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Summary

With the growing offshore wind industry, ramp events, i.e., significant variation in wind power and
wind speed within a short period of time, have become of critical importance to the end-users. The
analysis of offshore wind power ramp events from the perspective of grid operators or energy
traders is prevalent in the literature. However, this area of research is still evolving. Existing studies
have not adequately addressed the influence of the techniques used to normalize wind farm power
on end-users. In addition, the selection of the minimum number of turbines criterion and its effect
on the detection of ramp events, threshold value, or smoothing of power fluctuations have not been
studied so far. Moreover, little research has been conducted on analyzing the impact of ramp events
on ultimate wind turbine loads. To the best of the author’s knowledge, the results have not yet been
validated with measurements. Therefore, the primary objective of this report is

"to investigate the impact of wind-induced ramp events on the offshore wind farm power and
ultimate wind turbine loads - a measurement-based approach"

At first, a wind power ramp detection algorithm is developed from the perspective of a wind turbine
designer. The algorithm is developed using two years of 10-min measurement statistics provided by
Siemens Gamesa Renewable Energy (SGRE). The analysis is performed for two offshore wind farms,
Westermost Rough and Dudgeon, of different sizes. After a thorough literature review, a suitable
ramp detection definition is selected based on the available data set, an end-user’s objective, and
power fluctuation smoothing effect. This thesis also discusses the significance of wind farm power
normalization techniques for end-users. The aggregated power is normalized by the nominal
capacity of the available number of wind turbines at each time step. The selection is based on
identifying the wind-induced ramp events by removing the effect of variability of a turbine’s data
availability. Afterwards, the criterion of minimum number of available turbines is selected by
considering the wind farm layout and power fluctuation smoothing effect. Using the ramp
detection algorithm, the characteristics of the observed wind power ramp events in the two wind
farms are compared. The analysis revealed that the wind power ramp events were mainly related to
the non-linearity of the power curve. Moreover, the number of ramp events showed a decreasing
trend with increasing wind speed, turbulence intensity, ramp duration, and wind direction changes.
Furthermore, the provided measurement data does not adequately capture the correlation or travel
time of large-scale ramp events within the two wind farms. Therefore, detailed meteorological
information with the high spatial and temporal resolution is necessary for thorough analysis.

Following that, the influence of wind power and wind speed ramp events on the ultimate wind
turbine loads are examined. The initial analysis is conducted on a 10-min basis for a single turbine
at the Dudgeon wind farm. It is found that 10-min wind speed ramps could be the extreme load
governing factor when a pitch controller is inactive, whereas wind power ramp events show no
influence. Subsequently, extreme wind speed fluctuations events were found to be a governing
factor for wind speed bins that fall under inactive pitch or above rated wind speed region.

Subsequently, the loads associated with extreme wind speed fluctuations are compared to the
aeroelastic simulations of the extreme turbulence load case as prescribed by the International
Electrotechnical Commission (IEC). In general, the measured loads associated with extreme
fluctuations did not outperform the simulations, except for the tower side-side moments. Besides, it
is found that extreme loads near rated wind speed region exceed the simulation results, but the
values are not related to the extreme fluctuations. It is worth mentioning that the average
simulation loads show a good agreement with the average measurements. Thus, the obtained
results do not contain significant uncertainties.
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Finally, the high-frequency data of some specific events are examined. The analysis of the blade root
flap-wise moments has shown that the extreme bending moments per wind speed bin are mainly
caused by a sudden fluctuation in the wind speed time series leading to the transition of the pitch
angle from the inactive to the active region. Therefore, the extreme loads over the entire wind speed
range, except near rated wind speed, are governed by extreme turbulence or ramp events that
involve pitch transition. Around rated wind speed, extreme loads are caused by comparatively lower
fluctuations, but higher than the normal turbulence prescribed by the IEC. However, the higher
fluctuations that occur during active pitch do not result in higher loads.

In conclusion, for the ultimate load analysis, the wind speed time series for the extreme turbulence
model should include a sudden transition of a pitch angle from inactive to the active region.
However, as the high-frequency analysis is only conducted based on the blade root flap-wise
moment, further investigation of other moments is vital.



Contents

Acknowledgement iii
Summary v
List of Figures xiii
1 Introduction 1

1.1 Importance of ramp events to the offshore wind industry . . . . . . . . . . . . . . . . . 1
1.2 Problem description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research objective and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical Background 7
2.1 Introduction to offshore wind turbine technology . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Offshore environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Offshore wind turbine and wind farm power . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Offshore wind turbine loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Ramp events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Origin of wind speed ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Origin of power ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Literature Review 23
3.1 Power ramp events detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 On the basis of ramp amplitude and time duration. . . . . . . . . . . . . . . . . 24
3.1.2 On the basis of power threshold values . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Impact of wind speed ramp events on ultimate wind turbine loads . . . . . . . . . . . . 28
3.3 Research scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Data Description and Filtering 31
4.1 Site description and measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Load measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Measurement data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Simulation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Measured data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Power filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.2 Load filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Offshore Wind Power Ramps: Detection and Categorization 43
5.1 Ramp Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Definition of a ramp event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Normalization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.3 Influence of power differences smoothing on the ramp event threshold . . . . . 46
5.1.4 Criterion of a minimum number of turbines . . . . . . . . . . . . . . . . . . . . 50
5.1.5 The ramp detection algorithm in combination with the indicator function . . . 51

5.2 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Categorization of ramp events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



6 Ultimate Load Validation for
Ramp Events 65
6.1 DLC 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 DLC 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Impact of Ramp Events on Ultimate Wind Turbine Loads 69
7.1 Wind power and wind speed ramp events . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Extreme wind speed fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Analysis of high-frequency time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Conclusions and Recommendations 81
8.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3 Possible uncertainties in the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4 Future scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A Vector and Scalar Averaging Methods 91
B Smoothing Effect of Power Fluctuations and Power Differences 95

B.1 Smoothing effect of power fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Smoothing effect of successive power differences. . . . . . . . . . . . . . . . . . . . . . 97
B.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C Additional Results 101
C.1 Introduction to 10-min statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.2 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.3 Weather Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
C.4 Categorization of wind power ramp events . . . . . . . . . . . . . . . . . . . . . . . . . 104
C.5 DLC 1.2 validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.6 Wind power and speed ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
C.7 High-frequency events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



Nomenclature
Acronyms and Abbreviations

BHawC Bonus energy Horizontal axis wind turbine Code

CWT Continuous Wavelet Transform

DLC Design load case

DUD Dudgeon wind farm

ECD Extreme coherent gust with direction change

ETM Extreme Turbulence Model

EWS Extreme wind shear

I Indicator function

IEC International Electrotechnical Commission

LLJ Low-Level Jet

NaN Not a number

NCM Normal Current Model

NTM Normal turbulence model

OWT Offshore Wind Turbine

PLM Power Load Management

PSD Power spectral density

RNA Rotor Nacelle assembly

SCADA Supervisory Control and Data Acquisition

TBFA Tower base fore-aft moment

TBSS Tower base side-side moment

TI Turbulence intensity

TTFA Tower top fore-aft moment

TTSS Tower top side-side moment

WMR Westermost Rough wind farm

Symbols

Δ�@5 Change in the wind direction of wind farm ramp events [=]

Δ% Power differences time series [, ]

Δ%5 Wind farm power differences time series [, ]

Δ%< Normalized power differences time series [−]

ix



Δ%5 < Normalized wind farm power differences time series [−]

Δ%@< Normalized ramp amplitude [−]

Δ) � 5 Change in the turbulence intensity of wind farm ramp events [−]

ΔC 5 Change in the wind speed of wind farm ramp events [;/A ]

ΔB Time duration of ramp event - refers to rise/fall time of a ramp [s]

^ von Karman’s constant [-]

Ω Generator rotational speed [rpm]

q"�) Meteorological wind direction [=]

q%$!�' Wind direction in polar system [=]

q+ ��) Wind azimuth angle (Oceanographic convention) [=]

k Yaw angle [=]

k;0F 10-min maximum yaw angle [=]

k;7< 10-min minimum yaw angle [=]

f (Δ% ) Standard deviation of power differences [, ]

f (Δ%5 ) Standard deviation of wind farm power differences [, ]

f (Δ%<) Standard deviation of normalized power differences [−]

f (Δ%5 <) Standard deviation of the normalized wind farm power differences [−]

f> Standard deviation of power fluctuations [, ]

fC Standard deviation of 10 min horizontal wind speed [;/A ]

f> 5 < Standard deviation of the normalized wind farm power fluctuations [−]

f> 5 Standard deviation of wind farm power fluctuations [, ]

f>< Standard deviation of the normalized power fluctuations [−]

fC90 Standard deviation representing 90% quantile [;/A ]

fC 5 Standard deviation of 10 min wind farm speed [;/A ]

g Generator torque [#;]

\ Pitch angle of blade A [=]

\;7< 10-min minimum pitch angle of blade A [=]

0 Angle between sensor location of tower and north direction [=]

�2 Charnok’s constant [-]

�< Thrust force [# ]

6 acceleration due to gravity [;/A2]

�15 Average turbulence intensity at 15 m/s wind speed at hub height [-]

�@4 5 reference turbulence intensity [-]

9 Sample time interval [s]



"< Normalized bending moment [−]

"�� Tower fore-aft moment [#;]

"(( Tower side-side moment [#;]

"F Calibrated moment at x-axis based on the sensor location [#;]

"G Calibrated moment at y-axis based on the sensor location [#;]

# Number of wind turbines in a wind farm [−]

<0; No. of average power differences [−]

<Bℎ Number of detected ramp events at the threshold value [−]

% Power time series [, ]

> ′ Power fluctuations [, ]

%
5
B Transformed power signal [, ]

%
5
B< Normalized transformed power signal [−]

> ′
5

Wind farm power fluctuations [, ]

%< Normalized power time series [−]

> ′< Normalized power fluctuations [−]

%' Rated power [, ]

%5 < Normalized wind farm power time series [−]

> ′
5 <

Normalized wind farm power fluctuations [−]

%5 Wind farm power time series [, ]

%:7;7B Power limit [, ]

%D0: % Threshold power value [−]

%''D0: % Threshold power ramp rate value [−]

@� Correlation coefficient for turbines in Dudgeon farm [−]

@, Correlation coefficient for turbines in WMR farm [−]

@�, Correlation coefficient between parameters of Dudgeon and WMR farms [−]

@>7 8 Correlation coefficient between power signals of two turbines ’i’ and ’j’ [−]

B Time [s]

)� End time of a ramp event [s]

)A Start time of a ramp event [s]

BE Time window [s]

) � 5 Turbulence intensity of a wind farm [−]

C 10-min mean wind speed at hub height [;/A ]

C0D4 average of wind speed time series [;/A ]

C 5 10-min average wind speed of a wind farm [;/A ]



F A positive real number [−]

H hub height [m]

H0 surface roughness parameter [m]

C� Wind velocity vector towards east [;/A ]

C# Wind velocity vector towards north [;/A ]

+� Horizontal wind velocity vector [;/A ]



List of Figures

1.1 An example of observed wind power and speed ramp events at the Dudgeon wind farm. 2

2.1 The major components of an offshore wind turbine with a monopile foundation. . . 7
2.2 Spatial and temporal scales of some meteorological phenomena [23]. . . . . . . . . . 8
2.3 Energy spectrum of horizontal wind speed [20]. . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Energy spectrum of ocean waves [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 An example of a wind turbine power curve. Here, the red and blue contours

represent the influence of non-linearity of the power curve at different wind speed
regions (modified version of [32]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 An example of the power, pitch, and rotational speed curves for a pitch-regulated wind
turbine. The different control regions are indicated by the pink lines [27]. . . . . . . . 11

2.7 An example of smoothing effect of power fluctuations on the aggregated power of
wind turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Wind turbine (a) blade and (b) tower direction conventions. . . . . . . . . . . . . . . . 13
2.9 Variation of in generator torque and thrust force with wind speed. . . . . . . . . . . . . 14
2.10 Effect of aerodynamic damping on a tower fore-aft moment [27]. . . . . . . . . . . . . 15
2.11 Illustration of (a) Pressure couplets and (b) frontal system. . . . . . . . . . . . . . . . . 18
2.12 Illustration of thunderstorm and gust front [52]. . . . . . . . . . . . . . . . . . . . . . . 19
2.13 Wind profile of a gust front [53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.14 An example of a sudden power drop induced by power curtailment of 50%. . . . . . . 20
2.15 Variation of power output with yaw misalignment at different wind speed levels [54]. . 20

3.1 Normalized wind farm power time series (%5 < in blue) of Dudgeon in February 2018. A
ramp-up event is shown by the black lines and two ramps-down events are depicted
using the pink lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The fixed time interval method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Examples of ramp detection using (a) min-max method, where grey lines show current

time window, and the light grey lines represent the next time step, and (b) ramp rate
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Example of wind power output with an unfiltered and two filtered signals. The
threshold is taken at 25% of nominal capacity [44]. . . . . . . . . . . . . . . . . . . . . . 26

3.5 Total number of ramp events detected at different thresholds. Each line shows fixed
values for stage 1 threshold (hourly data), and the stage 2 threshold (10-min data) on
x axis [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 synthesised constrained (black) and unconstrained (blue) wind time series [13]. . . . . 28

4.1 Location of WMR and Dudgeon wind farms [65]. . . . . . . . . . . . . . . . . . . . . . 31
4.2 Wind farm layouts of (a) WMR with 35 turbines and (b) Dudgeon with 67 turbines.

Turbines highlighted by the red circles are fully instrumented for load measurements. 32
4.3 Weibull distribution of the average horizontal wind farm wind speeds. . . . . . . . . . 33
4.4 Wind rose of wind farms WMR and Dudgeon both showing an prevailing

west-southwesterly (WSW) wind direction. . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Free stream turbulence intensity at turbines (a) W7 of WMR and (b) D52 of Dudgeon. 34
4.6 Wind speed peaks at 3P and its multiples are induced by blade passing fluctuations. . 35
4.7 Load measuring sensors location at tower top (or base) and blade root [27]. . . . . . . 35
4.8 Local coordinate systems of wind turbine tower and blades. . . . . . . . . . . . . . . . 36
4.9 Data availability from different channels. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 Flow chart of power filtering method with an example of turbine D40 of the Dudgeon

wind farm. Power is normalized with the rated power. . . . . . . . . . . . . . . . . . . . 39

xiii



4.11 Flow chart for filtering blade root moments. Here, the blade root flap-wise moment is
normalized with the minimum DLC 1.2 moment at the rated wind speed. . . . . . . . . 40

4.12 Quantiles of 10-min minimum pitch angle against 10-min average wind speed. . . . . 40
4.13 Flow chart for filtering tower top and base moments. Here, all moments are

normalized with the maximum DLC 1.2 moment at the rated wind speed. . . . . . . . 41
4.14 An example of significant yaw error inducing a peak in a tower base side-side moment

and a dip in a fore-aft moment. Moments are normalized with the maximum DLC 1.2
moment at the rated wind speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Examples of power time series for two consecutive period. Blue dots represent the
power values. Red and yellow dot highlight the maximum and minimum values in
each 10-min time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Normalized power of the Dudgeon wind farm by using (a) the variable capacity
method and (b) the nominal capacity method. . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Frequency distribution of normalized wind farm power differences of WMR and
Dudgeon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Variation of threshold with minimum number of turbines criteria using the variable
and nominal capacity methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Variation of threshold with exact number of turbines criteria using the variable and
nominal capacity methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Variation in standard deviations and linear correlation coefficient (lines from r =0 to
r =1) with increase in number of wind turbines ? (blue ′+′ show standard deviation of
aggregated# turbines power differences; and red circles indicate the average of those
standard deviations at each ?). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7 Error analysis in the average standard deviations of 10-min power differences for
WMR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.8 3f (Δ%5 <) and frequency distribution of power differences. . . . . . . . . . . . . . . . . 50
5.9 3f (Δ%5 <) and frequency distribution of power differences (same as Figure 5.8 but with

the linear scale on the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.10 Flow chart of the ramp detection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 52
5.11 An example on application of the indicator function. . . . . . . . . . . . . . . . . . . . 52
5.12 An example of the detected ramp events in normalized wind farm power time series

by using ramp detection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.13 Pearson correlation coefficients between the variables of (a) the WMR wind farm, (b)

the Dudgeon wind farm, (c) the WMR and the Dudgen wind farms. . . . . . . . . . . . 53
5.14 Correlation matrix: Scattered plot of WMR wind farm parameters with linear

correlation (lower triangular), histograms(diagonal), nonlinear relation between
parameters(upper triangular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.15 Correlation matrix: scattered plot of Dudgeon wind farm parameters with linear
correlation (lower triangular), histograms(diagonal), nonlinear relation between
parameters(upper triangular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.16 Variation in power, wind speed, wind direction and TI on a day of February of Dudgeon
wind farm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.17 Variation in power, wind speed, wind direction and TI on a day of February of WMR
wind farm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.18 Example of ramp event observed on a two days of July, 2019 and the observed time
shift between two wind farms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.19 Surface Pressure chart of UK at 0:00 UTC. ’W’ and ’D’ represents the location of wind
farm WMR and Dudgeon, respectively [73]. . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.20 Monthly variation in number of ramp-up and ramp-down events. . . . . . . . . . . . 59
5.21 Variation in number of ramp-up and ramp-down events with change in speed. . . . . 60
5.22 Variation in number of ramp-up and ramp-down events with change in turbulence

intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.23 Variation in the number of ramp-up and ramp-down events with the mean turbulence

intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.24 Variation in number of ramp-up and ramp-down events with change in direction. . . 62



5.25 Variation in number of ramp-up and ramp-down events with change in ramp
duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.26 An example of large-scale ramp event (Δ%5 < = 95%) observed at the Dudgeon wind farm. 63

6.1 Minimum blade root flap-wise and edge-wise moment of one blade. All values are
normalized with the minimum DLC 1.2 bending moment at rated wind speed. . . . . . 66

6.2 Maximum tower top and tower base bending moments. All values are normalized with
the maximum DLC 1.2 bending moment at rated wind speed. . . . . . . . . . . . . . . 66

6.3 Comparison of average extreme 1% blade root moments with extreme average DLC 1.3.
The bars indicate the standard deviation of the selected moments per wind speed bin.
Measurements are normalized by the minimum DLC 1.3 bending moment at rated
wind speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Comparison of average extreme 1% blade root moments with extreme average DLC
1.3. The bars indicate the standard deviation of the selected moments per wind speed
bin. All moments are normalized with the absolute maximum DLC 1.3 moment at
rated wind speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Coloured markers indicate loads associated with power ramps. Blue line represents
average of all measurements, whereas black line denotes the average of loads
associated with ramp events. Measurements are normalized with absolute minimum
DLC 1.2 moment at rated wind speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Extreme observed horizontal wind speed standard deviations (fC ) compared to IEC
ETM class C and class B. Grey scatters correspond to raw measurements, pink dots
denote standard deviations higher IEC ETM class C and blue dots indicate their values
greater than class B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Influence of extreme fluctuations on the minimum blade root flap-wise and edge-wise
moments. All moments are normalized with the absolute minimum DLC 1.3 moment
at rated wind speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Influence of extreme fluctuations on the maximum tower top and base moments. All
moments are normalized with the absolute maximum DLC 1.3 moment at rated wind
speed. The graph is divided as per the control regions. . . . . . . . . . . . . . . . . . . . 72

7.5 Comparison of wind speed time series of turbines D40 and D44, which are ≈ 1.8 km
apart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.6 The time series of various parameters for an event of fC > IEC ETM B. The associated
period of a wind speed ramp is highlighted in the red box. All moments are normalized
with the absolute maximum DLC 1.3 moment at rated wind speed. . . . . . . . . . . . 74

7.7 Comparison in time series of D40 and D44. The black box highlights the ramp event
observed in D40. X and Y coordinates show the time and other signals value at the local
minimum blade root flap-wise moment, respectively. All moments are normalized
with the absolute maximum DLC 1.3 moment at rated wind speed. . . . . . . . . . . . 74

7.8 Time series plot of various parameters for IEC ETM B ≥ fC > IEC ETM C. All moments
are normalized with the absolute maximum DLC 1.3 moment at rated wind speed. . . 75

7.9 Comparison of measurement and simulation time series of similar wind speed statistics. 76
7.10 Time series plot of various parameters at minimum observed blade root flap-wise

moment. All moments are normalized with the absolute maximum DLC 1.3 moment
at rated wind speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.11 Variation in wind speed, rotor speed, pitch angle, power, and normalized blade root
flap-wise moment. X coordinate shows the time of lowest load and Y represents other
signal values at corresponding time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.12 Power spectral density of blade root flap-wise moment. . . . . . . . . . . . . . . . . . . 78
7.13 Comparison of measurement and NTM simulation time series of similar wind speed

statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.14 Comparison of measured and simulated power spectrum density of rotational speed. 78
7.15 Tower moment time series - an error in maximum observed tower base fore-aft

moment. All moments are normalized with the absolute maximum DLC 1.3 moment
at rated wind speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



7.16 Tower moments and yaw angle time series. All moments are normalized with the
absolute maximum DLC 1.3 moment at rated wind speed. . . . . . . . . . . . . . . . . 79

A.1 Meteorological convention in coordinate system [81] . . . . . . . . . . . . . . . . . . . 91

B.1 Standard deviation of power fluctuation for each wind turbine . . . . . . . . . . . . . . 96
B.2 Normalized power output time series of turbine D40, with average power (%̄<), power

fluctuations (%<
′), and successive power differences (Δ%<) . . . . . . . . . . . . . . . . 98

B.3 Validation of derived standard deviation of normalized farm power differences
(Equation B.26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C.1 Representation of 10-min statistics of available 10-min time series. . . . . . . . . . . . . 101
C.2 Correlation matrix: Scattered plot of successive differences in WMR wind farm

parameters with linear correlation (lower triangular), histograms(diagonal),
nonlinear relation between parameters(upper triangular) . . . . . . . . . . . . . . . . 102

C.3 Surface pressure charts of [73] UK at 00:06 UTC (day before). ’W’ and ’D’ represents
the location of wind farm WMR and Dudgeon, respectively . . . . . . . . . . . . . . . . 103

C.4 Surface pressure charts of [73] UK at 00:06 UTC (day after). ’W’ and ’D’ represents the
location of wind farm WMR and Dudgeon, respectively . . . . . . . . . . . . . . . . . . 103

C.5 Monthly variation of ramp-up and down events . . . . . . . . . . . . . . . . . . . . . . 104
C.6 Monthly variation of ramp-up and down events . . . . . . . . . . . . . . . . . . . . . . 104
C.7 Representation of start and end time of the observed ramp events on the power curve

and corresponding density distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.8 Average blade root flap-wise and edge-wise moment of one blade. All moments are

normalized with the minimum of average DLC 1.2 at the rated wind speed . . . . . . . 106
C.9 Average tower top and tower base bending moments. All moments are normalized

with the maximum of average DLC 1.2 at the rated wind speed . . . . . . . . . . . . . . 106
C.10 Minimum blade root flap-wise and edge-wise moments. All moments are normalized

with the respective minimum DLC 1.2 bending moment at the rated wind speed. . . . 107
C.11 Maximum tower top and tower base bending moments. All values are normalized with

the minimum average DLC 1.2 bending moment at the rated wind speed. . . . . . . . . 108
C.12 High-frequency wind speed time series of an event with fC > ETM B. . . . . . . . . . . 109
C.13 High-frequency time series of (a) wind speed (b) normalized blade root flap-wise

bending moment (c) pitch angle (d) rotational speed . . . . . . . . . . . . . . . . . . . 109
C.14 High-frequency time series of wind speed, pitch angle yaw angle and normalized

blade root, tower top and base moments. . . . . . . . . . . . . . . . . . . . . . . . . . . 110



1
Introduction

Offshore wind energy is growing rapidly with an installed capacity of 29 GW and is expected to reach
234 GW by 2030 [1]. Various factors drive this rapid growth. For instance, deteriorating climate and
depleting fossil fuel resources demand cleaner energy alternatives. Moreover, compared to onshore,
offshore sites show higher wind potential. Their locations, being farther from human society,
provide additional benefits of reduced visual impact, lower noise issues, and increased space
availability, which allow turbines to be built larger for yielding more energy [2]. Conversely, the
considerable similarity between offshore and onshore turbines and mature technologies of the
onshore field have accelerated the growth of offshore wind energy [3]. Furthermore, the improved
simulation and design optimization tools have led to significant cost reduction. As a result, the
world’s first subsidy-free wind farm will come into effect by 2022 [4].

