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A Systematic Evaluation of Backdoor 
Attacks in Various Domains 

Stefanos Koffas, Behrad Tajalli, Jing Xu, Mauro Conti, and Stjepan Picek 

1 Introduction 

In the last few years, deep learning has become very popular, and it has been applied 
to a variety of applications like computer vision [29], machine translation [54], 
speech recognition [18], and game playing [44]. It is also used in safety and 
security-critical applications like autonomous driving [12], malware detection [8], 
biometric-based user authentication [6], and side-channel analysis [40]. Such 
systems commonly need large datasets to train reliable models that generalize 
well and perform adequately with unseen data. However, large datasets are often 
scrapped from untrusted sources on the web [1, 11]. Additionally, the hardware 
needed to train such models can be very expensive and is not always available 
to developers who want to embed some machine learning functionality into their 
applications. Thus, a new programming paradigm has emerged: Machine Learning 
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as a Service (MLaaS), made possible by the recent advances in cloud computing. 
These new trends lead to novel attack vectors that adversaries can exploit. 

One of these attack vectors is the backdoor attack [19]. In this attack, an 
adversary embeds a secret functionality into a trained model, activated only if 
the model’s input contains a specific property (trigger). At the same time, for 
any input that does not include the trigger, the model behaves as expected to 
avoid raising any suspicions. Most of the designed attacks in the literature target 
computer vision applications [31], but recently different applications have been 
targeted. In particular, backdoor attacks were shown in text classification [5, 9], 
audio recognition [28, 62], graph data [55, 57], federated learning [3, 45], and 
reinforcement learning [58]. A backdoor attack can be dangerous as machine 
learning is used in many security-related applications. In [19], the authors showed 
that a stop sign with a small post-it note could be identified as a speed limit by 
a compromised autonomous vehicle with serious consequences to its passengers 
and pedestrians. AI-enabled applications like spam-filtering [37], speaker identifi-
cation [62], or malware detection [42] could also be bypassed if the model used 
contains a backdoor. Thus, backdoor attacks pose a serious threat, and it is required 
to understand the limits of such attacks to provide better defenses. 

This work explores the effects of various trigger characteristics on the backdoor 
attack. In particular, we implement backdoor attacks with triggers of varying sizes, 
positions, and poisoning rates and apply them to four different domains (image, text, 
sound, and graph data). With it, we aim to better understand backdoor attacks and 
find common properties among different domains. 

In [47], the authors claimed that the backdoor attack becomes ineffective when 
the adversary cannot alter the training labels and is forced to poison only samples 
from the target class. In this case, the model cannot learn a strong connection 
between the trigger and the target class as more substantial features from the target 
class are learned. This behavior is reasonable and well justified but only supported 
by one experiment with the CIFAR10 dataset. Here, we aim to test this claim in 
image classification but also in different domains, like text and sound classification. 

Our contributions are: 

– We run extensive experiments in different application domains (image, text, 
audio, and graph data) and systematically evaluate the effect of various trigger 
characteristics on the backdoor attack. 

– We investigate two different backdoor attacks in each application and verify 
that the clean-label attack is not very effective as it may require large poisoning 
rates to achieve a high attack success rate. However, this attack could work by 
choosing more effective triggers without changing the poisoning rate. 

– We show that in most cases, the backdoor’s effectiveness increases as the trigger 
size increases.
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2 Background 

2.1 Computer Vision 

Today, the computer vision domain covers diverse use cases and concepts within, 
ranging from capturing raw data to image pattern extraction and interpreting 
information from those images. It is mostly a combination of concepts, ideas, and 
techniques of pattern recognition, digital image processing, artificial intelligence 
(AI), and computer graphics [53]. Computer vision aims to provide the capability 
for a system to identify and perceive the visual world in the same way as human 
vision does. Recently, by applying AI techniques, including deep neural networks, 
the machines even outperformed humans in several tasks [13]. 

Nowadays, there are multiple applications of computer vision in our daily life, 
e.g., weather prediction, medical cases, sports and entertainment, industry and 
production lines, and human-computer interaction [24, 25, 36, 46, 49, 51, 60]. While 
the use cases and applications are becoming broader and more prevalent in our 
everyday lives, security issues regarding the techniques and algorithms are also 
becoming a significant challenge to deal with. 

2.2 Natural Language Processing 

Natural language processing (NLP) is at the intersection of computational linguis-
tics, computer science, and artificial intelligence. It aims to make machines that 
understand human language and reason about it. NLP is an umbrella term that 
covers many different applications that deal with human language in both spoken 
and written formats. Applications that belong to natural language processing are, 
among others, speech recognition, speaker identification, question answering, text 
sentiment analysis, hate speech detection, natural language generation (speech-to-
text and text-to-speech models), spam detection, and text translation. Initially, NLP 
was based on static rules, but now it uses deep learning for most tasks [23]. 

Recent advances in NLP have led to very efficient human-computer interfaces 
that have been broadly deployed. Virtual assistants like Siri and Google assistant and 
popular IoT devices like Amazon Alexa have been widely used with great success. 
However, such applications open up new attack vectors that put the user’s security 
and privacy at risk. Therefore, before their wide adoption in the industry, we must 
ensure that such systems work securely.
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2.3 Graph Data 

Many real-world applications can be modeled as graphs, such as social networks, 
gene interactions, and transport networks. Similar to the great success of deep learn-
ing models in, e.g., image classification and natural language processing, deep graph 
models (graph neural networks—GNNs) have also achieved promising performance 
in processing graph data for different tasks, e.g., the graph classification task and 
node classification task. 

