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Abstract

Electrostatically-defined nanostructures in bilayer graphene (BLG), known for its tunable
bandgap, have promising applications in spintronics and valleytronics, however, its thermo-
transport phenomena have not yet been investigated. This thesis aims to fabricate a BLG
field-effect transistor (FET) device and characterize the thermotransport phenomena (See-
beck coefficient) in electrostatically defined quantum point contacts (QPCs) and quantum
dots (QDs). For this purpose, a bilayer graphene flake is encapsulated in hexagonal boron
nitride (hBN) with Ti/Au heaters, top gates and 100-nm-separated split gates placed on top of
the upper hBN flake. To define a QD, the 100 nm wide finger gates were separated from the
top gates by a 30 nm Al2O3 dielectric. However, the electric field induced by the back gate
was being screened by a layer of charges somewhere between the back gate and the bilayer
graphene. The origin of this layer of charges remains unknown. As a result, the channel could
not be fully depleted (unless when B = 5 T) and showed features indicating an unintended
charging and discharging effect somewhere in the sample. As a consequence, the formation
of a QD or a QPC at B = 0 T was not possible. Despite that, thermal voltages were measured
in the two-dimensional BLG, applying currents up to 50 µA to the aforementioned heaters.
The estimated Seebeck coefficient (based on resistance characterizations) was in the range
of µV/K (corresponding with theoretical predictions) and enabled an estimate of an induced
temperature gradient of 0.5± 0.2 K.
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1. Introduction

One of the great challenges of contemporary electronics is the exponentially increasing dissi-
pated power density in integrated electronics circuits [1] [2]. Due to the high power density,
excess heat produced by electric currents in circuit elements cannot be entirely dissipated,
which results in higher operating temperatures for devices, decreased performance, and even-
tually hardware failures. The power efficiency of the device and its longevity can be increased
by harvesting this dissipation energy [3]. Furthermore, nanopatterned graphene devices in
particular such as quantum dots and field-effect transistors are the topic of intense research
due to their recently found electrical characteristics [4] [5]. Graphene is widely regarded as a
promising material, partly because it has both valley and spin degrees of freedom available to
encode information [6] [7]. This makes graphene a candidate for potential valleytronic and
spintronic applications [8], which could help sustain the constant miniaturization improve-
ments described by Moore’s law [9].

Previous experiments have shown that nanostructures defined in graphene through dry etch-
ing suffer from randomly positioned localized states along the etches [10] [11]. As a result,
electrostatic gates are unable to monotonically tune the barrier transmission [10] [11]. In
bilayer graphene, however, a bandgap can be opened through the application of a vertical
electric field [12] [13]. This suppresses the conduction under the top gates, and has been used
by several research groups to define one-dimensional channels or zero-dimensional quantum
dots (QDs) [14] [15] [16], which can be applied in quantum-dot based qubit systems. Charac-
terizing the thermotransport phenomena in these quantum point contacts (QPCs) and QDs in
bilayer graphene has not yet been explored, but would yield additional insight into the trans-
port properties of these geometries and, when being harvested, can increase their longevity.

For this purpose, a bilayer graphene sample is encapsulated in the insulator hexagonal boron
nitride (hBN) with a Ti/Au heater placed on top of the upper hBN flake. The top gate and bot-
tom gate voltages were measured for AC currents with different amplitudes (at frequency ω)
to heat up the sample. Meanwhile, thermal voltages were monitored in the two-dimensional
BLG at the frequencies ω and 2ω, corresponding to the characterization of the first and second
harmonic (Peltier and Joule heating, respectively). Through the application of a vertical elec-
tric field, a bandgap is opened in bilayer graphene [12] [13]. This suppresses the conduction
under the top gates, and has been used by several research groups to define one-dimensional
channels (QPCs) or QDs [14] [15] [16] using split-gates structures to guide the carriers. The
existing resistance measurements reveal that the lowest possible conductance in such struc-
tures is constrained by leakage currents underneath the split-gates, which may be attributed
to either hopping transport or a narrow energy gap. If tunnel barriers are to be effective in
generating high-quality quantum devices, then the tunnelling resistance needs to significantly
surpass the resistance quantum h/e2 [17].

This thesis is part of the M.Sc. Applied Physics curriculum at the TU Delft. Chapter 2 contains
an overview of the relevant background required to understand the following chapters. Chap-
ter 3 contains the experimental method, including an outline of the fabrication processes and
the measurement setup. Chapter 4 reports and discusses the results and chapter 5 concludes
the thesis.
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2. Theoretical Background

2.1. Two-dimensional materials

2.1.1. Graphene

Graphene is a single layer of carbon atoms packed into a benzene-ring structure and is one of
the allotropes of carbon. The existence of a real two-dimensional material with a thickness of
one atom was claimed to be impossible by the Mermin-Wagner theorem [18]. Nevertheless,
graphene was first isolated by Novoselov and Geim [19] in 2004 through cleaving a graphite
crystal using scotch tape. Since then, graphene’s remarkable qualities — including the fact
that it is 100 times stronger than steel [20], very flexible [21], and a superior conductor of
electricity [5] — have captivated the attention of scientists.

In the reciprocal space, the structure of graphene is characterized by a uniquely defined hexag-
onal primitive cell [22], an example of a Brillouin zone. Only two of the six valleys, Ki, are
in the first Brillouin zone and inequivalent (not linked by a reciprocal lattice vector): K and
K

′ . Every unit cell consists of two identical carbon sublattices A and B in the real space, see
Fig. 1a, which characterizes the honeycomb lattice. The honeycomb structure gives birth to
the valley degree of freedom [6] [7] in reciprocal space since electrons can be in both spots.
The vicinity of these two spots is also known as the two valleys of graphene’s electronic spec-
trum, see Fig. 1. The electronic spectrum can be derived using the tight-binding Hamiltonian
[22], which accounts for quantum hopping between the atoms. This is done through writing
down the eigenstates ⟨ϕ| of the Hamiltonian through Bloch’s theorem [23] and then evaluat-
ing the eigenvalues through ⟨ϕ|H|ϕ⟩ [24], which gives the energy spectrum shown in Fig. 1b.
Because of graphene’s crystal structure, charge carriers have a low energy Dirac-like linear
spectrum [22], E(k) = ±vF0h̄|k|; with vF0 ≈ 106 m/s [25] [26] the carrier (or Fermi) velocity,
resembling the spectrum of massless relativistic particles (for instance, photons) [27] rather
than the standard parabolic relation for massive quasi-particles. The conical energy spectra
of these quasi-particles intersect close to the boundaries of the Brillouin zone. Even though
there is no bandgap, there is zero density of states where the two bands intersect (theK point
in the Brillouin zone). This point is the charge neutrality point (CNP) or Dirac point (see
Fig. 1b), with the lower and upper cone the valence and conduction bands, respectively.
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Figure 1: a) The atomic structure of graphene, with atoms from sublattices A and B marked
with different colors, from [27]. b) The band structure of graphene, with a magnified Dirac
cone around the K point. Taken from [21]. c) Microscope image of graphene, including
monolayer graphene (marked MLG) and bilayer graphene (BLG) [28] with different optical
contrasts.

Close to the K-points, the low-energy Hamiltonian can be written as H = vF0 · σ · p, with
σ the pseudo-spin [5] (describing the electronic amplitudes on the sublattices A and B). Chi-
rality, which takes on positive values for electrons and negative values for holes, projects
pseudospin onto the direction of motion. It is a conserved quantity as backscattering is sup-
pressed in graphene [21].

The density of states associated with the conical dispersion of electrons in graphene is com-
puted by use of the dispersion relation [22]:

ν(EF) =
gsgv|EF|
2πh̄2v2F0

. (1)

One of the characteristics of massless Dirac electrons is the linear dependence of the density
of states on energy. Moreover, it vanishes at the Fermi energy, giving rise to the so-called
pseudo-diffusion effect [29]. The density of states also influences the quantum capacitance,
which depends on the carrier density [30] (see Eq. 4).

2.1.2. Bilayer graphene

Fig. 2a depicts the structure of bilayer graphene (BLG), which is constructed by stacking two
graphene monolayers on top of each other. BLG may be found naturally in two different con-
figurations: the AB, or Bernal-stacked [31], where half of the atoms are immediately over a
hexagon’s center in the bottom graphene sheet and the other half are over an atom; and the
less frequent AA, where the layers are perfectly aligned [32]. Here, we study naturally occur-
ing BLG, which we assume to be AB-aligned, as AB stacking results in a parabolic low energy
spectrum rather than the linear energy spectrum found in graphene. The bandgap in BLGmay
be controlled using a vertical electric field, which breaks the two layers’ inversion symmetry
[12] [13], see Fig. 2b. In the figure, the band structure (the blue and yellow parabolas signi-
fying the conduction and valence band, respectively) of BLG for when the bandgap is zero
(left panel) and nonzero (right panel) are visualised. This ability to open the bandgap in BLG
offers up new application domains, as bandgap has a significant impact on the transport and
optical characteristics [13] of a given material. As a result, it allows semiconductor devices
such as p-n junctions, transistors, photodiodes, and lasers operate with unprecedented tune-
ability [33]. To make use of the bandgap in an electronic transport measurement, as shown in
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Fig. 2b, one needs to tune EF into the bandgap. For this purpose, one needs a device with two
gates, one on top and another one underneath. The difference between the top and bottom
electrical displacement fields (the displacement of charge per unit area due to an electric field)
also causes net carrier doping, or a change in the Fermi energy (EF). By adding more carriers
in the BLG, the Fermi energy is shifted into the electron regime (away from the CNP) and the
resistivity decreases again (with respect to the resistance at the CNP). By depleting the system
from carriers, the Fermi energy is instead shifted into the hole regime; again with the same
effect on resistivity.

Figure 2: a) Bernal-stacked BLG. In this schematic, a = 2.46 Å the lattice constant (distance
between adjacent unit cells), γ0 = a/

√
3 = 1.42 Å the distance between two carbon atoms

and γ1 = 3.35 Å the distance between the two sheets of graphene. Adapted from [34]. b) Low
energy band structures for BLG. For ∆ = 0 (left panel), the electric field is zero and thus no
energy bandgap. For ∆ ̸= 0 (see right panel), the bandgap was opened by an electric field.
The blue band represents the conduction band and the yellow parabolas represent the valence
band. Obtained from [13].

When there is no perpendicular electric field, the energy spectrum of BLG is described by:

E(k) = ± h̄
2v2F0|k|2

γ1
= ± h̄

2|k2|
2m∗ . (2)

In this equation, γ1 ≈ 0.4 eV is the coupling parameter between A1 and B2 atoms, as defined
in Fig. 2,m∗ = γ1/2v

2
F0 is the effective mass.

The energy-dependent density of states for BLG is:

ν(E) =
gsgv

4πh̄2v2F0

(2|E|+ γ1) (3)

which is similar to the density of states of monolayer graphene if |E| ≫ γ1, see Equation 1.
Here, gs = 2 and gv = 2 are the spin and valley degeneracies, respectively.

According to the Drude model [35], the square resistance Rsq (units: Ωm in 3D and Ω in
2D) as a function of two-dimensional carrier density is given by Rsq = (neµ)−1, with n =
Cg(Vg − V 0

g )/e (also see Section 2.2). In this equation, Cg and Vg are the capacitance and
voltage of the gate, respectively, and Vg0 the CNP of graphene. This means that the resis-
tance has a sharp peak (strictly: a divergence) when Vg= Vg

0, and should theoretically occur
at Vg0 = 0 V (see Fig. 1). This divergence, however, does not occur in real devices because of
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inhomogeneous doping (electron-hole puddling [36]), molecular doping and thermal broaden-
ing. Inhomogeneous doping is caused by charged impurities above and below the graphene,
which lead to a local shift in the Fermi energy. This results in a non-homogeneous gating
in the graphene, splitting into hole-rich and electron-rich puddles modifying the electrostatic
potential. In addition, thermal broadening gives rise to thermally excited carriers, limiting the
minimal carrier density at the CNP. According to the Drude model, the electron mobility is
given by µ = |e|τ/m∗, where τ is the momentum scattering time and m∗ the effective mass
(see Equation 2). Besides inducing variations in potential, charged impurities can also act as
dopants and form a source of long range scattering (as they produce a Coulomb potential).
Neutral impurities, caused by defects or dislocations in the carbon lattice), could induce short
range scattering (and may play a role at high carrier densities and in high mobility samples
where localized charges are screened by the large amount of free charges). These scattering
effects limit τ and determine the conductivity in BLG.

