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Abstract
Subspace segmentation is a fundamental issue in computer vision and machine learning,
which segments a collection of high-dimensional data points into their respective low-
dimensional subspaces. In this paper, we first propose a model for segmenting the data points
from incomplete and noisy observations. Then, we develop an inexact splitting method for
solving the resulted model. Moreover, we prove the global convergence of the proposed
method. Finally, the inexact splitting method is implemented on the clustering problems
in synthetic and benchmark data, respectively. Numerical results demonstrate that the pro-
posed method is computationally efficient, robust as well as more accurate compared with
the state-of-the-art algorithms.

Keywords Subspace segmentation · Low rank representation · Inexact augmented
Lagrange multiplier method

Mathematics Subject Classification 65K05 · 90C25 · 90C30 · 94A08

1 Introduction

Subspace segmentation is a fundamental issue in computer vision and machine learning,
which has numerous applications, including motion segmentation [15], face clustering [21],
image representation [14], and system identification [32]. In fact, the data points often reside
in or lie close to a union of low dimensional subspaces [18], such as facial images, motion,
texture, and biological networks [3]. Consequently, it is important to solve the well-known
subspace segmentation (or clustering) problem, whose goal is to segment the data into their
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respective clusters, with each cluster being a subspace. The subspace segmentation problem
is formally defined as follows.

Definition 1 (Subspace Segmentation [18]) Given a set of data vectors X = [X1, . . . , Xs] =
[x1, . . . , xn] ∈ Rm×n drawn from a union of s subspaces {Si }si=1. Let Xi be a collection of
n̄i samples drawn from the subspace Si , n = ∑s

i=1 n̄i . The task of subspace segmentation is
to segment the data according to the underlying subspaces they are drawn from.

A variety of methods have been proposed in the past decades. In general, existing meth-
ods can be roughly divided into four categories: algebraic methods [15,22,28], iterative
methods [2,13,27,33], statistical methods [10,23,26] and spectral clustering based meth-
ods [6,7,9,30,34] according to the review in [8]. Among many approaches for the subspace
segmentation, the spectral clustering based methods have shown excellent performance. In
particular, spectral clustering based methods consist of two main steps. Firstly, an affinity
matrix (i.e., an undirected graph) is learned from the given data. Secondly, the segmentation
results are obtained by using the affinity matrix to perform spectral clustering algorithms,
such as the Normalized Cuts (NCut) [24]. Building a “good” affinity matrix is the key to
achieve a good clustering result. Themain difference among various spectral clustering based
methods is the first step which learns an affinity matrix.

Liu et al. [18] proposed a low-rank representation (LRR) approach for clustering data
drawn from a union of multiple linear subspaces. And an inexact augmented Lagrange mul-
tiplier (IALM) algorithm [17] was introduced to solve the following model:

(P1) min
Z ,E

‖Z‖∗ + λ‖E‖� s.t. X = AZ + E,

where X ∈ Rm×n is the given data matrix. A ∈ Rm×d is a dictionary that linearly spans
the data space. Z ∈ Rd×n is the low-rank representation of data X with respect to the
dictionary A. E ∈ Rm×n is the observation noise. λ > 0 is a positive weighting parameter
and ‖ · ‖� indicates a certain regularization strategy, such as the l1 norm. The nuclear norm
‖Z‖∗ is defined as the sum of all the singular values of Z . After solving (P1), the optimal
solution Z∗ was used to define an affinity matrix Y for spectral clustering algorithms [24]
to provide the final segmentation results. However, the convergence property of LRR was
ambiguous without more assumptions. Hence, Xiao et al. [29] proposed a primal splitting
and linearizing augmented Lagrangian (PSLAL) method for solving (P1) and established the
global convergence. Recently, He et al. [12] proposed a splitting method for solving a general
separable convex minimization problem. And they also established the global convergence
and a worst-case convergence rate for the splitting method.

Inspired by the above works, we devote to consider more practical circumstances for the
subspace segmentation problem. It has been pointed out in [25], the observed data X may
be corrupted by both impulsive noise E (sparse but large) and Gaussian noise F (small but
dense), e.g., X = AZ+E+F .We assume the Gaussian noise of the observed entries is small
in the sense that ‖F‖F ≤ δ, where ‖ · ‖F is the Frobenius norm and δ > 0 is the Gaussian
noise level. Besides, we also consider the case that only a fraction of entries of X can be
observed. In particular, let Ω ⊂ {1, . . . ,m} × {1, . . . , n} be the index set of entries X that
are observable. The same symbol PΩ : Rm×n → Rm×n in [5,11] is used to summarize the
incomplete observation information, where PΩ(X)i j = Xi j if (i, j) ∈ Ω and PΩ(X)i j = 0
otherwise.

Therefore, in this paper, we first propose the following newmodel for segmenting the data
points from incomplete and noisy observations:

(P2) min
Z ,E

‖Z‖∗ + λ‖E‖1 s.t. ‖PΩ(X − AZ − E)‖F ≤ δ,
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where ‖E‖1 := ∑m
i=1

∑n
j=1 |Ei j | and λ > 0 is a positive weighting parameter. Obviously,

(P2) is convex and the objective function of (P2) is nonsmooth. We then develop an inexact
splitting method for solving a problem equivalent to (P2). Furthermore, we also prove that
the inexact splitting method is globally convergent. Finally, numerical results on synthetic
and real data sets demonstrate the effectiveness of our proposed method.

The paper is organized as follows. In Sect. 2, we first provide some preliminaries that are
used in the latter analysis. In Sect. 3, we describe the inexact splitting method for solving
the convex reformulation of (P2). In Sect. 4, the global convergence of the proposed method
is established. Section 5 presents experiments that evaluate our method using the synthetic
data and the real data. Lastly, we end with some concluding remarks in Sect. 6.

