

Delft University of Technology

A Systematic Evaluation of Backdoor Attacks in Various Domains

Koffas, Stefanos; Tajalli, Behrad; Xu, Jing; Conti, Mauro; Picek, Stjepan

DOI
10.1007/978-3-031-40677-5_20
Publication date
2023
Document Version
Final published version
Published in
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

Citation (APA)
Koffas, S., Tajalli, B., Xu, J., Conti, M., & Picek, S. (2023). A Systematic Evaluation of Backdoor Attacks in
Various Domains. In Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing: Use
Cases and Emerging Challenges (pp. 519-552). Springer Nature. https://doi.org/10.1007/978-3-031-40677-
5_20
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

A Systematic Evaluation of Backdoor
Attacks in Various Domains

Stefanos Koffas, Behrad Tajalli, Jing Xu, Mauro Conti, and Stjepan Picek

1 Introduction

In the last few years, deep learning has become very popular, and it has been applied
to a variety of applications like computer vision [29], machine translation [54],
speech recognition [18], and game playing [44]. It is also used in safety and
security-critical applications like autonomous driving [12], malware detection [8],
biometric-based user authentication [6], and side-channel analysis [40]. Such
systems commonly need large datasets to train reliable models that generalize
well and perform adequately with unseen data. However, large datasets are often
scrapped from untrusted sources on the web [1, 11]. Additionally, the hardware
needed to train such models can be very expensive and is not always available
to developers who want to embed some machine learning functionality into their
applications. Thus, a new programming paradigm has emerged: Machine Learning

S. Koffas · J. Xu
Cybersecurity Group, Delft University of Technology, Delft, The Netherlands
e-mail: s.koffas@tudelft.nl; j.xu-8@tudelft.nl

B. Tajalli
Digital Security Group, Radboud University, Nijmegen, The Netherlands
e-mail: hamidreza.tajalli@ru.nl

M. Conti
Cybersecurity Group, Delft University of Technology, Delft, The Netherlands

SPRITZ Security and Privacy Research Group, University of Padua, Padua, Italy
e-mail: mauro.conti@unipd.it

S. Picek (�)
Cybersecurity Group, Delft University of Technology, Delft, The Netherlands

Digital Security Group, Radboud University, Nijmegen, The Netherlands
e-mail: stjepan.picek@ru.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_20

519

 31368 2385 a 31368 2385 a

 885 41901 a 885 41901 a

mailto:s.koffas@tudelft.nl
mailto:s.koffas@tudelft.nl
mailto:s.koffas@tudelft.nl

 8583 41901 a 8583 41901 a

mailto:j.xu-8@tudelft.nl
mailto:j.xu-8@tudelft.nl
mailto:j.xu-8@tudelft.nl
mailto:j.xu-8@tudelft.nl

 885 45775
a 885 45775 a

mailto:hamidreza.tajalli@ru.nl
mailto:hamidreza.tajalli@ru.nl
mailto:hamidreza.tajalli@ru.nl

 885 51310 a 885 51310 a

mailto:mauro.conti@unipd.it
mailto:mauro.conti@unipd.it
mailto:mauro.conti@unipd.it

 885 56845 a 885 56845 a

mailto:stjepan.picek@ru.nl
mailto:stjepan.picek@ru.nl
mailto:stjepan.picek@ru.nl
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20

520 S. Koffas et al.

as a Service (MLaaS), made possible by the recent advances in cloud computing.
These new trends lead to novel attack vectors that adversaries can exploit.

One of these attack vectors is the backdoor attack [19]. In this attack, an
adversary embeds a secret functionality into a trained model, activated only if
the model’s input contains a specific property (trigger). At the same time, for
any input that does not include the trigger, the model behaves as expected to
avoid raising any suspicions. Most of the designed attacks in the literature target
computer vision applications [31], but recently different applications have been
targeted. In particular, backdoor attacks were shown in text classification [5, 9],
audio recognition [28, 62], graph data [55, 57], federated learning [3, 45], and
reinforcement learning [58]. A backdoor attack can be dangerous as machine
learning is used in many security-related applications. In [19], the authors showed
that a stop sign with a small post-it note could be identified as a speed limit by
a compromised autonomous vehicle with serious consequences to its passengers
and pedestrians. AI-enabled applications like spam-filtering [37], speaker identifi-
cation [62], or malware detection [42] could also be bypassed if the model used
contains a backdoor. Thus, backdoor attacks pose a serious threat, and it is required
to understand the limits of such attacks to provide better defenses.

This work explores the effects of various trigger characteristics on the backdoor
attack. In particular, we implement backdoor attacks with triggers of varying sizes,
positions, and poisoning rates and apply them to four different domains (image, text,
sound, and graph data). With it, we aim to better understand backdoor attacks and
find common properties among different domains.

In [47], the authors claimed that the backdoor attack becomes ineffective when
the adversary cannot alter the training labels and is forced to poison only samples
from the target class. In this case, the model cannot learn a strong connection
between the trigger and the target class as more substantial features from the target
class are learned. This behavior is reasonable and well justified but only supported
by one experiment with the CIFAR10 dataset. Here, we aim to test this claim in
image classification but also in different domains, like text and sound classification.

Our contributions are:

– We run extensive experiments in different application domains (image, text,
audio, and graph data) and systematically evaluate the effect of various trigger
characteristics on the backdoor attack.

– We investigate two different backdoor attacks in each application and verify
that the clean-label attack is not very effective as it may require large poisoning
rates to achieve a high attack success rate. However, this attack could work by
choosing more effective triggers without changing the poisoning rate.

– We show that in most cases, the backdoor’s effectiveness increases as the trigger
size increases.

A Systematic Evaluation of Backdoor Attacks in Various Domains 521

2 Background

2.1 Computer Vision

Today, the computer vision domain covers diverse use cases and concepts within,
ranging from capturing raw data to image pattern extraction and interpreting
information from those images. It is mostly a combination of concepts, ideas, and
techniques of pattern recognition, digital image processing, artificial intelligence
(AI), and computer graphics [53]. Computer vision aims to provide the capability
for a system to identify and perceive the visual world in the same way as human
vision does. Recently, by applying AI techniques, including deep neural networks,
the machines even outperformed humans in several tasks [13].

Nowadays, there are multiple applications of computer vision in our daily life,
e.g., weather prediction, medical cases, sports and entertainment, industry and
production lines, and human-computer interaction [24, 25, 36, 46, 49, 51, 60]. While
the use cases and applications are becoming broader and more prevalent in our
everyday lives, security issues regarding the techniques and algorithms are also
becoming a significant challenge to deal with.

2.2 Natural Language Processing

Natural language processing (NLP) is at the intersection of computational linguis-
tics, computer science, and artificial intelligence. It aims to make machines that
understand human language and reason about it. NLP is an umbrella term that
covers many different applications that deal with human language in both spoken
and written formats. Applications that belong to natural language processing are,
among others, speech recognition, speaker identification, question answering, text
sentiment analysis, hate speech detection, natural language generation (speech-to-
text and text-to-speech models), spam detection, and text translation. Initially, NLP
was based on static rules, but now it uses deep learning for most tasks [23].

Recent advances in NLP have led to very efficient human-computer interfaces
that have been broadly deployed. Virtual assistants like Siri and Google assistant and
popular IoT devices like Amazon Alexa have been widely used with great success.
However, such applications open up new attack vectors that put the user’s security
and privacy at risk. Therefore, before their wide adoption in the industry, we must
ensure that such systems work securely.

522 S. Koffas et al.

2.3 Graph Data

Many real-world applications can be modeled as graphs, such as social networks,
gene interactions, and transport networks. Similar to the great success of deep learn-
ing models in, e.g., image classification and natural language processing, deep graph
models (graph neural networks—GNNs) have also achieved promising performance
in processing graph data for different tasks, e.g., the graph classification task and
node classification task.

Graph Neural Networks (GNNs) GNNs take a graph G as an input, including
its structure information and node features, and learn a representation vector
(embedding) for each node .v ∈ G, . zv , or the entire graph, . zG. Modern GNNs
follow a neighborhood aggregation strategy, where one iteratively updates the
representation of a node by aggregating representations of its neighbors. After k
iterations of aggregation, a node’s representation captures both structure and feature
information within its k-hop network neighborhood. Formally, the k-th layer of a
GNN is (e.g., GCN [26], GraphSAGE [20], and GAT [48]):

.Z(k) = AGGREGAT E(A,Z(k−1); θ(k)), (1)

where .Z(k) are the node embeddings in the matrix form computed after the k-th
iteration and the AGGREGAT E function depends on the adjacency matrix A,
the trainable parameters .θ(k), and the previous node embeddings .Z(k−1). .Z(0) is
initialized as G’s node features.