2.1.3. Hexagonal Boron Nitride

Hexagonal boron nitride (hBN), an isostructural to graphite, possesses characteristics that are
quite different from those of graphite. hBN is an insulator with a bandgap of around 5.9 eV [37]
and an atomic structure that alternates boron and nitrogen atoms. The lattice constant of hBN
is 1.8% greater than graphene’s lattice constant [38]. When compared to SiO2 substrates, hBN
is the cleanest dielectric gate available for graphene devices, significantly and is utilized as an
alternative substrate for high-quality graphene devices [39] [40]. Encapsulating graphene
with hBN leads to the highest-mobility graphene transistors [15] [41]. Stacking 2D van der
Waals materials vertically, like stacking hBN and graphene as done in this thesis, offers new
fundamental physics and quantumdevice applications [42]. The stack is held together byweak
van der Waals forces. When the lattices of the materials in a van der Waals heterostructure
are rotationally aligned, it gives rise to a Moiré superlattice, and thereby exhibiting a distinct
Moiré pattern.

2.2. Electronics
The design of the device is similar to that of a field-effect transistor. This is a device which
uses an electric field to control the flow of electrons, by creating a field between the source
(where the carriers enters the transistor) and the drain (leaving the transistor). The gate is
used to modulate channel conductivity, influencing the source-drain current.

The dual-gate field-effect transistor prepared in this thesis is made through encapsulating a
BLG flake in hBN and placing it on a graphite back gate. The stack is placed on an insulating
silicon dioxide layer with a conductive, heavily doped silicon substrate. The BLG is contacted
with Ti/Au contacts. Moreover, split gates and heaters are placed on top, complemented with
a layer of Al2O3 that serves as a gate dielectric for the finger gates. The top layer consists
of the finger gates, that are used to control carrier density in the areas underneath the split
gates. The combination of split gates and finger gates can then be used to define QPCs and
QDs. For a schematic overview of the stack, see Fig. 3.

5



Figure 3: A schematic of the device prepared, taken from [43]. It features the finger gates
(purple), split gates (green), dielectric Al2O3 (gray), hBN (blue), a contact (yellow), BLG (black)
and a graphite backgate (red). The combination of split gates and finger gates can be used to
define QPCs and QDs.

When tuning the BLG with the combined action of both top and backgate, the carrier density
induced can be written as:

n =
1

e
(Cbg(Vbg − V

(0)
bg ) + Ctg(Vtg − V

(0)
tg )), (4)

with Cbg = ϵ0ϵbg/dbg. In this equation, Cbg is the capacitance of the back gate per unit area,
e the elementary charge, ϵ0 = 8.854 × 10−12 F/m the vacuum permittivity, ϵbg = 3.9 the
relative dielectric permittivity of SiO2 and dbg the thickness of the bottom hBN flake. Fur-
thermore, V (0)

bg is the Similarly, Ctg can be defined, using the thickness of the top hBN flake
and ϵtg = 3.75 the relative dielectric permittivity of hBN. Typically, the carrier density can
range between being depleted and ±1016 m−2.

The resulting electric field is:

E =
ϵbg(Vbg − V

(0)
bg )

2dbg
−
ϵtg(Vtg − V

(0)
tg )

2dtg
. (5)

Typical values for the displacement electric field in BLG in this configuration range up to
around 3 V/nm [44]. For this value of the electric field, the bandgap has been shown to open
up to 250 meV [13].

The combination of top and back gate voltages creates an electric displacement field, which
changes the density of the underlying electron gas (like in the case of a capacitor) and also
change its Fermi energy. At specific voltage configurations (the CNP), the density of states is
tuned to very small values (theoretically: zero), thus yielding a resistance various orders of
magnitude larger. At zero carrier density (n = 0 in Eq. 4), the linear relation between Vbg and
Vtg can be written as follows:

Vtg(Vbg) = −aVbg + b, (6)

6



with a = Cbg/Ctg and b = V 0
tg − V 0

bgCbg/Ctg. This has also been confirmed experimentally
in [12], see Fig 4a for the measurement circuit and b for the resulting 3D plot. By shifting the
Fermi energy away from the CNP into the hole or electron regime, we decrease the resistivity
inside the BLG. Besides changing the carrier density, applying an electric field also opens a
bandgap due to the layer symmetry breaking (see Section 2.1.1). Using specific voltage com-
binations of the top gates, finger gates and backgate as described in Fig. 3, we can tune the
structure to create QPCs (Section 2.3) and QDs (Section 2.4).

Figure 4: a) Side view of the stack, top gate (light green) and two contacts (source and drain)
etched into the BLG (blue). The combined action of Vtg and Vbg create an electric field, deplet-
ing the sample from carriers at certain configurations of Vtg and Vbg. Furthermore, the BLG is
grounded, a voltage is applied between source and drain and the current is monitored (from
which the resistance can be determined). b) A typical 3D plot of opening the bandgap in BLG.
The main features are the diagonal line across the graph, which follows from setting n = 0 in
Eq. 4, and the horizontal line at Vtg = 0 V. They correspond with the CNP underneath Vtg and
the CNP of the BLG sample not affected by Vtg. The displacement field D and carrier density
are varied along and perpendicular to the diagonal line, respectively. Adapted from [12].

2.3. Quantum Point Contacts
Quantum point contacts were first fabricated independently by a team from Cavendish Labo-
ratory [45] and TU Delft & Philips [46] in 1988. Through reducing the width of the underlying
two-dimensional electron gas (2DEG) by applying a voltage through a split gate configura-
tion (with a minimal separation in the order of the Fermi wavelength, which is the De Broglie
wavelength of electrons at the Fermi energy), the conductance of the structure becomes quan-
tized in steps of 2e2

h
, see Fig. 5. Also, the mean free path of the electrons should exceed the

size of the structure (ensuring ballistic transport) and temperatures should be sufficiently low
such that electron-electron and electron-phonon interactions are weak. Even if there are no
impurities, reflections occur when a small number of propagating modes in the point contact
are matched to a greater number of modes in the reservoir, resulting in a non-zero resis-
tance. Quantum mechanically, the net current flowing through the QPC is equally distributed
among the 1D subbands, or transverse modes [47] (signified by n in Eq. 7). In Fig. 5c, the
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shaded area is the net current at the Fermi surface in the QPC. The permitted states are lo-
cated on the horizontal lines, which correspond to continuous values for kx and quantized
values for ky = ±nπ/W , respectively (with n = 1, 2, . . . , N and N = Int(kFW/π). A
quantized conductance is produced as a result of the development of these 1D subbands. The
equipartitioning of current, which is the fundamental process for conductance quantization,
is shown for a square-well lateral confining potential with width W. As n increases, the group
velocity vn = h̄kx/m drops since it is proportional to cosϕ. The rise in the 1D density of states
(ρn), however, offsets the decline in vn. The product vnρn does not depend on the subband
index since ρn is proportional to 1/cosϕ and n is proportional to the length of the horizontal
lines inside the dashed region in Fig. 5.

Figure 5: a) A schematic cross-sectional view of a QPC, defined in a high-mobility 2D electron
gas [48]. The area between the split gates defines a QPC when a negative voltage is applied.
The contacts are used to measure the conductance. b) Conductance of the QPC versus the
finger gate voltage. The expected quantized behavior (∆G = 2e2/h) can be seen [46]. c) Fermi
surface, obtained from [47]. The shaded area is the net current in the QPC, with the permitted
states located on the horizontal lines corresponding to a square-well lateral confining potential
with width W.

The Landauer formula may be used to describe the quantized conductance of a point contact
(see Fig. 5b):

G =
2e2

h

∑
n

tn (7)

with G the conductance, and 0 ≤ tn ≤ 1 the eigenvalues of the transmission matrix t, which
are all 1 in an ideal QPC. Deviations in conductance are∼1% due to the difficulty to determine
the series resistance from the wide regions accurately, and due to backscattering as a result
of abrupt widening of the geometry.

Recently, QPCs have been defined in BLG encapsulated in hBN through the combined action
of multiple gates [12]. The combination of back gate and top gate allows for the independent
control of the Fermi level beneath the split gates and the bandgap [49]. With the appropri-
ate gate voltages, the carrier density underneath the split gates can become zero, making it
insulating. The channel between the split gates, however, still has a finite carrier density and
defines a point contact. If there is ballistic transport, the conductance of the point contact is
quantized as in equation 7 and becomes a QPC.
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Experimentally, the minimal conductance is limited by leakage currents below the split gates.
This leakage current could be the result of hopping transport or a small energy gap. The Fermi
energy can be calculated by integrating formula 3:

n =

∫ EF

0

gsgv

4πh̄2v2F0

(2|E|+ γ1)dE (8)

By then using the dispersion relation described in equation 2, we can substitute EF and cal-
culate k. Using m∗ = 0.033×me [50], n = 1× 1016 and vF0 = 1× 106, we get EF = 16.67
meV. By using the relation λ = 2π/k, a Fermi wavelength of 50 nm is obtained, indicating
that the separation between the split gates must be in the 100 nm range. Since the mean free
path of the electrons should exceed the size of the structure, the maximum length of the split
gates is in the micrometer range [51]. For the correct combination of voltages in split gates
and back gate, the carrier density can be depleted underneath the split gates to define a QPC.
Using the finger gates, the carrier density in the QPC can then be modulated.

Quantized conductance in 2D materials can also be induced through the application of an
increasing magnetic field (in the Tesla range) perpendicular to the BLG plane and current;
known as the quantum Hall effect. The quantum Hall effect was discovered by Klaus von
Klitzing [52] and has been first shown in graphene by [26] [25].

2.4. Quantum dots
Quantum dots (QDs), which can be created through colloidal synthesis [53], self-assembly
[54], or electrical gating [55], isolate a single charge carrier (electron or hole). Following the
QPC procedure, one may define smaller finger gates or use multiple of them to define not only
narrow, but also short islands with sizes of the order of the Fermi wavelength [43] [56]. A pos-
itive back-gate voltage causes a finite electron density inside the channel, which can further
be reduced under each finger gate by applying a negative voltage to that gate. At some point,
transport via the channel is suppressed because the electron gas beneath the finger gate has
been depleted. Further lowering the finger gate voltage results in the induction of a limited
hole density, which creates a tiny p-type island (containing a single hole) inside the n-type
channel. The negative charge on the p-type channel is connected to the positive charge on
the n-type channel via a pn-junction. The edge has been stripped of charge carriers, creating
a natural tunnel barrier that enables the formation of a p-type QD beneath each of the finger
gates.

As zero-dimensional structures, QDs have a sharper density of states than structures with
greater dimensions, such as quantum point contacts [43]. They thus possess better optical
and transport qualities. Lorentzian peaks in the conductivity of QDs indicate that electrons
are regionally constrained. In Fig. 6a, the conductance spectrum of a QD is featured, recog-
nizable due to the Lorentzian peaks. Fig. 6b contains the band structure in the channel.
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Figure 6: a) The conductance spectrum of a quantum dot [43]. It features several conductance
peaks clearly distinguishable in the zoomed box. b) Diagram illustrating the band structure
in the channel at various points along the current direction. The band alignment between the
dot area and the leads is depicted graphically by black dashed lines.