2 Preliminaries

In this section, we first summarize notations used in this paper. The l1 norm, Frobenius norm,
and l2,1 norm of the matrix X ∈ Rm×n are respectively defined as

‖X‖1 =
m∑

i=1

n∑

j=1

|Xi j |, ‖X‖F =
√
√
√
√

m∑

i=1

n∑

j=1

X2
i j , ‖X‖2,1 =

n∑

j=1

√
√
√
√

m∑

i=1

X2
i j ,

where Xi j is the (i, j)th component of X . For any two matrices X , Y ∈ Rm×n , we define
〈X , Y 〉 = trace(XTY ) (the standard trace inner product). Let sign(X) : Rm×n → Rm×n

denote the sign function of X , e.g.,

[sign(X)]i j =

⎧
⎪⎨

⎪⎩

1, if Xi j > 0,

0, if Xi j = 0,

− 1, if Xi j < 0.

We denote abs(X) ∈ Rm×n as the absolute value function, e.g., [abs(X)]i j = |Xi j |. And
diag(x) denotes a square diagonal matrix with the elements of the vector x on the main
diagonal. In the following, we briefly review some well-known results that are used in the
latter analysis.

Lemma 1 [31] For μ > 0 and t ∈ R, the minimizer of

min
s∈R

μ|s| + 1

2
(s − t)2

is given by
max{|t | − μ, 0} · sign(t).

Lemma 2 [4] Given T ∈ Rm×n of rank r, let T = UTΣT V T
T , ΣT = diag(σ1, . . . , σr ) be

the singular value decomposition of T , where UT ∈ Rm×r , ΣT ∈ Rr×r and VT ∈ Rn×r . For
each μ > 0, the solution of the following problem

min
X∈Rm×n

μ‖X‖∗ + 1

2
‖X − T ‖2F

is given by Dμ(T ) ∈ Rm×n, which is defined by

Dμ(T ) := UTΣ
μ
T V

T
T ,

where Σ
μ
T = diag({σi − μ}+) ∈ Rr×r and {·}+ = max(0, ·).
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3 The inexact splittingmethod

In this section, we first reformulate the model (P2) to a convex separable model. We then
derive an inexact splitting method for solving this convex separable model.

3.1 Reformulation and optimality

In the following theorem, we construct the alternative formulation and establish its equiva-
lence to (P2).

Theorem 1 Let (Z∗, E∗, F∗) be an optimal solution to

(P3) min
Z ,E,F

‖Z‖∗ + λ‖PΩ(E)‖1
s.t. PΩ(X) = AZ + E + F,

F ∈ F := {F, ‖F‖F ≤ δ}.
Then (Z∗, PΩ(E∗)) is an optimal solution to (P2).

Proof Suppose that (Z∗, E∗, F∗) is an optimal solution to (P3). Then, we have ‖PΩ(X) −
AZ∗ − E∗‖F ≤ δ. Furthermore, ‖PΩ (X − AZ∗ − PΩ(E∗)) ‖F = ‖PΩ(X − AZ∗ −
E∗)‖F ≤ ‖PΩ(X) − AZ∗ − E∗‖F ≤ δ. Hence, the feasibility of (Z∗, PΩ(E∗)) is veri-
fied. Now suppose that (Z∗, PΩ(E∗)) is not optimal to (P2). Then there exists an optimal
solution (Z̄ , Ē) to (P2), such that

‖Z̄‖∗ + λ‖Ē‖1 < ‖Z∗‖∗ + λ‖PΩ(E∗)‖1, (1)

‖PΩ(X − AZ̄ − Ē)‖F ≤ δ. (2)

We claim that Ēi j = 0, ∀(i, j) /∈ Ω . Otherwise, (Z̄ , PΩ(Ē)) is feasible to (P2) and has
a strictly smaller objective function value than (Z̄ , Ē), which contradicts the optimality of
(Z̄ , Ē). Hence, we have

‖Z̄‖∗ + λ‖PΩ(Ē)‖1 = ‖Z̄‖∗ + λ‖Ē‖1. (3)

By defining a new matrix Ẽ as

Ẽi j =
{
Ēi j , if (i, j) ∈ Ω,

−(AZ̄)i j , otherwise,

we have ‖PΩ(Ẽ)‖1 = ‖PΩ(Ē)‖1 and
PΩ(X) − AZ̄ − Ẽ = PΩ(X − AZ̄ − Ē). (4)

Therefore, from (2) and (4), we have that (Z̄ , Ẽ, F̃) is feasible to (P3), where F̃ = PΩ(X)−
AZ̄ − Ẽ . Combination this with (1) and (3), we obtain

‖Z̄‖∗ + λ‖PΩ(Ẽ)‖1 = ‖Z̄‖∗ + λ‖PΩ(Ē)‖1 < ‖Z∗‖∗ + λ‖PΩ(E∗)‖1,
which contradicts the optimality of (Z∗, E∗, F∗). Therefore, (Z∗, PΩ(E∗)) is an optimal
solution to (P2). ��

Let PΩ(X) = M . The Lagrangian function of (P3) is defined as

L(Z , E, F,Λ) = ‖Z‖∗ + λ‖PΩ(E)‖1 + 〈Λ, M − AZ − E − F〉,
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where Λ ∈ Rm×n is the Lagrange multiplier associated with the equality constraint in (P3).
Obviously, (Z∗, E∗, F∗) ∈ Rd×n × Rm×n ×F is a solution of (P3) if and only if there exists
Λ∗ ∈ Rm×n such that:

〈F ′ − F∗,−Λ∗〉 ≥ 0, ∀F ′ ∈ F ,

0 ∈ λ∂(‖PΩ(E∗)‖1) − Λ∗,
0 ∈ ∂(‖Z∗‖∗) − ATΛ∗,
M∗ = AZ∗ + E∗ + F∗, (5)

where ∂(·) denotes the subgradient operator of a convex function.

3.2 The inexact splittingmethod for solving (P3)

Next, we propose an inexact splitting method for solving (P3), which is an extension of
the method in [12,25]. Recall that the method in [12] was proposed for solving a general
separable convex problem with linear constraints. And all the coefficient matrices of linear
constraints were assumed to be full column rank. However, for the subspace segmentation
problem, the matrix A is not full column rank. Furthermore, because there exists the linear
operator A, we are no longer able to obtain the exact solution of one subproblem. For these
reasons, we need to further modify the splitting method in [12] for solving (P3).

