

Delft University of Technology

Generating Scenarios from High-Level Specifications for Object Rearrangement Tasks

Van Waveren, Sanne; Pek, Christian; Leite, Iolanda; Tumova, Jana; Kragic, Danica

DOI
10.1109/IROS55552.2023.10341369
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023

Citation (APA)
Van Waveren, S., Pek, C., Leite, I., Tumova, J., & Kragic, D. (2023). Generating Scenarios from High-Level
Specifications for Object Rearrangement Tasks. In Proceedings of the 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2023 (pp. 11420-11427). (IEEE International
Conference on Intelligent Robots and Systems). IEEE. https://doi.org/10.1109/IROS55552.2023.10341369
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IROS55552.2023.10341369
https://doi.org/10.1109/IROS55552.2023.10341369

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Generating Scenarios from High-Level Specifications for
Object Rearrangement Tasks

Sanne van Waveren⋆1, Christian Pek⋆2, Iolanda Leite3, Jana Tumova3, and Danica Kragic3

Abstract— Rearranging objects is an essential skill for robots.
To quickly teach robots new rearrangements tasks, we would
like to generate training scenarios from high-level specifications
that define the relative placement of objects for the task at hand.
Ideally, to guide the robot’s learning we also want to be able to
rank these scenarios according to their difficulty. Prior work
has shown how generating diverse scenario from specifications
and providing the robot with easy-to-difficult samples can
improve the learning. Yet, existing scenario generation methods
typically cannot generate diverse scenarios while controlling
their difficulty. We address this challenge by conditioning
generative models on spatial logic specifications to generate
spatially-structured scenarios that meet the specification and
desired difficulty level. Our experiments showed that generative
models are more effective and data-efficient than rejection sam-
pling and that the spatially-structured scenarios can drastically
improve training of downstream tasks by orders of magnitude.

I. INTRODUCTION

Many robotic tasks might require a robot to learn how
to rearrange objects according to a task specification that
defines the relative placement of objects. For instance, for
the table setting task in Fig. 1 we might specify that the
knife needs to be placed right of the plate and the plate on
the placemat. To learn and validate policies for such tasks,
we ideally would like to generate diverse sets of scenarios
from such high-level specifications and control how difficult
the scenarios are to solve for the robot.

Several approaches have been proposed to generate sce-
narios. Often, new scenarios are created by applying random
perturbations to initial configurations [1]. While straight-
forward, the generated scenarios do not necessarily adhere
to task specifications and often require filtering. Procedural
scenario generation approaches aim at generating scenarios
according to task specifications. For instance, we can initiate
a single environment from a PDDL specification [2], which
requires us to specify the exact object placement. Another
work generates scenarios from specifications that define re-
lational constraints between objects [3]. While this approach
can generate multiple scenarios per specification, it places
objects sequentially without considering the environment’s
geometry which might result in invalid scenarios. Instead,

⋆Authors contributed equally. This work was performed at KTH.
1School of Interactive Computing, Georgia Institute of Technology,

Atlanta, GA 30332, USA, sanne@gatech.edu
2Department of Cognitive Robotics, Delft University of Technology,

Delft, the Netherlands, c.pek@tudelft.nl
3Division of Robotics, Perception, and Learning, KTH Royal Institute of

Technology, Stockholm, Sweden, {iolanda,tumova,dani}@kth.se
This work was partially funded by the Swedish Foundation for Strategic

Research (SSF FFL18-0199) and by the HORIZON-CL4-2021-HUMAN-01
ELSA project. The authors are affiliated with Digital Futures.

crackerbox

knife
mug

placemat

plate

Fig. 1. Example spatial configuration for objects in a table setting task.

[4], [5] use example scenarios to learn the distribution
of object placements with generative models. While these
approaches naturally capture scenario variations, they rely on
human-curated training datasets and might generate scenarios
that cannot be solved or are too difficult to solve for the robot.

Curriculum learning approaches pace the robot’s learning
by training on scenarios with increasing difficulty [6]. Sev-
eral works have learned to generate scenarios with various
difficulty levels. For example, one can train an RL agent
to generate scenarios with manually increasing difficulty [7]
or using the training performance of a second agent trying
to solve the scenario [8]. However, the agent might not be
able to generate scenarios for each desired difficulty level.
Alternatively, work has generated scenarios with varying
difficulty by increasing the distance between initial and
predefined goal states, which is known to increase the amount
of exploration needed for the robot to solve the task [9], [10].
While these approaches successfully generate scenarios by
controlling the difficulty, they require predefined goal states
and cannot be generated from high-level specifications.

In this work, we address the challenge of generating
diverse scenarios from high-level specifications while con-
trolling the difficulty of generated scenarios. Specifically,
we leverage a spatial logic to specify desired object con-
figurations in Sec. III-A and generate a wide variety of
scenarios using generative models in Sec. III-B. Our spatial
logic provides us with a continuous measure of task difficulty
by evaluating how close the scenarios meet the specification.
In Sec. IV, we demonstrate that training with our spatially-
structured scenarios can significantly improve the learning of
downstream tasks and we investigate the scenario quality and
diversity of our generative models on various specifications.