In [56], the researchers defined split gates with 160 nm separation. On top, they defined three
40 nm narrow finger gates, separated by 120 nm. With these narrow finger gates, they were
able to define a single n-type QD. This is done by setting a bias voltage (source-drain voltage)
across the n-type channel and then tuning the two outmost finger gates close to their CNP,
such that the regions underneath these gates are depleted. This forms tunnel barriers to the
n-type QD in the middle. As the voltages of the outmost finger gates are decreasing, p-type
QDs can form (to obtain double QD or triple QD). In [43], the researchers defined split gates
with 100 nm separation and 100 nm wide finger gates, with which they were also able to
define QDs.

2.5. Thermoelectric phenomena
A thermocouple is an electrical device made of two electrical conductors creating an electrical
junction [57], and is used by the thermoelectric effect to convert a temperature difference into
an electric voltage and vice versa. It creates a voltage when the temperature (T ) is different on
each side, by diffusing charge carriers in the material from the hot side (Thot) to the cold (Tcold)
side (Seebeck effect, see Section 2.5.1). In contrast, when a voltage is applied, heat is trans-
ferred from one side to the other, resulting in a difference in temperature (Peltier effect, see
Section 2.5.2). Both the Peltier and Seebeck effect are thermodynamically reversible, meaning
that their direction may be changed by infinitesimal variations in the environment’s pressure
or temperature without causing the system or its surroundings to change [57]. Also, Joule
heating will be covered.

2.5.1. Seebeck effect

The Seebeck effect is the development of an electromotive field between a thermocouple when
the ends are subjected to a temperature difference ∆T between them [58]. At the absolute
zero, T0 = 0 K, the probability that an electron has an energy below the Fermi level is 1,
while the probability that an electron has an energy higher than the Fermi level is 0. At
temperatures T > 0 K, electrons below EF are excited to higher energies according to the
Fermi-Dirac distribution function, see Fig. 7. So this means that for∆T = Thot − Tcold, some
electrons locally in the Thot area have a higher energy than all the electrons in the area Tcold.
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Therefore, these aforementioned electrons in Thot will move to Tcold and increase electron
density there. At the same time, electrons below EF will diffuse from the cold towards the
hot area to fill up the lower energy states available there. As a consequence, if the density of
states does not change withEF, no net thermal current is expected. However, as the density of
states is dependent on energy (Equation 1 for graphene and Equation 3 for BLG), the number
of electrons above the Fermi energy becomes larger than below or vice versa, depending on
the location of the Fermi energy. This leads to a net thermocurrent.

Figure 7: The Fermi-Dirac distribution functions for electrons at Ti, with T3 > T2 > T1 and
(T0 = 0K), with the electron energy on the x-axis values and on the y-axis their corresponding
probabilities. At T0 = 0 K, all the states belowEF are occupied and above are empty, a picture
that changes upon heating. Obtained from [59].

The local current density can be described using:

J = σ(−∇V + Eemf ) (9)

in which V is the developed voltage (which has units of V),Eemf the electromotive field (units
V/m) and σ the conductance. The Seebeck coefficient S (with units of V/K) is described by
the following relation:

S = − lim
∆T→0

V

∆T
(10)

V the thermoelectric voltage and∆T the temperature gradient. Physically, the Seebeck coef-
ficient (or thermopower) is a measure for the magnitude of an induced thermoelectric voltage
in response to a temperature difference across that material. It can be thought of as heat per
carrier over temperature (entropy per carrier).

For graphene, the Seebeck coefficient can be estimated using the Mott formula [60] [61].

SMott =
π2k2bT

3e

d ln(R)

dEF

(11)

with kb the Boltzmann constant (JK−1) and R the resistance (Ω). The Seebeck coefficient
depends on the density of states and resistance of the material, which are different for 2D,
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1D and 0D structures (see Equation 3 for 2D, a step function with stepsize 2e2/h for 1D and
Lorentzian peaks for 0D). The Mott’s formula is valid at low temperatures (kBT ≪ µ) to
approximate the Seebeck coefficient in quantum point contacts [62]. For quantum dots, the
Mott’s formula can still be used as a rule of thumb for approximating the Seebeck coefficient,
but is a factor of e2/CkT smaller than the correct result [63]. It predicts sawtooth-like os-
cillations in the thermopower for low lattice temperatures and small heating currents [64]
[63]. Therefore, we can model the Seebeck coefficients for these cases for BLG, see Fig. 8. The
code used to create these figures is shown in the Appendix, the 1D graph was obtained from
processing previous measurements on a gate-defined QPC in BLG. The 2D case is very similar
to [65]. The large value obtained in the quantum point contact originates from the density
of states becoming too small to conduct the current, resulting in an infinite resistance value -
and thus, a diverging Seebeck coefficient. The width of the peaks in the thermopower in the
quantum dot depends on the coupling of the leads’ coupling strengths [66].

Figure 8: The expected behavior of the Seebeck coefficients for a) BLG (2D), b) a QPC (1D)
and c) a QD (0D). In the 1D case, there are peaks at the conduction plateaus. The width of the
peaks in the thermopower in the quantum dot depends on the coupling to the leads [66].

The Seebeck effect is reversible, meaning that when switching the Thot and Tcold areas, it
changes sign. The calculations in Fig. 8 agree with experiments in the past for the Seebeck
coefficient for BLG [67], QPCs [68] and QDs in GaAs/AlGaAs [69].

2.5.2. Peltier effect

The Peltier effect is a measure for the amount of thermal energy emitted or absorbed by an
electrical current [70]. The heat generated by Peltier heating is:

Q̇ = ΠI (12)

with Π = TS (Kelvin Onsager relation) the Peltier coefficient and I the (AC) current.

The Peltier effect arises due to the difference in average electron energy (or chemical poten-
tial) in dissimilar conductors. Depending on the directionality of the current, electrons either
transfer their excess energy (leading to heating) or absorb the energy of surrounding atoms
(cooling). In QPCs, Peltier heating is quantized as the conductance is also quantized in steps
of 2e2/h. In QDs, the Peltier coefficient exhibits a sawtooth behavior as in agreement with
[63].
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2.5.3. Joule heating

Joule heating, or Ohmic heating, is the heating of a conductor through the passage of an
electrical current. The power released is proportional to the product of the current and the
voltage drop; or, by substituting V with Ohm’s law, current squared divided by the resistance.

P = IV = I2/R (13)

since Joule heating is proportional to I2 (Q ∝ ∆T ∝ I2, see Equation 13), it can be dis-
tinguished from Peltier heating that is linear with I through lock-in measurements (see Sec-
tion 2.5.2). In QPCs, Joule heating causes broadening in the quantized conductance. Although
inside the quantum point contact the transport is ballistic, the exits are not sharply defined.
Asymmetries in the banks of QPCs have been predicted to deliver different amounts of Joule
heating on both sides of the contact, leading to thermoelectric effects without applying an
external temperature gradient [71] but by a voltage drop. In QDs, nonlinear contributions to
the power in response to voltage or temperature shifts have been predicted with increasing
voltages [72].
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3. Experimental method

This section discusses the fabrication process (section 3.1), the characterization method (sec-
tion 3.2) and the preparation steps to measure.

3.1. Fabrication Process
The chip has the same features as shown in Fig. 3 in section 2.2. The manufacturing of the
nanostructures is done in the state-of-the-art cleanroom of the Kavli Nanolaboratory and in
the laboraties of the Quantum Nanoscience department at the TU Delft.

3.1.1. Creating the stack

The fabrication of the stack consists of three parts: preparing the crystals (BLG and hBN, re-
spectively), stacking the crystals and graphite back gate through the dry-transfer technique
[73] and transferring the stack on a Si/SiO2 wafer. First, a Si/SiO2 wafer is cleaned using an
O2 plasma. Then, highly ordered pyrolytic graphite is exfoliated using scotch tape as done
originally by [19] by gluing flat graphite crystals in blue tape and then carefully pulling off.
When the graphite is thin enough, it is pressed on the SiO2 substrate. Under the optical micro-
scope, bilayer graphene flakes are selected based on their size (∼10 µm) and optical contrast
relative to the optical contrast of the SiO2 background. The contrast values are compared
with other graphene flakes, such as monolayer graphene. The same exfoliation procedure is
repeated for hBN, however, this time we use Blue tape (although less sticky than scotch tape,
it suffices for exfoliating hBN and results in less glue residues on the SiO2). The hBN flakes
are then selected based on homogeneity of the flakes. This is important because some parts
of the device need to be etched through the hBN to make contact with the BLG, and folds in
the flakes could even cause cracks. In Fig. 9, the hBN flakes (a and b) and BLG flakes (c and d)
which are used in the stack are shown. More specifically, Fig. 9a was used as the bottom hBN
(with a thickness of 22 nm, determined using AFM), Fig. 9b the top hBN (18 nm thick), Fig. 9c
the BLG of the stack and Fig. 9d the backgate (the flake with the lowest optical contrast). The
bottom hBN flake is thicker than the top hBN flake for additional margin when etching into
the BLG through the top hBN, preventing a potential higher etching rate from contacting the
BLG with the backgate.

Figure 9: Optical images of the four flakes used to make the stack. a) The bottom hBN flake
(thickness of 22 nm). b) The top hBN flake (18 nm). c) The BLG. d) The monolayer graphene
flake, used as a backgate.

Subsequently, a glass slide is covered with a thin layer of polycarbonate (PC, 6% dissolved in
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chloroform) using a pipette. After that, a thin layer is formed by placing another glass plate
on top of the PC-covered slide to spread the PC. The resulting uniform PC film is allowed to
dry for 15minutes in air. Then, a small window in regular tape is cut, placed over the PC and
carefully pulled off. Then, a fresh glass slide is taken and a 4-by-4-by-1-millimeter piece of
polydimethylsiloxane (PDMS) is placed on it. By aligning the PC covered window with the
PDMS, a stamp is created (see Fig. 10).

Then, the stack is made with the dry-transfer technique, see Fig. 10. For this purpose, the
SiO2 with the top hBN flake is fixed by a vacuum underneath a modified microscope with long
working distance objectives and x, y and z micromanipulators. Then, the stamp is mounted
upside down under the long lens setup and slowly lowered to establish contact with the SiO2.
The chuck is now heated to a temperature of 60 °C to 80 °C. This causes the PC to becomemore
sticky, helps remove water from the interface and facilitates the transfer process. The contact
area between the PC and SiO2 steadily grows as the PC warms up and expands thermally. We
turn off the heating after the hBN and PC make contact which results in a slow retraction of
the PC film from the substrate as it cools down. The flake is picked up as the PC film remained
intact on the PDMS while retracting. This process is repeated for the BLG, the bottom hBN
flake and graphite, forming a multilayer heterostructure. The flakes can be precisely aligned
with respect to each other by fixing the SiO2 containing the flake to the chuck of the mask
aligner.

Figure 10: Dry-transfer technique to pick-up hBN (blue) on a Si/SiO2 wafer with a stamp
consisting of PMDS and PC. After this step, the stamp with hBN is lowered to reach BLG,
hBN (lower flake) and graphite (back gate). From [74].

Finally, the stack is transferred to a Si/SiO2 wafer containing different markers for align-
ment. This is done by melting the PC at 150 °C with the stack placed between the markers.
This causes blisters to move in the direction of the PC and aggregate at the edges of the het-
erostructure, reducing the number of blisters in the stack [74]. As a result, the stack is now
on SiO2 and covered by a PC film that has been molten on top. By soaking for 10 minutes in
chloroform, the PC is eliminated. Afterwards, the sample was annealed for 4 hours to clean
the stack further. The resulting stack is shown in Fig. 11.
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Figure 11: a) Optical image (100x) of the stack after annealing. b) Schematic drawing of the
stack, starting with the top hBN, BLG, bottom hBN and the graphene backgate.