The augmented Lagrangian function of (P3) is

Lρ(Z , E, F, Λ) =‖Z‖∗ + λ‖PΩ(E)‖1 + 〈Λ, M − AZ − E − F〉 + ρ

2
‖M−AZ − E − F‖2F ,

where Λ ∈ Rm×n is the Lagrange multiplier and ρ > 0 is the penalty parameter. Following
the same iteration scheme in [12], the new iterate (Zk+1, Ek+1, Fk+1,Λk+1) is generated
via the following scheme:

Fk+1 = arg min‖F‖F≤δ
Lρ(Zk, Ek, F,Λk), (6a)

Λ̃k = Λk − ρ(AZk + Ek + Fk+1 − M), (6b)

Ek+1 = arg min
E∈Rm×n

λ‖PΩ(E)‖1 + ρη

2

∥
∥
∥
∥E −

(

Ek + Λ̃k

ρη

)∥
∥
∥
∥

2

F
, (6c)

Zk+1 = arg min
Z∈Rd×n

‖Z‖∗ + ρη

2

∥
∥
∥
∥AZ −

(

AZk + Λ̃k

ρη

)∥
∥
∥
∥

2

F
, (6d)

Λk+1 = Λ̃k − ρ(Ek+1 − Ek) − ρ(AZk+1 − AZk). (6e)

Remark 1 The convergence is valid no matter which alternating order among the variables
(Fk+1, Ek+1, Zk+1) is used. We decide to perform the alternating tasks in the order of
Fk+1 → Ek+1 → Zk+1.

Then, we deduce the closed-form solutions of the problem (6a) and the problem (6c) in
Theorems 2 and 3, respectively.

Theorem 2 The optimal solution Fk+1 of the problem (6a) is given by

Fk+1 = min{‖Nk‖F , δ}
‖Nk‖F · Nk, (7)

where Nk = M + Λk/ρ − AZk − Ek.
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Proof The subproblem (6a) with respect to F is equivalent to

Fk+1 = arg min‖F‖F≤δ
Lρ(Zk, Ek, F,Λk)

= arg min‖F‖F≤δ

∥
∥
∥
∥AZ

k + Ek + F − M − Λk

ρ

∥
∥
∥
∥

2

F

= arg min‖F‖F≤δ
‖F − Nk‖2F .

(8)

Obviously, Nk is the optimal solution when ‖Nk‖F ≤ δ. Next, we only consider the
situation that ‖Nk‖F > δ. The problem in (8) is equivalent to the following problem:

(P4) min ‖F − Nk‖2F , s.t. ‖F‖2F ≤ δ2.

The Lagrangian function of (P4) is defined as

L(F, λ̄) = ‖F − Nk‖2F + λ̄
(‖F‖2F − δ2

)
,

where λ̄ ∈ R is the Lagrange multiplier. It is easy to derive the optimality condition of (P4).
More specifically, Fk+1 ∈ Rm×n is a solution of (P4) if and only if there exists λk+1 ∈ R
that satisfies the following conditions:

Fk+1 = 1

1 + λk+1 N
k, (9a)

λk+1
(
‖Fk+1‖2F − δ2

)
= 0, (9b)

‖Fk+1‖2F ≤ δ2, λk+1 ≥ 0. (9c)

Clearly, (9a) and (9c) imply that λk+1 > 0 for ‖Nk‖F > δ. Furthermore, by substituting (9a)

into (9b), it yields λk+1 = ‖Nk‖F
δ

− 1 and Fk+1 = δ
‖Nk‖F N

k . This completes the proof. ��

Theorem 3 The optimal solution Ek+1 of the subproblem (6c) can be written in closed-form
as follows:

Ek+1 = max

{

abs(PΩ(T )) − λ

ρη
1, 0

}

� sign(PΩ(T )) + PΩC (T ), (10)

where T = Ek + Λ̃k

ρη
, 1 ∈ Rm×n is the matrix with all components equal to one. And �

denotes the componentwise multiplication operator. ΩC is the complementary set of Ω in
index set Γ = {1, . . . ,m} × {1, . . . , n}.
Proof Using the definitions of the l1 norm and the Frobenius norm, we have

Ek+1 = arg min
E∈Rm×n

λ‖PΩ(E)‖1 + ρη

2
‖E − T ‖2F

= arg min
E∈Rm×n

m∑

i=1

n∑

j=1

λ|PΩ(E)i j | + ρη

2
(Ei j − Ti j )

2.

Note that PΩ(E)i j = 0 for (i, j) /∈ Ω . We therefore have Ek+1
i j = Ti j for (i, j) /∈ Ω .

Moreover, by Lemma 1, we obtain Ek+1
i j = max{|Ti j | − λ/ρη, 0} · sign(Ti j ) for (i, j) ∈ Ω .

Thus, the optimal solution of the subproblem (6c) is given by (10), and the proof is complete.
��
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Because there exists a linear operator A, Lemma 2 does not yield the closed-form solution
for the subproblem (6d). And it is expensive to obtain the exact solution. Furthermore, our
linear operator A does not satisfy the assumption in [12] that the linear operator is full column
rank. This causes the main difficulty to apply the splitting method in [12] directly. However,
it is unnecessary to solve this subproblem exactly to achieve the high precision solution
in order to guarantee the convergence. We approximate the subproblem by linearizing the
quadratic term of its objective function. Subsequently, the resulting approximate problem is
simple enough to have a closed-form solution. Let