Nonetheless, further cost reduction is necessary to fulfil 30% of global electricity needs by using
offshore wind energy by 2050, which is 0.3% at present [5]. The potential pathways include
increasing revenue by maximising energy yield and reducing costs by minimising extreme loads and
material usage [6, 7]. Traditionally, the energy yield can be improved by increasing the rotor
diameter, which increases the swept area, and thus the power output [6]. In addition, the design of
an offshore wind turbine (OWT) is optimized to lower the use of materials. However, the expected
growth is significantly hindered because of environmental uncertainties. For example, the power
fluctuations caused by varying wind conditions significantly slow down the energy gain. Besides,
OWTs have to survive against the offshore environmental uncertainties over their designed lifetime.
Therefore, OWTs are simulated against these extreme conditions by using a synthesized wind speed
time series. If these time series do not adequately capture the extreme environmental conditions,
this can even lead to the failure of an OWT or its components, adding up the unplanned costs of
maintenance, labour, materials, etc., which account for more than 30% of the total cost [6, 7]. Overly
conservative designs also increase the material costs [8]. Moreover, the unavailability of OWTs for a
certain time also affects the energy yield of a wind farm. Therefore, understanding the impact of
unexpected extreme changes in wind speed on the components of OWTs and their performance is
of paramount importance for the growth of the offshore wind industry [9].

1.1. Importance of ramp events to the offshore wind industry
As aforesaid, the growing offshore industry faces limitations due to environmental uncertainties,
where ramp events have a significant influence [2, 10]. A ramp event is characterised as a sudden
and significant shift in power or wind speed in a short time period [11]. Yet, there are no universally
defined values for a ramp period and amplitude, but they vary as per the end user’s objective and
local site conditions [12]. Figure 1.1 illustrates an example of three ramp events in an OWT’s power
output induced by ramp-like changes in the horizontal wind speed. When a ramp event is
associated with an increase in power (or wind speed), it is referred to as a ramp-up, whereas the
decrease is known as a ramp-down.
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Figure 1.1: An example of observed wind power and speed ramp events at the Dudgeon wind farm.

The significance of ramp events in the offshore wind industry is explained from different perspectives
of end-users. Here, end-users are the ones whose tasks get affected by ramp events.

• Wind turbine designer: A wind turbine designer aims for a cost-effective and efficient design
that yields significant power. These OWTs are designed using extensive simulation tools,
where synthesised wind speed time series are one of the major inputs. The time series are
generally developed using statistics of wind data, representing normal and extreme weather
conditions that an OWT may face during its service life. Besides, extreme loads are estimated
using extrapolation methods. An unexpected events, which are not sufficiently captured in the
existing synthetic time series, could lead to extreme loads on an OWT. One of such events are
ramp events [2, 13]. Moreover, short-period ramp events are regulated by the control system of



an OWT [14]. Therefore, it is crucial to identify the characteristics of ramp events and their
impact on the performance and ultimate loads of an OWT.

• Grid Operator: To ensure the reliability of the electrical system, a grid operator constantly
needs to balance energy supply and demand. Thus, increasing fluctuating wind power
penetration to the grid negatively affects the system stability [10]. The short-term power
fluctuations (lower than a minute) are beyond the system operator’s control, which are
regulated by the automatic generation control system of a wind turbine. In other words, long
period ramp events of an hour to several hours have a substantial impact on system operation
[14]. Moreover, wind power ramps associated with aggregated wind and solar farms of a
specific area are more important for a grid operator than ramp events observed in a single
wind turbine or a farm [15]. The actual concern is when a ramp event shows an opposite
correlation with the demand, i.e., power production is increased, but the demand is low (or
vice versa). In such cases, either power is curtailed to keep the voltage below the line rating of
the network (supply is higher than demand) or a fast response from other generators is
required to fulfil the difference in supply and demand (supply is lower than demand). As long
as both vary in a similar direction, i.e., both supply and demand increase or decrease, it could
be manageable. However, ramp events affect power systems whose the overall share of wind
energy is comparable to the demand [14]. With increasing wind power, predicting large ramps
is thus of utmost importance, specifically during the night, when the wind power output has a
comparable fraction of supply [16].



• Energy Traders: The large unpredicted uncertainties in the wind power output could
adversely affect the energy market. During the daytime, a grid operator adjusts demand and
supply as per updated information and energy bids. If the error in a ramp forecast significantly
lowers the power production from the wind farm, it may impose expensive penalties on
energy traders. In short, wind power ramps may have a substantial impact on economics [12,
17]. The time period of interest for energy traders depends on the type of market, day-ahead,
hourly, or less. Further details can be found in Pinson et al. [9]

• Wind farm operator: A farm operator aims to maximize the revenue and efficiency of a turbine.
As described before, the wind power variability affects the energy yield of a wind farm. Based
on the power limit imposed by a grid operator on a wind farm, the farm operator decides which
turbine’s power should be curtailed. A turbine operator tries to reduce such downtimes of OWTs
and cut down the maintenance costs, which eventually rely on the intensity of ramp events
[2]. Besides, the installation of the energy storage system can mitigate the impact of power
fluctuations on the revenue. For its efficient design, wind power ramp events forecasting of a
specific turbine cluster as well as the wind farm is vital [15, 18].

1.2. Problem description
Discussions over the influence of wind power ramps on grid stability and energy economics have
dominated the research in recent years [10, 12, 14–17, 19]. They are also the governing factors in
designing storage systems for wind farms [18]. Thus, many definitions are focused on wind power
ramps forecasting [12, 15, 17]. The comprehensive literature studies suggest that research in this area
is still evolving, and existing methodologies have not sufficiently considered the smoothing effect of
wind farm power fluctuations. Thus, improvements in the proposed wind power ramp definitions
are vital.

On the other hand, little research has been conducted to analyse the impact of wind speed (and
power) ramps on the ultimate wind turbine loads. The widely used design guidelines from
International Electrotechnical Commission (IEC) analyse the ultimate loads that a turbine may
experience due to extreme turbulence, shear, or gusts. However, none of the load cases deals with
wind speed ramp events. Hannesdóttir et al. [13] performed simulations with representative
extreme wind speed ramps. The authors showed loads associated with ramp events exceed the IEC
extreme turbulence load case for specific wind speed bins [13]. Nonetheless, the results are still not
validated with measurements. Therefore, further research based on real measurements is needed to
substantiate the existing findings and to investigate the real impact of ramp events on the ultimate
wind turbine loads.

1.3. Research objective and methodology
This report aims to analyze the influence of wind power ramps on offshore wind farms of different
sizes. In addition, to the best of our knowledge, the existing literature has not evaluated the effect of
wind power and wind speed ramp events on the measured ultimate wind turbine loads. Therefore,
the primary research objective is

"the investigation of the impact of wind-induced ramp events on the offshore wind farm power
and ultimate wind turbine loads - a measurement-based approach"

It is addressed in the following steps:

1. Detection and categorization of wind power ramps events of two wind farms of different size,
by considering the smoothing effect of wind farm power fluctuations.

2. Analysis of impact of wind power and speed ramp events on the maximum wind turbine loads.

3. Validation of Hannesdóttir et al. [13] findings by comparing measured loads associated with
extreme fluctuations to simulation results.



1.4. Outline
The structure of the report is as follows:

Chapter 2 gives a theoretical background of offshore wind turbine technology and the origins of
ramp events. Chapter 3 summarises the literature studies based on the definitions used to detect
ramps and the impact on the ultimate wind turbine loads. Chapter 4 provides information on the
available data and arguments on the implemented data filtering techniques. Chapter 5 elaborates
on the methodology used to detect and categorise ramp events in two wind farms and summarises
the characteristics of the observed ramp events. Chapter 6 validates the simulation results against
measurements. Afterwards, Chapter 7 addresses the main objective of the research, i.e. the impact
of ramp events on the ultimate wind turbine loads. Finally, Chapter 8 concludes the findings and
provides recommendations for the future research scope of this topic.





2
Theoretical Background

The following chapter provides the reader with a theoretical overview of the environmental
conditions of offshore wind turbines, their performance and loads. Finally, the possible origins of
wind speed and wind power ramp events are briefly covered.

2.1. Introduction to offshore wind turbine technology
An OWT is a complex dynamic mechanical system used to convert wind energy into rotational energy
and subsequently into electricity. Its fundamental structural components are illustrated in Figure 2.1.

• Rotor: It is a rotating part that usually includes three blades connected to the hub. Its main
function is to convert wind energy into rotational energy.

• Nacelle: It houses the machinery, such as the drive train, yaw system, pitch system, etc. The
rotor and nacelle together are referred to as the rotor nacelle assembly (RNA).
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Figure 2.1: The major components of an offshore wind turbine with a monopile foundation.

• Tower: It supports the weight of the RNA and the loads induced by environmental conditions.
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The height of the tower is decided based on the required altitude above mean sea level for wind
power production.

• Foundation: It is a fundamental support system that must safely absorb and transfer all the
loads to the seabed, simultaneously ensuring the stability of an OWT [3].
All components from tower to foundation are together known as the support structure.

The surrounding offshore environment affects the performance of an OWT (or wind farm) as well as
its loads. Wind turbine designers analyse the effects of such conditions on structural components of
an OWT by using intensive simulation tools and following the design guidelines. This section provides
further insight on these topics.

2.1.1. Offshore environmental conditions
An OWT encounters dynamic environmental conditions due to changing wind [20, 21], waves [20,
21], currents [21], soil [22], ice (if applicable) [21], and other conditions. The detailed information of
these conditions can be found in the above-mentioned references. This work focuses primarily on
the effect of wind variability on the power production of wind farms and the loads experienced by
the components of an OWT.

In the atmosphere, wind speed and direction fluctuates with different temporal and spatial scales,
where small-length scale events are short-lived and larger-scale phenomena last longer. Figure 2.2
summarises the time and horizontal length scales of different meteorological phenomena, which
follow a straight line on a log-log plot. Moreover, small-scale weather events occur more often,
whereas large-scale events are rare. The wind energy spectrum gives the energy content of various
phenomena and the period of their occurrence (see Figure 2.3). Besides, wind speed also varies
across height.

Figure 2.2: Spatial and temporal scales of some meteorological phenomena [23].

Because these conditions vary widely across time and length scales, it is time-consuming and
computationally intensive to analyse wind turbines for each of these conditions. Therefore, based
on the available measurements, the most common wind statistics are extracted, such as the 10-min
mean horizontal wind speed (C) and the standard deviation of the 10-min wind speed time series
(horizontal and vertical). Subsequently, the wind time series are synthesised and extrapolated to



represent different normal and extreme environmental conditions. In addition, a vertical wind
profile is formulated by using the logarithmic and power laws, whose variation with height is as
illustrated in Figure 2.1. Further details and formulas can be found in [24].

Similar to wind, waves conditions also vary at different temporal and spatial scales. They are
induced by the friction between wind and water surface, which are also known as wind-induced
gravity waves [20]. The energy spectra of ocean waves are shown in Figure 2.4, where the x-axis
indicates the frequency or period at which the specific event (peak) occurs. The left side of the graph
represents events with long time scales, while the right side represents high-frequency oscillations.

Figure 2.3: Energy spectrum of horizontal wind speed [20].

Figure 2.4: Energy spectrum of ocean waves [25].

Depending on the water depth, the foundation type of a turbine is selected. The waves in shallow
water are usually modelled linearly by using the Airy wave theory [20], for which a monopile
foundation can be used. As the water depth increases, the waves exhibit nonlinear behaviour and
increased fatigue loads [26]. It requires a more complex foundation, such as a jacket, to withstand



the loads. Moreover, significant wave height is one of the most important factors for wave loading. It
is estimated as the average of the highest one-third of the wave height. For more details on wave
loading, [20, 27] can be referred.

2.1.2. Offshore wind turbine and wind farm power
The performance of a turbine is generally estimated based on its energy yield, i.e., power generation
over time, which depends, among others, on weather conditions. The variation in power output as a
function of horizontal wind speed is illustrated by the power curve of a wind turbine, which is divided
into four regions [28] (see Figure 2.5):

• region I is the region below cut-in wind speed, where the turbine is idling.

• region II ranges from cut-in to rated wind speed, i.e., partial load region. Here, the power (P)
increases non-linearly with the wind speed (% ∝C3).

• region III covers the area from the rated to cut-out wind speed, i.e., the full load region. Here,
power is maintained constant to the rated power within the generator capability [29].

• region IV is the area after cut-out wind speed, where the turbine is parked.

This transition in the power curve over the entire wind speed range is generally facilitated by the
generator torque and pitch control. The filtered signal of the generator rotational speed (Ω) is an
input to the control system. The signal is low-pass filtered to mitigate the high-frequency excitation
of OWT components due to controller activities [30]. The fundamental goals of the controller are [31]:

• to maximize the output power in the region below rated wind speed.

• to maintain rotational speed and power within generator limits at wind speeds above rated wind
speed.

• to maintain power output within the power limit imposed by the turbine operator.

• to minimize fatigue and extreme loads on the OWT components.

The structural loads are discussed later in subsection 2.1.3.

Δ𝑆 = 1𝑚/𝑠

Δ
𝑃
=
2
0
%
𝑃
𝑅

𝚫
𝑷
=
𝟏
𝟎
%
𝑷
𝑹

𝚫𝑺 = 𝟓𝒎/𝒔

I II III IV

Figure 2.5: An example of a wind turbine power curve. Here, the red and blue contours represent the influence of
non-linearity of the power curve at different wind speed regions (modified version of [32]).



Figure 2.6: An example of the power, pitch, and rotational speed curves for a pitch-regulated wind turbine. The different
control regions are indicated by the pink lines [27].

Figure 2.6 shows an example of the functioning of a pitch controller for a pitch-regulated wind
turbine. Here, the pitch, rotational speed and power curves are divided according to the variation of
a rotational speed. Region 1 1

2 is a start-up region, where the rotational speed (and torque) increases
linearly to reach the optimal power coefficient. The region 2 is a partial load region, where the rotor
speed varies with the wind speed, and the pitch is inactive. In other words, blade operates at its
optimum angle of attack. In this region, the power (% ) varies with the third power of the wind speed,
i.e. % ∝ C3. in the region 3, power is also kept constant at the rated power by increasing the pitch
activity. The pitch controller is activated in the region 2 1

2 to keep the rotor speed constant to the
rated rotational speed, which is to prevent the rotor speed from exceeding the capability of the
generator [29]. It is achieved by pitching the blades to vane (pitch into wind to reduce their surface
area) and making linear adjustments in the torque curve. In particular, the angle of attack is
decreased (lower than the optimal value), resulting in a decreased lift force and increased drag
force. Finally, [27, 30].

Non-linearity of the power curve
Despite the significant wind power resource of offshore sites, fluctuating power output has always
been a major challenge for the wind industry, and the non-linear relation between wind and power
is a fundamental reason behind it. The intensity of power variations depends on the region in which
a wind turbine is operating. For instance, because of the non-linearity in the partial load region, a
minor change in wind speed leads to a significant shift in power output. Let us consider the
example represented by a red contour in Figure 2.5. For an increase in the wind speed by 1 m/s, the
corresponding power output augments by 20% of the rated power (%' ). If such significant power
variations occur in a short period, these are known as wind power ramp events (see section 2.2).
Moreover, the large variation in wind speeds does not necessarily induce significant power
fluctuations. An example is represented by a blue contour in Figure 2.5. Here, power changes only
by 10% %' for a 5 m/s change in the wind speed, which is because of the constant power output in
region III. On the other hand, in region IV, if the wind speed slightly exceeds the cut-out speed,
power drops nearly by 100%. However, the advanced soft cutout technology helps to minimize the
abrupt drop in power after cut-out speed [33].

Smoothing effect of power fluctuations
The arrangement of OWTs in a wind farm aims to minimize the wind-induced power fluctuations
and increase overall energy yield. Therefore, the knowledge of power fluctuations smoothing effect
is important for improving the performance of large wind farms.



When the fluctuations in the power output of individual wind turbines in a wind farm are
uncorrelated, they get smoothed out upon aggregation [34]. The individual power variations that
are caused by errors in yaw and pitch controllers or in other wind turbine components are usually
independent of the rest of the turbines in the wind farm [35]. Moreover, when the wind turbines are
far apart, the power fluctuations of spatial and temporal scales lower than the distance between two
turbines are also uncorrelated. Therefore, the standard deviation of the fluctuations of the
normalized wind farm power time series (f> 5 <)) is smaller than the standard deviation of the
fluctuations of the normalized power time series of an individual wind turbine (f><). For a wind
farm of # turbines, f> 5 < will be f><√

#
, i.e. it is decreased by the square root of the total number of

turbines in a wind farm (N) [34] (see Appendix B for the comprehensive derivation). In other words,
fluctuations diminish on summation, and so do the size of ramp events. An example of power
fluctuation smoothing effect is shown in Figure 2.7. When uncorrelated power outputs of turbines
T16 and T40 are aggregated, their fluctuations smooth out (black line), i.e. the fluctuations of the
aggregated power are smaller than the fluctuations T16.
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Figure 2.7: An example of smoothing effect of power fluctuations on the aggregated power of wind turbines.

However, in reality, the wakes of upstream wind turbines affect the power output of downstream
wind turbines. Thus, based on the wind turbine arrangement in a wind farm and the incoming wind
direction, the power fluctuations show some correlations. Wind farm power fluctuations in a
row-configured wind farm show high dependency on wind direction, whereas in the square
configuration the aggregated farm power fluctuations are independent of the wind direction. For
instance, Seifert et al. [35] observed that stream-wise aligned wind turbine pairs show the highest
correlation, which decreases towards the span-wise direction. In a square-configured farm, the
number of downstream and free-stream turbines are similar for any wind direction. Therefore, wind
direction has little influence on wind farm power fluctuations.

As the wake induced turbulence modifies the wind shear profile of a downstream turbine, the
correlation between power fluctuations is driven by the spatial distancing between the turbine
pairs. Lipman et al. [34] stated that the correlation in the power fluctuations decays exponentially
with an increase in spacing in a span-wise direction. This is mainly influenced by the mesoscale
weather phenomenon and the dependence of power fluctuations on the wind speed fluctuations
below the rated wind speed [35]. Mehrens et al. [36] observed a similar exponential behaviour in the
mesoscale wind speeds at different offshore wind farms. This is because the correlation in the
spanwise direction is affected by the travel time of the event, which depends on its mean wind
speed, wind direction and the spatial distancing between the turbines [35].



2.1.3. Offshore wind turbine loads
"In the design, certification, and optimization of offshore wind turbines, extensive loads

simulation is inevitable to develop reliable and cost-effective turbines" [20].
As stated in Vorpahl et al. [20], the turbine must withstand significant loads over its lifetime. Varying
environmental conditions, lack of comprehensive offshore site measurements, and
computationally intensive models make it difficult to estimate the response of an OWT to the
real-time data. Thus, many researchers focused on reproducing representative environmental time
series to analyse the influence on the OWT structures. This section gives a general overview of OWT
loads, their influencing environmental conditions, and the necessary design guidelines for running
load simulations.

For simplification, OWT loads are divided as per the local coordinate system of a specific
component. For instance, loads on the blades are divided into flap-wise and edge-wise moments.
The direction of the flap-wise moment is perpendicular to the chord length, and the edge-wise
motion occurs in the direction parallel to the chord length of an aerofoil (see Figure 2.8(a)). The
tower side-side motion, which is induced by the generator torque, occurs around the rotational axis
of a rotor. On the other hand, the fore-aft moment is in the direction parallel to the axis of rotation,
and is driven by the out-of-plane forces (see Figure 2.8(b). The focus of this thesis lies on the rotor
and tower loads.

(a) Flap-wise and Edge-wise convention [37] (b) Fore-aft and Side-side convention [38]

Figure 2.8: Wind turbine (a) blade and (b) tower direction conventions.

An OWT is a complex mechanical system, which experiences static as well as dynamic loads.
Depending upon the load-inducing conditions, these loads are briefly classified into the following
categories [24]:

• Gravitational and inertial loads: due to gravity (self-weight), rotor rotation, structural
vibrations, or seismic activity

• Aerodynamic Loads: due to airflow interaction with stationary or moving components of the
turbine. Therefore, these loads are mainly influenced by the mean wind speed, turbulence,
wind shear, controller activity, tower shadow and rotational speed of the rotor.

• Hydrodynamic Loads: due to water flow interaction with the support structure. These loads
are mainly dependent on the water flow kinematics, water depth, currents, and shape of the
support structure.

• Actuation Loads: caused by wind turbine operation and control system. For example, loads
resulted from mechanical brakes, pitch, yaw, and torque controller activities.

• Other Loads: wake loads, impact loads (breaking of waves).



In summary, environmental uncertainties, such as varying wind, wave, current and soil conditions
have a substantial influence on the wind turbine loads. This thesis focuses only on the effect of
horizontal wind speed variability.

Wind-induced loads
Wind velocity is a primary load governing factor during the operation of an OWT [27]. To understand
the effect of wind variability on wind turbine loads, let us first consider the loads induced by the wind
speed. The interaction of the wind flow with the turbine rotor mainly gives rise to in-plane force,
which is governed by the torque and out-of-plane thrust force. Figure 2.9 illustrates these forces as a
function of wind speed. Similar to power, these loads depict a non-linear relation with wind speed.
Therefore, wind variability also affects OWT loads. For instance, the torque (g) is a function of power
and rotational speed, which is given as [39]:

g =
%

Ω
(2.1)

Since the rotational speed varies linearly with wind speed in the partial load region and is constant
afterwards, (see Figure 2.6) the torque curve also shows a similar behaviour to the power curve
Figure 2.9(a)). On the other hand, due to the constant power, the thrust force on the rotor decreases
after rated wind speed. But, in the partial load region, the thrust force (�< also increases with C2 (see
Figure 2.9) [39].

�< ∝
%

C
(2.2)

Additionally, the wind also induces a drag force on the tower, which varies across the height as per
the wind shear profile.

As explained in subsection 2.1.1, wind speed and direction fluctuates with different temporal and
spatial scales. In addition, pitch moment, rotor yawing, yaw misalignment, rotor rotation, tower
shadow (i.e., when a blade passes by in front of the tower) and other operations of an OWT modify
the wind shear profile and turbulence [27]. The extreme load sensitivity analysis conducted by
Robertson et al. [40] disclosed the high sensitivity of the blade loads to these operational conditions.
Moreover, as stated in the literature, all significant loads occurred near or above rated wind speeds.
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Figure 2.9: Variation of in generator torque and thrust force with wind speed.

Effect of wind-wave misalignment
The wind-wave misalignment is a significant driver of extreme tower loads. Theoretically, a
constant long-term wind speed leads to a unidirectional wind and wave alignment. However, in
reality, wind speed and direction fluctuate over time, which affects the wind-wave interaction,
leading to directional mismatches, and irregular ocean waves [20]. For instance, Fischer et al. [26]



observed the largest effects when the wave direction was perpendicular to the wind direction, i.e,
they reported nearly a fivefold increase in a side-side moment compared to only a 30% reduction in
the fore-aft moment of the support structure (In Koukoura [27], there is a typo of 30% "higher",
which should be 30% "lower"). According to the author, the most probable reason for this could be
the first eigenfrequency of the support structure, being closer to the wave peak, led to the very high
excitation [26].

Another reason for high side-side moments can be the deceased aerodynamic damping effect,
which is explained in Figure 2.10. In this case, the fore-aft motion of the tower is in the opposite
direction to the wind velocity. Due to this, the rotor experiences increased relative wind velocity and
consequently high thrust force, which counteracts the tower motion. When the tower moves in the
same direction as the wind, the resulting aerodynamic force decreases due to the decreased relative
wind speed. In other words, the aerodynamic force dampens the fore-aft motion of the tower
caused by the hydrodynamic loads. This phenomenon is known as aerodynamic damping. The
damping effect is maximum when the wind and wave directions are perfectly aligned and reduced
otherwise [27].

Figure 2.10: Effect of aerodynamic damping on a tower fore-aft moment [27].