Graph Neural Networks (GNNs) GNNs take a graph G as an input, including 
its structure information and node features, and learn a representation vector 
(embedding) for each node .v ∈ G, . zv , or the entire graph, . zG. Modern GNNs 
follow a neighborhood aggregation strategy, where one iteratively updates the 
representation of a node by aggregating representations of its neighbors. After k 
iterations of aggregation, a node’s representation captures both structure and feature 
information within its k-hop network neighborhood. Formally, the k-th layer of a 
GNN is (e.g., GCN [26], GraphSAGE [20], and GAT [48]): 

.Z(k) = AGGREGAT E(A,Z(k−1); θ(k)), (1) 

where .Z(k) are the node embeddings in the matrix form computed after the k-th 
iteration and the AGGREGAT E function depends on the adjacency matrix A, 
the trainable parameters .θ(k), and the previous node embeddings .Z(k−1). .Z(0) is 
initialized as G’s node features. 

For the node classification task, the node representation .Z(k) of the final iteration 
is used for prediction. For the graph classification task, the READOUT function 
pools the node embeddings from the final iteration K: 

.zG = READOUT (Z(K)). (2) 

READOUT can be a simple permutation invariant function such as summation or a 
more sophisticated graph-level pooling function [59, 63]. 

Graph-Level Classification Graph-level classification aims to predict the class 
label(s) for an entire graph [63]. The end-to-end learning for this task can be realized 
using graph convolutional layers and readout layers. While graph convolutional 
layers are responsible for extracting high-level node representations, the readout 
layer collapses node representations of each graph into a graph representation. By 
applying a multilayer perceptron and a Softmax layer to graph representations, one 
can build an end-to-end framework for graph classification. 

Node-Level Classification Given a graph with a few labeled nodes, GNNs can 
learn a robust model that effectively identifies the class labels for the unlabeled 
nodes [26]. In a node-level classification task, there are two types of training 
settings—inductive and transductive. In an inductive setting, the unlabeled nodes 
are not seen during training, while in a transductive setting, the test nodes (but not
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their labels) are also observed during the training process. The transductive training 
setting is popular, and in this work, we used a backdoor attack in the transductive 
node-level classification task. 

2.4 Backdoor Attacks 

Backdoor attacks aim to make a model misclassify some of its inputs to a 
preset-specific label while other classification results behave normally. This misclas-
sification is activated when a specific property is included in the model input. This 
property is called the trigger and can be anything the targeted model understands. 
For instance, a random pixel pattern [6, 19] or an actual item [52] in computer 
vision, a specific phrase in text classification [32], a tone in speech recognition [28], 
or a subgraph with specific properties in graph data [55]. The framework for the 
backdoor attack is shown in Fig. 1. 

The first backdoor attacks targeted computer vision [6, 19] under a simple threat 
model, where an adversary could inject a small portion of poisoned data into the 
training dataset. In particular, the adversary injects into the training dataset data 

Fig. 1 Framework for the backdoor attack
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stamped with a trigger that belongs to the target class. As a result, the trained model 
strongly associates this pattern with the target class, and whenever it is added to 
an input, the classification result will be the target class. Recent trends in machine 
learning like Machine Learning as a Service (MLaaS), outsourced training, transfer 
learning, and crowdsourced datasets have made this setup possible. 

In MLaaS, a cloud provider provides a pay-per-request API1 that can be used 
for predictions. However, the user can only use such an API as a black box 
without being able to verify how the model makes its predictions. Similarly, during 
outsourced training, the user’s model is trained on the cloud and returned to the user 
after the training ends. Due to the lack of formal verification tools for the trained 
models, the user can never verify that the returned model does not contain any 
backdoors. Furthermore, in [19], the authors showed that a backdoor could remain 
effective even after a poisoned model was repurposed through transfer learning. 
Large crowdsourced datasets like ImageNet [11] and Mozilla’s common voice [1] 
are so vast that cannot be exhaustively verified [39]. Thus, an adversary could inject 
a few poisoned samples resulting in the backdoored models. 

This threat can pose real challenges as an adversary could bypass a face 
identification biometric access control system [6] or force an autonomous vehicle 
to ignore a stop sign and continue its course [19]. For this reason, backdoor 
attacks became very popular among researchers resulting in many novel attacks 
and countermeasures [15]. Novel attacks are not only limited to data poisoning but 
can also be based on code poisoning [2] or the direct modification of the model’s 
parameters [22]. At the same time, due to the inability to completely understand 
how a deep learning model works and the lack of formal verification methods about 
a model’s functionality, most countermeasures are empirically based on specific 
assumptions [4, 16, 50]. Unfortunately, in most cases, an adaptive attacker with a 
slightly different approach could bypass such defenses [7, 30, 43]. 

There are several variations of the backdoor attack resulting from different 
poisoning strategies. The first distinction is the class-agnostic and the class-specific 
backdoors [15]. The class-agnostic backdoor can be activated by a trigger injected 
into any input. On the other hand, the class-specific backdoor is activated only 
if the poisoned input belongs to a specific class. The main difference between 
these two strategies is that in the second case, the model needs to identify both 
features of the trigger and the source class making possible countermeasures more 
challenging [16]. Considering class-agnostic backdoor attacks, we can differentiate 
between the “simple” backdoor attack [19] and the clean-label backdoor attack [47]. 

Simple Backdoor Attack In the rest of this paper, by the simple backdoor attack, 
we are referring to the data poisoning backdoor attack that was introduced in 
BadNets [19]. In this case, the adversary adds a small subset of poisoned samples 
to the training dataset. These samples have been stamped with the adversary-chosen

1 https://aws.amazon.com/transcribe/. 

https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
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trigger, and their label has been changed to the target class. The target class is the 
output of the poisoned model when the backdoor is activated. 

Clean-Label Backdoor Attack The clean-label backdoor attack was introduced 
in [47]. This attack is similar to a simple attack, but the adversary cannot affect 
the label of the injected data. The reasoning behind this attack is that the poisoned 
training samples can be easily identified as outliers by simple filtering mechanisms 
or even human inspection because the original class of these samples is different 
from the target class. Thus, an adaptive adversary may have to poison samples 
only from the target class, hoping that the model identifies the trigger pattern as a 
class feature. This attack is still a data poisoning backdoor attack but uses a weaker 
adversary making the attack more challenging. 

