerity is proportional to the linear shallow water celerity and its value is 

1.3 (-).  

 Breaking is assumed to start when the slope of the surface wave exceeds an angle of 

20⁰ 

 The critical angle at which the initial wave breaking shifts to “bore-line” breaking 

(final breaking) is 10⁰. 

 The half-time for the cut-off roller defines the transmission between the two 

breaker types and has a value of 0.39(s) 

 

Figure 4.3: Surface roller schematization (source: MIKE21 BW user manual) 

The values of the above parameters were determined on a trial and error basis, during the 

calibration process and are summarized in the following table. 
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 Roller form 
factor 

Roller 
celerity 
factor 

Initial 
breaking 
angle (⁰) 

Final 
breaking 
angle (⁰) 

Half-time for 
cut off roller 

Value 1.5 1.3 20 10 0.39 
Table 4.1: Calibrated wave breaking parameters 

 

Porosity 

By including porosity layers in MIKE 21 BW the model is allowed to simulate non-Darcy 

(turbulent) flows through the structure. This enables the model to predict wave seepage and 

partial reflection at coastal structures. The effects of porosity are introduced by the inclusion 

of additional laminar and turbulent friction terms. It should be stressed that in large scale 

simulations the laminar friction losses are negligible whereas in small scale simulations 

laminar and turbulent losses are also present. The flow resistance term inside the porous 

structure is calculated based on the following term: 

    | |            Eq. 4.6 

  and   are empirical values determined by the following expressions (Engelund, 1953): 

    
      

  

 

           Eq. 4.7 

  
       

            Eq. 4.8 

where:  

   is the laminar particle form resistance coefficient 

   is the turbulent particle form resistance coefficient 

n is the porosity of the structure 

d is the nominal diameter of the particles comprising the structure 

  is the kinematic viscosity of water 

For small scale breakwaters the expected porosity is usually 0.4 (Ahrens, 1980). Based on 

this notion several values of     and    were applied until the wave conditions in front and 

behind the breakwater matched the target conditions of the calibration process. The final 

values of the turbulent and laminar friction coefficient were determined as 0.3 and 1000 

correspondingly which agree with van Gent’s experimental findings for oscillatory flow 

(1990, 1994). Finally the porosity map of the model is presented. A porosity of 0.4 

throughout the entire area of the breakwater ins applied. 
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Figure 4.4: Porosity map of numerical wave flume 

 

Sponge layer 

Sponge layers are a type of wave absorber for numerical simulations in MIKE 21 BW. As 

mentioned in the previous paragraphs when a sponge layer is backed up by land values it 

can produce radiating boundary conditions which may allow partial reflection or complete 

absorption. For the purpose of this study a fully absorbing layer has been implemented in 

the south boundary of the model in order to reduce wave reflection and resonance 

phenomena due to the presence of the internal wave generator. A sponge layer has also 

been installed at the north boundary in order to absorb the remaining wave energy on the 

lee side of the breakwater. During the calibration process it was determined that a sponge 

layer in the North of the flume should have 100 nodes and the South sponge layer 200 nodes 

in order to produce accurate results with no “noise” (see figure 4.4). 

Scale: 

10:0.4m 
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Figure 4.5: Sponge layer map of the numerical flume 

 

4.2 Results of 2D Experiments 

4.2.1 Introduction 

The purpose of creating a dataset is for two purposes: 

 Validate the MIKE 21 BW model. 12 different experiments with different wave 

conditions and submergence depths were selected from the DELOS dataset and 

simulated using the previously defined numerical model. This will allow a 

comparison of physical experimental results and the numerical model and 

evaluation of the predictability of the model for 2D effected which include the 

combined effects of overtopping and permeability. 

 Create a dataset that serves as a base scenario that will be used in order to examine 

the effect of permeability on diffraction. Namely different incoming wave conditions 

will be simulated in order to determine variation of the    along the y-axis.  

 

4.2.2 Test Conditions 

31 tests were conducted in the numerical model described earlier. These can be divided into 

two specific subcategories: 

i. Results for validation (hereafter Class A). In these experiments the exact wave and 

structural conditions as in the DELOS database were replicated with the exception of 

slope angle. These conditions are incident wave height, periods, spectral shapes and 

submergence depth. The slope angle has been proven to have minor influence in the 

wave transmission process for normally incident waves (Van der Meer, 2004) and 

therefore was kept constant at 1:1. This statement is only valid for large slope 

Scale: 

10:0.4m 
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angles. As the slope angle decreases significantly the effect of the angle becomes 

more important. As dissipation effects become more dominant. 

ii. Results for comparisons and analysis (hereafter Class B). This class of experiments 

includes a small dataset (15 experiments) where different wave conditions were 

tested against different structural permeability parameter (porosity and stone 

diameter). Slope angle and submergence depth have been kept constant. 

The following tables show the exact structural and wave conditions used in both Class A and 

B experiments. 

Test No Name of experiment    (m) T (s)    (m)     
 (m) B (m) 

1 Daemen  0.135 1.988 -0.040 0.028 0.340 

2 Daemen  0.067 1.549 -0.040 0.028 0.340 

3 Daemrich 0.062 1.000 -0.025 0.042 0.200 

4 TUDELFT  0.121 1.593 0.000 0.034 0.205 

5 Ahrens  0.134 2.230 -2.770 0.019 0.300 

6 Powell  0.112 1.640 -0.045 0.076 0.204 

7 Seebrook & Hall 0.128 1.280 -0.050 0.017 0.350 

8 Daemrich 0.114 1.633 -0.056 0.024 0.280 

9 Daemrich 0.127 2.280 -0.056 0.024 0.280 

10 Seebrook &Hall  0.069 1.138 -0.031 0.024 0.120 

11 Seebrook &Hall  0.084 2.328 -0.031 0.024 0.405 

12 Seebrook &Hall  0.066 2.297 -0.031 0.024 0.405 

13 Daemen  0.114 1.859 -0.040 0.028 0.340 

14 Delft Hydraulics  0.163 1.739 -0.050 0.011 0.200 

15 Seebrook &Hall  0.129 1.164 -0.050 0.017 0.600 

16 Seebrook &Hall  0.090 1.178 -0.031 0.024 0.450 

17 Seebrook &Hall  0.115 1.687 -0.031 0.024 0.450 

Table 4.2: Class A data set (source: Van Oosten and Peixó, 2005) 

 

Test No.    (m) T (m)     
 (m) n (-)    (m) B (m) 

1 0.1 1.5 0.02 0.4 -0.04 0.308 

2 0.1 1.5 0.04 0.4 -0.04 0.308 

3 0.1 1.5 0.07 0.4 -0.04 0.308 

4 0.1 1.5 0.02 0.3 -0.04 0.308 

5 0.1 1.5 0.02 0.4 -0.04 0.308 

6 0.1 1.5 0.02 0.5 -0.04 0.308 

7 0.1 1.5 0.02 0.6 -0.04 0.308 

8 0.01 1.5 0.04 0.4 -0.04 0.308 

9 0.05 1.5 0.04 0.4 -0.04 0.308 

10 0.1 1.5 0.04 0.4 -0.04 0.308 

11 0.15 1.5 0.04 0.4 -0.04 0.308 

12 0.1 0.8 0.04 0.4 -0.04 0.308 

13 0.1 1.1 0.04 0.4 -0.04 0.308 

14 0.1 1.4 0.04 0.4 -0.04 0.308 

15 0.1 1.7 0.04 0.4 -0.04 0.308 
Table 4.3: Class B data set 
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4.2.3 Key findings of 2D experiments. 

The incident wave height in the experiments described above was assumed to be the 

average significant wave height between nodes 400-450 and the transmitted wave height 

was assumed to be the average wave height between nodes 540-570. 

Table 4.4 presents the computed wave transmission coefficients for the class A experiments. 

Following this, a two dimensional plot of the transmitted wave height variation along the y-

axis for different permeability parameters is presented. 

 

No Name of experiment       
 

1 Daemen  0.534 

2 Daemen  0.568 

3 Daemrich 0.439 

4 TUDELFT  0.703 

5 Ahrens  0.534 

6 Powell  0.619 

7 Seebrook & Hall 0.540 

8 Daemrich 0.548 

9 Daemrich 0.617 

10 Seebrook &Hall  0.532 

11 Seebrook &Hall  0.419 

12 Seebrook &Hall  0.418 

13 Daemen  0.530 

14 Delft Hydraulics  0.590 

15 Seebrook &Hall  0.350 

16 Seebrook &Hall  0.361 
Table 4.4: Calculated Kt for class A experiments 

 

Figure 4.6: Variation of H along y-axis for varying and Dn50 and Hi=0.1m, T=1s and n=0.4. 
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Figure 4.7: Variation of H along y-axis for varying and n and Hi=0.1m, T=1.5s and Dn50=0.02m. 

 

 

Figure 4.8: Variation of H along y-axis for varying and    and n=0.4, T=1. 5s and Dn50=0.02m. 
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Figure 4.9: Variation of H along y-axis for varying and T and n=0.4, Hi=0.1m and Dn50= 0.02m. 

 

From the figures 4.6 to 4.9 several interesting results are found with respect to the effects 

that structural permeability has on 2D wave transformation over submerged permeable 

breakwaters. The results show that the transmitted wave height increases as the porosity 

increases. Larger values of n mean that the grading of the elements comprising the 

breakwater is narrow which effectively means that the pore volumes within the structure 

are also large. This decreases the effects that capillary forces have within the breakwater 

and therefore more energy is allowed to travel through the structure. There is also an 

increase of the wave height in front of the breakwater which is partially contributed by the 

partial reflection of the incoming wave energy and the shoaling due to the breakwater. For 

small incoming wave heights the wave amplitude above the breakwater increases as n or 

    
 decreases. Small structural porosities mean that more water mass is forced to travel 

above the breakwater forcing the wave to increase in amplitude. As the incoming wave 

height increases the additional mass forced to travel over the breakwater forces the wave to 

break and therefore results in smaller wave heights above the breakwater. From the above 

one can understand that an optimum porosity value exists, for which a minimum wave 

transmission can be achieved. For the scenarios described in the above figures this optimum 

value lied between 0.3 and 0.4 for a nominal stone diameter equal to 0.02. It can also be 

concluded that by decreasing or increasing simultaneously n and     
 the above mentioned 

effects are magnified. Finally it can be seen that the specific geometry reduces the 

transmitted wave height for an increasing wave period. It can also be observed that smaller 

period waves are forced to break before they reach the breakwater and shoal again over it. 
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4.3 Results of 3D experiments 

4.3.1 Introduction  

These experiments serve two main reasons: 

 Produce a large number (1080) of experiments for combinations of different 

structural permeability and wave conditions. This dataset will then be divided into 

two different groups, a training and testing dataset that will be used in order to 

create an ANN model that will be capable of predicting the spatial variation of the 

wave transmission coefficient behind porous submerge breakwaters. 

 Create a dataset that will be compared with the base scenarios produced in the 

previous section that will allow detecting the influence of diffraction on the wave 

transmission process. For this reason different structural permeability conditions will 

be compared for 2D and 3D conditions. 

For the purpose of these experiments the breakwater that extended throughout the entire 

width of the flume was substituted with a breakwater with a breakwater head. As in the 

previous breakwater both slopes have a value of 1H: 1V (see figure 4.10).  

 

Figure 4.10: Wave flume layout for the 3D experiments 

 

25 wave probes were installed in the locations shown in the following table. They were 

implemented in order to obtain wave height data that will be used for training the ANN 

model. 

