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1 Introduction

For the probability-based design and assesment of marine structures interacting with sea waves, a
reliable knowledge of the long-term wave climate is required. Wave climate data are commonly
presented in the form of histograms of spectral wave parameters. The severity of a sea state is usually
expressed in terms of significant wave height Hs and corresponding wave period T.

From the earlier stages of the development of a statistical approach to wave climate, the advantage of
an analytical representation of empirical distributions of data through parametric models was
recognized. The compactness of analytical description, the standardization of the representation, and
the filling of information gaps, led researchers to use specific marginal and bivariate parameter
models, suitable for the description of wave height and wave period statistics.

Previous case studies

With regard to the marginal distribution functions of Hs and T, a large amount of case studies is
present in the literature. The most extensive studies that have been found were examined by
Mathiesen et al. (1993) and Maes et al. (1994). These two studies provide a detailed analysis of the
influence of the data selection procedure, the parameter estimation method and the chosen
distribution function for the estimation of return values (the significant wave height or wave period
corresponding to a return period of for example 50 years.)

With regard to the bivariate distribution functions of Hs and T, one of the first publications is made by
Houmb and Overvik (1976). They proposed to use a marginal distribution for Hy and a conditional
distribution for T. Ochi (1978) utilized the bivariate Log-normal distribution for the bivariate model.
Fang and Hogben (1882) proposed a development of the bivariate Log-normal distribution, in which a
correction for the skewness of the significant wave height distribution is included. It is the above two
basic approaches (Log-normal model and conditional distribution approach) that have been used,
almost exclusively up to present, for the joint wave height and wave period statistics (Haver (1985),
Burrows et al .(1986), Mathisen et al. (1990) and Chung-Chu Teng et al. (1996)).

Besides the above mentioned approaches, bivariate models that are based on the marginal
distribution functions are present in literature. These joint distribution functions contain a parameter y
describing the dependence between Hg and T. The parameter y is then defined by some

complex formulae which is called the dependence structure between Hg and T. Such models were first
posed by Fréchet in 1951, and, accordingly, the class of solutions of this problem is called the Fréchet
class. Mainly in more mathematical orientated literature ((Athanassoulis et al (1993), Morton and
Bowers (1997), Mardia (1970), Johnson and Kotz (1972), Johnson (1981), and Metcalfe (1997)), this
type of approach is found. The modeis are more sophisticated than the two above mentioned
approaches. For standard applications in civil engineering practice these models might probably be
too complicated and might not fit the wave data.

Aim of present study

The aim of the present study is to find a particular bivariate distribution function for Hs and T, which
provides a close fit to long-term (extreme) wave data presenting a deep water wave field. Several
types of joint distribution function for Hs and T are compared with reference to measured data. The
comparison is based on the utility of the distribution functions for predictions of extreme sea states.
The report is thus concerned with the estimation of extreme significant wave heights and wave periods
(zero-up-crossing periods or spectral peak periods).

The present study of bivariate functions is similar to the above mentioned case studies of marginal
distributions. it provides a detailed analysis of the influence of the data selection procedure, the
parameter estimation method and the chosen distribution function on the estimation of bivariate return

values.

in total five bivariate probability models are tested for the joint statistics of H; and T. These are:
- the bivariate Log-normal distribution
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- the bivariate Log-normal distribution with correction for skewness (the Fang and Hogben
distribution)
- the bivariate distribution constructed from a marginal distribution for Hs and a conditional

distribution for T
- the bivariate distribution based on a marginal distribution for Hs and a marginal distribution for the

(deepwater) wave steepness s
- the bivariate distribution with given marginals developed by Morton and Bowers (1997)

The fourth model is proposed by Vrijling (1998). It is based on the assumption that the significant wave
height (Hs) and the wave steepness (s) are independent. With in the calculations, first the bivariate
distribution of Hs and s is computed by simply taking the product of the marginals of Hs and s. Then
the bivariate distribution of Hs and T is determined by transforming the joint model of H, and s.

The fifth model is a distribution of the Fréchet class. Morton and Bowers (1997) have published an
article in which a detailed description is given about the application of the model to extreme wave
height and windspeed observations. They obtained good resuits. No further tests of the model are
known to the author. Therefore, the model is included in the present study.

Outline of the report

The report is divided in two parts. The first part describes each component of the statistical wave
analysis. These are

- the selection of extreme wave data (Chapter 2)

- the selection of uni- and bivariate probability distributions (Chapter 3)

- the estimation of distribution parameters (Chapter 4)

- the assesment of the goodness of fit of the probability models to the data (Chapter 5)

- the calculation of return values and confidence bands for return values (Chapter 6)
Furthermore it contains a description of the computer program (Chapter 7) that has been written for
the calculations.

The second part, i.e. chapter 8, contains two case studies. Marginal and bivariate distributions are
fitted to wave data measured at the coast of India (Karwar) and at the Euro platform located in the
North Sea.

Finally, chapter 9 presents the conclusions and recommendations of the study.
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2 Data selection

2.1 Introduction

In civil engineering practice the following sources of wave data are currently used:
¢ visual observations

e instrumentally observed data

¢ hindcasted data

Visual observations are routinely made from many ocean weather ships and land based stations.The
accuracy of the observations are wholly dependent on the experience and skill of the observer. An
example of measured data are sets containing 3-hourly wave buoy observations. The accuracy of
such measurements is relatively high. In the case of hindcasted wave data, historical wind data are
used in numerical wave models to calculate the wave conditions in the area of interest. The accuracy
of the hindcasted data depends on the type of wave growth model that is used.

As mentioned in the introduction, the present study is concerned with the analysis of extreme wave
data. Exdreme data must fuifil the following demands:

¢ the data set is homogeneous,

+ the observations are independent,

¢ the data set fully represents the maxima of the physical proces.

The first demand means that all data points with in the data set belong o one parent population with
an unknown distribution. The stationarity of the proces has to be studied. For wave data, this means
that the influence of different wave directions (stationarity in space) and the influence of seasonal
changes and inter-annual changes (stationarity in time) have to be analyzed. The homogeneity of the
data sets is dealt with in section 2.2,

Observations of significant wave heights are assumed to be independent when they correspond to
seperate storm events. To obtain a set of independent observations of Hs, the (mean) duration of a
storm event in the wave field considered must be known. If for example a (mean) storm lasts about 30
hours, one knows that when the time interval between two successive observations of Hs is smaller
than 30 hours, the two observations are correlated.

In the bivariate case, the selection procedure is more complex since it is possible for the variables to
have their maxima occuring at different time intervals. In section 2.3, this problem is discussed.

The third demand requires a selection procedure for extreme storm events. In general, three of such
procedures are in use. The first two approaches are statistical methods: the peak over treshold
method and the annual maxima method. The third method is a physical approach: extreme
observations are obtained by making distinction between storms of different nature, in section 2.4,
these methods are described.
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2.2 The homogeneity of the data set
2.2.1 Omnidirectional and directional data

Usually omnidirectional data is used for data fitting. The estimates made in this way do not account
explicitly for the directions of the wave or the winds generating them. An alternative is to categorize
the data into different direction sectors and fit for each sector theoretical probability distribution
functions. The total sample is thus divided into smaller samples. The distribution is then given by

@1 P(H,)=3 P(H,|8)W(6)
alle

where

P(Hy) distribution function of H;

conditional distribution function of H, for given ©;
weighting function representing proportion of sea states along direction © in
The entire population.

P (Hs| 0)
W (0)

The problem of the above approach is that the statistical uncertainty of the fittings proces increases
when the sample size decreases. In a case study (Burrows and Salih; 1986), it appeared that
predictions of extreme wave heights from certain worst direction sectors exceeded the equivalent
prediction using the complete data set.

2.2.2 Seasonal and inter-annual climate variability

In many cases, most heavy storms occur during some specific period of a year. In such situations, one
can choose to use oniy observations corresponding to that period of time. However, one must always
be aware of the possibility that important storm events may occur during the censored part of the year.

The change of weather between successive years, also called long-term weather changes or inter-
annual climate variability, can be studied by analyzing historical metereological data covering several
decades. Long-term trends that are significant should be considered in the wave analysis.

2.2.3 Missing data

If there is a large amount of missing data, one has to check the occurrence of important storm events
during the missing time intervals. One can choose to fill the gaps of the sample with data from other
sources, for example visual observations. However, one must always be aware of the possibility that
data coming from a different source is of a different degree of accuracy and probably measured at a
different location.

For marginal distributions, Castillo et al. (1994) proposed to raise the estimated cumulative distribution
function to the power (n+r)/n, where n and r are the number of known and unknown peaks,
respectively.
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2.3 The independency of extreme observations

Observations of extreme significant wave heights are considered to be independent when they
represent seperate storm events. In general, a storm event lasts more than 3 hours. This implies that if
a data set covers several storms and consists of 3-hourly measurements some of the data points in
the sample are correlated.

In order to obtain independent observations representing local maxima the minimum time between
successive storm events must be detemmined. This time interval, which is also called the cluster
interval, depends on the wave climate that is considered. A study of wave heights off the coast of
Norway (Mathiesen et al. (1993)) used an interval of 18 h. Another study considered with cyclones in
the mid-latitudes (Oke (1987)) worked with a time interval of 1 day.

The declustering of data is illustrated in an application to a sequence of significant wave heights in
figure 2.1. This figure and figure 2.2 are taken from a study made by Morton and Bowers (1997). They
used 3-hourly wave height and wind speed data measured in the northern North Sea and adopted a

time interval of 30 h.

Three deci d wave heigh
o7 o [l s
14
12 1
10 +

H, (melres)

[T S R A« I e o}
gt

o 2 32 0 120 12
Time [1/1/92-4/1/92] (hours)

Fig 2.1 Declustered wave heights (Taken from Morton and Bowers (1997))

The declustering of bivariate data is not immediately obvious. This is illustrated in figure 2.2. While the
same cluster interval of 30 h should be applicable, unique local maxima can no longer be defined. In
this report, the data points corresponding to the local maxima of Hg are assumed to represent the local
maxima of Hg and T.

Appendix [1] provides some details of the computer program that has been written for the declustering
of the presently used wave data sets.
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Extreme value analysis in a multivariate offshore environment
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Fig 2.2 Extremes and concomitants. (a) Maximum mean wind speeds and concomitant significant wave heights.
(b) Maximum significant wave heights and concomitant mean wind speeds. (Taken from Morton and Bowers
(1997))

2.4 The selection of extreme observations

The Peak Over Treshold (POT) method

The peak over treshold (POT) method is used to detect significant storm periods. For the marginal
analysis of significant wave heights, a common technique is to apply a fixed treshold value to identify
storm periods comprising a sequence of sea-states with wave heights all exceeding the given
treshold. It is then common practice to select the highest wave in a storm period, which is denoted as
the peak or extreme significant wave height.

The POT method is subjective, since the height of the treshold has to be chosen. Several studies
(Mathiesen et al. (1993), Maes et al. (1994)) have attempted to determine a standard methad for the
choice of the treshold level. Though, an appropriate procedure has not yet been found. In general, a
low treshold has the disadvantage that data points, which not represent extreme events, are involved,
whereas a high treshold implies relative large statistical uncertanties.
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An application of the POT method in the bivariate case, at least for wave height and wind speed
maxima, is presented in the paper of Morton and Bowers (1997). For the determination of the joint
treshold, they used procedures, which are specified to the bivariate distribution function with given
marginals. According to the article, similar procedures were used in several other studies (Joe et al
(1992), Coles and Tawn (1994)). Applications of the followed approach to other types of bivariate
models seem difficult. The method is described in appendix [3.3], together with the description of the
bivariate model of Morton and Bowers.

In the present report, the significant wave height is considered as the key parameter for the joint
treshold. Since the wave period and wave height observations are coupled, the treshold leve! of the
significant wave height can be used for the selection of extreme pairs of Hs and T.

When the POT method is used, the final set of data for the extremal analysis is determined by the
minimum duration between successive storm events, i.e. the declustering of the observations (section
2.3), and the height of the treshold level.

The annual maxima (AM) method

The annual maxima method selects the highest significant wave height per year. The annual maxima
method has been critized by several authors (Castillo et al. (1994)). Their objection against the
method is that it discards large significant wave heights, when they occur in years with large storms,
but includes relative small significant wave heights that are maxima of calm years. (Inter-annual

climate variability, section 2.2.2).

No application of the annual maxima method has been found in the bivariate case.

On physical consideration

This approach classifies and groups storm waves of different nature (waves generated by hurricanes,
monsoons and frontal systems, for example). Further it identifies and separates waves generated by
wind fields of different directions. In this way the hypothesis, that all the data come from the same type

of event, is better.

The difference with the statistical approach is that the selection of storm events is not fully based on
the set of wave data. In addition, other sources of information are used to detect the typical features of
the wave field considered. For instance, the local geography, the local bottom geography and the
pattern of local winds are studied in order to obtain realistic estimates of extreme storm events.

Example of the physical approach: Extreme wave conditions in the Thyrrenian Sea

An example of the physical approach is described by Cavalen et al. (1986). This hindcast study was
concerned with the prediction of extreme wave heights in the Tyrrhenian Sea (Mediterranean Sea). To
classify the different local storm events they started from the daily classification of the European
weather used by the Deutscher Wetterdienst. This classification is based on a pattern scheme made
by Hess and Brezowsky (1969). it includes 29 different patterns. For practical purpose, Caveleri et al.
reduced this number to 4 (named A,B,C and D) as shown in the table below.

Table 2.1 Relationship between the four basic types of storms identified in the Thyrrhenian Sea and the European
weather definitions by Deutscher Wetterdienst (Taken from Cavaleri et al. (1986))

Storm type Deutscher Wetterdienst definition

NA SA, SWA,SWZ NWA HM, HNA HB HFA

NEA,NEZ NZNWZ, TRM,HFZ,HNFZ,BM

HNZ WS WZ WA WW, SZ SEA

TM,SEZ, TRW,TB HNFA

OO w>»

On basis of 30 years of meteorological (wind) data they selected 80 storm events and classified them
to the four different classes of storms. In this way, four homogeneous sets of extreme data were
obtained, representing four different types of storms.

The number of storms (80) that has been chosen is subjective. In the case of a hindcast study it
depends basically on two factors, (a) the costs of the computations, (b) the accuracy of the final

results.
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Another example of the physical approach is presented in a paper written by Van Gelder and Vrijling
(1998). In their article, the homogeneity of wave data sets is discussed. Also the deita report, which is
dealt with the analysis of (North-Westerly) storms in the southern North Sea, provides a good example
of the “physical approach”.