3.1.2. Design and considerations

The geometry of the device should allow for heating experiments in quantum point contacts
and quantum dots in bilayer graphene. For this purpose, a dual-gate graphene field-effect
transistor is made (see section 2.2). A cross-section of the device is shown in Fig. 12a. On top
of the SiO2, the gray area represents the graphene backgate. For this sample, the backgate was
a bilayer graphene flake. On the backgate, a 20 nm thick hBN flake acts as a dielectric to gate
the BLG, that is right on top. The BLG is protected by another hBN flake on top. The green
areas represent the top gates and the blue box is contacting the BLG. Using the combined
action of the top gate and back gate, an electric field can be created, which opens a bandgap
in BLG.When using the split gates, at an appropriate voltage, the carrier density can locally be
made zero, making it insulating. The point contact can be defined as the channel between the
split gates still has a finite carrier density and if there is ballistic transport, the conductance is
quantized. In this QPC, heating experiments will be done by applying a current through the
heaters and measuring the Seebeck effect as described in section 2.5.1. In Fig. 12, the gray area
is an Al2O3 layer to separate the finger gates from the top gates. This material was chosen
because it is an insulator and high quality films can be grown by atomic layer deposition. On
top, the finger gates are deposited. In Fig. 12b, the design of the device contacts is shown on
top of an optical microscope image. In this map, the blue lines contact the BLG (except the
blue figure in the top left, which is the backgate). The green lines are top gates, the continuous
ones can also be used as heaters. There are also two split gates, separated by 100 nm. The
separation needs to be small enough to define the QPC (meaning, the separation should be
in the range of the Fermi wavelength, see section 2.3), but should still be feasible to produce
with the EBPG5000. This separation is in line with for instance [12], where they were able
to successfully define QPCs with a similar separation in split gates. The length of the split
gates should be smaller than the mean free path of the electrons in the BLG. Although the
mean free path of homogeneous ballistic BLG channels can reach up to several micrometers,
inhomogeneous gating near the split gates may reduce this. Therefore, we decided to make
the split gates length in the micrometer range as inhomogeneous gating near the split gates
may reduce it. The yellow lines are finger gates (100 nm wide and separated with 100 nm).
The separation of the finger gates is comparable with [12] [56] [75], where they successfully
defined QDs and QPCs, respectively. The width is chosen as results of [12] suggest a 200 nm
width to define QPCs and [56] have used 40 nm to define QDs. In [76], multiple QDs were
defined between 200 nm wide finger gates. Furthermore, in [75], 100 nm wide finger gates
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were used to define QDs. Thus, we decided to define our finger gates with a 100 nm width.

Figure 12: a) Side view of the stack. The middle black area represents the bilayer graphene
(BLG) and the bottom layer the back gate. The green areas are the hexagonal boron nitride
(hBN). The green areas on top are the top gates and the blue box is a contact. The gray area is
the Al2O3, with finger gates (yellow) on top. b) Top view of the first finished device, captured
by an optical microscope. The green lines in themiddle are the split gates and heater elements.
The blue lines are the contacts (etched into the BLG). The smaller area surrounded by a black
continuous line is the graphene flake, the light green is the top layer of hBN and the dark green
is the bottom layer of hBN. The larger area outlined by a black line represents the graphite
backgate.

3.1.3. Contacting the device

First, the stack from Fig. 11 is spin-coated at 4500 rotations per minute (RPM) with 495A6
poly-methyl-methacrylate (PMMA) and then baked at 180 °C for 2 minutes. The process is
repeated for another layer of 950A3 PMMA on top. As can be seen in Fig. 11, there is a large
graphene flake around the stack, which needs to be removed to make space for the contacts.
Electron-beam (e-beam) lithography is used to define a mask in concordance with the design
of the etch mask (see Fig. 13a). The system used is the EBPG5k+ in the Kavli Nanolab. From
here on, it will be referred to as EBL. Subsequently, the mask is developed by placing the
sample in the cold developer H20 IPA (1:3) for 90 seconds and then for 30 seconds in IPA.
The etching is done with plasma reactive ion etching through a mixture of CHF3 and O2. The
etching rate of this recipe was confirmed to be 30 nm/min in hBN by etching on a reference
flake. Afterwards, the sample is placed in aceton to remove the PMMA. For the final result of
this step, refer to Fig. 13b.
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Figure 13: a) Optical image with 100x zoom of the EBL defined pattern around the large
graphite flake. This serves as an etching mask to remove the flake and make space for the
contacts. b) The result after CHF3 etching and PMMA removal, showing that the flake is
etched away, als an optical image with 100x zoom.

The next step is to define the large and small contacts, which contact the BLG (brown box in
Fig. 3) and the backgate. Firstly, the sample is spincoated using the PMMA double layer de-
fined above and then EBL used to define the patterns. Since the top hBN is 18 nm, around 45
seconds of etching was performed. Note that, since we do not want to connect the BLG with
the back gate, we must over etch significantly less than 22 nm, the thickness of the lower
hBN. To define the Ti/Au contacts, we used e-beam evaporation at high vacuum (10−7 Pa
< p < 10−6 Pa) to deposit 5 nm of titanium and 30 nm of gold. See Fig. 14 for the 5x (a) and
100x (b) optical images of the contacts.

Figure 14: a) 5x optical image of the device, featuring the large Ti/Au contacs. b) 100x optical
image of the contacts, showing the backgate and five contacts etched through the hBN to
contact the BLG.

Then, the contact resistances were tested in a probe station. As a result, it showed that two
contacts were not connected to the BLG. This indicates that the hBN was slightly thicker at
specific areas. To fix this, an extra fabrication step was needed in which pads were designed
around the contacts. Instead of etching for 45 s, we etched for 50 s to make sure we will con-
tact the pads while preventing the full etching of the lower hBN flake. After this fabrication
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step, electronic measurements confirmed contact with the BLG.

Due to the narrow spacings between split gates and small widths of the finger gates, dose
tests of the split gates and finger gates were made to verify the feasibility of the design and
determine the correct dose to accurately define the structures. The same procedure is used
here as in fabricating the large contacts, however, reactive ion etching is instead executed
with a mild O2 plasma (for 10 s at 15W) to remove the PMMA residues and improve adhesion
to the hBN surface. Also, 25 nm of gold was deposited on 5 nm of titanium. From the AFM
scans, the dose of 1450 uC/cm2 was selected for both the split gates and finger gates. The
next step in fabrication is producing the top gates (including split gates), as can be seen in
Fig. 15. To produce the top gates, the stack was spin-coated with 496A6 and 950A3 PMMA,
exposed using EBL at 1450uC/cm2, followed by a mild O2 DESCUM and then deposition of
Ti/Au for 5 nm and 25 nm, respectively at the AJA-QT. The device with top gates is shown
in Fig. 15. Tests at the probe station showed that the heaters were connected, the split gates
well separated and all top gates not connected to the backgate and the BLG contacts.

Figure 15: a) The 5x optical image of the device, featuring the large Ti/Au contacts and top
gates. b) The 100x optical image of the contacts, showing the split gates and top gates, which
will also be used as heaters in the experiments.

As shown in Fig. 3, the next layer consists of a 30 nm Al2O3 dielectric. However, as the di-
electric, which is grown using atomic layer deposition, does not bond to hBN, the device is
first functionalized with an O2 plasma for 30 seconds. Before depositing on the device, first, a
height calibration measurement was done on an empty Si wafer using an ellipsometer. Then,
atomic layer deposition is executed at 150 °C on both the device and the test sample to deposit
approximately 30 nm of Al2O3. After deposition, the total thickness of Al2O3 can be deter-
mined using the test sample. To contact the bond pads and the finger gates, the Al2O3 needs to
be etched in the areas shown in Fig. 16. For this purpose, we do e-beam lithography to define
an etch mask, followed by wet etching of the Al2O3 using an inorganic developer containing
tetra-methyl ammonium hydroxide (MF21A). Before working on the device, the etch rate of
MF21A is determined by etching the Al2O3 of the test sample. Since we have measured how
much Al2O3 has been deposited, we can measure the height of this sample again after etching
and thus determine howmuch has been etched in the given period of time. Since over-etching
is not a problem (as the etch rate on hBN and Au is much smaller than the etch rate in Al2O3),
we etched for 15 minutes on the device after defining the windows using EBL. See Fig. 16 for
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a 5x optical image featuring the EBL etch mask (blue/purple color). The windows on the bond
pads are not visible.

Figure 16: The 5x optical image of the device after ALD, showing the windows on the contacts
where the finger gates will be contacted (blue/purple color). The windows on the bond pads
are not visible. The greenish color of the device is the result of the Al2O3.

The finger gates are defined on top of the dielectric layer with the same recipe as for the top
gates. In Fig. 17, a top overview of the final device is shown.

Figure 17: a) The 5x optical image of the final device. b) The 100x optical image of the final
device, including the four finger gates.

In Fig. 18, an AFM scan of the final device is shown. It was taken after the measurements
have been done, in order not to potentially damage the device.
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Figure 18: a) An AFM scan of the device, after measurements.

3.2. Measurements
To perform electronic measurements, the sample needs to be connected to a socket. For this
purpose, we glue it on a chip carrier and use Au wires to bond the device pads with the chip
carrier connections. Then, this chip carrier with the device is placed inside a vacuum cham-
ber. The sample is connected thermally to a small chamber (called 1 K pot) which has a small
aperture controlled by a needle valve. This chamber is also connected to a pump that can
reduce the Helium pressure in the chamber, allowing the temperature around the device to
drop to as low as 1 K (hence the name). The device is connected to a dewar with liquid He,
which enters the 1 K pot through the needle valve aperture and contains a superconducting
magnet capable of applying magnetic fields up to 8 Tesla. Furthermore, the large helium cryo-
stat contains helium level probe and the temperature readout is connected to the cold finger.
The sample holder has 32 connections which allows us to apply and measure voltages across
gates of the device. The connections to the socket are connected to two Fisher connectors,
that are connected to a matrix rack which allows us to safely connect and disconnect the sam-
ple. Furthermore, the IVVY-DAC-rack allows us to source and measure currents and voltages.
It allows one to use external outputs and inputs, which we exploit by connecting a Lock-in
system (SRS 830). The Lockin system can be used to tune the current’s frequency, harmonic,
amplitude and phase. Peltier heating can be detected by tuning the Lock-in to the first har-
monic of the AC current (since Q̇ ∝ I , see Eq. 12). Similarly, Joule heating can be monitored
by tuning the Lock-in to the second harmonic of the AC current (see Eq. 13) to calculate the
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Figure 19: A simplified schematic of the working principle of a Lock-in amplifier. The input
signal Vs is duplicated and both are multiplied with a reference signal Vr, generated from
the internal oscillator of the Lock-in. One copy is multiplied with Vr containing the same
phase as Vs whereby the in-phase component (X-component) is generated, and the other copy
is multiplied with Vr having a 90 degrees phase shift to create the quadrature signal (Y-
component). After multiplying with the reference signal, both functions are passed through a
low pass filter to remove any other frequencies and converted into polar coordinates to obtain
amplitude R and phase θ of the signals. Obtained from [77].

Seebeck effect. The system is controlled through Python scripts. Likewise, the processing and
analysis of the acquired data is done in Python.