IEC design load cases
As discussed in chapter 1, intensive simulations are performed to estimate various loads that an
OWT may face during its lifetime. Moreover, varying environmental conditions significantly affect
OWT loads. For this purpose, various design guidelines and synthesised wind, wave time series
models are available, where IEC standards are widely accepted. The IEC design load cases (DLCs)
aim to keep the limit state probability of OWT components below a certain value prescribed by the
ISO 2394 standard [24, 41]. The IEC DLCs also follow the certification guidelines, for which the
turbine design should at least be verified against the following limit states:

• Ultimate limit state (ULS): Loads should not exceed the maximum load-carrying capacity of
the designed structure.

• Fatigue limit state (FLS): The fatigue damage of the structure should not exceed the value of
1. Here, the fatigue damage estimates the accumulated damage of the structure due to cyclic
loading and stresses during its service life.



• Structural instability: The load-carrying components shall not deform during their service
life.

• Critical deflection: Deflection of one component shall not mechanically affect the other
component. (e.g., a blade should not hit the tower).

The above checks ensure that an OWT is engineered to withstand the potential hazards over its
lifetime. Given the uncertainties in wind conditions, a number of time-domain simulations are
performed for different seeds representing the different stochastic wind patterns. Additionally, to
account for variations in material properties, manufacturing, and measurement errors, the
simulation results are multiplied with partial load safety factors to define the limit state. These load
safety factors vary depending on turbine components and loading conditions [24, 27].

Following the design criteria and possible loads, the IEC 61400-3 standard prescribes various design
load cases (DLCs) [24] based on the operating condition of an OWT. These include power
production, power production plus the occurrence of a fault, start-up, normal and emergency shut
down, parked, parked plus the occurrence of a fault. Further details on the design conditions, such
as relevant wind, wave, wind-wave directionality, can be found in IEC 61400-3 [24].

Since the DLCs of IEC 61400-3 include hydroelastic loads in addition to the aeroelasticity, this can be
said as an extension of the IEC 61400-1. The hydroelasticity determines the response of the support
structure caused by the interaction between inertial, hydrodynamic and elastic loads. While,
aeroelasticity investigates the loads induced by the interaction of the inertial, aerodynamics and
elastic forces on the structure.

With the increasing size of OWTs, ultimate loads are becoming increasingly critical. An OWT is
subjected to various extreme loading conditions during its operation, which is determined by the
statistical extrapolation of loads for 50 years or by synthesising extreme wind time series. When the
wind variability is not adequately captured, it may cause an inaccurate representation of the
ultimate design loads [2, 20]. The wind conditions that are considered under IEC are normal and
extreme turbulence, extreme wind shear, and extreme coherent gusts. An overview of related DLCs
during the operation of an OWT includes:

• DLC 1.1: It estimates the loads experienced due to the atmospheric turbulence during normal
operation conditions. The corresponding statistical turbulence model is based on the
standard deviation of the 10-min horizontal wind speed time series (fC ). The normal
turbulence model (NTM) of IEC is representative of 90% quantile of these standard deviations
at a given hub height. The estimated extreme loads, at least the blade root moments, are
extrapolated for a period of 50 years to identify probable ultimate loads in 50 years.

• DLC 1.2: Similar to DLC 1.1, it also estimates the loads due to atmospheric turbulence. However,
it is the only operational case which analyses the damage caused by fatigue analysis.

• DLC 1.3: It simulates the loads by using the IEC extreme turbulence model (ETM). It is a
statistical approach based on the extreme wind fluctuations that a turbine could experience
during its operational life. Depending on the site conditions, turbulence models are divided
into three classes as per intensity. The simulations are repeated until the extreme loads (at
least the blade root moments) are higher than those determined with DLC 1.1. Thus, it could
be said that DLC 1.3 is representative of extreme loads resulting from normal as well as
extreme turbulence in the 50-year return period.

• DLC 1.4: It analyses the extreme coherent gust with direction change (ECD). It is considered as
a potentially critical transient condition during the service life of an OWT.

• DLC 1.5: It determines the loads caused by an extreme wind shear (EWS). It is also considered
a critical transient condition during the service life of an OWT.



Further information related to wave, current, and soil conditions can be found in the IEC 61400-3
standard [24].

In summary, to the best of our knowledge, no load case has been developed to analyse the impact
of ramp events on the ultimate wind turbine loads. Therefore, this thesis hereafter focuses only on
ramp events.

2.2. Ramp events
As introduced in chapter 1, ramp events are generally manifested as a sudden and significant
change in power or wind speed in a short time period ( see Figure 1.1).

The definition of short period also varies with the objective. Gallego-Castillo et al. [12] summarised
wind power ramp events on a time scale of five minutes to six hours. Cheneka et al. [42] examined
ramp events lasting for 15 hours. On the other hand, Hannesdóttir et al. [43] defined wind speed
ramp as an event with a temporal and spatial scale greater than turbulence or gust. In this thesis,
events that fall under the temporal scale of few minutes (higher than the turbulence time scale) to
several hours, and follow spatial scales ranging from a few meters to 100 km are studied.

The knowledge of the ramp direction helps in distinguishing ramp events into ramp-up and
ramp-down categories. Ramp-up is defined as a sudden increase in wind power (or speed), which
may occur because of intense low-pressure systems (cyclones), low-level jets (LLJs), thunderstorms,
wind gusts, and similar weather phenomena. In contrast, ramp-down is a sudden decrease in wind
power (or speed), which can result from a slackening of the pressure gradient, the passage of
pressure couplets, yaw misalignment, and power curtailment [12, 17, 44].

Understanding the root cause of ramp events is an important precursor for analyzing their influence
on end-users and finding solutions to alleviate the impact. This section summarises some of the
origins of wind speed and power ramps.

2.2.1. Origin of wind speed ramps
Several atmospheric conditions may lead to the generation of the ramp-like structures. Various
literature addressed the generation of a ramp event based on the thermal stability of the boundary
layer. For example, in the stable boundary layer, it may originate due to induced turbulence from
vertical wind shear of horizontal winds, such as gravity waves, pressure gradient, Kelvin Helmholtz
instability, or surface heterogeneity [45]. The development of ramps in the convective boundary is
perhaps due to surface buoyancy fluxes, latent heat release, or cloud radiative effects, which are
present as convective cells or rolls [46]. In a neutral boundary layer, a ramp may arise because of
shear, which is observed as streaks [47].

A few of the underlying phenomena, which are frequently mentioned, are described below:

• High Turbulence: The horizontal turbulence intensity measures the velocity fluctuations in
the horizontal direction as fC

C
, where fC and C are the standard deviations and mean wind

speed over a 10-minute period at a given height, respectively [32]. Thus, higher turbulence
intensity indicates a high standard deviation in 10-min horizontal wind speed is perhaps an
indication of a ramp. Hannesdóttir et al. [43] has identified a ramp-like increase in wind speed
when an extreme variance event is observed in 10-min wind speed time series. Higher
horizontal turbulence intensity could be observed during frontal systems.
High vertical turbulence intensity also provides the characteristics of large-scale weather
events. For example, vertical turbulent mixing is observed in the convective atmosphere
(thunderstorms, gravity waves). In a stable atmosphere, coherent turbulent structures are
observed just below LLJ [48, 49]. High turbulence can also result from the superposition of the
wakes of wind turbines.

• Frontal Systems: A front is a transition zone between two interacting air masses, which
majorly indicates a strong horizontal gradient in temperature, humidity, wind speed, pressure



and vertical shear. Air mass is a volume of air that generally has constant temperature and
humidity. As the pressure at any height in the atmosphere is related to the mass of the air, it is
associated with a synoptic-scale system, which is a spatial scale of pressure distribution. In a
hydrostatic environment (i.e., no vertical acceleration), the weight of air mass balances a
decreasing pressure with increasing height. In Figure 2.11(a), the solid black line represents
hydrostatic pressure. However, a column of air in the environment may experience different
variations in pressure across the height (non-hydrostatic) that deviate from hydrostatic
pressure (dashed curve). If at higher altitudes, this deviation is positive, at lower altitudes, it
will be negative. The combination of positive and negative pressure deviations from
hydrostatic pressure form pressure couplets. Figure 2.11(a) gives a fundamental overview of
the presence of non-hydrostatic pressure couplet in the atmosphere as a function of height
and pressure. A rise or fall in the values of these pressure couplets results in a rapid decrease or
increase in wind velocity and different air masses[23]. The abrupt changes in air masses give
rise to weather fronts, which are also related to a sudden directional shift, precipitation and
strong winds [32].

Frontal systems are nothing but the presence of one or more fronts in the environment [23].
The fronts are classified depending upon their characteristics as a cold front or warm front.
Figure 2.11(b) shows a symbolic representation of warm front (semi-circle), cold front (triangle)
and when they combine, known as occluded fronts.

(a) Pressure couplet(solid line - hydrostatic pressure, dashed line - non
hydrostatic pressure, p’ - pressure deviation) [23] (b) Representation of cold, warm and occluded fronts [50]

Figure 2.11: Illustration of (a) Pressure couplets and (b) frontal system.

Pichault et al. [32] has summarized the front identification technique proposed by Simmonds
et al. [51], in two steps: (1) if the sign of the meteorological wind direction changes from positive
to negative (e.g. shifts from southwest to northwest) over a successive period of six hours, and
(2) if the magnitude of wind speed change is higher than 2 m/s over the same six hours interval,
it can be said that a front (or fronts) is present in the atmosphere. Thus, frontal activities give
rise to either ramp-up or ramp-down events [32].

• Convective outflow boundaries (moist convection): Outflow boundaries are the separating
layer between a thunderstorm cold air outflow and a surrounding warm moist air. When a cold
air mass advects faster than a warmer air mass, the atmospheric condition becomes unstable,
convective, and turbulent. However, a strong stable layer on the top of the air mass acts as a lid
to convection. As the cold air from the thunderstorm downbursts, it spreads out in a horizontal
direction, and the leading edge of the outflow is known as the gust front [23]. Mostly, these gust
fronts lose their energy quickly by giving rise to a new storm, as shown in Figure 2.12.



Figure 2.12: Illustration of thunderstorm and gust front [52].

Such gust fronts modify the wind shear profile into an inverted boundary layer profile (also
known as nose-shaped profile) [53]. In this profile, the maximum wind speed occurs near the
ground and it decreases exponentially upwards.

Figure 2.13: Wind profile of a gust front [53].

2.2.2. Origin of power ramps
As stated in subsection 2.1.2, the non-linear relation between wind speed and power output gives
rise to power ramp events even for a minor change in the wind speed. Therefore, wind speed ramp
events, associated with the partial load region, also induce ramps in the power time series. However,
in addition to the weather conditions mentioned in the previous subsection, other conditions could
also lead to power ramps. A few of them are as follows:

• Power curtailment:
As discussed before in Chapter1, a grid operator constantly needs to balance supply and
demand for the safe functioning of power systems. When the power output of a wind farm is
higher than the demand, a grid operator imposes a power limit on its power production, i.e.,
power is curtailed. This is exemplified in Figure 2.14. Here, the power limit is imposed at 50%
of the wind turbine’s capacity. As indicated on the right-side figure, a sudden drop in power to
50% results in a ramp-down event.



Figure 2.14: An example of a sudden power drop induced by power curtailment of 50%.

• Yaw misalignment:
The yaw controller aims to keep a wind turbine facing towards the incoming wind direction
during the power production. The yaw misalignment refers to the condition when a turbine is
suddenly misaligned with the wind direction. A sudden shift in wind direction, usually greater
than 70◦ leads to yaw misalignment. This usually appears as a dip in the power time series, i.e.
ramp down [16].
Figure 2.15 represents the variation in power for different degrees of yaw misalignment at
different wind speed levels. In Cutler et al. [16], the author discovered that the yaw
misalignment cases caused by a sudden and large change in wind direction are induced from
pre and post-frontal activities.

Figure 2.15: Variation of power output with yaw misalignment at different wind speed levels [54].

Effect of local conditions and farm layout on ramp events
Several authors also examined the atmospheric conditions of different offshore wind farms. It is
hardly the case that two wind farms experience ramps with similar meteorological conditions. Even
for individual wind farms that are located on the same latitude positions, local effects may differ,



such as site-specific terrain properties, roughness, topography, or sea-land interactions [12]. The
landmasses and distance of a farm from the coast also influence the mean wind speed and mean
wind direction [36]. Therefore, the observed intensities of ramp events vary, even when they are
related to large-scale atmospheric processes, which affect neighbouring wind farms. [12].

Moreover, distinct characteristics of weather events, such as temporal and spatial scales, mean wind
speed, direction, and stability distribution, also affect the correlation between power output of
turbines [34, 35]. Even for large coherent structures, when the streamwise aligned pairs showed high
correlations, the correlation in the spanwise direction is affected by the travel time of a ramp event.
It depends on the mean wind speed and the spatial distancing between the turbines [35]. Thus, the
size of a wind farm also influences ramp events. For example, smaller wind farms with less spatial
diversity experienced more ramp events [12].





3
Literature Review

This chapter aims to provide a comprehensive literature review on wind power and wind speed
ramp events. Section 3.1 summarises proposed power ramps detection methodologies based on the
user-defined input parameters. Section 3.2 presents a study related to the influence of wind speed
ramp events on extreme wind turbine loads. On the basis of existing literature, further research
scopes are identified (section 3.3) and subsequently, objectives of this thesis are formulated
(section 3.4).

3.1. Power ramp events detection methods
As discussed before, power ramp events are generalised as a significant shift in power output in a
short period of time. Figure 3.1 illustrates an example of one ramp-up and two ramp-down events
observed in the power time series of the Dudgeon wind farm.
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Figure 3.1: Normalized wind farm power time series (%5 < in blue) of Dudgeon in February 2018. A ramp-up event is shown by
the black lines and two ramps-down events are depicted using the pink lines.

Most of the proposed ramp detection algorithms require some user-defined input parameters, such
as the time signal (B ), the time window (BE ), the power time series (% ), power differences (Δ% ), the
threshold power value (%D0: ), or the threshold power ramp rate value (%''D0: ) [12, 15, 19, 44]. For
example, Freedman et al. [55] defined ramp event as an event with more than 20% change
(threshold) in power output in a 30-min period (time window) as a ramp event. The common
outputs of the ramp detection algorithm are ramp direction (ramp up and ramp down), ramp

23



duration (ΔB ), and ramp amplitude.

Typically, a simple binary indicator function (� ) is used to categorize and concatenate co-directional
ramp events detected in successive time frames [12]. At first, events are divided into a ramp-up (� (B )
= 1), a ramp-down (� (B ) = -1), or a no-ramp (� (B ) = 0) category, at each time step (seeEquation 3.1).
For example, in Figure 3.1 four ramp-up events are concatenated to obtain an overall ramp
amplitude. Thus, the time duration (ΔB ) refers to the rise or fall time of a ramp amplitude. Further
implementation of this method can be found in 5.1.5.

� (B ) =


1, if Δ%< (B ) ≥ %D0:
−1, if Δ%< (B ) ≤ −%D0:
0, otherwise

(3.1)

Here, Δ%< , %D0: and %''D0: are normalized by the rated capacity of a wind turbine.

The technique used to normalize aggregated power time series (i.e., wind farm power) also
influences the detection of ramp events, as the available rated capacity of a wind farm varies over
time. These variations could be associated with the upgrading of wind farm capacity, shutdowns, or
unavailability of data at different time steps [19]. To address this issue, Kamath [19] used a range of
power threshold values to account for power variability. Along the same line, Cutler et al. [16] scaled
up the available aggregate power to a wind farm with 37 turbines. The author also set a criterion for
the minimum number of wind turbines to be 10. In simple words, time steps of power
measurements of fewer than ten wind turbines were discarded. The further justification behind this
criterion is not available. On the other hand, Wan [14] normalized the farm power with the total
installed capacity of the specific year to consider the influence of the upgrading wind farm capacity.

Several ramp detection methods are summarised in Ferreira et al. [44], Gallego-Castillo et al. [12], and
Bianco et al. [15]. In this report, these methods are divided into two parts. The first part reviews the
definitions based on the variation of ramp amplitude and duration. The second part deals with the
selection criteria used to define the threshold.

3.1.1. On the basis of ramp amplitude and time duration
The basic approach of defining a ramp event is the fixed time interval method. It estimates the
power differences between the start and end points of a time window [12, 14–16, 19, 44, 56]. As
discussed earlier, the time window (BE ) is a user-defined input that can vary from a sampling time to
the total duration of an available time series. Therefore, its analytical selection is essential.

If the power difference in the normalized power time series (%<) for a defined time window is higher
than the threshold value, then a ramp event is identified. Equation 3.2 represents a mathematical
formulation of the fixed time interval method.

|%< (B +BE ) −%< (B ) |>%D0: (3.2)

As discussed before, it is possible that the time duration of an event is greater than the length of a
time window (see Figure 3.2(a)). Therefore, when the co-directional events are observed in
successive time windows, they are concatenated by using the indicator function (see Equation 3.1)
to get an overall amplitude and time duration.

Since the above definition only considers the start and end points of a defined time window, events
with time duration less than this time window will be missed. This can be observed in Figure 3.2(b),
where time window size is much larger than the actual time duration (BE > ΔB ). In other words, the
definition fails to detect true ramp-up and ramp-down events. Besides, the identified ramp (by the
orange line) represents a false ramp structure.
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Figure 3.2: The fixed time interval method.

To resolve this issue, Kamath [19] presented the min-max method to account for ramps that occurred
within the selected time window. As per the definition, when the difference between the minimum
and maximum power value is greater than the threshold value, ramps are detected. Further, if the
minimum occurs before the maximum, the detected ramp is classified as a ramp-up event, otherwise,
as a ramp-down event. This definition (Equation 3.3) gives a maximum ramp amplitude in the sliding
time window.

;0F (%< [B ,B +BE ]) −;7< (%< [B ,B +BE ])>%D0: (3.3)
However, if other pairs in a specific time window also meet the threshold criteria, only the shortest
time duration event is selected [15]. Figure 3.3(a) shows an example of ramp-down event (in pink)
that is identified using min-max method. In the selected time window,apart from the minimum and
maximum points, adjacent pairs also fulfil the threshold criteria (represented by purple lines). Here,
a pair of points with the shortest ramp fall time is identified as a ramp-down event. All the points
between the selected pair are marked as a ramp-down (I(t)=-1), and successive ramp events are
concatenated.
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Figure 3.3: Examples of ramp detection using (a) min-max method, where grey lines show current time window, and the light
grey lines represent the next time step, and (b) ramp rate method.

As the duration of a ramp event can be greater or smaller than the selected time window, the
probability of missing out on large intensity ramp events is notable. For example, the impact of a
30% power increase in a 10 minute period is higher than a 50% power increase in a 50 minute
interval. Hence, if the threshold is set to 50%, a ramp with a 30% power increase will not be detected.



Therefore, it is important to consider the time factor while defining a ramp event.

Following that, Zheng et al. [57] defined ramp events based on power ramp rate value (%''D0: ). If
the ratio of the absolute power differences to the time interval (9 ) is greater than %''D0: , ramps are
detected. For example, in Figure 3.3(b), %''D0: is defined considering a 10 minute interval data set.

|%< (B +9 ) −%< (B ) |
9

>%''D0: (3.4)

On the other hand, high-frequency power signals incorporate noise due to turbulent wind speed.
Since the above methods cannot handle the inherent large noise, Bossavy et al. [58] transformed the
signal into a first-order derivative by smoothing and differentiating. For smoothing, the author used a
linear moving average filter. Subsequently, first-order differences of these fluctuations are estimated
by using the following formula:

%B
5 =;40< (%B+7 −%B+7−<0; ; 7 = 1, ....<0;) (3.5)

where, %B 5 is a transformed signal, <0; indicates the number of time steps used for filtering. Thus,
ramp event occurs in a given interval if %B< 5 >%D0:

For better understanding, consider Figure 3.4, where three power signals are represented: an
unfiltered one, one transformed with <0; = 2 and another with <0; = 5. The threshold %D0: is taken
at 25% of the nominal power. Thus, an event higher than the threshold value is known as a ramp
event. The maxima at t = 13 and 32 hours represent the ramp amplitude. Similar to the min-max
method, if multiple maxima are observed, the shortest time duration event is selected as a ramp
event.

Figure 3.4: Example of wind power output with an unfiltered and two filtered signals. The threshold is taken at 25% of
nominal capacity [44].

Nevertheless, as it can be seen from Figure 3.4, the real characteristics of ramp events are lost.
Additionally, Gallego et al. [59] argued that the binary ramp classification of ramp events (indicator
function) supports the notion that co-directional ramps are of similar characteristics (e.g., ramp
amplitude). But ramps with distinct characteristics are usually observed. To overcome this
drawback, the so-called ramp function was introduced to characterize the ramp intensity through a
continuous-valued index. A wavelet transform method was added with surrogates to discriminate
coherent structures from incoherent noise [43, 59]. The continuous wavelet transform (CWT) is
continuous in both frequency and time, which is useful to identify and localise abrupt changes in
non-stationary time series. Gallego et al. [59] compared the wavelet-based method with the binary
indicator function. According to the author, knowledge of the continuous characteristics of ramp
events is important for precise forecasting. The literature also highlights additional features of a
wavelet transform method, such as preserving information of all ramp events, and their benefits to
end-users, along with overcoming the shortcomings of the binary method. Cheneka et al. [60]



summarised that CWT is a useful tool to characterize ramp events. Zhang, Cui, Hodge, Florita, and
Freedman [61] used and optimized the swinging door algorithm, where ramp events can be
detected without setting any predefined threshold.

3.1.2. On the basis of power threshold values
Gallego-Castillo et al. [12] summarised various literature studies on setting the threshold criteria,
which range from 10% to 75% of the rated power. Most commonly, the threshold is specified as a
fixed percentage of installed wind farm capacity. However, because of changing nominal capacity
(one or more units are turned off or new turbines are installed over time), Kamath [19] argued that
the use of a fixed threshold could lead to unreliable results. The authors thus analyzed ramp events
for thresholds ranging from 150 to 600 MW. On the other hand, Gan et al. [62] set different threshold
criteria, 40% for ramp-up and 30% for ramp-down events.

Moreover, Gallego-Castillo et al. [12] reviewed that only a few authors included the discussion of
end-users on the selection of the threshold for the detection of wind power ramp events. In Cutler et
al. [16], by noting the different time scales of weather phenomena that have a substantial influence
on the Australian Energy Market Operator, the author proposed the thresholds of varying time
length (varying ramp rate). At the first stage, the threshold was set to 75% of the rated power to
detect ramps within three hours time length using an hourly averaged power signal. Periods of the
detected ramp events were removed for the next stage. Subsequently, a threshold was set to 65% for
an hour duration, where 10-min average data was used for ramp detection. Aforementioned
thresholds, i.e, 75% and 65% were determined using sensitivity analysis. For this analysis, the
number of detected ramp events for the range of thresholds range from 40 to 90% with a step of 5%
was recorded. As expected, the number of ramp events increased with decreasing threshold values,
as represented in Figure 3.5. The sensitivity value was estimated using the Equation 3.6. Ultimately,
a threshold with the highest sensitivity value was chosen for ramp detection (here, 75 and 65%
respectively).

sensitivity =
<Bℎ−5−<Bℎ
<Bℎ −<Bℎ+5

(3.6)

where, <Bℎ is the number of ramp events at that threshold. The suffix Bℎ denotes the threshold value.

Figure 3.5: Total number of ramp events detected at different thresholds. Each line shows fixed values for stage 1 threshold
(hourly data), and the stage 2 threshold (10-min data) on x axis [16].

However, the results from this method are sensitive to the selection of step size. For instance, if a
step size value of 2.5% is chosen, it gives a different threshold value due to the different number of
ramp events and hence the sensitivity ratio.



Gallego et al. [63] defined the threshold as a Ff (Δ% ), where F is a positive real number and f (Δ% ) is
a standard deviation of the successive power differences. The authors analysed several values of the
threshold for F ranging from 0.2 to 2 with a time step of 0.2. The optimal value of F equals 1 was found
suitable for their case study. In Wan [14], the author used a similar method for threshold, where the
value of F was set to three, i.e. a 3f approach. The first-order differences are estimated as

Δ% (B ) = %< (B ) −%< (B −9 ) (3.7)

This methodology gives the overall statistics of these successive power differences of a given power
time series. In Valldecabres et al. [17], the authors followed a similar approach and found that the
wind farm power differences smoothed out upon aggregation when compared to power differences
of individual wind turbines. Therefore, it can be said that this method also considers the smoothing
effect of wind farm power differences.

Table 3.1: Summary of literature based on ramp detection methods.