2.5
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Probability density functions

Introduction

Section 3.2 provides background information about the selection of marginal distributions for an
extreme wave analysis. First marginals are described which are based on the extreme value theory.
Second, marginals are discussed which have much been applied and recommended in earlier case
studies. In section 3.3 the presently used marginals are given.

The used bivariate distributions have aiready been introduced in chapter 1. These are:

the bivariate Log-normal distribution

the bivariate Log-normmal distribution with correction for skewness

the bivariate distribution based on the product of a marginal and a conditional distribution
the bivariate distribution proposed by Vrijling (1996)

the bivariate distribution with given marginals developed by Morton and Bowers (1997)

The bivariate probability models are described in section 3.4.



Probability density functions
3-2

3.2 Candidate marginal distribution functions
3.21 The three asymptotic distributions of extreme values

Let the probability density function and the cumulative distribution function of a random variable X be
denoted by f(x) and F(x), respectively. These functions are called the initial probability density function
and the initial cumulative distribution function, respectively. The largest value expected to occurin n
observations, denoted by Y,, is also a random variable and follows its own probability law, which is
different from that applicable for the random variable X. Let the probability density function and the
cumulative distribution function of this variable be written as g(y.) and G(y.), respectively. The
probability functions f(x), F(x), g(y.), and G(y.) have mathematical relationships. Therefore, the
extreme values can be evaluated precisely from knowledge of the initial probability distribution.

These relationships can be derived by use of order statistics. Let a set of observations (x4,X;,...X») be a
random sample of size n from a distribution with probability density function f(x). When the elements of
this random sample are rearranged in ascending of magnitude such that y< y, < ....<y,., then
(Y1,Y2,..,Yn) is called the ordered sample of size n, and Y; is called the jth order statistics (j = 1,2...n). (Y;
is a stochast, y; is the “actual value”).

As discussed in the previous chapter, the random variabies X;,X,,..X, are statistically independent and
have all the same probability density function f(x). On the other hand, the random variables Y+,Y5..,Y,
are statistically independent and each has its own probability density function.

The joint probability density function of Y4,Y»,...,Y,, denoted by g(y,, ¥,,...,V,), is given by

(3.1 gy, Yy, )= f () f ()

The probability density function of the largest value, Y;, can be obtained from equation (3.1) in terms
of the probability density function f(x) and the cumulative distribution function F(x) as follows:

(3.2) g =" [ [ fONF ) F ) dyidys. dy,

Carrying out successive integration, the following equation can be derived

33 gy, =nl f(x»%m‘(yn){lv(yn)}""‘

The cumulative distribution function of Y, becomes,

(3.4) G =[" gy, ={F (¥
Rewritting equation (3.4) gives:

(3.5) G(y,)= {F(yn)}” — " loRF ()
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It can be seen in the above equation that log(F#'(y,)) — 0 for n — . Hence, the value of G(y,)

depends entirely on the asymptotic behaviour of the initial distribution function F(x) towards the

extreme value.

If the tail of the initial (cumulative) distribution is of the exponential type, the distribution asymptotically
converges to the Type 1 asymptotic extreme value distribution. The initial distribution is unlimited
towards the extreme value and all moments exist. Examples are the exponential, normal, log-normal,

chi-square, and so on.

If the tail of the initial distribution is given by
36) Fx)=x"?,

in which b is a constant value, the distribution asymptotically converges to the Type 2 asymptotic
extreme value distribution. The initial distribution is unlimited towards the extreme value but only a

finite number of moments exist.

If the tail of the initial distribution is linear, the distribution asymptotically converges to the Type 3
asymptotic extreme value distribution. The initial distribution is limited at the upper and/or lower
bounds.

Type I: the Exponential family
The Exponential family is also called the Fisher-Tippett-type 1. For fitting of wave data, the main
distribution of this family is the Gumbel distribution.

The cumulative distribution function of the Gumbel is given by

(3.7) F(x)= exp[— exp(— (—x—;—ﬂﬂ

The Exponential family of distributions permits unlimited values of the variables. The area under the
tail of the distribution curve must converge to zero for large values of the variable at least as strongly
as the tail of the Exponential function, Exp(-x). For the members of this family al moments exist.

Type ll: the Cauchy distributions

The Cauchy distribution is also called the Fisher-Tippet-type 2. This family of distributions has no
moments beyond a certain level order. The distributions have very long tails so that they converge
less strongly than those of the Exponential family do. For the statistical analysis of wave data, the
main distribution of this family is the Frechet distribution.

The cumulative distribution function of the Frechet is given by

5 £
(3.8) F(x)=exp ~(x~it}

The Cauchy distribution has no variance. The sample variance will increase in an unbounded way as
the sample size gets large. (Thus the variance of the distribution does not converge to the sample
variance as the sample size increases).
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Type Ili: the Weibull family

The Weibull distribution is also called the Fisher-Tippet-type 3. The members of the family are
distributions with an upper or fower limit. The largest or smallest extreme value is thus bounded; the
limit is a parameter of the extreme value distribution.

Examples of this family are the Weibull distribution and the Beta distribution.

The cumulative distribution function of the Weibull is given by

B
(3.9) F(x)= expP (E—;}ij }

3.2.2 Distribution functions recommended in earlier case studies

Besides the above mentioned functions, in case studies also other distributions are used for extreme
wave analysis. Examples are the Weibull distribution, the Log-normal distribution, the Pareto
distribution, the Logistic distribution and the Exponential distribution.

In most of these studies (see references of chapter 1), the Gumbel, the Weibull and the Log-normal
distribution provided the best fit. The good fit of the Weibull and the Log-normal distribution might be
explained by their relative long tails. According to the earlier case studies, these two functions provide
a better fit to extreme wave data than the Frechet, which is theoretically justified.

3.3 Marginal distributions of present report

Apparently, a large number of distribution functions are used for extreme wave analysis. It would be
too extensive to test each of these distributions. Therefore, only the most recommended and applied
distributions are tested in the present report. These are:

- the Exponential distribution

- the Gumbel distribution;

- the three-parameter Frechet distribution;

- the three-parameter Weibull distribution;

- the two-parameter Log-normal distribution.

Some parameters of the above distribution functions are listed in tabie 3.2.
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Table 3.2 Some parameters of the chosen marginal distributions (Taken from Castilio (1988))

Gumbel

Weibull

Frechet

F(x) (x =) B 5 VP
exp| —exp| — _ [x-A -
p[ p( 5 ﬂ : eXp[ ( 5 ” exp{ [x—x”
f(x) —A X - - 5 TP 5 P
ool 22T o (12 T
6, & )
Range —o<x<o0<d<w~o<i<e [X<A,0<8<00<P <o x>2A,8>0,>2
Mean A+0.577726 1 1
A+ol1+— A+l 1——
B B
Variance 2q2
mo 8l r1+2]-12141 5{1"(1—3)—1“2(1—}_)}
6 B B B B
Exponential Log-normat
F(x) x—)
-l L[ Loy J(l0za )],
278 90 x | 2 ) |
f(x) %exp{—ﬁgﬂ} 1 exp ~l(log(x)_;v)l
V28 2 o
Range |x>A 0<8<x X <X<X,~0<A <X, —w<H <X
Mean }\’+ 5 1 "
exp| A+—=96
2
Variance | 52 exp(21)exp(8*)(exp(5°) ~1)
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3.4 Bivariate distribution functions

Before the theoretical distributions are introduced, first some typical features of bivariate wave
observations are discussed. Figure 3.1 shows an example of observations of Hs and T, at one
location. It is nearly always found that the area containing the observations is bounded on the upper
side by a line of constant wave steepness (Tucker (1991)). In the illustration, a wave steepness of 5%
has been used. Assuming a deep water wave field and starting from the linear wave theory, the wave

steepness is defined as

(3.10) 5, =—t=

Hs [m]

wind waves :
! (hatched area) ¥

Fig. 3.1 Example of observations of Hs and T, at one location

The upper figure represents a wave climate under the influence of both wind waves and swell. The
correlation between the significant wave height and peak periods is insignificant. For an extreme wave
analysis, the observations of swell should be censored and only the observations above a relative high
treshold level (the choice of the treshold level is subjective (chapter 3)) should be selected. The
correlation between the extreme observations, shown in figure 3.2, is relative strong.

s=5%
; s=3%

« storms

treshold level

Hs [m]

Tpls]

Fig 3.2 Extreme observations of Hs and T, (corresponding to figure 3.1)
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The location parameter of this conditional function is equal to the conditional expectation of T, given
Hs=c and may be written as (see appendix [2])

or,

P

Sn
(3.17) g(H,) = E(T, JHS)=expPTF u{ ‘](long A, )}

The above expression is called the regression function of T, on H, . This regression function describes
the wave period as a function of the significant wave height and gives an indication in which way the
model relates Hs and T,. (See fig 3.3). Apparently, the bivariate model describes the correlation
between H, and T, with an exponential function. Note that the scale parameter of the conditional

function is constant.

/9(Hs) (e.g. 3.13)

\\\

“f(Tp | He)

Hs [m]
\

Tplsl

Fig 3.3 lllustration of regression function of T, on Hs (MODEL 1)

3.4.2 Model 2: the bivariate Log-normal distribution of Hs and T, with a correction
factor for skewness

In the wave study made by Ochi (1978) it appeared that the fit of the bivariate Log-normal distribution,
applied to various sets of data, was good for the bulk of the probability mass. However the tails, in
particular that of Hs, were not well matched beyond a probability of about 0.99. An attempt to improve
the model has been made by Fang and Hogben (1982). They included a measure of skewness in a
term modifying the Log-normal form of the marginal distribution of H..

The probability density function of this bivariate model, also calied the Fang and Hogben distribution,
is given by

JH,.T,)= 0.5 2*
H T, 78y 67 1~ p
(3.18) (logT, ~ iz )
< 5,2 K
* expd = 20 L, 1_%[3@%;{5 -6y )= (ogH, -8y )3]]

1-p% | 2p(logT, - iy YlogH, iy ) (logH, ~ iy )
) . :
5H_.an 5;1:2
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It is interesting to study in which way the following parametric models describe the correlation between
Hs and T,. To obtain a realistic approach of the joint probability of occurrence of Hs and T, the
bivariate function of H and T, should be based on physical laws.

One could suggest describing the relationship between Hg and T , with a formula similar to the wave
steepness equation. In that case, it is given by

(3.11) H, =aTl,’
or
(3.12) T,=af,'"?

in which a is some constant value.

3.4.1 Model 1: the bivariate Log-normal distribution of H; and T,

Ochi (1978) introduced the use of a bivariate Log-normal distribution for the joint distribution of the
significant wave height and the wave period. The probability density function of this model may be
written as

0.5

T,H, a5 57 |1~ p*

*

f(HSSTp)z

(3.13)
0.5 |(ogT, =4 ) 2p(logT, ~ Ay YIogH , Ay ) , QogH, — 2y, )’

I-p o‘TPZ 0y,0r, Sy’

5

* expd —

2

The estimators of the parameters Ar Ay, .07 . and 5y are similar to those of the marginal Log-
normal distribution. (See chapter 4).

Relationship between H; and T,
The parameter p is a linear correlation coefficient between the two variables, and may be written as

- Cov(log(T,).log(H )

(3.14) P

r Oy,
Using the equation

SHT,)
3.15 T,|H,)="~—"-2"
(3.1%) ST, 1H) )

the conditional distribution of T, given Hs = ¢ ,(c>=0, c=constant), follows as

(3.16)

>

Tr }(IogHS Ay, )}

5

::a

f(H,.T,) logT"{ﬂvr"w(
SO Sy ! exp| — —

ST, |H)= = —
? S(H) T,0r, V2r(1-p) 2 sy, ‘/1~p2
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where k. is the coefficient of skewness for log He. (The remaining parameters are similar to those of
the bivariate Log-normal distribution.)

Relationship between Hs and T,
The characterisation of the relationship between Hs and T, is similar to those of the bivariate Log-

normal distribution (See fig 3.3).
3.4.3 Model 3: T, conditional on H;

This model consists of a marginal distribution for the significant wave height (Hs) and a conditional
distribution for the wave period (T,). It is based on the expression,

(3.19) fUH T, = f(H)f(T, | H,)

In earlier case studies (Mathisen et al. (1990), Haver (1985)), the Weibull and Log-nommal distribution
were used for the marginal and the conditional distribution of Hs and T, respectively. In the present
study, the selection is based on a preceding marginal analysis of Hs and T,.. (The conditional
distribution of T, is modelled by the distribution that provides a close fit to the wave period
observations of all classes of Hs.)

In the considered bivariate function, the parameters of the conditional distribution are defined as a
function of the significant wave height.

At first, the parameters of the conditional distribution are estimated for each class of H by using one of
the parameter estimation methods described in chapter 4. This gives a discrete version of the
conditional function, which may be written as

f(Hs 'Tp)i:]_,n zf(Tp lepéh/il(sﬁ]))-*-f(Tp 1H52~é‘2‘22(9‘€2))+f(7’p 'Hsn;énsﬁ%(7ﬁn))

(3.20) i o
=S T, 1H,y: 6 A B
n=1

where 5:. ,):i and ,B; are the scale, location, and shape estimators for each class of Hs. (The shape
estimator is only valid for three parameter distributions).

Secondly, for each parameter of the conditional distribution function, an empirical regression function
is selected, which defines the relationship between the parameters and the significant wave height. In

earlier case studies (Mathisen et al. (1990), Haver (1985)), various empirical regression models were
applied. These functions were similar to expressions like

g(Hs)i :aHS +b
(3.21) g(H,),=aH > +bH +c

g(Hs)i :aexp(bHs)+cexp(st)

in which

g(H ), = estimators for the parameters of the conditional distribution as a function of Hs
(i=1: scale parameter;i=2 location parameter; i=3 shape parameter)

a,bandc = parameters of the regression functions.

Vv = significant wave height

o
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The above functions are applied in the case studies of chapter 8. The parameters of the regression
functions (a,b(,c)) are estimated with the (non) linear ieast squares method.

Finally, the fitted regression lines are used to compose a continuous conditional distribution function,
which then follows as

(.22 [T, 1H)= [T, | H:8(H).8(H ) (gH)3)
in which the parameters of the function are formulated by g(H,),,g(H,), and g(H,),.