A schematic of the Lock-in amplifier is shown in Fig. 19. The Lock-in is able to extract very
small signals in noisy environments. The operation relies on the orthogonality of sinusoidal
functions. When multiplying two sinusoidal functions with frequencies f1 and f2, with f1 ̸=
f2, and integrated over time T (T ≫ T1 ∧ T ≫ T2, with Ti = 1/fi the period of function i),
this results in zero. If f1 = f2 and ψ1 = ψ2 (equal phases), the average value equals half of
the product of the amplitudes if integrated over a large enough T . If f1 = f2 but ψ1 ̸= ψ2 the
product is also attenuated (since the sine is orthogonal to the cosine). The input signal Vs can
generally be described by:

Vs = A sin(ωst+ ψ), (14)

in which A the amplitude of the input voltage Vs, ωs = 2πfs the angular frequency (units:
radians per second), t the time (seconds), and ψ the phase (radians). The input voltage is first
filtered with a band pass filter and then amplified with a low noise amplifier (not shown) and
split into two copies. Each copy is multiplied with a reference signal Vr (provided from the
internal oscillator). One copy is multiplied with Vr containing the same phase as Vs, gen-
erating the so-called in-phase component (commonly denoted as X); and the other copy is
multiplied with Vr shifted 90 degrees such that the so-called quadrature signal is generated
(the Y component). In Fig. 19, the in-phase component is the upper branch and the quadra-
ture component the lower branch. After multiplying with the reference signal, both functions
are passed through a low pass filter to remove noise and finally through an output amplifier
(not shown). The amplitude R and phase θ = arctan(Y/X) of the signal are determined by
transforming X and Y from Cartesian coordinates to polar coordinates. Since multiplying two
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sinusoidal functions with the same ω and ψ is nonzero, we expect the X component to yield
nonzero values. However, since multiplying two sinusoidal functions with the same ω but
different ψ is attenuated, the amplitude of the Y component should be much smaller (near
zero) than the amplitude of the X component. In this thesis, the sample is excited with a sig-
nal that is proportional to the reference signal, which is why Vs is having a component at the
reference frequency and phase.

In some cases, the measured signal is proportional to higher powers of the current I0. In
particular, if Vs∼ I2:

(
I

I0
)2 = sin(ωt)2 =

1

2
(1− cos(2ω)). (15)

Therefore, when multiplying with a sinusoidal Vr, the integral over T will be zero (as the sine
and cosine are orthogonal). However, whenmultiplying with the 90 degrees shifted Vr (which
will also be a cosine), the integral over T will be nonzero. We expect the second harmonic
X-component to be attenuated and the Y-component to be dominating. In the third harmonic,
the AC source can be simplified into:

(
I

I0
)3 = sin(ωt)3 =

1

4
(3 sin(ωt)− sin(3ωt)). (16)

Since the third harmonic only contains terms with sin(ωt), we expect the X-component to be
much larger than the Y-component of the output voltages processed by the Lock-in system.
In the fourth harmonic, the AC source can be written as:

(
I

I0
)4 =

1

4
(1− 2 cos(2ωt) +

1

2
(1 + cos(4ωt))). (17)

The expression of the fourth harmonic only contain terms with cos(ωt), and therefore, we
expect the Y-component to be much larger than the X-component.

In this thesis, we will also perform a combination of two-terminal, three-terminal and four-
terminal measurements to characterize the device. The two-terminal measurement, some-
times called two-probe measurement, contacts the device, as the name suggests, on two leads.
The sample is represented by resistors in Fig. 20a and b with the a) two and three-terminal
and b) a four-terminal measurement circuit. The red lines are the two-terminal measurement,
the combination of V1 and V3 form a three-terminal measurement. In Fig 20b, a four-terminal
measurement is drawn.
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Figure 20: A schematic overview of the two-terminal, three-terminal and four-terminal mea-
surement circuits. The Rg symbolizes the resistance of the BLG between the contacts. Rci is
the resistance of contact i. a) The red lines indicates a two-terminal measurement circuit be-
tween contacts c1 and c2 (with voltage meter V1). A three-terminal circuit is drawn using V1
and V3. b) Four terminal measurement circuit.

Using Fig. 20 and Ohm’s law, we can conclude why a four-terminal measurement is more
accurate than a two-terminal measurement to determine the BLG channel resistance. Suppose
that the current source generates a current I . Then the voltage measured in V1, V2 and V3 can
be written as:

V1 = I(Rc1 +Rg1 +Rc2). (18)

V2 = IRc2. (19)

V3 = I(Rc1 +Rg1). (20)

From Eq. 18, it becomes clear that in a two-terminal measurement, we also measure the re-
sistance of the contacts - besides measuring the resistance of the BLG. Since the resistance
of the contacts is an unknown but significant value, Rg1 cannot be measured reliably. The
current does not go through other parts of the BLG. Hence, with voltage meter V2 (see Eq. 19),
only Rc2 is can be determined. For the same reason, both Rc1 and Rg1 can be determined
with V3 described in Eq. 20. When doing a three-terminal measurement, we have can subtract
Eq. 18 from Eq. 20 to determine Rc2. This means the three-terminal measurement better ap-
proximates the resistance of the BLG Rg, but still contains the unknown Rc1, which causes
systematic measurement errors when characterizing Rg (especially when Rg < Rc). A so-
lution is the four-terminal measurement, shown in Fig. 20b. Four-terminal sensing separates
current carrying and voltage sensing electrodes. Assuming that the voltage source generates
a voltage Vs, and that the Ampere meter reads current I the voltage drops according to the
following.

Vs = Rc1I +Rg1I +Rg2I +Rg3I. (21)

As no current will flow into the voltage meter (assuming a perfect voltage meter with infinite
resistance), the voltage meter V will read:
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V = Rg2I. (22)

Since both V (from the voltage meter) and I (from the Ampere meter) are known, the resis-
tance of the BLG between the two contacts can be determined (Rg2).
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4. Results

All measurements described in this chapter are done at T = 1.8 K, unless specified otherwise.
In Fig. 21, a schematic of the contacts of the device is shown. This helps in discussing which
gates and contacts are connected. As can be seen, the split gates are purple with yellow corre-
sponding finger gates. The other top gates are represented by the green shapes. Furthermore,
the contacts etched into the BLG are dark blue. The back gate is not shown here, but can be
seen in Fig. 17. When showing which contacts are connected, the connected contacts will be
colored.

Figure 21: Schematic of the contacts of the device. The blue contacts are connected to the
BLG. The purple contacts represent the large (left) and small (right) set of split gates. The
green contacts are the other top gates on top of the hBN. The finger gates are represented by
the yellow rectangles.

First, a 4-terminal measurement with back gate sweep is done to determine the resistance R
of the BLG for −3 V ≤ Vbg ≤ 3 V, see Fig. 22a for the circuit. A 4-terminal measurement
is done such that the contact resistances are not measured, and only the resistance of BLG
is returned (see section 3.2). Besides sweeping the back gate, an AC bias of 1 µA is applied
between the outer dark blue contacts in Fig. 22a, which contact the BLG, to measure the re-
sistance. Meanwhile, the voltage difference between is monitored between the two other blue
contacts through the Lock-in. The 4-terminal-resistance (R4p) of the BLG can then be deter-
mined through Ohm’s law, using the measured voltage Vx and the bias current. It is expected
for R4p to peak at the charge neutrality point (see section 2.1.2) as the number of carriers
available for transport is minimal (see the Drude model and formula for carrier density as
explained in section 2.1.2). The measurement circuit is drawn in Fig. 22a. In Fig. 22b, the data
is visualized in a simple plot, withR4p the four-terminal resistance on the y-axis, which is the
BLG resistance as shown in Section 3.2. On the x-axis, the various values of the back gate are
plotted. At around Vbg = −2 V, a significant peak in resistivity can be seen. This corresponds
with the charge neutrality point of this device.
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Figure 22: a) The circuit of the four-terminal measurement. The voltage meter is connected
between the dark blue colored contacts in the BLG. The current sources 1 µA between two
different contacts, making it a four-point measurement. b) The measurement result, featuring
R4p (BLG resistance) on the y-axis and values of the back gate sweep on the x-axis. The
significant peak in resistivity around Vbg = −2 V corresponds with the charge neutrality
point of this device.

4.1. Opening a bandgap
To experimentally show that a bandgap can be opened under an electric field, voltages on the
back gate and various top gates are applied. For each value of the back gate voltage, the top
gate voltages are swept. A bias current is set and the voltage difference between contacts in
the BLG is monitored (creating a 3D plot). The resistance of the BLG can then be calculated
using Ohm’s law. In homogeneous BLG, we expect to see the resistance go as 1/n far from the
CNP and saturate at a value of several kΩs which increases as the displacement field increases
(see section 2.2). These indicate the charge neutrality point of the outer regions of the BLG
not affected by the top gate voltage and the charge neutrality point underneath the top gate,
respectively (see section 2.2, and Fig. 4).

For the four-terminal measurement in Fig. 23a, an AC bias current of 1 µA is applied between
the outer contacts in the BLG, while monitoring the voltage difference between two other con-
tacts in the BLG. Moreover, for each value of the back gate voltage Vbg (−4V ≤ Vbg ≤ 4V),
the voltage Vsg on the small split gates is swept from −5V to 5V. The voltage difference
is then converted into resistance through Ohm’s law and is signified by the color scale. In
Fig. 23b, the resulting 3D plot is shown. As expected, there is a significant increase in resistiv-
ity around Vbg = −2 V, as demonstrated in Fig. 22, corresponding with the charge neutrality
point (for the parts of the BLG not affected by Vtg). However, instead of a diagonal line having
a resistivity which increases with |Vbg| (as predicted in section 2.2), the resistivity increases
in a step-wise fashion. This indicates that the back gate voltage is not changing the carrier
density constantly. Another observation is that R4p takes on values between 460 Ω and 560
Ω - which are approximately 10x smaller than the ones measured in Fig. 22 (setting Vtg = 0 V
in Fig. 23).
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Figure 23: a) Four-terminal measurement circuit. The voltage meter is connected between
two contacts in the BLG. The current sources 1 µA between two contacts in the BLG. b) The
resulting 3D plot, with the back gate voltages and the split gate voltages. The color signifies
the resistance measured using the Lock-in system. As expected, there is a significant increase
in resistance around Vbg = −2 V. However, instead of a diagonal line having large resistivity,
the resistivity seems to have a step-like behavior in this sample.

The smaller values for R at Vtg = 0 V can, at least partly, be explained when converting the
values of R to Rsq:

Rsq = R
W

L
, (23)

in which Rsq is the square resistance (units: Ω),W the width of the measured sample (in this
case: 4 µm) and L the separation between the voltage probes (around 7 µm) - which results
in a factor of 0.57. In Fig. 24, the Rsq for the back gate sweep and for measurement in Fig. 23
are shown, respectively. As can be seen, the peak in Fig. 24b is cut-off, hinting that too little
points are available to fully characterize the trace. Furthermore, this difference in resistivity
might hint at a secondary channel being formed in Fig. 22 (as an extra resistance in parallel
decreases overall resistance). According to Ohm’s law for parallel resistances, this resistance
should equal:

Rch =
RbgsweepRg

−Rg +Rbgsweep

. (24)

In this equation, Rch is Rsq of the hypothetical extra channel, Rg the Rsq of the measured
graphene from Fig. 23 andRbgsweep theRsq of Fig. 22. From this, the channel resistance should
be in the order of 1.1Rg ≈ 315 Ω± 28 Ω.

To further investigate the step-like voltage response, various top gate geometries in combina-
tion with the back gate have been used. Since at this time, the phase of the Lock-in started to
deviate largely from zero, a two-terminal measurement was performed on the same small split
gates. In Fig. 25a, the measurement circuit is drawn and the used contacts are colored. Both
the voltage meter as the AC source are connected between the same contacts in the BLG, to
apply Ibias = 100 nA. The results are shown in Fig. 25b. The values for R2p are significantly
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Figure 24: a) Rsq for back gate dependence as shown in Fig. 22. This is done by converting
the values of R into Rsq by using Eq. 23, withW = 4 µm and L = 7 µm, corresponding with
the width and length of the gated region. b) Rsq for measurement as shown in Fig. 23. In this
case, the same values forW and L are used.

larger than for R4p, which makes sense because R2p also measured the contact resistances
(see section 3.2). Since we have also measured the resistance using a four-terminal measure-
ment, the sum of these contact resistances can be determined and are approximately equal to
the values shown in the R2p results of Fig. 25. The contact resistances are well above 15 kΩ,
significantly larger than the previous results reported in such etch-defined contacts.

Figure 25: a) The circuit of the two-terminal measurement. The voltage meter is connected
between two blue colored contacts in the BLG. The current sources 1 µA between the same
contact (a two-terminal measurement). We swept the small split gates (purple, colored) volt-
ages Vsg between −5 V and 5 V, for each value of Vbg between −4 V and 4 V. b) The resulting
3D plot, with the back gate voltages and the split gate voltages. The color signifies the resis-
tivity measured using the Lock-in system.