Author End User Sample rate Time window Normalization of
Wind farm power

Minimum
turbines Threshold Categorization

Cutler et al. (2007) Energy Traders/
Grid Operator 2.5 min 10 min

1 h
Scaled-up aggregated
power to installed capacity 10 65-75%PR

sensitivity analysis
Kamath (2009) Grid operator 5 min 15, 30, 60 min - - 10-20%PR
Gallego et al. (2011) Energy Traders/

Grid Operator 1 h 1 h - - Ff6 Indicator function

Wan (2011) Grid operator
1 min
converted to
10 min
1 h

10 min
1 h Installed capacity - 3f6 Indicator function

Gan et al. (2014) Grid Operator 10 min - Installed capacity - 40%PR - ramp-up
30%PR - ramp-down

Bianco et al. (2015) Grid operator
flexible for other users 10 min - - - 40%PR

Hannesdóttir et al. (2019) Wind turbine designer
(loads) 10 Hz - - - - CWT

3.2. Impact of wind speed ramp events on ultimate wind turbine
loads

Several studies have identified that 10-min horizontal wind speed standard deviations (fC ) exceed
the prescribed IEC ETM, claiming it is not a conservative approach [13, 64]. In addition, these events
were found to be associated with wind speed ramps of temporal scales from a few minutes to hours
and not with turbulence. Hannesdóttir et al. [13] observed similar events approximately
simultaneously at the two met masts, which were 400 m apart, indicating that the length scale is
longer than the turbulence scale [13]. Subsequently, the authors examined their impact on the
extreme wind turbine loads. This analysis compared simulations from DLC 1.3 based on ETM wind
time series and constrained ramp-like wind speed series. As depicted in Figure 3.6, the constrained
synthesized time series shows a ramp-like wind speed increase at the middle of the time series,
whereas DLC 1.3 time series is a representation of extreme turbulence.

Figure 3.6: synthesised constrained (black) and unconstrained (blue) wind time series [13].

Further comparison between constrained and standard IEC DLC 1.3 simulations revealed that the
blade root flap-wise and tower base fore-aft moments exceed the standard IEC DLC 1.3 moments
near rated wind speed region. Elsewhere, the extreme loads were observed much lower than the IEC



DLC 1.3 results. According to the author, a relatively large length scale than turbulence led to a
coherent increase in the speed throughout the rotor, resulting in increased thrust and thus high
flap-wise and tower fore-aft moments.

However, the results are not yet validated with measurements. The simulation model uses the
statistical representation of the wind time series, and the aeroelastic tool is simplified based on
several assumptions. Hence, a comparison with real measurements is necessary to avoid a too
conservative design. To the best of our knowledge, a similar analysis has not yet been performed on
the load measurements.

Koukoura [27] has validated DLC 1.1 simulations with measurement data. As the research objective
was to develop a good load prediction model, the focus was drawn on the validation with 10-min
maximum average measurements and parameter tuning. In addition, the work also deduced that
the validation of DLC 1.1 with measured loads is a good first check to identify large discrepancies in
the measurements and simulations. Besides, the maximum loads obtained from DLC 1.2 represent
the ultimate loads in the normal operation [24]. Therefore, DLC 1.2 can be used as a first check of the
aeroelastic model.

3.3. Research scope
In recent years, offshore wind power and wind speed ramp events have received considerable
attention in the offshore industry. Although numerous definitions for ramp detection are available,
many questions remain unanswered. Some of the identified gaps in the literature are summarised
as follows:

• From Table 3.1, for a similar end-user, wind farm power is either normalised by the constant
installed capacity or the aggregated available power is scaled up to the total wind turbines in a
wind farm. That brings to a question, "How does the power normalisation technique affect the
objective of an end-user ?"

• Cutler et al. [16] has specified a minimum number of turbines whose data should be available at
each time step to 10. The justification behind the selection criteria is not available in the paper.
"What is an effective method for establishing a minimum number of turbine criteria for data
availability at each time step, taking into account its influence on the smoothing of wind farm
power fluctuations and ramp events?"

• Table 3.1 summarises some of the widely used definitions to identify ramp-like structures,
where, to our knowledge, to date, only a few literature studies highlight the impact on wind
turbine loads. Moreover, the research was based on simulation studies, and the results have
not yet been validated with real-time measurements.

3.4. Research objectives
On the basis of the noticed scope of the research section 3.3, the primary research objective is

"to investigate the impact of wind-induced ramp events on the offshore wind farm power and
ultimate wind turbine loads - a measurement-based approach"

It is addressed in the following steps:

1. Detection and categorization of wind power ramp events of two wind farms of different size,
while addressing the following research questions:

- "How does the power normalization technique affect the objective of an end-user ?"



- "How does the criterion of a minimum number of turbines, i.e., data availability at each time
step influences the ramp detection method?"

- "How are the characteristics of detected wind power ramp events at two wind farms
correlated?"

2. Analysis of the impact of wind power and speed ramp events on the maximum wind turbine
loads.

3. Validation of Hannesdóttir et al. [13] findings by comparing measured loads associated with
extreme fluctuations to simulation results.



4
Data Description and Filtering

This chapter provides an overview of the local site conditions of the wind farms under study, i.e.,
Westermost rough (WMR) and Dudgeon wind farms, which are located in the North Sea, UK. The
Siemens 6MW pitch-regulated wind turbines are installed in both wind farms. Thus, for this thesis,
Siemens Gamesa Renewable Energy (SGRE) has provided the required measurements as well as the
simulations datasets. Since various parameters affect the measurement values, data cleaning is vital.
Therefore, the adopted filtering techniques are explained at the end of this chapter.

4.1. Site description and measurements
As shown in Figure 4.1, the WMR and Dudgeon wind farms are located approximately 100 km apart
from each other. WMR is an offshore wind farm situated roughly 8 km from the Holderness coast,
and Dudgeon is located 32 km off the coast of Cromer. Although the Triton Knoll wind farm is
between WMR and Dudgeon, it is under construction. On the other hand, wake effects from
neighbouring wind farms may influence the power output of the Dudgeon wind farm, especially
because of the southwesterly prevailing wind direction (see Figure 4.4). Nevertheless, examining
their impact on ramp events is not within the scope of this report.

Figure 4.1: Location of WMR and Dudgeon wind farms [65].
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Figure 4.2: Wind farm layouts of (a) WMR with 35 turbines and (b) Dudgeon with 67 turbines. Turbines highlighted by the red
circles are fully instrumented for load measurements.

Both wind farms consist of SWT-6.0-154 pitch-regulated variable speed wind turbines. Their
positioning in the corresponding wind farms is shown in Figure 4.2. The additional specifications
are provided in Table 4.1. All turbines are equipped with fundamental measuring instruments. For
example, cup anemometers are installed for measuring wind speed and wind direction. Besides, the
turbine ’W35’ in WMR and the turbines ’D40’ and ’D44’ are fully instrumented turbines, i.e.,
additional strain gauges are installed for measuring the loads experienced by the OWTs.

Table 4.1: Wind turbine specifications and wind farm information [17, 65].

WMR Dudgeon
Number of wind turbines 35 67
Area covered 35 km2 55 km2

Wind turbine model SWT-6.0-154 SWT-6.0-154
Nominal power of an OWT 6 MW 6 MW
Hub Height (msl) 102 m 102 m
Rotor diameter 154 m 154 m

For the detection of wind power ramp events, time series data sets from the Supervisory Control
and Data Acquisition (SCADA) system are available. The SCADA system is a computerised system
that helps in remotely monitoring and controlling the wind turbines. Typically, it samples the data
at a high frequency (nearly 1 Hz) and subsequently stores it on a 10-min basis that can be accessed
later [66]. This sampling time may vary depending on the system configuration. Available data
signals for this thesis include active power, horizontal wind speed, meteorological wind direction,
nacelle side-side and fore-aft accelerations, yaw position, pitch position, active power limit (power
limit imposed on individual turbines), and generator rotational speed time series. Each of these
time series provides 10-min statistics (average, minimum, maximum, standard deviation values) of
the previously mentioned signals at 10-min interval (Figure C.1). Data sets of two years, 2018-2019,
are available for detection of ramp events (see section 4.3).

The time series data of individual wind turbines are averaged to analyze the local wind site
conditions of the wind farms. The vector averaging method is used for averaging wind directions at
each time step. On the other hand, the average horizontal wind speed and turbulence intensity (TI)
are estimated using the scalar averaging method. The reasoning and related calculation steps are
provided in Appendix A. Following the above approach, both sites show nearly similar average wind
speed and wind direction distributions at hub height (see Figures 4.3 and 4.4).
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Figure 4.4: Wind rose of wind farms WMR and Dudgeon both showing an prevailing west-southwesterly (WSW) wind
direction.

Figure 4.5 represents the variation of free-stream TI against the 10-min average wind speed at hub
height for turbines W7 and D52, respectively. The free-stream direction of turbine W7 is within the
prevailing wind direction. Therefore, it consists of more data points than turbine D52. The selection
of the turbine D52 is based on the minimal influence of wake effects from neighbouring wind farms
and sufficient data availability of free-stream winds. The comparatively higher average of TI per
wind speed bin for W7 is related to the differences in local effects, surface roughness and distance
from the coast [67].

The IEC normal turbulence model (NTM) is representative of the 90% quantile of TI measurements
observed at the given hub height. Therefore, for comparison with measurements, IEC TI is estimated
as fC90

C
, where fC90 is derived from Equation 4.1 [67].

fC90 =
C

ln H
H0

+1.28∗4∗ �15 (4.1)

where,
fC90 = represens the 90% quantile of the standard deviation of the 10-min horizontal wind speed,



C = 10-min horizontal wind speed at hub height,
H = hub height,
�15 = average turbulence intensity at 15 m/s wind speed at hub height,
H0 = surface roughness parameter estimated from the Charnok equation, which is

H0 =
�2

6
(^.CℎC1ln H

H0

)2 (4.2)

where,
�2 = Charnok’s parameter. Its value is taken as 0.011 under the assumption of an open sea condition,
6 = acceleration due to gravity, i.e., 9.81 ;/A2,
^ = von Karman’s constant, i.e. 0.4,
and H0 is iterated at each wind speed until its value is identical on the left and right sides (in the
DNVGL-ST-0437 [68] standards, the right-hand side H0 is incorrectly printed as H= , but they are
identical).

The IEC NTM adequately follows the 90% quantile TI measurements before the cut-in wind speed,
but afterwards, the measurements show a higher drop followed by an increase in TI in contrast to
NTM. The initial decrease in TI at low wind speed could be due to the dominant thermal effects.
These thermal effects are suppressed by the increase of the surface roughness parameter, i.e.,
frictional effects, leading to an increase of TI with increasing wind speed [69]. The discrepancies in
TI could also be due to the added blade passing fluctuations. Since the cup anemometer is located
behind the rotor, i.e., mounted on the nacelle, its readings are affected by the modified wind speed
variability due to the rotation of the rotor. For the three-bladed rotor, the highest fluctuation peak is
observed at 3P, indicating three times the rotational frequency. Figure 4.6 illustrates the power
spectral density (PSD) plot of the high-frequency (25 Hz) wind speed. The observed peaks at 3P and
its multiples indicate the added fluctuations of blade passing frequency. Therefore, it is important
to note that the available TI and 10-min average wind speed from SCADA data show some deviation
from reality.
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Figure 4.5: Free stream turbulence intensity at turbines (a) W7 of WMR and (b) D52 of Dudgeon.
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Figure 4.6: Wind speed peaks at 3P and its multiples are induced by blade passing fluctuations.

4.2. Load measurements
For this thesis, the calibrated 10-min statistics and high-frequency (25 Hz) data of the blade root,
tower top and tower base moments of a 6 MW pitch-regulated turbine are provided by SGRE, from
the Power Load Measurement (PLM) system. PLM acquires load sensor data even under extreme
testing conditions. As mentioned in section 4.1, these load sensors are only installed on the turbines
W35, D40, and D44 (see Figure 4.2).

The bending moments were obtained from strain gauge readings, which have been calibrated at the
sensor locations. Their locations are represented in Figure 4.7. As the blade sensors are placed at
edge-wise and flap-wise locations and rotate with the blade while pitching, no more transformations
are required in the calibrated moments. However, tower sensors are fixed as the tower. Therefore,
the yawing of the wind turbine keeps changing the fore-aft and side-side axes. These moments can
be transformed to fore-aft and side-side direction using a simple trigonometric relations given in
Equation 4.3 and 4.4 [27].

FA

ss

(a) Strain gauge locations for measuring tower bending strains.  (b) Strain gauge locations for measuring blade root bending and influence of blade weight .  

c

Figure 4.7: Load measuring sensors location at tower top (or base) and blade root [27].



"�� ="Fcos(0 −k ) −"G sin(0 −k ) (4.3)

"(( ="Fsin(0 −k ) +"Gcos(0 −k ) (4.4)
where, 0 is an angle between the sensor location and north direction. Moments "F and "G are
calibrated at sensor locations (see Figure 4.7(a)), which are used to calculate pure fore-aft ("��) and
side-side ("(( ) moments w.r.t. the yaw position (k) of the turbine.

Figure 4.8 illustrates the local coordinate system of the tower and blade bending moments. With
reference to the turbine positioning shown in Figure 4.8(a), the positive fore-aft moment is
considered in a clockwise direction around the x-axis of tower (i.e., FB in figure), which is in the
direction of the thrust force. The side-side moments are positive in the direction of the turbine
rotation, i.e., clockwise around the y-axis of the tower (i.e., GB in figure). However, the blade
flap-wise and edge-wise moments are considered positive in the direction opposite to the thrust
and tangential forces, respectively. The misaligned axes of forces and moments in Figure 4.8(b),
denote that the chord length is not perfectly aligned with the plane of rotation, but it shows some
inclination.

(a) Tower Coordinate system [27] (b) Blade Coordinate system (modified version of [70])

Figure 4.8: Local coordinate systems of wind turbine tower and blades.

Thus, negative moments denote that the direction of the structural response is opposite to the local
coordinate system of that component. For example, a negative tower fore-aft moment indicates that
the tower is leaning forward due to the gravity effect in the opposite direction to the thrust force.

4.3. Measurement data availability
The time span of available datasets from different channels are summarised in Figure 4.9. The 10-min
SCADA data of all turbines of the two wind farms are available from January 2018 to December 2019.
However, the PLM data for turbine W35 is not available at the mentioned period (i.e., 2018-2019). In
addition, due to the calibration uncertainty in the available data (before 2017), the W35 turbine is
not considered for the ultimate load analysis. Besides, due to brevity, the available blade and tower
moments are investigated only for turbine D40.
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Figure 4.9: Data availability from different channels.

4.4. Simulation data
SGRE simulates the bending moments of OWTs by using the Bonus energy Horizontal axis wind
turbine Code (BHawC). It is a non-linear aeroelastic tool used for dynamic analysis and load
calculations of horizontal axis wind turbines. For this study, simulations were performed by tuning
the structural parameters of the aeroelastic model with the calibrated sensor readings of the turbine
D40 from the Dudgeon wind farm (for example, using measured damping coefficient). Moreover,
bending moments were simulated at the sections corresponding to the sensor locations on the
actual wind turbine, i.e., near the blade root, tower top, and tower base.

As discussed in chapter 3, DLC 1.2 is a good initial check to examine any discrepancies between the
model and the measurements. On the other hand, ultimate DLC 1.3 results are required to verify
whether the extreme fluctuation events exceed IEC DLC 1.3.

Simulation environment
DLC 1.2: Simulations were performed for six turbulent seeds per wind speed bin indicating six
different wind time series with nearly similar statistical values. The average of these values per wind
speed bin is indicated in Figure 4.5. The time series had a sampling frequency of 25 Hz and were a
duration of 10 minutes, based on the NTM model. For this study, the wind and wave directions were
assumed to be perfectly aligned, i.e., 0= misalignment. Simulations were performed for a single
significant wave height using the normal current model (NCM), for the wind speed ranging from
cut-in to cut-out in the interval of 1 m/s. Further information is available in the IEC 61400-3
standard [24].

DLC 1.3: The simulations were performed for nine turbulent seeds per wind speed bin, indicating
nine different wind time series with nearly similar statistical values and based on the ETM model.
The time series had a sampling frequency of 25 Hz and were a duration of 10 minutes. For this study,
the wind and wave directions were assumed to be perfectly aligned, i.e., 0= wind-wave offset.
Simulations were performed for a single significant wave height using the normal current model
(NCM), for the wind speed ranging from cut-in to cut-out in the interval of 1 m/s. Further
information is available in the IEC 61400-3 standard [24].

All analyses of this report are performed in MATLAB 2020b.



4.5. Measured data filtering
Before post-processing the data, filtering out abnormal values is crucial to minimize the possibility
of detecting false ramp events and drawing any false conclusions. This section elaborates on the
techniques used to filter measured power (subsection 4.5.1) and bending moments (subsection 4.5.2)
time series.

4.5.1. Power filtering
The wind power output of each turbine is first normalized w.r.t. the nominal capacity of a turbine to
obtain comparable results. Because of the confidentiality of the data, operational wind speeds are
not displayed here. To conduct the wind power filtering, the power curve is divided into four
regions, as explained before in Figure 2.5

Adhering to the fundamental aim of detecting wind-induced power ramp events, data points other
than the normal operational condition are rejected, i.e., when

• the power output is negative

• the power output is limited by a grid operator

• a turbine is shut down in the operational wind speed region (perhaps under maintenance or
system fault.)

• the power output is observed at a wind speed higher than the cut-out wind speed

Such data points are visible in an unfiltered power curve, as it is shown in Figure 4.10(a).

Next, negative power output values below cut-in wind speed are taken as 0. It ensures that ramp
events starting from (or ending at) the idling condition are not omitted. Further, the normalized
power values during the power boost (i.e., power is higher than the nominal capacity) are assigned
as 1. Subsequently, the data points of region III are replaced by

>< (B ) =
>< (B )

%:7;7B (B )
(4.5)

Here, %:7;7B denotes a power limit imposed by a grid operator, and in case of power curtailment,
%:7;7B<%' . In Equation 4.5, it is assumed that a turbine would have produced the rated power if
power was not curtailed. Moreover, this step ensures that the time series has sufficient data points
while rejecting only power abnormalities. Because the maximum power output in II is less than the
rated power, a similar approach can not be used in that region.

Hereafter, the ’method of bins’ is implemented, as described in IEC 61400-12-1, to fit the power curve
to the measured data (Figure 4.10(d)). According to this method, the power curve of a single turbine
is first divided into wind speed bins of 0.5 m/s and average power is estimated at each wind speed
bin. Subsequently, the most representative quantiles are determined per wind speed bins, based on
the scattered power in region II. Eventually, the power values lower than the 3% quantile are
replaced by Not a Number (NaN). In region III, all power values below 0.98 are replaced by NaN.
This power filtering algorithm is summarized using the pictorial flowchart shown in Figure 4.10.

This filtering procedure is repeated to filter the power curve of all other turbines in the two wind
farms. Once the power data of all turbines are filtered, inconsistencies within the data points are
removed. Here, the inconsistency refers to the missing power values, which could be related to the
system downtime for a particular wind turbine. The interpolation method may not generate reliable
results when values are unavailable for hours, days, or even months. Therefore, all missing values
are filled with NaN.



a) Unfiltered Normalized Power curve b) If 𝑃𝑛 <0 & Region (I), then 𝑃𝑛 = 0,
else 𝑃𝑛 = NaN

e)  Region(III) → 𝑃𝑛< 0.98 = NaN 
Region(II) → 𝑃𝑛 < 3% 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒
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Figure 4.10: Flow chart of power filtering method with an example of turbine D40 of the Dudgeon wind farm. Power is
normalized with the rated power.

4.5.2. Load filtering
Figures 4.11 and 4.13 illustrate the stepwise filtering approach used for the blade and tower
moments, respectively, for turbine D40. Following the objective of analysing ultimate loads for ramp
events, the filtering is performed for 10-min minimum blade moment and 10-min maximum tower
moments. The selection of minimum or maximum moments is based on the local coordinate
system of the components (see Figure 4.8) in the direction of thrust or tangential force. The
moments are first normalized by the absolute maximum (or minimum) moment at the rated wind
speed obtained from DLC 1.2 simulations. Moreover, all moments are filtered out when the turbine
is not producing power. The filtering steps differ hereafter for blade and tower moments depending
on the data availability and the possible causes of errors in the data set.

For blades, the higher (lower in absolute terms) bending moments that deviate from normal
behaviour are predominantly related to power curtailment. Since the pitch activity controls power
curtailments and load variations, 10-min minimum pitch angles are used to filter the minimum
blade root moments. The theoretical operation of pitch control is explained in Figure 2.6. However,
in reality, a highly fluctuating wind speed signal compared to the low-frequency response of a
controller is responsible for the scatter of the minimum pitch angle in the region 3 (see Figure 4.12).
Besides, the 10-min minimum pitch angles (\;7<) are plotted against the 10-min average wind
speeds, which may not be the actual wind speed at that time step. All of the above uncertainties
result in a significant scatter, as it can be seen in the minimum pitch angle plot, from the region 2 1

2
(see Figure 4.12).

Therefore, values above the 99% quantile, i.e., the extreme 1% (\;7<) per wind speed bin (for wind
speed higher than S m/s) are replaced by NaN. Note that the 99% quantile worked well for turbine
D40 but may not be a sufficient constraint for other turbines. It is because the power curtailment
data set and the associated pitch responses vary from turbine to turbine. As the tower moments
were not available for the corresponding months, this filter was not implemented. It is worth noting
that this filter is not necessary for the analysis of ultimate loads since higher pitch values (\;7<) than
the optimum correspond to higher (lower in the absolute terms) blade bending moments.



Figure 4.11: Flow chart for filtering blade root moments. Here, the blade root flap-wise moment is normalized with the
minimum DLC 1.2 moment at the rated wind speed.

Figure 4.12: Quantiles of 10-min minimum pitch angle against 10-min average wind speed.

Since the tower fore-aft and side-side moments are function of a yaw angle (equations 4.3 and 4.4),
any error in the yaw angles would also introduce errors in the tower moments. Therefore, filtering is
required. Analysis of the high-frequency time series revealed that the highest tower side-side
moments (with an order of magnitude equivalent to fore-aft moments), occurred when the yaw
angle (k) changed by more than 45= in a period of only 40 ms. As the response time of a yaw
controller is much higher, such a fast transition is not possible. Thus, if the difference between the
10-min maximum yaw value (k;0F ) and the 10-min minimum yaw value (k;7<) was greater than
45= , this was considered an error in the data. One could be argue that a higher 10-min algebraic
difference in k;0F −k;7< does not necessarily imply a shift in the yaw angle, especially when the
turbine is oriented towards the north (e.g., change from 359 to 0). However, the analysis of the
high-frequency data showed errors in such situations.

Let us consider an example of Figure 4.14, which depicts the high-frequency time series of tower
base moments and yaw angle with a sampling time of 40 ms. The moments are normalized by the
corresponding maximum moment of DLC 1.2 at the rated wind speed. As highlighted in the red
rectangle, when the turbine was facing north, it yawed by 60= in 40 ms. At the same time, a sudden
spike was observed in the side-side moment and a dip in the fore-aft moment. Thus, when the
algebraic difference between the 10-min maximum and minimum yaw angles is greater than 45= ,
the corresponding tower moments are replaced by NaN. Such yaw error data accounted for about
0.8% of the available filtered data.



(i) Unfiltered normalized moment 𝑀𝑛 (ii) If 𝑃𝑛 ≤ 0,𝑀𝑛 = 𝑁𝑎𝑁

iii If Ψ𝑚𝑎𝑥 −Ψ𝑚𝑖𝑛 > 45,
𝑀𝑛 = 𝑁𝑎𝑁

(iv) 𝑀𝑛(𝑑𝑎𝑡𝑎 𝑒𝑟𝑟𝑜𝑟) = 𝑁𝑎𝑁

filtered

Figure 4.13: Flow chart for filtering tower top and base moments. Here, all moments are normalized with the maximum DLC
1.2 moment at the rated wind speed.

Figure 4.14: An example of significant yaw error inducing a peak in a tower base side-side moment and a dip in a fore-aft
moment. Moments are normalized with the maximum DLC 1.2 moment at the rated wind speed.

In addition, a cluster of higher moments (see Figure 4.13(iii)) was observed in the tower side-side
moments around the yaw angle of 200= −300= . Such data points belong to an average of 0.2% of the
available filtered data and are also replaced by NaN.