Based on the trigger, backdoors can be either static [19] or dynamic [27]. The 
static backdoors are activated with a trigger that has very specific characteristics. 
In computer vision, such a trigger could mean a specific pixel pattern or a specific 
position. On the other hand, the dynamic backdoors can be activated by various 
triggers with different characteristics. 

For graph neural networks, the first backdoor attack was proposed in [65]. In 
this backdoor attack, a GNN classifier predicts an attacker-chosen target label for 
a testing graph once a predefined subgraph is injected into the testing graph. All 
perturbed graphs are injected with the same trigger graph. Another backdoor attack 
against GNNs for the graph classification task was presented in [55], but it differs 
from [65] in which a universal trigger graph is assumed for all the embedded graphs. 
This kind of backdoor attack dynamically adapts triggers to individual graphs. The 
adaptive trigger is optimized in both topological structure and node features. The 
training processes of the trigger generation function and the backdoored GNN 
model are assumed as a bi-level optimization objective [14]. The authors also 
adapted a backtracking-based algorithm to replace a subgraph in the original graph 
with the adaptive trigger graph. Xu et al. [57] explored backdoor attacks on GNNs 
with several explainability tools. In this work, the backdoor attack is implemented 
with the same strategy [65] for the graph classification task. The authors also 
proposed a new backdoor attack strategy for the node classification task. All the 
above-mentioned attacks in GNNs are gray box backdoor attacks since the adversary 
only modifies the training dataset instead of interfering with the training of models. 

2.4.1 Metrics 

The successful backdoor attack should always be activated when the trigger is 
embedded into the model’s input because an adversary wants to remain stealthy 
and interact with the poisoned model as little as possible. Additionally, the backdoor 
should not affect the original task when the trigger is not included in the input. When 
the poisoned model does not perform well on the original task, the backdoored 
model will (1) raise suspicions that something is wrong and (2) not be used, thus
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preventing the adversary’s plans. As a result, to measure the success of a backdoor 
attack, we require two metrics: the attack success rate and the clean accuracy drop. 

2.4.1.1 Attack Success Rate (ASR) 

The ASR shows the reliability of the attack, and it represents the number of 
successfully triggered backdoors from a number of poisoned inputs: 

.ASR =
∑N

i=1 F(M∗(xi) = yt )

N
, (3) 

where .M∗ is the poisoned model, . xi is a poisoned input, . yt is the target class, and 
.F(x) is a function that returns 1 if x is true and 0 otherwise. 

2.4.1.2 Clean Accuracy Drop (CAD) 

This quantity shows the backdoor’s effect on the original task. It is calculated by 
comparing the performance of a poisoned and a clean model for clean inputs. The 
accuracy drop should generally be small to keep the attack stealthy. 

3 Methodology 

3.1 Threat Model 

In this work, we implement data poisoning backdoor attacks. The adversary injects 
a small subset of poisoned data without knowing any information about the model 
architecture or the training algorithm. Thus, the attack follows a gray box threat 
model. This threat model is realistic as current large datasets are crowdsourced [1, 
11] and malicious data may go through the validation process [39]. So, an adversary 
could inject trigger-stamped data in such datasets that will remain unnoticed and 
used during training resulting in a successful backdoor attack. 

In our experiments, we investigate two different attacks, the simple data poison-
ing attack [19] and the clean-label attack that does not alter the labels of the poisoned 
data [47]. For both attacks, the adversary aims to cause targeted misclassifications 
with a very high probability without affecting the model’s performance on the 
original task.
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3.2 Image Classification 

Attacks We use two different attacks: the simple backdoor attack and the clean-
label attack. 

Datasets For our image classification backdoor attacks, we use two popular image 
datasets: (i) CIFAR10 that consists of 60,000 32×32 color images in ten classes, 
with 6000 images per class. There are 50,000 training images and 10,000 test 
images. (ii) Fashion-MNIST (FMNIST) [56]—a dataset of Zalando’s article images 
consisting of a training set of 60,000 images and a test set of 10,000 images. Each 
image is a 28×28 gray-scale image associated with a label from ten classes. 

For the CIFAR10 dataset, we split the test set in an i.i.d manner into two 5000 
sample datasets, each used for validation and test, respectively. For the FMNIST 
dataset, we split the training set into two different sized datasets in an i.i.d manner: 
the first having 50,000 samples used for training and the second having 10,000 
samples for validation. With this, we have the same size of training samples for 
both datasets, so comparing results between these two is easier. 

Features The input features for both neural networks are the tensor of images. For 
the CIFAR10 dataset, each RGB image is considered as a [3, 32, 32] shape tensor. 
For FMNIST, however, the images are gray-scale, so the input has only one channel 
([1, 28, 28] shape tensor). We also did the standard normalization for input values 
before all train, validation, and test phases. 

Models We use two models: STRIPNet [16] and ResNet [21] with nine residual 
blocks (ResNet-9). 

Trigger As described in [27], various triggers have been used in image classifi-
cation, and all of them resulted in successful backdoor attacks. This means that 
the trigger shape and pattern are not crucial for the success of a backdoor attack. 
Thus, for our experiments, we chose a square trigger. Its pixel intensities are random 
values retrieved from a continuous uniform distribution (pseudorandom generator). 
The seed in this generator was fixed for consistency in our experiments. 

3.3 Natural Language Processing 

Attacks Similar to image classification, we use simple and clean-label backdoor 
attacks. 