Relationship between H; and T,
The function describing the location parameter of the conditional distribution as a function of Hs, i.e.

the function denoted by g(#,), , is similar to eq. (3.17). It is therefore also called the regression
function of T, on Hs. The function indicates in which way the two variables are related in the bivariate
model.

The three above mentioned regression functions are purely empirical. In order to include the physical
proces, one could suggest to use a regression function for the Jocation parameter, which is similar to

equation 3.12. Thus,

(3.23) g(H ), =a(H,)"?

in which

g(H ), = estimator for the location parameter of the conditional distribution of T, as a function
of Hg

a = parameter of the regression function.

H = significant wave height

5

In fig 3.4 the different regression lines for the expected value of T, given M, are shown.
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Hs [m]

Hs [m]

g({Hs) (g.q. 3147 (1)

e
,/
,//
Tp (sl
g(Hs) (e.q. 317 (3)
~f(Tp|Hs)
Tp fs]

Hs [m}

Hs [m]
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a{Hs) (e.cl. 317 @)

Tp [s]

g(Hs) (e.q. 3.22)

/

i
S f(Tp|Hs)

Tp{s]

Fig 3.4 lllustration of regression functions of T, on Hs (MODEL 3)
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3.4.4 Model 4: Joint distribution of H; and T, derived by transforming P(H;,s)

This method has been proposed by Vrijling (1996). It is based on the assumption that the significant
wave height (Hs) and the wave steepness (s) (e.q. 3.10) are independent. Since the wave steepness
(s) and the significant wave height (Hs) are assumed to be independent, the joint probability density

function of these variables can be expressed as

(3.24) S(H,,5)= f(H)f(s)

The joint probability function of the significant wave height (H;) and the wave period (T) can be derived
from the above equation by using the following transformation procedure

(3.25) f(ybyz):f(xpxz)}‘]’
with
o O
_
(3.26) |J = % 6xl
M O,
where J is the Jacobian of the transformation. Thus, when
2 172
(3.27) x=H, x,=s, yles; y'z:[ 713(;}
£x,
the partial derivatives of equation (3.26) follow as
—é{l—"l' &x,  2x
A e 3 - o , 2
(3.28) iyl 53"1 a(yy)
oy _ o 0%y _ —dny,
Ovy v, gv,)’
Therefore,
' 1 0 4
(3.29) |J =] 2r  —4m, :“__72_311_3_
2, g0, &)
and thus,
4 .
(3.30) SH,Tp)= fEH DN = fH )L
g(y3)

Note that this derivation is only valid for the deep water wave field.
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The relationship between Hs and T,

In the preceding paragraphs the relationship between Hs and T, has been modelled by an expression
called the regression function of T, on Hs_For model 4, this regression function is similar to the
parabolic curve ssgy, , which represents the wave steepness value that is not reached by 50% of the

waves.

Example:

If the wave steepness is described by the Gumbel distribution, the wave steepness that is not reached
by 50% of the waves follows from

P(s

» < s) = Fsp (5) = exp(—exp(—{(s - 1)/ 6)) =05

or
Sp(SOWo) = /’)u - 510g(—‘ log(O.SO))
The above mentioned parabolic curve ssg, is thesdescribed as

H,=al,’
with

_ S p(s0%)y9.81

2%
g(Hs) (s..)
£ “f(Tp | Hs)

Tps]

Fig 3.5 lilustration of regression function of T, on Hs (MODEL 4)
3.4.5 Model 5: a bivariate model of Hs and T, developed by Morton and Bowers

In this section the joint probability function (pdf) of Hs and T, will be determined according to a method
that is proposed by Morton and Bowers (1997). In a recent published paper they illustrated a bivariate
analysis which included a point proces model of extreme events together with a function describing
the joint dependence of the two variables. Their study was concerned with the joint distribution of
extreme wind speeds and significant wave heights, without any consideration of their directions. (The
corresponding sets of data consisted of environmental data for 1990-1994 from the Shell UK
Exploration and Production North Cormorant Platform in the northern North Sea).
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According to Morton and Bowers (1997) the construction of a pdf describing the variables’ joint
extreme behaviour consists of four key elements:

determining which observations are “extreme” (data selection);

modelling the extreme observations with marginal distributions;

modelling the dependence between the marginal variables;

combining the marginal and the dependence models to provide a final model of the multivariate

extremes.

rop=

The methodology is summarized in figure 3.6 with the four key elements A,B,C, and D marked.

The first two steps, the key elements A and B, have already been described previously. The third step
is the modelling of the dependence between the marginal variables. This proces, which is shown in
box C of fig. 3.6, involves a transformation to unit Frechet space. It then requires a further
transformation which combines the seperate variables into “pseudo polar” coordinates before fitting an
appropriate function to describe the dependencies between the multiple variables.

When the marginal distributions and the depence model are computed, the joint pdf can be
constructed, (box D). The complete joint pdf (box D) combines information from the marginal
distributions and the dependence structure

A detailed description of the method is given in appendix [3]. The joint distribution function is given by:

52
(3.31) oo, P(X,>x,X,>x,)
where
(3.32 P(X,>x,X, >x,)=exp(-V(2))
Therefore,
o? oz, Oz,
(3.33) e L > X ) = V(2 (2) - L’]z(z))gx—‘:ngexp(—ff(z))
where

1
@ ®
(3.34) V(z)= (-1—) +(-1—}
z z,

is the logistic mode! and

av 1Y (1Y)
(339 P& = =(-2"") H ”{"J
“1

ﬂ’
Cz,

—
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aV - 1 ® 1 P [}
(3.36) Vy(z)= 2 = (-2,") [-—j +(—-)
0z, Z Z3
o

N 1Y o
- = ("21'(971 )(“zzg(w X1-0¢) (”") + ("—]
0z,0z, z, 2,

In the above equations, x, and x, are the significant wave height (Hs) and the wave period (Tp),
respectively. z, and z, represent H; and T, transformated into the Frechet space.

(3.37) V,(2) =

Relationship between Hg and T,
As mentioned above the dependency between the variables is defined by a logistic depence function
(e.q. 3.34). This function contains the parameter @ which is a correlation coeffient between the two

variables.
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It must be noticed that although the model might provide good results, the theoretical background of
the model is quite complicated. For civil engineers this model will probably be considered as a black

box.

Complete data set
Of X1 and Xz

o

Set of declustered
QObservations of X4

Identify “independent
Extremes” of X4

~,

Set of declustered
Observations of Xz

Identify “independent
Extremes” of X2

Fit marginal distribution
function

_______________ \/

function

Fit marginal distribution

Transform observations
X1 to unit Frechet space

Transform observations
Xz to unit Frechet space

Transform to pseudo
polar coordinates

'

Identify joint
extremes

I

function

Fit dependence

_________________________________ e

Construct joint pdf

Fig 3.6 Schematization of the bivariate model developed by Morton and Bowers (1997)

(Bivariate distribution with given marginals)
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4 Parameter estimation methods

4.1

Introduction

In this chapter, several parameter estimation methods are described for the marginal distributions.
The estimation of parameters of the bivariate model which do not correspond to the parameters of the
marginal functions, for instance the dependence parameter of the bivariate Log-normal distribution,
have been discussed in the preceding chapter.

The following estimation methods are used in the present study:

The method of moments
The linear least squares method
The non linear least squares method

The maximum likelihood method

in section 4.2 to 4.4 the above estimation methods are described. In the last section of this chapter,
the bias and efficiency of the estimators are discussed.
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4.2 The method of moments

The method of moments is the most widely used fitting technique, because of its simplicity. The
methad works by equating the first m statistical moments of the target distribution to the moments
derived from the observations. The number of statistical moments that needs to be used is equal to
the number of parameters of the target distribution.

The estimated values of the parameters are expressed in terms of ¥ , X~ and X° as indicated in table
4.1. Here X ,X” and ¥ are obtained directly from the data and are defined as follows:

l n
(4.1) X=—3x
h i=1
(4.2) g =1 x,
h i=1
(4.3) =1 x>

The Weibull and the Frechet distribution involve three parameters and of these, the third parameter,
i.e. the shape parameter B, is estimated by equating the skewness of the sample to that of the model.
The remaining parameters ¢an then be estimated from the first and second moments. The skewness
of the sample is

B, ¥ -3¥x’ +2(¥)’

u;/z - (5(—2 __(f)z)z/z

(4.4) skewness =

in which p, and ps are the second and third central moments of the distribution.

The reliability of the estimated parameter values diminishes with the ‘order’ of the statistic, especially
for samples of limited size. In consequence, the computed values of skewness, being a third order
statistic, shows much greater scatter than that shown by the sample mean and standard deviation
which are determined from the first and second order moments, respectively (Burrows, Salih; 1986).



Parameter estimation methods

Table 4.1 Parameters of distributions as estimated by the method of moments

43

Distribution Estimated parameters
p 5 »
Exponential - (%7 - (%)) -8
Gumbel - X 5
[.6_(552 - (®)H)"? Yo
i
Weibull skewness r 2 - (%) 7 X- 81“(1 +1 /ﬁ)
TA+2/B)-T2(1+1/p)
Frechet skewness r 7 — (%) 7 X - 81"(1 -1 /ﬁ)
T(1-2/B)-T*(1-1/P) |
Lognormal -

NX—;Z

=)

log(¥) - —;—log{

4.3 The linear least squares method

The principle of the least-squares method is based on minimizing the sum of squares of the
differences between the cumulative distribution function (F'(x; A,5(, #))) and the (empirical) data

values (y). The method is based on the minimization, with respect to the parameters of the chosen
distribution, of the distance

(The observations are rearranged in ascending order with the smallest value

(4.5) S, - F(x;4,6(8))
i=1
or
(4.6) yP=min Y (y, - F(x;4,6(8)°
i=1
in which
n = total number of observations in the data set.
i = index number
Xi = observation i (abscissa) .
being assigned the order number i=1))
Yi = empirical non-exceedance probability of observation i (emp. ordinate)

F(x,,A4,6(,8)=
A,0,pB =

6.8 =

theoretical non-exceedance probability of observation i (theor. ordinate)
location, scale, and shape parameter of the cumulative distribution function

estimator of location, scales, and shape parameter of the cumulative
distribution function (shape par./est. only valid for the Weibull and the Frechet

distribution)
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Extreme value distributions are non-linear functions. The least squares method can be applied after
transforming the selected distribution in such way that when the cumulative distribution function is
plotted against the data points a straight line is obtained. This approach is found in various extreme
wave analyses (Mathiesen et al. 1993; Maes et al. 1994). The estimation method is called the linear
least squares method and is based on minimization of the distance

4.7) ZZ = min Z(yi —(A4+ Bx, ))2
i=1
in which
n total number of observations in data set.

index number

observations i (abscissa) .

(The observations are rearranged in ascending order with the smallest being
assigned the order number i=1))

transformed empirical non-exceedance probability of observation i

(emp. ordinate), see table 4.2.

slope of linear regression line

intercept of linear regression line

i
X

Yi
A
B

The slope (A) and intercept (B) of the best-fitted linear regression line are determined by finding the
2

o) oy’ .
roots of the partial derivatives 9 _ and 8LB of equation 4.7. The derivation of the parameters A and

B is given in appendix [4]. The estimators of the distribution parameters can be derived from the slope
and intercept of the linear regression line. (See table 4.2).

Table 4.2 Scale relationships for probability distributions

Distribution Abscissa scale (x) | Ordinate scale (y) Slope(A) Intercept(B)
Exponential X —log(1- F(x)) 1/6 -ilé
Gumbel X —log(-log(F(x))) |1/8 ~-1/4
Weibull log(x — A) log(—log(1- F(x))) ﬂ - [3 logS
X (—log(1- FO))'® | 1/68 ~A/8
Frechet log(x — 1) —log(—log(F(x)) ﬁ - Blogé
x (“log(l-F) ' [Us  |-4/3

With the linear regression method only two parameters can be estimated. Therefore, the third
parameter of the three-parameter functions will have to be estimated with a trial and error procedure.

In table 4.2 two methods for linearization of the Weibull and the Frechet distribution function are listed.
The first method requires an estimation of the location parameter (8), the second requires an
estimation of the shape parameter (B). A first approximation of the location parameter() is the lowest
value of the sample -0.1. Least squares estimators for the Log-normal distribution have not been
derived in the present study.

When least squares methods are used, one is faced with the problem of assigning proper probability
levels y; to the observed data values x; i.e. choosing the plot position such that the bias in the
parameter estimate is minimized. This is a vital problem, as an improper choice of the plotting position
formula may lead to highly biased parameter estimates.
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For each cumulative distribution function (cdf), the optimal choice of the plotting position formula is
different. In the present study, the plotting formulas recommended by Goda (1988) will be used. The
recommended plotting formula for each distribution is shown in table 4.3.

Table 4.3. Plotting position formulas
(n=total number of data points; n: =total number of storm events ; k=scale parameter cdf)

Distribution function Name plotting position Plotting position formula
formula {emp. ordinate)
Exponential Gumbel / Weibull i
n+1
Log-normal Blom i—0375
n+025
Gumbel Gringorten i—044
n+0.12
Weibull Petruaskas and Aagaard i—049-050/k
n+021+032/k
Frechet Goda and Kobune i—-011-052/%
n,+023-022/k

4.4  The non linear least squares method

Least squares estimating equations are obtained by finding the root of the partial derivates of equation
(4.6) with respect to the parameters of the distribution function:

~, 2 ~ 2 ~ 2 N\
(4.8 -O—Z—:O;O’( =0; ox :OJ
06 oA o

The above set of equations can be solved analytically. Here the non-linear least squares estimators
are determined by the direct minimization of equation (4.6). This iterative procedure requires an initial
estimate of the parameters. For this estimators calculated with another fitting technique, for example
the linear regression method, can be used.
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4.5 The maximum likelihood method

This method is based on maximizing the likelihood function of data with respect to the parameters.
The central idea consists of assuming that the sample comes from a population with a distribution
belonging to a parametric family and choosing the parameter values that maximize the probability of
occurence of the sample data.

The parameters of the target probability density function f(x,; 8, A(, #)) should be chosen such that
the likelihood function

“9) L0653 ) = 1 £ (538,20 B)

is maximized by the choice of the model parameters. L can be considered as the probability of getting
the particular set of data values x;. The maximum of L is achieved by the mode! parameters for which
the partial derivatives are equal to zero:

op

In practice, it is more convenient to work with the logarithm of the likelihood L, which attains its
maximum for the same values of the mode! parameters as L itself.