5
Offshore Wind Power Ramps:
Detection and Categorization

This chapter aims to provide an insight into the characteristics of the detected ramp events of the
WMR and Dudgeon wind farms, and their correlations. In this regard, a suitable ramp detection
method is selected by considering the end-user’s objective of identifying extreme wind-induced
power ramp events. Therefore, this chapter addresses the first research objective in the following
three sections:

1. Ramp detection algorithm: Firstly, the arguments on the selection of a specific ramp
detection method are presented. Secondly, the influence of a technique used to normalize the
aggregated wind farm power on the end-users is discussed. Afterwards, attention is drawn
towards the effect of power fluctuation smoothing on the threshold and the significance of
setting up a criterion of a minimum number of turbines at each time step. Finally, the
detection algorithm is presented in combination with the indicator function.

2. Correlation analysis: This section examines statistical relationship between wind power, wind
speed, wind direction and horizontal turbulence intensity (TI). Furthermore, the correlations
and time difference between a few of the large-scale wind power ramp events of two wind farms
are investigated.

3. Categorization of ramp events: The variation in the number of ramp-up and ramp-down
events with regards to change in wind speed, wind direction, turbulence intensity, and ramp
duration is reviewed.

5.1. Ramp Detection Algorithm
In this section, the suitable ramp detection method is selected from the reviewed literature in
section 3.1. The related arguments are given in subsection 5.1.1. In the next stage, an explanation for
the adopted wind farm power normalization technique based on the end-user’s objective is
provided (subsection 5.1.2). The subsequent subsections focus on the power fluctuation smoothing
effect and the criterion of minimum number of turbines’ data availability (see subsection 5.1.3).
Finally, all criteria are combined with the indicator function to develop a ramp detection algorithm
(see subsection 5.1.5).

5.1.1. Definition of a ramp event
As mentioned in section 3.1, there are several ways of detecting ramp events. Yet, the selection of
a specific method depends on the characteristics of the available data sets as well as the end-user’s
objectives. For example, CWT can be an effective tool for high-frequency data, as it can represent the
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continuous characteristics of ramp events in the presence of high incoherent noise. This information
could be effective for small-scale ramp forecasting (or similar objectives). However, for this report,
the data set is available at 10-min intervals. In addition, this thesis aims to investigate the impact of
ramp events on wind farm performance and OWT loads, which are also available on a 10-min basis.
Therefore, the definition proposed by Wan (see Equation 5.1) is found as a suitable approach for this
research.

Δ%5 <>3f (Δ%5 <) (5.1)
where, Δ%5 < is the successive power differences of the normalized wind farm power. The adopted
power normalization technique is explained later in subsection 5.1.2. Moreover, as the threshold
3f (Δ%5 <) is derived from the statistical properties of the normalized wind farm power, the
estimated threshold also includes the smoothing effect of wind farm power differences.

One could argue that the available minimum and maximum values of the 10-min period can also be
used to detect the ramps within 10-min intervals. However, because the corresponding time data of
these values are unavailable, ramp events cannot be categorised into a ramp-up or a ramp-down
category. Additionally, as mentioned in subsection 3.1.1, the difference between minimum and
maximum values not necessarily provides a ramp magnitude but may involves the probability of
detecting false ramps within that 10-min interval. For better understanding, let us consider two of
the possible scenarios presented in Figure 5.1, which illustrates the normalized power time series at
two consecutive 10-min periods, B and B + 9 . Here, the 10-min period of the first time step extends
from B − 9

2 to B + 9
2 , where, 9 is 10 minutes. The dots indicate the power values within 10-min power

time series. The red and yellow dots show the maximum and minimum values, respectively, of the
specific period. The 10-min average, minimum and maximum power values are assigned to time B .
Therefore, as argued, a possible ramp in each 10-min period can be identified as

;0F_7 (B ) −;7<_7 (B ) > %D0: (5.2)
From Figure 5.1(a), let us assume that the ramps are identified in each of the successive 10-min
intervals. However, because of the unavailability of the respective time data, whether a minimum
power event occurred before or after a maximum power event is unknown. Therefore, it is not
possible to categorize these events as a ramp up or a ramp down. As a result, successive
co-directional ramp events cannot be concatenated to estimate the real ramp amplitude and its
duration. On the other hand, in Figure 5.1(b), the detected ramp events, of amplitudes ;0F1 - ;7<1
and ;0F2 - ;7<2, are not the true ramp events. Therefore, ramp detection by using the minimum
and maximum power values of the 10-min interval, leads to the false ramp detection within that
10-min interval.

(a) Scenario 1 (b) Scenario 2

Figure 5.1: Examples of power time series for two consecutive period. Blue dots represent the power values. Red and yellow
dot highlight the maximum and minimum values in each 10-min time series.

Therefore, only 10-min average power values are used to define wind induced power ramp events.
Therefore, it is possible to distinguish between ramp-up and ramp-down periods for a 10-min sample



rate. Moreover, as the Equation 5.1 deals with successive 10-min power data, it does not lead to the
detection od ramp events.

5.1.2. Normalization methods
As discussed in chapter 3, there are two possible approaches to normalize the wind farm power (%5 ).
In this report, they are designated as the variable capacity and the nominal capacity methods.

• Variable capacity method: As the name suggests, the aggregated power output is normalized
with different capacities at each time step. This eliminates the effect of data unavailability (after
filtering) of a few turbines at different time steps. Therefore, in this method, power is normalized
by the aggregated nominal power of the available turbines at each time step, which is given as:

%5 < (B ) =
∑#
7=1%7 (B )∑Available wind turbines’ capacity(t) (5.3)

• Nominal capacity method: In this method, the aggregated power time series is normalized by
the installed capacity of a wind farm. Thus, %5 < is calculated using the following equation,

%5 < (B ) =
∑#
7=1%7 (B )

Nominal farm capacity (5.4)

Figure 5.2 represents the difference in the normalized wind farm power curve concerning the above
power normalization methods.

The suitability of these methods depends on the objectives of end users. For instance, from the
perspective of a grid operator, the operator constantly needs to balance supply and demand. Thus,
its interest lies in the variation of total wind farm power output, irrespective of its cause. In contrast,
wind turbine designer is concerned with the effect of environmental uncertainties on the power
output. For a better understanding of its applicability, let us assume a wind farm with 50 turbines. At
a time B , all 50 wind turbines are producing nominal power. Later, at time B +9 data of 25 turbines is
not available, and there is no change in wind speed from B to B +9 . Thus, now only 25 wind turbines
are operating at their nominal capacity. In this case, the normalized wind farm power can be
calculated using equations 5.3 and 5.4 as 1 and 0.5, respectively. Therefore, the change in power
equals 0.5, when the nominal capacity method is used. This would be useful information for a grid
operator, as a 50% drop in overall supply needs to be balanced. On the other hand, because of the
constant weather conditions, normalized wind farm power (Δ%5 < = 0) did not change with the
variable capacity method.

(a) The variable capacity method. (b) The nominal capacity method.

Figure 5.2: Normalized power of the Dudgeon wind farm by using (a) the variable capacity method and (b) the nominal
capacity method.



In summary, when power is normalized using the variable capacity method, the change in the
power output is calculated w.r.t the available number of turbines at each time step. On the other
hand, the nominal capacity method also considers the effect of wind turbine’s availability at each
time step. As the objective of this report is to detect extreme wind-induced power ramp events, the
variable capacity method is used.

5.1.3. Influence of power differences smoothing on the ramp event threshold
Smoothing of successive power differences

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
fn

10
1

10
2

10
3

10
4

Occurances WMR

Dudgeon

Figure 5.3: Frequency distribution of normalized wind farm power differences of WMR and Dudgeon.

The frequency distribution of successive power differences of the normalized wind farm power can
be visualised in Figure 5.3. Both wind farms show a similar distribution pattern. Yet, the magnitude
of power differences of the Dudgeon wind farm is slightly smaller than WMR. Therefore, the
standard deviation and the threshold value of the Dudgeon wind farm are also smaller. In this case,
the thresholds are 13% and 11% of the available capacity for WMR and Dudgeon, respectively.

The reasoning for different thresholds can be the smoothing effect on the power differences. As
discussed, the threshold value %D0: is based on the standard deviation of successive wind farm
power differences (3f method), which is also a measure of their smoothing effect similar to what is
observed with power fluctuations (see Appendix B). Moreover, as mentioned earlier in
subsection 2.1.2, the intensity of the smoothing effect depends on the wind farm layout, local site
conditions, inflow conditions (free or wake), the spanwise distance, and the spatial and temporal
scales of the meteorological events [35]. Nonetheless, the influence of a number of wind turbines
have not been discussed so far.

Threshold variation with a minimum number of turbines criteria
Figure 5.4 illustrates the behaviour of the threshold (3f (Δ%5 <)) value with the increasing percentage
of data availability, i.e., a decreasing number of turbines. These graphs also compare the
aforementioned power normalization methods, i.e. the nominal and the variable capacity method (
see subsection 5.1.2). The numbers on the graphs, for example, value ’33’ in Figure 5.4(a), represents
the minimum number of turbines, whose data is available at each time step. For 33 turbines, the
time steps with data availability of fewer than 33 turbines are rejected. Therefore, the percentage of



data availability increases with decreasing criterion of the minimum number of turbines.

Although both power normalization methods show nearly similar thresholds, their magnitudes will
be the percentage of the installed capacity and the available capacity for the nominal and variable
capacity methods, respectively, at each time step. Moreover, a general decrease in the percentage of
the threshold value with an increasing number of turbines may imply that the smoothing effect of
power differences is lower when fewer turbines are aggregated.
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Figure 5.4: Variation of threshold with minimum number of turbines criteria using the variable and nominal capacity
methods.

However, a significant variation in the threshold values is observed when plotted against the exact
number of available turbines (see Figure 5.5). In this case, the x-axis represents the percentage of
time periods when the data of the specified number of turbines is available. For instance, value 33
represents the time periods only associated with the data availability of the exact 33 number of wind
turbines. Thus, the summation of the fraction of these time periods is nearly 1 (due to the filtered
power signals, it will be less than 1). Considering the sufficient time periods, i.e. higher than 5%, the
threshold values increase with the decreasing number of turbines, for WMR. On the other hand, for
the Dudgeon wind farm, the values first increase and then fluctuate with the decreasing number of
turbines (see Figure 5.5(b)). Moreover, the associated increase in the values is not gradual but the
thresholds show notable differences. This varying behaviour can also be related to the fraction of
time periods for specified turbines. As available fraction of time periods are similar for 64 and 65
turbines of the Dudgeon wind farm (where threshold fluctuates), whereas a notable difference is
observed from 67 to 66 turbines (threshold gradually increase).

Therefore, availability of time periods and positioning (inter-turbine spacing) of wind turbines in
the wind farm strongly contribute towards the smoothing effect of normalized wind farm power
differences than the number of wind turbines. The effect of positioning of wind turbines in a wind
farm can be explained from Figure 5.6. Here, the x-axis indicates the selected number of turbines (?)
from a wind farm of 35 or 67 turbines. The power signals of these selected turbines are first
aggregated, normalized (variable capacity method), and then the standard deviation of successive
power differences time series is determined. These standard deviations are shown on the y-axis.
The scattered values of the standard deviations (blue ′+′) indicate the possible number of
combinations of selected ? turbines in the wind farm of 35 or 67 turbines. The red circles denote the
average of these standard deviations.
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Figure 5.5: Variation of threshold with exact number of turbines criteria using the variable and nominal capacity methods.

(a) WMR (b) Dudgeon

Figure 5.6: Variation in standard deviations and linear correlation coefficient (lines from r =0 to r =1) with increase in number
of wind turbines ? (blue ′+′ show standard deviation of aggregated # turbines power differences; and red circles indicate the

average of those standard deviations at each ?).

For example, in Figure 5.6(a), blue markers at ? = 1 indicate the standard deviation of power
differences of the individual wind turbines. The adjacent scattered values are the standard
deviations of the aggregated and normalized power differences of two turbines of the wind farm of
35 and so on. The possible number of combinations of a selected ? turbine can be determined using
the well-known combination formula,

� (# ,?) = # !
(# −?)!? ! (5.5)

where C is the combination function. This eliminates the possibility of aggregating the power of the
same turbines (like, 5−, 5). Therefore, for two turbines the total 595 combinations are possible for
WMR (e.g.,, 1−, 2,, 1−, 3, .., 1−, 35, ..., 34−, 35).

� (35,2) = 35!
(35−2)!2! = 595 (5.6)

As the value of ? increases, the possible numbers of combinations also increases until ? equals # /2.
For example, in a wind farm of 67 turbines, if 35 turbines are selected (?), the total number of
combinations will of order 1019. Due to brevity, a maximum of 107 combinations are considered for
the selected number of turbines. An error analysis is also conducted for the WMR wind farm for ?
equals five and 30 turbines, because the possible number of combinations in both cases are the



same, i.e., 3.3x105. The average of standard deviations of all possible combinations (i.e. 100%
combination) is presented in the first row of Figure 5.7 and considered as a reference value to
estimate the error. The number of examined combinations decreases while going down the fist
column. The second column estimates the average of standard deviations of the considered
number of combinations of wind turbines. It should be noted that the less number of combinations
are selected randomly from all possible combinations. The error between the reference value and
estimated average standard deviation of the considered number of combinations is given in the
third column. It should be noted that the combinations of turbine clusters are randomly selected
for error analysis. As expected, the error is highest when the least number of combinations are
considered and higher for five turbines than 30. Yet, in both cases, the percentage errors are small
and the maximum observed percentage error is 10%. Thus, it is assumed that the 107 number of
combinations will give reliable results.

Data points 𝝈(𝚫𝐏𝒇𝒏) Error(%)

3.3E+05 = 100% 0.0507 (reference)

1.5E+05 = 46% 0.0505 0.4

1E+05    = 30% 0.0501 1.2

50000    = 15% 0.0500 1.4

10000    = 3% 0.0505 0.4

1000      = 0.3% 0.0525 4.1

100        = 0.03% 0.0548 9.2

Data points 𝝈(𝚫𝐏𝒇𝒏) Error(%)

100% 0.0447 (reference)

46% 0.0447 0

30% 0.0446 0.2

15% 0.0447 0

3% 0.0450 0.7

0.3% 0.0452 1.1

0.03% 0.0455 1.8

Combinations of 5 turbines from 35 Combinations of 30 turbines from 35

Figure 5.7: Error analysis in the average standard deviations of 10-min power differences for WMR.

It is interesting to note that for the same number of combinations, the reference standard deviation,
as well as percentage errors, are higher for five turbines than 30. This is because the overall spacing
involved for the combination of 30 turbines is always higher than the 86% area covered by the wind
farm, whereas large variation in the spatial-scale, from 12% to 100% is observed for the selection of
five turbines. This can be seen as a spread in the standard deviations in Figure 5.6(a)) (in blue ′+′).
This ensures the strong dependence of power differences smoothing effect on the inter-turbine
spacing as well as the number of wind turbines.

The influence of positioning of wind turbines in a wind farm on the smoothing effect of normalized
power differences can be explained using the correlation between a pair of turbines. Pearson’s
correlation coefficient is widely used to determine the linear correlation between two signals, which
is given as

@ (Δ%<)7 8 =
cov(Δ%<7 ,Δ%<8 )
f (Δ%<)7f (Δ%<)8

(5.7)

where @ (Δ%<)7 8 represents a correlation coefficient between normalized power differences between
a pair of turbines 7 and 8 . The value cov(Δ%<7 ,Δ%<8 ) indicates the statistical relationship between
two signals, i.e., either both variables show an increase (or decrease), one increases and the other
decreases, or both vary independently. Therefore, the standard deviation of the normalized
successive wind farm power differences depends on the average correlation coefficient of all
possible wind turbine pairs as shown in Equation 5.8. For the comprehensive derivation,
Appendix B can be referred. The effect of correlation coefficient on standard deviation is
represented by curves in Figure 5.6 for varying average correlation from 0 to 1 (with @ values) and #

is replaced by ? turbines. Therefore, higher standard deviations indicate a higher correlation
between the normalized power differences of aggregated turbines.



f (Δ%5 <) = f (Δ%<)

√
(1+ (# −1)@ (Δ% )7 8 )

#
(5.8)

where f (Δ%<) and @ (Δ% )7 8 show average standard deviation and average correlation coefficient of
normalized successive power differences.

It is interesting to note from the Figure 5.6, the maximum value of standard deviation (f (Δ%5 <))
decreases with increasing number of turbines. In addition, the spread of the standard deviations
increases when the power of fewer turbines are combined, i.e., roughly until 12% of the wind farm
size and decreases afterwards. The high standard deviation values are found to be related to the
closely spaced turbine clusters and the minimum values are from the turbines which are farther
apart. The pattern of average standard deviation values follows an exponential decay in standard
deviation with an increasing number of turbines. This analysis validates the strong dependency of
successive power differences smoothing on spatial distancing compared to other parameters.
Finally, the average correlation coefficient of all pairs of turbines of the Dudgeon wind farm is 0.31,
which is lower than 0.37 of the WMR. This difference in correlation may be associated with the
difference in wind farm size, inter-turbine spacing, local weather conditions, and farm layout.

5.1.4. Criterion of a minimum number of turbines
From the figures 5.4(a) and 5.6(a), when the criterion is set such that the data of all 35 turbines are
available, the percentage of data availability is low. The data availability increases with decreasing
number of turbine criteria, but the threshold value also increases. For power ramps, to better
represent ramp events associated with the wind farm, a trade-off between data availability and a
lower threshold is needed. As discussed in the previous section, the standard deviation is higher
when the inter-turbine spacing is smaller and decreases with increasing distance. Moreover, the
standard deviations are more scattered when fewer turbines are considered, representing that the
wind farm characteristics are not adequately covered. For example, in Figure 5.6(a), standard
deviation values are considerably scattered for fewer than 25 turbines in WMR. One probable reason
can be explained with the help of its wind farm layout of WMR. Form Figure 4.2(a), a significant
spatial gap is present between the third and the fifth column (from south-west to north-east) of the
WMR wind farm. Therefore, a minimum of 23 turbines needs to be considered to account for this
gap and sufficiently represent wind farm variability. In this case, 25 wind turbines are selected,
which roughly denote 70% of the area covered. As the farm layout of the Dudgeon is more compact,
similar 70% criteria are implemented for comparable results, i.e., around 50 turbines.

In summary, the criteria of 25 wind turbines and 12.5% threshold are set for WMR, and 50 turbines
with 10.5% threshold value are chosen for Dudgeon.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

P

10
1

10
2

10
3

10
4

Occurances

P

3  = 12.5%

Ramp Down Ramp Up

No Ramp

(a) WMR

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P

10
1

10
2

10
3

10
4

Occurances
P

3  = 10.5%

No Ramp

Ramp UpRamp Down

(b) Dudgeon

Figure 5.8: 3f (Δ%5 < ) and frequency distribution of power differences.
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Figure 5.9: 3f (Δ%5 < ) and frequency distribution of power differences (same as Figure 5.8 but with the linear scale on the
y-axis.

The frequency distribution of successive power differences shows elongated tails (see Figure 5.9),
which are not present in the Gaussian curve [71]. Therefore, 3f (Δ%5 <) gives extreme 2% ramp
events,i.e 1% ramp-up and 1% ramp-down events, where the well-known Gaussian distribution
would have given extreme 0.3% [72] events as the tails decay faster.

5.1.5. The ramp detection algorithm in combination with the indicator function
Once the threshold (%D0: ) and the normalized wind farm power (%5 <) are determined, they are given
as input to the ramp detection algorithm. The algorithm first estimates the successive differences,
i.e., Δ%5 < = %5 <(i+1) - %5 <(i). If it is greater than the threshold value, a ramp event is detected.
Otherwise, the algorithm will move to the next iteration. The detected ramp event is further
classified into a ramp-up or ramp-down category by using the indicator function (I). The
consecutive co-directional ramp events are concatenated to get the ramp amplitude and ramp
duration. Moreover, the corresponding start and end time of the events is stored to categorize
events on the basis of various parameters.

The value of the indicator function, I(t) equals 1 for a ramp-up event, -1 for a ramp-down event, and 0
when a no-ramp event is detected (see Equation 3.1). Whenever its value changes, there will be start
and/or end of a ramp-up or a ramp-down event. The corresponding start ()A ) and end timings ()� )
of ramp-up ()A−C> and)�−C> ) and ramp-down ()A−3=E< and)�−3=E<) events are stored separately.
Let us consider an example in Figure 5.11, until B2 the values of) (B1) and � (B2) equals 0. A ramp event
starts at B3 and � (B3) changes to 1. Therefore, the start time of ramp-up event is stored in )A−C> (1)
equals B3. This event lasts up to B5 and � (B6) is zero. Thus, the end time is stored as ()�−C> (1) = B5). The
corresponding ramp duration (ΔB ) and ramp amplitude (Δ%@<) can be calculated as

ΔB =)� (8 ) −)A (8 ) (5.9)

where, j varies from one to a length of)A (or)� ).

Δ%@< = %5 < (B =)� (8 )) −%5 < (B =)A (8 )) (5.10)

where, B =)� (8 ) determines the index corresponding to end time of the event.

The corresponding flow chart and an example of output power signal are shown in Figure 5.10 and
Figure 5.12, respectively.
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Figure 5.10: Flow chart of the ramp detection algorithm.
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Figure 5.11: An example on application of the indicator function.
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algorithm.
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5.2. Correlation analysis
In this section, the correlations among various variables of two wind farms are reviewed. Following
that, the correlation and time differences between large ramp events of two wind farms and their
influencing parameters are discussed.

Figure 5.13(a) and Figure 5.13(b) represent the Pearson’s correlation matrix of several wind farm
variables for the WMR and the Dudgeon (as DUD) wind farms, respectively. As discussed before in
subsection 5.1.3, the Pearson’s correlation coefficient provides the magnitude and direction of a
linear relationship between two signals. Here, correlations among pairs of signals from power, wind
speed, wind direction and turbulence intensity of the same wind farm are estimated, for example:
between ’Power’ and ’Speed’ of WMR farm. In the diagonal, all correlation coefficients are ’1’, due to
correlations in the same signals, e.g., power and power of WMR farm. Thus, the interest lies in the
lower triangular correlation coefficients. These linear correlation coefficients are graphically
presented in figures 5.14 and 5.15 in lower triangular matrix with a linear fit to data (orange line).

Correlation Matrices
WMR Power Speed Direct TI

Power 1

Speed 0.94 1

Direct 0.04 0.03 1

TI -0.86 -0.78 0.07 1

Power Speed Direction TI

Power
0.73 0.7 0.046 -0.56

Speed
0.71 0.76 0.06 -0.53

Direction
0.011 -0.003 0.73 0.003

TI
-0.62 -0.57 -0.03 0.51

1

WMR

DUD

DUD Power Speed Direct TI

Power 1

Speed 0.95 1

Direct 0.04 0.05 1

TI -0.9 -0.83 -0.07 1

(a)

(b)

(c)

Figure 5.13: Pearson correlation coefficients between the variables of (a) the WMR wind farm, (b) the Dudgeon wind farm, (c)
the WMR and the Dudgen wind farms.



Figure 5.14: Correlation matrix: Scattered plot of WMR wind farm parameters with linear correlation (lower triangular), histograms(diagonal), nonlinear relation between parameters(upper
triangular).



Figure 5.15: Correlation matrix: scattered plot of Dudgeon wind farm parameters with linear correlation (lower triangular), histograms(diagonal), nonlinear relation between
parameters(upper triangular).



The linear correlation coefficient between the different variables is illustrated in lower triangular of
Figures 5.14 and 5.15). The correlation coefficients between power and wind speed signals are 0.94
and 0.95 for WMR and Dudgeon, respectively, which are close to 1. This indicates a nearly perfect
positive linear correlation between the power and wind speed signals, i.e. they vary in the same
direction. This is true until rated wind speed (represented by a linear fit in the lower triangular
graphs - first column and second row). Above rated wind speed, power is constant for increase or
decrease in the wind speed. This non-linear relation (i.e. power curve) is shown in the upper
triangular graphs (second column and first row). Conversely, the turbulence intensity (TI) and
power show a negative correlation of around -0.9 , i.e. predominantly TI decreases (increases) with
the increase (decrease) in power. The linear fit comprises TI (bottom left plot) values less than 0.25
because the power values show non-linear relation (Top right plot) until TI equals 0.25 and nearly
constant afterwards. As expected wind speed and TI show similar behavior. However, the variations
in power, wind speed, and TI are independent of the wind direction i.e. uncorrelated, as the
correlation coefficients are close to 0 and the non-linear fit is also nearly a horizontal line.