Datasets In our experiments, we used the IMDB [33] and the AG News topic 
classification [64] datasets. The IMDB dataset consists of 50,000 (50%/50% train-
ing/test split) movie reviews of high polarity (either positive or negative). We used 
20% of the training data for validation. The AG News topic classification dataset 
consists of news articles belonging to four categories (world, sports, business, and 
science/technology). The training set consists of 120,000 samples and the testing set
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of 7600 samples. Again, we used 20% of the training data for validation resulting in 
96,000 and 24,000 samples for training and validation sets, respectively. 

Features The first step of our pipeline is a TextVectorization layer that 
transforms each input to a convenient form for processing as described in [27]. As 
the datasets are different, we used a different sequence length for each dataset. We 
forced the length of each sentence to be 250 words for the IMDB dataset and 197 
for the AG News dataset. Additionally, we used a vocabulary of 10,000 words that 
proved enough for such small datasets. 

Models We used two publicly available CNN architectures. Both the first CNN2 

and the second CNN3 use an embedding layer as their input. However, the first 
CNN uses a small trainable embedding of size 16, and the second uses a pretrained 
GloVe embedding [38] of size 100. We want to investigate if the attack becomes 
more difficult when the model uses a pretrained embedding because this is more 
frequent in practice. Such embeddings have been trained in large corpora of text 
and interpret possible connections between different words more accurately. To 
illustrate, Google’s pretrained word2vec is trained with 100 billion words from 
Google News, and it contains 300-dimensional vectors for 3 million words and 
phrases [34]. The GloVe is trained from a corpus of 6 billion words and has a 
vocabulary of 400,000 words [38]. 

Trigger As the trigger, we used a sentence of 1 up to 4 words from the list [“trope,” 
“everyday,” “mythology,” “sparkles,” “ruthless”] as defined in [32]. We applied the 
trigger in three positions (beginning, middle, and end) to investigate whether our 
models are more sensitive in specific positions. 

3.4 Speech Recognition 

Attacks Again, we use simple and clean-label backdoor attacks. 

Datasets For this application, we used two versions of the Speech Commands 
dataset as described in [28]. The first version uses ten classes of the dataset and the 
second 30 classes. From our experiments, we excluded the samples that lasted less 
than one second to avoid variable-sized inputs in our pipeline resulting in 21,312 
.wav files in the first case and 58,252 files in the second case. In both cases, we use 
64%/16%/20% for training, validation, and testing. 

Features As our input features, we used the MFCCs of each training input. The 
exact hyperparameters for this calculation are described in [28]. 

Models We used one CNN [32] and one LSTM [10] for our experiments.

2 https://www.tensorflow.org/tutorials/keras/text_classification. 
3 https://keras.io/examples/nlp/pretrained_word_embeddings/. 

https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
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Trigger Our dataset’s sound files are sampled at 16 kHz, and according to the 
Nyquist-Shannon sampling theorem, the largest tone frequency that can be included 
in such digital signals is 8 kHz. Thus, following [27], our trigger is a 7 kHz tone 
which is a high pitch audible sound. Following the rest of the triggers tried, this 
trigger differs from the normal dataset samples. It lasts from 20 to 80 ms because 
we want to model an adversary that is as stealthy as possible. The trigger is injected 
in three different positions of each sound sample (beginning, middle, and end). 

3.5 Graph Data 

Attacks As described in Sect. 2.4, for graph neural networks, we utilize two 
backdoor attacks, i.e., .AT I [65] and .AT II [55]. The framework for .AT I is illustrated 
in Fig. 2. In the training phase (Fig. 2a), the attacker injects a trigger (subgraph . gt ) 
to a subset of training graphs and changes their labels to an attacker-chosen target 
label. A GNN classifier is then trained using the backdoored training dataset, and 
such GNN is called backdoor GNN . Φb. In the test phase (Fig. 2b), once the test 
graph is injected with the same trigger graph, the backdoored GNN is likely to 
misclassify the testing sample to the target label. For the node classification task, 
we used the backdoor attack from [57]. 

Since [65] and [57] designed the same strategy to implement the backdoor attack 
for the graph classification task, we illustrate the results of [65] and [55] for the  
graph classification task. The results based on [57] are presented for the node 
classification task. 

Fig. 2 Subgraph-based backdoor attack for the graph classification task. (a) Training. (b) Testing
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Table 1 Graph datasets statistics 

Datasets # Graphs Avg. # nodes Avg. # edges Classes Class distribution 

AIDS 2000 15.69 16.20 2 400[0], 1600[1] 
TRIANGLES 45,000 20.85 32.74 10 4500[0–9] 
Cora 1 2708 5429 7 351[0], 217[1], 418[2], 818[3], 

426[4], 298[5], 180[6] 
CiteSeer 1 3327 4608 6 264[0], 590[1], 668[2], 

701[3], 596[4], 508[5] 

Datasets Table 1 shows the statistics for all considered datasets for graph neural 
networks. For the graph classification task, we use two publicly available graph 
datasets. (i) AIDS [35]—a dataset consisting of graphs representing molecular 
compounds that are active against HIV or not; (ii) TRIANGLES [35]—a synthetic 
dataset designed to solve the task of counting the number of triangles in a graph. 
For each graph classification dataset, we sample 2/3 of the graphs as the original 
training dataset and treat the remaining graphs as the original testing dataset. Among 
the original training dataset, we randomly sample α fraction of graphs to inject the 
trigger and relabel them with the target label, called the backdoored training dataset. 
Several parameters can affect the attack effectiveness: trigger size s, trigger density 
ρ, and poisoning intensity α. Unlike other domains, e.g., image classification, the 
trigger position in graph data is irrelevant and cannot be defined because a graph 
is non-Euclidean data where we cannot put nodes in some order. For AT I, we use  
Erdős-Rényi (ER) model [17] to generate the trigger graph, as it is more effective 
than the other methods [65]. 

