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1 Abstract

Introduction

Approximately 9 in 1000 children are born with congenital heart disease (CHD), of whom a
quarter are classified as critical CHD (CCHD) and require an intervention within their first year.
Monitoring these patients in the Paediatric Intensive Care Unit (PICU) is crucial, yet with
increasing amounts of data, detecting subtle changes that are important for the disease
progression interpretation of all vital signs becomes difficult, even for skilled physicians.
Machine learning (ML) offers potential solutions, however, challenges such as inter-patient
variability and the absence of clear definitions for haemodynamic instability persist. This study
aims to develop a ML algorithm for early prediction of haemodynamic instability in CCHD
patients with high frequency vital-signs, addressing these challenges through objective labelling
methods and stratification approaches.

Methods

Two approaches, on population and patient level, were developed with nested cross-validation
(CV). Due to a high inter-patient variability, the patient specific approach was added.
A first iteration of objectively labelling haemodynamic instability was proposed, based on
medical interventions such as medication administration and fluid therapy. Since it is difficult to
retrospectively determine for how long patients were unstable, multiple values for instability
duration (dT ) were added to the analysis.
To capture the temporal dependency of time-series data, lag-analysis was performed, adding the
relation between the vital signs and their previous values to the model development.
Lag-analysis included a sliding window that moved over the data. The width of sliding window
(W ) was optimised during the model development. Additionally, a horizon (r) was
implemented, so the data within the sliding window were predicting future timestamps.

Results

This retrospective study included a total of 224 admissions in the analysis. Two random forest
classifiers were trained using a nested CV structure to detect haemodynamic instability in CCHD
patients. For both approaches the same temporal settings (W : 50 minutes, r : 45 minutes, dT :
120 minutes) were used. This study has shown that the between-patient approach had notable
differences between the mean train (85%, AUCPR) and test performance (40%, AUCPR).
The in-patient approach, while using 20% and 10% of the test data for training, still yielded a
test performance of 96% (AUCPR) and 90% (AUCPR), respectively.

Discussion and conclusion

Generally speaking, the experiments suggest that the first iterations of the models were not robust
and generalised poorly. It is most likely caused by a large inter-patient variability and a simple
labelling system that is still depending on subjectivity.
This study has shown that the proposed prediction model, which combines high frequency vital
signs, labels, and temporal settings (W, r, dT ), requires additional refinement before it can be
considered clinically feasible to implement this model as a reliable bedside tool for predicting
haemodynamic instability.
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2 Introduction

2.1 Background

Approximately 9 in 1000 children are born with a form of congenital heart disease (CHD) (1, 2).
Of all infants born with CHD, approximately 25% is categorised as critical congenital heart
disease (CCHD). Children with CCHD require a surgical intervention or heart catheter-based
intervention within their first year of life (3).
Infants often need to undergo a transitional period before intervention, to grow and mature
enhancing the likelihood of a successful intervention. Since these patients can rapidly become
haemodynamically unstable, risking pre-surgical death, patients are monitored in the Paediatric
Intensive Care Unit (PICU) (4, 5).

During monitoring, vital parameters are continuously measured with high frequency to closely
track the physiological status of a perioperative patient. Currently, all vital signs, such as heart
rate (HR), respiration rate (RR), oxygen saturation (SpO2), and blood pressure (BP) are measured
independently. This process where multiple parameters are measured and presented together, is
called multi-modal monitoring. Multi-modal monitoring does not include tools that emphasize the
correlation within the presented data, making interpretation of this information difficult, even for
skilled physicians (6). Subtle changes in data may be overlooked among the high-frequent updates
across screens that are displaying numerous of vital signs. These subtle changes, however, may be
crucial for the disease progression. By using multi-modal monitoring, the physician’s workload is
increased, creating the need for real-time data processing (7, 8, 9).

To unburden the physicians of this workload, real-time data analyses can play an important role.
Improvement of technology and the expanding volumes of collected data enhances the feasibility
of machine learning (ML) or Artificial Intelligence (AI) approaches for real-time applications,
including health care orientated applications (10). Unlike unsupervised learning, supervised
learning is a ML technique which is more often implemented in healthcare (11). Supervised
learning uses statistical techniques that can be programmed to classify or predict future
examples, using the correlation between input and pre-defined output of interest (12).
With ML, multi-modal monitoring data can be used to develop detection algorithms of critical
events, give context to the interpretation of the parameters and can be used to support decision
making. As such, an accurate ML model can improve the workflow of the clinician by predicting
aberrations of the patient before becoming clinically evident, resulting in early diagnosis or
timely therapeutic treatment.

The clinical status that is closely monitored in CCHD patients is haemodynamic instability.
Haemodynamic instability can be a result of wide variety of physiological presentations in the
CCHD population. These differences introduce inter-patient variability posing difficulty for
generalisation of the database, requiring additional attention in model development. In the
literature, there is no universally accepted definition, utilizing objective measures, of
haemodynamic instability. Without a clear definition, making automated and objective labels
used in creating prediction or classification models is a true challenge.

When conducting a search in literature for algorithms for paediatric CHD patients, multiple
algorithms have been conceptualised, although with different objectives. When comparing
studies developing a prediction algorithm for cardiac patients, no general approach can be
deduced. Different types of classifiers are used varying from simple linear discriminant analyses
to complex ensembled methods of deep-learning models (13, 14).
Zoodsma et al. aimed to develop a diagnostic model using supervised ML to continuously detect
clinical deterioration in CCHD patients admitted to the PICU (15).
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Their model consists of a one-class support vector machine (OCSVM) using high-frequent
physiological parameters, i.e., HR, RR, SpO2, BP and regional cerebral saturation (rSO2).
Utilizing solely high frequency vital signs, this model stands out as one of the few, if not the
only one, documented in the literature for updating its real-time predictions for haemodynamic
instability with the same sample rate as all input data. The model is evaluated using
retrospective validation of two individual experts, lacking automation and objectivity of labels.
The true positive rate of the unstable class (77%) and true positive rate of the stable class (93%)
were calculated using the hours of data that was labelled correctly. Since, this evaluation is quite
subjective, the statistical assessment is hard to reproduce and might not be reliable.

2.2 Goals

This study aims to develop a ML algorithm to predict haemodynamic instability in CCHD patients
admitted to the PICU before physicians are capable of detecting the clinical deterioration. The
goal includes pre-processing the retrospective data and creating an objective method for labelling
haemodynamic instability.
Two stratification methods for the input data, called the between-patient and in-patient approach,
will be explored and assessed as means to address the inter-patient variability. The best performing
settings for the ML model including three parameters for the temporal aspect of the input data
and the assigned labels are analysed.
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3 Methods

3.1 Pipeline

Figure 3.1 gives an overview of the four sections needed for a successful model development.
Two approaches can be recognised in the pipeline, one based on a population level and one on
a patient level. In this thesis, these approaches are called the between-patient and in-patient
approach, respectively.

The between-patient approach was developed with the goal to create one robust model that fits
all patients. By using data of entire admissions of all patients within the train or test set, the
model should not learn to recognise specific patients. In practise, this model could be used to
just predict haemodynamic instability in newly admitted patients without any additional steps,
improving implementation feasibility in a health care setting.