 

Scale: 

10:0.4m 



60 
 

Wave probe coordinates 

12,470 24,470 36,470 48,470 60,470 

12,492 24,492 36,492 48,492 60,492 

12,523 24,523 36,523 48,523 60,523 

12,550 24,550 36,550 48,550 60,550 

12,570 24,570 36,570 48,570 60,570 

12,600 24,600 36,600 48,600 60,600 
Table 4.5: Wave gauge positions, as nodes in computational domain 

 

As mentioned earlier different wave conditions were examined for combinations of different 

structural parameters. Namely 180 different wave conditions were applied to 6 different 

combinations of structural permeability conditions, summing to a total of 1080 experiments. 

The summary of the wave conditions is shown in table 4.6: 

 

Wave Conditions 

 Incoming Wave Height,    (m)  0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19 

Wave Period, T (s) 
 0.8, 0.88, 0.96, 1.04, 1.12, 1.20, 1.28, 1.36, 1.44, 1.52, 
1.60, 1.68, 1.76, 1.84, 1.92, 2.00, 2.08, 2.16 

Structural Permeability Conditions   

Nominal Stone Diameter,     
 (m)  0.02, 0.04, 0.06 

Porosity, n (-)  0.4, 0.5 

Other Structural Parameters   

Submergence Depth,    (m)  0.04 

Breakwater Width, B (m) 0.308 

Water Depth, d (m)  0.4 
Table 4.6: Summary of experimental conditions 

 

4.3.2 Key Findings 

In this section a discussion of the finding of the 3D experiments will be provided. The 

discussion will be divided into two categories dimensional results and non-dimensional. 

Wave transmission behind semi-infinite breakwaters is a complex phenomenon which 

includes wave breaking, generation of higher harmonics seepage and diffraction. For this 

reason an attempt to better understand the influence of porosity and diffraction will be 

made as well. 

For the purpose of training the ANN model the phase averaged transmitted wave height was 

calculated at each probe using the average root mean squared wave height (     
) based on 

the following formula: 

     
 

 √ ∑   
 
   

 
         Eq. 4.2 
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4.3.2.1 Dimensional Results 

 

Influence of wave period 

In order to determine the influence of the wave period on the wave transmission process 

three 2D plots were composed for an incoming wave height of 0.1m and wave periods of 

0.8s, 1.1s and 1.7s seconds correspondingly, the porosity was 0.4 and the nominal stone 

diameter 0.04m. For the sake of clarity it was decided to focus on the area close to the 

breakwater therefore the origin of the graphs (0, 0) corresponds to point (0,400) in the 

numerical flume (figure 4.11) and the centre of the breakwater is located along the line 

y=123. From the graphs bellow is can be deduced that for an increasing wave steepness less 

wave energy is allowed to pass on the lee side of the breakwater. The influence of the wave 

period is of significance for one more reason. As the plots in figure 4.11 shows, the effect of 

diffraction decreases as the wave length increases, resulting in more straight lines on the lee 

side of the structure. A possible explanation for this phenomenon is that longer waves have 

the ability to travel through the breakwater, therefore contributing more to transmitted 

wave height, reducing the contribution of diffraction to the lee side wave field. Also an 

interesting result is that the area of low wave energy moves from the head of the 

breakwater towards the sheltered zone behind the breakwater as the wave length increases. 

It is also observed that wave breaking is shifted towards the offshore direction as the wave 

period increases, which is a consequence of the larger wavelength that is partially reflected. 

In addition it can be observed that for smaller wave periods and therefore higher Iribarren 

number the partial reflection is higher which results in high spatial variation of the wave 

height in front of the breakwater. 

   

Figure 4.11: 2D plot of significant wave height around the breakwater for n=0.4, Dn50=0.04m, Hi=0.1m for 
periods of 0.8, 1.1 and 1.7 seconds (scale 10:0.4m) 

 

 

T=0.8s T=1.1s T=1.7s 
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Influence of wave height 

Examining the influence of the wave height is also important. For that reason four 2D plots 

of the significant wave height were created for constant n=0.4,     
     m, T=0.9s and 

varying    of 0.01m, 0.05m 0.09m and 0.13m. The figures depict the same “zoomed” in area 

of the wave flume as in figure 4.12 and the breakwater is located at the same position. From 

the figures it is observed that the location of the area of low wave energy is not influenced 

by   , although there is dependence between the incoming wave height and the magnitude 

and extent of the area of low wave energy. Namely an increased incident wave height 

results in a broader area with lower wave heights. The area of high wave energy is mainly 

determined by the location of the beach behind the breakwater which forces the waves 

passing through the gap to shoal. With respect to the wave field in front of the breakwater 

the figures suggest that for small wave heights the partial wave reflection is negligible 

therefore the area of high wave energy is located close to the breakwater. As the incident 

wave height increases more, more energy is reflected shifting the area of higher wave height 

towards the offshore direction.  

 

Figure 4.12: 2D plot of significant wave height around the breakwater for n=0.4,Dn50=0.04m, T=0.9s for 
incident wave height of 0.01, 0.05 and 0.09 and 0.13 meters (scale 10:0.4m) 

 

Influence of structural permeability 

It is important to answer the question of “is structural permeability a parameter that affects 

the wave field behind porous submerged breakwaters”? In this section the results of the 

wave flume experiments will be presented. Figure 4.13 depict the spatial variation of the 

wave field around the breakwater in which the centerline is located at y=123. As in the case 

of increasing wave period the wave field becomes more homogeneous and the influence of 

diffraction is lessened. This is a result of the reduced energy dissipation inside the 

breakwater. As porosity increases the mass of the water follows the path of least resistance 

which in this case is through the breakwater. It is also observed that with increasing porosity 

the overall wave energy behind the breakwater also increases. Finally the area of least wave 

H=0.01m H=0.05m H=0.09m H=0.13m 
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energy shrinks and shifts towards the shadow zone as the porosity of the breakwater 

increases. It should be mentioned that with an increase in stone diameter the same trends 

are observed but at a smaller magnitude.  

 

Figure 4.13: 2D plot of significant wave height around the breakwater for T=0.90s, Dn50=0.04m, Hi=0.10m for 
porosity values of 0.4, 0.5 and 0.6 (scale 10:0.4m) 

 

Influence of diffraction on wave transmission process 

Another interesting aspect that was treated in this study is the assessment of the difference 
between 2D and 3D wave fields in front and behind permeable submerged breakwaters. 
Numerous studies have been performed examining the diffraction effect behind 
breakwaters. Unfortunately all of them were carried under the assumption that the 
breakwaters are infinitely high and impermeable therefore not allowing any overtopping or 
seepage (i.e. Penny and Price (1952), Goda et al. (1978)). Only recently Vicinanza et al. 
(2009) proposed a theory for determining the wave height behind submerged breakwaters 
using a combination of diffraction and transmission theories. This section provides a direct 
comparison of the wave energies associated with 2D (no diffraction effects included) and 3D 
(diffraction effects included) wave fields, using the ratio: 

       
     

 

     
          Eq. 4.3 

where:  
     

  The significant wave height of the scenario where all phenomena are present (i.e. 

diffraction overtopping and seepage) 
     

= The significant wave height of the scenario where diffraction is excluded 

 
Figure 4.14 shows the spatial variation of        for porosity values of 0.4, 0.5 and 0.6 

respectively, nominal stone diameter of 0.04m wave height of 0.1m and wave period of 0.9s. 

As can be seen the 3D wave field has a significant spatial variation around the breakwater 

when compared to the 2D scenario. A general trend observed is that        in front of the 

breakwater has lower wave energy compared to the wave field offshore of the gap. With 

respect to the wave field behind the breakwater it is observed that the area of high        

n=0.4 n=0.5 n=0.6 
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depends on the porosity. It is noticed that as n increases the 3D wave field behind the 

breakwater becomes more homogeneous and resembles that of the 2D scenario with the 

exception of the gap, where higher wave heights are detected. Also the region of high wave 

energy directly in front of the gap of the breakwater increases in area and magnitude for an 

increasing porosity. Based on the results presented above it can be concluded that the wave 

field behind submerged permeable breakwaters is strongly influenced by the porosity and 

the 2D and 3D wave field have a significant difference.    

 

 

Figure 4.14: 2D plot of the ratio Kd,t,s around the breakwater for T=0.9s, Dn50=0.04m, Hi=0.10m for porosity 
values of 0.4, 0.5 and 0.6 (scale 10:0.4m) 

 

4.3.2.2 Dimensionless Results 

A dimensionless analysis of the results is required for the sake of understanding in depth the 

behavior of the data with respect to wave transmission. It is essential to create a method 

that makes the results transferable and comparable to other test conditions. This can be 

accomplished in two ways: 

 By scaling each parameter to the corresponding situation using Froude’s number. 

 By creating non-dimensional parameters that are capable of describing accurately 

the situation examined. 

The first method is tedious and has caused confusion when implimented. The second has 

been used extensively by other authors for analyzing trends and results (Seeling, 1980; 

Ahrens, 1987; van der Meer, 1991; Seabrook and Hall, 1998 etc); the latter has proven to 

give a productive correlation between the involved parameters and serves as a good tool for 

engineering design purposes. For these reasons this report will focus on presenting the 

results of the experiments in a non-dimensional manner. Figures 4.15 through 4.18 show the 

correlation between various dimensionless parameters with the transmission coefficient for 

different position behind the breakwater. 

n=0.4 n=0.5 n=0.6 
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Figure 4.15: Correlation of Kt with hs/Hi for 3 locations behind the breakwater 

 

 

Figure 4.16: Correlation of Kt with L/hs for 3 locations behind the breakwater 

 

 

Figure 4.17: Correlation of Kt with L/sqrt(Dn*B)*n for 3 location behind the breakwater 
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Figure 4.18: Correlation of Kt with wave steepness for 3 locations behind the breakwater 

 

As can be seen from the figures above the transmission coefficient shows a strong 

dependence with hs/Hi. As the submergence depth relative to the incoming wave height 

increases, larger wave transmission coefficients are observed.    also shows a spatial 

variation behind the breakwater, as it increases when moving further inshore due to 

shoaling. Regarding the incoming wave length sinusoidal envelopes enclosing the    values 

for varying L/hs are observed (as can be seen in figure 4.16). This can be explained by the 

influence of diffraction and permeability. Namely, at small values of L the effects of 

diffraction are strongest therefore resulting in high wave transmission coefficients; as L 

increases further diffraction effects lessen but permeability effects start to contribute more 

and therefore increase again the wave height behind the breakwater. It is also worth noting 

that in the third plot which includes the influence of stone diameters and porosity the same 

trend as in figure 4.17 can be observed but with a visible dampening of the effect of  

permeability at high values of 
  

√    
 
 . Finally, the fourth plot shows that for increasing 

wave steepness the wave transmission coefficient reduces. The physical explanation for this 

trend is found in the higher wave reflection associated with high wave steepness which 

reduces the amount of energy left to be transmitted over the barrier. 

It is also important to examine the distribution of the data that will be used for training the 

ANN model. It is known that ANN models are capable of producing very accurate results in 

the regions where a sufficient amount of data is available. For this reason the absolute 

distribution of the all input parameters and measured    is presented (figure 4.19). This 

maps the regions of high and low expected accuracy of ANN model. 
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Figure 4.19: Absolute distribution plots for various non-dimensional parameters 
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It is concluded from the distribution plots in figure 4.18 that the overall data have a 

sufficiently wide distribution. The wave transmission coefficient follows a gamma 

distribution associated with the small number of extreme wave conditions. 
  

  
   has a 

discontinuous distribution which is associated with the extremely low incoming wave height 

of 0.01m which produces a class of data that is located far away from the rest, the ANN is 

not expected to perform well between the values of 1.5 and 4 but these are values that are 

unrealistic for real world situation and therefore will not cause any significant problem 

regarding the outputs of the model. ξ and 
 

  
  also have a wide gamma distribution as a result 

of the same extreme wave conditions mentioned earlier. 
  