II. RELATED WORK

We briefly discuss specification languages to define high-
level tasks and review relevant works on procedural scene

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 1-5, 2023. Detroit, USA

978-1-6654-9190-7/23/$31.00 ©2023 IEEE 11420

20
23

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

91
90

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S5

55
52

.2
02

3.
10

34
13

69

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 15:00:32 UTC from IEEE Xplore. Restrictions apply.

1) Task specification

leftOf(mug, plate)

2) Self-supervised training
plate

3) Generate new samples

Generator

desired
score

samples

4) Scene rendering
mug

Fig. 2. Overview of framework to automatically generate scenarios from high-level task specifications with desired spatial configurations.

generation and using generative models for data generation.
a) Task specifications: Task specifications are part of

planning frameworks, such as STRIPS [29], ADL [30], and
PDDL [31, 32] to express various robotics tasks, e.g., through
goal conditions and predicates. Temporal logics have become
increasingly popular to specify high-level tasks in robot-
agnostic fashions. Linear Temporal Logics (LTL) [11], [12]
and Metric Interval Temporal Logics (MITL) [13] provide
temporal operators and Boolean propositions, e.g., to specify
that an object is eventually placed at the desired location.
These logics usually only provide binary evaluations: a
scenario either satisfies or violates a specification. Signal
Temporal Logics (STL) [14], [15] consider continuous do-
mains and add quantitative semantics, i.e., a continuous real
value that measures the extent to which a scenario satisfies or
violates a specification [16]. These semantics can be used to
guide planners to satisfy specifications over time [17], [18].
We use an STL-inspired spatial logic to specify and generate
scenarios with various difficulty levels. Our quantitative
semantics are defined over object distances which allow us to
control a scenario’s difficulty, e.g., scenarios that are closer
to satisfying the task are usually easier to solve because they
require more exploration than scenarios that are further from
satisfying the task.

b) Procedural scenario generation: Procedural sce-
nario generation has been a popular topic in the game
community to create new levels with varying difficulties
[19]–[21]. Computer graphics approaches generate new sce-
narios through rearranging objects [22] and perturbations
[23]. In robotics, new scenarios are important for training and
validation [24]–[26], e.g., to identify failure cases in shared
autonomy manipulation tasks [27] or to pace the learning
process [6], [28]–[32]. These scenarios can be generated
through adaptive parameterization [33], [34], reinforcement
learning [7], or generative networks [5], [8]. Prior work has
generated scenarios directly from given specifications, e.g.,
from PDDL [2], probabilistic specifications [3], however,
they require one to specify the exact object placement.
Similar to our work, [5] and [4] generate scenarios using
generative models, however, they rely on human-curated
data. Instead, we automatically generate training data from
a high-level specification, e.g., the mug should be left of the
plate. We then train generative models to learn the training
data’s distribution.

c) Generative models: Generative models have shown
success to approximate data distributions and generate di-
verse data, e.g., for grasps [35], [36], to predict motions
of objects [37] and humans [38], [39], and to understand
scenes [4], [40]. Several generative models have been pro-
posed: Diffusion [41], [42] and flow-based models [43],
[44] are powerful but require large training and generation
times. Variational Autoencoders (vAEs) [45], [46] focus
on learning encodings as distributions through encoder and
decoder networks, whereas Generative Adversarial Networks
(GANs) [47] aim at generating accurate data through the
competing generator and a discriminator networks. Adversar-
ial Autoencoders (AAEs) [48], [49] combine the advantages
of AEs and GANs by forcing the latent embedding to follow
chosen distributions. We choose GANs and AAEs to generate
diverse scenarios due to their efficient training and generation
times and their ability to model complex data distributions.

III. SPATIALLY-STRUCTURED DATA GENERATION

We want to generate a set of scenarios from a logical
specification that defines the desired spatial relations between
objects in the scenarios. To control the scenarios’ difficulty,
we need a metric that indicates how close the scenarios meet
the specification. Within desired bounds of the metric, we
want to generate as diverse scenarios as possible.

To create specifications, we summarize a spatial logic in
Sec. III-A. This spatial logic defines quantitative semantics
allowing us to compute the extent to which a scenario
satisfies a given specification R, referred to as the satisfaction
value ϕ. For instance, the specification may define the task
specification Rtask, e.g., the mug should be left of the plate.
In Sec. III-B, we describe how we condition generative
models on ϕ to generate scenarios corresponding to a desired
satisfaction value ϕd. Fig. 2 illustrates our scenario gener-
ation pipeline. First, we provide scenario specifications by
combining objects (e.g., mug), spatial relations (e.g., leftOf),
and Boolean operators. We then generate a training dataset,
compute the satisfaction value ϕ for each sample, and train a
generative model conditioned on ϕ. Finally, we create a set
of scenarios by randomly sampling the generative model’s
latent space z for various ϕd ∈ [ϕmin, ϕmax].

A. Spatial relations and their quantitative semantics
We consider scenarios with N ∈ N+ objects and describe

their pose pi, i ∈ {1, . . . , N}, by its center position and

11421

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 15:00:32 UTC from IEEE Xplore. Restrictions apply.

orientation in space, i.e., pi ∈ SE(j), j ∈ {2, 3}, where
SE is the special Euclidean group [50, Sec. 4.2]. In the case
of SE(2), each pose corresponds to p = (px, py, pθ)

T ∈ R3,
where px, py and pθ describe the position and orientation
in the plane, respectively. The scenario configuration x =
(p1, . . . , pN)T describes the poses of the N objects.