The in-patient approach was added to explore the prediction capabilities of the model when
specifically trained within one patient, removing the inter-patient variability. Practically, this
could mean that, when a patient is admitted to the PICU, the first few hours of data are used to

Figure 3.1: An overview of the pipeline that exists of four stages. Each stage is covered in the method
section.
CV: cross-validation, dT: duration of labels haemodynamic instability, W: window-width, r: horizon

5



train the model. The remaining data collected during the admission could be used for the model
to predict haemodynamic instability.
Importantly, to make the in-patient model clinically feasible, a minimum training time (and thus
a minimum amount of training data) is desired to use the predicting capabilities as soon as
possible. Therefore, an analysis for the train-test-split was added to find an equilibrium between
the minimum required trainset size and prediction performance.

Both approaches share most of the sections from Figure 3.1, and are explained below.

3.2 Data Acquisition

3.2.1 Study Cohort

A retrospective study was conducted in patients with critical congenital heart disease (CCHD)
admitted to the PICU at the Erasmus MC Rotterdam between January 2016 and April 2023. All
subjects with at least 5 unique numeric measurements for each of the included parameters (HR,
RR, SpO2, CVP and MAP) during the entire admission were eligible for inclusion. Exclusion
criteria were an admission length less than 12 hours or a birth weight below 2500g. The exclusion
criterion for birth weight was applied as a substitution to exclude pre-term infants, since the
gestational age is not structurally recorded in our EHR. The gestational age or age of the patient
in general, might influence the vital signs of the patient due to physiology immaturity (16). Once
full term, the chance of the birth weight being below 2500 grams is estimated to be 2.5%, based
on the mean and standard deviation (SD) provided by Chen et al. (17).

3.2.2 Data

All patients underwent continuous monitoring of vital signs (1 Hz) with data storage on a secure
server (Dräger, Lübeck, Germany). The HR was calculated using the R-peak interval measured
with at least three leads of the electrocardiogram (ECG, 3M St. Paul, Minnesota, United States),
RR was measured using the impedance of the ECG electrodes, the other measurements recorded
are the post-ductal SpO2 (Masimo, Irvine, California, United States), MAP (Becton Dickinson,
Franklin Lakes, New Jersey, United States) and CVP (Becton Dickinson, Franklin Lakes, New
Jersey, United States).
When the oxygen delivery to the main organs is failing, the body will activate mechanisms, such as
increasing the cardiac output by increasing the heart rate, to compensate (18). A change in vital
signs is expected when a patient is clinically deteriorating. The aforementioned parameters were
selected based on the method of Zoodsma et al. (15). Due to availability, the cerebral regional
oxygen saturation (rSO2) was replaced by the CVP, which with context of other parameters could
be an indirect representation of the venous return (19).

To be able to predict haemodynamic instability in real-time, the input parameters should be
frequently updated. When parameters that are recorded once a day are included, the type of
model developed in this thesis is dependent on these variables that are not ’high-frequently’
obtained, reducing the resolution of the prediction. During the literature review, continuous data
(and prediction) was defined as: Data must be gathered with at least 1 measurement per minute
(1/60 Hz) AND the recording length must be at least 1 hour. This definition is also used in this
thesis, resulting in resampling to 1 measurement per minute.

Ethical approval has been granted for retrospective research contributing to dashboarding and ML
model development using the continuously recorded vital signs that are obtained during routine
care.
The data are accessible using a Digital Research Environment (myDRE, ANDREA B.V.), which
is complying to safety norm ISO 27001 for storing patient data (20). Folder- and filenames of the
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raw data stored in this location include the patient ID, which are pseudonymised using a study
ID.

3.2.3 Labels

To be able to develop an algorithm to detect clinical deterioration, data must be labelled as
haemodynamic stable or unstable. Due to lack of a clear definition in literature and for feasibility
reasons, a straightforward labelling-system was created. Physicians were consulted to derive labels
based on therapeutic interventions that are common in (increasingly) haemodynamically unstable
patients and that are structurally registered in the electronic health record (EHR). Assuming
physicians are acting correct and in the best interest of the patient, the interventions and their
administration times were retrospectively collected and used to create windows of instability.
Interventions performed in treating haemodynamic instability at the PICU in the Erasmus MC
include inotropic and vasopressive medication administrations and/or fluid therapy. The following
interventions including the used substance were retrieved from the EHR:

Table 3.1: The administration (intervention) types and their medication used to create the periods of
haemodynamic instability.

Administrations Medicine/substance
Inotropes Epinephrine, milrinone, dobutamine, dopamine, phenylephrine, isoprenaline
Vasopressors Vasopressin, desmopressin, norepinephrine
Pulmonary vasodilators Nitric Oxide (NO), sildenafil, bosentan
Fluid challenges NaCl, ringer’s lactate, blood transfusion

Based on clinical experience alone, it is difficult to retrospectively define how long a patient was
already haemodynamically deteriorating before the interventions mentioned in Table 3.1 were
performed. Several options for the different lengths of instability before an intervention (dT )
were included in developing the algorithm, to find whether a specific duration of instability
exists where the model was better capable of predicting the instability.
The following dT durations were used in the analysis: 20, 60 and 120 minutes before
administrating medication or fluid therapy. In Figure 3.2, a visual representation of the use of
the dT parameter is added.
By introducing this method, in essence, three different datasets were created with different class
distributions. Less timestamps are labelled as unstable in the dT: 20 minutes dataset than the
dT: 120 minutes dataset. Therefore, the class priors (class distribution) were calculated to be
able to give more context to the model evaluation between models using different settings for dT.

3.3 Pre-processing

The methods used for resampling, artefact detection, scaling, and imputation are elaborated in
Appendix A.1.

3.3.1 Lag-analysis

For capturing all possible information in time-series data, the temporal dependency was
incorporated. The method employed was lag analysis, which involves examining the impact of
time delays, referred to as lags, of a variable on itself within a time-series dataset. The goal is to
understand how past values of a variable influence its current or future values.
To get an indication of the importance of lags, the cumulative explained variance of a principal
component analysis (PCA) was collected. By dividing the data in sections of 50 minutes, the
number of components needed to explain 95% of the variance in the data was used to give a
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rough estimate of the importance of the time lags.
Essentially, this method similar to a sliding window, as illustrated in Figure 3.2. When applying
this sliding window, several settings are available to fine-tune the lags according to the
algorithm’s objectives:

• W : The window width, equals to the number of time stamps included in the lag-analysis.
During algorithm development, widths of 5, 30, and 50 minutes were included.

• r : The horizon will determine how many time stamps in the feature the model should
predict, based on the data within the window. During algorithm development, widths of 1,
5, 15, 30, 45, and 60 minutes were included.

Figure 3.2: This figure illustrates the Lag-Analysis and all its settings. In this example, one fictional
vital sign is shown, using a ‘+’ symbol for the haemodynamically stable timestamps, a ‘x’ symbol for
the timestamps with an intervention and an ‘o’ symbol for the timestamps labelled as haemodynamic
instability.
The total number of timestamps, before and during an intervention, labelled as haemodynamically unstable
is decided by the dT setting, which is set to 5 timestamps (or minutes) in this example.
In this example, the window-width (W ) is set to 4 timestamps (or minutes), which is the input data for
the model to predict the timestamp after the horizon(r), which is set to 4 timestamps (or minutes).