√    
 
  and 

 

  
  follow a slightly 

skewed normal distribution which is a good indicator of variability. Finally the distribution of 
   

  
  and 

  

  
  behave as homogeneous and gamma distribution correspondingly. 

Concluding, based on the above mentioned findings the wave steepness and the relative 

submergence ratio along with the relative permeability coefficient (
  

√    
 
 ) are the most 

influential parameters influencing the wave transmission process. 
  

  
 and   are also of great 

importance for the wave transmission process as they introduce the spatial variation of the 

wave transmission coefficient in polar coordinates. It is also deducted that the distribution 

of the dimensionless parameters is satisfactory for training the ANN model. 

 

4.3.3 Discarded data for ANN modeling 

For the purpose of producing a homogeneous data set it was required to discard several 

data subsets. 

Data obtained from the wave probes foreshore of the breakwater were all discarded, as the 

main focus of this report is the transmission coefficient. Including data measurements from 

the front of the breakwater would introduce a large error when used to train the ANN 

model. This is because the data trends influencing wave transmission and reflection are 

completely different. Another source of error might come from reflected waves off the 

sidewall. These waves could influence the accuracy of the measurements. For this reason a 

numerical a filter capable of isolating the reflected wave heights was installed. Nevertheless 

it was decided to discard data coming from these gages to assure a high level of accuracy. 

The location probes used for training and testing the ANN model are listed below.  

Coordinates of probes used for ANN training 

24,550 36,550 48,550 60,550 

24,570 36,570 48,570 60,570 

24,600 36,600 48,600 60,600 
Table 4.7: Coordinates of probes used for training and testing the ANN model, as nodes in computational 
domain 
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5 Accuracy analysis of 2D and 3D Data 
As discussed in the previous chapter a large number of experiments were performed in 

order to create a large database that would train the ANN model. For that reason it was 

essential to assure the accuracy of the results. This chapter will provide the accuracy analysis 

for the 2D and 3D experiments. The 2D experiments are compared to the 2D experiment of 

the DELOS database and the accuracy of the 3D experiments is compared with the 3D wave 

disturbance model proposed by Vicinanza et al (2009). 

5.1 Validation of 2D data 
The numerical modelling of the 2D wave field at submerged porous breakwaters was 

performed using MIKE 21 BW. This section will provide an analysis of the capability of the 

numerical model to predict the wave transmission coefficient. The validation of the wave 

model is conducted by comparing the results of the wave transmission coefficient for the 

calibrated model (Class A experiments) against the corresponding coefficients found during 

the compilation of the homogeneous wave transmission database during the DELOS project. 

In order to assure high level of accuracy, each numerical simulation resembled the exact 

structural and wave parameters (see section 4.2.2 for details) as in the original experiments 

with the exception of porosity (no porosity measurements were performed during the 

DELOS experiments). For that reason the porosity value was assumed to be 0.38 which is a 

typical value for small scale experiments. The transmitted wave height values from the wave 

model were calculated using the mean value of the significant wave height for ten 

consecutive grid points on the lee side of the breakwater; namely for points (30,561) to 

(30,571). Finally    was calculated by taking the ratio of the transmitted wave height over 

the incoming wave height. 

Figure 5.1 shows a Quantile - Quantile plot of the calculated wave transmission coefficient 

found in chapter 4 versus the     measured during the DELOS experiments. The agreement 

between the measured wave transmission coefficients and the calculated is excellent as can 

be seen in figure 5.1.  The model is able to simulate successfully the quasi-standing wave 

pattern in front of the breakwater that is due to partial wave reflection. The reason for this 

is that van Oosten and Peixo (2006) used the value of the incoming wave height at the toe of 

the structure for the calculation of    (which by definition captures the quasi-standing wave 

pattern in front of the breakwater), which matches that of the simulation conducted in this 

study. Also the increase in wave steepness due to wave reflection and shoaling in front of 

the breakwater is simulated realistically.  
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Figure 5.1: Validation result for experiment excluding wave diffraction 

 

In order to examine more closely the robustness of the model, 5 different types of statistical 

parameters were calculated.  The analysis reveals that the wave model has an excellent 

predictive skill (Brier Skill score of 0.98), also all computed errors are considerably low which 

allows us to conclude that the wave model can be used to simulate realistically and with 

very high precision wave transformation phenomena near submerged porous breakwaters.  

         

 
Index Bias M.A.E. M.S.E. R.M.S.E. Error B.S.S. 

 

 
Value 0.0039 0.01122 0.0002 0.0146 0.0205 0.9793 

 

         
Table 5.1: Statistical evaluation of Wave Model 

 

Concluding the MIKE 21 BW can be used to successfully predict wave transmission 

coefficients behind infinitely long submerged porous breakwaters (2D wave transmission). 

Therefore it can be deducted that when MIKE21 BW is used to model 3D wave transmission 

effects the only source of error can be diffraction. The next section will treat the accuracy of 

3D wave transmission in detail. 

 

5.2 Validation of 3D data 
As the 2D modelling of wave transmission, the 3D modelling using MIKE 21 BW was 

performed in order to determine the spatial wave distribution around submerged 

breakwaters under the influence of diffraction. To the knowledge of the author only a 

limited number of experiments have been performed examining the three dimensional 

behaviour of the wave field around submerged breakwaters and even fewer on permeable 

submerged breakwaters. As a result it was not possible to obtain physical wave 

measurement data for 3D wave transmission for the validation of the dataset. For that 

reason it was decided to use prediction method proposed by Vicinanza et al. (2009) 

(elaborated in Chapter 3). A wide number of different wave and structural conditions from 

the dataset covering the entire range of data were tested against this method. The data 
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tested had different combinations of nominal stone diameter and porosity as well as 

different values of incoming wave heights and periods. A table that summarizes the 

conditions tested is presented below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The prediction method proposed by Vicinanza et al. (2009) was developed for low crested 

structures with      and impermeable cores under the hypothesis that wave transmission 

over and through the breakwater are independent of the diffraction effects (correlation of 

0). As showed in the findings of the numerical simulations there is strong evidence that the 

two processes, 2D transmission and diffraction are negatively correlated as an increase in 

the transmitted wave height results in a reduction of the overall transmitted wave height. 

For this reason the following sections will present a comparison between the calculated data 

and the Vicinanza method for the cases where: 

 Correlation factor is zero (R=0)  

 Correlation factor is negative (   ) 

 

5.2.1 Comparison under the hypothesis of zero correlation  

As mentioned in chapter 3 the method adopted for this analysis makes use of prediction 

formulas for 2D transmission and then combines them with a diffraction theory in order to 

calculate the combined effect, using Eq. 3.21. 

Test Number    (m) T (s)     
 (m) n    (m) H (m) B (m) 

572 0.03 1.04 0.04 0.4 0.04 0.4 0.3388 

575 0.09 1.04 0.04 0.4 0.04 0.4 0.3388 

576 0.11 1.04 0.04 0.4 0.04 0.4 0.3388 

32 0.03 1.04 0.04 0.5 0.04 0.4 0.3388 

35 0.09 1.04 0.04 0.5 0.04 0.4 0.3388 

36 0.11 1.04 0.04 0.5 0.04 0.4 0.3388 

992 0.03 1.52 0.06 0.4 0.04 0.4 0.3388 

995 0.09 1.52 0.06 0.4 0.04 0.4 0.3388 

996 0.11 1.52 0.06 0.4 0.04 0.4 0.3388 

752 0.03 1.04 0.02 0.4 0.04 0.4 0.3388 

755 0.9 1.04 0.02 0.4 0.04 0.4 0.3388 

Table 5.2: Summary of test conditions for 3D validation 
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For the calculation of the diffraction coefficient the method proposed by Penny and Price 

(1952) is implemented using the McCormick and Kraemer (2002) approximation. This 

method has been proven to produce very reliable results for long crested waves, which is 

the case in this study. Also four different prediction formulae for 2D wave transmission have 

been selected in order to detect the sensitivity of the MIKE 21 BW results to different 

formulations. The prediction formulae used at are: 

 D’Angremond (1998) 

 Buccino and Calabrese (2007) 

 Seabrook and Hall (1998) 

 Goda and Ahrens (2008) 

The first formula was selected as it is the most extensively tested formula for low crested 

structures throughout the literature and it has been proven to give accurate results. The 

formula was based on the successful method propose by D’Angremond and adjusted for 

permeable structures. The Buccino and Calabrese formula has been designed for submerged 

and impermeable breakwaters. And the latter two formulations have been designed for 

submerged porous breakwaters, which is the exact same classification as the structures 

examined in this report. By comparing the results of the wave model with these 

formulations, valuable information will also be obtained regarding the importance of 

treating separately submerged permeable structures from LSC’s in engineering problems. 

Figure 5.2 shows the relation of transmission coefficient (Seabrook) for submerged porous 

breakwaters and the overall wave transmission coefficient measured in the wave model 

(    ). According to this we can conclude there is a significant difference between 2D and 3D 

wave transmission. 

  

Figure 5.2: Kt (Seabrook) versus      (measured) 

 

For this reason the following graphs where developed. They show the agreement between 

the measured wave transmission coefficient and the calculated. Figure 5.3 shows that a 

reasonable agreement exists between the results. The D’Angremond formula seems to over 

predict the wave height behind the breakwater at very high and low measured      . A 

possible explanation is that the specific wave transmission formula is developed for treating 

a variety of different structure types (mainly emerged); this formulation also does not 
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incorporate the effects of permeability which have the potential to reduce the wave climate 

on the lee side of the breakwater. As the D’Angremond formula the method proposed by 

Buccino and Calabrese tends to overestimate       values at the lower tail of the data (see 

figure 5.4). As was the case in the previous graph this method fails to predict the dissipation 

effects due to filtration. The latter two figures (figure 5.5 and 5.6) depict the agreement 

between MIKE21 BW results and the methods of “Seabrook and Hall” and “Goda and 

Ahrens”.   , representing the agreement between the prediction method and the actual 

data is 0.82 and 0.77 respectively, indicating a good agreement. Most of the data points lie 

between the 10% confidence lines. Therefore we can conclude that the wave model used to 

create the dataset for the training of the ANN is reliable. The increased accuracy compared 

to the two first formulations also indicates that permeability has a significant influence in 

the wave transmission over submerged porous breakwaters. 