In Fig. 26a, a heater is connected and used as a top gate. Also here, an AC bias of Ibias = 100 nA
was set in two contacts in the BLG, while the voltage difference was monitored. The top gate
is swept between −5 V and 5 V for back gate voltages between −4 V and 4 V. The results are
shown in Fig. 26b, consistent with Fig. 25.
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Figure 26: a) Two-terminal resistance measurement circuit. Here, we swept a top gate (green,
colored) and applied Ibias = 100 nA between the dark blue filled contacts (contacting the
BLG). The measured voltage response is then converted into resistance using Ohm’s law. b)
The result of the two-terminal resistance measurement according to a). The measurement
agrees with previous measurements in their resistance peaks around Vbg = −2 V and step-
like behavior in resistance.

In Fig. 27a, the larger split gates were connected in a two-terminal resistance measurement.
An AC bias of 100 nA was used. The split gates were swept between −4 V and 4 V, while
sweeping the back gate between −3 V and 3 V. Based on the difference between this mea-
surement, which is a two probe measurement, and the measurement described in Fig. 28, the
contact resistances can be retrieved. These are in the same order of magnitude as the contact
resistances determined between Fig. 25 and Fig. 23.

Figure 27: a) Two-terminal resistance measurement according to Fig. 25. Here, we swept the
large split gates (filled with purple) and applied Ibias = 100 nA between the two blue colored
contacts in the BLG. b) The resulting 3D plot, agreeing with previous resistance measure-
ments.

Moreover, in Fig. 28, the larger split gates (colored with purple) were connected for another
4-probe measurement as described in Fig. 28a using a voltage source instead of a current
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source. The voltage meter is connected between the two outer dark blue contacts, which are
etched into the BLG. The voltage source and Ampère meter are both connected to the other
set of blue colored contacts. In this measurement, a voltage of 100 µV was applied with this
voltage source. The split gate voltage was swept (−3V ≤ Vsg ≤ 3V) for values of the back
gate ranging between −3V ≤ Vbg ≤ 3V. The results are shown in Fig. 28b. The values for
R4p range between 3.6 kΩ and 0.25 kΩ.

Figure 28: a) The circuit of the four-terminal measurement. The voltage meter is connected
between the two outer contacts in the BLG (dark blue). Between the other set of blue colored
contacts, a voltage of 100 µV is applied and a current is measured. Furthermore, the split
gates (purple) were connected and swept with voltages between −3 V and 3 V for each value
of the back gate voltage Vbg between−3V and 3V. b) The resulting 3D plot, with the back gate
voltages and the split gate voltages. The color signifies the resistance (calculated bymeasuring
the voltage response and current of the Lock-in system).

The resistance measured in Fig. 28 at Vtg = 0 V can be converted into Rsq to compare it to
the Rsq of earlier measurements (see Fig. 24a), see Fig. 29. It is expected that the shape of this
graph is similar to Fig. 24b, especially at low values ofRsq, as there were not enough points to
complete characterize the higher peak. As hypothesized, the small values are around 200 Ω,
and the peak reaches into the 1 kΩ regime. Based on this measurement, the resistance of the
hypothetically parallel channel in the back gate sweep of Fig. 24a should be between 60 Ω and
1800 Ω. In Fig. 29b, for each value of Vbg, the maximumRsq is taken from the split gate sweep
−3 V ≤ Vsg≤ 3 V. As Vtg is nonzero, we can approximate through the sum of Rsq in the top
gated region (with length Ltg), and Rsq in the rest of the sample (dimensions: L−Ltg andW ,
if we assume diffusion. Using Rsq = RW/L and R = Rt +Rnt, this simplifies to:

Rsq,tot = Rsq,nt(
L− Ltg

L
) +Rsq,t(

Ltg

W
). (25)

In this formula, Rsq,tot is the Rsq of the total device, Rsq,nt is Rsq corresponding to the area
of the sample unaffected by top gating, Rsq,t is Rsq corresponding to the area of the sample
affected by top gating, Ltg is the length of the top gated area, L is the length of the channel
and W is the width of the channel. As can be seen in Fig. 29b, there is an increasing trend
in Rsq (corresponding to Rsq,tot in Eq. 25) as Vbg increases. This trend indicates that there is
indeed a bandgap opening in this measurement.
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Figure 29: a)Rsq for the resistances taken in Fig. 28. b) Maximum values forRsq for each value
of Vbg (selected from the various Vsg). The upward trend indicates that a bandgap is opening
in this measurement.

Using the same configuration as described in Fig. 28, the source-drain current was measured.
In Fig. 30a, the back gate leakage current is displayed from the setup of Fig. 25. This is done
in preparation of defining the quantum point contact and quantum dot, as there is a trade-off
between a higher back gate (which results in a higher displacement field) and consequently a
higher leakage current (which is ideally kept < 10 nA) to guarantee that the applied voltage
is transferred to the gate.

Figure 30: The measured leakage current during the two-terminal measurement described in
Fig. 25. Here, we swept the large split gates (see Fig. 28a) and applied Ibias = 100 nA. The
current is on a log scale. As can be seen, the leakage current is mostly in the (sub) nA range,
and increases fast for Vbg > 3 V into the µA regime. The outliers at Vbg = −3 V are likely
not real as the leakage decreases again for lower Vbg.

Tuning Vbg seems to have no effect on the resistance for −1 V ≤ Vbg ≤ 1 V, Vbg ≤ −2 V, 2 V
≤ Vbg ≤ 2.75 V and Vbg ≥ 4 V. This feature is reproducible for different top gates and split
gates (See Fig. 23, Fig. 25, Fig. 26, Fig. 27 and Fig. 28), and thus is a feature of the sample. As
can be seen in equation 4, we expect a linear change of the CNP position with Vbg: for a lower
value of back gate voltage, we expect a higher top gate voltage to tune towards the charge
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neutrality point. This behavior indicates that, for the aforementioned ranges, the voltage ap-
plied to the back gate does not translate into a bigger electric field on the BLG. The electric
field induced by the back gate is being screened by a layer of charges somewhere between the
back gate and the bilayer graphene. The origin of this layer of charges remains unknown.

The estimation of the Seebeck coefficient in BLG is obtained in Fig. 31, based on the resistances
of the back gate sweep (Fig. 22). The shape and range are in agreement with the modelling of
the Seebeck coefficient described in Fig. 8.

Figure 31: The Seebeck coefficient estimate based on the back gate sweep taken in Fig. 22. The
shape and range are in agreement with the modelling of the Seebeck coefficient described in
Fig. 8.

4.2. Tuning into quantum dot
Then, we attempted to deplete the channels under the two sets of split gates. This was done
through setting the back gate voltage at a value which results in maximum electric field while
maintaining a small leakage current (idealistically: < 1 nA). According to Fig. 23-28, we can
see that tuning Vbg did not effect the resistivity of the BLG for−1 V≤ Vbg ≤ 1 V, Vbg ≤ −2 V,
2 V ≤ Vbg ≤ 2.75 V and Vbg ≥ 4 V. Also, the back gate leakage current for Vbg greater than
−3 V or 3 V too high to be considered safe. Therefore, we define a QD in this sample around
Vbg = 3 V. At this value for Vbg, a displacement field of approximately 0.1 V/nm was achieved
(See Appendix), and therefore a bandgap of 8 ± 2 meV is estimated to open [49]. Fig. 30a
illustrates that the back gate leakage current is in the nA range for Vbg = 3 V. Although the
electric field might be stronger at Vbg = 4 V (see for instance Fig. 23), the leakage current
will be in the µA range (See Fig. 30), which might break the sample. A sudden break of the
gate can lead to the application of several volts across the sample in a very fast way, leading
to large currents that can blow up the flake. In our measurements, we take the precaution
of connecting a 10 MΩ resistor in series with the backgate. As a consequence, the current
would be limited but the voltage applied to the gate would become minimal, as the voltage
drop across the series resistor would become comparable to Vbg. Once we have set the Vbg,
we sweep the finger gate for a predefined set of voltages on the split gates. In this way, we
monitor the effect of the finger gates and split gates on the carrier density inside the channel.
For a specific combination, the carrier density underneath the finger gate should deplete and
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the density under the split gates minimizes. This experiment will be repeated for a variety of
geometries.

We start by setting up the same measurement circuit as shown in Fig. 28. For this experiment,
the larger split gates and corresponding middle finger gate were connected. For each value of
the finger gate (−10V ≤ Vfg ≤ 0V), the split gates (−2.1 V ≤ Vsg ≤ 1.9 V) were swept at
Vbg = 3 V. Note that Vtg ≈ −2 V corresponds to the CNP of the double-gated region in Fig. 27.
The result is shown in Fig. 32a, with a darker horizontal area near Vsg = 1.97 V - as this is
one of the areas with minimum conductance (implying most of the charge current is carried
between the split gates). As shown in Fig. 32c, decreasing Vfg leads to a significant decrease
of the current, indicating that the channel between the split gates is depleted. Even though in
Fig. 32a there seems to be a step, indicating size quantization, individual horizontal profiles
indicate that the noise level is too high to make such a claim. However, averaging several
profiles over a certain voltage range suppresses this noise level and step quantization can be
seen around 4e2/h, which is slightly lowered due to the resistance of the bilayer graphene
outside the channel between the outer contacts. However, no Coulomb blockade oscillations
are visible as the background noise is in the order of e2/h and Coulomb blockade oscillations
usually have an amplitude of 0.15× e2/h. Furthermore, there are vertical features present in
the 3D plot and are also present in other geometries of finger gates and this split gate (not
shown here). To see if these features persist, the sweeping order was changed for the same
geometry as in Fig. 32. Thus, for each value of the split gate voltage, the finger gate voltages
were swept. In Fig. 32b, the resulting 3D plot is shown for Vbg = 3 V, with a corresponding
trace in Fig. 32. Again, we were not able to deplete the channel (as expected) and, surpris-
ingly, the vertical features persist. The persistence of the vertical features when changing the
sweeping order indicates that they are not intrinsic to the device characteristics but a conse-
quence of the sweeping process. This indicates that a charging and discharging mechanism
may be at play.

34



Figure 32: a) The four-terminal measurement circuit used. The voltage meter is connected
between the outer contacts in the BLG (dark blue). The Ampere meter and voltage source
(100 µV) are connected to the other two contacts in the BLG (dark blue). Furthermore, the
larger split gates (purple) and middle finger gate (yellow) are connected. b) The result of
sweeping the split gate voltages for each value of the middle finger gate. Vbg was fixed at 3 V.
c) An average trace for Vtgbetween−1.97 V and−2.02 V in a), corresponding with the region
with minimum conductance. There seems to be a slight step quantization around 4e2/h. The
channel was not fully depleted. No Coulomb blockade oscillations can be observed. Taking an
average trace in d) in the same range for Vsg returns the same result (not shown). d) Changing
the sweeping order of the measurement described in b). For every value of Vtg, Vfg was swept
and the current was measured. As in panel a), Vbg = 3 V. No depletion of the channel was
noted and the vertical features persisted. These seem to hint at an unintended charging and
discharging mechanism in the sample.

Moreover, depletion of the channel defined by the smaller split gates has been attempted, see
Fig. 33. This has been done by sweeping the corresponding finger gate for each value of the
split gates, at Vbg = 3 V.
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Figure 33: a) The measurement circuit used in Fig. 34a. Here, we connected the Ampere meter
and voltage source between two contacts in the BLG (dark blue). Furthermore, an AC source
was connected between the outer contacts in the BLG (dark blue). Meanwhile, the finger
gate (yellow) was swept between−10 V and 0 V while sweeping the small split gates (purple)
between−2.10 V and−1.90 V. The back gate voltage Vbg was 3 V. b) The measurement circuit
used in Fig. 34b. The Ampere meter, voltage source and current source were connected in the
same way as in a). However, now a finger gate (yellow) was swept between −10 V and 0 V
while sweeping the large split gates (purple) between −2.30 V and −2.10 V. The back gate
voltage Vbg was set at 3.5 V.