Horizon analysis

An additional analysis was performed to further explore the effect of increasing the horizon further
than 60 minutes. The in-patient approach was used for this analysis, with a W of 30 minutes
and a dT of 60 minutes. The horizon settings used were: 1, 5, 15, 30, 45, 60, 120, 240, 360, 480
minutes. The number of settings were limited to keep the computational time manageable.

3.4 Model development

3.4.1 Cross-validation structure

In Figure 3.3, an overview of the two CV structures is illustrated.

This independent test set (orange in Figure 3.3) was used for the final performance of the model,
using data that had not been included in the development of the model in both approaches. The
distribution of patients was 80% and 20% for the train and test set, respectively. The train-test-
split should also distribute the total number of minutes of data according to the specified split.
Since admission lengths between patients vary, a difference of 5% with the specified split was
deemed acceptable.

Zoodsma et al. suggest differences between cyanotic and non-cyanotic CCHD (SpO2 <90% and
>90%, respectively) are influencing the algorithms performance (15). This was accounted for by
stratifying these subjects over the train and test set.
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(b) Nested CV for the in-patient approach.

Figure 3.3: Visual overview of the nested cross-validation (CV) structures. The inner-loop was used for
hyper-parameter tuning. The outer-loop was used for a performance assessment of the best performing
classifier from the inner-loop.
The in-patient approach needs to be trained first on a new subset of patient data, therefore, the final test
set was again split in a train and test section.

Traditional CV involves splitting the dataset into train and test sets, fitting the model on the
train set, and evaluating its performance on the test set. This process was repeated multiple
times to ensure robustness of the performance estimate. However, when hyper-parameters need
to be tuned, traditional cross-validation may lead to an overestimation of performance due to the
risk of overfitting to the test set. Nested CV addresses this issue by introducing an outer-loop
and an inner-loop. The outer-loop used in these models split the dataset into five train and
validation sets (blue in Figure 3.3, similar to traditional cross-validation. Within each iteration
of the outer-loop, an inner-loop of cross-validation was performed on the train set to select the
best hyper-parameters for the model. To find the best performing hyper-parameters, twenty
unique combinations of hyper-parameters are randomly selected, using a random grid search from
SkLearn(21). The best performing model was selected, using the mean performance of all test
sets in the inner-loop (green in Figure 3.3). This model was then trained on the entire train set
of the outer-fold and was evaluated on the corresponding validation set (blue in Figure 3.3). This
process was repeated for each iteration of the outer-loop.

Ideally, when a clear relation is found in the data, hyper-parameters of the five highest scoring
models are comparable. If this is the case, the model is expected to generalise well.

Once generally well performing models were created using the nested CV setup, a singular CV
setup was used to develop one final model. This process is comparable to one inner-loop of
the nested CV, meaning new sets of hyper-parameters were searched and tested during this CV
method. For the between-patient approach, this meant using the whole train set and individual
test set (orange in Figure 3.3a) for a final performance assessment of the between-patient approach.
For the in-patient approach, the best performing hyper-parameters of the singular CV were used
for training on the small train set (orange in Figure 3.3b) and the final performance was assessed
using the small test set (also orange in Figure 3.3b, simulating a new group of admitted patients.
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3.4.2 Classifier

The main component of a ML algorithm is the classifier that is tuned using the aforementioned
nested CV. For this iteration of the model, a random forest classifier was used.
A random forest classifier is an ensembled ML technique, which combines multiple decision trees
for a collaborative prediction/classification model. Each decision tree was trained on a subset of
the training data. This introduces randomness in the data and the important features, managing
against overfitting and improving the generalisation of the model. A decision tree in a random
forest grows by splitting the feature space of the input data into subsets based on the values of
the features.
By combining multiple decision trees, one classifier was created that can handle non-linear
relationships between data and labels.
The classifier is shaped by hyper-parameters, which were tuned during the inner-loop of the
nested CV. In Table 3.2 an overview of the used hyper-parameters and a short explanation is
illustrated.

Table 3.2: The hyper-parameters of the random forest classifier that were tuned in the nested CV, are
briefly explained.

Hyper-parameter Explanation
Class weight Corrects for class imbalances on a level of all data, or on the level

of a sub-set of data used for one decision tree.

Loss criterion: Determines the formula used to calculate the quality of a new split,
the best split is selected for growing a decision tree.

Maximum depth: Sets the maximum number of consecutive decisions a tree can make
before coming to a final classification.

Maximum features: Sets the number of features from the input data can be considered
to use in the decision trees.

Maximum leaf nodes Limits the maximum number of leaves (in other words, results of
the decision tree) on the decision tree, and indirectly determines
the maximum number of splits that can be made. This parameter
simplifies the model, generally reducing overfitting.

Minimum samples per split This hyper-parameter prevents overfitting, by setting a minimum
of samples that need to be involved in one of the categories when
a split is made.

Number of estimators This hyper-parameter limits the number of decision trees that can
be inside the forest. More decision trees usually improve a model’s
robustness when trained properly using, for example, nested CV.

3.5 Model Evaluation

The model performances were assessed using the area under the precision recall curve (AUCPR
score), mostly due to class imbalances. By selecting the AUCPR, the importance of the positive
labels (haemodynamically unstable) was emphasised.
While performing the nested cross-validation, the mean AUCPR scores over the inner-loops were
used for hyper-parameter selection. Furthermore, the SD was computed for all inner-loops to
evaluate the stability of performance across various data splits. For the final performance
assessment of the singular on the test set, performance metrics were added to provide a
comprehensive evaluation, including AUCPR, AUCROC, accuracy, balanced accuracy, and the
F1-score.
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4 Results

4.1 Data acquisition

4.1.1 Study cohort

Out of 637 admissions collected, 229 admissions from 218 different patients were included in the
analysis. 76 (12%) admission were excluded due to a total admission length of less than 12h.
Another 90 (14%) admissions were excluded due to the patient’s birth weight being below 2.5 kg.
Lastly, 242 (38%) admissions did not have measurements in all vital signs and were also excluded.

The baseline characteristics and the diagnoses of the included patients are available in Table 4.1

Table 4.1: The baseline characteristics of the study cohort, including the diagnoses.

Characteristics Value
Male gender, n (%) 136 (61)
Admission Age (days), median [Q1-Q3] 132 [85-182]

Vital Signs Median[Q1-Q3]
HR, beats per minute 137 [121-175]
RR, breaths per minute 41 [32-54]
SpO2, (%) 97 [94-99]
CVP, mmHg 12 [8-18]
MAP, mmHg 57 [34, 68]

Diagnosis No. of patients
Ventricular septal defect 62
Tetralogy of Fallot 47
Coarcation of Aorta / aortic anomalies 28
Atrioventricular septal defect 25
Atrial septal defect 9
Complete transposition of great vessels 9
Double outlet right ventricle 8
Hypoplastic left heart syndrome 8
Total anomalous pulmonary venous return (TAPVR) 7
Hypoplastic right heart syndrome 1
Truncus arteriosus 4
Right ventricular outflow tract obstruction 3
Others (Ebstein, tricuspid atresia, etc.) 7

4.2 Pre-processing

4.2.1 Labels

When using three different settings for dT, three different data set with different class priors were
created. The class distribution increased when an increased dT setting was used. In Table 4.2, the
exact percentages of samples labelled as unstable are displayed for each dT setting. These values
should be considered when comparing the AUCPR scores between models trained with different
dT settings.
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dT Class prior (%)
20 5
60 12
120 18

Table 4.2: Class prior, which might slightly deviate from the values showed here, based on the different
window-width (W ) sizes.