For the node classification task, we use two real-world datasets: (i) Cora [41]—a 
citation network in which each publication is described by a binary-valued word 
vector indicating the absence/presence of the corresponding word in the collection 
of 1433 unique words. (ii) CiteSeer [41]—another citation network with more 
nodes but less edges. For each node classification dataset, we split 20% of the total 
nodes as the original training dataset (labeled) and the rest as the original testing 
dataset (unlabeled). To generate the backdoored training dataset, we sample α of 
the original training dataset to inject the feature trigger and relabel these nodes with 
the target label. The feature trigger width is set to be n. Moreover, based on the 
conclusion in [57], different feature trigger injecting positions have a negligible 
impact on the attack performance, so the trigger injecting position is randomly 
selected. Here, we explore the impact of poisoning intensity α and feature trigger 
width n on the attack performance. In the node classification task, each node feature 
has a value of 0 or 1, and here we set the value of the modified node features to 1 
(note, the values could also be set to 0). 

Features Each graph contains topological and node feature information. For each 
graph dataset in this work, there is an adjacency matrix and feature information 
matrix. For AIDS, Cora, and CiteSeer, there is a specific node feature vector for
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each node in the graph, but for TRIANGLES, the one-hot degree of a node is used 
as the node feature. 

Models We use two state-of-the-art GNN models for the graph classification task: 
GCN [26] and GraphSAGE [20]. We use GCN [26] and GAT [48] for the node 
classification task. 

Trigger For the graph classification task, our trigger is a global (adaptive) subgraph 
in AT I(AT II). For the node classification task, our trigger is a subset of node 
features with a fixed value, e.g., 0. 

4 Experimental Results 

4.1 Image Classification 

Chosen Settings and Selected Parameters We ran our experiments with a 
different number of poisoned samples (25, 300, 575, 850), trigger sizes (.4×4, .8×8, 
.12 × 12), and trigger positions (Upper-Mid, Mid-Left, Mid-Right, Lower-Mid) on 
the image. Figure 3 demonstrates four different positions of a .4×4 trigger for several 
FMNIST sample images. We repeated each experiment two times, which makes the 
total number of 768 experiments regarding the chosen settings. We set class number 
5 as the target for all experiments and in both datasets. 

Every backdoor attack should remain stealthy without affecting the original task. 
Therefore, the poisoned model should perform as expected when the input does 
not contain the trigger. In Table 2, we compare the performance of clean and 
backdoored models for clean inputs. The attack accuracy mentioned in this table is 
the arithmetic mean (. ± the standard deviation) of the accuracy on clean inputs from 
all the poisoned models trained in our experiments. For the original accuracy, we 
trained multiple clean models and averaged their performance. The model remains 
unaffected from both backdoor attacks even if we use 850 poisoned samples. Such 
poisoning rates are small and cannot affect the model’s performance in general. 
From Table 2, we can also verify that our models perform similarly well in both 

Fig. 3 Applied .4 × 4 trigger in different positions: Upper-Mid, Mid-Left, Mid-Right, Lower-Mid
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datasets, which is helpful when comparing the performance of the attack for each 
case. 

Results for FMNIST As it can be inferred from Fig. 4, the clean-label attack is not 
that effective against the FMNIST dataset. By increasing the number of poisoned 
samples, there are small or no improvements in attack success rate (there are small 
improvements when increasing the number of samples from 25 to 300, but as we 
increase from 300 to 575 and from 575 to 850, the improvements become even 
smaller). We assume this is mainly due to the dataset nature and the capability of 
the CNNs to learn the exclusive features of each class easily and robustly so that 
injecting a trigger (even of size 12×12) could not disturb the network from learning 
those. 

Since both ResNet-9 and STRIPNet have convolutional layers, we expect 
negligible effects of trigger position on attack success rate. The results confirm this 
as there are only minor effects stemming from the trigger positions (for instance, 
in both networks, the trigger on the lower-mid results in the least ASR, while on 
the mid-right, it has a little more chance of being learned by the network. Again, 
we suppose this is because of the attributes of the FMNIST images and the models’ 
focus on specific regions of an image to learn). Additionally, in almost all cases 
(except a few ones like upper-mid in ResNet-9), increasing the trigger size leads to 
higher ASR. 

For the simple attack, we obtained 100% ASR for 300 attack samples or more. 
With 25 poisoned samples, some trigger positions have positive effects on ASR 
regardless of trigger size (for instance, the mid-left trigger achieves high ASR even 
with 4 × 4 size triggers). 

Results for CIFAR10 The clean-label attack is significantly more effective for 
CIFAR10 than FMNIST (Figs. 4 and 5). We believe this is primarily because the 
CIFAR10 images are RGB, and the crafted trigger has more layers (3 channels). 
As a result, the model learns the embedded trigger with less poisoned samples. As 
expected, the trigger position does not play an important role in ASR, and in almost 
all cases, ASR improves using a larger trigger size. 

Another observation is that the smaller the size of the trigger, the more noticeable 
the ASR improvement when increasing the number of poisoned samples from 25 to 
850. For instance, for a 12 × 12 trigger, there is no noticeable improvement in ASR 
when the number of poisoned samples increases from 575 to 850. On the other hand, 
using a 4 × 4 trigger, ASR’s growth is easily observable between all four different 
poisoning rates. 