Spatial relations between objects can be described through
distances. Let us therefore introduce the distance between
two objects, pi and pj , as dist(pi, pj) = ||pi−pj ||2. Further,
proja : p 7→ pa projects p to the given component a ∈
{x, y, θ}. We define spatial relations between two objects,
pi and pj according to a given world-coordinate system:

Definition 1 (Spatial relations). The projection-based spatial
relations leftOf, rightOf,belowOf, aboveOf are defined as:

leftOf(pi, pj) := projx(pi) ≤ projx(pj),

rightOf(pi, pj) := ¬ leftOf(pi, pj),

belowOf(pi, pj) := projy(pi) ≤ projy(pj),

aboveOf(pi, pj) := ¬belowOf(pi, pj),

where ¬ denotes the Boolean negation. The distance-based
spatial relations closeTo, farFrom are defined as:

closeTo(pi, pj) := dist(pi, pj) ≤ ϵ1,

farFrom(pi, pj) := dist(pi, pj) ≥ ϵ2,

where ϵ1, ϵ2 are user-defined parameters. We define the angle
relation angle as:

angle(pi,Θ) := Θ− ϵ3 ≤ projθ(pi) ≤ Θ+ ϵ3,

where ϵ3 is a user-defined parameter to allow small numeri-
cal deviation from the desired angle Θ. Note that for brevity
we do not check whether angles are outside of [0, 2π).

By combining the spatial relations with Boolean op-
erators, we can compose complex scenario specifications
R using the following composition grammar: R :=
⊤ | rel1(p) | rel2(pi, pj) | ¬R |Ri ∧ Rj |Ri ∨ Rj , where ⊤
is the Boolean true statement and rel1 and rel2 are unary
and binary spatial relations, respectively.

We compute a scenario’s difficulty as the extent to which
the scenario satisfies the task specification. Inspired by STL
[16], we exploit that our spatial relations are based on
distances and define quantitative semantics to compute how
much a scenario x satisfies or violates a specification R:

Definition 2 (Quantitative semantics of spatial relations). We
define the quantitative semantics ϕ(x,R) ∈ R of a given
specification R for a scenario x as:

ϕ(x,⊤) := ∞
ϕ(x,¬R) := −ϕ(x,R),

ϕ(x,R1 ∧R2) := min
(
ϕ(x,R1), ϕ(x,R2)

)
,

ϕ(x,R1 ∨R2) := max
(
ϕ(x,R1), ϕ(x,R2)

)
.

mug plate

(a) Scenario
Time

satisfied

violated

0

Sa
tis

fa
ct

io
n

closeTo
rightOf
leftOf

(b) Satisfaction values
Fig. 3. (a) scenario where mug moves from left to right while the plate
remains static. (b) satisfaction values of three spatial relations over time.

We define ϕ for single spatial relations as:

ϕ(x, leftOf(pi, pj)) = projx(pj)− projx(pi),

ϕ(x, closeTo(pi, pj)) = ϵ1 − dist(pi, pj),

ϕ(x, angle(pi,Θ)) = min
(
projθ(pi)−Θ+ ϵ3,

Θ+ ϵ3 − projθ(pi)
)
.

The quantitative semantics for the other spatial relations are
computed analogously by rearranging their conditions to be
satisfied when greater than or equal to zero.

Fig. 3a illustrates a scenario in which we move a mug
from left (t0) to right (t5) around a static plate. Fig. 3b
shows the computed satisfaction values for the specifica-
tions {closeTo, rightOf, leftOf}(mug,plate). The distance
between objects encodes how much the relation rightOf is
satisfied: While the mug is placed left of the plate (e.g., at
t0), its X-coordinate is smaller than that of the plate, the
resulting satisfaction value is negative, i.e., violating. If the
mug is right of the plate, its X-coordinate is greater, and
the satisfaction value is positive, i.e., satisfying. The leftOf
relation is computed as the negative value of rightOf . The
closeTo relation is satisfied when the mug is in the plate’s
ϵ1-neighborhood. The satisfaction values correspond to the
distance of the mug to the ϵ1-neighborhood.

For violating scenarios, a robot would need to move the
objects further the more relations are violated, i.e., scenario
t0 requires more exploration than scenario t2 when we
consider R = rightOf(mug,plate). Thus, when we generate
scenarios with lower satisfaction values ϕ, we increase the
scenarios’ difficulty.