4.2.2 Lag-analysis

The cumulative explained variance of the PCA is shown in Figure 4.1, to get an indication of the
contribution of including time-lags. The data was segmented into non-overlapping windows of 50
minutes (W ), thereby eliminating redundancy in the input data provided to the model. With 27
components, approximately 95% of the variance of the dataset can be explained. These cannot be
directly translated to number of lags, however, it does indicate that not all variance in the data
is determined by 1 or 2 components.

Figure 4.1: Cumulative explained variance from a principal component analysis, with the number of
components on the x-axis.

4.3 Model development

4.3.1 Between-patient approach

Hyper-parameter tuning

The model’s hyper-parameter tuning was repeated for all combinations of settings for the
parameters W, r, and dT.

In Figure 4.2, the training and validation performance (AUCPR) is shown for each of these
combinations. Each sub-plot contains three lines, coloured according to the colours of the train,
test, and validation set in the CV-structures of Figure 3.3. Only the best performing model of the
nested CV is illustrated for each combination of W, r and dT settings. The best performing model
was defined as the model with the highest validation score, also shown with the blue line. The
SD of the train (grey) and test performance (green) of the inner-loop are added as an indication
of the stability of the selected model.

When exploring the results of Figure 4.2, it is noticeable that the performance gradually

12



improves with increasing dT parameters.
When comparing different window-widths (W ), the performance on the train set seems to
gradually improve with increasing window-width, however, the test performance generally stays
the same.
The performance of the validation set (blue) appears to gradually decrease as the horizon
parameter increases, regardless of the W and dT settings. The performance of the train and test
set do not show a clear change with increased settings for the horizon.

Based on this figure, the settings for W, r and dT were selected to train one final classifier for
the between-patient approach. Firstly, W was selected. The mean test score and validation score
were generally speaking more uniform in the W = 50 minutes apart from the first column (dT
= 20 minutes). When the optimal dT setting was selected, a uniform increase was seen in the
performance with increased values for dT, regardless of W or r, therefore 120 minutes was selected.
Finally, the optimal r was selected. Since the model seemed to overfit on the train set in some
parameter combinations with a horizon of 60 minutes, the horizon was set to 45 minutes, still
maintaining the medical benefits of a large horizon.

The results are shown in Table 4.3.

Table 4.3: The selected temporal settings for training the final model for both approaches.

Parameter W dT r
Between-patients 50 120 45

In-patients 50 120 45

Final performance

When training on the entire train set, the best performing hyper-parameters were selected by
the singular CV and are available in Appendix A.1. The model was then evaluated using the
performance on the test set (orange in Figure 3.3a).

In Table 4.4 the final evaluation of the performance of between-patient approach is shown. Since
a dT setting of 120 minutes was selected, the class prior was 18%, which would be de AUCPR
score if the model was fully dependent on chance.

Table 4.4: Final performance of the between-patient approach. The training performance are the mean
train and validation scores of the singular CV. The testing performance was obtained using the test set
(orange in Figure 3.3a).

Training performance
Train AUCPR (mean (SD)) 0.852 (0.031)

Validation AUCPR (mean (SD)) 0.450 (0.126)

Testing performance
AUCPR 0.402

AUCROC 0.714
Accuracy 0.745

Balanced accuracy 0.317
F1-score 0.410
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Figure 4.2: Training performance of the between-patient approach and additional analysis for the window-width (W ), duration of instability (dT ), and the horizon
(r). Each column represents another dT setting and each row represents a different W setting.
In each sub-figure, three lines are plotted. The grey line represents the mean (SD) of the inner-loop training performance. The green line represents the mean (SD)
of the inner-loop test performance. Lastly, the blue line represents the validation performance. All colours are synchronised with the CV-structure in Figure 3.3
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4.3.2 In-patient approach

Hyper-parameter tuning

The same hyper-parameters and additional settings were tuned for the in-patient approach. The
training-results of the in-patient approach are shown in Figure 4.4, where the y-axis again
represents the AUCPR score for all combination of settings. The three lines within each subplot
represent the mean (SD) AUCPR score of the inner-loop train and test sets and the AUCPR
score of the outer-loop validation set. The best model is again defined by the model with the
best performance on the validation set.

When examining these plots, the first notable observation is that the mean scores are higher
compared to those obtained with the between-patient approach. When increasing the duration
of instability (dT ), the performance gradually increased regardless of other settings.
Another noteworthy observation is the effect of the window width (W ). Specifically, the
performance gap between the train, test, and validation sets appeared to decrease as W
increases."
Lastly, the horizon (r) seems to marginally improve the model’s performance, regardless of the
other settings.

Based on this figure, the final settings for W, r and dT were selected to train one final classifier for
the in-patient approach. Firstly, 50 minutes for the setting W was selected. The difference between
the train, test and validation set were minimal when using the 50-minute window indicating less
overfitting. For the dT settings, a duration of 120 minutes was selected. This duration had the
best performance, regardless of the other settings. Lastly, the horizon (r) was selected. The
behaviour of r was almost equivalent in all tested settings. Since the performance was marginally
higher at 45 minutes and additionally to keep the model similar to the between-patient approach,
the horizon was set to 45 minutes. The selected settings are also summarised in Table 4.3.

Final performance

Firstly, the singular CV was performed on the entire train set. The best hyper-parameters were
selected based on the best validation AUCPR score. The hyper-parameters are available in
Appendix A.2. The in-patient approach is considered quite a complex model, with a lot of
decision trees with a lot of specific classification conditions (max. leaf nodes.)

To be able to evaluate the final performance on the test set, the model was trained on 80% of the
test set (illustrated as train in orange in Figure 3.3b). These train scores were not retrieved and
are displayed as ‘NA’ in Table 4.5. The final performance was evaluated by the remaining 20% of
the test set (called as test in orange in Figure 3.3b) and can be seen in the second 80% column of
Table 4.5.
Lastly, it should be noted that the test performances (AUCPR) are higher than the mean train
or validation performance of the singular CV.
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Train-test-split analysis

Apart from the final performance trained on 80% of the test set, the test performance of the
model using reduced train sizes are also shown in Table 4.5. Since the final model was trained on
the small train set (orange in Figure 3.3b for this analysis, no mean train performances from the
nested CV are available and are displayed with ‘NA’ in the Table 4.5.

Table 4.5: Training and testing performance of the In-patient approach. In addition to the 80-20 train-
test-split, the results of different train-test-splits are displayed. The training performance is not available,
since no CV was performed for the additional analysis.

Train percentage: 80% 80% 60% 40% 20% 10% 5%
Training performance

Train AUCPR, mean (SD) 0.984 (0.001) NA NA NA NA NA NA
Validation AUCPR, mean (SD) 0.959 (0.002) NA NA NA NA NA NA

Testing performance
AUCPR NA 0.998 0.997 0.994 0.964 0.904 0.817

AUCROC NA 0.999 0.999 0.998 0.992 0.976 0.949
Accuracy NA 0.992 0.985 0.977 0.954 0.930 0.913

Balanced accuracy NA 0.954 0.916 0.869 0.749 0.622 0.561
F1-score NA 0.975 0.955 0.927 0.847 0.752 0.692

For the 10% train-test-split, the label distribution remains approximately 17% in both the train
and test set. The total duration of the train set is 27 hours, which translates to approximately 80
minutes per patient.