 

Figure 5.3: KD,t (D’Angremond) Vs KD,t (MIKE 21 BW) 

 

 

Figure 5.4 KD,t (Buccino and Calabrese) Vs KD,t (MIKE 21 BW) 
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Figure 5.5: KD,t (Seabrook) Vs KD,t (MIKE 21 BW) 

 

 

Figure 5.6: KD,t (Goda and Ahrens) Vs KD,t (MIKE 21 BW) 

 

For the purpose of understanding in more depth the behaviour of the model data we can 

also examine the spatial distribution of the error behind the breakwater. For this reason 

error contour maps of several combinations of different structural permeability and wave 

conditions were produced for each prediction formula. All plots depict the “shadow” area 

behind the breakwater. The line y=0 corresponds to the centreline of the breakwater and 

the axis origin in the figures corresponds to point (24,523) in the numerical models domain 

(the head of the breakwater) 

The figures bellow present the error contours for a nominal stone diameter of 0.04m, 

permeability of 0.4 incoming wave height of 0.11 and wave period of 1.04s. The plots 

suggest that the point of higher error in all formulation lies near the breakwater. The source 

of this error comes from the nature of the diffraction theory used. All diffraction theories are 

developed for vertical barriers with no slopes on either side of the structure. Due to this, the 

empirical model has the tendency to produce error at these locations. It is also found that 

the agreement also becomes better further onshore in all situations. As suggested in the Q-

Q plots above, the best agreement is found for the methods of “Seabrook and Hall” and the 

“Goda and Ahrens”, these methods incorporate all the physical processes relevant to this 

study and therefore it seems reasonable to have the best agreement. Overall all the 

methods show that the data have good agreement as the absolute error in the largest part 

of the domain is below 10%, with the exception of the method of D’Angremond. 
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Figure 5.7: Error contours of test 575 for different prediction methods (scale 10:0.4m) 

 

The next set of figures demonstrate the spatial distribution of error for the different 

methods for the conditions of test 35, where a high porosity value was used (n=0.5). This set 

of data shows a large disagreement throughout the entire domain. This deviation is 

explained as all methods fail to account for the effect of porosity. The formulas used in this 

analysis were calibrated under average porosity conditions which lie in the range of 0.3 to 

0.4 and therefore under-predict the actual wave height. Nevertheless the same trends as in 

the previous figures are observed, where high discrepancies are observed near the 

breakwater. Finally, it is also observed that the highest error area increases in size as n 

increased. 
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Figure 5.8: Error contours of test 35 for different prediction methods (scale 10:0.4m) 

 

Also figure 5.9 illustrates the error contour-maps for the test conditions of test 996. Again 

the largest error between the prediction method and the data of MIKE 21BW is located near 

the crest of the breakwater. In this scenario though, the error throughout the entire domain 

is reduced significantly. Again the methods of “Seabrook and Hall” and “Goda and Ahrens” 

show the best agreement. Also the gradient of the error (
  

  
) is significantly reduced; this 

gradient can be interpreted as the deviation of error with respect to the coordinate system 

which indicates that the agreement is improved. 
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Figure 5.9: Error contours of test 996 for different prediction methods (scale 10:0.4m) 

 

Concluding, the information above suggests that the data generated by MIKE 21 BW have a 

good level of accuracy. The high error levels in figure 5.8 are mainly a result of the 

incapability of the adopted prediction method to account for the effects of porosity. 

Additionally because the methods of “Goda and Ahrens” and “Seabrook and Hall” have been 

specifically designed for submerged breakwaters and account for the effects of seepage, it is 

can be reasonably assumed that they provide a better measure of accuracy compared to the 

other two methods. Based on this assumption it is concluded that he error band for the 

dataset tested lies in the range of [0.006, 0.11]. The discrepancies near the breakwater are 

mainly due to the incapability of the traditional diffraction theories to predict    over a 

slope. Finally the agreement between empirical and numerical results seems to be better for 

longer waves, which is also observed in analysis of Vicinanza et al. (2009). Based on this the 

overall accuracy for the data creates can be classified “good”. 
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5.2.2 Comparison under the hypothesis of negative correlation 

Accoriding to the findings in the previous chapter, there is strong evidence that the wave 

transmission process and diffraction are not completely indipendant. Increasing wave 

lengths and permeability show a more homogeneous wave field on the lee side of the 

breakwater. This in turn may be interpreted as a reduction in the contribution of diffraction 

to the global wave transmission coefficient. The latter in statistiacal terms suggests a 

negative correlation of the    and   . Therefore an analysis based on the assumption that 

the two processes are correlated will to be seems a reasonable task. 

In order to include the effects of correlation between the wave transmission and diffraction 

coefficient, the proposed formula for the calculation of the global wave transmission 

coefficient (    ) by Vicinensa et al. (2009) has been modified and reads as: 

     √  
    

                 Eq. 5.1 

where R represents the correlation between the two processes. 

As was the case in the previous analysis the Penny and Price solution for the calculation of 

the diffraction coefficient has been implemented using the McCormick and Kraemer (2002) 

approximation. In order to avoid repetition only two wave transmission formulae have been 

selected for this analysis. Namely the “Goda and Ahrens” and “Seabrook and Hall”, as from 

all the existing formulae these two seem to describe better the structures analyzed, because 

both are calibrated for submerged permeable structures.  

The strength of the linear association between two variables is quantified by the correlation 

coefficient (R). A negative correlation indicates a negative association between the variables 

which in terms of wave transmission means that when more energy is allowed to pass over 

and through the breakwater (high contribution to     ) then less energy is transported 

through diffraction (low contribution) and vice versa. The correlation between    and    for 

the test data was calculated and found to have a value of -0.35 for the case where the “Goda 

and Ahrens” formulation was used, and -0.30 for the “Seabrook and Hall” method. 

By the introduction of these correlation factors in the method of Vicinanza a much stronger 

agreement is observed between the ANN model results and the prediction method (see 

figures 5.10 and 5.11). The correlation factor between the global transmission coefficient 

calculated by MIKE 21 and the prediction method shows the agreement between the two 

datasets is stronger compared to the hypothesis of zero correlation. Additionally the data 

performance can be evaluated by the introduction of confidence lines. In the cases 

presented below it can be observed that almost all of the data falls within the 10% 

confidence limits and therefore the scatter has been decreased significantly.  
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Figure 5.10:      using the "Goda and Ahrens" formulation Vs     of the prediction method, with 10% 

confidence interval lines 

 

 

Figure 5.11:       using the "Seabrook and Hall" formulation Vs       of the prediction method, with 10% 

confidence interval line 

 

Summarizing the results obtained from the data analysis, it can be concluded that MIKE 21 

BW has the ability to predict with good accuracy the transmitted wave height for the 2D 

wave transmission process. Based on the analysis for the 3D case the agreement between 

the prediction method adopted and the data generated is acceptable. The accuracy of the 

data increased when the reasonable assumption of negative correlation between    and     

was adopted. It should be also stressed that    and    each contain a certain amount of 

uncertainty which increases when added together. Therefore scatter is unavoidable no 

matter how good the quality of the data is. Concluding it can be stated that MIKE 21 BW 

produces very good quality data that can be used to train and test an ANN model. 
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6 ANN modeling, performance and validity 
In this chapter the results of the ANN modeling will be presented. This chapter will also give 

a detail description of the model setup and performance of the ANN model. Also an analysis 

of the accuracy of the model will be presented.  

 

6.1 Network Data 
In chapters 4 and 5 the process of creating the data and assuring their quality was discussed 

thoroughly. This part of the report will focus on the preparation of the data in order to train 

the ANN model. The performance of an ANN model not only depends on the quality of data 

that are used to train it, but also on the several other aspects. These will be discussed in 

detail in the following sections. 

 

6.1.1 Creating non-dimensional dataset 

For the purpose of creating a dataset that could be used in a range of different conditions it 

was decided the data obtained from the numerical experiment where made dimensionless. 

This allows input information to be transferable to other applications. It is important for the 

ANN model to include a sufficient number of input parameters. At the same time it also 

important to keep the number of inputs small, a large number of input variables may lead 

the model to unnecessary level of complexity that could possibly introduce “false” 

connection paths during the training process. In a preliminary basis the correlation of 

different dimensionless parameters with the wave transmission coefficient were checked in 

order to determine which parameters contained the largest amount of information.  In this 

study this problem of determining the most important input parameters was treated in the 

following way. The starting point of the variable selection was the formulations given by 

Ahmadian (2013) for 3D wave transmission for impermeable breakwaters. 

    
  {

  

  
 
  

  
 
  

 
 
  

 
   

 

  
}       Eq. 6.1 

An initial form of the architecture of the ANN model was then run using different 

combinations of dimensionless parameters until the set off variables with the least error and 

correlation was found. During this phase it was concluded that it is important to include a 

term that represents the effects of seepage in the process. Finally the set of input variables 

used for the ANN analysis was determined as: 

    
  {  

  

  
 
  

 
 
  

 
 

 

  
 

  

√     

    
 

  
}     Eq. 6.2 

In addition to the distribution plots presented in chapter 4 a statistical analysis of the 

parameters is presented below in order to illustrate the range of input parameters for which 

the model will be valid. 
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 Min Max Standard Deviation Mean 

  0.99 7.89 1.48 2.55 

  

  
 

0.21 4.00 1.10 0.85 

  

 
 

0.05 0.95 0.28 0.50 

  

 
 

4.41 14.89 3.18 9.90 

 

  
 

0.02 0.06 0.02 0.04 

  

√     

  
1.44 10.53 2.01 4.75 

  -3.10 3.10 1.18 1.27 

 

  
 0.01 1.90 0.32 0.44 

Table 6.1: Statistical analysis of input parameters 

 

6.1.2 Training and testing datasets 

For the purpose of training properly the ANN model it is important to divide the data 

obtained from the experiments into two sub sets; namely the training and testing datasets. 

The first set of data in used to train the model whereas the second is used to supervise the 

learning process. It is important that the data used for testing not to be included into the 

training. This will assure that the performance of the model is verified and will also check if a 

generalization problem occurs. The generalization problem refers to the situation at which 

the neural network is too powerful for the problem examined. It then does not "recognize" 

the underlying trend in the data, but learns the data by heart (including the noise in the 

data). This results in poor generalization and too good a fit to the training data. In order to 

further improve the generalization capability of the model the training subset is then divided 

into subcategories; the Estimation subset which is used for updating the weights and biases 

and the Validation subset which in turn supervises the error over the training process. In 

order to avoid over fitting (i.e. poor generalization) the bias and weights are saved when the 

error reaches its minimum value. 

The datasets described above where created by randomly selecting experiments from the 

pool of data files. The composition of each dataset is as follows. From the 1080 experiments 

85% comprised the training dataset and the rest (15%) was used to test it. Also 15% of the 

training dataset was dedicated for the validation of the training process and the rest for the 

estimation. The following table summarizes the composition of the datasets. It should be 

mentioned that in order to evaluate the wave height distribution behind the breakwater 9 
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measurements behind the breakwater where used per experiment resulting in a total 

number 9720 input arrays. 

 
Training dataset 

Testing  dataset 
Total size of 

dataset Estimation Validation 

Number of 

Experiment  
780 (72%) 138 (13%) 162 (15%) 1080 

Number of input 

arrays 
7020 (72%) 1242 (13%) 1458 (15%) 9720 

Table 6.2: Dataset composition for ANN modeling 

 

6.1.3 Data Normalization 

As mentioned in chapter 3 Neural Networks work via transfer functions which transfer 

information from one unit to another. In order to improve the performance of the model it 

is desirable to limit as much as possible the range of the input variables that the model 

handles. This is accomplished by normalizing the input arrays (i.e. preprocessing). This 

procedure minimizes the range of inputs and forces the model to output results in the same 

normalized range. Consequently a de-normalization procedure is required at the end of the 

network (i.e. postprocessing). In this model this problem is tackled with the introduction of a 

linear scaling algorithm, which reads transforms all variables to the domain of (0, 1) and 

reads as: 

      
        

              
        Eq. 6.3 

 

6.2 ANN model Architecture 
The proposed Neural Network makes use of the RBF network architecture, which is the most 

popular type of network used for function approximation. As described in chapter 3, RBF’s 

are feedforward networks that maps sets of input data onto a set of appropriate outputs. An 

MLP consists of multiple layers of nodes in a directed graph, with each layer fully connected 

to the next one. Except for the input nodes, each node is a neuron (or processing element) 

with a nonlinear activation function. RBF utilizes a supervised learning technique called 

backpropagation for training the network (Rosenblatt, 1961). In the following sections 

detailed descriptions of the individual components of the architecture will be presented. 