Analyzing the simple attack, similarly to FMNIST, we achieved 100% ASR 
for 300 poisoned samples or more. Additionally, ResNet-9 is more vulnerable to 
backdoor attacks, particularly when using fewer poisoned samples and smaller 
triggers. We believe this is mostly because ResNet-9 is a larger network than 
STRIPNet and can extract more data from the given dataset.
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Fig. 4 Attack accuracy for the FMNIST dataset. From these figures, we conclude that the clean-
label attack is not effective but is slightly improved when increasing the poisoning rate. On the 
other hand, the simple attack can be very effective even with a small poisoning rate (0.6%). 
Additionally, larger triggers lead to higher ASR, but different trigger positions do not result in ASR 
fluctuations as the convolutional layers identify the trigger. (a) ResNet-9 + clean-label attack. (b) 
ResNet-9 + simple attack. (c) STRIPNet + clean-label attack. (d) STRIPNet + simple attack. (e) 
Legend 

4.2 Natural Language Processing 

In Tables 3 and 4, we compare the performance of clean and backdoored models 
in text classification when clean inputs are used. These tables are generated by 
averaging the performance of clean and poisoned models as described in Sect. 4.1. 
In all cases, the model’s performance remains almost unaffected after the backdoor 
insertion. There are a few minor accuracy drops that are at most 0.6% making the
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Fig. 5 Attack accuracy for the CIFAR10 dataset. The clean-label attack is significantly more 
effective than for FMNIST because the 3-channel trigger contains more information. We also see 
that the trigger position is not very important, and ASR increases as the trigger size increases. 
The ASR with the simple attack is 100% for a 0.6% poisoning rate or more. However, STRIPNet 
is not as vulnerable as ResNet due to its smaller capacity. (a) ResNet-9 + clean-label attack. (b) 
ResNet-9 + simple attack. (c) STRIPNet + clean-label attack. (d) STRIPNet + simple attack. (e) 
Legend 

attack stealthy. This behavior is expected as we poison only a small subset of the 
training data that cannot substantially affect the model’s learning. 

In Figs. 6 and 7, we show the results of our experiments for the AG News topic 
classification dataset and IMDB dataset, respectively. From these figures, we can 
draw several conclusions. In most cases, the ASR is correlated with the trigger size 
and increases as the trigger size increases. This is true even when the attack is not 
effective (see Fig. 6a).
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Fig. 6 Attack accuracy for the AG News dataset. The ASR is positively correlated with the trigger 
size (even when the ASR is very low), and the poisoning rate significantly influences the attack’s 
effectiveness. Additionally, the clean-label attack needs more poisoned data to work. When GloVe 
is used, inserting the trigger in the end results in higher ASR (especially for low poisoning rates), 
but in the simple CNN, the trigger positions do not affect ASR. (a) CNN with GloVe . + clean-label 
attack. (b) CNN with GloVe . + simple attack. (c) CNN . + clean-label attack. (d) CNN . + simple 
attack. (e) Legend  

Especially for the first CNN, this relation seems to be linear (see Figs. 6c, 6d, 7c 
and 7d). This simple model uses global average pooling as its penultimate layer, 
averaging the feature map before the output. As a result, the trigger will be more 
influential when it consists of more words. In almost all experiments, the poisoning 
rate is a highly influential hyperparameter of the backdoor attack, and any increase 
in it leads to an increase in the attack success rate. 

Our models learn differently, which can be seen from the varying attack success 
rate when the trigger is injected in different positions. For example, the attack 
success rate is higher if the trigger is inserted at the end of the sentence when we use
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Fig. 7 Attack accuracy for the IMDB dataset. The ASR is positively correlated with the trigger 
size, and the poisoning rate significantly influences the attack’s effectiveness. Additionally, the 
clean-label attack is more effective with this dataset. For the CNN that uses GloVe, placing the 
trigger at the end of the sentence yields the best results, but for the simple CNN, this is the least 
effective position. (a) CNN with GloVe . + clean-label attack. (b) CNN with GloVe . + simple attack. 
(c) CNN . + clean-label attack. (d) CNN . + simple attack. (e) Legend  

the first model and the simple backdoor attack (see Figs. 6b and 7b). This difference 
is very clear for low poisoning rates (0.25%), where even a small trigger of 2 words 
could be substantially more effective when placed at the end of the sentence. On 
the other hand, for the other model, placing the trigger at the end does not result in 
higher ASR (see Figs. 6d and 7d). These differences indicate that we could use the 
backdoor attack as a tool for AI explainability and further understand what and how 
a model learns by using triggers with different characteristics. 

In [47], the authors claimed that the clean-label backdoor attack needs a very 
large poisoning rate to be effective. We also see this behavior in the AG News 
dataset, especially for the architecture that uses the pretrained GloVe embedding
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(Fig. 6a). In the other architecture, the clean-label attack is more effective as the 
feature space created by the trainable embedding encodes some information about 
the trigger and the target class (see Fig. 6c). However, when the IMDB dataset is 
used, both models perform similarly without poisoning a very large part of the 
training data for the clean-label (see Figs. 7a and 7c). This can be explained by 
the differences between the datasets. Each sentence in AG News is shorter than the 
movie reviews in the IMDB dataset. Additionally, most of the words in AG News 
are strongly connected with the topic that each sentence belongs to (world, sports, 
business, and science/technology), which is not true for the IMDB dataset. In the 
IMDB dataset, the sentences are longer, and usually, only a few words are related to 
their sentiment. As a result, in AG News, our attack needs more poisoned samples 
to overcome the effect of the original features of the source class. 

4.3 Speech Recognition 

In Tables 5 and 6, we compare the performance of clean and backdoored models 
for sound classification when clean inputs are used. As was also shown in [28], 
the differences between the clean and the backdoored models are negligible. In 
particular, the backdoored models perform a little better when the 10 classes dataset 
is used, meaning that the poisoned samples could serve as a generalization factor. 
However, when the full dataset is used, the backdoor insertion results in a small 
performance drop for the CNN. In this case, we use more classes, and the model 
has to learn a more difficult task that is affected even by a few poisoned samples. 
The performance of the LSTM is slightly increased, meaning that the LSTM builds 
different models and utilizes its capacity better when we use the full dataset [28]. 
All these differences are small, and our claims need additional experimental data to 
be confirmed. 