The evaluated correlation coefficients between the signals of two wind farm are presented in
Figure 5.13(c). The top row indicates the signals of WMR wind farm and the first column consists of
Dudgeon wind farm’s signals. The diagonal correlation coefficients illustrate the linear correlation
between similar signals of two wind farms, i.e., the power signal of WMR and Dudgeon. These
signals show fairly good positive correlation, i.e. 0.7, except for turbulence intensity. Ideally,
turbulence is a short-scale event, thus uncorrelated. Yet, turbulence dissipates relatively slowly in
an offshore environment. Besides, the fraction of wake added turbulence is higher than the free
stream, hence upon aggregation, these turbulence intensities show some correlation on 10-min
scale. Since the correlation between various parameters of two farms depends on the spatial
distance between them, their size, local site condition, wind direction, and temporal and spatial
length scale of the events, ramps at the two wind farms show some degree of correlation.

Considering the correlation coefficient of 0.7, during the occurrence of large-scale meteorological
events, wind farms within its spatial scale will get affected simultaneously. Yet, depending upon the
mean wind direction, the mean wind speed and the geographical location of wind farms, a time
difference equivalent to the travel time is observed between the events that are caused by similar
weather conditions.

An example of a large coherent structure that influences ramps in both wind farms is given in
figures 5.16 and 5.17. In Figure 5.16, approximately at 10:00 AM a sudden increase in power (≈ 100%),
wind speed (≈ 10;/A ) and direction (≈ 90=) is observed. The condition resembles to the
identification steps of frontal systems (subsection 2.2.1). Moreover, on the same day ramp-up event
is also observed at the WMR wind farm (Figure 5.17), roughly three hours prior to Dudgeon. The
event starts around 6:45 AM with westerly winds of approximately 5 m/s. These two wind farms are
approximately 60 km apart in the west direction, which gives travel time of about 3 h and 15 min
from WMR to Dudgeon. Besides, the vertical spacing between two wind farms is 78 km, indicating
that this ramp event has a spatial scale of 78 km or higher. The WMR wind farm experiences a higher
average wind speed of 20 m/s than Dudgeon (15 m/s). This could be due to the difference in local
conditions, wind farm size, and farm layout. During the highest mean wind speed in WMR, around
14:30, the average incoming wind direction changes suddenly to easterly for Dudgeon. Ramps of
both wind farms relax around a similar time, i.e., 16:48, with northerly winds at WMR and easterly at
Dudgeon. This indicates the incoming wind direction influences the duration of a weather event.

However, analysing the correlation and time difference between ramp events of the wind farms
using 10-min data set is not always straightforward. Figure 5.18 illustrates an example of such event.
A ramp is observed in Dudgeon wind farm in July around 22:10 (highlighted in the black box), which
is later observed at WMR around 23:30. The correlation between these power curves for the given
period was found to be 0.76. However, when the power curve of WMR advanced in time by 80 min,
the correlation coefficient increased to 0.92. As the events showed a similar characteristics at both
wind farms, it indicates the spatial-scale of a weather event is greater than the distance of
separation of the two farms (>60 km). Difference intensities of the events can be relate to the



different local effects. However, from Figure 4.1, a ramp event caused by northerly winds, was
expected to first occur at WMR and later at Dudgeon. But, in Figure 5.18, the ramp is first observed
at Dudgeon and then at WMR. Therefore, it is necessary to analyse weather charts to understand the
true dependence of ramps characteristics of two wind farms.

Figure 5.16: Variation in power, wind speed, wind direction and TI on a day of February of Dudgeon wind farm.

Figure 5.17: Variation in power, wind speed, wind direction and TI on a day of February of WMR wind farm.

Figure 5.19 illustrates the surface pressure chart of UK for the above-mentioned event at 00:00 UTC.
In the chart, the triangles symbolise cold fronts, the semicircles represent warm fronts, combination
of triangles and semicircles show occluded fronts, and small black lines are the troughs. Trough
indicates the area where air is unstable. The locations of the wind farms WMR and Dudgeon are



marked as ’W’ and ’D’, respectively. From the chart, it can be deduced that frontal activities and
unstable weather condition have given rise to ramp events. Besides, the northerly wind direction
can be explained using isobars. Regions that are marked as L represent the low pressure regions. In
the northern hemisphere, wind blows in the counter-clockwise direction around low pressure
region, which is depicted by blue arrows near the wind farm. Therefore, both with farms experience
northerly winds. However, the northerly winds are the result of a sudden change in wind direction
to north. This could be the reason behind observing a ramp event first at Dudgeon than WMR.
However, detailed information from upstream metorological masts or high-resolution weather data
is necessary for the detail analysis.
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Figure 5.18: Example of ramp event observed on a two days of July, 2019 and the observed time shift between two wind farms.

D

Figure 5.19: Surface Pressure chart of UK at 0:00 UTC. ’W’ and ’D’ represents the location of wind farm WMR and Dudgeon,
respectively [73].



5.3. Categorization of ramp events
This section examines the variation in the characteristics of the detected ramp-up and ramp-down
events in accordant with change in speed, direction, turbulence intensity, and ramp duration. The
associated characteristics across the ramp amplitude are calculated as a difference between start and
end time of the events. For example, a change in the average wind speed of a wind farm across a
detected ramp amplitude is calculated using the start and end time of a ramp event as:

ΔC 5 =C 5 (B =)� ) −C 5 (B =)( ) (5.11)

Seasonal variation
Figure 5.20 illustrates the average monthly variations of ramp-up and ramp-down events. From
2018-2019, all months have data availability with an average higher than 99%, except December 2018
and January 2019 for Dudgeon wind farm, i.e., lower than 70%. Therefore, these two months are not
considered while taking the average of same month in 2018-19. In other words, the average of
January and December months are represented by the number of observed ramp events in January
2018 and December 2019.

Monthly variation in the number of ramps
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Figure 5.20: Monthly variation in number of ramp-up and ramp-down events.

As expected, more ramps occurred in the cold weather (October to April) than in warm weather
(May to September). This can be because of strong winds and unstable atmosphere during winter
[2]. For both wind farms, the highest number of ramp-up events were observed in February month
(see Figure 5.20). A comparable number of ramp-up and ramp-down events were observed from
October to December in WMR farms. Conversely, for the same months, ramp-down events showed
a notable decreasing trend in the Dudgeon wind farm.

Wind speed variation
For the identified ramp-up and ramp-down events, the change in wind speed (ΔC 5 ) showed a
perfect positive statistical relationship (covariance) with the change in power (Δ%5 ), i.e., wind speed
changes are always positive for ramp-up events and negative for ramp-down events. In Figure 5.21,
x-axis represents the absolute change in wind speeds. A similar number of ramp-up and
ramp-down events were detected in both wind farms. A possible reason can be that the threshold
gives percentage of ramp-up and ramp-down events, i.e. 1% see Figure 5.9). In addition, data
availability, after implication of all criteria, is similar for both wind farm.
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Figure 5.21: Variation in number of ramp-up and ramp-down events with change in speed.

In addition, a decreasing trend in the of number of ramp events is observed with increasing values
of wind speed difference. One reason for this is the non-linearity of the power curve. As explained in
Figure 2.5, the ramp events are mainly identified in the partial load region, where power changes
with the third power of the wind speed. Thus, a minor change in the wind speed gives rise to a
significant variation in power output, and higher changes in wind speeds that occur near or
above-rated do not have such an impact on ramp events.This effect of power non-linearity can be
visualised in Figure C.7 of Appendix C. Besides, the higher wind speed changes are generally
associated with the mesoscale events which are rare in the atmosphere [32].

A slightly more number of ramp events were detected in WMR farm at the lower ΔC 5 in contrast to
the higher ΔC 5 for Dudgeon farm. For instance, for wind speed changes ranging from 1 to 2 m/s
nearly 300 more ramps were identified at WMR. On the other hand, for ΔC 5 bin ranging from 4 to 5
m/s, approximately 20 more ramp events were observed at Dudgeon. Besides, the Dudgeon wind
farm also experienced ramp events with ΔC 5 higher than 10 m/s, unlike WMR. This may be because
of the comparatively large wind farm size, i.e., more number of turbines in the Dudgeon farm. The
wind turbines extract kinetic energy from the mean wind flow. As a result of which, mean wind speed
reduces in the downstream. The more the number of turbines in a wind farm, the more will be the
energy yield, which lead to a higher average decrease in mean wind speed of Dudgeon [74]. This
can be observed from figures 5.16 and 5.17, where average wind speed is higher in WMR wind farm
and considerably lower in the Dudgeon. This could also be due to the wake effects of surrounding
wind farms to the Dudgeon. However, it is worth noting that the wind speed differences are taken
across the detected power ramp events. Thus, more ramp events are associated with wind speeds
below-rated. Moreover, the thresholds (thus, smoothing effect of power differences), ramp rate, and
the ramp amplitudes differ for the wind farm. For example, in the same figures, for a similar change
in power, the detected amplitude of ramp-up event of WMR was smaller, and thus the wind speed
change.

Turbulence intensity variation
A similar variation in number of ramp events with change in TI values is observed at both wind
farms (see Figure 5.22). As the change in TI, in this section is associated with power ramp events,
non-linear relation between power and TI plays a key role (see figures 5.14 and 5.15). As explained in
section 4.1, TI generally decreases with increase in wind speed till transition value due to the
dominant thermal effect. After the transition wind speed, TI increases with increasing wind speed
as thermal effects are overcome by friction. However this transition value is close to the rated power.
As a result of non-linearity of power curve, more than ≈90% ramp-up events are associated with a
negative differences in TI (Δ) � 5 ) (see Figure 5.22). The positive changes in TI (for ramp up) could be
related to the higher wind speed above transition value.



The influence of non-linear relation between power and TI on the ramp events can be better
understood by the average turbulence intensity variation. The average of all 10-min TI values
between the start and end time of the event represents the average TI. A similar decreasing trend in
the number of ramp events is observed with an increase in average TI due to non-linear relation.
Besides, 99% of the events correspond to average TI values less than 0.2. This is because, for higher
TI values, power is almost constant, which can be seen in figures 5.14 and 5.15. Higher TI values are
mainly related to higher 10-min standard deviation and mostly treated as extreme events. The
probability of occurrence of such extreme TI events is rare in the environment. This can be also
visualised from the turbulence intensity histograms, where TI occurrences are considerably low
after 0.2. Therefore, a similar decreasing trend in ramp numbers is observed with increasing Δ) � 5 .

TI f
<-

0.
2

-0
.1

5>
TI f

>=
-0

.2

-0
.1

25
>

TI f
>=

-0
.1

5

-0
.1

>
TI f

>=
-0

.1
25

-0
.0

75
>

TI f
>=

 -0
.1

-0
.0

5>
TI f

>=
-0

.0
75

TI f
>=

-0
.0

5

TI f
=<

0.
05

0.
05

<
TI f

=<
0.

07
5

0.
07

5<
TI f

=<
0.

1

0.
1<

TI f
=<

0.
12

5

0.
12

5<
TI f

=<
0.

15

0.
15

<
TI f

=<
0.

2

TI f
>0

.2

TI
f

100

101

102

103 Frequency
Ramp Up

Ramp Down

(a) WMR

TI f
<-

0.
2

-0
.1

5>
TI f

>=
-0

.2

-0
.1

25
>

TI f
>=

-0
.1

5

-0
.1

>
TI f

>=
-0

.1
25

-0
.0

75
>

TI f
>=

 -0
.1

-0
.0

5>
TI f

>=
-0

.0
75

TI f
>=

-0
.0

5

TI f
=<

0.
05

0.
05

<
TI f

=<
0.

07
5

0.
07

5<
TI f

=<
0.

1

0.
1<

TI f
=<

0.
12

5

0.
12

5<
TI f

=<
0.

15

0.
15

<
TI f

=<
0.

2

TI f
>0

.2

TI
f

100

101

102

103 Frequency
Ramp Up

Ramp Down

(b) Dudgeon

Figure 5.22: Variation in number of ramp-up and ramp-down events with change in turbulence intensity.
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Figure 5.23: Variation in the number of ramp-up and ramp-down events with the mean turbulence intensity.

Besides the non-linearity of power curve and the probability of occurrence, wind farm size, number
of wind turbines, farm layout, incoming wind direction, surface roughness, and distance from the
coast also affect the change in TI of the wind farm [69, 74, 75]. As discussed earlier, extracting kinetic
energy results in wind speed deficit for downstream turbines. This wind speed deficit is recovered
by increased turbulence activity. Therefore, the higher the number of turbines, the higher will be the
change in TI. However, the influence of inter-spatial distancing is not studied in this report.



Wind direction variation
As the name suggests, the North Sea is located in the northern hemisphere. As a result of the
Coriolis effect, turbulent drag, and pressure gradient, the incoming wind direction gets deflected
towards left [74]. In this region wind blows in counter-clockwise direction around low pressure
region and clock-wise around high pressure region [76]. As can be seen from Figure 5.24, relatively
more number of large directional change ramp events show clockwise direction change. The
surface pressure chart analysis of a few of the interesting events showed high pressure region
around the wind farm. This can be a reason behind detection of higher number of ramp events with
clockwise changes in wind direction. Here, the clockwise direction is from south to west to north.
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Figure 5.24: Variation in number of ramp-up and ramp-down events with change in direction.

Similar to other parameters, the number of ramp events also decreases with increasing absolute
wind directional changes (Δ�@5 ). Wind directional variation mainly depends on the pressure and
temperature gradient in the region. As it can be seen from Figure 5.14, wind direction is not
correlated with wind power, wind speed or TI. Thus, as explained in subsection 2.2.1 the substantial
changes in the wind direction could result from synoptic-scale events like cold fronts, which are
rare. From figure 5.24(b), the Dudgeon wind farm experienced ramp events with wind direction
changes up to 90= , whereas no such significant shift in the wind direction was observed in WMR.
The event is depicted in Figure 5.16. From the figure, the significant wind directional change is
associated with a sudden wind speed increase or a large change in TI. However, based on the
fluctuating wind direction around WMR wind farm at the same time (see Figure 5.17), the large
directional shift could be due to the difference in local pressure and temperature distribution across
the wind farm.

Variation with ramp duration
A decreasing trend in the number of ramps is also observed with increasing ramp duration values (see
Figure 5.25). As explained before, the period of ramp duration depends on the wind farm size, mean
wind speed, mean wind direction, length and time scale of weather events. Thus, for similar weather
conditions, ramp events will take more time to pass through the Dudgeon than the WMR. Besides,
the higher ramp duration also indicates a large-scale weather event has passed through the wind
farm, which is rare. Figure 5.26 shows an example of a large-scale event. The black line represents
the normalized average farm power (%5 <), where other colours show the individual turbine’s power.
The average wind farm power is started from zero and reached the rated wind farm capacity when
the event passed through the last wind turbine.
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Figure 5.25: Variation in number of ramp-up and ramp-down events with change in ramp duration.
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Figure 5.26: An example of large-scale ramp event (Δ%5 < = 95%) observed at the Dudgeon wind farm.

5.4. Summary
In this chapter, ramp events were detected and their characteristics were deeply examined using the
10-min average SCADA time series of power, wind speed (and TI), and wind direction. The analysis
was conducted for WMR and Dudgeon wind farms of different sizes with different number of wind
turbines.

At first, the ramp detection algorithm was developed by addressing end user’s objective. For this, the
ramp detection definition, i.e, Δ%5 <>3f (Δ%5 <) was found suitable based on the specification of the
available data sets, the objective of identifying extreme wind-induced power ramp events and the
smoothing effect of the normalized wind farm power difference. This chapter also addressed the
influence of the techniques used to normalize aggregated wind farm power on different end-users.
In order to account for wind variability and eliminate the effect of data availability at each time step,
the variable capacity method was used to normalize the wind farm power. Afterwards, Therefore,
the criterion was selected such that the minimum number of turbines are representative of the area
covered by the wind farm, and the possible combination of their positioning doesn’t lead to a large
variation in the threshold. Finally, all above-mentioned criteria were implemented and by using the
indicator function, ramp events were detected, categorised (ramp-up and ramp-down) and the



corresponding timings were stored.

The correlation analysis was conducted to understand the influence of various signals on the power
and the relationship between the detected ramp events of two wind farms. A good degree of
correlation was observed between the two wind farm variables and ramp events. Ramp events,
which were approximately simultaneously observed at the two wind farms, showed some time lag.
It was generally based on the average wind speed and direction of the wind farm. However, the
investigation disclosed that it is not always possible to predict the weather characteristics of the
events based on the SCADA data. The detailed information from upstream met masts, LiADAR or
high spatial and temporal resolution weather charts are needed.

Finally, the variations in the number of ramp-up and ramp-down events w.r.t. the change in wind
speed, wind direction, turbulence intensity, and ramp duration was observed. Both wind farms
experienced ramps of nearly similar characteristics. However, because of the comparatively large
wind farm size and more wind turbines, Dudgeon wind farm faced events of longer duration, higher
wind speed, and direction changes than WMR. Moreover, both wind farms showed a decreasing
trend in the number of ramp events with increasing characteristics. The primary reason could be
the non-linearity of the power curve. The high changes could also be associated with the large
length and temporal scale weather phenomena, which are less frequent in the atmosphere.



6
Ultimate Load Validation for

Ramp Events
Before investigating the influence of ramp events on extreme loads of an OWT, validation of
aeroelastic simulations with measurements is crucial to ensure the reliability of the results. In this
regard, the simulations were obtained by tuning the parameters of the aeroelastic model with the
measurements. This can also verify against any large uncertainties involved in the calibration. The
goal of this chapter is to validate the simulation results of DLC 1.2 and DLC 1.3 against the measured
10-min minimum blade root, maximum tower top and base moments (see Figure C.1 for 10-min
statistics of high-frequency time series). The selection of 10-min extreme moments as either
minimum or maximum moments is, as explained in 4.2, based on the local coordinate system of the
component and the direction of the wind-induced forces (i.e., direction of thrust and tangential
force). For, this thesis, the load analysis is only performed for turbine D40 (see section 4.3).

IEC DLC 1.2 embodies the loads experienced by an OWT due to normal atmospheric turbulence
during its operational lifetime. Therefore, section 6.1, compares the average of the 10-min maximum
(or minimum) DLC 1.2 results to the average of the maximum (or minimum) measurements. The
validation of 10-min average simulations with the measurements is given in section C.5 of
Appendix C. Since DLC 1.3 simulates the loads caused by the extreme turbulence, the average of its
maximum (or minimum) results is validated with the extreme measurements in section 6.2.

6.1. DLC 1.2
In this section, all moments are normalised by the corresponding maximum (minimum for blades )
DLC 1.2 moment at rated wind speed. In this section, "average" refers to the average of the 10-min
maximum (or minimum) moments. Measurement data points are significantly scattered, which
could be due to turbulence, wake effect, inertia, or control response of an OWT. Moreover, 10-min
maximum (or minimum) moments are plotted against the 10-min average wind speed, which can
differ from the wind speed at which extreme moments occurs.

Figures 6.1 and 6.2 show sufficient agreement between the average measurements and the
simulations. The simulations satisfactorily match the measurements for all wind speed bins for
blade root edge-wise, tower top side-side, and tower top fore-aft. For the flap-wise (see
Figure 6.1(a)) and tower base fore-aft (see Figure 6.2(c)) moments, the simulation model slightly
overestimates the moments after reaching rated speed. On the other hand, it is observed that the
average of measured tower base side-side moment (Figure 6.2(d)) is higher than the simulations up
to the rated speed. Overall, a maximum of 10% discrepancies was observed in the simulations and
the measured averages. The discrepancy in the tower base side-side moment might be caused by
the available simulations correspond to the unidirectional wind-wave conditions, while an average
of 45= wind-wave misalignment was observed in the measurement data. Another possibility is that
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the aerodynamic damping effect is not well predicted above rated wind speed. Or NTM is perhaps
the ultimate load driver after rated wind speed. In order to discover the root cause, an analysis of
high-frequency time series is needed.
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Figure 6.1: Minimum blade root flap-wise and edge-wise moment of one blade. All values are normalized with the minimum
DLC 1.2 bending moment at rated wind speed.
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Figure 6.2: Maximum tower top and tower base bending moments. All values are normalized with the maximum DLC 1.2
bending moment at rated wind speed.



6.2. DLC 1.3
Since DLC 1.3 simulations provide the ultimate bending moments that occur due to normal and
extreme horizontal turbulence (see chapter 2), extreme 1% measurements are considered here to
obtain comparable results. The value ’1%’ is derived using a trial-and-error method. Another
possible approach would have been to use extreme nine events per wind speed bin because DLC 1.3
moments are estimated using nine different wind speed seeds. All moments are normalised by the
corresponding maximum (minimum for blades) loads in DLC 1.3 at rated wind speed. Here, the
term "average" refers to the average of maximum (minimum for blades) DLC 1.3 moments.

The average DLC 1.3 moments show good agreement with the extreme 1% average of the measured
moments. The bars in graph 6.3 and 6.4 represent the standard deviation of the selected extreme
moments per wind speed bin. It is interesting to observe that all simulations closely follow the
pattern of the extreme measurements. Both minimum moments at the blade root (Figure 6.3) are
higher (lower in absolute terms) than in DLC 1.3, except around rated wind speed. This can be
related to the increased controller activity in this region. Similar behaviour was observed in the
tower fore-aft moments. Besides, a small dip was observed in the extreme measured tower top
fore-aft moment after rated wind speed, which is not present in the simulations. Moreover, the
measured tower side-side moments (Figure 6.4(b) and (d)) are almost always greater than the
simulations. For the tower base side-side moment, this can be caused by the higher wind-wave
misalignment of measured data than 0= of available simulation (as mentioned before in
(section 6.1).

6.3. Discussions
In general DLC 1.2 satisfactorily matches the average of the 10-min maximum (or minimum)
measured moments. Thus, it can be concluded that the model is a good representative of the
measured loads and that there is no significant calibration uncertainty. The minor errors may be
related to the wind speed errors due to the blade passing fluctuations (see chapter 4).

Yet, the discrepancies in tower fore-aft and blade root flap-wise moments could be due to the
slightly high prediction of thrust force in the simulation model. In addition, the downsizing of the
turbine in the simulation can change the aerodynamic properties [27]. As the IEC NTM is
representative of the 90% turbulence levels [24], the higher simulation results might be related to
these values. On the other hand, the higher average of tower base side-side than DLC 1.2 can be
associated with the wind-wave misalignment. Measurements showed an average wind-wave
misalignment of 45= , while only simulations of unidirectional wind-wave alignment are available
for this thesis.

DLC 1.3 satisfactorily matches the extreme 1% moments. In general, the absolute measured
moments are generally lower than the simulations, except around rated wind speed. This can be
related to the increased controller activity near rated wind speed. The higher average tower base
side-side moments than simulations might be related to the higher wind-wave misalignment.
However, the maximum DLC 1.3 results can be higher than the measurements because the bars
indicate the standard deviations of the moments in each bin rather than the maximum (or
minimum).

It is interesting to see how do ramp events affect the extreme loads, which will be dealt with in the
next chapter.
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Figure 6.3: Comparison of average extreme 1% blade root moments with extreme average DLC 1.3. The bars indicate the
standard deviation of the selected moments per wind speed bin. Measurements are normalized by the minimum DLC 1.3

bending moment at rated wind speed.
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Figure 6.4: Comparison of average extreme 1% blade root moments with extreme average DLC 1.3. The bars indicate the
standard deviation of the selected moments per wind speed bin. All moments are normalized with the absolute maximum

DLC 1.3 moment at rated wind speed.



7
Impact of Ramp Events on Ultimate

Wind Turbine Loads
This chapter addresses the primary research objective of this thesis, i.e., the investigation of the
influence of ramp events on the ultimate wind turbine loads. The impact of wind power and wind
speed ramp events is analysed in the first section 7.1. The subsequent section 7.2 examines the
effect of ramp-like extreme wind speed fluctuations on ultimate loads and compares with DLC 1.3
simulations. High-frequency data of a couple of interesting events are scrutinised in section 7.3 to
discover the underlying cause.