For the node classification task, the node representation .Z(k) of the final iteration
is used for prediction. For the graph classification task, the READOUT function
pools the node embeddings from the final iteration K:

.zG = READOUT (Z(K)). (2)

READOUT can be a simple permutation invariant function such as summation or a
more sophisticated graph-level pooling function [59, 63].

Graph-Level Classification Graph-level classification aims to predict the class
label(s) for an entire graph [63]. The end-to-end learning for this task can be realized
using graph convolutional layers and readout layers. While graph convolutional
layers are responsible for extracting high-level node representations, the readout
layer collapses node representations of each graph into a graph representation. By
applying a multilayer perceptron and a Softmax layer to graph representations, one
can build an end-to-end framework for graph classification.

Node-Level Classification Given a graph with a few labeled nodes, GNNs can
learn a robust model that effectively identifies the class labels for the unlabeled
nodes [26]. In a node-level classification task, there are two types of training
settings—inductive and transductive. In an inductive setting, the unlabeled nodes
are not seen during training, while in a transductive setting, the test nodes (but not

A Systematic Evaluation of Backdoor Attacks in Various Domains 523

their labels) are also observed during the training process. The transductive training
setting is popular, and in this work, we used a backdoor attack in the transductive
node-level classification task.

2.4 Backdoor Attacks

Backdoor attacks aim to make a model misclassify some of its inputs to a
preset-specific label while other classification results behave normally. This misclas-
sification is activated when a specific property is included in the model input. This
property is called the trigger and can be anything the targeted model understands.
For instance, a random pixel pattern [6, 19] or an actual item [52] in computer
vision, a specific phrase in text classification [32], a tone in speech recognition [28],
or a subgraph with specific properties in graph data [55]. The framework for the
backdoor attack is shown in Fig. 1.

The first backdoor attacks targeted computer vision [6, 19] under a simple threat
model, where an adversary could inject a small portion of poisoned data into the
training dataset. In particular, the adversary injects into the training dataset data

Fig. 1 Framework for the backdoor attack

524 S. Koffas et al.

stamped with a trigger that belongs to the target class. As a result, the trained model
strongly associates this pattern with the target class, and whenever it is added to
an input, the classification result will be the target class. Recent trends in machine
learning like Machine Learning as a Service (MLaaS), outsourced training, transfer
learning, and crowdsourced datasets have made this setup possible.

In MLaaS, a cloud provider provides a pay-per-request API1 that can be used
for predictions. However, the user can only use such an API as a black box
without being able to verify how the model makes its predictions. Similarly, during
outsourced training, the user’s model is trained on the cloud and returned to the user
after the training ends. Due to the lack of formal verification tools for the trained
models, the user can never verify that the returned model does not contain any
backdoors. Furthermore, in [19], the authors showed that a backdoor could remain
effective even after a poisoned model was repurposed through transfer learning.
Large crowdsourced datasets like ImageNet [11] and Mozilla’s common voice [1]
are so vast that cannot be exhaustively verified [39]. Thus, an adversary could inject
a few poisoned samples resulting in the backdoored models.

This threat can pose real challenges as an adversary could bypass a face
identification biometric access control system [6] or force an autonomous vehicle
to ignore a stop sign and continue its course [19]. For this reason, backdoor
attacks became very popular among researchers resulting in many novel attacks
and countermeasures [15]. Novel attacks are not only limited to data poisoning but
can also be based on code poisoning [2] or the direct modification of the model’s
parameters [22]. At the same time, due to the inability to completely understand
how a deep learning model works and the lack of formal verification methods about
a model’s functionality, most countermeasures are empirically based on specific
assumptions [4, 16, 50]. Unfortunately, in most cases, an adaptive attacker with a
slightly different approach could bypass such defenses [7, 30, 43].

There are several variations of the backdoor attack resulting from different
poisoning strategies. The first distinction is the class-agnostic and the class-specific
backdoors [15]. The class-agnostic backdoor can be activated by a trigger injected
into any input. On the other hand, the class-specific backdoor is activated only
if the poisoned input belongs to a specific class. The main difference between
these two strategies is that in the second case, the model needs to identify both
features of the trigger and the source class making possible countermeasures more
challenging [16]. Considering class-agnostic backdoor attacks, we can differentiate
between the “simple” backdoor attack [19] and the clean-label backdoor attack [47].

Simple Backdoor Attack In the rest of this paper, by the simple backdoor attack,
we are referring to the data poisoning backdoor attack that was introduced in
BadNets [19]. In this case, the adversary adds a small subset of poisoned samples
to the training dataset. These samples have been stamped with the adversary-chosen

1 https://aws.amazon.com/transcribe/.

https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/

A Systematic Evaluation of Backdoor Attacks in Various Domains 525

trigger, and their label has been changed to the target class. The target class is the
output of the poisoned model when the backdoor is activated.

Clean-Label Backdoor Attack The clean-label backdoor attack was introduced
in [47]. This attack is similar to a simple attack, but the adversary cannot affect
the label of the injected data. The reasoning behind this attack is that the poisoned
training samples can be easily identified as outliers by simple filtering mechanisms
or even human inspection because the original class of these samples is different
from the target class. Thus, an adaptive adversary may have to poison samples
only from the target class, hoping that the model identifies the trigger pattern as a
class feature. This attack is still a data poisoning backdoor attack but uses a weaker
adversary making the attack more challenging.

Based on the trigger, backdoors can be either static [19] or dynamic [27]. The
static backdoors are activated with a trigger that has very specific characteristics.
In computer vision, such a trigger could mean a specific pixel pattern or a specific
position. On the other hand, the dynamic backdoors can be activated by various
triggers with different characteristics.

For graph neural networks, the first backdoor attack was proposed in [65]. In
this backdoor attack, a GNN classifier predicts an attacker-chosen target label for
a testing graph once a predefined subgraph is injected into the testing graph. All
perturbed graphs are injected with the same trigger graph. Another backdoor attack
against GNNs for the graph classification task was presented in [55], but it differs
from [65] in which a universal trigger graph is assumed for all the embedded graphs.
This kind of backdoor attack dynamically adapts triggers to individual graphs. The
adaptive trigger is optimized in both topological structure and node features. The
training processes of the trigger generation function and the backdoored GNN
model are assumed as a bi-level optimization objective [14]. The authors also
adapted a backtracking-based algorithm to replace a subgraph in the original graph
with the adaptive trigger graph. Xu et al. [57] explored backdoor attacks on GNNs
with several explainability tools. In this work, the backdoor attack is implemented
with the same strategy [65] for the graph classification task. The authors also
proposed a new backdoor attack strategy for the node classification task. All the
above-mentioned attacks in GNNs are gray box backdoor attacks since the adversary
only modifies the training dataset instead of interfering with the training of models.

2.4.1 Metrics

The successful backdoor attack should always be activated when the trigger is
embedded into the model’s input because an adversary wants to remain stealthy
and interact with the poisoned model as little as possible. Additionally, the backdoor
should not affect the original task when the trigger is not included in the input. When
the poisoned model does not perform well on the original task, the backdoored
model will (1) raise suspicions that something is wrong and (2) not be used, thus

526 S. Koffas et al.

preventing the adversary’s plans. As a result, to measure the success of a backdoor
attack, we require two metrics: the attack success rate and the clean accuracy drop.

2.4.1.1 Attack Success Rate (ASR)

The ASR shows the reliability of the attack, and it represents the number of
successfully triggered backdoors from a number of poisoned inputs:

.ASR =
∑N

i=1 F(M∗(xi) = yt)

N
, (3)

where .M∗ is the poisoned model, . xi is a poisoned input, . yt is the target class, and
.F(x) is a function that returns 1 if x is true and 0 otherwise.

2.4.1.2 Clean Accuracy Drop (CAD)

This quantity shows the backdoor’s effect on the original task. It is calculated by
comparing the performance of a poisoned and a clean model for clean inputs. The
accuracy drop should generally be small to keep the attack stealthy.