In Figs. 8 and 9, we show the results of our experiments for the first (10 classes) 
and the second (30 classes) version of the Speech Commands dataset. In almost all 
cases, the attack success rate increases as the trigger duration increases. This is true 
even when the attack is not successful (see the clean-label attack in Figs. 8c and 9c). 
This makes sense as more input features are affected when a longer trigger is used, 
and the network can learn this relation easier. Additionally, the poisoning rate is 
very influential, and its increase leads to more effective backdoors. 

The end of the input is the most effective trigger position for the LSTM network 
in both versions of the dataset. Even though this network uses two bidirectional 
LSTM layers and an attention layer, it seems to learn the features that are placed 
towards the end of its inputs more easily. The LSTM network was designed to tackle 
the problem of long-term dependencies on its inputs. A possible reason for this 
behavior is the nature of this particular dataset, which consists of 1-second clips of 
spoken words. If these words are not perfectly centered and distributed to the upper 
half of each sample, our network will give more attention to the end of each training 
sample. This is not true for the CNN used as, in that case, all the positions seem to
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Fig. 8 Attack accuracy for the Speech Commands dataset (10 classes). In most cases, ASR is 
increased as the trigger duration or the poisoning rate increase. The clean-label attack is ineffective 
for both models. For LSTM, the best position for the trigger is at the end. However, for CNN, any 
position works. For CNN, the simple attack works almost perfectly for 100 poisoned samples or 
more. (a) LSTM . + clean-label attack. (b) LSTM . + simple attack. (c) CNN . + clean-label attack. 
(d) CNN . + simple attack. (e) Legend  

be equally effective (see Figs. 8d and 9d). Similarly to text classification, different 
models learn different patterns from the same dataset making the backdoor attack 
effective in different cases. Thus, we could use the backdoor attack and its triggers 
to understand what a model learns and how it makes its decisions. 

In our sound classification experiments, the clean-label attack is not successful 
for both neural networks and datasets. However, when the full dataset and CNN 
are used (Fig. 9c), the attack success rate slightly increases with large triggers. 
The clean-label could work without requiring more poisoned data if we choose 
a larger trigger. This claim, though, needs to be verified in the future with more 
experimental evidence. Another interesting observation is that the simple backdoor
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Fig. 9 Attack accuracy for the Speech Commands dataset (30 classes). In most cases, ASR is 
increased as the trigger duration or the poisoning rate increase. The clean-label attack is ineffective 
in that case, but it works slightly better for CNN. In the simple attack, the best position for the 
trigger is at the end for LSTM. However, there is no difference for CNN (in most cases, ASR is 
close to 100%). When using LSTM, ASR is higher than ASR for the ten classes. We assume that 
the absolute number of poisoned samples could be the reason behind that behavior. (a) LSTM . +
clean-label attack. (b) LSTM . + simple attack. (c) CNN . + clean-label attack. (d) CNN . + simple 
attack. (e) Legend  

attack becomes more effective when we use the full dataset and the LSTM network 
(compare Fig. 8b to Fig. 9b). One reason for this behavior is the absolute number of 
training samples that were increased when the full dataset was used. However, this 
should be investigated further.
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4.4 Graph Data 

Results for the Graph Classification Task For the graph classification task, two 
parameters affect the performance of the backdoor attack: poisoning intensity and 
trigger size (the number of nodes in the trigger graph). The attack results for the 
GCN model on AIDS with different poisoning intensity . α and trigger size s are 
shown in Fig. 10. As we can see from Fig. 10a, with the increase of poisoning 
intensity, the attack success rate is generally increasing for each trigger size, but 
there is no obvious improvement between .α = 0.15 and .α = 0.2. Here, we select 
poisoning intensity .α = 0.15 for GCN on AIDS. Figure 10b shows the impact of 
trigger size under the selected poisoning intensity (.α = 0.15). The attack success 
rate is highest with .s = 5, while the clean accuracy drop is the smallest when .s = 5. 
To compare the two backdoor attacks, we set .α = 0.15, s = 5 and . α = 0.2, s = 7
for AIDS and TRIANGLES, respectively. 

Specifically, we present the attack results of two backdoor attacks on the graph 
classification task in Tables 7 and 8. As we can see from Table 7, .AT II can achieve 
more than .99% attack success rate and less than .1% clean accuracy drop on AIDS, 
while the performance of .AT I degrades slightly with an attack success rate of more 
than .95% and clean accuracy drop around .1.5%. As illustrated in Table 8, the attack 
success rate of .AT II is significantly higher than .AT I for TRIANGLES, i.e., more 
than .10%. However, the clean accuracy drop of .AT II is larger than .AT I, which is 
more than .4% for both models, while that of .AT I is around .3% and less than . 1%

Fig. 10 Impact of poisoning intensity and trigger size on attack performance in the graph 
classification task. (a) GCN_AIDS. (b) GCN_AIDS (.α = 0.15) 

Table 7 Backdoor attack results for the graph classification task and the AIDS dataset 

.AT I . AT II

Setting ASR (%) CAD (%) ASR (%) CAD (%) 

GCN .95.86 .1.25 .99.92 . 0.46

GraphSAGE .97.59 .1.46 .99.80 .0.91
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Table 8 Backdoor attack results for the graph classification task and the TRIANGLES dataset 

.AT I . AT II

Setting ASR (%) CAD (%) ASR (%) CAD (%) 

GCN .86.00 .3.18 .99.21 . 5.32

GraphSAGE .87.70 .0.50 .98.24 . 4.32

Fig. 11 Impact of poisoning intensity and feature trigger width on attack performance in the node 
classification task. (a) . n = 5. (b) . n = 10. (c) . n = 15. (d) . n = 20. (e) . n = 25

for GCN and GraphSAGE, respectively. In addition, the computation time for . AT II

is around .1.7 times of .AT I. 