B. Training of conditioned generative models

To train our generative models, we first create a dataset
X = {x1, . . . ,xM},M ∈ N+, of random scenario config-
urations with N ∈ N+ objects. The objects are randomly
placed and oriented in the workspace by drawing from
a probability distribution, e.g., a uniform distribution. In
addition to a task specification Rtask, we might also want to
consider a safety specification Rsafe in object rearrangement
tasks. We use the semantics in Def. 2 to label each training
sample xi with its corresponding satisfaction values ϕi =(
ϕ(xi,Rtask), ϕ(xi,Rsafe)

)
. The created training dataset

Xtrain has the form Xtrain = {(x1, ϕ1), . . . , (xM , ϕM)}.
With Xtrain, we then train conditioned generative models
G : (z, ϕd) 7→ x′ that generate scenarios x′ = G(z, ϕd)

11422

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 15:00:32 UTC from IEEE Xplore. Restrictions apply.

x' x 0/1Discriminator
D(x,)

x'z Generator
G(z,)

(a) GAN

x'

0/1Discriminator
D(x,)

x z

z

Generator
G(z,)

Encoder
E(x)

I

(b) AAE
Fig. 4. GAN (a) and AAE (b) conditioned on the satisfaction value ϕ of
a scenario x.

from latent vectors z ∈ RL and desired satisfaction values
ϕd such that ϕ(x′,R) ≈ ϕd.

1) Generative Adversarial Network: Fig. 4a illustrates the
GAN’s architecture. The generator G(z, ϕ) learns to produce
realistic scenario configuration that match ϕd, while the
discriminator D : (x, ϕ) 7→ b ∈ [0, 1], learns to classify
whether x is a real scenario given ϕ. During training, both
networks play a zero-sum game to become better at generat-
ing/classifying scenarios. We train the generator by randomly
sampling latent vectors from z and labels ϕ′ from a normal
distribution and generating scenarios as x′ = G(z, ϕ′). We
measure the generator’s ability to fool the discriminator
through the binary cross entropy loss (BCE) between the
discriminators predictions and the ground truth 1 as: ℓG(z) =
BCE

(
D(G(z, ϕ′), ϕ′),1

)
. The discriminator distinguishes

between real and fake scenarios, encoded through the loss
function ℓD = 0.5

(
BCE(D(x, ϕ),1) + BCE(x′, ϕ′),0

)
,

where x is a real scenario from the training set (real) and x′

is a generated scenario (fake), i.e., x′ = G(z, ϕ′).
2) Adversarial Auto Encoder: Fig. 4b illustrates the

AAE’s architecture. We use a classical AE structure, e.g.,
as shown in [51, Ch. 14], with the mean squared error as
the reconstruction loss. Since our scenario representation is
minimal by using objects poses, the AE is overcomplete, i.e.,
it increases the input data’s dimensionality, which is benefi-
cial for learning features. We add an adversarial network to
enforce a normal distribution as a prior on the latent repre-
sentation. The discriminator distinguishes between samples
from a true Gaussian and fake samples from the AE’s latent
representation (see Fig. 4b). We use the BCE loss for the
generator (i.e., the AE’s encoder) and discriminator.

IV. EVALUATION

We first investigate whether spatially-structured datasets
with our difficulty measure can speed up the learning of
downstream tasks. To that end, Sec. IV-A compares the
performance of two curriculum learning strategies that use
spatially-structured datasets to regular reinforcement learning
in sparse reward settings. Afterwards, we evaluate our gen-
erative models: 1) How accurate can conditioned generative
models generate scenarios for desired satisfaction values?
2) To what extent can we generate scenarios with a high

diversity, i.e., with a wide range of object placements under
a specification? 3) How efficient are generative models
compared to a classical rejection sampling strategy? We
study these questions in table setting (Sec IV-B and Sec. IV-
C) and object ordering tasks (see Sec. IV-D).

All experiments are carried out with an Apple M1 pro-
cessor, 16GB of memory, Pytorch 1.1.0 [52], the Adam
optimizer [53], and Pybullet to render scenarios [54]. We
use e, b, lr to denote the number of epochs, batches, and
learning rate, respectively. We report statistics over 3 ran-
dom training seeds. The code is publicly available at
github.com/sannevw/scenario generation and a video of our
experiments can be found in the supplementary material.

A. Learning with spatially-structured data

We demonstrate that learning with spatially-structured data
from our generative models increases learning performance.
To that end, we consider two tasks, RA

task and RB
task (see

Tab. I, in a Q-Learning setup [55]. In RA
task, the agent

needs to move the mug on top of the plate, and in RB
task,

the agent needs to move the spoon left and below of the
plate. The agent can move objects on the table step-wise
left/right/up/down and receives a reward r = 10 if the
specification is satisfied, r = −10 if an object is moved
off the table, and r = 0 otherwise. This goal-reward
representation is highly sparse and difficult to solve [56],
[57]. We compare three learning strategies: 1) training with
scenarios where objects are placed randomly (baseline),
2) training with spatially-structured scenarios generated by
linearly decreasing ϕ over episodes from 0 to ϕmin < 0 (cur-
riculum learning), and 3) training with spatially-structured
scenarios where we decrease ϕ only when the agent can
consistently solve the currently presented scenarios (self-
paced curriculum learning).

Fig. 5 shows the required number of episodes for each
strategy until the policy converged. We varied the environ-
ment size M ∈ {10, 20, . . . , 100}, where the table is square
with edge length 2M . For M = 100 in task RA

task, the
baseline requires more than 8×106 episodes to converge. Our
simple curriculum learning strategy already requires 50%
less episodes. The self-paced learning strategy is significantly
more efficient and requires orders of magnitude less episodes,
e.g., 23 times less for M = 100. We observe a similar
trend for task RB

task, in which self-paced learning with
spatially-structured scenarios is drastically faster. We further
noticed that our curriculum learning strategies result in less
simulation resets where the agent moves objects off the table.
Note that for smaller environment sizes M one can obtain
similar results without using generative models by ordering
the training data on their satisfaction values and then learn
with scenarios with decreasing values.