Adhering to confidentiality and for the better understanding of results, the bending moment curves
are divided based on the controller regions, which were shown in Figure 2.6.

7.1. Wind power and wind speed ramp events
At first, wind power ramp events in the normalized power time series of a single turbine D40 are
detected using the ramp detection algorithm (see Figure 5.10) with 18% threshold (3f (Δ%<)). This
threshold, as expected, is higher than the overall wind farm threshold of 10.5% due to the smoothing
effect of wind farm power differences (see subsection 5.1.4). These events were further categorised
into a ramp-up or a ramp-down category. The events were not concatenated to get the ramp
amplitude and duration, but their influence on the loads is observed on the 10-min basis.

Since the wind power ramp events are majorly associated with the non-linearity of the power curve
and Hannesdóttir et al. [13] found that extreme wind speed ramps affect the ultimate wind turbine
loads, the ramp detection algorithm (see Figure 5.10) is also run for identifying wind speed ramps.
In this case, input was a 10-min average wind speed signal and the threshold was set to 2.1 m/s, i.e.,
3f (ΔC).

Once wind power and wind speed ramps are identified, their influence on extreme wind turbine
loads is analyzed. For instance, Figure 7.1 compares their impact on the 10-min minimum blade root
flap-wise moment. The bending moments associated with ramp events are highlighted in purple
and orange colours according to the ramp direction. In Figure 7.1(a), as expected, the loads
associated with the wind power ramps related loads are mainly concentrated in the region 2, due to
the non-linearity of the power curve (see Figure 2.5). This can be seen by a peak representing the
highest percentage of the occurrence. The average of these loads per wind speed bin is
approximately similar to the overall measurement average. In contrast, the loads related to the wind
speed ramps are uniformly scattered and show a distribution similar to Gaussian, with a relatively
higher percentage of data points at rated wind speed (see Figure 7.1(b)). The average of these
moments per wind speed bin is slightly lower (higher in absolute terms) than the average of the
total measurements. Before the region, 2 1

2 , the average per wind speed bin approximately
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represents the extreme loads. However, from the region 2 1
2 onwards, it closely follows the overall

measurement average per wind speed bin. The other bending moments show nearly similar
behaviour, which is given in section C.6 of Appendix C.

Wind Speed
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

M
in

im
um

 b
la

de
 fl

ap
-w

is
e

0

5

10

15

20

25

30

%
O

cc
ur

re
nc

e

Impact of wind power ramps

load measurements
Ramp-up
Ramp-down
Measurement average
Average of power ramps
%Occurrence

2

1
1/

2 3
1/

22

(a) Influence of wind power ramps on the minimum blade root flap-wise
moment.

Wind Speed
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

M
in

im
um

 b
la

de
 fl

ap
-w

is
e

0

5

10

15

20

25

30

%
O

cc
ur

re
nc

e

Impact of wind speed ramps

load measurements
Ramp-up
Ramp-down
Measurement average
Average of speed ramps
%Occurrence

1

2

1/
2

1/
22

3

(b) Influence of wind speed ramps on the minimum blade root flap-wise
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Figure 7.1: Coloured markers indicate loads associated with power ramps. Blue line represents average of all measurements,
whereas black line denotes the average of loads associated with ramp events. Measurements are normalized with absolute

minimum DLC 1.2 moment at rated wind speed.

7.2. Extreme wind speed fluctuations
Hannesdóttir et al. [13] found the extreme horizontal wind speed fluctuations that exceed the
prescribed IEC 61400-1 standard (edition 3) [77] are wind speed ramps and influence extreme loads
on a wind turbine. The site conditions of the Dudgeon wind farm fall under IEC turbulence class C,
which is similar to the aforementioned literature. Therefore, to determine the extreme fluctuation
events, at first, 10-min standard deviations (fC ) of the horizontal wind speeds are plotted against
10-min mean wind speed (C), as depicted in Figure 7.2. Afterwards, by using the IEC ETM class C
Equation 7.1, standard deviations are estimated over the wind speed range.

fC = 2�@4 5 (0.072(C0D4
2
+3) (C

2
−4) +10) (7.1)

where 2 = 2 m/s, �@4 5 is 0.12 and 0.14 for class C and B, respectively [77]. C0D4 is taken as average of
entire available wind speed data set.

Figure 7.2(a) represents the variation in horizontal wind speed standard deviation when wind speed
signal is unfiltered. The values higher than 6 m/s of standard deviation value are not presented in
the graph for comparison with filtered signal. The number of extreme fluctuation events dropped
drastically after filtering the wind speed data (see Figure 7.2(b)) w.r.t. availability of bending
moments. Therefore, to draw substantial conclusions, events with standard deviations higher than
90% standard deviation of IEC ETM C are considered as extreme wind speed fluctuations. It should
be noted that, in Hannesdóttir et al. [13], the author only considered events higher than the ETM
class B, which is due to the higher data availability of 10 years.



(a) Unfiltered (b) Filtered

Figure 7.2: Extreme observed horizontal wind speed standard deviations (fC ) compared to IEC ETM class C and class B. Grey
scatters correspond to raw measurements, pink dots denote standard deviations higher IEC ETM class C and blue dots

indicate their values greater than class B.

In figures 7.3 and 7.4, extreme fluctuation events are highlighted with black markers. The
comparatively lower frequency of these events for the tower bending moments is due to the lower
availability of the tower data than blades (see section 4.3). The blue and orange lines represent the
average of measured and DLC 1.3 loads, respectively, per wind speed bin. The triangles indicates the
maximum (or minimum) value of DLC 1.3 per wind speed bin. All graphs are divided as per control
regions (Figure 2.6).
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Figure 7.3: Influence of extreme fluctuations on the minimum blade root flap-wise and edge-wise moments. All moments are
normalized with the absolute minimum DLC 1.3 moment at rated wind speed.

In general, these events are likely to govern higher loads in regions 2 and 3, whereas in the region 2 1
2 ,

extreme fluctuations mainly fall near average loads. The lower loads could be related to the
increased pitch activity near the rated region. On comparing with simulations, loads associated
with extreme fluctuations events, in general showed lower values than the respective maximum (or
above minimum) moments of DLC 1.3, except for tower side-side moments. These higher values of
tower side-side moments could be related to the wind-wave misalignment or yaw error (see
section C.7). In contrast, constrained simulations of extreme fluctuation events in Hannesdóttir et
al. [13] exceeded DLC 1.3 results for blade root flap-wise and tower base fore-aft moments in region 2
and 3. All other moments were well within the DLC 1.3 results.
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Figure 7.4: Influence of extreme fluctuations on the maximum tower top and base moments. All moments are normalized
with the absolute maximum DLC 1.3 moment at rated wind speed. The graph is divided as per the control regions.

Aside from extreme fluctuations, some of the measured loads near the regions 2 1
2 and 3 exceed the

extreme loads predicted by the DLC 1.3. To determine the plausible cause of higher or lower loads in
each region, a few interesting events are selected for high-frequency analysis based on their
intensity such as, fluctuations higher than IEC ETM B, higher than IEC ETM C, higher than 90% IEC
ETM C and near the rated region with extreme loads higher than DLC 1.3. The high-frequency data
of such events are investigated in the next section.

7.3. Analysis of high-frequency time series
Figure 7.5 illustrates the high-frequency (25 Hz) wind speed time series of four selected events as
per their turbulence class. Similar to Hannesdóttir et al. [13], wind time series of extreme fluctuation
events, i.e., standard deviations higher than ETM class C show a ramp-like increase or decrease. A
sudden increase in wind speed with an average rise time of 100 s is observed for the event having
standard deviation higher than IEC ETM class B (see Figure 7.5(a)). Approximately at the same time,
a ramp-up event is observed at D44, which is at a 1.8 km distance from D40. With decreasing
standard deviations, the rise (or fall) time of events increases and amplitude decreases. For
instance, in Figure 7.5(b), an event with standard deviation IEC ETM B≥ fC>IEC ETM C, showed a
fall time of around 300 s. With the further decrease in the fC , events start transforming to turbulent.
Further, Figure 7.5(d) illustrates the time series of the minimum blade flap-wise moment. This event
shows a lower value of fC ≈ 1.6 m/s. The associated time series of the generator rotational speed,



pitch angle, yaw angle, blade and tower bending moments are examined further in this section.
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Figure 7.5: Comparison of wind speed time series of turbines D40 and D44, which are ≈ 1.8 km apart.

An event of fC>IEC ETM B
For the selected event, an explicit ramp-like increase (or decrease) is observed in all presented time
series, and it is highlighted by the red box in Figure 7.6. The wind speed time series initially showed
a gradual increase around 300 s followed by a sudden increase. Also, the intensity of wind speed
fluctuations is observed lower around the ramp-like structure compared to a no-ramp region (see
Figure 7.6(a)). Interestingly, the tower top side-side moment showed a similar pattern (see
Figure 7.6(f)), but with a shorter rise time as power reaches the rated capacity (see subsection 2.1.3).
The ramp-like increase is also observed in other bending moments and pitch angle around the
same time, indicating coherent structure across the length of the turbine. When a blade starts
pitching (see Figure 7.6(d)), a sudden peak in the tower fore-aft and blade root flap-wise moments is
observed before the reduction in absolute values (see Figure 7.6(b), (e) and (h)). Yet, the moments
are not extreme because of the faster pitch response to a comparatively long duration of the ramp.
In other words, as explained in Bierbooms [78], as the rise time of ramp events is much longer than
the time constant of controller activity, the ramp related variation in were handled by the controller.
Moreover, approximately 90% drop in the blade root flap-wise moment, 80% rise in tower base
side-side moment and 60% drop (or rise) in the other moments is observed in less than 50 s, except
blade edge-wise moment.

Figure 7.7 compares time series of this event at turbine D40 and D44 for the same 10-min duration. A
ramp event at D44 showed a longer time duration to reach the same wind speed level as the turbine
D40 (see Figure 7.7), which could be a result of wake effects (see Figure 4.2). Despite the slower



Figure 7.6: The time series of various parameters for an event of fC > IEC ETM B. The associated period of a wind speed ramp
is highlighted in the red box. All moments are normalized with the absolute maximum DLC 1.3 moment at rated wind speed.

Figure 7.7: Comparison in time series of D40 and D44. The black box highlights the ramp event observed in D40. X and Y
coordinates show the time and other signals value at the local minimum blade root flap-wise moment, respectively. All

moments are normalized with the absolute maximum DLC 1.3 moment at rated wind speed.

transition, the blade root flap-wise bending moment is lower (higher in absolute terms) for turbine
D44 than D40. Moreover, the local minimum value in the specified 10-min duration is not associated
with a ramp event, but, wind speed fluctuations near rated wind speed. This leads to a sudden pitch



transition from inactive to active, which can be observed in the pitch curve around the minimum
blade root bending moment (see Figure 7.7(b) in orange). The rotational speed time series of D44
showed fluctuation around 10 rpm, whereas ramp-like variations is observed in the time series of
D40. The comparative higher turbulence at turbine D44 may be associated with the wake added
turbulence, as D44 is in the wakes of turbines D37 and D38 (see Figure 4.2(b)) for northerly winds
(assuming no yaw misalignment). In Kelly et al. [79], the author also found the higher extreme loads
for downstream wind turbines than upstream based on constrained simulations with ramp-like
wind speeds. Thus, if a no-ramp region is near rated wind speed and involves sudden fluctuations
demanding pitch activation, this can result in higher loads than DLC 1.3 in the wind speed bin.

An event of fC>IEC ETM C
For the selected event, 10-min minimum flap-wise moment is observed close to the minimum DLC
1.3 moment for that specific wind speed bin. In the 10-min wind speed time series, ramp-like
decrease is observed with a fall time of around 300 seconds. Figure 7.8 shows the high frequency
time series different, where local maximum (or minimum) loads are highlighted in the red box. The
wind speed dropped close to rated wind speed, followed by sudden increase resulted in a peak in
the blade flap-wise moment (see Figure 7.8(a) and (b)). However, because of the ramp-like decrease
in 10-min time series, from 20 m/s to 10 m/s, the average of the event falls under the 15 m/s bin.
Therefore, it could be said that extreme moments are mainly associated with the pitch transition
from inactive to active region (see Figure 7.8(d)).

Figure 7.8: Time series plot of various parameters for IEC ETM B ≥ fC > IEC ETM C. All moments are normalized with the
absolute maximum DLC 1.3 moment at rated wind speed.

An ETM time series of similar wind speed statistics, i.e., mean and standard deviation, showed an
analogous ramp-like decrease approximately at the same time as the measurements (see



Figure 7.9(a)). However, simulation time series consists of comparatively higher fluctuations than
measurements (focused in black box). Moreover, minimum blade root flap-wise moment also
occurred as a result of transition from region pitch inactive to active (see Figure 7.9(b)). The resulted
blade root flap-wise bending moment from DLC 1.3 simulations showed lower minimum value than
measurements, as the wind speed fluctuations were significantly higher (see Figure 7.9(c)). Thus, it
could be said that the DLC 1.3 satisfactorily predicts the moments related to such time series.

Figure 7.9: Comparison of measurement and simulation time series of similar wind speed statistics.

An event of the minimum blade root flap-wise moment
The Figure 7.10 represents high-frequency time series of different measurements at the lowest
(highest in absolute terms) measured blade root flap-wise moment (highlighted in the red box). The
corresponding event showed a lower turbulence than DLC 1.3 and the 10-min average wind speed is
close to the rated. Therefore, any slight fluctuations in the wind speeds leads to the transition from
inactive to active region within a few seconds (Figure 7.10(d)).

Figure 7.11 highlights the exact timing and corresponding signal values in that 10-min time series.
Similar to aforementioned events, pitch was inactive (optimum angle at −4=) before the occurrence
of this event (see Figure 7.11(b)). In addition, rotational speed was also observed close to the rated
speed of 9.9 rpm. Also, as expected, the extreme flap-wise moment corresponds to the 1P rotational
frequency (see Figure 7.12), which could be due to the tower shadow, wind shear, or turbulence of
the equivalent time scale [39]. The dominant time period of consecutive peaks is estimated from
Figure 7.11(c) as 6 sec, which is as expected same as 1P.

One could argue that the exceeding blade root flap-wise moments should be compared with 10-min
minimum DLC 1.1 moments, because DLC 1.1 yields ultimate loads experienced by normal
turbulence in 50-years recurring time. However, IEC DLC 1.3 is designed such that the ultimate loads
from DLC 1.1 should not exceed DLC 1.3 [77], i.e. DLC 1.3 includes the ultimate loads from DLC 1.1.

Comparison of the measured wind speed time series with the simulation of similar statistics shows
that the NTM model has relatively smaller fluctuation intensity than measurements (see
Figure 7.13(a)). However, one could argue that the measured wind speed time series may include
added blade passing fluctuations (see section 4.1). As the measured rotational speed time series is
given input to the control system, the power spectrum density (PSD) graphs of measured and
simulated rotational speeds are compared Figure 7.14. For better understanding, the PSDs are
smoothed out. For higher frequencies than 3.5 Hz, fluctuation amplitudes (energy) of the measured
rotational speed were observed higher than the simulation. Therefore, the increased fluctuations



around near rated wind speed region (region 2 and 2 1
2 ) and observed higher energy in the

high-frequency region can be the probable reasons for higher loads.

Figure 7.10: Time series plot of various parameters at minimum observed blade root flap-wise moment. All moments are
normalized with the absolute maximum DLC 1.3 moment at rated wind speed.
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Figure 7.11: Variation in wind speed, rotor speed, pitch angle, power, and normalized blade root flap-wise moment. X
coordinate shows the time of lowest load and Y represents other signal values at corresponding time.
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Figure 7.12: Power spectral density of blade root flap-wise moment.

Figure 7.13: Comparison of measurement and NTM simulation time series of similar wind speed statistics.
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Figure 7.14: Comparison of measured and simulated power spectrum density of rotational speed.



An event of maximum tower base fore-aft moment
The data points corresponding to the maximum tower base fore-aft moment were found to be
errors in the data set. They can be observed as sharp peaks in the tower base fore-aft, and side-side
moments Figure 7.15. To remove such errors, the 10-min time series is discarded if the difference
between 10-min maximum and average is higher than 3-4 times the standard deviation of series.
While obtaining 10-min statistics, it is recommended to add an additional check, i.e., if the
difference between the two highest maxima in 10-min time series is larger than the standard
deviation, the second highest maximum value is stored.
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Figure 7.15: Tower moment time series - an error in maximum observed tower base fore-aft moment. All moments are
normalized with the absolute maximum DLC 1.3 moment at rated wind speed.

In the available data set, the nearest found maximum value shows a peak in tower base fore-aft as well
as the tower top fore-aft (Figure 7.16). This maximum tower base fore-aft moment does not exceed
DLC 1.3 results. Because of the unavailability of the other time series, no further analysis is performed.
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Figure 7.16: Tower moments and yaw angle time series. All moments are normalized with the absolute maximum DLC 1.3
moment at rated wind speed.



7.4. Discussions
In this chapter, the influence of wind power and wind speed ramp events on the ultimate loads were
analysed and compared with DLC 1.3. Then, high-frequency (25 Hz) time series of various
parameters in the selected time interval were examined, and some of them were also compared
with the simulation time series to understand the reason for the discrepancies. The findings from
the above results are summarised as follows:

• Wind speed and wind power ramp events on 10-min basis
The loads associated with power ramps were clustered in region 2, mainly due to the
non-linearity of the power curve (see Figure 2.5). It is observed that the average of these loads
per wind speed bin is almost equal to the average of the whole measurements. It can be
concluded that the power ramps do not affect the ultimate wind turbine loads.

On the other hand, the loads related to wind speed ramps were more evenly distributed and
could be an extreme load inducing factor in the region 2. This also suggests that the wind
power ramps associated with large wind speed changes also influence the maximum loads in
the region 2. However, for the higher wind speed bins, the average of measurements and the
ramp-related load closely followed.
Wind turbines, however, are designed to withstand the maximum loads during their lifetime.
Therefore, it could be deduced from the Figure 7.1 that neither speed nor speed ramps affect the
ultimate blade moments. In both cases, moments were relatively low around the rated speed.
It could be due to the longer duration of ramp events that can be dealt with pitch controller. It
should be noted that the above conclusions are based on the comparison of the average load
profiles.

• Extreme wind speed fluctuations
Ramp structures related to the extreme 10-min horizontal wind speed standard deviations,
exceeding IEC ETM guidelines showed a significant impact on the maximum (minimum for
blades) bending moments in the regions 2 and 3, yet, not in the region 2 1

2 , which could also be
due to the increased controller activities.

The tower side-side moments, induced by the extreme fluctuation events exceeding IEC ETM
Class B, outperformed DLC 1.3 simulations. In contrast, the constrained simulations of
Hannesdóttir et al. [13] lead to tower base fore-aft and blade root flap-wise moments.It should
be noted that the site conditions, simulation environment, turbine parameters, and designed
controller may be different and lead to different results. Also, in Hannesdóttir et al. [13], the
author used six seeds representing extreme 10-year standard deviations of met mast readings,
whereas only 8-10 months of SCADA data is available for this report.

• High-frequency The high-frequency analysis of the blade root flap-wise moments time
series revealed that the extreme bending moments per wind speed bin are mainly caused by
the sudden transition of pitch angle from inactive to active region. Therefore, extreme loads
over the wind speed range, except in region 2 1

2 (and close to it), were governed by ETM or
ramp events that lead to pitch transition. In region 2 1

2 , extreme loads have resulted from lower
fluctuations, but are higher than NTM. Moreover, the increased fluctuations which occurred
when the pitch was active did not result in high loads. Therefore, for the ultimate load
analysis, the wind speed time series of the simulation model should involve a sudden
transition of a pitch from inactive to active region.
The DLC 1.3 model showed a similar response for these conditions, yet further analysis of
other wind speed bins is required. Moreover, the NTM model may needs to be improved for
representing high fluctuations in the wind time series, especially near the 2 1

2 transition region.



8
Conclusions and Recommendations

Understanding the impact of unexpected extreme changes in wind speed on the OWT components
and wind farm performance is of paramount importance for the growth of the offshore wind
industry. One of the extreme conditions are ramp events in power and wind speed. Based on the
comprehensive literature review, this report has worked towards the following primary objective:

"to investigate the impact of wind-induced ramp events on offshore wind farm power and
ultimate wind turbine loads - a measurement-based approach"

For this thesis, the required data sets were provided by SGRE. Two years of 10-min SCADA data of
the two wind farms, WMR and Dudgeon, were analysed for the detection and categorisation of wind
power ramp events. However, because of the limited data availability and shortness of time, the
ultimate load analysis was conducted only for turbine D40 of the Dudgeon wind farm. In addition,
aeroelastic simulation results of normal and extreme turbulence load cases were available from
BHawC.

This chapter summarises the research findings of this report. Subsequently, some recommendations
are proposed based on the data processing during this thesis. Finally, the probable scope of future
research is discussed.

8.1. Concluding remarks
After a comprehensive literature review of existing research work and the analysis of the available
datasets, the results are summarised in the following steps:

Detection and categorization of wind power ramp events of two wind farms
With the objective of detecting and categorizing wind-induced ramp events on two offshore wind
farms, a comprehensive investigation of the ramp detection algorithm, based on the end-user’s
objective, was conducted. A suitable ramp detection definition was selected based on the available
dataset and by considering the smoothing effect of power differences. In addition, the influence of
power using two and the objective of identifying wind-induced power ramp events. The following
questions were addressed while normalizing wind farm power:

• "What is the effect of power normalization technique on the objective of an end-user ?"
As the variable capacity (available capacity) method eliminates the influence of wind turbine (or
its data) availability, this would be an useful approach for wind turbine designers or other end
users with a similar objective. On the other hand, for storage system designers, grid operators, or
energy traders, the overall variation in power, irrespective of its cause would be more important.
Thus, the nominal capacity method could be more appropriate. As the goal of this thesis was to
analyse extreme wind-induced power ramp events, the variable capacity method was used.
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• "How does the criterion of the minimum number of turbines, i.e., data availability at each
time step influences the ramp detection method?"
The smoothing effect of normalized wind farm power differences showed its depends on the
minimum number of wind turbines and their positioning in the wind farm. Therefore, the
criterion was selected such that the minimum number of turbines are representative of the
area covered by the wind farm, and the possible combination of their positioning doesn’t lead
to a large variation in the threshold.

• "How are the characteristics of detected wind power ramp events at two wind farms
correlated?"
A good degree of correlation was observed between the signals of the two wind farms and in
the detected large-scale ramp events. The time lag (or advance) between the observed ramp
events was close to the calculated value form mean wind speed and direction at each wind
farm. However, it is not always possible to predict the characteristics of the events based on
SCADA data. Detailed meteorological information from Numerical Weather Prediction
models, weather charts, nearby upstream meteorological masts or LiDAR is needed for
thorough analysis.

Both wind farms experienced ramps of nearly similar characteristics. The variation of
ramp-up and ramp-down events w.r.t. the change in speed, direction, turbulence, and ramp
duration showed decreasing trend with increasing characteristic changes. The primary reason
could be the non-linearity of the power curve. The large changes could be associated with the
large length and temporal scale weather phenomena, which are less frequent in the
atmosphere. However, because the Dudgeon wind farm is larger than WMR in size and
consists of more wind turbines, it has faced events of longer duration, higher speed, and
direction changes.

Analysis of the impact of wind power and wind speed ramp events on the
maximum wind turbine loads
Regarding the influence of wind-induced ramp events on OWT loads, a detailed investigation is
conduced on the blade and tower moments of turbine D40 of the Dudgeon wind farm. It is worth
mentioning that the initial comparison of BHawC simulation results showed a good agreement with
the measurements. Therefore, the obtained results do not involve any significant uncertainties. The
deductions of the analysis are listed as follows:

• Wind speed and wind power ramps on 10-min basis:
The loads associated with wind power ramps were clustered in the partial load region due to
the non-linearity of the power curve. The average of these loads was found similar to the
average of all measurements per wind speed bin. Based on the analysis of average loads, wind
power ramps do not affect the ultimate wind turbine loads.

Conversely, the loads related to wind speed ramps were distributed over the wind speed range.
Moreover, they could be extreme load drivers in the partial load region before the activation of
pitch controller. Yet, not at high wind speed bins. It also implies that the wind power ramps
associated with large wind speed changes also influence the maximum loads in the same region.