3 Methodology

3.1 Threat Model

In this work, we implement data poisoning backdoor attacks. The adversary injects
a small subset of poisoned data without knowing any information about the model
architecture or the training algorithm. Thus, the attack follows a gray box threat
model. This threat model is realistic as current large datasets are crowdsourced [1,
11] and malicious data may go through the validation process [39]. So, an adversary
could inject trigger-stamped data in such datasets that will remain unnoticed and
used during training resulting in a successful backdoor attack.

In our experiments, we investigate two different attacks, the simple data poison-
ing attack [19] and the clean-label attack that does not alter the labels of the poisoned
data [47]. For both attacks, the adversary aims to cause targeted misclassifications
with a very high probability without affecting the model’s performance on the
original task.

A Systematic Evaluation of Backdoor Attacks in Various Domains 527

3.2 Image Classification

Attacks We use two different attacks: the simple backdoor attack and the clean-
label attack.

Datasets For our image classification backdoor attacks, we use two popular image
datasets: (i) CIFAR10 that consists of 60,000 32×32 color images in ten classes,
with 6000 images per class. There are 50,000 training images and 10,000 test
images. (ii) Fashion-MNIST (FMNIST) [56]—a dataset of Zalando’s article images
consisting of a training set of 60,000 images and a test set of 10,000 images. Each
image is a 28×28 gray-scale image associated with a label from ten classes.

For the CIFAR10 dataset, we split the test set in an i.i.d manner into two 5000
sample datasets, each used for validation and test, respectively. For the FMNIST
dataset, we split the training set into two different sized datasets in an i.i.d manner:
the first having 50,000 samples used for training and the second having 10,000
samples for validation. With this, we have the same size of training samples for
both datasets, so comparing results between these two is easier.

Features The input features for both neural networks are the tensor of images. For
the CIFAR10 dataset, each RGB image is considered as a [3, 32, 32] shape tensor.
For FMNIST, however, the images are gray-scale, so the input has only one channel
([1, 28, 28] shape tensor). We also did the standard normalization for input values
before all train, validation, and test phases.

Models We use two models: STRIPNet [16] and ResNet [21] with nine residual
blocks (ResNet-9).

Trigger As described in [27], various triggers have been used in image classifi-
cation, and all of them resulted in successful backdoor attacks. This means that
the trigger shape and pattern are not crucial for the success of a backdoor attack.
Thus, for our experiments, we chose a square trigger. Its pixel intensities are random
values retrieved from a continuous uniform distribution (pseudorandom generator).
The seed in this generator was fixed for consistency in our experiments.

3.3 Natural Language Processing

Attacks Similar to image classification, we use simple and clean-label backdoor
attacks.

Datasets In our experiments, we used the IMDB [33] and the AG News topic
classification [64] datasets. The IMDB dataset consists of 50,000 (50%/50% train-
ing/test split) movie reviews of high polarity (either positive or negative). We used
20% of the training data for validation. The AG News topic classification dataset
consists of news articles belonging to four categories (world, sports, business, and
science/technology). The training set consists of 120,000 samples and the testing set

528 S. Koffas et al.

of 7600 samples. Again, we used 20% of the training data for validation resulting in
96,000 and 24,000 samples for training and validation sets, respectively.

Features The first step of our pipeline is a TextVectorization layer that
transforms each input to a convenient form for processing as described in [27]. As
the datasets are different, we used a different sequence length for each dataset. We
forced the length of each sentence to be 250 words for the IMDB dataset and 197
for the AG News dataset. Additionally, we used a vocabulary of 10,000 words that
proved enough for such small datasets.

Models We used two publicly available CNN architectures. Both the first CNN2

and the second CNN3 use an embedding layer as their input. However, the first
CNN uses a small trainable embedding of size 16, and the second uses a pretrained
GloVe embedding [38] of size 100. We want to investigate if the attack becomes
more difficult when the model uses a pretrained embedding because this is more
frequent in practice. Such embeddings have been trained in large corpora of text
and interpret possible connections between different words more accurately. To
illustrate, Google’s pretrained word2vec is trained with 100 billion words from
Google News, and it contains 300-dimensional vectors for 3 million words and
phrases [34]. The GloVe is trained from a corpus of 6 billion words and has a
vocabulary of 400,000 words [38].

Trigger As the trigger, we used a sentence of 1 up to 4 words from the list [“trope,”
“everyday,” “mythology,” “sparkles,” “ruthless”] as defined in [32]. We applied the
trigger in three positions (beginning, middle, and end) to investigate whether our
models are more sensitive in specific positions.

3.4 Speech Recognition

Attacks Again, we use simple and clean-label backdoor attacks.

Datasets For this application, we used two versions of the Speech Commands
dataset as described in [28]. The first version uses ten classes of the dataset and the
second 30 classes. From our experiments, we excluded the samples that lasted less
than one second to avoid variable-sized inputs in our pipeline resulting in 21,312
.wav files in the first case and 58,252 files in the second case. In both cases, we use
64%/16%/20% for training, validation, and testing.

Features As our input features, we used the MFCCs of each training input. The
exact hyperparameters for this calculation are described in [28].

Models We used one CNN [32] and one LSTM [10] for our experiments.

2 https://www.tensorflow.org/tutorials/keras/text_classification.
3 https://keras.io/examples/nlp/pretrained_word_embeddings/.

https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/

A Systematic Evaluation of Backdoor Attacks in Various Domains 529

Trigger Our dataset’s sound files are sampled at 16 kHz, and according to the
Nyquist-Shannon sampling theorem, the largest tone frequency that can be included
in such digital signals is 8 kHz. Thus, following [27], our trigger is a 7 kHz tone
which is a high pitch audible sound. Following the rest of the triggers tried, this
trigger differs from the normal dataset samples. It lasts from 20 to 80 ms because
we want to model an adversary that is as stealthy as possible. The trigger is injected
in three different positions of each sound sample (beginning, middle, and end).

3.5 Graph Data

Attacks As described in Sect. 2.4, for graph neural networks, we utilize two
backdoor attacks, i.e., .AT I [65] and .AT II [55]. The framework for .AT I is illustrated
in Fig. 2. In the training phase (Fig. 2a), the attacker injects a trigger (subgraph . gt)
to a subset of training graphs and changes their labels to an attacker-chosen target
label. A GNN classifier is then trained using the backdoored training dataset, and
such GNN is called backdoor GNN . Φb. In the test phase (Fig. 2b), once the test
graph is injected with the same trigger graph, the backdoored GNN is likely to
misclassify the testing sample to the target label. For the node classification task,
we used the backdoor attack from [57].

Since [65] and [57] designed the same strategy to implement the backdoor attack
for the graph classification task, we illustrate the results of [65] and [55] for the
graph classification task. The results based on [57] are presented for the node
classification task.

Fig. 2 Subgraph-based backdoor attack for the graph classification task. (a) Training. (b) Testing

530 S. Koffas et al.

Table 1 Graph datasets statistics

Datasets # Graphs Avg. # nodes Avg. # edges Classes Class distribution

AIDS 2000 15.69 16.20 2 400[0], 1600[1]
TRIANGLES 45,000 20.85 32.74 10 4500[0–9]
Cora 1 2708 5429 7 351[0], 217[1], 418[2], 818[3],

426[4], 298[5], 180[6]
CiteSeer 1 3327 4608 6 264[0], 590[1], 668[2],

701[3], 596[4], 508[5]

Datasets Table 1 shows the statistics for all considered datasets for graph neural
networks. For the graph classification task, we use two publicly available graph
datasets. (i) AIDS [35]—a dataset consisting of graphs representing molecular
compounds that are active against HIV or not; (ii) TRIANGLES [35]—a synthetic
dataset designed to solve the task of counting the number of triangles in a graph.
For each graph classification dataset, we sample 2/3 of the graphs as the original
training dataset and treat the remaining graphs as the original testing dataset. Among
the original training dataset, we randomly sample α fraction of graphs to inject the
trigger and relabel them with the target label, called the backdoored training dataset.
Several parameters can affect the attack effectiveness: trigger size s, trigger density
ρ, and poisoning intensity α. Unlike other domains, e.g., image classification, the
trigger position in graph data is irrelevant and cannot be defined because a graph
is non-Euclidean data where we cannot put nodes in some order. For AT I, we use
Erdős-Rényi (ER) model [17] to generate the trigger graph, as it is more effective
than the other methods [65].

