
node-indri: moving the Indri toolkit to the
modern Web stack

Felipe Moraes and Claudia Hauff

Delft University of Technology
{f.moraes,c.hauff}@tudelft.nl

Abstract. We introduce node-indri, a Node.js module that acts as
a wrapper around the Indri toolkit, and thus makes an established IR
toolkit accessible to the modern web stack. node-indri exposes many of
Indri’s functionalities and provides direct access to document content
and retrieval scores for web development (in contrast to, for instance,
the Pyndri wrapper). This setup reduces the amount of glue code that
has to be developed and maintained when researching search interfaces,
which today tend to be developed with specific JavaScript libraries such
as React.js, Angular.js or Vue.js. The node-indri repository is open-
sourced at https://github.com/felipemoraes/node-indri.

1 Introduction

The information retrieval (IR) field is aided by numerous efficient search engine
implementations, aimed at research and industry, such as Indri [1], Lucene1,
Terrier [2] and Anserini [3]. In the data science field, some of these efforts
have evolved into frameworks such as Elasticsearch2 and Terrier-Spark [4].
Recently, in order to enable data scientists to make use of Indri as part of their
workflow, Van Gysel et. [5] have made Indri accessible to the Python ecosystem
(via Pyndri).

In this paper, we make Indri accessible to the modern web stack. Many
modern web applications and frameworks make use of Node.js.3 A significant
advantage of this framework is the single programming language on the client
and server-side (JavaScript), which simplifies development; in addition, Node.js
is highly scalable [6]. In order to design and evaluate web search interfaces, a
backend, implemented in Node.js, requires access to a search system. One option
is to call Indri via system calls. However, the disadvantage of system calls via
shell commands is the extra layer of communication with the operating system.

Here, we present an alternative, node-indri, a Node.js module implemented
with an easy-to-use API. It provides access to basic Indri functionalities such as
search with relevance feedback and document scoring. Importantly, node-indri
is implemented in a non-blocking manner. We here discuss node-indri’s module

1 http://lucene.apache.org/
2 https://www.elastic.co/products/elasticsearch
3 https://nodejs.org/

https://github.com/felipemoraes/node-indri

2 Felipe Moraes and Claudia Hauff

features and we compare its efficiency with Indri and Pyndri on the Aquaint
and ClueWeb12 corpora with a load of 10K queries. We find that node-indri

can be efficiently used in modern web backend development with comparable
efficiency to Indri and Pyndri.

2 The node-indri module

node-indri’s development started with the need to make Indri’s state-of-
the-art relevance feedback models accessible to students, that (i) tend to have
little experience with C++, but are familiar with modern web programming
paradigms and (ii) are not IR experts and thus struggle to make sense of Indri’s
internals.

2.1 Functionalities

Figure 1 shows the three layers of abstraction of node-indri. Our module
exposes Indri features through the Searcher, Reader, and Scorer classes.
These classes are implemented in C++ with the help of Native Abstractions
for Node.js4, a series of macros that abstract away the differences between the
V8 and libuv API versions (which together form the core of the Node.js frame-
work and are written in C++).

Fig. 1. Overview of node-indri layers of abstractions and their implementation lan-
guages and platforms.

In Table 1, we list the arguments of node-indri’s three classes. Each class
has at most two methods with arguments that depend on the functionalities
exposed from Indri. The last argument is a callback function implementing
the error-first pattern. In this manner, node-indri is an asynchronous module,
with most of these functions assessing lower-level system functionalities through
libuvl. This in turn means that the methods are executed in Node.js’ thread
pool, making node-indri naturally parallel.

4 https://github.com/nodejs/nan

https://github.com/nodejs/nan

node-indri: moving the Indri toolkit to the modern Web stack 3

Table 1. Overview of the arguments necessary for node-indri’s method calls. Our
API is simple and includes only one method per class. The last argument is always a
callback that is executed when the data has been retrieved. Underlined are the required
parameters.

Searcher.search Reader.getDocument Scorer.scoreDocuments Scorer.retrieveTopKScores

query, page, results-
per-page, feedback-
docs, callback

docid, callback query, docs, callback query, number-of-
results, callback

The models’ hyperparameter settings (e.g. µ in the case of language modeling
with Dirichlet smoothing) are manually set via a configuration file. We now
discuss the goal of each of the three classes node-indri makes available to its
users in turn:

Searcher This class exposes the functionalities of Indri’s QueryEnvironment

and RMExpander classes through the method search which returns a list of
search results in a paginated manner. When a Searcher object is instanti-
ated, it takes a configuration object as argument (these settings include the
retrieval models’ hyperparameters and flags of the type of data to return).
When a call to search() is made and no feedback documents are provided
as argument, the standard query likelihood model is employed, otherwise
RM3 is [7]. Depending on the configuration settings, the returned result list
may contain document snippets (as provided by Indri’s SnippetBuilder),
document scores, document text and other metadata.