Gk = − 1

ρη
ATΛ̃k

be the gradient of

1

2

∥
∥
∥
∥AZ −

(

AZk + Λ̃k

ρη

)∥
∥
∥
∥

2

F

at current Zk . And we have

1

2

∥
∥
∥
∥AZ −

(

AZk + Λ̃k

ρη

)∥
∥
∥
∥

2

F
≈ 1

2

∥
∥
∥
∥
Λ̃k

ρη

∥
∥
∥
∥

2

F
+ < Gk, Z − Zk > + 1

2τ
‖Z − Zk‖2F , (11)

where τ > 0 is a positive scalar, and the last term is the so-called proximal points term.
Hence, instead of solving (6d), the next iteration is generated by

Zk+1 = arg min
Z∈Rd×n

‖Z‖∗ + ρη

2

∥
∥
∥
∥AZ −

(

AZk + Λ̃k

ρη

)∥
∥
∥
∥

2

F

≈ arg min
Z∈Rd×n

‖Z‖∗ + ρη < Gk, Z − Zk > +ρη

2τ
‖Z − Zk‖2F

= arg min
Z∈Rd×n

‖Z‖∗ + ρη

2τ
‖Z − Zk + τGk‖2F

= Dτ/ρη(Zk − τGk).

(12)

Now we are ready to describe our algorithm, named the Inexact Splitting Method or ISM, as
in Algorithm 1.

Algorithm 1: ISM for solving the problem (P3)

Input Choose tolerance parameter ε ≥ 0, η = 2.01, τ = 0.99/λmax(ATA), multiplier vector Λ0 = 0,
penalty parameter ρ0 > 0. Initial Z0 = 0, F0 = 0, E0 = 0, μ = 1.1, ρmax = 106. Set the iteration
counter k = 0.

Output An approximate optimal solution (Zk+1, Ek+1, Fk+1) of problem (P3).

while ‖AZk + Ek + Fk − M‖∞ > ε or ‖Zk − Zk−1‖∞ + ‖Ek − Ek−1‖∞ > ε do

Step 1 update Fk+1 via (7);
Step 2 update Λ̃k via Λ̃k = Λk − ρ(AZk + Ek + Fk+1 − M);
Step 3 update Ek+1 via (10);
Step 4 update Zk+1 via Zk+1 = Dτ/ρη(Zk − τGk ), where Gk = − 1

ρη ATΛ̃k ;

Step 5 update the multiplier via Λk+1 = Λ̃k − ρ(Ek+1 − Ek ) − ρ(AZk+1 − AZk );
Step 6 update the parameter ρk+1 via ρk+1 = min(ρmax , μρk ), and k = k + 1.

return Fk+1, Ek+1, and Zk+1;
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4 Convergence analysis

This section is devoted to prove the global convergence of Algorithm 1. We first define some
notations which will simplify our further analysis. For the iterate (Fk+1, Ek+1, Zk+1,Λk+1)

generated by the ISM from the given iterate (Fk, Ek, Zk,Λk), we temporarily denote F̃k =
Fk+1, Ẽk = Ek+1, and Z̃ k = Zk+1. For convenience, we use the notations

ω =

⎛

⎜
⎜
⎝

F
E
Z
Λ

⎞

⎟
⎟
⎠ , ω∗ =

⎛

⎜
⎜
⎝

F∗
E∗
Z∗
Λ∗

⎞

⎟
⎟
⎠ , ν =

⎛

⎝
E
Z
Λ

⎞

⎠ , and ν∗ =
⎛

⎝
E∗
Z∗
Λ∗

⎞

⎠ .

For any positive integer k, we also use the notations

ωk =

⎛

⎜
⎜
⎝

Fk

Ek

Zk

Λk

⎞

⎟
⎟
⎠ , ω̃k =

⎛

⎜
⎜
⎝

F̃k

Ẽk

Z̃ k

Λ̃k

⎞

⎟
⎟
⎠ , νk =

⎛

⎝
Ek

Zk

Λk

⎞

⎠ , and ν̃k =
⎛

⎝
Ẽk

Z̃ k

Λ̃k

⎞

⎠ .

Let Im denote the identity matrix in Rm×m . And two more matrices are defined as

G =
⎡

⎣
ηρ Im 0 0
0 ηρ

τ
Id 0

0 0 1
ρ
Im

⎤

⎦ , and d(νk − ν̃k) =
⎡

⎣
Ek − Ẽk

Zk − Z̃ k

Λk − Λ̃k − ρ(Ek − Ẽk) − ρA(Zk − Z̃ k)

⎤

⎦ .

(13)
With the notation of d(νk − ν̃k), it is easy to see that the iterative scheme of ISM is

equivalent to the form:
νk+1 = νk − d(νk − ν̃k). (14)

Moreover, we assume that the solution set of (5), denoted by W ∗, is nonempty. We thus
have V ∗ = {ν∗, ω∗ ∈ W ∗} is also nonempty. Before we are going to prove the convergence
of the proposed method, we prove two useful lemmas.

Lemma 3 Let νk , ν̃k , d(νk − ν̃k), and G be defined as before. Let ν∗ ∈ V ∗. Then, we have

〈νk − ν∗,G · d(νk − ν̃k)〉 ≥ 〈νk − ν̃k,G · d(νk − ν̃k)〉. (15)

Proof The optimality condition of (6a) implies that

〈F ′ − Fk+1, Fk+1 − Nk〉 ≥ 0, ∀F ′ ∈ F . (16)

Using (6b), (16) is equivalent to

〈F ′ − Fk+1,−Λ̃k〉 ≥ 0, ∀F ′ ∈ F . (17)

Moreover, based on the optimality conditions of (6c) and (12) , we have

〈E ′ − Ek+1, λGk+1
1 − Λ̃k + ηρ(Ẽk − Ek)〉 ≥ 0, ∀E ′ ∈ Rm×n,

〈Z ′ − Zk+1,Gk+1
2 − ATΛ̃k + ηρ

τ
(Z̃ k − Zk)〉 ≥ 0, ∀Z ′ ∈ Rd×n, (18)

where Gk+1
1 ∈ ∂‖PΩ(Ek+1)‖1, and Gk+1

2 ∈ ∂‖Zk+1‖∗.
On the other hand, based on the optimality condition of (P3), we have