For the node classification task, we use two real-world datasets: (i) Cora [41]—a
citation network in which each publication is described by a binary-valued word
vector indicating the absence/presence of the corresponding word in the collection
of 1433 unique words. (ii) CiteSeer [41]—another citation network with more
nodes but less edges. For each node classification dataset, we split 20% of the total
nodes as the original training dataset (labeled) and the rest as the original testing
dataset (unlabeled). To generate the backdoored training dataset, we sample α of
the original training dataset to inject the feature trigger and relabel these nodes with
the target label. The feature trigger width is set to be n. Moreover, based on the
conclusion in [57], different feature trigger injecting positions have a negligible
impact on the attack performance, so the trigger injecting position is randomly
selected. Here, we explore the impact of poisoning intensity α and feature trigger
width n on the attack performance. In the node classification task, each node feature
has a value of 0 or 1, and here we set the value of the modified node features to 1
(note, the values could also be set to 0).

Features Each graph contains topological and node feature information. For each
graph dataset in this work, there is an adjacency matrix and feature information
matrix. For AIDS, Cora, and CiteSeer, there is a specific node feature vector for

A Systematic Evaluation of Backdoor Attacks in Various Domains 531

each node in the graph, but for TRIANGLES, the one-hot degree of a node is used
as the node feature.

Models We use two state-of-the-art GNN models for the graph classification task:
GCN [26] and GraphSAGE [20]. We use GCN [26] and GAT [48] for the node
classification task.

Trigger For the graph classification task, our trigger is a global (adaptive) subgraph
in AT I(AT II). For the node classification task, our trigger is a subset of node
features with a fixed value, e.g., 0.

4 Experimental Results

4.1 Image Classification

Chosen Settings and Selected Parameters We ran our experiments with a
different number of poisoned samples (25, 300, 575, 850), trigger sizes (.4×4, .8×8,
.12 × 12), and trigger positions (Upper-Mid, Mid-Left, Mid-Right, Lower-Mid) on
the image. Figure 3 demonstrates four different positions of a .4×4 trigger for several
FMNIST sample images. We repeated each experiment two times, which makes the
total number of 768 experiments regarding the chosen settings. We set class number
5 as the target for all experiments and in both datasets.

Every backdoor attack should remain stealthy without affecting the original task.
Therefore, the poisoned model should perform as expected when the input does
not contain the trigger. In Table 2, we compare the performance of clean and
backdoored models for clean inputs. The attack accuracy mentioned in this table is
the arithmetic mean (. ± the standard deviation) of the accuracy on clean inputs from
all the poisoned models trained in our experiments. For the original accuracy, we
trained multiple clean models and averaged their performance. The model remains
unaffected from both backdoor attacks even if we use 850 poisoned samples. Such
poisoning rates are small and cannot affect the model’s performance in general.
From Table 2, we can also verify that our models perform similarly well in both

Fig. 3 Applied .4 × 4 trigger in different positions: Upper-Mid, Mid-Left, Mid-Right, Lower-Mid

532 S. Koffas et al.

Ta
bl
e
2

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 im

ag
e

cl
as

si
fic

at
io

n

N
um

be
r

of
 p

oi
so

ne
d

Sa
m

pl
es

D
at

as
et

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

25
20

0
37

5
85

0

C
IF

A
R

10
ST

R
IP

N
et

85
.0

9
(. ±

0.
59

9)
C

le
an

-l
ab

el
85

.2
2

(. ±
0.

50
8)

85
.3

8
(. ±

0.
52

3)
85

.3
7

(. ±
0.

37
8)

85
.2

3
(. ±

0.
47

1)

Si
m

pl
e

85
.3

1
(. ±

0.
46

7)
85

.2
8

(. ±
0.

43
8)

85
.3

5
(. ±

0.
36

0)
85

.1
2

(. ±
0.

47
7)

R
es

ne
t-

9
89

.9
9

(. ±
0.

49
9)

C
le

an
-l

ab
el

89
.9

8
(. ±

0.
35

6)
89

.8
6

(. ±
0.

30
0)

89
.7

9
(. ±

0.
46

1)
89

.6
9

(. ±
0.

37
7)

Si
m

pl
e

89
.9

4
(. ±

0.
35

3)
89

.7
7

(. ±
0.

27
4)

89
.7

5
(. ±

0.
26

6)
89

.7
4

(. ±
0.

37
8)

FM
N

IS
T

ST
R

IP
N

et
93

.6
2

(. ±
0.

20
5)

C
le

an
-l

ab
el

93
.6

6
(. ±

0.
08

0)
93

.6
8

(. ±
0.

12
7)

93
.6

4
(. ±

0.
13

1)
93

.6
9

(. ±
0.

13
9)

Si
m

pl
e

93
.5

9
(. ±

0.
13

5)
93

.6
1

(. ±
0.

14
8)

93
.6

7
(. ±

0.
15

2)
93

.6
5

(. ±
0.

13
9)

R
es

ne
t-

9
93

.6
3

(. ±
0.

15
4)

C
le

an
-l

ab
el

93
.5

9
(. ±

0.
15

2)
93

.5
3

(. ±
0.

15
7)

93
.6

2
(. ±

0.
17

1)
93

.5
9

(. ±
0.

17
6)

Si
m

pl
e

93
.5

7
(. ±

0.
12

9)
93

.5
5

(. ±
0.

18
1)

93
.5

9
(. ±

0.
16

4)
93

.5
8

(. ±
0.

17
3)

A Systematic Evaluation of Backdoor Attacks in Various Domains 533

datasets, which is helpful when comparing the performance of the attack for each
case.

Results for FMNIST As it can be inferred from Fig. 4, the clean-label attack is not
that effective against the FMNIST dataset. By increasing the number of poisoned
samples, there are small or no improvements in attack success rate (there are small
improvements when increasing the number of samples from 25 to 300, but as we
increase from 300 to 575 and from 575 to 850, the improvements become even
smaller). We assume this is mainly due to the dataset nature and the capability of
the CNNs to learn the exclusive features of each class easily and robustly so that
injecting a trigger (even of size 12×12) could not disturb the network from learning
those.

Since both ResNet-9 and STRIPNet have convolutional layers, we expect
negligible effects of trigger position on attack success rate. The results confirm this
as there are only minor effects stemming from the trigger positions (for instance,
in both networks, the trigger on the lower-mid results in the least ASR, while on
the mid-right, it has a little more chance of being learned by the network. Again,
we suppose this is because of the attributes of the FMNIST images and the models’
focus on specific regions of an image to learn). Additionally, in almost all cases
(except a few ones like upper-mid in ResNet-9), increasing the trigger size leads to
higher ASR.

For the simple attack, we obtained 100% ASR for 300 attack samples or more.
With 25 poisoned samples, some trigger positions have positive effects on ASR
regardless of trigger size (for instance, the mid-left trigger achieves high ASR even
with 4 × 4 size triggers).

Results for CIFAR10 The clean-label attack is significantly more effective for
CIFAR10 than FMNIST (Figs. 4 and 5). We believe this is primarily because the
CIFAR10 images are RGB, and the crafted trigger has more layers (3 channels).
As a result, the model learns the embedded trigger with less poisoned samples. As
expected, the trigger position does not play an important role in ASR, and in almost
all cases, ASR improves using a larger trigger size.

Another observation is that the smaller the size of the trigger, the more noticeable
the ASR improvement when increasing the number of poisoned samples from 25 to
850. For instance, for a 12 × 12 trigger, there is no noticeable improvement in ASR
when the number of poisoned samples increases from 575 to 850. On the other hand,
using a 4 × 4 trigger, ASR’s growth is easily observable between all four different
poisoning rates.

Analyzing the simple attack, similarly to FMNIST, we achieved 100% ASR
for 300 poisoned samples or more. Additionally, ResNet-9 is more vulnerable to
backdoor attacks, particularly when using fewer poisoned samples and smaller
triggers. We believe this is mostly because ResNet-9 is a larger network than
STRIPNet and can extract more data from the given dataset.