In Fig. 34, the resulting 3D plots are shown. In Fig. 34a, the result is shown from sweeping
the smaller split gate as shown in Fig. 33. This channel was also not depleted and quantized
conductance is not well defined. In Fig. 34b, the measurement of Fig. 32b was repeated but
for Vbg = 3.5 V. This is done to increase the electric field in the FET device, which should
help depleting the channel. A trace of this measurement at Vsg = −2.21 V (c) is shown.
There is no full depletion visible and steps are still dominated by the unintended charging
and discharging mechanism. No persistent Coulomb blockade oscillations are visible, which
shows that no QD has formed. In Fig. 34d, an average trace for Vsg between −2.25 V and
−2.20 V is displayed. Steps around 4e2/h and 7e2/h can be observed, slightly lowered due to
measuring also the resistance of the BLG between the contacts outside of the channel. Since a
quantization of 8e2/h is expected and only 7e2/h is measured, the series resistance should be
around 460 Ω. This corresponds with the measurement described in Fig. 23, where we have
measured R4p using the same contacts in the BLG.
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Figure 34: a) The 3D plot resulting from the measurement setup described in Fig. 33a. The
channel was not depleted. b) The resulting 3D plot arising from the setup described in Fig. 33b.
On the x-axis, the split gate voltages are displayed and on the y-axis the finger gate voltages.
The color signifies the conductance measured using the Lock-in system, which is showed
in terms of e2/h. There is no clear depletion, however, step quantization is visible. c) A
trace taken at Vsg = −2.21 V. Step quantization in the conductance can be observed, but
is dominated by an unintended charging and discharging mechanism. d) An averaged trace
taken for Vsg between −2.25 V and −2.20 V. Steps around 4e2/h and 7e2/h can be observed.

Furthermore, by tuning multiple finger gates simultaneously (as done in [56]), we attempted
to confine charges, i.e. to form a quantum dot. In Fig. 35a, the larger split gates (purple) were
connected, combined with two of the three finger gates (yellow). For each value of the split
gates, both finger gates were swept simultaneously. However, this also did not deplete the
channel, as can clearly be seen from the vertical trace taken at Vsg= −1.97 V (Fig. 35b), nor
did it confine charges as in this case the characteristic Lorentzian peaks are expected in the
density of states (and conductance).
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Figure 35: a) The circuit used in this measurement. Two finger gates were set between 0 V
and−10 V for each Vtg on the split gates (purple) between−2.1 V and−1.9 V. Meanwhile, a c
bias voltage of Vbias = 100 µV was applied and the current between the outer contacts in the
BLG (dark blue) was monitored. By measuring the the voltage between , the conductivity can
be calculated (z-scale). b) An averaged vertical trace for Vsg between −1.97 V and −2.02 V,
with on the x-axis the finger gate voltage Vfg and on the y-axis the current in the channel.

As from the Hall Theory (see section 2.3), step quantization should be more defined at higher
magnetic fields. Therefore, another attempt was made to deplete the channel defined by the
large split gates, with corresponding middle finger gate, at B = 5 T (see Fig. 33b). The result
looks a lot cleaner, with a clear depletion of the channel (see Fig. 36a-b). The corresponding
averaged trace clearly shows depletion and signs of step quantization of the conductivity. To
take a closer look, the measurement was executed again with smaller stepsize for −5 V ≤
Vfg ≤ −3 V. A corresponding trace of this measurement is shown in Fig. 36 and shows an
additional feature, related with an unintended charging and discharging mechanism in the
sample.
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Figure 36: a) 3D plot obtained by sweeping the large split gates with the middle finger gate at
B = 5 T, see Fig. 33b for the circuit. It shows clear depletion of the channel and quantization
in the current. b) An averaged trace for Vsg between −2.03 V and 2.13 V, with on the x-axis
Vsg and on the y-axis the current. The current shows quantized steps and shows that there is
a depletion in the channel. c) A trace at Vsg = −2.08 V, taken from a more detailed sweep.

4.3. Measuring voltages
This section describes the heating experiments conducted in the previously defined structures.
To select an appropriate heating current for the thermovoltage characterizations, the voltages
in the first and second harmonic for different heating current values and back gate voltages
were mapped. For this purpose, an AC current was applied on the right heater (see circuit in
Fig. 37), varying between 5 µA and 50 µA in steps of 5µA. For each current value, the back
gate Vbg was varied between −3V ≤ Vbg≤ −1 V. The voltage response was measured be-
tween 23 and 9 with two Lock-ins, one was tuned to measure the first harmonic voltage and
the other one for the second harmonic voltage (see section 3.2 for more details on the Lock-in).
The first harmonic voltage is the result of Peltier heating (see Section 2.5.2) and the second
harmonic is a consequence of Joule heating (see Section 2.5.3). The measurement circuit is
drawn in Fig. 37a. In Fig. 38, the results of this measurement are shown. Fig. 38a contains the
x-component of voltage response in the second harmonic for −3V ≤ Vbg≤ −1 V. It features
a sign change around the charge neutrality point (Vbg = −2 V), and values are in the 0.1 µV
range. The sign change indicates the carrier type change from electrons to holes [61]. Fig. 38b
shows the corresponding y-component of the second harmonic voltage response. It contains
a peak around the charge neutrality point (Vbg = −2 V), and values are 10x larger than in the
x-component (as expected, the y-component in the second harmonic should be lower than the
x-component, see section 3.2). Therefore, in the rest of this chapter, only the y-component of
the second harmonic will be shown. Fig. 38c contains the x-component of the first harmonic
voltage response for −3V ≤ Vbg≤ −1 V. It also shows a peak around the charge neutrality
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point (Vbg = −2 V), with values in the µV range. Since the x-component of the first harmonic
is much larger than its corresponding y-component (see Fig. 38d), only the x-component of
the first harmonic will be shown in the rest of this chapter. Based on Eq. 15 and Eq. 14, we
expect the first harmonic and second harmonic to have opposite sign.

Based on this measurement (specifically: Fig. 38b and c) and the estimation of the Seebeck
coefficient in Fig. 31, a rough estimation can be made for the temperature induced by the
heaters. By rewriting Eq. 11 to ∆T = −S/∆V , a ∆T in the range of 0.5± 0.2 K is expected
(for Iheat = 50 µA, as this current will be used when measuring the thermal voltages in other
geometries).

Figure 37: The circuit used in Fig. 38 and in Fig. 39. The current source (ac) of 1µA is connected
to the right heater (from now on: Iheat), and the voltage meter is connected between two
contacts in the BLG. The output voltage is then connected to two Lock-ins, which are tuned
to monitor the voltages in the first and second harmonic.
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Figure 38: Voltage responses in the first and second harmonic for varying values of heating
current Iheat through the right heater, using measurement circuit 37a. a) The x-component
of the second harmonic voltage response for −3 V ≤ Vbg ≤ −1 V. b) The y-component of
the second harmonic voltage response for for Vbg between −3 V and −1 V. It contains a peak
around the charge neutrality point (Vbg = −2 V), and values are 10x larger than in the x-
component. c) The x-component of the first harmonic voltage response for the same range of
Vbg. It contains a peak around the charge neutrality point (Vbg = −2 V), with values in the
µV range. d) The y-component of the first harmonic voltage response for−3 V≤ Vbg ≤ −1 V
at different current values.

Possibly, gating from the contacts could have induced a change in resistance of the BLG pro-
portional to frequency ω, as:

R = R0 +∆R sin(ωt), (26)

in which R0 the resistance of the BLG without a gating effect ∆R the resistance change due
to a gating effect. Having a second harmonic and a DC component signal coming from the
I2 term (see Eq. 15), the ∆R term could generate a first and a third harmonic contribution.
Therefore, this measurement has been repeated to characterize the voltage responses in the
third and fourth harmonic for the same range of heater currents. The results are shown in
Fig. 39. Again, Fig. 39a contains the x-component of the third harmonic, Fig. 39b the cor-
responding y-component, Fig. 39c the x-component of the fourth harmonic and Fig. 39d its
corresponding y-component.
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Figure 39: Voltage responses in the third and fourth harmonic for varying values of heating
current through the right heater, using measurement circuit 37a. a) The x-component of the
third harmonic voltage response for−3 V≤ Vbg ≤ −1 V. It contains a slight peak around the
charge neutrality point (Vbg = −2V), but values are in the 0.05 µV range. b) The y-component
of the third harmonic voltage response for Vbg between−3 V and−1 V. No clear features can
be distinguished here. c) The x-component of the fourth harmonic voltage response for the
same range of Vbg. Only noise was measured. d) The y-component of the fourth harmonic
voltage response at different current values. A slight peak can be seen at Vbg = −2 V.

As can be seen in Fig. 39, V3ωY ≪ V3ωX and V4ωX ≪ V4ωY. Furthermore, the magnitude of
the third harmonic is 15 to 20 times smaller than the first harmonic. Based on Eq. 16, we ex-
pect that the contribution of the first harmonic is only 3 times larger than the third harmonic.
However, the magnitude of this gating effect would be limited, as the gating effect is only a
small modulation of the thermal voltage, and cannot explain this feature entirely. Therefore
there must be another source from the first harmonic, which is yet unclear.

In addition, the resistance of the heater was measured for a constant current at different tem-
peratures, characterizing R(T ). For the measurement shown in Fig. 40b, an AC heating cur-
rent of 1 µA was applied on the right heater, and simultaneously, the voltage drop was mea-
sured between the other ends of the heater (for a schematic overview, consult Fig. 40a). This
was done at varying temperatures between 1.8 K and 50 K. Before measuring the voltage dif-
ference at each temperature, a 5 s waiting period has been set to let the temperature stabilize.
As temperature increases, an increasing trend is expected in the resistance of the gold heaters
[78]. However, as can be seen in Fig. 40, the resistivity of the gold heaters at low tempera-
tures is relatively constant, which indicates that the gold heaters are not appropriate to use
as thermometers at low temperatures.
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Figure 40: a) Measurement circuit used to perform a heater resistance versus temperature
measurement. The right heater was connected to an AC bias of 50 µA, while a voltage meter
(using the Lock-in) was connected to two contacts in the BLG. b) The heater is connected to an
AC of 50 µA and voltage meter using a four-probe measurement to exclude the heater resis-
tances. The temperature of the setup was varied between 1.8 K and 100 K, and an increasing
trend in the resistance of the gold heater is demonstrated. However, in the low temperature
range, the resistance shows almost no change, indicating that the gold heaters cannot be used
as thermometers at low temperatures.

Instead, a theoretical model was constructed to calibrate the heaters, based on [79] and [80].
The temperature rise as a result of Joule heating can be estimated by making assumptions
about the thermal resistance of the SiO2 at low temperatures and the thermal conductance
of the graphene - SiO2 boundary, however, these estimations are not obvious thus this model
was not used to calibrate the heaters. For more details, please consult the Appendix.

As the calibration was unsuccessful, the rest of the chapter will feature a selection of the mea-
sured voltages (and not the thermopowers). First, an overview of the measurement circuits
will be given, see Fig. 41. The voltages were measured in the smaller split gates (panel a), the
larger split gates (panel b), and a top gate (panel c). In these measurements, the top gates were
swept between−3 V and 0 V (as we expect the charge neutrality point to be at−2 V). An AC
heating current of Iheat = 50 µA was applied through the right heater (green). Meanwhile,
the resulting voltage was monitored through a dual Lock-in setup across the bilayer graphene
from the dark blue contacts, which is tuned to monitor the first and second harmonic of the
voltage.