 

6.2.1 Number of Hidden layers 

For the purpose of this study only one hidden layer was selected to approximate the 

nonlinear function corresponding to the data patterns. It is also possible to include more 

layers in order to increase the performance of the model but this would increase 

dramatically the computation time. The increased predictive capability is small compared to 

http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Backpropagation
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additional computation time and therefore the addition of more hidden layers is not 

justified. According to Hornic (1989) one hidden layer is adequate to properly describe the 

underlying function with sufficient detail.  

Regarding the input layers are defined by the input parameters that where defined in the 

previous section. Namely the number of input parameters should match the number the 

number of input layers.  

Finally the output layer is defined by the nature of the problem as well. The architecture of 

the model could be defined in order to have more than one output layers. This will introduce 

a non-necessary complexity to the structure of the program. This problem could be solved 

by the introduction of two input variables that can describe the spatial position of the wave 

transmission coefficient and therefore allow the model to calculate the specific output one 

by one. The latter method was selected in this study and therefore one output layer was 

implemented in the design. 

 

6.2.2 Transfer function 

Transfer functions (hereafter TF) are mathematical representations, in terms of spatial or 

temporal frequency, of the relation between the input and output. In ANN’s TF’s provide the 

connection between the units of the network and at the same they limit the range of the 

output in a certain range. Therefore the output and the accuracy of the model strongly 

depend on the TF implemented. 

In RBFs each hidden unit has its own transfer function. The most common TF in these kinds 

of Neural Networks is the Gaussian function which shape is defined by a shape parameter 

(spread). It is of great importance to determine a correct shape factor for the network since, 

a larger spread, results in a smoother function approximation, which means that many 

neurons are required to fit a fast-changing function. A small spread means that many 

neurons are required to fit a smooth function, and the network might not generalize well. 

For this reason it is important to choose a spread constant larger than the distance between 

adjacent input vectors, that will give a good generalization, but smaller than the distance 

across the whole input space. Therefore the need arises that an optimum spread should be 

determined. In order to establish the optimum shape factor several different shape factors 

were applied to the elementary model that was created and then the corresponding error 

was calculated. The input and training data were the same in all scenarios; also the number 

of neurons was kept constant at 500. Table 6.3 demonstrates the best results were obtained 

for the last. 
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Spread RMSE    

0.8  0.06 0.93 

0.9  0.06 0.95 

1  0.04 0.98 

1.1 0.05 0.96 

1.2 0.7 0.90 

Table 6.3: Accuracy analysis RBF with different spread factors 

 

Based on the above findings in this MSc thesis a Gaussian TF with a spread of 1 will be 

applied in the hidden and the output layers.  

 

6.2.3 Training method 

The RBF model works in the following way: 

The hidden layer originally has zero units (neurons). Pairs of data (training and testing data) 

insert the network and then the error is computed. Then a new unit with a weight 

corresponding to the input vector with maximum error is added to the hidden layer. Then 

the weight factors are adjusted to minimize the error. This procedure continues until the 

minimum error (specified by the user) is met or when a maximum number of iteration and 

therefore units have been reached. 

Elaborating on the above, input data is passed to the hidden units that compute the 

Euclidian distance from the centre-point of neuron. Then the RBF function is applied to the 

distance determined previously. The values obtained from the RBF function (i.e. Gaussian 

basis function) are then multiplied by a weight factor and then passed over to the output 

layer where all the weighted values are summed together. The final step involves the 

addition of a bias. The calculation of the output is then calculated by: 

         ∑          
          Eq. 6.4 

Where: 

  , is the bias 

   , is the weight factor 

       
  

‖    ‖
 

   
  

, is the Gaussian basis function and    is the basis centre    is the width. 

It is essential to have a method that will provide an accurate and meaningful measure of the 

models performance. The error is not only responsible of number of iteration but has an also 
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determines the value of the new weight factor, as will be explained in the next paragraph. 

For this study the Sum of the Square Error (SSE) was selected.  

    ∑       ̂ 
  

           Eq. 6.5 

Where    , is the target value and   ̂ is the ANN model output. 

After the SSE has been computed an error function using the Gradient Descent algorithm is 

used to locate the local minimum of the functions and to reduce the error. The error is 

reduced by adjusting the weights, centers and widths of the partials using the following 

expressions: 

        
  

    
        Eq. 6.6 

        
  

    
         Eq. 6.7 

        
  

    
         Eq. 6.8 

Summarizing the RBF model used for this research has a total of 9 units in 1 hidden layer. It 

makes use of the Gaussian function in order to transfer the information from one layer to 

another and finally uses Gradient Descent algorithm to adjust the weight of the neural 

network. 

 

6.3 Performance of the ANN Model 
After the architecture and the datasets have been finalized the next step is to evaluate the 

performance of the model. In this section the results of the ANN model will be compared to 

the data obtained from the MIKE 21 BW simulations. The ability of the model to predict the 

wave transmission coefficient will be discussed by evaluating several statistical parameters. 

For this reason analysis of the final model along with a sensitivity analysis, were one 

dimensionless input parameter at a time is excluded will be presented. The results will be 

presented in term of Quantile-Quantile plots, error distribution histograms and statistical 

parameters. In order to describe with accuracy each scenario 5 different statistical 

parameters where used, these are: 

 

Root Mean Square Error (RMSE) 

The Root mean square error is a measure of the differences between values predicted by a 

model or an estimator and the values actually observed. In the context of model analysis it 

gives a good estimate of the overall accuracy of the prediction model relative to test data. A 

small RMSE means that the model is more accurate. In general a RMSE smaller than 0.05 

means that the modal has a good predictive capability. The equation for calculating RMSE is: 
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√

∑
    

    
 

   

 
   

 
         Eq. 6.9 

 

Squared Multiple Correlation Coefficient (  ) 

  , gives an indication of the overall trend the model follows. A high correlation coefficient 

means that the predictions of the model have the tendency to follow the same trend of the 

data that are used to compare it with. The higher the value of    the better performance 

the model has. For the purpose of this study a satisfactory correlation coefficient should 

have a value close to 0.98. This will mean that the model has the same capability as the 

ANNs created by Panizzo et al. (2004) , van Oosten and Peixó (2005) and Ahmadian (2013). 

The formula used for calculating the correlation coefficient reads as: 

   
[∑     

   ̅̅ ̅̅̅     
   ̅̅ ̅  

   ]
 

∑      
   ̅̅ ̅̅̅      

   ̅̅ ̅ 
      

        Eq. 6.10 

 

Distortion     

The distortion is very helpful tool that allows to measure the accuracy of the individual pairs 

of calculated and measured variables. As can be seen from the equation below, a   close to 

1 means the model has a good accuracy. As   becomes greater or smaller than 1 it means 

that the model has the tendency to over or under predict respectively. 

  
 

 
∑

   

   

 
             Eq. 6.11 

 

Brier Skill Score (BSS) 

The BSS is a non-dimensional measure of the accuracy of the prediction relative to the 

accuracy of a base line prediction. It can be used to classify the prediction method 

objectively as there are tables that categorize models depending on the BSS. A model is said 

to have an “excellent” predictive capacity when the BSS is between 1 and 0.8 and to have a 

“bad” when the BSS is between 0 and 0.2. The equation for calculating the Brier Skill Score is 

presented below: 

      
∑     

    
   

   

∑        
   

   

        Eq. 6.12 

Where    is the baseline prediction which for this study was selected as the average wave 

transmission coefficient; in this way more extreme categories of predictions are assigned a 

higher skill score and therefore a measure of the accuracy of extreme events is also 

obtained. 
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Willmott Index (d) 

The Willmott Index is one more score based measure of the accuracy of prediction models. 

The philosophy behind it is the same as the BSS. Based on Willmott’s research, it was 

determined that the average-error or deviation measures that are based on absolute values 

of differences, like the Mean Absolute Error (MAE) and Mean Absolute  Deviation (MAD) are, 

in general, preferable to those based on squared differences, like the Root Mean Squared 

Error (RMSE) (Willmott and Matsuura 2005, 2006; Willmott et al., 2009). Therefore a 

different equation is proposed which is less sensitive to the shape of the error-frequency 

distribution and, as a consequence, to errors concentrated in outliers. The equation reads: 

    
∑ |   

    
| 

   

∑  |   
   ̅̅ ̅̅̅||   

   ̅̅ ̅̅̅| 
    

        Eq. 6.12 

 

6.3.1 Overall Performance of Model 

The next figures demonstrate the final performance of the model when compared to test 

data. 

 

Figure 6.1: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines 

 

As can be observed the agreement between predicted values of    and the corresponding 

values obtained during the MIKE 21 BW simulations is very good. Almost all of the data falls 

within the 90% confidence lines indicating that the model is accurate throughout the entire 

domain with the exception of a few cases. In order to examine the behavior of the error 

more closely the classes of the error have also been plotted. 
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Figure 6.2: Error histogram of complete model 

 

The figure above shows percent of experiments falling within a certain range of error. The 

behavior of the error follows an almost normal distribution which is slightly skewed towards 

the positive error values indicating that it has a small tendency to over-predict the wave 

transmission coefficient. Also the histogram above shows that the spread of error is small as 

all errors are smaller than 10% and over 90 % of the error is smaller than 0.05. This is an 

indicator of the very good predicting performance of the model. 

The performance of the model was also assessed by calculating several statistical 

parameters. As the table below reveals the model has an excellent predictive skill based on 

the brier skill score and Willmott index. In addition the distortion coefficient also shows that 

the model has a slight tendency to over-predict the wave transmission coefficient. Finally, 

the RMSE is smaller than 0.05 indicating also a very good accuracy.  

Type of 

Model 
RMSE 

Correlation 

(  ) 
Distortion ( ) BSS 

Willmott 

index (d) 

Final Model 0.042688 0.984465 1.004628 0.8064 0.756264 

Table 6.4: Statistical parameters of final prediction model 

 

It is also of importance to compare the performance of the model to other studies. The next 

table shows the predictive capacity of several ANN models including the one described in 

this study. 
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Panizzo et al. 

(2004) 

Van Oosten and 

Peixó (2005) 
Ahmadian (2013) Present Model 

Type of 

Structures 

treated in model 

Mound LCS Mound LCS 
Submerged and 

impermeable 

Submerged and 

permeable 

Type of wave 

transmission 
2D 2D 3D 3D 

RMSE 0.04 0.03 0.05 0.04 

   0.97 0.99 0.97 0.98 

Table 6.5: Comparison of statistical parameters with related studies 

 

Table 6.5 shows that the developed model has a predictive capacity which is better or at 

least comparable to previous studies, even though the models above do not examine the 

exact same phenomena.  

 

6.3.2 Sensitivity to Iribarren Number (ξ) 

In this paragraph the accuracy of the model when the Iribarren number is excluded is 

presented.  

 

Figure 6.3: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines, ksi neglected 

 

Figure 6.3 presents the Q-Q plot of the ANN model when the Iribarren parameter is 

neglected from the input matrix. As is expected the accuracy of the model decreases 
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significantly. A significant amount of the predictions values falls outside the 10% confidence 

limits. Nevertheless, the model does not lose its accuracy for    values up to 0.4, after that 

point a certain degree of under-prediction is observed. The next histogram presents the 

distribution of error; this will give a sence of the overall accuracy of the model. 