• Extreme wind speed fluctuations:
The extreme fluctuations are the events that exceed the prescribed IEC extreme turbulence
model per wind speed bin. These events were found to be the extreme load drivers in the
partial load region (when the pitch was inactive) and after rated wind speed. Yet, not near
rated wind speed region, which could be due to the longer time duration of events that could
be dealt by the controller.



Validation of Hannesdóttir et al. [13] findings by comparing measured loads
associated with extreme fluctuations to DLC 1.3:
In Hannesdóttir et al. [13], constrained simulations of tower base fore-aft and blade root flap-wise
moments exceeded the DLC 1.3 simulations. In contrast, the measured tower side-side moments,
caused by the extreme fluctuation events exceeding the IEC ETM Class B, outperformed the DLC 1.3
results. This can be due to the wind-wave misalignment. However, the associated blade root
flap-wise and tower base fore-aft moments were well under the prediction of DLC 1.3. Since these
ramp events involved comparatively longer duration and lower fluctuations, the controller could
handle these events. Moreover, based on the findings of this report, if the no-ramp region in the
ramp-like wind speed time series involves high stationary turbulence (but close to NTM),
demanding a sudden activation of the pitch controller, it could exceed DLC 1.3 loads per wind speed
bin.

It should be noted that the site conditions, simulation environment, turbine parameters, and
designed controller may be different and lead to different results. Also, in Hannesdóttir et al. [13],
the author used six seeds representing extreme 10-year standard deviations of met mast readings,
whereas only 8-10 months of SCADA data is available for this report.

Analysis of high-frequency time series:
The investigation of high-frequency time series of blade root flap-wise moments revealed that the
extreme bending moments per wind speed bin were mainly caused by a sudden transition of pitch
angle from inactive to the active region. Therefore, extreme loads over the wind speed range, except
near rated wind speed region, were governed by ETM or ramp events which lead to the pitch
transition. Near rated wind speed, extreme loads have resulted from lower fluctuations with
standard deviation close to NTM but relatively higher fluctuation frequency and amplitude.
Moreover, the higher fluctuations that occurred during the active pitch did not result in large loads.
Thus, for the ultimate load analysis, the wind speed time series of the simulation model must
involve a sudden transition of a pitch controller from inactive to the active region or vice versa.

An analysis of one of the ETM wind speed time series showed a similar response to the measurement.
Yet, further investigation of time series in other wind speed bins is required. Moreover, the NTM
model needs to be improved for representing high fluctuations in the wind time series, especially
near the 2 1

2 transition region.

8.2. Recommendations
• Meteorological information:

Local effect of the detected weather event were difficult to analyse from the weather charts
and provided SCADA data. Detailed meteorological information from the numerical weather
prediction models, high resolution weather charts, nearby upstream meteorological masts or
LiDAR is needed for thorough analysis. The information is vital to obtain the relation between
the observed ramp events at two wind farms or to examine any deviation from the expected
norm.

• Analysis of extreme characteristics events:
In chapter 7, the influence of wind power and wind speed ramps are analysed on a 10-min basis.
However, the indicator function shows ramps of unique characteristics as similar. Therefore,
the influence of different characteristics of ramps events, such as higher wind speed, direction
changes or large-scale events, should be analysed. One could also examine the characteristics
of loads associated with the extreme 1% ramp events per wind speed bin.

• Data filtering:
Most of the time has been spent on filtering the data set, yet maximum tower moments
showed some errors. Thus, it is recommended to use an additional filter, i.e, if the difference
between 10-min maximum (or minimum) and the 10-min average is higher than four or five
times the 10-min standard deviation, that data could be rejected.



Moreover, additional checks can be executed while storing the 10-min statistics from
high-frequency data. For instance, if the difference between the two highest maxima in the
10-min interval is higher than the standard deviation, the lower maximum value should be
stored. This ensures that not too much data is removed. Moreover, due to the high storage
requirement, usually, high-frequency data is not available for all time periods. In such cases, it
will not be possible to determine the underlying cause. Thus, the proposed filtering check
would be useful.

8.3. Possible uncertainties in the results
Wind speed measurements:
The wind speed SCADA data was available from the cup anemometer measurements, which is
mounted behind the rotor. Thus, the readings include added turbulence due to the blades passing
in front of the tower. Thus, the analysis associated with standard deviation and turbulence intensity
may deviate from reality.
Data availability:
The results are based on only 8-10 months of load measurements. Thus, the results do not even
consider the seasonal variations. Besides, wind fluctuations are unpredictable, thus more years of
data set would give better results.

8.4. Future scopes
• Analysis of high-frequency events:

It is crucial to review the high-frequency time series of other bending moments, as this report
has mainly focused on the blade root flap-wise moment. In order to identify the extreme load
governing parameters in each wind speed bin, high-frequency data of extreme 2-3 events per
wind speed bin could be analysed and the influencing parameters can be determined.

• Modification of ETM:
Based on the findings, a sudden transition of pitch control from inactive to the active region
and vice versa caused extreme loads in the below and above-rated wind speed regions. For this
purpose, a simulation time series similar to the one presented in Figure 7.9 could be a good
estimate. Nonetheless, other simulation time series should be analysed to understand the
possible deviation and necessary modification.

• Introduction of a new wind speed time series:
The extreme loads around rated wind speed that exceeded the DLC 1.3 loads were associated
with a wind speed standard deviation close to the one from IEC NTM, but with higher
fluctuation frequency. These loads also involved pitch transitions. Ramp-like wind speeds in
combination with such turbulence (involving pitch transition) showed higher loads than the
DLC 1.3 loads. An example of an observed event is shown in Figure 7.7. Therefore, such time
series can be included in the DLC 1.3 simulations to estimate the possible extreme moments
per wind speed bin.

• Analysis of extreme blade root flap-wise moments:
The minimum blade root flap-wise moments was found to be influenced by a sudden wind
speed fluctuation near rated wind speed causing the transition of the pitch controller from
inactive to the active region. The comparison of PSD of measured and simulated generator
rotational speed showed higher energy content in high frequency region.

However, this also brings to the question of "why are these loads not driven by ETM?".
Therefore, it is crucial to conduct thorough analyse on more of such events recommended to
identify the primary reason. One-to-one simulations using the measured high-frequency time
series may give useful results.
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A
Vector and Scalar Averaging Methods

Wind velocity is a vector quantity, i.e., a combination of wind speed (magnitude of a vector) and
wind direction. Thus, the vector averaging method can be used to determine the average wind
direction of wind farm at each time step. In this report, wind farm speed is determined using scalar
averaging of the horizontal wind speed of each wind turbine. The approach is same as proposed by
Grange and elaborated in this chapter.

Figure A.1 illustrates the horizontal velocity vector,+� having magnitude C m/s. The wind direction
is represented as per various coordinate systems. Here, q%$!�' defines an angle w.r.t. polar
coordinates, q+ ��) is the wind vector azimuth that gives the direction ‘towards’ which the wind is
blowing (oceanographic sign convention), and q"�) is the meteorological wind direction, i.e. the
direction ‘from’ which the wind is blowing. In the figure, wind is blowing towards North-East
direction (NE) (given by q+ ��) ), and coming from South-West direction (SW) (given by q"�) ). The
meteorological and the oceanographic coordinate systems measure angle in a clockwise direction
starting from North direction in contrast to the polar coordinate system. Angle is measured in
anticlockwise direction in polar coordinate system starting from east.

Figure A.1: Meteorological convention in coordinate system [81]

The wind direction data is available in meteorological sign convention, thus the equations are

91



formulated by using the meteorological coordinate system (similar as [81]). +� can be decomposed
into a velocity vector C� , towards the east and C# , towards north. Following aforementioned
conventions, velocity component C� can be calculated using q+ ��) as given in Equation A.1. since,
angels q+ ��) and q"�) have 180= phase difference, C� in terms of meteorological convention is
estimated with Equation A.2.

C� =C ∗ sin(q+ ��) ) (A.1)

or

C� =C ∗ sin(q"�) −180) = −C ∗ sin(q"�) ) (A.2)
Similarly, C# can be decomposed as

C# = −C ∗cos(q"�) ) (A.3)
For ‘N’ wind turbines, the average velocity vector in east and north directions are calculated using
equations A.4 and A.5.

C� =
1
#

#∑
7=1
−C7 ∗ sin(q"�) 7 ) (A.4)

C# =
1
#

#∑
7=1
−C7 ∗cos(q"�) 7 ) (A.5)

From equations A.4 and A.5, it is possible to determine the average wind direction using formula,

q"�) = arctan(−C� ,−C# ) (A.6)
As noticed from equations A.4 and A.5, vector averaging of the wind velocity depends on the wind
directions. Consider a hypothetical situation at time t, where half of the wind turbines experience
wind from the north direction and other half from the south. If the magnitudes of velocity vectors
are same, say 10 m/s, then the average velocity will be 0. In reality, such conditions are unlikely to
occur. However, this can not be true because the wind turbines generate power using yaw and pitch
mechanisms. Grange, pointed out that vector averaging of wind speed can present atmospheric
conditions poorly, and is always less than the scalar average of wind speed. Hence, scalar averaging
method is preferred and the average wind speed of the wind farm is given by,

C 5 (B ) =
1
#

#∑
7=1

C7 (B ) (A.7)

A good example for validating the application of preceding method follows.

Example:

Consider two turbines have wind speeds C1 = 10 m/s and C2 = 10 m/s. And wind directions are q"�) 1
= 30= and q"�) 1 = 330= .

• Scalar average of wind speed:

Using equation A.7, for N = 2, C 5 is 10 m/s
• Vector average of wind speed:

Using equation A.4 and A.5, for N = 2, C� is 0 m/s and C# is - 8.67 m/s. Therefore, C 5 is
1
#

√
C� 2 +C# 2 = 8.67 m/s. As explained before, the resultant wind speed is lower than scalar

averaged wind speed because of the difference in wind directions. Hence, the scalar averaging
method is used.



• Scalar average of wind direction:

When wind directions are averaged using the scalar approach, for N = 2, q"�) is 180= indicating
south. This is due to the large difference in numbers 330= and 30= but both show direction close
to north. Therefore, in reality, the average wind direction should be from the north direction.

• Vector average of wind direction:

Using equation A.6, for N = 2, C� = 0 m/s and C# = - 8.67 m/s, q"�) is 360=(or 0=). Thus, the
vector averaging method gives a more precise wind direction.

For this report, each wind turbine is assumed as an individual turbine. Horizontal turbulence
intensity of a turbine 7 at each time step is estimated using Equation A.8. Ultimately, turbulence
intensity of the wind farm is taken as average of turbulence intensity at each wind turbine
(Equation A.9). It should be noted that, here # indicates the active number of turbine at each time
step similar to ’variable capacity method’ (Equation 5.3).

) �7 (B ) =
fC7 (B )
C7 (B )

(A.8)

) � 5 (B ) =
1
#

#∑
7=1

) �7 (B ) (A.9)





B
Smoothing Effect of Power

Fluctuations and Power Differences

B.1. Smoothing effect of power fluctuations
The power output of a turbine fluctuates over the year because of varying inflow conditions,
incoming wind direction, location of a wind turbine in a farm (wake or free), the performance of
wind turbine (yaw error, pitch error, efficiency of turbine parts), power curtailment and
maintenance of an individual turbine. All in all, smoothing of fluctuation then depends on length
scale, wind direction, and wind speed of the event as these parameters determine the travel time of
the event through the wind farm (downstream wind turbines) [35].

Fluctuations in the power output time series of an individual turbine can be defined as:

>
′

7 = %7 −%7 (B.1)

where> ′
7

represent fluctuations in power output time series (%7 ) of wind turbine 7 , and %̄ is an average
of %7 . Therefore, standard deviation of the power output of turbine 7 is calculated as:

f2
>7 = (%7 −%7 )2 (B.2)

From Equation B.1, standard deviation of power output is nothing but the square of the average of
power fluctuations, i.e., standard deviation of power fluctuations. i.e.,

f2
>7 = (>

′
7
)2 (B.3)

When powers of two wind turbines (7 and 8 ) are aggregated, standard deviation of the new power
signal can be obtained similarly as for a single turbine.

>
′

7 8 = %7 +%8 − (%7 +%8 ) (B.4)

>
′

7 8 = %7 +%8 −%7 −%8 (B.5)

>
′

7 8 =>
′

7 +>
′

8 (B.6)

f2
>7 8 = (>

′
7
+> ′

8
)2 (B.7)

f2
>7 8 = (>

′
7
)2 + (> ′

7
)2 +2> ′

7
>
′
8

(B.8)
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Standard deviation of two aggregated power signals depends upon the correlation between them. The
correlation coefficient measures the covariance between two signals normalized with their standard
deviation, where covariance gives a directional relationship between two signals.

cov(%7 ,%8 ) => ′7>
′
8

(B.9)
Pearson’s linear correlation coefficient can be given by,

@>7 8 =
cov(%7 ,%8 )
f>7f>8

(B.10)

A correlation coefficient, @>7 8 between two signals 7 and 8 varies between -1 and 1, where value -1
indicates perfect opposite correlation (when one value increases the other decreases by the same
amount), 1 shows perfect correlation and 0 represents the signals are uncorrelated.

Thus, Equation B.8 can be rewritten as:

f2
>7 8 = f

2
>7 +f

2
>8 +2@>7 8f>7f>8 (B.11)

Assuming same wind regimes at all the turbines, f>7 = f>8 = f> ,i.e., standard deviations of power
output signals of individual turbines are similar, even when different correlations are present [34].
It can be validated by calculating the standard deviation of power output for each turbine in a wind
farm. Figure B.1 represents the standard deviation of the normalized power output for each turbine,
which is normalized with rated power of a turbine. From these plots, it is clear that the standard
deviation of each wind turbine is almost similar.
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Figure B.1: Standard deviation of power fluctuation for each wind turbine

This the Equation B.11 will be,
f2
>7 8 = 2f2

> +2@>7 8f2
> (B.12)

Extending the above formula for three turbines 7 ,8 and 9

f2
>7 89 = f

2
> (3+2(@>7 8 +@89 +@79 )) (B.13)

and further for all # turbines of a wind farm

f2
> 5 = f

2
> (# +2

#−1∑
7=1

#∑
8=2

@>7 8 ) (B.14)

here, f> 5 provides the standard deviation of aggregated wind farm power.

f2
> 5 = f

2
> (# +# (# −1)@>7 8 ) (B.15)



where @>7 8 is an average of all correlation coefficients and calculated as:

@>7 8 =

∑#−1
7=1

∑#
8=7+1 @>7 8

# (#−1)
2

(B.16)

When wind turbines are located far apart, fluctuations in the power output associated with short
term variations of wind speed are assumed to be independent. In other words, the power output of
such turbines at that time instance are uncorrelated and largely cancel out [34]. From Equation B.15,
overall standard deviation of uncorrelated wind turbines (@>7 8=0) will be

√
#f> , i.e., standard

deviation of aggregated power only increases by
√
# . For normalized power, this standard deviation

decreases by
√
# as shown in Equation B.20 (In [82], equation 1 has an error, as it does not use

normalized power).

It should be noted that each wind turbine’s power is normalized by the rated power of a turbine,
i.e., %< = %

%'
. Thus, normalized power fluctuation and its standard deviation a single turbine can be

obtained from equations B.1 and B.3 as

>
′

<7 =
%7 −%7
%'

(B.17)

f>< =>
′

<7 =
f>

%'
(B.18)

Therefore, for a wind farm of N turbines with the same rated power, the standard deviation of
normalized wind farm power fluctuations will be

f> 5 < =
f>

# .%'
(B.19)

By dividing Equation B.15 by# .%' , relation between average correlation coefficient and standard
deviation of normalized wind farm power fluctuations can be obtained as follows:

f> 5 < = f><

√
(1+ (# −1)@>7 8 )

#
(B.20)

where, f>< and f> 5 < indicate standard deviation of normalized power output of a single wind
turbine and wind farm respectively.

As stated earlier, the standard deviation of normalized aggregated wind farm power (f> 5 <) for
uncorrelated turbines decreases by

√
# , i.e., f><√

#
. Similarly, standard deviation for perfectly

correlated turbines (@>7 8=1) in a wind farm will be same as a single turbine. In short, standard
deviation of normalized wind farm power varies in the range,

f><√
#
≤ f> 5 < ≤ f>< (B.21)

.
Average correlation coefficients of wind farm power output for WMR and Dudgeon are found to be
0.96 and 0.97, respectively. This result corresponds to two years of power output data set. In
conclusion, the standard deviation of wind farm power fluctuations and wind turbine power
fluctuation is similar when considered yearly data set.

B.2. Smoothing effect of successive power differences
In subsection 5.1.3, three time standard deviation of successive power differences of normalized
wind farm power signal is used to set a threshold value. Figure B.2 illustrates the difference between
normalized power fluctuations (% ′<) and normalized successive power differences (Δ%<). Successive
power difference at time B in a normalized power signal is evaluated as:

Δ%< (B ) = %< (B ) −%< (B −9 ) (B.22)



where k is the sample time of the available data set. From Equation B.1, power differences are nothing
but successive power fluctuation differences.

Δ%< (B ) =>
′
< (B ) −>

′
< (B −9 ) (B.23)

Figure B.2: Normalized power output time series of turbine D40, with average power (%̄< ), power fluctuations (%<
′), and

successive power differences (Δ%< )

Therefore, normalized successive power differences time series show similar characteristics as
normalized power fluctuations, i.e., Δ%< = 0 and f (Δ%<) = (Δ%<)2. Similarly, standard deviation of
normalized successive wind farm power differences can be estimated using Equation B.26

f (Δ%5 <) = f (Δ%<)

√
(1+ (# −1)@ (Δ% )7 8 )

#
(B.24)

where,

@ (Δ% )7 8 =
∑#−1
7=1

∑#
8=7+1 @ (Δ% )7 8
# (#−1)

2
(B.25)

If f (Δ%<) of all the turbines are close by but not equals to each other, the average of standard
deviations (f (Δ%<)) can be used to estimate overall standard deviation.

f (Δ%5 <) = f (Δ%<)

√
(1+ (# −1)@ (Δ% )7 8 )

#
(B.26)

The estimated average correlation coefficients of successive power differences for WMR and
Dudgeon are 0.35 and 0.31, respectively. These low correlation coefficients explain the high
smoothing effect observed from the standard deviation of a single turbine to successive power
difference of wind farm.

Power fluctuations indicate the variation in the wind farm power w.r.t. average wind farm power,
whereas successive power differences depend on the value of fluctuation at each time step. A wind
farm consists of several turbines, whose power output are affected by wake interaction, farm layout,
spacial distance, length and time scale of meteorological phenomenon and individual wind turbine
condition. Depending upon these parameters, weather events take time to pass through different



wind turbines. Besides, due to the difference in turbulence level, yaw or pitch angle at each turbine,
the power output of all turbines are not the same at a specific time and show some time shift[35].
Thus, the standard deviation of successive power differences shows a higher smoothing effect. Yet,
the correlation coefficient of power fluctuations also depends upon the period of data considered
because of the observed seasonal pattern in power fluctuations and length scale of large-scale
weather events.

B.3. Validation
In this section, result from Equation B.26 is validated with the standard deviation calculated using
normalized power differences, which is considered as reference (f (Δ%5 <)@4 5 ). Figure B.3
demonstrates the flow chart of calculation steps used to estimate percentage deviation of the
standard deviations obtained from Equation B.26.
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Figure B.3: Validation of derived standard deviation of normalized farm power differences (Equation B.26)

The validation is performed for both wind farms having f (Δ%5 <)@4 5 values 0.043 and 0.0386
respectively. The estimated standard deviations, 0.0415 and 0.0364 give percentage error of about
3.5% and 5.8% respectively. As the percentage error is small, @ (Δ% )7 8 can be calculated using
f (Δ%5 <)@4 5 . It considerably reduces the time taken by N(N-1)/2 number of @ (Δ% )7 8 combination
Equation B.25. Errors because time series are not continuous.





C
Additional Results

C.1. Introduction to 10-min statistics
Let us assume that the presented 10-min wind speed time series in Figure C.1 starts at 13:40 hours
and ends at 13:50 hours. Then, all statistical values, i.e., average, minimum, maximum and standard
deviations are stored at time 13:50 hours for the available system.
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Figure C.1: Representation of 10-min statistics of available 10-min time series.
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C.2. Correlation analysis

Figure C.2: Correlation matrix: Scattered plot of successive differences in WMR wind farm parameters with linear correlation
(lower triangular), histograms(diagonal), nonlinear relation between parameters(upper triangular)



C.3. Weather Maps

 

Figure C.3: Surface pressure charts of [73] UK at 00:06 UTC (day before). ’W’ and ’D’ represents the location of wind farm
WMR and Dudgeon, respectively

 

Figure C.4: Surface pressure charts of [73] UK at 00:06 UTC (day after). ’W’ and ’D’ represents the location of wind farm WMR
and Dudgeon, respectively



C.4. Categorization of wind power ramp events
yearly variation plots
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Figure C.5: Monthly variation of ramp-up and down events
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Figure C.6: Monthly variation of ramp-up and down events

Distribution of ΔC 5 of ramp events on power curve
Figure C.7 provides frequency distribution of start and end time of the ramp events on the power
curve for different change wind speeds. Pichault, Vincent, Skidmore, and Monty has claimed that
ramp events associated with ΔC 5 < 3 ms−1, occur between speed 5 to 10ms−1. It corresponds to the
40-90% rated speed range. For these plots, wind speeds are normalized with rated wind speed. Even
though velocity values lie outside, peaks of the distribution appear close to the proposed range for
ΔC 5 < 3 ms−1. The ramp events at low wind speed changes occur below rated speed and are
predominantly associated with the non-linearity of the power curve. Density distribution plots of
the start and end times of the ramps are clustered closely. The distinct peak of the distribution starts
separating as the difference in velocity increases. Ramps start near cut-in and end up to a maximum
of 1.5 times the rated wind speed. Such a large increase in power and speed, meaning a good
correlation between the turbine power and the possibility of mesoscale events.



(a) Δ(<= 1m/s (b) 1<Δ(<= 2m/s

(c) 2<Δ(<= 3m/s (d) 3<Δ(<= 4m/s

(e) 4<Δ(<= 5m/s (f) 5<Δ(<= 10m/s

(g) Δ(> 10 m/s

Figure C.7: Representation of start and end time of the observed ramp events on the power curve and corresponding density
distribution.



C.5. DLC 1.2 validation

Figures C.8 and C.9 compares the 10-min average measured loads with 10-min average of DLC1.2.
When pitch angle is inactive, the misalignment between chord length and rotor plane is insignificant.
Therefore, 10-min average flap-wise moment follows thrust curve and edge-wise moment is resulted
from tangential force.
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(a) Average blade root flap-wise moment
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(b) Average blade root edge-wise moment

Figure C.8: Average blade root flap-wise and edge-wise moment of one blade. All moments are normalized with the
minimum of average DLC 1.2 at the rated wind speed
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(a) Average tower top fore-aft moment
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(b) Average tower top side-side moment
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(c) Average tower base fore-aft moment
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(d) Average tower base side-side moment

Figure C.9: Average tower top and tower base bending moments. All moments are normalized with the maximum of average
DLC 1.2 at the rated wind speed



C.6. Wind power and speed ramps
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(c) Minimum Blade root edge-wise moment
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(d) Minimum Blade root edge-wise moment

Figure C.10: Minimum blade root flap-wise and edge-wise moments. All moments are normalized with the respective
minimum DLC 1.2 bending moment at the rated wind speed.
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Figure C.11: Maximum tower top and tower base bending moments. All values are normalized with the minimum average
DLC 1.2 bending moment at the rated wind speed.



C.7. High-frequency events

An event of fC > ETM B

For the selected extreme fluctuation events (fC > ETM B) event, tower side-side moments exceeded
DLC 1.3 simulations. The corresponding time periods are shown in the red boxes Figure C.14. The
higher fluctuations in tower side-side moments (Figure C.14 (f) and (i)) could be related to the
fluctuating wind speed (Figure C.14 (a)), wind-wave misalignment or yaw error. However, higher
frequency time series of wind and wave directions were nor available for this thesis
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Figure C.12: High-frequency wind speed time series of an event with fC > ETM B.
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Figure C.13: High-frequency time series of (a) wind speed (b) normalized blade root flap-wise bending moment (c) pitch
angle (d) rotational speed



Figure C.14: High-frequency time series of wind speed, pitch angle yaw angle and normalized blade root, tower top and base
moments.
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