4.3.3 Horizon analysis

In Figure 4.3 the AUCPR is plotted against the different settings for the horizon (r). The
performance of the models with a higher horizon setting had higher AUCPR scores than those
with a lower horizon setting. No other parameters were tuned during this analysis.

Figure 4.3: The AUCPR is displayed for different horizon (r) settings to explore the effect of increasing the
horizon past 60 minutes. The grey line represents the mean (SD) of the inner-loop training performance.
The green line represents the mean (SD) of the inner-loop test performance. Lastly, the blue line represents
the validation performance. All colours are synchronised with the CV-structure in Figure 3.3
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Figure 4.4: Training performance of the in-patient approach and additional analysis for the window-width (W ), duration of instability (dT ), and the horizon (r).
Each column represents another dT setting and each row represents a different W setting.
In each sub-figure, three lines are plotted. The grey line represents the mean (SD) of the inner-loop training performance. The green line represents the mean (SD)
of the inner-loop test performance. Lastly, the blue line represents the validation performance. All colours are synchronised with the CV-structure in Figure 3.3
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5 Discussion

Two random forest classifiers were trained using a nested CV structure to detect haemodynamic
instability in CCHD patients admitted to the PICU, using common clinical interventions as
labels for haemodynamic instability. After developing multiple models with different temporal
settings (W, r and dT ), this study shows that an increased window-width (W, 50 minutes) and
an increased duration of instability (dT, 120 minutes) have positive influence on the model
performance. However, the model’s performance appears unaffected by the horizon (r) setting,
as comparable test performances were observed when using a r of 5 or 60 minutes.
This study has shown that the model’s generalisation at the population level (i.e.
between-patient approach) is poor, currently, with the used imputation and generalisation
methods. This conclusion is supported by the notable differences between the mean train (85%,
AUCPR) and test performance (40%, AUCPR).
When considering the model at the patient level (i.e. in-patient approach), generalisation issues
were mitigated by training and testing on each patient individually. This approach yielded mean
train performance of 98% (AUCPR) and a test performance of 99% (AUCPR), when applied to
a new study cohort.
These scores were obtained, using 80% of the final test set for training. Practically, lowering the
amount of training data (e.g. 10%) is desired for clinical feasibility, yielding an AUCPR score of
91%. While the in-patient approach does introduce new challenges for implementation, it
demonstrates the potential to use supervised ML for the detection of haemodynamic instability
at the bedside of critically ill CHD patients admitted to the PICU. However, achieving accurate
predictions that are clinically relevant require objective data labeling and substantial
pre-processing. The insights gained from this process will be used for future improvements of the
model.

5.1 Interpretation of results

Lag analysis

The cumulative explained variance plot can be seen in Figure 4.1. To accumulate 95% of the
variance within the data, approximately 27 components were needed. This indicates that more
than a few lags were contributing to the variance within the input parameters. However, it did
not add information about what time lags are contributing.
During hyper-parameter tuning one of the settings was selecting the number of features used for
training each decision tree. While increasing W increased the availability of features to the model,
only a random sub-selection of hyper-parameters was used. Each decision tree in the random forest
gets assigned a new random sub-selection of features. No analysis was performed to compare the
important features between the different window-widths.

5.1.1 Between-patients

While the between-patients would be ideal for clinical implementation, the present study has
shown that the model does not generalise well when predicting haemodynamic instability for new
patients.

While the training-scores in Figure 4.2 are inconsistent, they are significantly higher than the test
and validation score, indicating overfitting on the training data. This overfitting in this approach
is most likely due to the inter patient variability. However, the testing and validation performance
are comparable, indicating that the model is not overfitting to the test data within the inner-loop
of the nested CV. With a comparable performance of the validation set to the test set, the model
shows consistency when introduced to new data.
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Although the performance was consistent, low scores were observed. The CV splits of both the
inner- and outer-loop were repeated exactly the same for each training iteration. By using nested
CV, every admission is at least once part of the test set. The difference in performance based on
the split for the between-patient approach is clearly visible by the wide SD of the test score in
Figure 4.2 and is not because the performance was evaluated using a significantly different split.
Hence, the relatively low test and validation scores are most likely not caused by the data splits.
Additionally, since the best performing models are displayed in Figure 3.3a, it makes sense that
the validation scores are more comparable to the upper-range of the SD-interval, instead of the
mean test scores. If the validation set was significantly different from the test sets in the CV, the
validation scores are expected to be outside the SD range.
It is more likely that the inter-patient variability is too substantial making it difficult to establish
a correlation between the data and the labels. Moreover, the relationship between the data and
the current version of the labels may contribute to the poor performance.

Intuitively, the performance is expected to decrease when increasing the horizon, since it is less
likely that a correlation exists with a large time difference between the data and the moment of
prediction. However, during the analysis, the horizon did not seem to influence the performance
of the model. Therefore, the consistent test and validation scores, might indicate the inherent
baseline performance of the model. In other words, most of these settings did not seem to matter,
because the model will always predict the same scores. However, since the AUCPR scores were
higher than class prior for each dT variant, it is assumed that the model is contributing to the
performance score.
Another possible explanation could be incorrect implementation of the methodology, resulting in
the observed consistent performance. The methodology of the nested CV was validated, using
the methods available in Appendix A.4. When overfitting to one patient, the model was capable
of approaching a perfect train, test, and validation score, suggesting that the methodology was
implemented correctly.

Finally, it might be possible that the model is capable of predicting haemodynamic instability
with similar performance when horizons of, for example, 5 or 60 minutes were used. The model
might select different features from the lag-analysis to split the decision trees, which are more
predictive further in the future.
More research regarding the behaviour of the current between-patient approach is needed before
this method could be implemented in practise.

5.1.2 In-patient

When comparing the training performance of the in-patient approach, shown in Figure 4.4, to
the between-patient approach, the scores were significantly higher. Similarly, the mean test
performance of the inner-loop was significantly higher than the validation performance of the
outer-loop. Intuitively, since the data were split within patients, such a significant deviation
should not occur. The reason the validation performance was lower than the inner-loop test
performance is unclear. It could be caused by a methodological error that does not correctly
split the train and validation set using data from the same patients. However, the validation
scores are expected to be comparable to those of the between-patient approach if completely
unseen data is included in the validation set. No additional analysis was performed to validate
the in-patient train-test-split within the nested CV structure.

As mentioned in the result section, when using a train size of 80%, the model had a higher AUCPR
score on the test set compared to the mean AUCPR score of the train set. These results should
not be directly compared, since a new model was trained and tested with the in-patient approach
for the final performance. The singular CV was only used to select the hyper-parameters.
Nonetheless, the observed test performance of the model achieved with a train set size of 80%,
were approaching a perfect test score. Since the sample-size was lower in the test set (the entire
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orange test set from Figure 3.3), it was easier for the model to ‘overfit’ on these patients, resulting
in high test scores. Overfitting is used in the in-patient approach and pleads for a successful
translation to a new group of patients.