(4.10)

) - '

oL _,0L_ (e
25 oA

The loglikelihood function can be written as
(4.11) log L(x,,X,,....,x,) = > log f(x,;5, 4, 8))

The maximum of log L is achieved with a set of equations similar to eq. 4.10, with the difference that L
is replaced by Log L. The derivation of the maximum likelihood estimators for the presently used

distributions is presented in appendix [5].

The maximum likelihood estimators of the distribution parameters are listed in table 4.4. Note that the
estimators for the parameters of the Weibull and the Frechet distribution have to be determined

iteratively.
Instead of using the formulas of table 4.4, one can aiso obtain maximum likelihood estimators of the

distribution parameters by direct maximization of the loglikelihood function.
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Table 4.4 Parameters of distributions as estimated by the maximum likelihood method

Distribution Estimated parameters
Bl 8 A
Exponential X -x, () X, (%)
Lognormal - @ ) 172 7 **)
7 Z (Z,-Z)| ™
j=1
Gumbel - n " .
X A X.
. Dox, exp[» —1»} - Slog(n™>” exp[~ E’—}
-1 i=1 i=1
n X, -
i=1 o
Weibull n .
> (x, -2 =67
i=}
Z(xi _’{)ﬁ Iog('xi —/i) 1 1
i=1 - ~= -——-Z(xl. -A)=0.
(x, - A o M
Frechet

~
co i=1

7 " « N\
Slogl n n o B
) ﬂ+w+)5 Z[(x,-—l)] 5

3
-
™

cloglL <

={ [ +1 v
e # ){;T(xl =
clogl

ap

n . Z )
=—~—+nlog(d)+ » —loglx, - )+
< +nlogd)+ 3 ~logtx; = 4)

i=1

+ Zl~ log(x, ~1) - Z,((x—%—ﬂ)ﬁ logL e /{)J =0

Al_/z)‘i(}(x,»o—l)J (xi[ii)

(&

(*) x, =min(x,)
(™ Z, =log(x,)
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Bias and efficiency of estimators

4-8

The previous sections provided several methods for the estimation of the parameters of a (marginat)
distribution function. This section has been included in order to mention the random character of the

estimators.

A parameter of a distribution function is estimated from a set of observations. The observations are
considered to be independent extractions of a random variable. (In this study the random variables are
the significant wave height and the wave period). Since an estimator of a distribution parameteris a
function of the sample data, the estimator is a random variable.

Each estimator can thus be defined with a probability density function (pdf). When the expected value

of the pdf of the estimator é is equal to the true value of the unknown parameter &, then the
estimator of the parameter is unbiased. Thus, if

4.12)

E@)=6

The bias of an estimator is the expected value of the difference between the parameter value and the

estimator value:

(4.13)

Bias=FE(#-60)=E@)-0

The value of the standard deviation of the estimator with respect to the parameter value is defined as
the efficiency of the estimator:

(4.14)

Efficiency = E[(8 — 6)*]

Since for the determination of the bias and efficiency of an estimator the true distribution must be
known, for wave statistics these properties of an estimator can only be studied by using numerical

simulated data.

Beem (1992) and Slijkhuis (1996) have studied the efficiency and bias of the applied estimation
methods. To this end, 14 sets of 10 data points were generated from an Exponential distribution
function with location parameter A=1.96 and scale parameter B=0.33. For each data set, the
parameters of the distribution function were estimated. With the outcome of the estimation proces, the
efficiency and bias of the three estimation methods were computed. The results of their studies are

listed in table 4.5.

Table 4.5 Unbiasedness and efficiency (Exponential distribution function (A=1.96;B=0.33))
{Taken from Slijkhuis(1996));

Method of moments

Least squares method

Least squares method

Maximum likelihood

(linear) (non linear) method
Unbiasedness A | 0.002 0.037 -0.016 -0.087
Unbiasedness B [ 0.02 -0.015 0.048 _10.165
Efficiency A 0.089 0.037 0.058 0.125
Efficiency B 0.126 0.087 0.125 0.187

The table shows that in this case the method of moments provides the least biased estimators, where
as the maximum likelihood estimators appear to be the most efficient estimators.
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5 Methods for the judgement of the goodness of
fit

5.1 Introduction

The rejection or acceptance of a fitted distribution is usually based on a qualitative (visual) inspection
and quantitative judgements of the fits. in literature, a large number of tests are used to quantify the
goodness of fit, to reject or accept distributions and to choose between various fitted distributions.

A selection of these tests is described in this chapter. For the marginal case, the following tests are
presented:

- Visual judgement

- Kolmogorov-Smirnov test

- Chi-square test

- Rejection criteria based on outlier (Goda (1990))

- Linear correlation coefficient

- Rejection criteria based on (linear) correlation coefficient (Goda (19890))

The two rejection criteria are fully empirical. It must be noted that in literature, a lot of such criteria are
present. They are attempts to establish steadfast guidelines for the selection of one particular
probability function. However, up to present, none of these criteria appears to be applicable for all
wave data.

For the bivariate probability distributions mostly goodness of fit criteria are used, which are based on
the scatter diagram of the two random variables. The tests presented are
- Visual judgement
(Comparison of “theoretical” scatter diagram (based on statistical model) with “empirical” scatter
diagram (based on wave data))
-  2-dimensional chi-square test
- Atest developed by Mathisen and Bitner~Gregersen (1990)
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5.2 Goodness of fit of marginal distributions

§.2.1 Visual judgement

In practice, the fit of a distribution to a set of data is often visually judged. With this method, the shape
of the distribution and the quality of the fit are examined. The main drawback of visual judgement is its

subjectivity.

Visual checks are easy to perform but they need an experienced eye. Mainly when large quantities of
fits are to be judged, visual checks are less suitable.

5§.2.2 Chi-square test

With the chi-square test a comparison is being made between the hypothesized distribution function
and the histogram composed from the observations. it is based on the statistic

2 g
(5.1) %= Z —
i=1 H
in which
n, @ Number of observed values in cel i of the histogram
A Number of expected values in cel i of the histogram. This number is computed with

the hypothesized distribution function, using the expression
n =N f(x)-dx

in which V is the total number of observations

It can be shown that ,yz approximately follows the chi-square distribution with k-p-1 degrees of
freedom, where p denotes the numbers of parameters of the hypothesized distribution. This
approximation improves as the number of observations increases. Hence, ngiven ineq. (8.1)is
used as test statistic for making the decision to accept or reject the hypothesized distribution. That is,
a level of significance « is assigned for the test and the critical value ,7(2 k-r-1{a) is determined.

This implies that the larger the 12 value, the more the hypothesized distribution should be

descredited. Therefore, if the 12 value evaluated by eq. (5.1) is greater than the critical value, the

hypothesized distribution may be rejected; otherwise, the function may be accepted. The most usual
value to assign « is 0.05, that is, the test is conducted with 5% risk.
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5.2.3 Kolmogorov-Smirnov test
This test concentrates on the deviations between the hypothesized cumulative distribution function
(cdf) F(x) and the observed cumulative histogram

5 ) =
(5.2 G(x(i)) v

in which x(i) is the largest observed value in the random sample of size N. The test statistics used can
be expressed as

n n
(5.3) D = max[|G(x(#)) - F(x(})) |]= max [f 72,— - F(x(@®) l}

i=1 i=1

In words, D is the largest of the absolute values of the N differences between the hypothesized cdf
and the observed cumulative histogram evaluated at the observed values.

The goodness of fit criteria is that

a

Nig

The test can be performed at various prescribed significance levels (a):

(5.4) D< for N>5

Significance level

a=123 10%
a=1.36 5%
a=1.63 1%

5.2.4 Rejection criterion based on outliers (DOL criterion)

Let x4 be the value of the largest value among data. Then its magnitude is measured with the following
dimensionless deviation &:

(5.5 E=(x,-X)/ o
in which x and o are the mean and standard deviation of sample data.

Goda and Kobune (1990) recommended that the £ value of a given sample be compared with the
values of &5y, and £gsy , which they have computed for various theoretical distributions. if the ¢ value
of a sample occupies a location at either the upper or lower tail of the cumulative ¢-curve of the
distribution function being tested for fitting, the chance that the sample belongs to that population is
slim and that distribution could be rejected. The 5% and 95% level were tentatively chosen as the

treshold values for rejection,

in the paper of Goda and Kobune, an empirical formula has been derived from the simulation results.
This formula is given by

(5.8) ErEow, =a+bln N +c(ln N)?
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The coefficients a,b, and ¢ are expressed as the function of the censoring parameter v, which is

defined as

(5.7)

A

where N is the number of analyzed data, and N+ is the total number of data during the period of
analysis. The empiricai coefficients a, b and ¢ of equation (5.6) are presented in table 5.1 and 5.2.

Table 5.1 Empirical coefficients for the lower DOL criterion sy

Distribution Coefficient a Coefficient b Coef. ¢
FT-i 0.257+0.133v* 0.452-0.118v* 0.032
Ft-ll (B=25) 1.481-0.126v"" -0.331-0.031v* 0.192
Ft-ll (8=3.3) 1.025 -0.077-0.050v" 0.143
Ft-ll (8=5.0) 0.700+0.060v* 0.139-0.076v" 0.100
Ft-Il (B =10.0) 0.424+0.088v* 0.329-0.094v" 0.061
Weibull (B = 0.75) 0.534-0.162v 0.277+0.095v 0.065
Weibull (8 = 1.0) 0.308 0.423 0.037
Weibull (B =1.4) 0.192+0.126v™* 0.501-0.081v™* 0.018
Weibull (B = 2.0 0.050+0.182v" 0.5692-0.130v"* 0
Table 5.2 Empirical coefficients for the upper DOL criterion Egsy,

Distribution Coefficient a Coefficient b Coef. ¢
FT-i -0.579+0.468v 1.496-0.227v° -0.038
Ft-ll (B =2.5) 4.653-1.076v""* -2.047+0.307v"¢ 0.635
Ft-il (B =3.3) 3.217-1.216v"" -0.903+0.294v ™" 0.427
Ft-ll (8 =5.0) 0.599-0.038v" 0.518-0.045v* 0.210
Ft-ll (B =10.0) -0.371+0.171v° 1.283-0.133v* 0.045
Weibull {8 = 0.75) -0.256-0.632v* 1.269+0.254v* 0.037
Weibull (B = 1.0) -0.682 1.600 -0.045
Weibull (B =1.4) -0.548+0.452v"* 1.521-0.184v -0.065
Weibull (B =2.0) -0.322+0.641v"* 1,414-0.328v -0.069

5.2.5 Linear correlation coefficient

The linear correlation coefficient assesses the degree of linearity of the reduced variates and is
defined as

1

[ 2

Z ((xz - qu )(yl - }l’ly ))

=L , Qr’ < 1)

n |

LZ(xi -1 (v, - )’

i=1

(5.8) r=

where x and y represent the reduced variates of the abscissa and the ordinate, respectively. This
statistic can be used as goodness of fit criterion because it also explains the amount of variance of the
dependent variable accounted for by the independent variable. The higher the correlation coefficient,
the better the fit,

The drawback of the linear correlation coefficient is that it provides a measure of fit of fransformed
distribution functions. For the linearization of various distributions, different transformation formuia is
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needed. (See table 4.2). It is therefore not fair to compare the degree of fitting of various distributions
to a sampie by means of the absolute value of the correlation coefficient.

5.2.6 Rejection criterion based on correlation coefficient

Based on the correlation coefficient, Goda and Kobune (1990) proposed the REC-criterion (REsidue
of Correlation coefficient) to test the goodness-of-fit of a particular distribution.

The REC-criterion tests the goodness-of-fit of a particular distribution. The REC-criterion considers the
residue of r , i.e. Ar = 1-r. The cumulative distribution of Ar has been obtained through extensive

numerical simulations.
For quantitative analysis, the 95% exceedance value is taken as the treshold value and analyzed from

the simulation data. {n the paper by Goda and Kobune (1990) an empirical formulation has been
derived for Argss, , i.€.,

(5.9) Ar,,,, =expla+bIn N +c(In N)*]

The coefficient a, b, and ¢ are expressed as the function of the censoring parameter (eq. 5.9) for each
distribution as listed in table 5.3. The 95% exceeded value of the residue of correlation coefficient can
be utilized as a reference for the rejection of the considered distribution.

Table 5.3 Empirical coefficients for Ar95% in the REC Criterion

Distribution Coefficient a Coefficient b Coef. ¢
FT-l -1.444 -0.2733-0.414v>° -0.045
Ft-ll (B =25) -1.122-0.037v -0.3298+0.0105v"" 0.016
Ft-ll (B =3.3) -1.306-0.105v™"¢ -0.3001+0.0404y "™ 0

Ft-il (B=5.0) -1.463-0.107v""* -0.2716+0.0517v "™ -0.018
Ft-Il (8 =10.0) -1.490-0.073v -0.2299-0.0099v>"* -0.034
Weibull (B = 0.75) -1.473-0.049v* -0.2181+0.0505v* -0.041
Weibull (B = 1.0) -1.433 -0.2679 -0.044
Weibull (B =1.4) -1.312 -0.3356-0.0449v -0.045
Weibull (B = 2.0) -1.188+0.073v "% -0.4401-0.0846v -0.039
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5.3 Goodness of fit of bivariate distributions

5.3.1 Visual judgement

For two-dimensional probability density functions, mostly goodness of criteria are used which are
based on the scatter diagram of the two random variables.

Here, the scatter diagram that is composed from wave observations is called the “empirical” scatter
diagram. With the fitted theoretical model, a similar scatter diagram can be composed. This scatter
diagram can be considered as a “theoretical” scatter diagram. A visual judgement of the fit of the
bivariate model to the wave data can be obtained by comparing these scatter diagrams. This is

illustrated in figure 5.1.
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Fig 5.1 Empirical (the upper figure) and theoretical scatter diagram. (The corresponding theoretical model is
bivariate model 4 being composed of two Weibull distributions. The used sampie is the North Sea data sef)
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Consider just one cell (with index (i, j)) of a scatter diagram. An observed data point (x,y) falls in this
cell if

(5.10) X, <x<x,, ; Yi<YSVia

where x;, i=1,2,..,| andy;, j=1,2...m, are the boundaries of the cells. Under the hypothesised
distribution F(x,y), the expected probability pi,-(e’ that any observed data point falls within this cell can

easily be evaluated

(5.11) Py” = F(x0.v 00— F(xiq,v,) = FOx.y ) + Fx,p)

When the expected probability p, is multiplied with the total number of observations (N), the
expected number of data points in that cell is obtained:

(e) _ ar, (o)
(5.12) y = Npy

The expected number of data points nz.].(e) can be calculated for each cell of the scatter diagram. In this
way, a theoretical diagram is obtained. The empirical scatter diagram is built from values which
present the number of observed data points n,_,.“)) in each cell.