Reader This class exposes the functionalities of an Indri index through the
method getDocument in order to return a document’s meta- and text data.

Scorer This class provides access to the retrieval scores of a list of documents via
the method scoreDocuments. In addition, it provides retrieveTopKScores
to retrieve the scores and document ids of the top ranked documents for a
query.

2.2 Use Cases

We have used node-indri as search results’ provider in the backend of a large-
scale collaborative search system, SearchX [8]. SearchX’s backend supports the
inclusion of many IR backends such as Elasticsearch and Bing API calls. In
order to include node-indri as one of the supported backends, we implemented
Searcher to provide search results (with or without snippets) in a pagination
manner leveraging feedback documents, Reader to enable the rendering of a
document’s content when a user has clicked on it, and Scorer to enable our
backend to have direct access to documents’ scores for reranking purposes.

3 Efficiency Analysis

We now present an efficiency analysis of node-indri, comparing it to Indri and
Pyndri. We indexed two standard test corpora—Aquaint and ClueWeb12B—

4 Felipe Moraes and Claudia Hauff

with Indri and measured the execution time for 10k queries of the TREC
2007 Million Query track5 across the three toolkits. As retrieval model we fixed
language modeling with Dirichlet smoothing; up to 1000 documents were re-
turned per query. We use Indri’s IndriRunQuery application for this purpose;
for Pyndri and node-indri we implemented scripts to achieve the same be-
haviour. Specifically, Pyndri’s results were obtained with a Python script imple-
mented with multiprocessing. In node-indri, we make use of Promises.all.
We limit the execution to 20 threads for all three toolkits6. Table 2 presents the
overall query execution time of the three toolkits.

Our results show that node-indri has execution times comparable to Indri

and Pyndri. We can thus use node-indri efficiently in modern web backend
development. We find for a small collection such as Aquaint (1 million docu-
ments), all three toolkits to obtain very similar execution times (between 25 and
29 seconds). In contrast, for a larger collection such as ClueWeb12B (50 million
documents), the execution times differ to some extent: Indri takes on average
27 minutes to process 10K queries, while node-indri and Pyndri take 34 and
37 minutes respectively. This is expected, as both node-indri and Pyndri have
additional overhead due to the frameworks they are built upon.

Table 2. Overview of retrieval efficiency (in seconds) across two corpora. 10K queries
from the TREC 2017 Million Queries track were executed 20 times. Reported are the
average (standard deviation) execution time of the batches.

Aquaint ClueWeb12B

Indri 29s (0.30s) 1645s (20s)
Pyndri 25s (1.22s) 2262s (340s)

node-indri 25s (0.58s) 2058s (338s)

4 Conclusions

We have introduced node-indri, a Node.js module to enable users with a good
web development background (but minimal C++ knowledge) to efficiently imple-
ment search applications. We have described how node-indri exposes Indri’s
functionalities and how it is currently being used in the backend of a large-
scale collaborative search system, that has been successfully tested with several
hundred users. Furthermore, we compared node-indri’s efficiency in the batch
setting with Indri’s and Pyndri’s.

Acknowledgements: This work was funded by NWO projects LACrOSSE
(612.001.605) and SearchX (639.022.722). The authors would like to thank Harry
Scells for his input.

5 https://trec.nist.gov/data/million.query07.html
6 More details and benchmark code are included in the GitHub repository.

https://trec.nist.gov/data/million.query07.html

node-indri: moving the Indri toolkit to the modern Web stack 5

References

1. Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: A language model-based
search engine for complex queries. In: ICIA. (2005)

2. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A
high performance and scalable information retrieval platform. In: OSIR

3. Yang, P., Fang, H., Lin, J.: Anserini: Enabling the use of lucene for information
retrieval research. In: SIGIR. (2017)

4. Macdonald, C.: Combining terrier with apache spark to create agile experimental
information retrieval pipelines. In: SIGIR. (2018)

5. Van Gysel, C., Kanoulas, E., de Rijke, M.: Pyndri: a python interface to the indri
search engine. In: ECIR. (2017)

6. Tilkov, S., Vinoski, S.: Node. js: Using javascript to build high-performance network
programs. IEEE Internet Computing (2010)

7. Lavrenko, V., Croft, W.B.: Relevance based language models. In: SIGIR. (2001)
8. Putra, S.R., Moraes, F., Hauff, C.: Searchx: Empowering collaborative search re-

search. In: SIGIR. (2018)

	node-indri: moving the Indri toolkit to the modern Web stack