534 S. Koffas et al.

Fig. 4 Attack accuracy for the FMNIST dataset. From these figures, we conclude that the clean-
label attack is not effective but is slightly improved when increasing the poisoning rate. On the
other hand, the simple attack can be very effective even with a small poisoning rate (0.6%).
Additionally, larger triggers lead to higher ASR, but different trigger positions do not result in ASR
fluctuations as the convolutional layers identify the trigger. (a) ResNet-9 + clean-label attack. (b)
ResNet-9 + simple attack. (c) STRIPNet + clean-label attack. (d) STRIPNet + simple attack. (e)
Legend

4.2 Natural Language Processing

In Tables 3 and 4, we compare the performance of clean and backdoored models
in text classification when clean inputs are used. These tables are generated by
averaging the performance of clean and poisoned models as described in Sect. 4.1.
In all cases, the model’s performance remains almost unaffected after the backdoor
insertion. There are a few minor accuracy drops that are at most 0.6% making the

A Systematic Evaluation of Backdoor Attacks in Various Domains 535

Fig. 5 Attack accuracy for the CIFAR10 dataset. The clean-label attack is significantly more
effective than for FMNIST because the 3-channel trigger contains more information. We also see
that the trigger position is not very important, and ASR increases as the trigger size increases.
The ASR with the simple attack is 100% for a 0.6% poisoning rate or more. However, STRIPNet
is not as vulnerable as ResNet due to its smaller capacity. (a) ResNet-9 + clean-label attack. (b)
ResNet-9 + simple attack. (c) STRIPNet + clean-label attack. (d) STRIPNet + simple attack. (e)
Legend

attack stealthy. This behavior is expected as we poison only a small subset of the
training data that cannot substantially affect the model’s learning.

In Figs. 6 and 7, we show the results of our experiments for the AG News topic
classification dataset and IMDB dataset, respectively. From these figures, we can
draw several conclusions. In most cases, the ASR is correlated with the trigger size
and increases as the trigger size increases. This is true even when the attack is not
effective (see Fig. 6a).

536 S. Koffas et al.

Ta
bl
e
3

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 te

xt
 c

la
ss

ifi
ca

tio
n

(A
G

 N
ew

s)
 N
um

be
r

of
 p

oi
so

ne
d

sa
m

pl
es

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

25
0

50
0

75
0

10
00

C
N

N
90

.7
4

(. ±
0.

31
4)

C
le

an
-l

ab
el

90
.4

8
(. ±

0.
55

7)
90

.5
2

(. ±
0.

53
1)

90
.5

2
(. ±

0.
61

4)
90

.5
1

(. ±
0.

54
1)

Si
m

pl
e

90
.4

9
(. ±

0.
53

4)
90

.3
8

(. ±
0.

59
3)

90
.5

3
(. ±

0.
48

4)
90

.3
3

(. ±
0.

76
0)

C
N

N
. +

G
lo

V
e

89
.7

8
(. ±

0.
16

9)
C

le
an

-l
ab

el
89

.7
2

(. ±
0.

21
8)

89
.7

1
(. ±

0.
20

1)
89

.7
1

(. ±
0.

18
6)

89
.7

0
(. ±

0.
22

0)

Si
m

pl
e

89
.7

2
(. ±

0.
20

9)
89

.6
8

(. ±
0.

20
6)

89
.6

9
(. ±

0.
22

7)
89

.6
8

(. ±
0.

20
2)

A Systematic Evaluation of Backdoor Attacks in Various Domains 537

Ta
bl
e
4

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 te

xt
 c

la
ss

ifi
ca

tio
n

(I
M

D
B

)

N
um

be
r

of
 p

oi
so

ne
d

sa
m

pl
es

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

50
10

0
15

0
20

0

C
N

N
87

.0
5

(. ±
0.

06
2)

C
le

an
-l

ab
el

86
.9

1
(. ±

0.
08

4)
86

.9
3

(. ±
0.

07
1)

86
.9

1
(. ±

0.
07

8)
86

.9
0

(. ±
0.

07
2)

Si
m

pl
e

86
.9

0
(. ±

0.
08

3)
86

.8
9

(. ±
0.

08
9)

86
.8

8
(. ±

0.
09

0)
86

.8
8

(. ±
0.

09
6)

C
N

N
 +

 G
lo

V
e

84
.2

0
(. ±

0.
30

8)
C

le
an

-l
ab

el
83

.7
3

(. ±
0.

68
1)

83
.7

1
(. ±

0.
70

2)
83

.6
2

(. ±
0.

77
5)

83
.7

7
(. ±

0.
68

0)

Si
m

pl
e

83
.7

9
(. ±

0.
53

5)
83

.8
2

(. ±
0.

51
9)

83
.6

1
(. ±

0.
57

0)
83

.5
9

(. ±
0.

72
4)

538 S. Koffas et al.

Fig. 6 Attack accuracy for the AG News dataset. The ASR is positively correlated with the trigger
size (even when the ASR is very low), and the poisoning rate significantly influences the attack’s
effectiveness. Additionally, the clean-label attack needs more poisoned data to work. When GloVe
is used, inserting the trigger in the end results in higher ASR (especially for low poisoning rates),
but in the simple CNN, the trigger positions do not affect ASR. (a) CNN with GloVe . + clean-label
attack. (b) CNN with GloVe . + simple attack. (c) CNN . + clean-label attack. (d) CNN . + simple
attack. (e) Legend

Especially for the first CNN, this relation seems to be linear (see Figs. 6c, 6d, 7c
and 7d). This simple model uses global average pooling as its penultimate layer,
averaging the feature map before the output. As a result, the trigger will be more
influential when it consists of more words. In almost all experiments, the poisoning
rate is a highly influential hyperparameter of the backdoor attack, and any increase
in it leads to an increase in the attack success rate.

Our models learn differently, which can be seen from the varying attack success
rate when the trigger is injected in different positions. For example, the attack
success rate is higher if the trigger is inserted at the end of the sentence when we use

A Systematic Evaluation of Backdoor Attacks in Various Domains 539

Fig. 7 Attack accuracy for the IMDB dataset. The ASR is positively correlated with the trigger
size, and the poisoning rate significantly influences the attack’s effectiveness. Additionally, the
clean-label attack is more effective with this dataset. For the CNN that uses GloVe, placing the
trigger at the end of the sentence yields the best results, but for the simple CNN, this is the least
effective position. (a) CNN with GloVe . + clean-label attack. (b) CNN with GloVe . + simple attack.
(c) CNN . + clean-label attack. (d) CNN . + simple attack. (e) Legend

the first model and the simple backdoor attack (see Figs. 6b and 7b). This difference
is very clear for low poisoning rates (0.25%), where even a small trigger of 2 words
could be substantially more effective when placed at the end of the sentence. On
the other hand, for the other model, placing the trigger at the end does not result in
higher ASR (see Figs. 6d and 7d). These differences indicate that we could use the
backdoor attack as a tool for AI explainability and further understand what and how
a model learns by using triggers with different characteristics.

In [47], the authors claimed that the clean-label backdoor attack needs a very
large poisoning rate to be effective. We also see this behavior in the AG News
dataset, especially for the architecture that uses the pretrained GloVe embedding

540 S. Koffas et al.

(Fig. 6a). In the other architecture, the clean-label attack is more effective as the
feature space created by the trainable embedding encodes some information about
the trigger and the target class (see Fig. 6c). However, when the IMDB dataset is
used, both models perform similarly without poisoning a very large part of the
training data for the clean-label (see Figs. 7a and 7c). This can be explained by
the differences between the datasets. Each sentence in AG News is shorter than the
movie reviews in the IMDB dataset. Additionally, most of the words in AG News
are strongly connected with the topic that each sentence belongs to (world, sports,
business, and science/technology), which is not true for the IMDB dataset. In the
IMDB dataset, the sentences are longer, and usually, only a few words are related to
their sentiment. As a result, in AG News, our attack needs more poisoned samples
to overcome the effect of the original features of the source class.

4.3 Speech Recognition

In Tables 5 and 6, we compare the performance of clean and backdoored models
for sound classification when clean inputs are used. As was also shown in [28],
the differences between the clean and the backdoored models are negligible. In
particular, the backdoored models perform a little better when the 10 classes dataset
is used, meaning that the poisoned samples could serve as a generalization factor.
However, when the full dataset is used, the backdoor insertion results in a small
performance drop for the CNN. In this case, we use more classes, and the model
has to learn a more difficult task that is affected even by a few poisoned samples.
The performance of the LSTM is slightly increased, meaning that the LSTM builds
different models and utilizes its capacity better when we use the full dataset [28].
All these differences are small, and our claims need additional experimental data to
be confirmed.