〈Fk+1 − F∗,−Λ∗〉 ≥ 0,
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〈Ek+1 − E∗, λS1 − Λ∗〉 ≥ 0, S1 ∈ ∂‖PΩ(E∗)‖1,
〈Zk+1 − Z∗, S2 − ATΛ∗〉 ≥ 0, S2 ∈ ∂‖Z∗‖∗,
AZ∗ + E∗ + F∗ − M = 0. (19)

Let F
′ = F∗ in (17), E ′ = E∗ and Z

′ = Z∗ in (18). By adding the resulted inequalities (17)
and (18) to (19), we obtain

〈F∗ − Fk+1,−(Λ̃k − Λ∗)〉 +
〈
E∗ − Ek+1, λ

(
Gk+1
1 − S1

)
− (Λ̃k − Λ∗) + ηρ(Ẽk − Ek)

〉

+
〈
Z∗ − Zk+1,

(
Gk+1
2 − S2

)
− AT(Λ̃k − Λ∗) + ηρ

τ
(Z̃ k − Zk)

〉
≥ 0.

(20)

Note that the operator of the subgradient of a convex function is monotone. Hence, we
have 〈

E∗ − Ek+1,Gk+1
1 − S1

〉
≤ 0,

〈
Z∗ − Zk+1,Gk+1

2 − S2
〉
≤ 0. (21)

In addition, recall that F∗ + E∗ + AZ∗ = M , we have the following identity:

〈F∗ − Fk+1, −(Λ̃k − Λ∗)〉 + 〈E∗ − Ek+1, −(Λ̃k − Λ∗)〉 + 〈A(Z∗ − Zk+1), −(Λ̃k − Λ∗)〉

+ 〈Fk+1 + Ek+1 + AZk+1 − M,−(Λ̃k − Λ∗)〉 = 0.
(22)

Furthermore, it follows from (6b) and (6e) that

Fk+1 + Ẽk + AZ̃k − M = 1

ρ
(Λk − Λ̃k) − (Ek − Ẽk) − A(Zk − Z̃ k). (23)

According to (20), (21), (22), and (23), we thus obtain

0 ≤ 〈E∗ − Ek+1, ηρ(Ẽk − Ek)〉 +
〈
Z∗ − Zk+1,

ηρ

τ
(Z̃ k − Zk)

〉

+ 〈Fk+1 + Ek+1 + AZk+1 − M, Λ̃k − Λ∗〉
= ηρ〈E∗ − Ek+1, Ẽk − Ek〉 + ηρ

τ
〈Z∗ − Zk+1, Z̃ k − Zk〉

+
〈
1

ρ
(Λk − Λ̃k) − (Ek − Ẽk) − A(Zk − Z̃ k), Λ̃k − Λ∗

〉

.

Following the definition of G, we then obtain

〈̃νk − ν∗,G · d(νk − ν̃k)〉 ≥ 0.

Therefore, by the fact of νk − ν∗ = νk − ν̃k + ν̃k − ν∗, we have

〈νk − ν∗,G · d(νk − ν̃k)〉 ≥ 〈νk − ν̃k,G · d(νk − ν̃k)〉,
which is the assertion of this lemma. ��
Lemma 4 Let ν∗ ∈ V ∗ and let the sequence {νk} be generated by the proposed ISM. Then,
the sequence satisfies

‖νk+1 − ν∗‖2G ≤ ‖νk − ν∗‖2G
− ρ(η − 2)‖Ek − Ẽk‖2F − ρ

[η

τ
− 2λmax(A

TA)
]
‖Zk − Z̃ k‖2F − 1

ρ
‖Λk − Λ̃k‖2F ,

(24)

where λmax(ATA) denotes the largest eigenvalue of ATA and

‖νk+1 − ν∗‖2G = 〈νk+1 − ν∗,G · (νk+1 − ν∗)〉.
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Proof Due to (14), we can easily derive that

‖νk+1 − ν∗‖2G = ‖νk − d(νk − ν̃k) − ν∗‖2G
= ‖νk − ν∗‖2G − 2〈νk − ν∗,G · d(νk − ν̃k)〉 + ‖d(νk − ν̃k)‖2G .

(25)

By using (13) and (15), we obtain

〈νk − ν∗,G · d(νk − ν̃k)〉 ≥ 〈νk − ν̃k,G · d(νk − ν̃k)〉
= ηρ‖Ek − Ẽk‖2F + ηρ

τ
‖Zk − Z̃ k‖2F + 1

ρ
‖Λk − Λ̃k‖2F

− 〈Λk − Λ̃k, Ek − Ẽk + A(Zk − Z̃ k)〉.
(26)

On the other hand, we have

‖d(νk − ν̃k)‖2G
= ηρ‖Ek − Ẽk‖2F + ηρ

τ
‖Zk − Z̃ k‖2F + 1

ρ
‖Λk − Λ̃k − ρ(Ek − Ẽk) − ρA(Zk − Z̃ k)‖2F

= ηρ‖Ek − Ẽk‖2F + ηρ

τ
‖Zk − Z̃ k‖2F + 1

ρ
‖Λk − Λ̃k‖2F

− 2〈Λk − Λ̃k , Ek − Ẽk + A(Zk − Z̃ k)〉 + ρ‖Ek − Ẽk + A(Zk − Z̃ k)‖2F .

(27)

Substituting (26) and (27) into (25), and using the fact

ρ‖Ek − Ẽk + A(Zk − Z̃ k)‖2F ≤ 2ρ‖Ek − Ẽk‖2F + 2ρ‖A(Zk − Z̃ k)‖2F ,

it is easy to derive that

‖νk+1 − ν∗‖2G ≤ ‖νk − ν∗‖2G − ηρ‖Ek − Ẽk‖2F − ηρ

τ
‖Zk − Z̃ k‖2F − 1

ρ
‖Λk − Λ̃k‖2F

+ 2ρ‖Ek − Ẽk‖2F + 2ρ‖A(Zk − Z̃ k)‖2F
≤ ‖νk − ν∗‖2G − ρ(η − 2)‖Ek − Ẽk‖2F

− ρ
[η

τ
− 2λmax(A

TA)
]
‖Zk − Z̃ k‖2F − 1

ρ
‖Λk − Λ̃k‖2F ,

where λmax(ATA) denotes the largest eigenvalue of ATA. The inequality (24) thus holds,
and the lemma is proved. ��

Now, we are ready to prove the convergence of the proposed method.