Train-test-split analysis

It is clinically relevant to be able to train the in-patient algorithm with as little data as possible.
The model can start predicting the patient’s clinical status sooner if less data is needed for the
model development.

Although the performance of the model using 5% of the data for training decreased compared to
other train sizes in the in-patient approach, the model was still outperforming the between-patient
approach. This 5% translates to approximately 40 minutes of data per patient.
The performance was comparable to larger train set, until the train set was set at 40%. The
balanced accuracy and the F1-score seemed to slowly decrease when the train set percentage was
further reduced. The dataset is imbalanced with a class prior of approximately 18%, which is likely
contributing to the lower performance in the F1-score and balanced accuracy. These measures
are derived from sensitivity and specificity, emphasizing different aspects of label classification
than performance metrics derived from the positive predictive value. The clinical implementation
dictates the weight of the false positives or false negatives. Since the model is trying to predict
haemodynamic instability, the false negatives should be avoided. Therefore, the positive predictive
value (i.e. precision) and sensitivity (i.e. recall) are considered more important, which makes the
AUCPR more relevant for this specific algorithm.
Based on this performance, a train set threshold between 10 and 20% seems feasible without
considering other practical aspects of implementing an in-patient ML model in practise.

Importantly, the data were stratified for labels in this analysis. When assessing the clinical
feasibility, the performance should be tested within one patient. One of the requirements of this
method, is that both labels must be available when training the algorithm. Due to this limitation,
the training time might require more data in a real admission compared to the minimum required
amount of data determined by this train-test-split analysis. During this analysis, the performance
of a patient specific model using only one patient (simulating a new admission at the PICU) was
not yet explored, making it difficult to determine the feasibility of this model in clinical practise.

5.1.3 Horizon analysis

The horizon was included to be able to predict haemodynamic instability in a timely manner.
Since the performance remained stable when increasing the horizon, this additional analysis was
performed. When the horizon was increased to 480 minutes, the performance started rising
instantly after increasing the horizon parameter past 60 minutes. Figure 4.3 shows the
performance of different horizon parameter while using window-width of 30 and a dT of 120
minutes. The nested CV methodology was validated, using two sub-analyses, elaborated in
Appendix A.4. The methodology worked as expected using a small number of patients,
suggesting that this was not the cause of the rising performance of the increased horizon.
As mentioned in Appendix A.1.2, during the pre-processing, a sub-selection of 800 timestamps
was collected for each admission. The horizon parameter was set after creating this
sub-selecting, decreasing the amount of data for training the algorithm. The theory is, when
increasing the horizon parameter, too much data gets lost in the process, resulting in an
overestimation of reality. In Appendix A.2, an illustration of the theory is supplemented. To
validate this theory, future horizon analyses are needed to explore the effect of different horizon
settings with an equal amount of data.

Apart from pre-processing related causes of the behaviour of the horizon, it is most likely that
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the horizon is underperforming due to the lack of a clear correlation between the input data and
the assigned labels. This argument is stressing the importance of a correct labelling method and
feature selection for a successful model development.

To be certain the horizon is contributing to predicting haemodynamic instability, multiple aspects
of the model (i.e. labels and horizon) must be further improved to become more reliable and
safer before this model can be implemented as a bedside warning system for critically ill CCHD
patients.

5.1.4 Labels

In addition to the horizon being performing as expected, the used labels also require additional
analyses. The current labelling system includes subjectivity and the timing of true instability
onset and treatment are not always obvious.

Assuming physicians are treating these principles correctly, their decisions while treating a patient
are considered the golden standard. In this iteration of the model, the labels were based on the
interventions mentioned in Table 3.1. These were selected using expert opinion and availability
in the EHR.
Due to personal experience, treatment plans may vary for patients depending on the attending
physician. In extreme cases this variability may even threaten the continuity of care (18). These
‘hunches’ from physicians are not retrospectively retrievable and cannot be included in the labelling
system.
Moreover, a delay between symptoms’ onset and treatment exists, of which the duration may also
vary between physicians or nurses. To counteract this phenomenon, the analysis for finding an
optimal duration of labeling haemodynamic instability (dT ) was conducted.

Limitations of the labelling method also hide in the data acquisition. Firstly, the time of
administration in the EHR might not always concur with the true admission time, introducing
more inconsistency when assigning labels. Secondly, the interventions collected from the EHR
also include changes in the infusion speed of the infusion pump, which can be increased or
decreased. A decrease of infusion speed is also considered an intervention, possibly
over-presenting haemodynamically unstable periods. Moreover, in this iteration all interventions
were considered equally important. However, in reality, it is unlikely that vasoactive medication
is initiated as frequently as fluid therapy. Further research is required to better understand the
contribution of various interventions in defining objective labels for haemodynamic instability.

Despite this labelling method attempting to objectify haemodynamic deterioration, it still
involves a lot of subjectivity. This challenge is stressing the importance of a correct translation
between the medical world and the world of ML algorithms with the strict requirements for
correct labels. Due to time restrictions no additional analysis was performed to explore whether
correlation exists between false negative predictions and a specific type of intervention. It is
suggested to explore the incorrect classifications for medication/fluid type, dose and perhaps
manually checking the reason of administration.
In this thesis, multiple settings of dT were explored. All these different values were prior to an
intervention, however, not all interventions were directly effective, and most patients were not
stable after only one of these interventions. Therefore, the period of instability should be
extended until after the intervention.
Lastly, the utilised method of classifying haemodynamic instability is binary, which is not
representative with the reality. Patients can also clinically deteriorate in a graduate manner,
with the degree of instability increasing slowly. Labelling with a continuous scale would be
preferred, so possibilities should be explored.
All in all, the quality of data and labels play an important role in a model’s success or even
feasibility.
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5.1.5 Performance metrics

Originally, the AUCROC was used for the assessment of the CV method. Due to the nature of
the AUCROC, it is likely to overestimate the performance of a model trained with an imbalanced
dataset, because it is less sensitive to changes in the true negative rate (TNR) (22). This principal
is also illustrated in the results of the train-test-split analysis in Table 4.5. While decreasing
the train set size, the AUCROC is not decreasing. The AUCPR is better suited for imbalanced
datasets, where the negative labels outweigh the positive samples or in situations where the correct
classification of positive samples is considered more important. When comparing the results of the
train-test-split analysis in Table 4.5, the type of performance metrics emphasises the importance
of the class imbalance. While the AUCROC stays above 90% for all splits, the balanced accuracy
(which is more sensitive to false negatives), is decreased from 95% to 56%, stressing the importance
of a performance metric fitting the goal of the prediction model.

5.2 Comparison to literature

The combination of using labels as defined in this thesis and using only vital signs that are
high-frequently available is not seen before in literature.

Potes et al. have attempted to create a risk score for haemodynamic instability for patients
admitted to the PICU with an age between 1 month and 20 years (23). To account for the data
variability introduced by age, five aged-based sub-selections were created. The start of a period
of instability was defined by the first intervention of an admission, these interventions being
either vasoactive medications or fluid therapy. The model will create a risk score up to 12 hours
before the first haemodynamic unstable episode of the admission. This approach neglects the
delay between instability onset and treatment initiation, posing a risk of creating a risk score for
intervention. Their algorithm, also consisting of an ensembled decision tree method (Adaboost),
was trained using 21 input parameters, including laboratory results and ventilator settings. Using
intermittent input parameters, such as laboratory results, introduce predictions with different
levels of confidence due to the number of missing variables. The model requires at least a heart
rate and age to be able to generate a risk score. Additional sample rates requirements were
established to be able to include these intermittent variables.
The model had an overall test AUCROC score of 81% and was externally validated by using data
from another hospital, resulting in a validation AUCROC score of 81%. When only considering
vital signs as input parameters over all age groups, the AUCROC was 71%. Class priors or class
imbalances were not discussed, however, comprehensive analysis to potential bias were conducted.