5.3.2 2-dimensional Chi-square test

The 2-dimensional chi-square test is similar to the 1-dimensional version. The test statistic used is
defined as

(5.13) = i (”zj(o) ‘”z‘f(é))z

in which
n,.j(") Number of observed values in cel i of the 2-dimensional histogram
n,® Number of expected values in cel i of the 2-dimensional histogram. This number is

computed with the hypothesized bivariate distribution function (section 5.3.1.)

In earlier case studies (Burrows and Salih (1986), Athanassoulis et al. (1996), Mathisen et al (1990)) ,
it appeared that the standard Chi-square is less suitable for the test of fit of bivariate models to wave
data. In general, the number of classes did not conform to the requirements of the standard test.

Therefore, the resulting values of ,(2 could not be related to appropriate levels of significance in the

usual way. Burrows and Salih (1986) proposed to use the numerical values of zl as only qualitative
indicators of the goodness of fit. This approach has also been followed in the present study.
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5.3.3 Method developed by Mathisen and Bitner Gregersen

The test developed by Mathisen and Bitner-Gregersen (1990) is similar in principle to the chi-square
test. The difference is that the chi-square provides an overall indication of the fit of the hypothesized
distribution whereas this test provides an indication of the fit for each cell of the scatter diagram.

The test is based on the binomial distribution. With the binomial distribution the expected standard
deviation for the number of data points faliing in the cell can be derived as:

(5.14) oy = 1/z\/p,j‘e’(l— 2

Hence, the normalized deviation d,.j, between the observed number of data points falling in a cell n,.j“’)

and the expected number n,'is given by

( (
n“(o) —n.,(e) n, o) -‘Vpij e)

(5.15) R
oy JVp; - p, ')

This deviation provides an indication of the goodness of fit.

An application of the method is presented in the figure below. it contains contour lines presenting the
deviations d,; =+1,+2,-1,-2 and -3.

The plot gives an indication of the fit of model 4 (consisting of two marginal Weibull distributions) to the
North Sea data set (See chapter 8). Note that the figure gives a similar indication of the goodness of fit
as the earlier described visual inspection with the scatter diagrams: model 4 overpredicts sea states
with a relative smalil wave steepness (T,=6.5..7.5 s, Hs=3.5..4,5 m) and underpredicts waves with a
mean wave steepness value, especially just above the treshold jevel (T;=5..6 s, H;=2..2.5 m). Also the
overprediction within the cell (T,=4..4.5, H=2..2.5 m) is similar.

. CQmpgm. . “.‘ M, -euf(1990))
65k
&b
55 N
£ Jj'z
z st 7
L ¢ /
g N iy 2 //
ey @ %
asi . " LN
A 4\
2 4 45 5 55 5 6:5 7 715 8 315 9
Zero-up-crossing penod (s

Fig 5.2 Contour piot of normalized deviation for modsl 4 (the model proposed by Vrijling, consisting of two
marginal Weibull distributions) relative to the North Sea data (Hs>2m)
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6 Extrapolation beyond the set of data

6.1 Introduction

Once the extreme data are fitted to a distribution function and the parameters are estimated, the
probability function can be used to extrapolate beyond the set of data. Usually one is interested in the
once per 50 or 100 years return period value.

This chapter deals with the computation of such return values. In section 6.2, the determination of
marginal return values is presented. The bivariate return values are dealt with in section 6.3.

6.1  Return values of marginal distributions

The computation of return periods for a specific peak seastate is based on the encounter frequency of
extreme events and the exceedance probability of a given level in a single event. For the Peak over
Treshold (POT) method, the return period R, expressed in years, for a specific level of exceedance xp,
is computed as (Mathiesen et al. (1993))

1

6.1) R=—
k(P(x>x,))

in which k is the mean number of extreme wave events per year. From equation (6.1) it follows that

1
6.2 Plx<x )=1-—
©2) (x Xp) kR

Thus, the mean value of the 1/R year prediction is computed as

1
6.3 =PN1-—
63 Y, [ kR]

where P denotes the inverse of P(x < x p). For methods based on year maxima the parameter k is

set to one.

in table 6.1, for each of the tested marginal distribution functions, the formulas are presented by which
the 1/R year prediction can be calculated.

Table 6.1 Formulas for calculation of return values of the selected marginal distributions
Distribution Formula xp

Exponential x,=A+ S(~log(1-P(x< x,))

Gumbel xp =A- 510g(“ IOg(P(x < xp ))
Weibull x,=A+8(=log(l-P(x <x,))*
Frechet o+ A(-log(P(x < xp))l/ﬁ

X =

P (-log(Px<x,) "




Extrapolation beyond the set of data
6-2

For the Log-normal distribution there exists no analytical expression for the cumulative distribution
function. Therefore also an expression for the inverse distribution cannot be determined. For this
distribution, return values are computed numerically.

Confidence intervals

The reliability of return values is usually indicated with confidence bands, computed through various
methods. The purpose of confidence intervals is to take into account the influence of the large number
of uncertanties that are involved in extreme wave statistics.

In this section, three different confidence bands are discussed. The first type includes statistical

uncertainty. The remaining two confidence bands are two attempts to include sample variability within
the width of the bands. Only the first type is used in the present case studies.

Type 1: Confidence bands, which include statistical uncertainty

This type of confidence bands can be determined analytically and numerically.

The analytical solution is illustrated for the Gumbel distribution in appendix [6]. The variance of the
return value is derived from the variance of the estimators of the distribution parameters. This

procedure is not further used in the case studies.

The numerical approach is based on the bootstrap technique (Groeneboom et al. (1995)). From an
available sample,

6.4) X5,Xy X,

data points are drawn random, with replacement, until a new set of data is composed with the same
number of data points as the original set of data. The set of bootstrap data is given by

6.5) x,*, b S X,
Repeating this procedure a large number of times, for instance 500 times, 500 sets of bootstrap data

are composed. For each set, the parameters of the selected distribution function are estimated and
the corresponding return value is estimated. This gives a set of 500 return value estimates

(6.6) x,(1,%,(2),..........,x,,(500)

From this set, the mean value and variance of the return value can be determined.
When the variance of a return value is known, the corresponding confidence intervals can be
calculated. Considering a 95% confidence interval, the expression follows as (Groeneboom et al.

(1995))

6.7) f LE(%,)~1.96var(F,) < E(%,) < E(%,)+1.96 var(Z,) |

in which

E(x,) mean value of return value
var(x ») variance of return value
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Type 2:Confidence bands that are composed on basis of “artificial” sample variability
(Maes et al. (1993))

In this method, “artificial” sample variability is created by adding random errors to the data set.

Random errors are generated using a Monte Carlo simulation assuming a normal deviation with a
chosen standard deviation. (The choice of the standard deviation is subjective.,e.g. 1.0 m). Next, the
data set containing the random errors is fitted to the chosen distribution function. After for example
10,000 of such simulations, a set of 10,000 estimates of the return value (xp) is obtained. From this
sample the average and standard deviation of x, is known. With equation 6.5 the confidence bands
can be determined.

A weak point of this approach is ofcourse the subjectivity that is involved by the choice of the standard
deviation of the normal distributed error.

Type 3: Confidence bands that are based on an empirical standard deviation of the return value
Goda (1988;1990) calculated the weighted mean values of standard errors of return values for
uncensored and censored data (v=1.0,0.5,0.25 ; definition v: see equation 5.3), based on his
simulated data. The results of the weighted mean errors have been expressed by empirical formulas.
The first empirical formula is appropriate for the Gumbel and the Weibull distribution function with the

shape parameter fixed at $=0.75,1.0,1.4 and 2.0:

(6.8) olx,]=(c, /VN)1.0+ 4, (y, +alogv)?]

(The formulae for xz and yg have already been shown in table 4.2). o, is the unbiased standard
deviation of the sample data. The coefficient A; and « and the exponent q are given the following
values depending on the best-fitting distribution function:

Gumbel:

2., —
) Sz{ 0.24+0.36(log,, N /80)* 1 v=10

0.46 +0.14(log,, N /50)* : v = 0.5,0.25
a=09¢g=16

Weibull(=0.75):

(6.10) 4 =) 057+018(log, N/20)*:v=10
' * 7 10.41+0.22(log,, N/20)* : v = 0.5,0.25
o= 27,q =12
Weibull(3=1.0):
(611) _ 055+015(10g10N/15)2V:]O
' * 1038 +0.17(log,, N /20)* : v = 0.5,0.25
a=10,g=17
Weibull(B=1.4):
2. —
©.12) 4 = | 037+008(ogy, N/1000) v =10
0.46+0.09(logo N /20)* : v =0.5:0.25

0=035g=32
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Weibull (3=2.0):
(6.13) _ | 030+0.36(log,, N/80)’: v=1.0
| * 710,56 +0.20(log,, N/100)* : v = 0.5,0.25
a=035¢g=32

The second empirical formula is appropriate for the Frechet distribution function with the shape
parameter fixed at $=2.5,3.33,5.0 and 10.0:

6.14) olx,]1= (6, /N)[1.0+ 4 (y, —c +alogv)’]

0.5 2
A, = A exps 4, (log[ Nv D - K(log[lﬁ
NO VO

The corresponding empirical parameters are listed in table 6.2

Table 6.2: Empirical coefficients for the standard deviation of the
Frechet return value

B A Az No K Vo c o

2.5 1.27 0.12 23 0.24 1.34 03 2.3
3.33 1.23 0.09 25 0.36 0.36 0.2 1.9
5.0 1.34 0.07 35 0.41 0.45 0.1 1.6
10.0 1.48 0.06 60 0.47 0.34 0 1.4

With eq. (6.14), the standard deviation value of the return value can be determined. The
corresponding confidence bands follow from eq. (6.7).
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6.2 Return values of bivariate distributions

For the bivariate case, the return period R, expressed in years, for specific levels of exceedance x,
and y,, is computed as
1

(6.15) R=
k(P(x>x,,y>y,)

where x represents the wave period T, and y represents the significant wave height Hs. Again k is the
mean number of extreme wave events per year. (As mentioned in appendix 1, in the present report
the extremes wave events are the storm events corresponding to the extremes of Hy. The
observations of T that are used for the extreme analysis are associated with the extremes of H;).

From equation (6.15) it follows that

1
(6.16) P(x>xp,y>yp)=;1¥

The probability of exceedance the given values x, and y, is

(6.17) P(x>x,y>y,)= [ [ F(x,y)axdy

Yptp

With the two above equations, for a given retumn period R, pairs of returmn values (x; ,yp) can be
caiculated.

For a constant value of the probability of exceedance, various combinations of x, and y, are possible.
These pairs of return values (x,,y;) form a line in the joined probability space. in figure 6.1 the lines
corresponding to a return period of 1, 10 and 50 years are superimpased on the contour plot of the
joint probability density function. In the figure, the start point of the lines is a pair of H; and T
corresponding to a wave steepness of 1.5%. The endpoint of the lines is a pair of Hs and T,
corresponding to a wave steepness of 0.5%. The lines represent thus a constant value of the
probability of exceedance (See fig 6.2). (In the marginal case, a constant value of the probability of
exceedance is a point in the 1-dimensional probability space).

9
3 E . 550year$
s=1.3%
7 B 10 \}n‘gre .
s=1.5%
N :
—_ 1yegr.. | |
E.! 1§8375%] |
@ 57 L : -
i L |
; s=015%
'\-——-———-——os=0.53%
4 :
8 10 12 14 18 18 20 22

Fig. 6.1 Lines of return values with a return period of 1,10 and 50 years for bivariate model 5 (s=[0.5%..1.5%)], )
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F(x,y)=0.98 +s(Hs.Tp)=15%

_ 8(Hs, Tp)=0.5%

Hs [m]

_ F(x,y)=0.98
(volume under the joint

pdf (hatched area))

Fig 6.2 lllustration of line corresponding to non-exceedance probability F(x,y)=0.98 (R=50 years, k=1)

6.3

1
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3]

[4]
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7 Computer program for statistical analysis

71 Introduction

Previous procedures for the selection of data, probability functions, parameter estimation methods,
and goodness of fit criteria have been programmed. For this, the computer language Matlab (Matlab
5) is used.

The outline of the program is given in section 7.2. Further the following parts of the program are
explained and illustrated in section 7.3 t0 7.6:

- the computation of the “empirical” scatter diagram (sec. 7.3)

- the iteration procedure for the maximum likelihood method (sec. 7.4)

- the iteration procedure for the non linear least squares method (sec. 7.5)

- the calculation of return-values for the bivariate models (sec. 7.6)

7.2  Outline of the program

As can be seen from fig 7.1, the program starts with the selection of data. In this submenu, itis
possibie to load a sample via the floppy disk station of the pc. If this sample consists of 3-hourly
measurements, a selection of extremes can be made by using a declustering procedure (section 2.3)
and by applying the POT method (section 2.4).

Then the probability distribution functions and parameter estimation methods are selected. These are
similar to those described previously. After the fit of the functions to the data, the goodness of fit
(chapter 5) can be determined and return values (chapter 6) can be calculated.