In Figs. 8 and 9, we show the results of our experiments for the first (10 classes)
and the second (30 classes) version of the Speech Commands dataset. In almost all
cases, the attack success rate increases as the trigger duration increases. This is true
even when the attack is not successful (see the clean-label attack in Figs. 8c and 9c).
This makes sense as more input features are affected when a longer trigger is used,
and the network can learn this relation easier. Additionally, the poisoning rate is
very influential, and its increase leads to more effective backdoors.

The end of the input is the most effective trigger position for the LSTM network
in both versions of the dataset. Even though this network uses two bidirectional
LSTM layers and an attention layer, it seems to learn the features that are placed
towards the end of its inputs more easily. The LSTM network was designed to tackle
the problem of long-term dependencies on its inputs. A possible reason for this
behavior is the nature of this particular dataset, which consists of 1-second clips of
spoken words. If these words are not perfectly centered and distributed to the upper
half of each sample, our network will give more attention to the end of each training
sample. This is not true for the CNN used as, in that case, all the positions seem to

A Systematic Evaluation of Backdoor Attacks in Various Domains 541

Ta
bl
e
5

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 s

ou
nd

 c
la

ss
ifi

ca
tio

n
(1

0
cl

as
se

s)

N
um

be
r

of
 p

oi
so

ne
d

sa
m

pl
es

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

50
10

0
15

0
20

0

C
N

N
94

.8
2

(. ±
0.

36
0)

C
le

an
-l

ab
el

95
.0

7
(. ±

0.
43

7)
95

.0
0

(. ±
0.

47
7)

95
.0

7
(. ±

0.
42

7)
94

.9
6

(. ±
0.

50
8)

Si
m

pl
e

95
.0

9
(. ±

0.
41

7)
95

.0
4

(. ±
0.

43
8)

94
.9

9
(. ±

0.
47

4)
94

.9
5

(. ±
0.

48
0)

L
ST

M
89

.4
7

(. ±
1.

41
2)

C
le

an
-l

ab
el

89
.7

7
(. ±

1.
42

6)
89

.6
9

(. ±
1.

35
0)

90
.0

5
(. ±

1.
36

2)
89

.8
9

(. ±
1.

37
3)

Si
m

pl
e

89
.7

1
(. ±

1.
60

5)
89

.9
6

(. ±
1.

33
5)

89
.6

6
(. ±

1.
48

2)
89

.8
0

(. ±
1.

58
6)

542 S. Koffas et al.

Ta
bl
e
6

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 s

ou
nd

 c
la

ss
ifi

ca
tio

n
(3

0
cl

as
se

s)

N
um

be
r

of
 p

oi
so

ne
d

sa
m

pl
es

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

13
7

27
4

41
1

54
7

C
N

N
94

.7
0

(. ±
0.

39
5)

C
le

an
-l

ab
el

94
.6

1
(. ±

0.
41

0)
94

.5
5

(. ±
0.

43
9)

94
.4

9
(. ±

0.
57

5)
94

.5
9

(. ±
0.

46
1)

Si
m

pl
e

94
.5

4
(. ±

0.
47

1)
94

.6
3

(. ±
0.

51
1)

94
.5

6
(. ±

0.
49

6)
94

.5
3

(. ±
0.

47
7)

L
ST

M
90

.5
0

(. ±
0.

96
7)

C
le

an
-l

ab
el

90
.8

8
(. ±

1.
26

7)
90

.5
9

(. ±
1.

23
8)

90
.8

2
(. ±

1.
23

2)
90

.7
9

(. ±
1.

33
4)

Si
m

pl
e

90
.8

6
(. ±

1.
23

6)
90

.8
1

(. ±
1.

16
7)

90
.6

7
(. ±

1.
31

7)
90

.6
3

(. ±
1.

27
8)

A Systematic Evaluation of Backdoor Attacks in Various Domains 543

Fig. 8 Attack accuracy for the Speech Commands dataset (10 classes). In most cases, ASR is
increased as the trigger duration or the poisoning rate increase. The clean-label attack is ineffective
for both models. For LSTM, the best position for the trigger is at the end. However, for CNN, any
position works. For CNN, the simple attack works almost perfectly for 100 poisoned samples or
more. (a) LSTM . + clean-label attack. (b) LSTM . + simple attack. (c) CNN . + clean-label attack.
(d) CNN . + simple attack. (e) Legend

be equally effective (see Figs. 8d and 9d). Similarly to text classification, different
models learn different patterns from the same dataset making the backdoor attack
effective in different cases. Thus, we could use the backdoor attack and its triggers
to understand what a model learns and how it makes its decisions.

In our sound classification experiments, the clean-label attack is not successful
for both neural networks and datasets. However, when the full dataset and CNN
are used (Fig. 9c), the attack success rate slightly increases with large triggers.
The clean-label could work without requiring more poisoned data if we choose
a larger trigger. This claim, though, needs to be verified in the future with more
experimental evidence. Another interesting observation is that the simple backdoor

544 S. Koffas et al.

Fig. 9 Attack accuracy for the Speech Commands dataset (30 classes). In most cases, ASR is
increased as the trigger duration or the poisoning rate increase. The clean-label attack is ineffective
in that case, but it works slightly better for CNN. In the simple attack, the best position for the
trigger is at the end for LSTM. However, there is no difference for CNN (in most cases, ASR is
close to 100%). When using LSTM, ASR is higher than ASR for the ten classes. We assume that
the absolute number of poisoned samples could be the reason behind that behavior. (a) LSTM . +
clean-label attack. (b) LSTM . + simple attack. (c) CNN . + clean-label attack. (d) CNN . + simple
attack. (e) Legend

attack becomes more effective when we use the full dataset and the LSTM network
(compare Fig. 8b to Fig. 9b). One reason for this behavior is the absolute number of
training samples that were increased when the full dataset was used. However, this
should be investigated further.

A Systematic Evaluation of Backdoor Attacks in Various Domains 545

4.4 Graph Data

Results for the Graph Classification Task For the graph classification task, two
parameters affect the performance of the backdoor attack: poisoning intensity and
trigger size (the number of nodes in the trigger graph). The attack results for the
GCN model on AIDS with different poisoning intensity . α and trigger size s are
shown in Fig. 10. As we can see from Fig. 10a, with the increase of poisoning
intensity, the attack success rate is generally increasing for each trigger size, but
there is no obvious improvement between .α = 0.15 and .α = 0.2. Here, we select
poisoning intensity .α = 0.15 for GCN on AIDS. Figure 10b shows the impact of
trigger size under the selected poisoning intensity (.α = 0.15). The attack success
rate is highest with .s = 5, while the clean accuracy drop is the smallest when .s = 5.
To compare the two backdoor attacks, we set .α = 0.15, s = 5 and . α = 0.2, s = 7
for AIDS and TRIANGLES, respectively.

Specifically, we present the attack results of two backdoor attacks on the graph
classification task in Tables 7 and 8. As we can see from Table 7, .AT II can achieve
more than .99% attack success rate and less than .1% clean accuracy drop on AIDS,
while the performance of .AT I degrades slightly with an attack success rate of more
than .95% and clean accuracy drop around .1.5%. As illustrated in Table 8, the attack
success rate of .AT II is significantly higher than .AT I for TRIANGLES, i.e., more
than .10%. However, the clean accuracy drop of .AT II is larger than .AT I, which is
more than .4% for both models, while that of .AT I is around .3% and less than . 1%

Fig. 10 Impact of poisoning intensity and trigger size on attack performance in the graph
classification task. (a) GCN_AIDS. (b) GCN_AIDS (.α = 0.15)

Table 7 Backdoor attack results for the graph classification task and the AIDS dataset

.AT I . AT II

Setting ASR (%) CAD (%) ASR (%) CAD (%)

GCN .95.86 .1.25 .99.92 . 0.46

GraphSAGE .97.59 .1.46 .99.80 .0.91

546 S. Koffas et al.

Table 8 Backdoor attack results for the graph classification task and the TRIANGLES dataset

.AT I . AT II

Setting ASR (%) CAD (%) ASR (%) CAD (%)

GCN .86.00 .3.18 .99.21 . 5.32

GraphSAGE .87.70 .0.50 .98.24 . 4.32

Fig. 11 Impact of poisoning intensity and feature trigger width on attack performance in the node
classification task. (a) . n = 5. (b) . n = 10. (c) . n = 15. (d) . n = 20. (e) . n = 25

for GCN and GraphSAGE, respectively. In addition, the computation time for . AT II

is around .1.7 times of .AT I.