43



Figure 41: These panels represent the measurement circuits used in Fig. 42, Fig. 43 and Fig. 44,
respectively. In all setups, the current source (ac) of 50 µA is connected to the right heater, and
the voltage meter is connected between two contacts in the BLG. The output voltage is then
connected to two Lock-ins, which are tuned to monitor the voltages in the first and second
harmonic. The top gates were swept between−3V and 0V (as we expect the charge neutrality
point to be at−2 V). a) The measurement circuit used in Fig. 42. The small split gates (purple)
are connected. The back gate voltage was set to Vbg = 0 V (see Fig. 42a and c) and Vbg = 3 V
(see Fig. 42b and d). b) The measurement circuit used in Fig. 43, with the large split gates
(purple) connected. The back gate voltage was set to Vbg = 3 V. c) The measurement circuit
used in Fig. 44, with the left green top gate connected.

Furthermore, the back gate voltage was set to Vbg = 0V (see Fig. 42a and c) and Vbg = 3V (see
Fig. 42b and d), to map the effect of the split gates only and at maximum bandgap opening,
respectively. In Fig. 42a and b, the second harmonic voltages are shown for Vbg = 0 V and
Vbg = 3 V, respectively. Fig. 42c and d are the corresponding voltages in the first harmonic.

44



Figure 42: Voltage responses in the second and first harmonic for Iheat = 50 µA through the
right heater, using measurement circuit 41a. a) The y-component of the second harmonic
voltage response for −2.5 V ≤ Vsg ≤ 0 V, for Vbg = 0 V. It contains a peak around the charge
neutrality point (Vsg = −1.5V). b) The y-component of the second harmonic voltage response
for −2.5 V ≤ Vbg ≤ 0 V, for Vbg = 3 V. It contains a peak around the charge neutrality point
(Vsg = −1.5 V). c) The x-component of the first harmonic voltage response for Vsg in the same
range as in a. Also here, the charge neutrality point is around Vsg = −2 V, with values in the
µV range. d) The x-component of the first harmonic voltage response for Vsg in the same
range as in b.

Additionally, the large split gates were connected in accordance with Fig. 41b and voltages
between −3 V and 0 V were applied. An AC heating current of Iheat = 50 µA was applied on
the right heater (green) and the voltage was measured between two contacts in the BLG (dark
blue). The back gate voltage was set at Vbg = 3 V. The results are shown in Fig. 43. As this
measurement was done at a later stage, the doping of the device has changed, which might
have caused the charge neutrality point to shift.
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Figure 43: Voltage responses in the second and first harmonic for Iheat = 50 µA through
the right heater, using measurement circuit described in Fig. 41b. a) The y-component of the
second harmonic voltage response for−3 V≤ Vbg ≤ 0 V, for Vbg = 3 V. The peak of the CNP
(now, at Vsg = −0.75 V) has been shifted, which could be the result of a change in doping
due to repeated sweeping. b) The x-component of the first harmonic voltage response for the
same range in Vsg as in a, for Vbg = 0 V.

In Fig. 44, results from the measurement circuit described in Fig. 41c are shown. The top gate
(green) is swept between −3 V and 0 V. The right heater (green) is used to apply Iheat = 50
µA. Meanwhile, the voltage across two contacts in the BLG (dark blue) was measured with
two Lock-ins tuned to the first and second harmonic.

Figure 44: Voltage responses in the second and first harmonic for Iheat = 50 µA through the
right, using measurement circuit 41c. a) The y-component of the second harmonic voltage
response for −3 V ≤ Vtg≤ 0 V, for Vbg = 3 V. It contains a peak around the charge neutrality
point (Vsg = −2 V). b) The x-component of the first harmonic voltage response, measured for
the same range of Vtg at Vbg = 3 V.

Besides this selection, heating measurements were done in the large split gate configuration
at higher magnetic fields (B = 2 T, B = 5 T; see Fig. 36, giving us a QPC), while sweeping
finger gate 19. Furthermore, the right heater was swapped for the left heater to repeat a top
gate measurement. In these aforementioned measurements, however, no significant signal
was picked up.
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5. Conclusion

Nanostructures in bilayer graphene have promising potential applications in spintronics and
valleytronics - and is therefore a widely researched area since its discovery in 2004 [19]. Char-
acterizing thermotransport phenomena in bilayer graphene based quantum point contacts
and quantum dots brings additional insight into their transport phenomena and could pave
the way for more durable devices as harvesting thermopowers can increase longevity.

In this thesis, a BLG sample is encapsulated in hBN, with a graphene backgate. The top hBN
was etched to contact the BLG with Ti/Au to inject carriers and perform voltage measure-
ments (resistance characterizations) over the BLG. On top of the hBN, a series of top gates
and heaters (Ti/Au) were fabricated, amongst two series of 100nm separated split gates. The
sample was covered with a 30 nm Al2O3 dielectric layer to separate top gates from the four
100 nm wide finger gates, placed on top of the split gates. Through the combined action of a
top gate and back gate, an electric field was created which opened the band gap of the BLG.
However, gate-dependent resistance measurements indicate that the electric field induced by
the back gate is being screened by a layer of charges somewhere between the back gate and
the bilayer graphene. The origin of this layer of charges remains unknown. As a result, we
were not able to fully deplete the channel as defined by the split gates through the combined
action of back gate, split gates and (multiple) finger gate(s). By swapping the gate sweeping
order, we observed persisting vertical features in the results, which hint at an unintended
charging and discharging mechanism in the sample. Through applying a large magnetic field
(B = 5 T), we were able to deplete the channel and got a quantized conductance response,
however, a clean and detailed sweep could not be obtained due to the charging mechanism
described above.

Thermal transport measurements were also performed in the sample using the heaters. Based
on the resistance characterization of the sample, the Seebeck coefficient was estimated using
Mott’s formula (in the range of µV/K) and were in the similar range of the measured signals.
The temperature rise as a result of applying 50 µA in heating was estimated to be 0.5± 0.2 K
and clearly defined thermovoltages were measured as a result.
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6. Recommendations

For further research, it is recommended to use a different material for the heater, since the
golden heaters have almost no resistance change response in the low temperature range. Fur-
thermore, the fabrication steps described in this thesis can be used as a guide in the complex
manufacturing of this device. More devices need to be prepared to remove the effect of the
charging layer which we observed in this device. As a result, experiments may be realized
with larger electric fields , leading to cleaner size quantization steps and Coulomb oscillations.

Furthermore, the narrowing of the splitting between the split gates has been shown to result
in cleaner step-like structures in BLG [56] and may be useful to increase the expected thermal
signals from the QPCs.
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Appendix

Bandgap calculation
To estimate the bandgap opening in our sample, first, the electric field is calculated at the
charge neutrality point (as a reference, where Vbg − V

(0)
bg = 0) and is subtracted from the

electric field at Vsg = 3V. This is done as the back gate did not tune the electric field constantly
and thus the back gate contribution needs to be estimated. Rewriting Eq. 4 at n = 0 gives:

Cbg(Vbg − V
(0)
bg ) = Ctg(tg,CNP−Vtg,3), (27)

where theCbg(Vbg−V (0)
bg ) is the contribution from the back gate, tg,CNP is the top gate voltage

at the CNP (−2 V) and Vtg3 is the top gate voltage at Vbg = 3 V and for n = 0 (−1 V). As
Vtg0 − Vtg3 reduces to 1V, we can substitute this into Eq. 5:

E =
Ctg

2
−
Ctg(Vtg − V

(0)
tg )

2
. (28)

Filling in Vtg = −2 V and V (0)
tg = −1 V, we obtain E = 0.1 V/nm (or: D/0). This can be

converted into bandgap opening using [49], resulting in a bandgap of approximately 8±2meV.

Temperature calibration
Heating of the device as a result of Joule heatingwas estimated through the following formula:

∆T = P (RB +Rox +RSi), (29)

in which∆T = T−T0 is the temperature difference as a result of applying a voltage through a
heater,P = I2/Rh the dissipated power (with corresponding current I and resistance of heater
Rh), RB = 1/(hA) is the thermal resistance of the graphene - SiO2 boundary, Rox = tox/κox
the thermal resistance of the 300 nm SiO2 and RSi = 1/(2κSiA

1/2) the thermal resistance of
the Siliconwafer. Furthermore,A = LW is the area of the channel, h the thermal conductance
of the graphene - SiO2 boundary, κSi is the thermal conductance of the silicon and κox the
thermal conductance of the SiO2. However, the parameter κox was only available for the 70
K - 500 K regime, as well as an appropriate choice for h for the device in this thesis. A linear
extrapolation of κoxand keeping h = 108 W m−2 K−1 resulted in ∆T in the range of 10−5 K.
As a temperature induced by the heaters of around 0.5 ± 0.2 K is expected (for I = 50 µA),
this model cannot be used to calibrate the heaters.

Code
In this section, the code to model the thermpower for 2D, 1D and 0D are shown. It only
displays the relevant functions - for all of the code, please consult my github link, https :
//github.com/ianmrosales/quantum. The gate Vg was chosen to range from−5V to 5V (in
the bilayer graphene case) and the temperature was set at T = 1.8 K.

1 def dRdu(R):
2 """
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3 Parameters:
4 -----------
5 R: array
6 Values of resistances.
7

8 Returns:
9 --------
10 derivative: array
11 The numerical derivative of R, logarithmically transformed.
12 """
13 log = np.log(R)
14 derivative = np.gradient(log)
15 return derivative
16

17

18 def Mott(f, T, Ef):
19 """
20 Mott formula to calculate the Seebeck coefficient
21

22 Parameters:
23 -----------
24 f: array
25 The numerical derivative of log(R).
26 T: array
27 The measurement temperature (1.8K)
28 Ef: array
29 Fermi energy
30 Returns:
31 --------
32 mott: array
33 An array with Seebeck coefficients for different temperature

values.↪→

34 """
35 mott = cns.pi**2 * cns.k**2 * T * f / (3*cns.e*np.gradient(Ef))
36 return mott
37

38 def Efn(Vg):
39

40 # fermi velocity, 10^6
41 vf0 = 1e6
42 n = cns.epsilon_0*er*(Vg)/(cns.e*tbg)
43

44 #spin and valley degeneracies
45 gs = 2
46 gv = 2
47

48 # coupling coefficient, eV to Joule
49 gamma1 = 0.4 * cns.e
50

51 # effective mass
52 m = 0.033 * cns.m_e
53

54 # defining prefactor
55 A = 2 * gs * gv / (4 * cns.pi * cns.hbar**2 * vf0**2)
56
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57 # calculation of Ef
58 Ef = (-gamma1 * A + np.sqrt(gamma1**2 * A**2 + 2 * A * n))/(A)
59

60 n0 = cns.epsilon_0*er*(0.5)/(cns.e*tbg)
61 n_eff = np.sqrt(n**2 + n0**2)
62 return Ef
63

64 kox = lambda T: 0.515 + (0.515 - 0.658) / 25 * (T-75)
65

66 # assuming for silicon wafer:3e2 for T=1.8 and
67 # only valid for T<75
68 def Rox(dT, tox, T0, Lh, Wh):
69 kox = lambda dT: 0.515 + (0.515 - 0.658) / 25 * (T0+ dT/2-75)
70 return tox/(kox(dT)*Lh*Wh) # + dT/2s
71

72 def dT_fun(dT, P, tox, T0, Lh, Wh):
73 ksi = 3e2 # at K=0
74 h = 1e8 # thermal conductance of the graphene-SiO2 boundary
75 Rsi = 1/(2*ksi*np.sqrt(Lh*Wh))
76 Rb = 1/(h*Lh*Wh)
77 #T0 = 1.8
78 return P*(Rb + Rox(dT, tox, T0, Lh, Wh) + Rsi) *

np.ones(np.size(dT)) #- dT↪→

79

80 tox, T0, Lh, Wh = 300e-9, 1.8, 7.77e-6, 0.2e-6
81 T0 = 1.8
82 P = (5e-3) ** 2 / 30
83 dT_opti = lambda dT: np.abs(dT_fun(dT, P, tox, T0, Lh, Wh) - dT)
84

85 f = minimize_scalar(dT_opti, bounds=[0, 1])
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