Results for the Node Classification Task For the node classification task, the 
backdoored data is influenced by two parameters: poisoning intensity α and feature 
trigger width n. The attack performance, including attack success rate and clean 
accuracy drop with different variants, is shown in Fig. 11. For each feature trigger 
width, the attack success rate on different models and datasets generally increases 
when the poisoning intensity increases from 0.05 to 0.2. At the same time, the clean 
accuracy drop of the GCN model keeps increasing, and there is a significant increase 
between α = 0.15 and α = 0.2. However, the clean accuracy drop of the GAT 
model remains almost unchanged. To achieve a high attack success rate and low 
clean accuracy drop, we set α = 0.2 for GCN and α = 0.15 for GAT. To evaluate 
the impact of feature trigger width on attack performance, we show the attack results 
with different feature trigger widths in Fig. 12. Observe that the feature trigger width



A Systematic Evaluation of Backdoor Attacks in Various Domains 547

Fig. 12 Attack performance with different feature trigger widths. (a) GCN (α = 0.2. (b) GAT  
(α = 0.15 

Table 9 Backdoor attack results in the node classification task (n = 5) 

GCN (α = 0.2) GAT (α = 0.15) 

Setting ASR (%) CAD (%) ASR (%) CAD (%) 

Cora 72.35 1.59 86.63 2.35 

CiteSeer 77.82 1.63 92.04 1.35 

has no obvious influence on the attack success rate and clean accuracy drop for both 
GNN models and datasets. 

Specifically, Table 9 shows the attack success rate and clean accuracy drop of 
backdoor attack for the node classification task with selected parameters. Notice 
that the backdoor attack on GCN reaches over 70% attack success rate for both 
datasets and that on GAT obtains a higher attack success rate, i.e., over 85% and 
90% for Cora and CiteSeer, respectively. Furthermore, the clean accuracy drop is 
lower than 2% for all models and datasets except for the GAT model on the Cora 
dataset, which is 2.35%. 

4.5 General Observations 

First, we verified that the backdoor attack is a real threat as it can be injected 
into every application domain tried without affecting the model’s original task just 
by poisoning a small subset of the training data. Additionally, we saw that the 
poisoning rate is the most influential characteristic of the trigger in all applications. 
However, this value cannot be increased arbitrarily because the backdoor attack 
will become evident through a simple data filtering mechanism, and the poisoned 
model’s performance on clean inputs will decrease substantially. 

The trigger size is positively correlated with the backdoor’s attack success rate 
in image, text, and sound. This is expected as a larger trigger contains more
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information that can be encoded easier in the trained model. However, in graph 
classification, the attack success rate increased to a point (.s = 5) and then decreased 
for larger triggers. The variations are small, though, as ASR remained above 90% in 
our experiments, and thus, we cannot draw general conclusions. We need to verify 
this effect with more complex datasets and models. 

The most effective position of the trigger (if there is any) depends on many 
factors, like the network architecture or the dataset. The position is not very 
influential on the attack success rate in most cases, but this is not always true. Thus, 
we cannot draw any general conclusions. In image classification, no position was 
proven more effective as the convolutional layers extract information from any point 
in the image. Similar behavior has been observed in graph neural networks [57], 
where the trigger position did not result in more effective backdoors. On the other 
hand, in text classification, the attack performed similarly for all the trigger positions 
for the simple CNN, but the “end” was slightly more effective when the GloVe 
embedding was used. In sound classification, the trigger was more effective in the 
end if LSTM was used but had no difference for CNN. These differences suggest 
a potential beneficial use case for backdoor attacks in general. In this case, we can 
use them to understand better how and what our models learn. Such an approach 
complements the work described in [61], where the authors drew valuable insights 
about the input’s crucial features after graying out small square areas of the input 
images. 

The clean-label attack is challenging in image, text, and sound classification. 
However, in some cases, it may be successful just by using a large trigger without 
having to poison more data. Additionally, if the trigger encloses more information, 
the clean-label’s performance can be improved. We verified this for the CIFAR10 
dataset, where we injected our trigger in all three image channels. We believe that 
the dataset influences the performance of this attack. If each element contains many 
features, the model will require a large poisoning rate to perceive the trigger as a 
feature of this class. In the clean-label attack, the trigger is injected only in elements 
from the target class, and it is not easy to overcome the effect of the actual features 
of this class. This was highlighted in the AG News and IMDB datasets in text 
classification. On the other hand, the simple backdoor attack can be very effective 
with just a few poisoned samples in all the applications we tried. 

As a general remark, we believe that the backdoor is easier inserted into models 
that can overfit small subsets of their datasets. Models with strong generalizations 
are more robust against data poisoning backdoor attacks. We verified this behavior 
using simple CNN in text classification. In that case, our attack could not reach an 
attack success rate larger than 80% even with the simple attack, as the model is 
very simple and the learned function is very smooth. Finally, as our experiments 
are far from exhaustive, our findings should be taken as indications, not definitive 
conclusions. 

In summary, the key takeaways are: 

– The backdoor attack is a realistic and stealthy threat. 
– As expected, increasing the poisoning rate and using larger triggers leads to 

higher ASR.
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– Different models can behave differently during the attack even though we 
use the same data. Therefore, we can use the backdoor attacks as a tool for 
explainable AI. 

– In [47], the authors claimed that the clean-label attack is not very effective. In 
most cases, this is true, but we saw that we could make it effective with more 
sophisticated triggers. 

– The backdoor is easier for models that can overfit a small subset of their 
datasets. 

5 Conclusions 

Recent trends in machine learning lead to novel attack vectors like the backdoor 
attack. This attack is very dangerous as it can compromise AI-powered systems. 
Naturally, the backdoor attack also attracted significant attention, resulting in 
numerous novel attack and defense versions. In this work, we explored the effects of 
various trigger characteristics on the backdoor’s performance in four domains. Our 
results show that deploying backdoor attacks is relatively easy for all investigated 
domains. There are sufficient commonalities between the attacks in different 
domains to ease their deployment in real-world applications and devise novel, more 
generic defenses. 
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