Theorem 4 Let {νk} and {ωk} be the sequences of the proposed ISM. If η > 2 and 0 < τ <

1/λmax(ATA), then {ωk} converges to a solution point of (P3).

Proof The proof consists of the following two claims.

1. Any clustering point of {ωk} is a solution point of (P3).
2. The sequence {ωk} converges to some ω∞.

The boundedness of {νk} is obvious based on (24). Thus, the rest is to prove the boundedness
of Fk . It follows from (24) that

∞∑

k=0

ρ(η − 2)‖Ek − Ẽk‖2F + ρ
[η

τ
− 2λmax(A

TA)
]
‖Zk − Z̃ k‖2F + 1

ρ
‖Λk − Λ̃k‖2F < +∞.
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By assumption η > 2 and 0 < τ < 1/λmax(ATA), it further implies that

lim
k→∞ ‖Ek − Ẽk‖F = 0, lim

k→∞ ‖Zk − Z̃ k‖F = 0, lim
k→∞ ‖Λk − Λ̃k‖F = 0. (28)

Recall that (6b) implies that Fk+1 = M − AZk − Ek − 1
ρ
(Λ̃k −Λk). Then the boundedness

of Fk is ensured by the boundedness of {Λk − Λ̃k} and {νk}. We thus have that {ωk} has at
least one cluster point. Let

ω∞ =

⎡

⎢
⎢
⎣

F∞
E∞
Z∞
Λ∞

⎤

⎥
⎥
⎦

be a cluster point of the sequence {ωk}, and let {ωk j } be the subsequence converging to ω∞.
From (17), (18), and (28), we get

lim
k j→∞〈F ′ − Fk j ,−Λ̃k j−1〉 ≥ 0, ∀F ′ ∈ F ,

lim
k j→∞

〈
E

′ − Ek j , λG
k j
1 − Λ̃k j−1

〉
≥ 0, G

k j
1 ∈ ∂

∥
∥
∥PΩ(Ek j )

∥
∥
∥
1
, ∀E ′ ∈ Rm×n,

lim
k j→∞

〈
Z

′ − Zk j ,G
k j
2 − ATΛ̃k j−1

〉
≥ 0, G

k j
2 ∈ ∂‖Zk j ‖∗, ∀Z ′ ∈ Rd×n . (29)

Note that (6e) and (28) indicate that limk j→∞ ‖Λk j − Λ̃k j−1‖F = 0. Hence, we have

lim
k j→∞〈F ′ − Fk j ,−Λk j 〉 ≥ 0, ∀F ′ ∈ F ,

lim
k j→∞

〈
E

′ − Ek j , λG
k j
1 − Λk j

〉
≥ 0, G

k j
1 ∈ ∂

∥
∥
∥PΩ(Ek j )

∥
∥
∥
1
, ∀E ′ ∈ Rm×n,

lim
k j→∞

〈
Z

′ − Zk j1,G
k j
2 − ATΛk j

〉
≥ 0, G

k j
2 ∈ ∂‖Zk j ‖∗, ∀Z ′ ∈ Rd×n . (30)

Furthermore, (23) and (28) together imply that limk j→∞ Fk j + Ẽk j−1 + AZ̃k j−1 − M = 0.
Therefore, from notations: Ẽk j−1 = Ek j , Z̃ k j−1 = Zk j , we have

lim
k j→∞ Fk j + Ek j + AZk j − M = 0. (31)

From (30) and (31), it is obvious that the cluster point ω∞ is a solution point of (P3). Thus,
the first claim is proved.

Finally, we prove the second claim. Based on the first claim, the convergence of {νk}
is immediately implied by the fact that {νk} is Fejér monotone with respect to the set V ∗
under G-norm, e.g., see [1]. In other words, (Ek, Zk,Λk) → (E∞, Z∞,Λ∞). Recall that
Fk+1 = M − AZk − Ek − 1

ρ
(Λ̃k − Λk). It follows from (28) that limk→∞ Fk+1 = F∞,

where F∞ = M − AZ∞ − E∞. Overall, we have shown that the sequence {ωk} converges
to ω∞, which is a solution point of (P3). This completes the proof. ��

5 Numerical results

In this section, we test the performance of the proposedmethod for clustering problems on the
synthetic data and on the Extended Yale B face database [16]. All experiments are performed
with MATLAB 7.14 and run on a PC (2.70G Hz, 8GB RAM). For all test examples, the
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data matrix itself is taken as the dictionary, i.e., A = X . After obtaining Z∗, we use a post-
processing step as Algorithm 2 in [19] to perform the segmentation. In detail, let U∗Σ∗V ∗
denote the skinny SVD of Z∗. Z∗ is used to build the affinity matrix Y as Yi j = [ŨŨT]2i j ,
where Ũ = U∗(Σ∗) 1

2 . Segmentation results are obtained by using Y to perform a spectral
clustering algorithm [24], which segments the data samples into s clusters, where s denotes
the number of the subspaces.

To study the segmentation performances of ISM, we compare ISM to some previous
subspace segmentationmethods, includingLRR1 [18], LRR2,1 [18], andPSLAL [29]. Specif-
ically, LRR1 denotes the l1 norm regularization strategy in (P1). And LRR2,1 denotes l2,1
norm regularization strategy in (P1). The segmentation result is evaluated by the segmentation
Error (Err.), which is defined as follows:

Err. = number of misclassfied points

total number of points
.