The last option of the main menu contains a bootstrap procedure, which can be used to compute
confidence intervals for marginal return values (section 6.2).
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Main menu

1. Dataselection

2. Fit marginal distributions
3. Fit bivariate distributions
4. Bootstrap

5. Exit

1. Method 1: model Morton and Bowers (1997) 12 IMmeﬂm:qum (fin.)

2. Method 2: modal Vrijling (1996) 3. Least squares method (non lin.)
3. Method 3: Blvariate Lognormal (Ochi(1878)) 4. Maxdimum liksiihood method

4. Method 4: Fang and Hogben's distribution (1982) 5. Plot fit

5. Method 5: p(Hs, Tp)=p(Ha)'p(HslT P) 6. Extrapolation beyond data set

6. Scatterdiagram wave data 7. Goodness of fit
7. Main menu 8 Main menu
Submenu model 1 Submenu model 2

1. Selection wave steepness distribution
2. Fit first marginal distribution

3. Fit wave steapness distribution

4. Monte Cario simulstion

5. Piotmenu

8. Extrapolation menu

7. Goodness of fit menu

1. Fit first marginal distribution
2, Fit second marginal distribution

7. Plot menu
8. Goodness of fit menu 8. Menu bivariate distributions
8 Extrapolation menu
10 Menu bivariats distributions
Submenu model 3 Submenu model 5
1. Fit first marginal distribution 1. Class width Hs
2. Fit second mgrglnal distribution 2. Fit marginal distribution Ha
3. Constructing joint pdf 3. Fit marginal distribution p(Tp|Hs)
4. Plot menu + choice regression functions
5. Goodness of fit menu 4. Constructing joint pdf
8. Extrapolation menu 5. Extrapolation menu
7. Menu bivariate distributions 8. Goodness of fit menu
7. Extrapolation menu
8. Menu bivariate distributions
Submenu model 4
See model 3

Fig 7.1 Structure of the program
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7.3 The computation of the “empirical” scatter diagram

A scatter diagram is a bivariate histogram that is composed from two sets of data. In this case, the
data consists of observations of Hs and T. The first step of the computation of the empirical scatter
diagram is the rearranging of the Hc-values in ascending order, with the lowest value of the sample
being the first data point. Since the two variables are coupled, the wave period values are replaced
similar with the wave height values.

Example:

[(3.45m, 7.20 s), (2.90 m, 6.80 s), (5.90 m, 11.00 s), (2.05 m, 8.00 s)]
Rearranging coupled sets of data gives:

[(2.05 m, 8.00 m), (2.90 m, 6.80 s), (3.45 m, 7.20 s), (5.90 m, 11.00 s)]

The cell sizes of the scatter diagram can be varied. The class width of Hg and T lies within the interval
[0,1 m] and [0,1 s], respectively. The class widths are defined for the complete sample range of H and
T; it is not possible to compose a scatter diagram with for instance two different class widths for Hs.

In figure 7.2, a schematization of the next stages of the calculation procedure is shown. First, the class
width of H and T are entered by the user of the program. The parameters are defined as
“classwidthHs” and “classwidthT”. Then for both Hs and T the number of classes is computed.
(“nclassHs” and “nclassT”).

Next, the number of observations is counted for each cell of the diagram. This stage is built of two
loops. The outer loop is considered with the horizontal boundaries of the cell, and the inner loop is
dealt with the vertical boundaries of the cell.

In the first loop the equations (1), (2), (3) and (4) are involved. With equation (1), wave height values
beyond the left boundary of the cell are stored in array A. With equation (2) wave height values
beyond the right boundary are stored in array B. (“‘Floor” in eq. (1), and (2) stands for the Matlab
command that rounds off values towards minus infinity (5.6 = 5.0; 5.3 — 5.0)). With equation (3) the
index numbers of the wave height values in the considered cell are stored in array C. These index
numbers are used to detect the corresponding wave period values in the wave period sample. (eq. (4))
The result of the first loop is a sample of wave period values, stored in array D.

Example:
Initial data set:
[(2.50 m,8.00 s),{2.85 m,6.80 s),(2.90 m, 6.60 s),(2.95 m,6.55 5),(3.25 m,.5.80 5),(3.50 m,6.80 s),(4.50 m,6.55 s )]

Boundaries of cell that is considered: Left : Hs=2.75 m; right : H;=3.00 m ; top: 6.75 s; bottom: 6.50 s

Array A = [(2.85 m),(2.90 m),(2.95 m),(3.25),(3.50),(4.50 m)]
Array B = [(3.25 m),(3.50 m),(4.50 m)]

Array C=]2 3 4]

Array D = [(6.70 s),(6.80 s),(6.555)]

Within the second loop, the top and bottom boundary of the cell is taken into account. In this example,
two values fali with in the cell boundaries:
T=670sand T=6.55s

These values are stored in an array. By computing the length of this array, the number of observations
in the cell is known. This value is stored in the matrix “scatter”. Thus:

Scatter (1,1)=2 (In this example, the first cell of the diagram is considered)
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By repeating the above procedure for each cell, the scatter diagram is composed. For each cell, the
number of observation is stored with in the matrix “scatter”. This matrix can be presented in the
(Hs, T)-space. (See figure 3.1).

[rput JasawicthFs |

input classwidthT |

[A#'nd(data_Hs>ﬂooc(min(data_Hs))+(H YclasswidthHs)]

[B=find(data_Hs>floor{min(data_Hs)yHciasswidthHs) ]

LCr“-f(ﬁ(lengﬂ’(BHeﬂgm(A)) |
[D=data_T(min(C):max(C)) ]

el JFllength(find{D>=oormin{data_T+{- 1 )classwidth T} }-
length(find(D>=floor(min(data_T)y+HdasswidthT)))]

Fig 7.2. Flow chart of calculation of scatter diagram
7.4  The iteration procedure for the maximum likelihood method
In chapter 4, the analytical derivation of maximum likelihood estimators has been presented for each

parameter of the selected distribution functions. These estimators were derived by finding the roots of
the partial derivatives of the (log) likelihood function.
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In the computer program, this method has been employed for the estimation of the parameters of the
Exponential and the Log-nommal distribution. The maximum likefihood estimators for the parameters of
the remaining probability functions, i.e. the Gumbel, the Weibull, and the Frechet distribution, are
determined by direct maximization of the loglikelihood function.

With the latter method, the estimators are computed numerically by use of some iteration procedure.
The presently used iterative calculation method is illustrated in figure 7.3.
G-a5-4)  d-ad (-45+4) a.5-4) (%) G Gradd)  dead) Gord Bt

Fig 7.3 Iteration grid for numerical determination of maximum likelihood astimators

The figure shows a grid of estimator values. As can be seen from the figure, two distribution
parameters are involved in the iteration calculations. For the three-parameter distribution functions, i.e.

the Weibull and the Frechet distribution, the location parameter (A) is estimated by the minimum value
of the considered sampie - 0.1. (In the case of the Gumbel distribution, the shown scheme contains its
location (A) and scale parameter (8) , for the Weibuil and the Frechet distribution the scheme contains

their scale and shape parameter (B).)

The grid consists of nine grid points and at each point, a different combination of estimator values is

present. For each parameter (8), three values are included, i.e. 5 - A, Sand S+A."A"isa step
size, which decreases during the iteration proces.

For each grid point, the (log) likelihood function is computed. The grid point that contains the largest
value of the (log) likelihood function is stored. When this grid point is equal to point 5, the two

estimators without an added step size A (/i, 5 ), provide the largest value of the (log) likelihood
function. In that case. the step size is halved.

|

Fig 7.4. Flow chart of calculation of maximum iikeilnoog estmarors
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When another grid point (X) contains the largest value of the loglikelihood function, then the grid is
shifted. Grid point (X) is then placed at grid point 5. This procedure is repeated until again grid point §
contains the largest value of the (log) likelihood function. The above iteration procedures are repeated
until the step size is sufficiently small. In figure 7.4, a flow chart of the iteration procedure is shown.

The iteration proces can only be started, when begin values of the estimators are present. In the
computer program, least squares estimators and estimators calculated with the method of moments

are used as begin values.

7.5 The iteration procedure for the non linear least squares method

Non linear least squares estimated are computed numerically. The calculation method is based on the
following expression:

@) zi=min Y (y, - F(x; 4,60 0)
=1

The iteration proces is similar to the one that has been described for the maximum likelihood method.
Instead of calcuiating the (log) likelihood function, here the sum of squares is calculated at each point.
The grid point that contains the smallest value of the sum of squares is stored. When this point is
equal to point 5, the step size is reduced, otherwise the grid is shifted as described previously.

For the start values of the proces, different parameter estimation methods were used. During tests of
the program it appeared that various start values resulted in different values of the non-linear ieast
squares estimators. In order to minimize the influence of the start values, begin values are calculated
with the method of moments, the linear least squares method and the maximum likelihood. This
results in three different non-linear least squares estimators. The one that provides the smallest sum
of squares is considered as the best non-linear ieast squares estimator.

7.5 Estimation of return values for the bivariate models

Simultaneous with the two previous iteration procedures, a grid scheme is set up for the calculations.
Only in this case, the estimators of distribution parameters are replaced by estimation of
return values. The grid is shown in figure 7.5.

HeAT(Heds) - (HaT(us), @ (HevATGHavAs))

Fig 7.5. Iteration grid for numerical determination of bivariate return values

Return values are computed with the following equations (See chapter 6):

]
(7.2) P(x>xp,y>yp)=ﬁ
and
(7.3) P(x>x,,y>y,)= [ [ f(x, y)acdy

YpXp
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in which x is the wave period and y represents the significant wave height. With the two above
equations, for a given return period R, pairs of return values (x, ,y,) can be calculated. Various
combinations of x, and y, are possible: these pairs of return values (x,.y,) form a region in the joined
probability space.

in order to fix the relation between x and y, the wave steepness is used. Assuming a deepwater wave
field, the wave steepness is given by

=)

The input parameters for the calculation method are thus the return period (1, 10 or 50 years) and a
value for the wave steepness ([1...8%]).

(7.4 s(x,y) =

Example: return period = 50 years
wave steepness (S) =4 %
maximum significant wave height value in data set (max (sample))=6.40 m

A (step size)= 0.5 m
k=1

The iteration procedure is started with the following begin values:

grid point 1: H, (return period)=max(sample)-A
grid point 2: H, (return period)=max(sample)
grid point 3: Hs (return period)=max(sample)+A

Thus,

grid point 1; H(50)=5.90 m and T(50)=9.72 s (eq. (4))
grid point 2; Hs(50)=6.40 m and T(50)=10.12 s
grid point 3:  H(50)=6.90 m and T(50)=10.51 s

With eq. (7.2), the exceedance probability of the return value is computed:

1 1
Plx>x =—=-—=002
( Y >V,) RS0

With eq. (7.3), the non exceedance probability of the grid point values are computed:

w0

grid point 1:  P(x >9.72s,y >590m) = I If(x,y)dxdy =0.030
5.909.72

o0

grid point 2 P(x >10.125,y>6.40m) = [ [ f(x,y)dxdy =0018

6.4010.12

grid point3:  P(x>10.51s,y>6.90m) = J' J.f(x,y)dxay =0.012

10.516.90

The grid points provide an estimate of the exceedance probability of the return value. The exceedance
probability calculated with eq (7.3), (0.02), is the true exceedance probability. In this example, grid
point 2 provides the best estimate (0.018).
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The iteration procedure is similar to the one that has been described for the maximum likelihood and
the non-linear least squares method. When the best estimate of the non-exceedance probability is
found at grid point 2, i.e. the grid point with estimators of Hs (50) and T (50) without an added step size
A, then the step size is halved. Otherwise, the grid is shifted until again the best estimates are found at
‘point 2.

The exceedance probability of the grid points is caiculated by integration of the bivariate probability
function (eq. (7.3)). in the computer program, the non-exceedance probability of these values is
calculated numerically. The exceedance probability is determined by using the following expression

(7.5) Px>x,y>y,)=1-P(x<x,,y<y,)

The numerical integration of the bivariate probability density functions is illustrated with figure 7.6.

Fig. 7.6 lllustration of numerical calculation

In the figure, some contour lines of a bivariate probability density function are presented in the (Hs T)-
space. Integration of the probability density function means that the voiume under the hatched surface

is computed.
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In order to obtain an accurate computation of the probability, the hatched area is subdivided into small
cells (0.05 s x 0.05 m). For each corner of a cell, the value of f(x,y) is computed. From these four
values, the mean vaiue is computed,

x’ corner + x’ corner + x’ corner. + x’ corner -
(7.6) f(x>y)cell(i):f( P corment +S (%, ) z4f( D) comers. T S ) comers

The probability of the cell is then calculated by

(77) pcell(i) :f(x>y)cell(i) *005*005

The non-exceedance probability of the return value follows then as

Yp¥p

(78) P(x s xp>y < yp) :1_ jjf(x,y)ékdy = Zf(x’y)cell(i) *005*005
0 i

0

in which n denotes the number of cells in the hatched area.

As mentioned above, for most of the cases, the dimensions of the cells were 0.05 m x 0.05 s. It must
noted, however, that sometimes, especially when a relative high treshold level is used, this grid is not
sufficient. A finer grid is then needed in order to obtain an accurate calculation. (The accuracy can be
checked by intergrating the bivariate function over of a very large area: when the value of the
probability mass is equal to 1 (or 0.99999999), the grid size is sufficient. When the value is higher then
1, the bins of the cells must be diminished).

7.6 References

Hanselman, D., Littlefield, B. , The student edition of Matlab, version 5. The language of technical
computing. New Jersey: Prentice-Hall Inc / The Math Works Inc., 1997
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8 Case studies

8.1 introduction

The preceding chapters provided theoretical information about the statistical tools that are needed for
an extremal wave analysis. In this chapter, the theory is applied in two case studies.

The case studies follow the phases of the analysis successively. First, sets of extreme observations
are composed from the initial sets of data. For this, the statistical approach is used. In section 8.2, the
initial sets are introduced and sets of extremes are obtained by declustering of the local maxima and
by selecting extremes with the POT method.

Second, a marginal analysis of the extreme observations is made in section 8.3. The candidate
distribution functions proposed in section 3.3 are fitted to the data, using the four parameter estimation
methods described in chapter 4. The goodness of fit (chapter 5) is judged with visual inspection of the
fits, and at least in the first case study, by comparing the linear correlation coefficients (section 5.2.5)
and by using the two rejection criteria of Goda (section 5.2.4 and 5.2.6). Further marginal return
values (section 6.2) corresponding to a return period of 50 years are computed.

Third, a bivariate analysis is examined. The marginal distributions recommended in the foregoing
marginal analysis are used as the marginal components of the bivariate functions. The goodness of fit
is being judged by visual comparison of the empirical and the theoretical scatter diagrams (section
5.3.1) and by evaluating the computed (2-dimensional) chi-square values of the models. Further
bivariate return values (section 6.3) are computed.

It must be noted that the outcome of the following case studies has not been checked on physical
grounds. The change of the climate between successive years has not been studied and also the
physical limitations of the considered wave fields have not been analyzed. Further, the reliability of the

data sets has not been checked extensively.

The applied bivariate probability density functions are illustrated with a contour plot. Each of these
plots contains the same set of lines, which makes it possible to compare the models with each other.
Table 8.1 shows this set of lines.