 

Figure 6.4: Error histogram of complete model, ksi neglected 

 

The error class histogram presented above shows that the data follow an almost lognormal 

distribution. The left tail of the distribution contains a bigger percentage of the error 

indicating again the tendency of the model to under-predict the test values. Almost 84 % of 

the predictions fall within an absolute error of 5%. Finally the table presented bellow shows 

the evaluation of the model when input parameter ksi is neglected. The most significant 

finding is that the Brier Skill has fallen to 0.7834 which means that the predictive skill of the 

model is now “very good”, one class lower than the “complete” model. Also a significant 

increase in the RMSE is also observed, when compared to scenario with all the input 

parameters. 

Type of 

Model 
RMSE 

Correlation 

(  ) 
Distortion ( ) BSS 

Willmott 

index (d) 

Final Model 0.082836 0.936177 0.993857 0.7834 0.732456 

Table 6.6: Statistical parameters of the ANN model, without ksi 

 

Based on the above it can be concluded that the Iribarren parameter influences significantly 

the predictive capacity of the model. 
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6.3.3 Sensitivity to submergence ratio hs/Hi 

 

 

Figure 6.5: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines, submergence ratio 
neglected 

 

The figure above presents the predictive behavior of the model when the submergence ratio 

is neglected. As can be seen the points lying outside the 10 % confidence lines are increased 

when compared to the previous scenario (neglected Iribarren number). The model has the 

tendency to underpredict a few the testing dataset, with the exception of the region with 

low wave transmission coefficients where the model seems to have much better predictive 

capacity. Looking into the distribution of the error (figure 6.6) more closely it can be 

observed that the error tends to follow a lognormal distribution, associated with the large 

underpredictions mentioned above. To the contrary, when examining the right tail of the 

error class distribution a higher percentage of errors with low values (<0.1). The percentage 

of the predictions falling within the 90 % confidence limits is now reduced to 80%, indicating 

that the discussed factor is of higher relevance. 
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Figure 6.6: Error histogram of complete model, submergence ratio neglected 

 

The table below shows that the submergence ratio has an even greater influence on the 

accuracy of the model than ξ. The correlation decreases further and the Brier along with 

Willmott index have an even smaller value indicating, which translates into a worst model 

performance. 

Type of 

Model 
RMSE 

Correlation 

(  ) 
Distortion ( ) BSS 

Willmott 

index (d) 

Final Model 0.092024 0.926177 0.994405 0.7801 0.731427 

Table 6.7: Statistical parameters of the ANN model, excluding the submergence ratio 

 

Concluding it can be stated that the submergence ratio is an important parameter that 

describes the wave transmission phenomenon, which also agrees with the literature. 
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6.3.4 Sensitivity to Hi/h 

 

Figure 6.7: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines, Hi/h neglected 

 

The Q-Q plot of the scenario where the ratio of the wave height relative to the depth in front 

of the breakwater reveals its influence is of minor importance compared to the previously 

examined scenarios. As can be seen in figure 6.7 almost all of the predictions fall within the 

10 % confidence intervals. No major discrepancies are observed, based on the error class 

histogram it can be concluded that in the absence of this input parameters the model tends 

to slightly overestimate the wave transmission coefficient. This is a result of the slightly 

skewed normal distribution that the error follows. 

 

Figure 6.8: Error histogram of complete model, Hi/h neglected 
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Finally the model statistical parameters presented below show that even though the 

accuracy of the model has decreased slightly compared to the base scenario (complete 

model), however the model can still be classified as “excellent”, since the BSS value is 

essentially 0.8.  

Type of 

Model 
RMSE 

Correlation 

(  ) 
Distortion ( ) BSS 

Willmott 

index (d) 

Final Model 0.054999 0.946138 1.003543 0.7995 0.747522 

Table 6.8: Statistical parameters of the ANN model, excluding the submergence ratio 

  

6.3.5 Sensitivity to L0/h 

The figures below show the agreement between the predicted wave transmission coefficient 

and the corresponding measured value. The influence of the wave length relative to the 

depth in front of the breakwater is big as can be seen in figure 6.9. There is considerable 

scatter and many predictions fall outside the 10 % confidence interval. There is an obvious 

tendency of the model to underestimate    in some cases. 

 

Figure 6.9: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines, L0/h neglected 

 

The error histogram shown below demonstrates that the error follows an almost perfect 

normal distribution, but with a considerable spread. The area of low error (<5%) includes a 

much smaller percentage compared to the scenarios mentioned above.  
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Finally table 6.9 shows that the model performs poorly when the effects of the wavelength 

are not included. The correlation coefficient has relatively small value and the BSS and 

Willmott index have also decreased indicating a poorer predictive capacity of the model. It 

also worth mentioning that according to the value of beta the model does not tend to 

overestimate or underestimate.  

 

Figure 6.10: Error histogram of complete model, Lo/h neglected 

 

Type of 

Model 
RMSE 

Correlation 

(  ) 
Distortion ( ) BSS 

Willmott 

index (d) 

Final Model 0.095313 0.918558 0.99944 0.7795 0.733237 

Table 6.9: Statistical parameters of the ANN model, excluding Lo/h ratio 

 

6.3.6 Sensitivity to B/Hi 

The figure bellow shows the correlation between the measured and calculated values for the 

scenario where the ratio of the breakwater width over the wave height is neglected. It can 

be seen that the model tends to underpredict the wave transmission coefficient in several 

situations.   
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Figure 6.11: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines, B/Hi neglected 

 

As was the case for the previous scenarios the histogram of errors follows a slightly skewed 

normal distribution.  In the absence of the relative crest width the model tends to 

underpredict. There is a tendency of the model to produce a large number of small positive 

errors (     ) and a relatively greater number of large negative errors (≥0.06), indicative of 

the skewness mentioned above. 

 

Figure 6.12: Error histogram of complete model, B/Hi neglected 

 

The table below presents the statistical parameters associated with this scenario. It can be 

concluded that the model where the crest width relative to the wave height is neglected the 
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accuracy falls. All the parameters in table 6.10 indicate that the model performs worse than 

the original. Even though the accuracy declines the model still retains a satisfactory level of 

accuracy.  

Type of 

Model 
RMSE 

Correlation 

(  ) 

Distortion 

( ) 
BSS 

Willmott 

index (d) 

Final Model 0.057563 0.930512 0.994976 0.7909 0.747411205 

Table 6.10: Statistical parameters of the ANN model, excluding B/Hi 

 

6.3.7 Sensitivity to permeability factor 

In this section the sensitivity of the permeability factor (
  

√      

 ) is examined. The Q-Q 

plot presented below shows that the correlation between the measured and computed 

values is very poor. The model has poor performance for the entire range of wave 

transmission coefficients. Almost half of the predictions fall outside the 90 % confidence 

lines and most of the results tend to have a positive error. 

By examining closely the error histogram of figure 6.14 it can be observed that the error has 

the tendency to follow a bimodal distribution with two error peaks. This explains the large 

scatter in the data of figure 9. The larger peak is located near the error value of 0.10 and a 

smaller peak near -0.08, this is an indicator of the strong overestimating tendency of the 

model when this parameter is neglected.  

 

 

Figure 6.13: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines, permeability input 
parameter neglected 
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Figure 6.14: Error histogram of complete model, permeability coefficient neglected  

 

The following table verifies the points above in a more qualitative manner. The quality of the 

model’s output is relatively poor as the RMSE is five times greater than the original model. 

The BSS and d is very low but still in the performance range of “very good”. Finally the 

distortion coefficient shows that the model has the overall tendency to over predict the 

wave transmission coefficient.  

Type of 

Model 
RMSE 

Correlation 

(  ) 

Distortion 

( ) 
BSS 

Willmott 

index (d) 

Final Model 0.228869 0.606401 1.028686 0.7617 0.717411205 

Table 6.11: Statistical parameters of the ANN model, excluding permeability factor 

 

6.3.8 Sensitivity to theta 

Theta is the parameter determining the angle of the estimation point relative to the center 

of the breakwater head. The next figure demonstrates the importance of this parameter to 

the overall performance of the model. In the absence of this parameter the model tends to 

underestimate the wave transmission coefficient, which is a natural consequence as the 

spatial variation of the wave height and therefore the influence of diffraction cannot be 

successfully modeled. Nevertheless the most of the points below fall within the 10 % 

confidence interval. 
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Figure 6.15: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines, theta neglected 

 

Figure 6.16 shows the distribution of errors classes. The most impart finding is that it follows 

an almost normal distribution. The few large negative errors are “compensated” by a large 

number of small positive errors, for this reason the model does not over or underpredict the 

wave transmission coefficient. 

Based on table 6.12 the model has a relatively poor performance. The RMSE large and the 

correlation factor is almost 10 % smaller than the originals model’s. Also based on Willmott’s 

and Brier indices the performance drops to a lower performance class. It can therefore be 

concluded that the influence of this parameter is of significance for the purpose 3D wave 

transmission. 

 

Figure 6.16: Error histogram of complete model, permeability coefficient neglected 
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Type of 

Model 
RMSE 

Correlation 

(  ) 
Distortion ( ) BSS 

Willmott 

index (d) 

Final Model 0.101036 0.902666 0.984757 0.7871 0.740341 

Table 6.12: Statistical parameters of the ANN model, excluding theta 

 

6.3.9 Sensitivity to r/L0 

This is the second dimensionless parameter responsible for determining the spatial variation 

of the wave transmission coefficient. As can be seen from the figure below (Figure 6.17) by 

omitting this input parameter the quality of the model worsens. Also significant scatter is 

observed for    smaller than 0.9, for higher values of    it seems that the dimensionless 

distance from the breakwater head is of minor importance as these predictions retain their 

accuracy.  

Figure 6.18 shows that the error classes follow a normal distribution indicating that the 

mean prediction values of the model coincide with mean values of the test database. The 

wide distribution of the error results from the large number of predictions with high error, 

which practically means that the model in the absence of this parameter tends to produce a 

larger error. 

The above are also confirmed by the statistical parameters listed in table 6.13. The 

correlation between the predicted and measured values is the lowest after the one found in 

chapter 6.3.7 indicating the importance of this factor to the overall performance of the 

model. Finally the BSS, d is also smaller when compared to the other scenarios indicating 

again the significance of this factor. 
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Figure 6.17: Kt ANN versus Kt measured in MIKE21BW modeling, with 90% confidence lines, r/Lo neglected 

 

Figure 6.18: Error histogram of complete model, r/Lo neglected 

 

Type of 

Model 
RMSE 

Correlation 

(  ) 
Distortion ( ) BSS 

Willmott 

index (d) 

Final Model 0.12585 0.87982 0.9999 0.7781 0.73634 

Table 6.13: Statistical parameters of the ANN model, excluding r/Lo 
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6.3.10 Summary of Sensitivity Analysis 

After the performance of the final ANN model was presented a sensitivity analysis of the 

influence of the input parameters was performed, where one by one each input parameters 

was neglected. The results of this analysis show: 

 The most influential structural input parameter is the permeability factor, which also 

includes information about the forcing (i.e. wave length). 

 From the two parameters designed for determining the spatial distribution of the 

wave height the most effective parameter is the relative distance to the wave length 

(r/Lo). 

 The ratio of Hi/h is the least influential of all the parameters. 

 The incorporation of the parameters describing the spatial distribution of the wave 

transmission parameter is very important for the performance of the model. 