B. Experiment 1 - Learned scenario distributions

We compare the GAN’s and AAE’s performance for
scenarios with two objects, a plate and a mug. The models
are conditioned on a task and safety specification (see
Tab. I), where R1

task encodes that the mug is placed left and

11423

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 15:00:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SCENARIO SPECIFICATIONS OF EACH EXPERIMENT.

Experiment Specification

Downstream - Sec.IV-A RA
task = closeTo(mug, plate), ϵ1 = 0,RB

task = leftOf(spoon, plate) ∧ belowOf(spoon, plate)

Exp. 1 - Sec. IV-B R1
task = leftOf(mug, plate)∧aboveOf(mug, plate),R1

safe = ¬ closeTo(mug, plate), ϵ1 = 0.25

Exp. 2 - Sec. IV-C R2
task = onPlacemat(plate) ∧ aboveOfPlacemat(mug) ∧ rightOfPlacemat(knife) ∧

angle(knife,NORTH) ∧ aboveOf(crackerbox, plate) ∧ leftOf(crackerbox, plate)

Exp. 3 - Sec. IV-D R3
task =

(∧
i∈{1,N−1} leftOf(pi, pi+1)

)
∨

(∧
i∈{1,N−1} aboveOf(pi, pi+1)

)
∨(∧

i∈{1,N−1} rightOf(pi, pi+1)
)
∨

(∧
i∈{1,N−1} belowOf(pi, pi+1)

)

baseline curriculum self-paced

no
.o

fe
pi

so
de

s

Fig. 5. Required episodes for each learning strategy. Curves and shaded
area show mean and standard deviation over 5 different seeds.

above of the plate, and R1
safe encodes a minimum distance

of ϵ1 = 0.25 between them. We train with M = 20k
training samples, of which 17641 (88%) samples satisfy at
least one specification and 5057 (25%) samples satisfy both
specifications, e = 50, b = 32, and lr = 0.001. Fig. 6
shows rendered scenarios generated by the AAE. We query
the AAE to generate scenarios for varying task ϕt (top row)
and safety ϕs (bottom row) satisfaction values independently,
while satisfying the non-varied other specification.

In general, we condition the scenario distribution on the
satisfaction value. With infinitely many random samples, we
could perfectly represent this conditioned scenario distribu-
tion. However, this sampling strategy is infeasible. With our
generative models, we aim to approximate this conditioned
distribution instead. We qualitatively analyze the learned sce-
nario distributions for fixed desired satisfaction value pairs,
(ϕt, ϕs) = (0.19, 0.08) and (ϕt, ϕs) = (−0.17,−0.09),
chosen randomly from satisfying training examples.

We map the generated scenarios x into a two dimensional
latent space using Isomaps [58], see Fig. 7. Both models
generate new scenarios that are not present in the training
data, i.e., gaps in the latent space are filled. We observe that
the AAE covers a larger area of the latent space than the
training examples, whereas the GAN covers a smaller part of
the scenario distribution. To evaluate the models’ accuracy a,
we compared the ground truth value with the actual value (by
computing their satisfaction value) of the generated scenarios
for the satisfaction value pair (ϕt, ϕs) = (0.19, 0.08) to
5K queried values, i.e., ai = ϕ(xi,Rtask) − ϕt (safety
accuracy is computed analogously). The GAN achieved a

higher accuracy with averages of −0.007 (std 0.038) and
0.002 (std 0.035) for ϕt and ϕs, respectively. The AAE had
a lower accuracy with averages of −0.085 (std .003) and
0.117 (std 0.157) for ϕt and ϕs.

C. Experiment 2 - Specifying table setting tasks

We consider a table setting scenario with four objects:
a plate, a mug, a knife and a crackerbox. We define a
rectangular area where the plate could be placed, which we
refer to as placemat in our specifications. An advantage of
our spatial logic is that we can easily compose new relations
from existing ones. For instance, the relation onPlacemat
encodes that an object p needs to be on the placemat:

onPlacemat(p) := rightOf(p, PL) ∧ leftOf(p, PR)∧
belowOf(p, PT) ∧ aboveOf(p, PB),

where PL, PR, PT , PB correspond to the center points of
the placemat’s left, right, top, and bottom side. The rela-
tions aboveOfPlacemat and rightOfPlacemat are similarly
defined, and we use NORTH = π/2 to orient objects
upwards. We condition the models on R2

task (see Tab. I):
the plate needs to be on the placemat, the mug close to
and above the placemat, the knife close to and right of the
placemat with the blade pointing north, and the crackerbox
left and above of the plate. We created M = 500k training
samples, however, due to the complex specification, only 5
(0.001%) samples initially satisfied the R2

task. We perturbed
these satisfying examples by adding random noise, resulting
in 607782 samples of which 107787 (18%) are satisfying,
e = 50, b = 512, and lr = 0.001. Fig. 1 visualizes a
satisfying scenario generated by the AAE with ϕt = 0.03.