When comparing the vital-signs only version of the model to the between-patient approach of
this study, their approach does vary from this study. First of all, the study cohorts were not
age restricted, the input parameters had no minimal required frequency and the model was only
working for the first episode of haemodynamic instability, since the result is a risk score for
developing haemodynamic instability.

When comparing test results of the vital signs only approach with the between-patient approach,
the AUCROC scores are identical with 71%. They did not mention other performance metrics, so
unfortunately it is not possible to further interpret and compare the results. As mentioned before
the AUCROC is most likely an overestimation for predicting haemodynamic instability, however,
this cannot be assessed based on the information given in their study.

On the other end of the spectrum are Zoodsma et al. (15), they only use high frequency vital signs
in CCHD patients admitted post-operatively to the PICU. However, they did not define objective
labels using data from the EHR. Their model exists of three sub-models, one to classify sensor
dysfunction, on to classify the input parameters of one patient, and the last sub-model to follow
a patient’s clinical status through time.
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The classifier used in sub-model 2 was a one-class support-vector-machine (OCSVM) and was
trained using the normal distribution of the data, eliminating the need for labels during training.
They mention that 29 hours are unstable in a total recording length of 210 hours collected from
10 patients included in the validation process. This translates to a class prior of approximately
14%, which would be comparable to a dT somewhere between 60 and 120 minutes in our study.
The model was evaluated by two intensivists, retrospectively validating the prediction with the
use of the input data, resulting in a balanced accuracy of 85%. The balanced accuracy of the
between-patient approach is only 32%, making the performance of the model of Zoodsma et al.
significantly higher. However, the validation process was subjective and not standardised. Making
it hard to truly compare these performances or to reproduce this result.

Rahman et al. attempted to create an ensemble of decision trees (abstain boost) to predict a
real-time risk score to predict interventions with a horizon of one hour (24). They included over
200.000 admissions, with a prevalence of 18%. Although using continuous and intermittent data
collected from adults, their data was also labelled using fluid therapy or vasoactive medication as
onset of haemodynamic instability. The period of instability was maintained until nothing was
administrated for 12 hours. Their approach was more modular than the approach of Potes et al.,
making it possible for the patient to have both stable and unstable periods during an admission.
Data collected one hour before the intervention period was labelled as unstable, capturing the
onset-treatment delay. They evaluated their model using 4 subset of input parameters, with
AUCROC scores ranging from 72 to 82%. Additionally, the PPV, the specificity and sensitivity
were reported with different cutoff values. Since this model was trained in adults, the results
are not compared, since the physiology differs significantly. However, the methodology used is
very robust and this approach should be taken into account when considering future steps in this
project.

5.3 Strengths and limitations of the study

The strengths of this study involve a robust methodology with consistent high-frequently available
data.

First of all, compared to most ML papers in health care, the sample size of 218 patients is
substantial. Since 242 patients were excluded due to the absence of data, the number of included
patients can be doubled when the model is better able to handle missing data. Additionally, the
sampling rate of the available data was 1Hz, enabling the development of a high
frequency/real-time prediction model for haemodynamic instability, with an equally high
prediction resolution. Additionally, down-sampling of the data reduced the size of the dataset,
lowering the computational power needed for developing the algorithm.
Furthermore, this study was the first study that attempts creating a high frequency prediction
model for CCHD patients admitted to the PICU, with objectively assigned labels. Although, the
performance of the model looks dependent on the quality of these labels, a first reproducible
approach was created.

However, some limitations need to be addressed. First of all, although we attempted to create a
homogenous study cohort, there may still be considerable heterogeneity as diagnoses and reasons
for admission are not routinely recorded (in a standardised manner) when a patient is admitted
to the PICU of the Erasmus MC Sophia children’s hospital. Although a large variety of admission
types may create a generalisable model, it can also introduce noise for a ML model to predict
correctly. Not all admissions were guaranteed post-surgical or due to the CCHD.

Furthermore, including only patients with measurements of all input parameters introduced
selection bias. For example, continuously measuring the MAP or CVP is currently not included
in standard care. Nonetheless, an attempt at reducing the selection bias was made by not
excluding data based on data quantity and choosing for imputation alternatives.
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Lastly, the retrospective nature of the study is most likely the biggest limiting factor. For example,
the labels cannot be properly generated, since the treating physician had specific considerations
that are not retrievable from an EHR. In addition, data quality cannot be guaranteed, for example,
the absence of an arterial catheter does not have to be due to improvement of the patient, perhaps
the catheter failed and a new one cannot be inserted. Moreover noise cannot be retrieved with
certainty from retrospective data, what could be annotated in a retrospective study, although very
difficult and most likely unfeasible.

5.4 Future recommendations

When preparing the data, it became clear that not all parameters were available during the entire
admission. The current classifier was not optimised for handling missing data. Therefore it is
suggested to improve the current classifier or explore more classifiers that are capable of handling
this type of data. This grants the opportunity to add a ‘reliability’ score to predictions not using
all input parameters. Conroy et al. compared different versions of AdaBoost with abstaining that
can handle missing data (24, 25). Their approach should be considered as the next step when
more classifiers are being explored.

Another option would be exploring the ‘black box’ approach and try to train a deep learning
model for this data, for example the model used by Ruiz et al. (26). However, the labels should
be better defined before it is likely that a deep-learning approach is successful.

Before developing a model with a new classifier, the current model can be further improved as well.
Currently, the model does not generalise well as can be seen in the between-patient approach. The
data was scaled based on the data from entire population, using the mean and standard deviation.
Since the in-patient performance generalises better than the between-patient approach, it looks
like the inter-patient variability is too prominent. Firstly, the inter-patient variability might be
too high due to the included diagnoses or due to the age difference of the study cohort, indicating
that a revision of the inclusion criteria could improve the data homogeneity. Alternatively, the
data could be scaled per patient, which comes with a similar drawback as the in-patient approach,
i.e. a part of data should be scaled before the prediction can be performed. Compared to the
in-patient approach, training the scaler is expected to require less data and the labels do not have
to be considered. However, it is important that all parameters that are going to be used during
the admission, must be available when the scaler is fitted.