 The model has a small tendency to overpredict   . 

 The distribution of the error in all the formentioned scenarios is normal or slightly 

skewed. This is a good indicator of the performance of the model as neither over or 

under prediction is expected.  
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6.4 Validity of the ANN model 
Based on the previous chapter it has been determined that the model performs the best 

when all 9 of the input parameters are included in the models architecture. The validation of 

the model will be performed in two steps. First the model will be validated against a range of 

different conditions using the prediction method proposed by Vicinanza (2009), and 

following that the boundaries at which the model is reliable will be presented.  

 

6.4.1 Validation against empirical prediction method 

For the purpose of this validation process the global wave transmission formula of Vicinanza 

will be applied using the 2D wave transmission formula of Goda and Ahrens (2010) and the 

diffraction theory developed by Penny and Price (1952) using the approximation of 

McCornmick and Kreamer (2001). 

The validity of the ANN model is assessed by plotting the predicted value of the ANN model 

in the same graph with the prediction of the empirical method of Vicinanza, for three 

different locations behind the breakwater. It is of great importance to assure the quality of 

the data. For this reason the variation of the wave transmission coefficient with respect to 

four most important structural dimensionless parameters will be presented.  

 

6.4.1.1 Validation of model with respect to ksi (ξ)  

This section provides an analysis at which the predictions of the ANN model are compared 

against the empirical method presented earlier. In this figure below the prediction of the 

ANN (solid line) and empirical formulation (dots) is plotted for varying Iribarren number. The 

next plots have been produced based on the assumption that the wave period and the 

breakwater slope are constant at 1s and 45° respectively. 

The figure below shows that both predictions follow the same trend. The wave transmission 

coefficient increases with increasing ksi for the two locations closest to the breakwater 

head. An interesting finding is that   decreases after ξ>6 for the location deepest into the 

shadow zone. This may be a result of the negligible contribution of diffraction at that point 

in combination with the increased wave reflection associated with high Iribarren numbers, 

which reduces the amount of energy passing through and over the breakwater. The absolute 

error between the two methods is smaller than 10% in all cases which indicated a good 

agreement. Also it is noticeable that the ANN follows the same trend as the empirical 

formulation even in the third location which deviates from the response of the two first 

locations; this is a good indicator of the performance of the model.  
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Figure 6.19: Spatial wave transmission of wave transmission coefficient Vs ksi at different locations: Predicted 
values using Vicinanza (dots), predicted values by ANN (solid line) 

 

6.4.1.2 Validation of model with respect to relative submergence ratio  

As in the previous paragraph the spatial variation of the wave transmission coefficient in 

three different locations is presented. The variation of    with respect to the relative 

submergence ratio (
  

  
) is illustrated in the figure below. In the first two locations graphs 

indicate an upward trend as the relative submergence ration increases. Examining the 

location furthest into the shadow zone it is observed that    decreases after 
  

  
  . 

It is noticeable that the ANN model follows the general trend indicated by the dots 

(empirical method) which means that the ANN model can simulate successfully the overall 

trend with respect to 
  

  
. In addition the absolute error in all location is always smaller than 

0.1 indicating that the model has a good predictive capacity. It should be noted that the 

quality of the predictions are poorer than in the previous paragraph, despite this the ANN is 

still reliable. 
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Figure 6.20: Spatial wave transmission of wave transmission coefficient Vs relative submergence depth at 
different locations: Predicted values using Vicinanza (dots), predicted values by ANN (solid line) 

 

6.4.1.3 Validation of model with respect to 
  

 
 

The same analysis as in the last two paragraphs is presented but in this case the 

dimensionless parameter examined is the ratio of the wave length to the depth in front of 

the structure. Based on the both the methods presented in the graphs below the wave 

transmission coefficient follows a weak sinusoidal trend for varying 
  

 
. The maximum    

decreases slightly as the point under consideration shifts deeper into the shadow zone, as 

the effects of diffraction become less important. 

For location (24,550) the offset of the ANN trend line with respect to the empirical method is 

significant especially for large wave lengths. In the other two locations an apparent lag of 

the ANN trend line with respect to the empirical predictions can be observed. With the 

exception of the extreme values in the first location all the predictions of the ANN model 

have an absolute error smaller than equal to 10 %. Based on the above the model has a very 

good predictive capability and is its results agree to a satisfactory degree with the empirical 

formulation of Vicinanza et al. (2008). 
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Figure 6.21: Spatial wave transmission of wave transmission coefficient Vs 
  

 
 at different locations: Predicted 

values using Vicinanza (dots), predicted values by ANN (solid line) 

6.4.1.4 Validation of model with respect to permeability factor  (
  

√      

 ) 

The final parameter examined in this section is the permeability factor (
  

√      

 ). 

According to the ANN sensitivity analysis and the information obtained from the DELOS 

database (see appendix C) the correlation between this parameter and the wave 

transmission coefficient is very strong. The ability of the ANN model to produce accurate 

predictions of    with respect to this factor is therefore essential in order to assure that the 

quality of the model’s predictions is satisfactory. Figure 6.22 presents the variation of the 

wave transmission coefficient with respect to examined parameter for 3 different locations 

behind the breakwater. The figures include the predictions of the ANN mode and the 

empirical method. Based on the two first figures it can be observed that    decreases for an 

increasing permeability factor, and reaches a minimum of 0.4. To the contrary the wave 

transmission coefficient seems to be independent of 
  

√      

  at the location deepest into 

the shadow zone, which seems reasonable as the effects of diffraction at that location are of 

minor importance there. With respect to the accuracy of the model, the scatter between the 

ANN and the empirical prediction is very small. All points fall within the 10 % error band and 
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both models follow the same trends. The above are very good indicators of the quality of the 

model and therefore it can be deducted that the ANN shows a sufficient degree of accuracy. 

 

 

Figure 6.22: Spatial wave transmission of wave transmission coefficient Vs porosity factor at different 
locations: Predicted values using Vicinanza (dots), predicted values by ANN (solid line) 

 

6.4.1.5 Summary and Conclusion of the Validation Process 

Based on the finding of the analysis above it can be concluded that over the overall 

performance of the model compares very well with empirical formulation of Vicinanza et al. 

(2009). The final ANN model predicts with sufficient accuracy (absolute error ≤ 0.1) the wave 

transmission coefficient in the entire area behind the breakwater. The model is able to 

follow the trends of the most influential non- dimensional parameters with sufficient 

accuracy. In addition to the above figure 6.23 shows the Q-Q plots of the predicted ANN and 

empirical model for a three different cross-sections behind the breakwater. As table 6.14 

illustrates the final model has a good predictive capacity. It performs very well in the regions 

furthest from the breakwater and its reliability decreases for points closer to the 

breakwater. 
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Dataset/Location 550 575 600 Total 

Correlation 0.66 0.85 0.94 0.82 

Table 6.14: Correlation between the ANN and empirical model predictions 

 

 

Figure 6.23: Correlation between the ANN and empirical model prediction, for three different cross sections 
behind the breakwater 

 

Keeping in mind that the method used for comparison accumulates both the error of the 2D 
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6.4.2 Boundaries of the ANN model 

In this section the boundaries of the model are determined on the basis of two notions: 

 Physical boundaries, the boundaries of each dimensionless parameter depend on 

the individual physical boundaries of the parameters comprising them. 

 High accuracy bands, this are the boundaries at which the model performs 

accurately. These bands are determined on the basis of a sensitivity analysis. The 

sensitivity figures presented in the following paragraphs show the 95 % confidence 

interval along with the mean value of the ANN prediction. 

The final validity boundaries of the input parameters will be defined as a subset of the above 

two ranges. This section will discuss the process followed in order to determine the validity 

range for each input parameter. 

6.4.2.1 Iribarren Parameter 

The Iribarren number describes the steepness of the wave relative to slope of the structure. 

It is well known that the maximum wave steepness a have could have is 0.07, the minimum 

wave steepness could be 0. Based on hypothesis that the slope of the structure is 45° the 

minimum and maximum ξ that can be obtained is 1.8 and ∞ theoretically. 

The figure below shows the results of the sensitivity analysis. According to this the model 

retains a high level of confidence between ξ ∈ [2, 6] therefore this should be the input range 

of this parameter in the ANN model 

 

Figure 6.24: Sensitivity analysis of ξ: dotted lines (2.5 and 97.5 % quantile), solid line (ANN mean prediction) 
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6.4.2.2 Relative Submergence Depth 

The ratio of 
  

  
 has no physical boundary as can be understood. The only limitation that could 

be imposed is the limitation of the incoming wave height due to the depth foreshore of the 

structure. One more limitation that is imposed on this ratio is that is should always be 

greater than zero, a submergence depth of zero will result in a loss of the information 

contained within it. With respect to the accuracy limits determined by the sensitivity 

analysis, figure 6.25 shows that model yields reliable results in the range of values between  

[1, 3]. Therefore all inputs of  
  

  
 should fall within the limits of [1, 3]. 

 

Figure 6.25: Sensitivity analysis of submergence ratio: dotted lines (2.5 and 97.5 % quantile), solid line (ANN 
mean prediction) 

 

6.4.2.3 6.4.2.3 Incoming wave height over foreshore depth 

With respect to the physical boundaries of the 
  

 
  the lower bound should be greater than 0 

and the upper limit should be smaller than 0.8 (Longuet-Higgins and Stewart, 1964). In 

addition to this the sensitivity analysis conducted for this parameter (see figure 6.26) 

showed that in the ANN model    decreases with an increasing 
  

 
  which is reasonable since 

the wave come closer to the breaking limit. The same analysis revealed that the range of 

high reliability for this parameter is [0.2, 0.75]. By combining the two findings it is proposed 

that the model should be used within the range of [0.2, 0.75] 
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Figure 6.26: Sensitivity analysis of incoming wave height over foreshore depth: dotted lines (2.5 and 97.5 % 
quantile), solid line (ANN mean prediction) 

 

6.4.2.4 6.4.2.4 Incoming wave length over foreshore depth 

This parameter has no physical boundaries; both the wave length and submergence ratio 

can take any positive value. The figure below shows that the wave transmission coefficient 

grows with increasing 
  

 
. This is an expected outcome as longer waves force more energy to 

pass through the breakwater. The sensitivity analysis yields the discussed parameter has a 

large condfidence band extending from 2.5 to 13.5.  From the above it is concluded that 

input range for this parameter should be [1.5, 13.5]. 

 

Figure 6.27: Sensitivity analysis of incoming wave height over foreshore depth: dotted lines (2.5 and 97.5 % 
quantile), solid line (ANN mean prediction) 
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6.4.2.5 6.4.2.5 Incoming wave height over breakwater width 

This ratio again does not have any physical boundaries. The only limitation that is implied is 

that it should be greater than zero, as was the case in paragraph 6.4.2.3 a ratio of zero value 

would lose all the information associated with the parameter and would be useless for ANN 

training and testing. It should be mentioned that very small values of 
 

  
 are possible, these 

variables are associated with very small crest widths of deforming breakwaters. In addition 

to the above the sensitivity analysis reveals that the wave transmission coefficient decreases 

for an increasing relative breakwater width, which agrees with the literature. The range of 

95 % confidence lies between 0.075≤
 

  
≤0.375. From the previous finding it is concluded that 

the optimum results for the model would be obtained for inputs in the range of [0.075, 

0.375]. 