Table 8.1 Contour lines

Levels {1/sec.m)

1 0.005

0.010

0.015

0.020

0.030

0.050

~NG | BIWiN

0.070




Case studies
8-2

8.2 The selection of extreme observations

8.2.1 The data sets of Karwar

The first case study is dealt with the wave climate at the southwest coast of India. This climate is
characterized by monsoon periods. During three months, the south-westerly monsoon is blowing,
causing a wave field with an average of approximately Hs=2.0 m. During the other months of the year

the sea is very caim.

The first data set of Karwar (291 data points) contains 3-hourly observations measured during the
south-west monsoon (june-july 1988). It contains both wind waves and swell formed in the south of the

Indian Ocean (“Roaring Forties”).
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Fig 8.1 Geographical map (Taken from Vrijling (1996))

In figure 8.2 the data set is shown, together with lines representing a constant wave steepness value.
(The wave period values of the set are spectral peak periods T,. The given deepwater wave
steepness is thus defined by Hg and Tp).

The relatively small value of the wave steepness of the observations (s= 0.8—1 %) might be explained
by the long distance that the waves travel before they reach the coast of India. The weak correlation
between the observed wave height and wave period values might be due to the fact that the
observations representing both wind waves and swell. (The linear correlation (r) coefficient between
Hs and T, is 0.27).
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Fig 8.2 The first data set (291 points) of Karwar, together with iines of constant wave steepness (H:>1.55 m)

On the average, one time a year the coast (Vrijling (1996)) is being hit by a hurricane. The second
data set of Karwar that is analyzed, consists of 25 hindcasted significant wave heights and peak

periods of hurricanes. The set is shown in figure 8.3.
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Fig 8.3 The hurricane observations (25 points) of Karwar, together with lines of constant wave steepness (The

observations are denoted by small circles)

To determine the extreme conditions during the monsoon and the hurricane, both data sets have to be
analyzed. The first data set, i.e. the observations of the south-west monsoon, consists of 3-hourly
measurements. Since the mean duration of a storm lasts more than 3-hours, some observations in the
set are correlated. To obtain a set of extreme and independent observations of H; and T, the
declustering of data described in section 2.3 should be carried out. The problem is, however, that the
points of time, at which the observations have been measured, are not known. The location of
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possible data gaps or missing data in the data set is not known so that the declustering cannot be
examined. Therefore, it is decided to pass over the declustering of the observations and to select
extremes of H and T, only with the POT-method. It is thus assumed that the data points above the
treshold level are independent.

As mentioned in section 2.4, the choice of the treshold level is subjective. By trial and error it was
found that a treshold of Hs=1.95 m gave the closest fit of the candidate distributions to the data.

In table 8.2, both sets of data are listed.

Table 8.2 The data sets of Karwar used in the following analysis

Set nr | Description of observations Treshold | Number of observations
level [m]

1 South west monsoon 1.95 167

2 Hurricane - 25

8.2.2 The data set of the North Sea

In the second case study, the wave climate in the North Sea is considered. The initial data set used
has been measured at the Euro platform and consists of 3-hourly measurements (37.951
observations) covering a period of 12 years (1979 — 1991). The data was made available by ir A.P.
Roskam from the RIKZ in The Hague.

From this set, three sets of extreme observations are drawn by following the statistical approach
described in section 2.3 and 2.4. The first step of this approach is to identify independent storm events
in the initial sample. For this, a time interval of 25 h, i.e. the minimum time interval between successive
storms, is taken. The second step is to select storms with the POT method using the

treshold levels H;=2.00 m, 4.50 m and 5.00 m.

Table 8.3 The data sets of the North Sea

Set nr | Treshold | Number of observations
level [m]

1 2.00 971

2 450 59

3 5.00 22

Figure 8.4 shows the observations of the first data set. The wave steepness of the data points vary
from s=3 % to s=9%. (The wave steepness is defined on the zerg-up-crossing period T, ).

~4
T

Wind waves / S/
(9% <s<55) . /S Pk

s5=4 %

swell (5.5% <s<3%)

5=2%

L]

Tzis)
Fig.8.4 The observations of the North Sea data set (H:>2.00 m)
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It is assumed that the waves with a steepness between s=3% and s=5.5 % are swell. These waves
are censored (section 3.4) for the extreme analysis, as shown in fig 8.5. The correlation between the
remaining observations of wind waves is strong: the linear correlation coefficient (p) between the
bivariate data points is 0.92.

ra
y

Fig. 8.5 The observations of the North Sea data set (Hs> 2m). The shown observations are wind waves. (p = 0.92)



Exceedance probability -]

Exceedance probability -]

Case studies
8-6

8.3 Fit of marginal distribution functions to wave data
8.3.1 The data sets of Karwar

Data set 1: The observations of the monsoon wave climate

Marginal analysis of H,

Figure 8.6 to 8.9 show the fit of candidate distributions to the observations of Hs. A visual inspection of
the empirical cumulative distribution function (cdf) suspects inhomogeneous data. Halfway the plot,
the curve of the empirical function increases strongly. Further, it is seen that the highest observation of
Hs appears to be inconsistent with the other observations. Trying to model the probability distribution
of the significant wave heights leads to large deviations in the extreme part of the fit. All the
distributions tend to overpredict the extremes of Hs.

Hs__method of moments Karwar jdne%Lh’ wave data (POT(195))

o Hs...maximum likelihood method Karwar junejuly wave data (FOT(1.95)) o
109
10" B
o
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a2
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5]
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D
2 3
1C I
107
) # y aheight Ir
Significant wavehsight [m] Significant waveheight (7]
N Hs . Jeast squares method {inear) Karwar juneZiuly wave data (PQT{1.95)) Hg least squares method {non linsar). Karwar unez;uy wave data (F OT(1.95))
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P 0~2

Exceedance probability [
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Fig 8.6 to 8.9 The candidate distributions fitted with the four parameter estimation methods to the observations of
the south west monsoon (Hs>1.95m, 167 points)
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The inhomogeneity of the data points is probably due to the fact that the set contains observations of
both wind waves and swell. The direction of both wave types is the shame, which makes it hard to
distinguish them. (See fig. 8.2).

Goodness of fit

Observing the above figures, it is seen that the Gumbel, Weibull and Log-normal distribution provide
the most reasonable fits to the data. This also follows from the linear correlation coefficient (r). The
Weibuli distribution fitted with maximum likelihood method gives the highest r-value : r=0.9929.

Table 8.4 shows the estimators for the parameter of the Gumbel, Weibull and Log-normal distribution.

Table 8.4 Estimators for the parameters of the Gumbel, Weibull and Log-normal distribution

Data : Hs Parameter Symbol | Estimated values
MAX MOM Lin. LS Non lin. LS

Gumbel location A 2.228 2.234 2.230 2.227

scale 3 0.209 0.196 0.207 0.232
Weibuil location A 1.94 1.94 1.94 1.94

scale 3 0.451 0.410 0.469 0.466

shape B 1.588 1.500 1.546 1.347
Log-normal location A 0.848 0.848 - -

scale d 0.107 0.107 - -

Table 8.5 presents the results of the application of the REC and DOL criteria. As already mentioned in
section 5.2, these empirical criteria have been developed by Goda only for the distribution functions
listed beiow. Note that the Gumbel distribution and the Weibuil distribution with a shape parameter (8)
value of 1.4, i.e. the Weibull function which conforms mostly to the estimated ones (table 7.1: p =~ 1.5),
are not rejected.

Table 8.5 : the REC and DOL criteria

Distribution Rejected (r) / Not rejected (n)
REC DOL
Gumbel n n
Frechet (§ = 2.5) r r
Frechet (§ =3.3) r r
Frechet (B =5.0) r r
Frechet (B = 10.0) n r
Weibull (B = 0.75) r r
Weibull (§ =1.0) r r
Weibull (§ =1.4) n n
Weibull (B = 2.0) n n

Return values of H,
With the above recommended distributions, the return value corresponding to a return period of 50
years is calculated. The resuits are shown in table 8.6.

Table 8.6 H(50

Distribution Parameter estimation method | Hs(50) [m]
Gumbel MOM 4.12
Gumbel MAX 4.23
Gumbel LinLS 422
Gumbel Non lin LS 4.45
Weibull MOM 3.75
Weibull MAX 3.72
Weibull LinLs 4.32
Weibull Non lin LS 3.89
Log-normal MOM 3.43
Log-normal MAX 3.46

The estimated return values differ significantly. In order to judge which of the iisted estimates is the
most reliable one, the figures 8.6 to 8.9 must be studied more detailed. As can be seen from the
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figures, the Gumbel provides the most reliable fit to the extreme part of the observations. Therefore an
appropriate value for the return value will be probably be H;= 4.10 m

Confidence bands for marginal return values of Hg

In section 6.2 a bootstrap procedure has been presented for the computation of confidence bands for
return values. An application of this procedure is given in table 8.7. The shown return values are
computed with the Gumbel distribution by using the linear least squares method. The distribution has
been fitted to extreme observations above the treshold of Hs=1.95 m (167 points).

Table 8.7 95% Confidence interval for Hs(50), (4000 bootstraps; Gumbei fit ; Lin LS method)

Treshold Lower band Hs(50) Upper band Band width
[m] (m] [m] [m] [m]
1.95 3.90 4.07 4.26 0.18
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Marginal analysis of T,
As mentioned in chapter 2, the observations of Hs and T, are coupled. For the determination of the
joint treshold of both variables, the wave height is used as the key parameter. Figure 8.10 shows the

maximum likelihood fit of the selected wave period distributions. The functions are fitted to

8-9

observations of T, which are associated with observations of Hs above the treshold Hs= 1.95 m.

Tp...maximum likelihood method. Karwar june2july wave data (POT{1.85))
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Fig 8.10 Maximum likelihood fit for the selected distributions (Tp)

Table 8.8 presents the parameters of the Log-normal distribution estimated with the maximum
likelihood method and the method of moments.

Table 8.8 Estimators for the Log-normal distribution (T,)

Parameter Symbol | Estimated values
MAX MOM

location A 2.434 2.434

scale ) 0.091 0.094

Goodness of fit: visual judgement

From fig 8.10 it is clear that the Log-normal distribution gives the best overall fit for T.

Marginal return values of T,
The once per 50 years return period value for T, is computed with the Log-normal distribution. The

value of the calculated return value is 16 s.
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Data set 2: the hurricane observations

Marginal analysis of Hs
Figure 8.11 to 8.14 show the fit of candidate distributions to the hurricane data.

Hs...method of moments. Karwar hurncane wave data (POT{1 53]}
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Fig 8.11 to 8.14 The candidate distributions fitted with the four parameter estimation methods to the hurricane
observations of Karwar (25 points)

The Lin LS estimators of the parameters of the Gumbel and Exponential distribution are listed in table
8.9.

Table 8.9 Lin LS estimators for the parameters of the Gumbel and Exponential distribution
(Hurricane observations of Karwar, 25 points)

Data : Hs Parameter Symbol | lin. LS

Gumbel location A 2.573
scale d 0.945

Exponential iocation A 1.891
scale ) 1.263
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Goodness of fit: visual judgement

Inspecting the above figures, it is clear that the linear least squares method provides the best fit to the
data. The linear least squares fits of the Gumbel and Exponential distribution seem to be the best
option.

Return values of Hs

Using the Gumbel and Exponential distribution computed from the Lin LS method, the once per 50
years significant wave height are Hy(50)=6.26 m and H.(50)= 6.83 m, respectively. Note that these
values are determined under assumption that each year one hurricane occurs (see Vrijling (1996), p.
IV-37),

Marginal analysis of T, / Goodness of fit (visual judgement)

The maximum likelihood fit of the Log-normal distribution appears to provide the closest fit to the
observed values of T, (fig 8.15).

Tp..Lognormal. maximum likelihood method . Karwar hurricane wave data (POT(1.53))
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Fig 8.15 The maximum likelihood fit of the Log-normal distribution to the hurricane observations of Karwar

Return value of T,
Using the above Log-normal distribution, the return value of T, ,T;(50), is 11 s. (Again under the
assumption that only one hurricane per year occurs !)
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8.3.2 The North Sea data set

Marginal analysis of Hs

The figures 8.16 to 8.19 show the fit of the candidate distributions (section 3.3) to the observations of
H, above the treshold of Hs=2.00 m (971 points). Similar with the curve of the monsoon observations
of Karwar, the curve of the empirical cumulative distribution function of the North Sea data changes at
several places. (See figure 8.16). In general, this gives rise to suspect that the set of data is
inhomogeneous.
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Fig. 8.16 to 8.19 The candidate distributions fitted to the observations of Hs (Hs>2 m; 971 points)
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From the above figures it is seen that the extreme part of the observations are largely overpredicted
by the distributions. This might be explained by the relative low value of the treshold: the lower
observations of Hs , which are not extremes, largely influence the fit of the distributions to the data.
The fit of the extreme part of the observations improves when the treshold level is raised. The figures
8.20 to 8.23 show the fit of the distributions to observations above the treshold of H;=4.5 m (59
points). The figures 8.24 to 8.27 present the fit to observations beyond H¢=5.0 m.
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Fig. 8.24 to 8.27 The candidate distributions fitted to the observations of Hs (Hs>4.5 m, 59 points)
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Fig. 8.24 to 8.27 The candidate distributions fitted to the observations of H; (Hs>5.0 m; 22 points)

On basis of visual inspection of the figures 8.16 to 8.27, the best fitting marginal distributions for Hs
have been selected and listed in table 8.10.

As can be seen from the table, the once per 50 years return value of the significant wave height is
approximately 7.20 m.
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Table 8.10 The best fitting marginal distributions for Hs (North Sea data)

Variable | Treshold |Parameter | Distribution Estimated parameter Hs(50) [m]
level Estimation | type values [-]
[m) method
S5 A Ji]
Hs 2.00 MOM Gumbel 0614 [2613 |- 8.07 (m)
Hs 2.00 LinLS Gumbel 0.626 [2.608 |- 8.03
Hs 2.00 MAX Gumbel 0.564 (2619 |- 7.63
Hs 4.50 LS Weibull 0.501 [4.490 1.030 7.13
Hs 4.50 Non LS Weibull 0.501 [4.490 ;1.100 6.86
Hs 4.50 LS Exponential |[0.495 [4.500 |- 7.22
Hs 4.50 MAX Exponential 1 0.460 [4.500 |- 7.04
Hs 5.00 LS Weibuil 0.407 [4.990 |0.857 7.35
Hs 5.00 Non LS Weibuli 0.406 [4.990 |0.917 7.10
Hs 5.00 Non LS Exponential | 0.424 [4.973 |- 6.90

Marginal analysis of T,
The figures 8.28 to 8.30 show the fits of the candidate distributions to the observations of T,. The
Weibull and the Log- normal provide the best fits to the data. Each of the distributions listed under
predicts the largest observation of T,. Therefore, the once per 50 years return value of the wave period
is underestimated by the distributions.