Results for the Node Classification Task For the node classification task, the
backdoored data is influenced by two parameters: poisoning intensity α and feature
trigger width n. The attack performance, including attack success rate and clean
accuracy drop with different variants, is shown in Fig. 11. For each feature trigger
width, the attack success rate on different models and datasets generally increases
when the poisoning intensity increases from 0.05 to 0.2. At the same time, the clean
accuracy drop of the GCN model keeps increasing, and there is a significant increase
between α = 0.15 and α = 0.2. However, the clean accuracy drop of the GAT
model remains almost unchanged. To achieve a high attack success rate and low
clean accuracy drop, we set α = 0.2 for GCN and α = 0.15 for GAT. To evaluate
the impact of feature trigger width on attack performance, we show the attack results
with different feature trigger widths in Fig. 12. Observe that the feature trigger width

A Systematic Evaluation of Backdoor Attacks in Various Domains 547

Fig. 12 Attack performance with different feature trigger widths. (a) GCN (α = 0.2. (b) GAT
(α = 0.15

Table 9 Backdoor attack results in the node classification task (n = 5)

GCN (α = 0.2) GAT (α = 0.15)

Setting ASR (%) CAD (%) ASR (%) CAD (%)

Cora 72.35 1.59 86.63 2.35

CiteSeer 77.82 1.63 92.04 1.35

has no obvious influence on the attack success rate and clean accuracy drop for both
GNN models and datasets.

Specifically, Table 9 shows the attack success rate and clean accuracy drop of
backdoor attack for the node classification task with selected parameters. Notice
that the backdoor attack on GCN reaches over 70% attack success rate for both
datasets and that on GAT obtains a higher attack success rate, i.e., over 85% and
90% for Cora and CiteSeer, respectively. Furthermore, the clean accuracy drop is
lower than 2% for all models and datasets except for the GAT model on the Cora
dataset, which is 2.35%.

4.5 General Observations

First, we verified that the backdoor attack is a real threat as it can be injected
into every application domain tried without affecting the model’s original task just
by poisoning a small subset of the training data. Additionally, we saw that the
poisoning rate is the most influential characteristic of the trigger in all applications.
However, this value cannot be increased arbitrarily because the backdoor attack
will become evident through a simple data filtering mechanism, and the poisoned
model’s performance on clean inputs will decrease substantially.

The trigger size is positively correlated with the backdoor’s attack success rate
in image, text, and sound. This is expected as a larger trigger contains more

548 S. Koffas et al.

information that can be encoded easier in the trained model. However, in graph
classification, the attack success rate increased to a point (.s = 5) and then decreased
for larger triggers. The variations are small, though, as ASR remained above 90% in
our experiments, and thus, we cannot draw general conclusions. We need to verify
this effect with more complex datasets and models.

The most effective position of the trigger (if there is any) depends on many
factors, like the network architecture or the dataset. The position is not very
influential on the attack success rate in most cases, but this is not always true. Thus,
we cannot draw any general conclusions. In image classification, no position was
proven more effective as the convolutional layers extract information from any point
in the image. Similar behavior has been observed in graph neural networks [57],
where the trigger position did not result in more effective backdoors. On the other
hand, in text classification, the attack performed similarly for all the trigger positions
for the simple CNN, but the “end” was slightly more effective when the GloVe
embedding was used. In sound classification, the trigger was more effective in the
end if LSTM was used but had no difference for CNN. These differences suggest
a potential beneficial use case for backdoor attacks in general. In this case, we can
use them to understand better how and what our models learn. Such an approach
complements the work described in [61], where the authors drew valuable insights
about the input’s crucial features after graying out small square areas of the input
images.

The clean-label attack is challenging in image, text, and sound classification.
However, in some cases, it may be successful just by using a large trigger without
having to poison more data. Additionally, if the trigger encloses more information,
the clean-label’s performance can be improved. We verified this for the CIFAR10
dataset, where we injected our trigger in all three image channels. We believe that
the dataset influences the performance of this attack. If each element contains many
features, the model will require a large poisoning rate to perceive the trigger as a
feature of this class. In the clean-label attack, the trigger is injected only in elements
from the target class, and it is not easy to overcome the effect of the actual features
of this class. This was highlighted in the AG News and IMDB datasets in text
classification. On the other hand, the simple backdoor attack can be very effective
with just a few poisoned samples in all the applications we tried.

As a general remark, we believe that the backdoor is easier inserted into models
that can overfit small subsets of their datasets. Models with strong generalizations
are more robust against data poisoning backdoor attacks. We verified this behavior
using simple CNN in text classification. In that case, our attack could not reach an
attack success rate larger than 80% even with the simple attack, as the model is
very simple and the learned function is very smooth. Finally, as our experiments
are far from exhaustive, our findings should be taken as indications, not definitive
conclusions.

In summary, the key takeaways are:

– The backdoor attack is a realistic and stealthy threat.
– As expected, increasing the poisoning rate and using larger triggers leads to

higher ASR.

A Systematic Evaluation of Backdoor Attacks in Various Domains 549

– Different models can behave differently during the attack even though we
use the same data. Therefore, we can use the backdoor attacks as a tool for
explainable AI.

– In [47], the authors claimed that the clean-label attack is not very effective. In
most cases, this is true, but we saw that we could make it effective with more
sophisticated triggers.

– The backdoor is easier for models that can overfit a small subset of their
datasets.

5 Conclusions

Recent trends in machine learning lead to novel attack vectors like the backdoor
attack. This attack is very dangerous as it can compromise AI-powered systems.
Naturally, the backdoor attack also attracted significant attention, resulting in
numerous novel attack and defense versions. In this work, we explored the effects of
various trigger characteristics on the backdoor’s performance in four domains. Our
results show that deploying backdoor attacks is relatively easy for all investigated
domains. There are sufficient commonalities between the attacks in different
domains to ease their deployment in real-world applications and devise novel, more
generic defenses.

References

1. Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders,
L., Tyers, F.M., Weber, G.: Common voice: a massively-multilingual speech corpus (2019).
http://arxiv.org/abs/1912.06670

2. Bagdasaryan, E., Shmatikov, V.: Blind backdoors in deep learning models. In: 30th USENIX
Security Symposium (USENIX Security 21), pp. 1505–1521. USENIX Association (2021).
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan

3. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated
learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948.
PMLR (2020)

4. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy, I., Srivastava,
B.: Detecting backdoor attacks on deep neural networks by activation clustering (2018). arXiv
preprint arXiv:1811.03728

5. Chen, X., Salem, A., Chen, D., Backes, M., Ma, S., Shen, Q., Wu, Z., Zhang, Y.: BadNL:
Backdoor attacks against NLP models with semantic-preserving improvements. In: Annual
Computer Security Applications Conference, pp. 554–569 (2021)

6. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: targeted backdoor attacks on deep learning systems
using data poisoning (2017). arXiv preprint arXiv:1712.05526

7. Costales, R., Mao, C., Norwitz, R., Kim, B., Yang, J.: Live trojan attacks on deep neural
networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 796–797 (2020)

http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan

550 S. Koffas et al.

8. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random
projections and neural networks. In: 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 3422–3426. IEEE (2013)

9. Dai, J., Chen, C., Li, Y.: A backdoor attack against LSTM-based text classification systems.
IEEE Access 7, 138872–138878 (2019)

10. de Andrade, D.C., Leo, S., Viana, M.L.D.S., Bernkopf, C.: A neural attention model for speech
command recognition (2018)

11. Deng, J., Dong, W., Socher, R., Li, L., Kai Li, Li Fei-Fei: ImageNet: a large-scale hierarchical
image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.
248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

12. Dikmen, M., Burns, C.M.: Autonomous driving in the real world: experiences with tesla
autopilot and summon. In: Proceedings of the 8th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications, pp. 225–228 (2016)

13. Dodge, S., Karam, L.: A study and comparison of human and deep learning recognition
performance under visual distortions. In: 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pp. 1–7. IEEE (2017)

14. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming for
hyperparameter optimization and meta-learning. In: International Conference on Machine
Learning, pp. 1568–1577. PMLR (2018)

15. Gao, Y., Doan, B.G., Zhang, Z., Ma, S., Zhang, J., Fu, A., Nepal, S., Kim, H.: Backdoor
attacks and countermeasures on deep learning: a comprehensive review (2020). arXiv preprint
arXiv:2007.10760

16. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: a defence against
trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Security
Applications Conference, pp. 113–125 (2019)

17. Gilbert, E.N.: Random graphs. The Annals of Mathematical Statistics 30(4), 1141–1144
(1959). https://doi.org/10.1214/aoms/1177706098

18. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural net-
works. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 6645–6649. IEEE (2013)

19. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: BadNets: Evaluating backdooring attacks on deep
neural networks. IEEE Access 7, 47230–47244 (2019). https://doi.org/10.1109/ACCESS.2019.
2909068

20. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

22. Hong, S., Carlini, N., Kurakin, A.: Handcrafted backdoors in deep neural networks (2021).
arXiv preprint arXiv:2106.04690

23. IBM: Natural language processing (2021). https://www.ibm.com/cloud/learn/natural-
language-processing. Accessed 27 July 2022

24. Karlsen, S.S.: Automated Front Detection-Using computer vision and machine learning to
explore a new direction in automated weather forecasting. Master’s Thesis, The University
of Bergen (2017)

25. Khan, A.I., Al-Habsi, S.: Machine learning in computer vision. Proc. Comput. Sci. 167, 1444–
1451 (2020)

26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In:
International Conference on Learning Representations (ICLR) (2017)

27. Koffas, S., Picek, S., Conti, M.: Dynamic backdoors with global average pooling (2022). arXiv
preprint arXiv:2203.02079

28. Koffas, S., Xu, J., Conti, M., Picek, S.: Can you hear it? backdoor attacks via ultrasonic triggers.
In: Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning, pp.
57–62. WiseML ’22, Association for Computing Machinery, New York (2022). https://doi.org/
10.1145/3522783.3529523

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523

A Systematic Evaluation of Backdoor Attacks in Various Domains 551

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

30. Li, S., Xue, M., Zhao, B.Z.H., Zhu, H., Zhang, X.: Invisible backdoor attacks on deep neural
networks via steganography and regularization. IEEE Trans. Depend. Secure Comput. 18(5),
2088–2105 (2020)

31. Li, Y., Jiang, Y., Li, Z., Xia, S.T.: Backdoor learning: a survey. IEEE Transactions on Neural
Networks and Learning Systems (2022)

32. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojaning attack on neural
networks. In: NDSS (2018)

33. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors
for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 142–150. Association for
Computational Linguistics, Portland, Oregon, USA (2011). http://www.aclweb.org/anthology/
P11-1015

34. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space (2013). arXiv preprint arXiv:1301.3781

35. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.: TUDataset: A
collection of benchmark datasets for learning with graphs. In: ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020) (2020). www.graphlearning.io

36. Mubin, N.A., Nadarajoo, E., Shafri, H.Z.M., Hamedianfar, A.: Young and mature oil palm tree
detection and counting using convolutional neural network deep learning method. International
J. Remote Sensing 40(19), 7500–7515 (2019)

37. Nelson, B., Barreno, M., Jack Chi, F., Joseph, A.D., Rubinstein, B.I.P., Saini, U., Sutton, C.,
Tygar, J.D., Xia, K.: Misleading Learners: Co-Opting Your Spam Filter, pp. 17–51. Springer
US, Boston, MA (2009). https://doi.org/10.1007/978-0-387-88735-7_2

38. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In:
Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://
www.aclweb.org/anthology/D14-1162

39. Prabhu, V.U., Birhane, A.: Large image datasets: a pyrrhic win for computer vision? CoRR
abs/2006.16923 (2020). https://arxiv.org/abs/2006.16923

40. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning
in deep learning-based side-channel analysis. IACR Trans. Cryptograp. Hardw. Embedd. Syst.
2021(3), 677–707 (2021). https://doi.org/10.46586/tches.v2021.i3.677-707

41. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classifica-
tion in network data. AI Mag. 29(3), 93–93 (2008)

42. Severi, G., Meyer, J., Coull, S., Oprea, A.: Explanation-Guided backdoor poisoning
attacks against malware classifiers. In: 30th USENIX Security Symposium (USENIX Secu-
rity 21), pp. 1487–1504. USENIX Association (2021). https://www.usenix.org/conference/
usenixsecurity21/presentation/severi

43. Shokri, R., et al.: Bypassing backdoor detection algorithms in deep learning. In: 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 175–183. IEEE (2020)

44. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go
with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

45. Sun, Z., Kairouz, P., Suresh, A.T., McMahan, H.B.: Can you really backdoor federated
learning? (2019). arXiv preprint arXiv:1911.07963

46. Trigueiros, P., Ribeiro, F., Reis, L.P.: Hand gesture recognition system based in computer vision
and machine learning. In: Developments in Medical Image Processing and Computational
Vision, pp. 355–377. Springer, Berlin (2015)

47. Turner, A., Tsipras, D., Madry, A.: Label-consistent backdoor attacks (2019). arXiv preprint
arXiv:1912.02771

48. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention
Networks. International Conference on Learning Representations (2018). https://openreview.
net/forum?id=rJXMpikCZ. Accepted as poster

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
www.graphlearning.io
www.graphlearning.io
www.graphlearning.io
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

552 S. Koffas et al.

49. Vinyes Mora, S.: Computer vision and machine learning for in-play tennis analysis: framework,
algorithms and implementation. Ph.D. Thesis, Imperial College London (2018)

50. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks. In: 2019 IEEE Symposium on
Security and Privacy (SP), pp. 707–723. IEEE (2019)

51. Wang, H., Mazari, M., Pourhomayoun, M., Smith, J., Owens, H., Chernicoff, W.: An end-
to-end traffic vision and counting system using computer vision and machine learning: the
challenges in real-time processing. SIGNAL 2018 Editors, p. 13 (2018)

52. Wenger, E., Passananti, J., Bhagoji, A.N., Yao, Y., Zheng, H., Zhao, B.Y.: Backdoor attacks
against deep learning systems in the physical world. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6206–6215 (2021)

53. Wiley, V., Lucas, T.: Computer vision and image processing: a paper review. Int. J. Artif. Intell.
Res. 2(1), 29–36 (2018)

54. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., et al.: Google’s neural machine translation system: bridging the gap
between human and machine translation (2016). arXiv preprint arXiv:1609.08144

55. Xi, Z., Pang, R., Ji, S., Wang, T.: Graph backdoor. In: 30th USENIX Security Symposium
(USENIX Security 21), pp. 1523–1540 (2021)

56. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms (2017)

57. Xu, J., Xue, M., Picek, S.: Explainability-based backdoor attacks against graph neural
networks. In: Proceedings of the 3rd ACM Workshop on Wireless Security and Machine
Learning, pp. 31–36 (2021)

58. Yang, Z., Iyer, N., Reimann, J., Virani, N.: Design of intentional backdoors in sequential
models (2019). arXiv preprint arXiv:1902.09972

59. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph repre-
sentation learning with differentiable pooling. In: Advances in Neural Information Processing
Systems, vol. 31 (2018)

60. Yunchao, G., Jiayao, Y.: Application of computer vision and deep learning in breast cancer
assisted diagnosis. In: Proceedings of the 3rd International Conference on Machine Learning
and Soft Computing, pp. 186–191 (2019)

61. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European
Conference on Computer Vision, pp. 818–833. Springer, Berlin (2014)

62. Zhai, T., Li, Y., Zhang, Z., Wu, B., Jiang, Y., Xia, S.T.: Backdoor attack against speaker
verification. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2560–2564. IEEE (2021)

63. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for
graph classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

64. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification.
In: Advances in Neural Information Processing Systems, vol. 28 (2015)

65. Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. In:
Proceedings of the 26th ACM Symposium on Access Control Models and Technologies, pp.
15–26 (2021)

	A Systematic Evaluation of Backdoor Attacks in Various Domains
	1 Introduction
	2 Background
	2.1 Computer Vision
	2.2 Natural Language Processing
	2.3 Graph Data
	2.4 Backdoor Attacks
	2.4.1 Metrics

	3 Methodology
	3.1 Threat Model
	3.2 Image Classification
	3.3 Natural Language Processing
	3.4 Speech Recognition
	3.5 Graph Data

	4 Experimental Results
	4.1 Image Classification
	4.2 Natural Language Processing
	4.3 Speech Recognition
	4.4 Graph Data
	4.5 General Observations

	5 Conclusions
	References