We computed the models’ accuracy for ϕt = (0.03)
and 5k generated scenarios. The GAN achieved a higher
accuracy with an average of −0.025 (std 0.030) than the
AAE with an average of −0.445 (std 0.271) for ϕt. Fig. 8
shows 700 generated scenarios and 700 random scenarios
from the training data, all with ϕt = 0.03 to compare the
learned scenario distributions. Again, we observe that the
GAN covers a smaller part of the distribution, whereas the
AAE covers a much wider area than the training data.

D. Experiment 3 - Sorting objects

We use scenarios with N ∈ {3, 5, 7} objects that need
to be sorted either horizontally or vertically according to
R3

task in Table I. We created training data with 56% positive
samples for all three scenarios, resulting in a total of M =

11424

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 15:00:32 UTC from IEEE Xplore. Restrictions apply.

=-0.6 =-0.3 =0.0 =0.3 =0.6
plate

mug

=-0.2 =-0.1 =0.0 =0.3 =0.6

Fig. 6. Renderings of Exp. 1. The top row varies the task satisfaction value ϕt while satisfying safety and the bottom row the safety satisfaction value
ϕs while satisfying the task.

sa
tis

fy
in

g

sa
tis

fa
ct

io
n

va
lu

e

training samples GAN generated

0.3

0.2

0.1

0.0
0.0

-0.1

-0.2

-0.3

AAE generated

sa
tis

fa
ct

io
n

va
lu

e

vi
ol

at
in

g

Fig. 7. Scenario distributions in Exp. 1 for fixed satisfying/violating values,
mapped into a 2D latent space. We colored the points according to the task
satisfaction value ϕt, where the red bar indicates the queried ϕt.

20k for 3 objects, M ≈ 110k, and M ≈ 114k for 5 and
7 objects, respectively. Fig. 9 shows renders of scenarios
generated by the GAN.

We computed the models’ accuracy for ϕt = (0.05) and
5k generated scenarios. The models achieved high accuracy
across all numbers of objects: for 3 objects (GAN: µ =
−0.016, std= 0.095, AAE: µ = −0.052, std= 0.122), 5
objects (GAN: 0.019, std 0.093, AAE: µ = −0.015, std=
0.068), and 7 objects (GAN: µ = −0.085, std= 0.106, AAE:
µ = −0.068, std= 0.063).

E. Comparison to naive rejection sampling

We compare the GAN and AAE with naive rejection
sampling for Exp. 1 (placing a mug and a plate) and Exp. 2
(table setting). For complex specifications with multiple
objects, the feasible scenario space for a given satisfaction
value might be a fraction of the full scenario space. As a
consequence, rejection sampling would reject many samples
before we find satisfying ones. We evaluated how many
samples we require to obtain a similar number of generated
scenarios by our models for a given queried satisfaction value
(we used the same values as in the previous sections).

For Exp. 1, the GAN generates around 8.1k scenarios
with 20k training samples, while we required 700k random
samples, corresponding to a 35x times increase. For Exp.
2, the AAE generates 4.4k samples for 500k training data.
Rejection sampling was not successful with a time bound of
7 hours on our hardware: we only found 60 valid scenarios
in 100M random samples, corresponding to minimum 200

times more data. Even if we perform rejection sampling on
our boosted training data, this approach will generate the data
seen in Fig. 8 and the AAE can create scenarios with more
diverse object poses, e.g., other positions and rotations of
the crackerbox. Secondly, for on-the-fly scenario generation
on hardware, we compared the required space to store a
lookup table from rejection sampling (with a resolution of
0.025 in the satisfaction value range and 24Byte per object
represented by three floats) with the space of the network
parameters. For Exp. 1, we require 5600MB for the table
compared to 0.5MB for the network (increase of 11.2K
times). For Exp. 2, we require 28400MB of data compared
to 0.4MB for the network (increase of 71k).

V. DISCUSSION AND FUTURE WORK

Our results showed that we can successfully generate
spatially-structured synthetic datasets by conditioning gen-
erative models on satisfaction values of spatial logic speci-
fications, and that these spatially-structured datasets can be
used in curriculum learning to improve the learning of sparse
reward manipulation tasks.

We considered spatial relations, such as leftOf, rightOf
and aboveOf , for object rearrangement tasks. However, these
relations could be extended by defining new spatial relations.
In Sec IV-C, we described how we can compose new spatial
relations, e.g., onPlacemat. We can also extend the existing
relations, e.g., define partial/full versions of aboveOf , and
add more diverse ones, e.g., overlapping. Our approach
can be combined with specifications that define scenarios in
PDDL [2] by converting them into spatial logics. However,
considering more relations can also result in more complex
specifications which might be difficult to express for users. In
those cases, it might be beneficial to augment human-curated
scenarios with spatially-structured datasets generated from
logic specifications. Additionally, our quantitative semantics
only capture spatial constraints, for many robotics tasks it is
important to extend it to include temporal aspects, allowing
us to create temporally coherent scenario sequences with
time bounds, e.g., the mug should be moved to the placemat
within 30 seconds.