5.1 Synthetic data

The synthetic data set is created by the following procedure (see also [20,29]). Five indepen-
dent subspaces {Si }5i=1 are constructed, whose bases {Ui }5i=1 are generated by Ui+1 = TUi

(1 ≤ i ≤ 4), where T denotes a random rotation andUi denotes a random orthogonal matrix
of dimension 150 × 4. Hence, each subspace Si has a rank of 4 and the data points have an
ambient dimensionof 150. n̄ data points are sampled fromeach subspace byusing X0

i = Ui Qi

(1 ≤ i ≤ 5), where Qi being a 4× n̄ independent and identically distributedN (0, 1)matrix.
In summary, the whole data matrix is formulated as X = [X0

1, . . . , X
0
5] ∈ R150×n with rank

r = 20 and n = 5 × n̄. The index of observed entries Ω is determined at random. Let the
quantity sr represent the ratios of the observed entries, i.e., ‖Ω‖/mn. Furthermore, we add
the sparse noise and Gaussian noise as follows. We randomly choose some data vectors to
be corrupted with uniformly distributed noise between [−1,1]. The quantity spr represents
the percentage of the corrupted data vectors. Besides, 20% of entries are contaminated with
Gaussian noise N (0, 0.01).

5.1.1 Segmentation performances

In this experiment, we apply LRR1, LRR2,1, PSLAL, and ISM to solve the problems with
different values of sr and spr . The parameter λ for LRR1, LRR2,1, and PSLAL is set to 10−3,
10−1, 10−1, respectively. For all other parameters, we use the default values as provided by
the authors. For ISM, we set δ = 10−3, ρ0 = 1, λ = 10−2, and the stopping tolerance
ε = 10−6. Ten realizations are computed for each (sr , spr) pair. Table 1 reports the average
segmentation errors and the CPU time for the case n = 500.

Table 1 shows that the errors of all methods decrease as the number of sr increases,
whereas segmentation errors increase as the number of spr increases. This may be caused by
the fact that both more missing data and more noises increase the difficulty in the subspace
segmentation. In addition, we can see that our proposed method almost consistently outper-
forms other methods on these test examples in terms of segmentation errors. These results
confirm that model (P3) is quite robust and efficient at various levels of noise.

Moreover, we also demonstrate the segmentation performances of ISM under an increas-
ing number of data points. Since it is costly to perform NCut [24] for computing the final
segmentation results for data points n > 1800. For the inner memory limitation, we therefore
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Table 1 Comparison of segmentation errors (%) and the computing time (in seconds) for various approaches
with different pairs of (sr , spr)

spr sr LRR1 LRR2,1 PSLAL ISM

Time Err. Time Err. Time Err. Time Err.

0.05 0.5 7.71 77.92 8.99 11.16 4.25 11.20 1.78 10.16

0.6 7.24 69.16 8.93 6.48 5.02 6.52 1.71 6.04

0.7 6.99 9.12 7.70 3.96 4.22 3.96 1.53 3.96

0.8 7.60 5.16 8.39 1.52 4.70 1.52 1.74 1.60

0.9 7.43 6.08 7.98 1.04 4.69 1.04 1.69 1.00

0.1 0.5 7.33 34.32 8.01 68.20 4.48 68.44 1.72 26.64

0.6 7.44 29.20 9.36 48.80 5.21 48.88 1.63 15.52

0.7 7.17 34.32 7.82 21.24 4.29 21.64 1.58 10.08

0.8 7.43 9.64 8.22 12.28 4.54 12.88 1.71 5.64

0.9 7.26 11.72 7.97 7.40 4.67 7.80 1.63 3.48

Table 2 Comparison of segmentation errors (%) and the computing time (in seconds) for various approaches
with different sizes of n

n spr sr LRR1 LRR2,1 PSLAL ISM

Time Err. Time Err. Time Err. Time Err.

200 0.05 0.6 3.03 78.50 3.13 18.00 1.51 20.00 1.03 5.00

0.8 3.08 22.50 3.16 2.00 1.38 2.00 0.84 2.00

0.1 0.6 3.11 78.50 3.42 25.00 1.35 25.00 0.75 24.00

0.8 3.08 61.00 3.33 8.50 1.52 8.50 0.76 8.00

600 0.05 0.6 7.31 38.00 7.97 8.67 4.35 8.83 1.61 6.50

0.8 7.10 31.00 8.05 2.33 4.78 2.50 1.70 1.67

0.1 0.6 7.30 16.50 8.59 75.33 5.14 76.83 1.59 15.83

0.8 7.81 20.33 8.62 69.00 5.43 68.83 1.72 6.50

1000 0.05 0.6 11.57 5.20 8.52 78.30 9.76 76.30 2.56 4.60

0.8 11.48 1.30 8.56 79.60 8.33 76.10 2.58 1.20

0.1 0.6 11.38 23.80 5.55 79.70 10.34 79.70 2.50 12.50

0.8 11.18 6.00 5.47 77.90 10.38 78.20 2.52 4.60

1400 0.05 0.6 15.09 13.86 7.65 78.21 13.96 78.14 3.24 4.29

0.8 15.05 2.21 10.62 75.79 14.04 76.21 3.34 1.64

0.1 0.6 15.21 13.64 7.45 78.50 14.29 78.50 3.28 12.14

0.8 15.69 6.50 7.80 77.43 14.77 77.43 3.38 5.71

1800 0.05 0.6 19.84 6.44 12.99 77.22 18.61 77.22 4.46 4.83

0.8 19.59 1.28 9.71 78.83 18.19 78.83 4.27 0.94

0.1 0.6 20.01 16.78 9.87 78.22 17.86 77.72 4.13 14.72

0.8 19.16 5.28 9.28 77.72 18.35 77.44 4.24 4.06

choose to test the examples with n ≤ 1800. We vary the number of data points from 200 to
1800 with an increment of 400. The average results of each setting over five instances are
reported in Table 2. All parameters are set in the same way as the previous example.
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Fig. 1 The influences of the parameter λ on different methods

As shown in Table 2, ISM outperforms LRR1, LRR2,1, and PSLAL in terms of clustering
accuracy.What ismore, ourmethod stands out fromothermethods thanks to the consideration
of the incomplete and noisy observations.