 

Figure 6.28: Sensitivity analysis of relative breakwater width: dotted lines (2.5 and 97.5 % quantile), solid line 
(ANN mean prediction) 

 

6.4.2.6 Permeability factor 

The permeability factor is defined as 
  

√    
  

 . It represents the influence of the wave 

permeability on the wave transmission process by incorporating the all the variables 

influencing seepage. The only limitations applied to the physical boundaries are that the 

porosity (n), nominal stone diameter and crest width should never be zero. A porosity and 

stone diameter of zero correspond to impermeable structures which are outside the scope 

of the study and are not covered in the model; also the parameters comprising the 

denominator of this ratio should be greater than zero in order to avoid the factor going to 

infinity. Figure 19 reveals that for increasing permeability factor    increases, which is 

reasonable as the less distance the wave travels through the breakwater the less energy is 

dissipated and therefore more energy is passed over to the lee side of the breakwater. 

Based on the figure below the model performs well for permeability factors between [6, 35] 

which is also the final boundary conditions of this model with respect to this parameter. 
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Figure 6.29: Sensitivity analysis of permeability factor: dotted lines (2.5 and 97.5 % quantile), solid line (ANN 
mean prediction) 

 

6.4.2.7 Angle between breakwater and prediction point 

The polar angel can take any value from 0° to 360°. For the purpose of this report focus has 

been given only to the shadow zone behind the breakwater because it the only area where 

both diffraction and wave transmission exist. The sensitivity analysis presented below shows 

that the wave transmission coefficient tends to increase as the polar angle increases, this is a 

reasonable trend since by increasing the angle the point shifts toward the breakwater head 

where the influence of diffraction is the greatest. From the figure presented below the 

model has good level of confidence for θ that fall in the interval of [44, 84], this is the final 

boundary condition of this input parameter. 

 

Figure 6.30: Sensitivity analysis of polar coordinate angle: dotted lines (2.5 and 97.5 % quantile), solid line 
(ANN mean prediction) 
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6.4.2.8 Relative polar distance 

The relative polar distance is defined as 
 

  
 gives the absolute distance of the considered 

point from the breakwater head relative to the incoming wave length. The mean trend line 

of the ANN mode is constant up until 
 

  
     and then decreases as the ratio increases 

further. This pattern is logical, as the smaller the ration the closer the point is to the 

breakwater where higher wave heights are expected. In addition to the above the figure 

6.31 shows that the input value of the specific variable should be in the range of [0, 1.1] in 

order to have reliable outputs. 

 

Figure 6.31: Sensitivity analysis of relative polar distance: dotted lines (2.5 and 97.5 % quantile), solid line 
(ANN mean prediction) 
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6.4.2.9 Summary of confidence limit analysis 

Based on the findings presented in this section the ANN model that has been developed in 

this study shows very good results. In addition the mean trend of the ANN model has the 

tendency to follow the same pattern as simple wave-structure dynamics imply which is an 

encouraging fact. The sensitivity analysis shows that the model can produce more accurate 

results for a wide range of input parameters. Concluding the ANN can be characterized as a 

robust and accurate predicting tool for the spatial predictions of the wave transmission 

coefficient. The summary of the results obtained in the section are presented below: 

Input Parameter 
Confidence 

Boundaries 

Iribarren Number (ξ) [2, 6] 

Relative 

Submergence Ratio 

(
  

  
) 

[1, 3] 

Relative Foreshore 

depth (
  

 
) 

[0.2, 0.75] 

Incoming Wave 

Length to Foreshore 

Depth (
  

 
)  

[1.5, 13.5] 

Crest Width over 

Incoming Wave 

Height (
 

  
) 

[0.075, 0.375] 

Permeability Factor 

(
  

√    
  

 ) 
[6, 35] 

Polar Angle (θ) [44,84] 

Relative Polar 

Distance (
 

  
) 

(0, 1.1] 

Table 6.15: Summary of Confidence Intervals for ANN model 
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7 Conclusions 
 

In this paper the wave field variation behind submerged porous breakwaters has been 

investigated. Results via numerical modeling were obtained and analyzed in order to: 

i. Examine the effects of permeability on the wave transmission process behind 

submerged breakwaters 

ii. To create an extensive database used to train an ANN model 

The data obtained from the wave model MIKE21 BW were validated against an empirical 

formulation proposed by Vicinanza et al (2009). In addition to this during the process of 

validating the data an attempt was also made to extend the applicability of the empirical 

model to submerged breakwater situations by introducing a correlation factor. Finally an 

ANN model was trained using the data obtained from the numerical experiments. The new 

ANN model is capable of predicting the 3D wave transmission coefficient behind the 

breakwater, with a high level of accuracy. 

The main conclusion and findings of the study are presented below: 

1. The parameters effecting the greatest the wave field behind the breakwater were 

determined and are presented in order of descending influence: 

a. Incoming wave height (Hi). 

b. Mean wave period (T). 

c. Nominal stone diameter of breakwater core (    ). 

d. Average porosity of the breakwater core (n). 

2. The non-dimensional parameters that best describes the wave field are: 

a. 
  

√      
  

b. 
  

  
 

c. 
 

  
 

d. 
 

  
 

e.   

3. The amount of energy dissipation observed grows proportionally for increasing incoming 

wave heights. A higher rate of energy dissipation is observed when the incoming wave 

height is at least 2 times the submergence depth of the breakwater (i.e.  
  

  
 <0.5). The 

increase in the effectiveness of wave dissipation is governed by two physical 

phenomena: 

a. Wave breaking. 

b. Seepage through the breakwater. 

4. MIKE 21 BW gives a reasonable prediction of the wave field around the breakwater, 

when compared to the prediction method proposed by Vicinanza (2009).  Four different 

empirical formulae for wave transmission in combination with the diffraction theory 

proposed by McIver (2005) show that MIKE 21 BW predictions fall within the 90% 

confidence band for most cases. Three possible sources of error were identified, namely: 
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a. All diffraction theories are developed for non-sloping beds on the lee side of the 

breakwater. In this report a sloping beach on the lee side of the breakwater was 

introduced, this results in a slight underestimation of   . 

b. The influence of wave breaking is a phenomenon that cannot be accurately 

incorporated in simple empirical wave transmission formulae. This could explain 

the increased error for high values of   . 

c. Although MIKE 21 BW has been proved to predict successfully the phenomena 

of diffraction, seepage and overtopping individually it has never been tested 

against the combined effect of the three above processes. It is therefore also 

possible that a certain amount of error has been introduced by the specific wave 

model. 

5. The addition of a correlation factor in the theory of Vicinanza increases the agreement 

between the numerical data of MIKE21 BW and the empirical model.  

6. The modified A.N.N. algorithm is able to predict data patterns as accurately as the 

original model developed for the prediction of non-permeable breakwaters. Also the 

model has the same and better predictive skill as previous ANN models developed for 

predicting 2D wave transmission coefficients. 

7. The sensitivity analysis for the A.N.N. model reveals that the non-dimensional 

parameters influencing the most the process are : 

a. The relative distance 
 

  
 indicating a strong influence of diffraction. 

b. Parameter 
  

√      
  representative of the sensitivity of the wave field to 

permeability effects. 

c. The surf similarity parameter ξ which indicates that the amount of energy 

passing through the breakwater along with the energy reflected back is of great 

importance to the process. 

8. Wave diffraction plays a significant role in the wave transmission process. It was found 

that the influence of the diffraction to the overall process increases as: 

a. Wave transmission through and over the breakwater decreases. 

b. θ decreases and approaches zero (i.e. as the measuring point shifts deeper into 

the shadow zone). 

9. ANN models do not have the capacity to extrapolate very accurately. In order to assure 

that the model works within the interpolation region the user should use the proposed 

design tool only within the boundaries defined in section 6.4.2.9. This will limit big 

uncertainties in the predictions. 

10. Due to the dimensions of the flume that was used during the experiments a certain 

amount of error should be expected due to the partial wave reflection from the side 

walls. Also due to the conflict between the two scaling methods (Froude and Weber 

number) seepage was not scaled properly in this study. Therefore a curtain amount of 

error was introduced from the above two reasons. One should bear this in mind when 

using the method described in this study for real scaled situations. 
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8 Recommendations 
This chapter will present further recommendations that will allow the ANN model to 

progress and develop and help understand better the wave transmission process for 

submerged porous breakwaters. The recommendations therefore may be separated in two 

categories:  

 Recommendation related to wave seepage through porous and submerged 

breakwaters. 

 Recommendation related to the prediction model. 

The next two sections will elaborate on the subjects further. 

 

8.1 Wave transmission process 
Based on the finding of the numerical simulations the author recommends that further 

studies related to the topic of 3D wave transmission through porous and submerged 

breakwaters. Namely: 

i. Based on the findings of the presented in chapter 5 there is strong evidence that the 

diffraction pattern depends strongly on the amount of energy allowed to pass over 

and through the breakwater. For this reason it is recommended by the author that 

further physical experiments should be conducted in order to examine how wave 

transmission is influenced by permeability. Experiment with varying porosity (stone 

grading) and stone diameter should be conducted for this reason. 

ii. Based on the numerical data obtained from MIKE 21 BW is shown that the 

prediction theory of Vicinanza et al. (2009) has the potential to extend its 

applicability and accuracy for submerged permeable breakwaters by introducing a 

correlation factor as presented in chapter 5.1.2. In order to validate this hypothesis 

further physical experiments examining the 3D nature of wave transmission are 

required, this data can then be used to validate the prediction equation of chapter 

5.1.2. 

iii. It is also worth investigating the possibility of creating a diffraction coefficient for 

submerged breakwaters. As was the case in the previous recommendations this will 

require a large number of physical experiments. This will then allow calculating the 

global wave transmission coefficient accurately using the original formula proposed 

by Vicinanza et al (2009). 

iv. It will be interesting to examine the dynamics of deforming reef type breakwaters. 

These types of structure are the most common type of submerged structures and 

are preferred due to their low cost.  
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8.2 ANN modeling 
i. The ANN model developed in this thesis was programmed using Matlab 9 the model 

retrieved data from Microsoft Office Excel© spreadsheets and used them to train 

and test the prediction model. The ANN model could also be programed in Visual 

Basic 6.0 (VBA) in order to create a standalone version of the model that could be 

used more easily. VBA is the programing language used in Microsoft Office Excel. 

The advantages of this are the following: 

 Almost all PC’s have the Microsoft Office installed, which will make it easier and 

cheaper to use. 

 The program could be download very easily and installed on any PC that has the 

Microsoft Office©.  

 VBA could be linked to Microsoft Access©, which is an easy to use database 

management system from Microsoft that combines the relational Microsoft Jet 

Database Engine with a graphical user interface. This makes data handling much 

more easily to the user especially if one is not familiar or does not has Matlab 

installed on their PC.  

 Microsoft Office Excel© provides a user friendlier interface than Matlab©. Since 

this tool is designed for preliminary design purposes it is of great importance the 

model to be fast and easy to use. 

ii. The input file should be created with caution. It is important not to include any 

dimensionless parameter with a value of zero. For this reason it is recommended 

that all inputs to be in accordance with the boundary conditions presented in 

chapter 6. 

iii. In addition it is recommended that the same simulations as the ones performed in 

this study to be conducted in real life physical experiments. A dataset comprised of 

data obtained from actual experiments would increase the quality of the data and 

the overall reliability of the ANN model as it would include the natural variability 

that could never be captured by any numerical model, such as MIKE21 BW.  

iv. Related to the dataset used to train the ANN model, it is recommended to enhance 

the dataset with additional experiments with a variety of different structural and 

wave parameters. This would increase the range of validity of the model as well as 

the overall accuracy of the model. 
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