Our focus was to generate scenarios for a desired task
specification. We currently have to train a generative model
per specification. Alternatively, a natural extension would be
to generate scenarios for a wide range of goal configurations

11425

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 15:00:32 UTC from IEEE Xplore. Restrictions apply.

crackerbox

knife

mug

plate

placemat

training data GAN AAE

Fig. 8. Generated scenarios for ϕt = 0.03 in Exp. 2 with 700 scenarios per figure.

7 objects:5 objects:3 objects:

minimum satisfaction

Fig. 9. Generated scenarios in Exp. 3. The top row shows ϕt = 0.05 and the bottom row ϕt = 0.1. The red bar indicates the closest distance between
two objects, equal to ϕt, according to the spatial relations leftOf, aboveOf, rightOf for the left, center, and right column, respectively.

without retraining the generative model to enable handling
multiple specifications at once.

While our experiments demonstrated that spatially-
structured datasets can drastically improve the learning of
downstream tasks, we would like to explore the performance
of other curriculum strategies, e.g., different pacing func-
tions, over a wider variety of tasks. Furthermore, future
work could investigate student-teacher strategies [6] that
select which scenario from our generated spatially-structured
dataset the agent should explore next to improve its policy.

VI. CONCLUSIONS

We condition generative models on spatial logic specifi-
cations to create spatially-structured scenarios of a desired
difficulty for object rearrangement tasks. Our spatial logic
allows one to specify high-level specifications that define
spatial relations between objects, e.g., leftOf(mug,plate),
and provides quantitative semantics to compute satisfaction
values that denote how much scenarios satisfies or violates
the desired specification. We showed that generative models
are more effective and data-efficient than rejection sam-
pling and that the spatially-structured scenarios can drasti-
cally improve training by orders of magnitude compared to
traditional reinforcement learning. Our experiments further
showed that AAEs are better suited when a large variety
of scenarios is desired, e.g., for training, whereas GANs are

preferred to generate accurate scenarios for given satisfaction
values, e.g., for validation.

REFERENCES

[1] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and
A. M. Dollar, “Benchmarking in manipulation research: The YCB
object and model set and benchmarking protocols,” arXiv preprint
arXiv:1502.03143, 2015.

[2] T. Silver and R. Chitnis, “PDDLGym: Gym environments from PDDL
problems,” arXiv preprint arXiv:2002.06432, 2020.

[3] C. Innes and S. Ramamoorthy, “ProbRobScene: A probabilistic speci-
fication language for 3D robotic manipulation environments,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation, 2021, pp. 9446–
9452.

[4] G. Izatt and R. Tedrake, “Generative modeling of environments with
scene grammars and variational inference,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, 2020, pp. 6891–6897.

[5] M. C. Fontaine, Y.-C. Hsu, Y. Zhang, B. Tjanaka, and S. Nikolaidis,
“On the importance of environments in human-robot coordination,” in
Robotics: Science and Systems, 2021.

[6] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learning:
A survey,” Int. Journal of Computer Vision, vol. 130, no. 6, pp. 1526–
1565, 2022.

[7] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “PCGRL: Procedu-
ral content generation via reinforcement learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 16, no. 1, 2020, pp. 95–101.

[8] P. Bontrager and J. Togelius, “Learning to generate levels from
nothing,” in Proc. of the IEEE Conference on Games, 2021, pp. 1–8.

[9] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel,
“Reverse curriculum generation for reinforcement learning,” in Conf.
on Robot Learning. PMLR, 2017, pp. 482–495.

11426

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 15:00:32 UTC from IEEE Xplore. Restrictions apply.

[10] B. Ivanovic, J. Harrison, A. Sharma, M. Chen, and M. Pavone, “BaRC:
Backward reachability curriculum for robotic reinforcement learning,”
in Proc. of the IEEE Int. Conf. on Robotics and Automation. IEEE,
2019, pp. 15–21.

[11] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[12] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting
with language, temporal logic and robot control,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2010, pp.
1988–1993.

[13] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing
punctuality,” Journal of the ACM, vol. 43, no. 1, pp. 116–146, 1996.

[14] A. Puranic, J. Deshmukh, and S. Nikolaidis, “Learning from demon-
strations using signal temporal logic,” in Conf. on Robot Learning,
2021, pp. 2228–2242.

[15] D. Sadigh and A. Kapoor, “Safe control under uncertainty with
probabilistic signal temporal logic,” in Proc. of Robotics: Science and
Systems XII, 2016.

[16] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Int. Conf. on Formal Modeling and Analysis
of Timed Systems, 2010, pp. 92–106.

[17] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with
temporal logic rewards,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2017, pp. 3834–3839.

[18] L. Lindemann and D. V. Dimarogonas, “Robust motion planning
employing signal temporal logic,” in Proc. of the American Control
Conference, 2017, pp. 2950–2955.

[19] N. Shaker, J. Togelius, and M. J. Nelson, Procedural content genera-
tion in games. Springer, 2016.

[20] G. N. Yannakakis and J. Togelius, “Experience-driven procedural
content generation,” IEEE Trans. on Affective Computing, vol. 2, no. 3,
pp. 147–161, 2011.

[21] D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G. N. Yannakakis,
“Procedural content generation through quality diversity,” in Proc. of
the IEEE Conference on Games, 2019, pp. 1–8.