5.1.2 Effect of �

The parameter λ is used to balance the effects between the low-rank part AZ and the noise
part E . In general, the choice of λ depends on the prior knowledge of the data error level.
For example, when the errors are small, we should use a relatively large λ. In contrast, when
the errors are large, we should set λ to be rather small. Figure 1 shows the performance of
ISM while the parameter λ varies from 10−4 to 10. For this experiment, we set n = 500,
sr = 0.8, and spr = 0.05. For each λ, we create five instances randomly and report the
average segmentation errors.

Figure 1 illustrates that the segmentation errors obtained by all methods increase when λ

is large. Besides, there exists a range of parameters λwhere ISM obtains segmentation errors
less than 5%. We also notice that PSLAL fails to segment the data for λ ≤ 10−2. This may
be caused by the small value of λ leading to a too small penalty on the noise. Generally, our
method is less sensitive to λ than other methods.

5.2 Face clustering

We now turn to the real clustering tasks using the Extended Yale B face database [16]. In this
database, there are frontal face images of 38 human subjects under 9 poses and 64 illumination
conditions. The database partitions these images into 38 classes and each one contains 64
face images with size 192 × 168. We only consider the first eight subjects of them (see Fig.
2). In other words, there are 512 images used in experiments. To reduce the computational
cost, we resize the test images into 48 × 42 and re-scale pixels into [0, 1]. The parameter δ

of (P3) is set to 0.5max{min |Xi j |}.
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Fig. 2 Example images from Extended Yale B

Table 3 Segmentation errors (%) and the computing time (in seconds) on the Extended Yale B database

No. subjects LRR1 LRR2,1 PSLAL ISM

Time Err. Time Err. Time Err. Time Err.

2 3.49 2.34 3.27 2.34 3.50 1.56 5.21 1.56

3 6.50 9.38 6.09 5.21 6.43 5.73 9.01 4.17

4 10.93 8.98 10.26 6.64 10.93 3.52 16.11 3.13

5 16.07 6.56 14.55 4.38 14.83 3.75 20.20 2.50

6 23.93 10.68 20.49 3.39 21.19 6.25 27.77 2.34

7 31.53 12.05 26.48 8.93 28.29 10.71 35.88 7.81

8 47.06 12.30 41.16 9.77 41.95 12.11 51.53 9.18

5.2.1 Results on original Extended Yale B database

We first investigate the segmentation performances of LRR1, LRR2,1, PSLAL, and ISM
on the Extended Yale B database. We use the first N ∈ {2, 3, 4, 5, 6, 7, 8} subject classes
for the face clustering. The parameter λ of LRR1, LRR2,1, PSLAL is set to 0.02, 0.2, 103,
respectively. And we set λ = 104 and ρ0 = 10−2 for ISM. All other parameters are set to the
default values. Table 3 shows the results of applying different methods to the original data.

From Table 3, we can see that our method almost achieves the lowest segmentation errors
for all these test examples. In short, ISM outperforms other methods in terms of clustering
accuracy. These results clearly show that our consideration for the incomplete and noisy
observations positively contributes in improving clustering performance.

Moreover, our approach can also be applied to the error correction. Figure 3 shows some
examples of the ISM in removing the shadows or specular lights. Unlike the experiments
setting in the previous test, the parameter is chosen as λ = 0.1 for ISM in this test. As shown
in Fig. 3, ISM removes the heavy noise well.

5.2.2 Results on contiguous occlusions corruptions

We now aim to demonstrate the ability of the ISM in dealing with the missing data. We
randomly add contiguous occlusions to images with block size 5 × 5, 10 × 10, 15 × 15,
20 × 20, 25 × 25, and 30 × 30, as shown in Fig. 4. For each size, the percentage of data
being corrupted varies from 10 to 50%. In this test, we only consider the first five subjects
of the Extended Yale B face database. In other words, there are 320 images used for this
experiment. The parameter λ of LRR1, LRR2,1, PSLAL, ISM is set to 10−3, 10−1, 103, 103,
respectively. And all the other parameters are set in the same way as the previous test. And
we report the segmentation errors of different methods on various levels of occlusions in
Fig. 5.
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Fig. 3 Some examples using ISM to correct the corrupted images. The original data (first and the fourth
column), the corrected data (the second and the fifth column) and the errors (the third and the last column)
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Fig. 4 Some examples of original and corrupted images with different levels of occlusions

FromFig. 5, one can see that the segmentation error curves of ourmethod are always below
those of the other methods under six different scenarios. It indicates that ISM outperforms
other algorithms in terms of segmentation errors in dealing with occlusion corruptions. This
also suggests that the model (P3) is robust to the contiguous occlusions corruptions.

We also visualize the effectiveness of the ISM in error correction. Figure 6 shows some
examples that ISMrecovers images from the30×30blocknoisewith the corruptedpercentage
50%. Clearly, ISM can remove block noises well.

6 Conclusion

In this paper, we have considered more practical circumstances for the subspace segmen-
tation problem. First, we have extended the well-known model (P1) [18] to more practical
circumstances: only a fraction of entries of data can be observed, and the observed data are
corrupted by both impulsive and Gaussian noise. Then, an inexact splitting method has been
developed for solving the resulted model. Furthermore, we have proved the global conver-
gence of this method. Experimental results on synthetic and benchmark data illustrate that
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Fig. 5 Segmentation errors of different methods with various levels of occlusions. a Occlusion size 5 × 5.
b Occlusion size 10 × 10. c Occlusion size 15 × 15. d Occlusion size 20 × 20. e Occlusion size 25 × 25. f
Occlusion size 30 × 30

Fig. 6 Some examples using ISM to recover the corrupted images. The contaminated data (first and the fourth
column), the corrected data (the second and the fifth column), and the errors (the third and the last column)

the proposed method is computationally efficient, robust as well as more accurate compared
with the state-of-the-art algorithms.
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