When considering the clinical feasibility of the in-patient approach, the method training on new
patients should be improved. The random forest classifier is capable of something that is called a
‘warm start’. This method will use a model trained on, for example, the dataset included in this
thesis. By increasing the parameter ‘No. of estimators’ and training on the first few hours of a
new patient, new decision trees are added to the existing model for this specific patient, instead
of generating a new classifier. Conceptually, this method would lower the impact of only training
with one label. More research is needed to see whether adding the pre-trained model is adding
robustness to the model only trained within one patient and whether training on the few first few
hours of a new admission is adding to the existing model.
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5.5 Conclusion

In conclusion, this study has attempted to create a supervised ML algorithm to detect
haemodynamic instability in CCHD patients admitted to the PICU, using common clinical
interventions as labels for haemodynamic instability. Despite this labelling method attempting
to objectify haemodynamic instability, it still involves a lot of subjectivity of treating physicians.
This challenge is stressing the importance of a correct translation between the medical world
and the world of ML algorithms with the strict requirements for correct labels. This study has
shown that the model’s generalisation at the population level (i.e. between-patient) approach is
poor with the used imputation and generalisation methods. It also showed that the patient level
(i.e. in-patient) approach is correctly utilising its capability to train and predict within patients.
However, a significant challenge lies in the high inter-patient variability, influencing both
approaches. Additional analyses have indicated that the prediction model proposed in this
study, which combines high frequency vital signs, labels, and temporal settings (W, r, dT ),
requires additional refinement before it can be considered clinically feasible to implement this
model as a reliable bedside tool for predicting haemodynamic instability.
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A Appendix

A.1 Pre-processing

A.1.1 Artefact detection

Before training a model on high frequency time-series data, it is important filter out all artefacts.
A limited form of artefact detection was applied, consisting of the following rules: every zero was
replaced by a NaN-value, except for zeros in the HR parameter, since an asystole could potentially
occur in these patients.
Moreover, all negative pressures for the CVP and MAP were replaced by NaN-values. Negative
pressures in blood vessels are not naturally occurring and are due to sensor calibration or sensor
dysfunction. All timestamps with missing data were imputed.

A.1.2 Imputation

Whenever data was missing or removed during the artefact detection, the simple imputation
method forward filling was used as a starting point for this model (27). When using forward-
filling, periods of missing data were filled with the last known value that is not null. To indicate
whether a timestamp contains an imputed data point, an imputation parameter was created for
each patient. Whenever one (or more) of the five parameters were imputed, the corresponding
timestamp was annotated as ‘imputed’ with the value ‘1’ in the imputation parameter. This
parameter only contained values of ‘0’ or ‘1’ for the entire duration of the dataset and was included
in developing the model, adding the opportunity for the model to correct for a correlation between
‘real’ and ‘imputed’ data.

In case of a missing value at the start of an admission, the method forward filling was not applicable
Vital signs from these admissions were included from the first timestamp where all parameters
had a first non-null value. After removing the timestamps at the beginning of an admission, the
remaining data was reviewed again for admission length to comply with the inclusion criteria.

To create a ML model that performs best under ideal circumstances, it is crucial to avoid relying
on imputed data whenever possible. Apart from some classifiers assuming complete data (e.g.
Logistic Regression), ignoring missing values may also lead to a loss of (important) information,
creating a false representation of reality. To prevent training on a database by half of the
parameters being repetitions of the last known value, three subsets of 800 timestamps (approx.
13 hours) from the available data were extracted. The section with the fewest number of
imputations was used for a more favourable model development and expectantly for a better
overall performance.

A.1.3 Resampling

Continuous high frequency vital signs can alternate quickly based on true variation,
measurement error, or signal noise. To reduce the effect of these fluctuations and to reduce the
required computational capacity, the data was downsampled to one value per minute (1/60Hz)
by calculating the mean. Only the ‘imputed’ parameter was downsampled using the median, to
maintain binarity.

A.1.4 Scaling

Data from different patients were included, all with slightly different baselines and normal ranges
for each parameter. These differences can occur due to age or the underlying disease. To correct
for these differences, data was normalised using a RobustScaler from SkLearn (21). This scaler
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is capable of handling outliers and skewed dataset, by utilising the median and the interquartile
range of all measurements. The first hour of each admission within the train set is extracted to
create the scaler. In Appendix A.1 the power spectral density plots are shown for each parameter
used for this decision. It illustrates the different data contributions per parameter and the outliers
in the raw data. The distributions of SpO2 and CVP, in particular, are not Gaussian distributed.
Furthermore, outliers are clearly visible for the HR, CVP, and ART M (MAP) vital signs. These
data characteristics are arguments to use the RobustScaler.

Figure A.1: Power spectral density plot of all raw input parameters.
HR: heart rate, RESP: respiratory rate (RR), SpO2: peripheral oxygen saturation, CVP: central venous
pressure, ART M: mean arterial pressure (MAP)
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A.2 Horizon analysis

Figure A.2: Explanation of influence window-width (W ) and horizon (r) on data size. This figure shows
that the less data remains available for prediction (indicated by the box with the dotted line) with a high
window-width and a high horizon.

A.3 Final hyper-parameters

Parameter Value
Class weight Balanced sub-sample

Criterion gini
Max. depth 10

Max. features 10
Max. leaf nodes 500

Min. samples split 2
No. of estimators 100

Table A.1: Selected hyper-parameters for the between-patient approach.

When shortly summarized, the between-patient approach is a relatively simple model, apart from
the ‘max. leaf nodes’ and the ‘No. of estimators’ hyper-parameters. The random forest classifier
is allowed to create 100 decision trees, which all can have 500 final classification conditions.
Apart from that, it can only use up to ten features and have a maximum of ten consecutive splits.
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Parameter Value
Class weight Balanced sub-sample

Criterion entropy
Max. depth 40

Max. features 50
Max. leaf nodes 600

Min. samples split 2
No. of estimators 200

Table A.2: Selected hyper-parameters for the in-patient approach.

When shortly summarized, the in-patient approach has a complex model random forest classifier.
It is allowed to use 200 decision trees, which all can have 600 classification conditions. The model
can select up to 50 features and have up to 40 consecutive splits. Making it possible to really
overfit on the train data.

A.4 Methodological validation

To ensure that the CV setup is working correctly and the results considering the horizon are not
due to a methodological error, two sub-analyses are performed. The first approach is overfitting
the model using data of only one patient. The data one random patient was copied five times
after which a fivefold CV was started stratified for studyID. The patient was four time present
in the train set and one time present in the test set, for all folds. This resulted in five perfectly
overfitted models with an AUCPR train and test score of 1.00. This process was repeated for
multiple horizon settings, all showing a similar result. This analysis indicates that the nested-CV
for the between-patient is working as expected, validating the low test scores (green and blue) of
Figure 4.2.

Another test performed concerning the cross-validation robustness, was overfitting on 1 patient
and testing on another. The score is expected to be close to the class prior, when the patients’
data is not comparable. The model was trained using a 3-fold CV, with data from patient A and
B. The data of patient A was copied, making the data distribution between A and B 2:1. The
PR-curve is added, see Figure A.3 for two situations: trained on patient A and tested on patient
B (Figure A.3a) and trained on patient A and B (Figure and tested on patient A A.3b).
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(a) Precision recall curve when trained on patient A and
tested on patient B

(b) Precision recall curve when trained on patient A and
patient B and tested on patient B

Figure A.3: Visual overview of the nested cross-validation (CV) structures. The inner-loop is used for
hyper-parameter tuning. The outer-loop is used for a performance assessment of the best performing
classifier from the inner-loop.
The in-patient approach needs to be trained first on a new subset of patient data, therefore, the final test
set is again split in a train and test section.

These illustrations show that the model is behaving as expected, namely, performing close to the
class prior when a new ‘unfamiliar’ patient is used for testing and performing well when a patient
is used for training and testing.
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