[22] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan,
“Example-based synthesis of 3D object arrangements,” ACM Trans-
actions on Graphics, vol. 31, no. 6, pp. 1–11, 2012.

[23] L. Majerowicz, A. Shamir, A. Sheffer, and H. H. Hoos, “Filling your
shelves: Synthesizing diverse style-preserving artifact arrangements,”
IEEE transactions on visualization and computer graphics, vol. 20,
no. 11, pp. 1507–1518, 2013.

[24] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L. E. Kavraki, “MotionBenchMaker:
A tool to generate and benchmark motion planning datasets,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 882–889, 2021.

[25] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging proce-
dural generation to benchmark reinforcement learning,” in Int. Conf.
on machine learning, 2020, pp. 2048–2056.

[26] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and
S. Levine, “Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning,” in Conference on robot learning,
2020, pp. 1094–1100.

[27] M. C. Fontaine and S. Nikolaidis, “A quality diversity approach to
automatically generating human-robot interaction scenarios in shared
autonomy,” in Robotics: Science and Systems, 2021.

[28] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and
P. Stone, “Curriculum learning for reinforcement learning domains: A
framework and survey,” The Journal of Machine Learning Research,
vol. 21, no. 1, pp. 7382–7431, 2020.

[29] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer,
“Automatic Curriculum Learning For Deep RL: A Short Survey,” in
Proc. of the Int. Joint Conf. on Artificial Intell., 2021, pp. 4819–4825.

[30] K. Fang, Y. Zhu, S. Savarese, and L. Fei-Fei, “Adaptive procedu-
ral task generation for hard-exploration problems,” arXiv preprint
arXiv:2007.00350, 2020.

[31] ——, “Discovering generalizable skills via automated generation of
diverse tasks,” arXiv preprint arXiv:2106.13935, 2021.

[32] J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan, J. Foerster,
E. Grefenstette, and T. Rocktäschel, “Evolving curricula with regret-
based environment design,” arXiv preprint arXiv:2203.01302, 2022.

[33] R. Portelas, C. Colas, K. Hofmann, and P.-Y. Oudeyer, “Teacher
algorithms for curriculum learning of deep RL in continuously pa-
rameterized environments,” in Conf. on Robot Learning, 2020, pp.
835–853.

[34] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, et al., “Solving
Rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[35] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-dof
grasping for target-driven object manipulation in clutter,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation), 2020, pp. 6232–
6238.

[36] J. Lundell, F. Verdoja, and V. Kyrki, “DDGC: Generative deep
dexterous grasping in clutter,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 6899–6906, 2021.

[37] S. Gomez-Gonzalez, S. Prokudin, B. Schölkopf, and J. Peters, “Real
time trajectory prediction using deep conditional generative models,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 970–976,
2020.

[38] J. Bütepage, A. Ghadirzadeh, Ö. Öztimur Karadaǧ, M. Björkman,
and D. Kragic, “Imitating by generating: Deep generative models for
imitation of interactive tasks,” Frontiers in Robotics and AI, vol. 7,
p. 47, 2020.

[39] B. Ivanovic, K. Leung, E. Schmerling, and M. Pavone, “Multimodal
deep generative models for trajectory prediction: A conditional varia-
tional autoencoder approach,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 295–302, 2020.

[40] S. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, G. E. Hinton,
et al., “Attend, infer, repeat: Fast scene understanding with generative
models,” Advances in Neural Inf. Processing Systems, vol. 29, 2016.

[41] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in Neural Inf. Processing Systems, vol. 34, pp.
8780–8794, 2021.

[42] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in Neural Inf. Processing Systems, vol. 33, pp.
6840–6851, 2020.

[43] D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in Int. Conf. on machine learning, 2015, pp. 1530–1538.

[44] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan, “Normalizing flows for probabilistic modeling
and inference,” J. Mach. Learn. Res., vol. 22, no. 57, pp. 1–64, 2021.

[45] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin,
“Variational autoencoder for deep learning of images, labels and
captions,” Advances in Neural Inf. Processing Systems, vol. 29, 2016.

[46] A. Mishra, S. Krishna Reddy, A. Mittal, and H. A. Murthy, “A
generative model for zero shot learning using conditional variational
autoencoders,” in Proc. of the IEEE Conf. on computer vision and
pattern recognition workshops, 2018, pp. 2188–2196.

[47] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in Neural Inf. Processing Systems, vol. 27, 2014.

[48] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Ad-
versarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[49] S. Pidhorskyi, R. Almohsen, and G. Doretto, “Generative probabilistic
novelty detection with adversarial autoencoders,” Advances in Neural
Inf. Processing Systems, vol. 31, 2018.

[50] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[51] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in Neural Inf. Processing Systems, vol. 32, 2019.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[54] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” Pybullet, Tech.
Rep., 2016.

[55] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
pp. 279–292, 1992.

[56] S. Koenig and R. G. Simmons, “Complexity analysis of real-time
reinforcement learning,” in AAAI, vol. 93, 1993, pp. 99–105.

[57] T. Salimans and R. Chen, “Learning Montezuma’s revenge from a
single demonstration,” arXiv preprint arXiv:1812.03381, 2018.

[58] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

11427

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 15:00:32 UTC from IEEE Xplore. Restrictions apply.