Table 8.11 The best fitting marginal distributions for T (North Sea data)

Variable | Treshold |Parameter | Distribution Estimated parameter Tz(50) [s}]
level Estimation | type values |-}
[m] method
s A i
T, 2.00 MAX Weibull 1.568 14.090 [2.170 8.25
T 4.50 MAX Log-normal 0.059 [1.913 |- 7.92
T, 5.00 MAX Weibull 0.462 [6.590 |1.013 8.64

8-15
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8.4 Fit of bivariate distribution functions
8.4.1 The data sets of Karwar

Data set 1; The observations of the monsoon wave climate

For the marginal components of the bivariate functions, the best fitting marginals are used (section
8.3.1). The significant wave height is described by a Gumbel, Weibull and Log-normal distribution. The
wave peak period is modelled by a Log-normal distribution.

The tested bivariate functions are presented in table 8.12. The estimated values of the parameters of
the marginal distributions have already been presented in section 8.3.1. Therefore, only the values of
the remaining bivariate parameters are shown. In order to avoid some confusion, these values are
only given for the first listed parameter estimation method (the method of moments).

The numbering of the modeis in the table is equal to the numbering used in chapter 3.

Table 8.12; Tested bivariate models for the Karwar data

Model | Marginal distribution for H; Marginal distribution for T, The remaining
parameters
Nr Distribution Parameter estimtaion Distribution Parameter
method estimation method
1 Log-normal MOMMAX Log-normal MOMMAX p=0.27
3 Gumbel MOM/MAX/Lin LS/N. L.og-normal MOM/MAX regression lines (linear) :
Lin. LS scale: a=-0.022 b=0.125
loc. :a=0.090 b=2.234
3 Weibull MOM/MAX/Lin LS/N, Log-normal MOM/MAX regression lines(linear):
Lin. LS scale a=-0.022 b=0.125
loc. a=0.090 b=2.234
4 Gumbel MOMMAX/Lin LS/N. Gumbel MOMMAX par. wavesteep. distr..
Lin. LS {wave steepness d.) 8=0.0017 A=0.0107
5 Weibull MOM/MAX/Lin LS/N. Log-normal MOM/MAX dependence parameter:
Lin. LS ¢=1.66

The bivariate models are illustrated below with figures showing the contour lines of the functions
together with lines presenting bivariate return values (section 6.3). The lines presenting return values
are calied quantile lines in the following sections. They represent pairs of return values of Hs and T,.
The end point of the vertical part of the quantile line is associated with a wave steepness of $=1.5%.
The endpoint of the horizontal part is associated with a wave steepness of $=0.5%.

The goodness of fit of the models is discussed at the end of the section. Theoretical and empirical
scatter diagrams are presented for a visual comparison. Further, the chi-square values of the fitted
models are listed.
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Model 1: The bivariate Log-normal distribution

The correlation between the two wave variables is defined in this model by p , the linear correlation
coefficient between log(Hs) and log(T,). As can be noticed from fig 8.32, the correlation between the

bivariate observations is in this case relative poor (p= 0.25).

(o5

28k o) ;
28F < ]
27F B
£ 26t o ° o 1
523
L O O OUTOWD 00 @O o
S5} 4
- O W DTO@O OO O TP O
z4F @ GUDDCDO OO VOO OO J
SO0 B BWOOOO OO O
23F ®0 00 ¢
22+ ) A
oo
2’1 Il i o A, I i 1
086 07 08 08 1 1.1 12 12
log (Tp} [s]

Fig 8.32 Log(T,) plotted against log(Hs)

Figure 8.33 shows the contour plot of the bivariate Log-normal distribution, together with the above
described quantile jines.
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Fig. 8.33 Contour plot of the bivariate L.og-normal distribution, together with the quantile lines ((1) MAX (Hs) +
MAX (T,), (2) MOM (Hs) + MOM (T,)). The observations are denoted by small circles.
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Model 2: Fang and Hogben’s distribution

This distribution is known as a modified version of the bivariate Log-normal distribution. Application of
the model showed however that in this case no improvements were noticed: the shape of both models
and the computed quantile lines were almost identical. Therefore, no further illustrations of the model

are given here.

Model 3: bivariate modei based on a marginal distribution for H; and a conditional distribution

for T,
The marginal distribution of Hs has been modelied by the Gumbel and the Weibull distribution. The

conditional distribution of T,has been described by the Log-normal distribution. The bivariate models
are shown in figure 8.34 and 8.35, respectively.
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Fig 8.34 Model 3 : Gumbel (H; ) and Log-normal (T, ). (quantile lines : (1) MAX (Hs) + MAX(T,), (2) MOM (H;) +
MOM (T,), (3) Lin LS (Hs) + MAX (T,), (4) Non Lin LS (Hs) + MAX (T,))

50 years

Tpls]

Fig 8.35 Model 3 : Gumbel (Hs) and Log-normal (T, ). (quantile lines : (1) MAX (Hs) + MAX (T,), (2) MOM (Hs) +
MOM (Ty), (3) Lin LS (Hs) + MAX (T,), (4) Non Lin LS (Hs) + MAX (Tp) )
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The parameters of the conditional distribution are defined as a function of Hs. Empiricai regression
lines are used to describe these relationships. The models shown in figure 8.34 and 8.35 contain for
both parameters of the Log-normal distribution a linear regression function. As can be seen from figure
8.36 and 8.37, the linear regression lines provide the best fit to the points. Note that the estimator for
the scale parameter of Hs-class 3, denoted by an arrow in the figure, differs significantly from the other
estimates.

Scale estimator Tp data sets Location estimator Tp data sets

02

¢ 4 estimator of
class 3

015 35

0.05

scale estimator [-]
fus]
Location estimator [-]
[Sn]

28 M/

Fig 8.36 and 8.37 Estimators of the scale and the location parameter of the conditional distribution function. The
estimators correspond to chosen classes of Hs (see section 3.4.). Used distributions: Gumbel distribution (Hs) and
Log-normal distribution (T, ). Shown regression lines: linear (dashed line; eq. 3.21(1)) and parabolic (solid line;
eq. 3.21(2)). The lines defined by eq. 3.21(3) and eq. 3.23 are not shown because they poorly fit the data.

The slope of the linear regression line representing the scale parameter is negative. Apparently, the
width of the conditional probability density function of T, decreases with an increasing Hs

As mentioned in section 3.4.3, the relationship between the significant wave height and the peak
period is described in the bivariate model by the location parameter of the conditional distribution.
The conditional distribution is the Log-normal distribution. Therefore, the relation between Hs and T, is
described by the following exponential (!) function

(8.1 g(H,) =exp(aH +b)

in which a and b are some constant values.

The regression lines are based on parameter estimates corresponding to chosen classes of Hs (See
section 3.4.3). The choice of the class width is subjective. Smaller class widths of Hs imply more
parameter values, which yields generally to a more accurate estimation of the regression lines. On the
other hand, smaller class widths means that less data points are present in each class, which yields to
less reliable estimates of the parameters itself. The optimal choice of the class width might be
determined by using a goodness of fit criteria: for example the bivariate model which contains the
smallest chi-square value could be considered as the model which is computed with the best class
width of H;.

The sensitivity of the return values to the choice of the class widths of Hs (AHg) has been studied,
using linear regression lines for the parameter functions. Table 8.13 shows for the class widths
AH.=0.10, 0.25, 0,50 and 0.75 the once per 1 and 50 year(s) return period value corresponding to the
wave steepness values 0.5,1 and 1.5 %. For the test, the model with the Gumbel (H¢) and the Log-
normal (T,) distribution has been used. The parameter estimation method used is the maximum
likelihood method.
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Table 8.13 Return values for various class widths of Hs
AH; (Hs(1), To(1)) {Hs(50), Tp(50)) Chi-square

value

[mrs] [m,S] [']

[m] $=0.5% s=1% s=1.5% $=0.5% s=1.0% s=1.5%
0.10 (3.31;20.38) [(3.31;14.41) [(4.68,14.04) [(4.12,22.79) {(4.11;16.12) |(5.56,15.31) [187.294
0.25 (3.31,20.38) |(3.31;14.41) 1(4.4913.75) [(4.12,22.79) [(4.11;16.12) [(5.24,14.87) |205.204
0.50 (3.31;20.38) [(3.36;14.55) [(4.75;14.14) [(4.12,22.79) [(4.11;16.12) [(5.68,15.48) |247.774
0.75 (3.11;19.48) [(3.24,14.27) |(4.90;14.36) [(4.32,14.79) (3.99;15.86) [(5.34,14.62) |343.949

It is seen from the table that the computed return values are not very sensitive to the variation of the
class width of Hs. In the most right column of the table, the corresponding chi-square values are listed.
According to this statistic, the model, which is estimated with a class width of 0.10 m, provides the
best fit to the observations. Note that the accuracy of the model decreases with an increasing class
width.

Model 4: Bivariate distribution based on the marginal distribution of H; and s

This model is based on the assumption that the observed values of the wave steepness (s) and the
significant wave height (H;) are not correlated. As shown in fig 8.38, for this set of data, the correlation
between the variables Hs and s is weak.
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Several distributions have been fitted to the wave steepness data. The Gumbel distribution appeared
to be the best alternative. However, as seen in fig 8.39 the distribution does not provide a very close fit
to the data.

The tested bivariate model consists of two marginal Gumbel distributions (figure 8.40).

! 5(') yeals

RSy 3

Fig 8.40 Gumbel (H,) ..Gumbel(s). (quantile lines : (1) MAX (Hs) + MAX (T,), (2) MOM (Hs) + MOM (T), (3) Lin LS
(Hs) + Lin LS (T,), (4) Non fin LS (Hs) + Non fin LS (T,))

Model 5: Bivariate model with given marginals
During the calculations of this Frechet class model, the estimated marginal distributions are
transformed twice. These transformations are illustrated in figure 8.41.
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Fig 8.41 Transformation procedures of model 5
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The first piot shows the observations before any transformation. The second plot illustrates the
process with the margins transformed to unit Frechet. In the third plot, the observations are shown
transformed to their pseudo polar equivaients. (See appendix [3]).

According to Morton and Bowers (1997), the first transformation helps to accentuate the extreme
events: the less extreme events are scaled to the axes while the extreme observations become more
inhomogeneous. The final mode! only contains this first transformation. The including of the
transformation in the model probably implies that the bivariate function is especially determined by the
extreme part of the observations. However, as can be seen from the figures, it seems that all
observations are scaled to the axis : “the more inhomogeneous extremes” are not observed.

The second transformation is used for calculating the dependence parameter ¢: the maximum
likelihood estimation of this parameter is based on the presented pseudo co-ordinates.

The analytical background of the model is not very clear. Especially, the transformation of the
observations into pseudo polar co-ordinates needed for the calculation of the dependence parameter
@ is not very obvious. However, according to Metcalfe (1997), the model is used in civil engineering
practice for several purposes. Perhaps a more detailed literature study (Johnson 1987, Mardia 1970)
could lead to a better understanding of the model.

Figure 8.42 shows the applied model, which consists of a marginal Gumbel (H;) and a marginal Log-
normal (T,) distribution.

8 10 12 14 1% 18 20 22
Tpls]

Fig 8.42 Model 5 : Gumbel (Hs) and Log-normal(T, ). (quantile lines : (1) MAX (Hs) + MAX (T,), (2) MOM (Hs) +
MOM (T,), (3) Lin LS (Hs) + Lin Ls (T,), (4) Non Lin LS (Hs) + Non Lin LS (Tp))
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Goodness of fit

For a qualitative assessment of the goodness of fit of the bivariate models, the chi-square test is used.
The computed values are listed in table 8.14. Observing the table, it is seen that the differences
between the chi-square values are relative small. According to the statistic, model 4 consisting of two
Gumbel marginals is the best option (178).

Table 8.14 Chi-square values of the tested models

Model | Marginal distribution for Marginal distribution for Chi-square
Hs To value

Nr Distribution Est. m. Distribution Est m.

1 Log-normal MAX Log-normal MAX 218.27
1 Log-normal MOM L.og-normal MOM 205.14
3 Gumbel MOM Log-normal MOM 201.50
3 Gumbel MAX Log-normal MAX 193.07
3 Gumbel LinLS Log-normal MAX 201.35
3 Gumbel N.lin LS |Log-normal MAX 204.00
3 Weibull MOM Log-normal MOM 20458
3 Weibull MAX Log-normal MAX 201.88
3 Weibuli Lin LS Log-normail MAX 212.48
3 Weibull N.lin LS | Log-normal MAX 198.96
4 Gumbel MOM Gumbel (s) MOM 201.69
4 Gumbel MAX Gumbel (s) MAX 199.97
4 Gumbel Lin LS Gumbel (s) Lin LS 200.38
4 Gumbel N.lin LS | Gumbel (s) N.linLS [17834
5 Weibull MOM Log-normal MOM 26535
5 Weibuli MAX Log-normal MAX 210.04
5 Weibull LinLS Log-normal MAX 180.23
5 Weibull N.lin LS | Log-normal MAX 190.14

Further, a theoretical scatter diagram is computed for each bivariate model. These are presented in
appendix [7]. They can be used to judge visually the fit of the models by comparing the diagrams with
the empirical scatter diagram shown in figure 8.43.
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Return values

In the preceding figures quantile lines are shown (See section 6.2 ; fig 6.1). These lines are hard to
compare with each other. An alternative is to show the return values of Hs and T, for only one value of
the wave steepness. In the table below the values of (Hs(50),T,(50)) computed by the best fitting
models (see table 8.15) are shown for s=1 %. Note that the differences between the values are smail.

Table 8.15 (H«(50),T,(50)) corresponding to s=1%

Model | Marginal distribution for Marginal distribution for (Hs(30).T(50))
H, T, [m,s]

Nr Distribution Est. m. Distribution Est m.

1 Log-normal MOM Log-normal MOM (4.06,15.99)

3 Gumbel MAX Log-normal MAX (4.20,16.40)

4 Gumbel N.lin LS | Gumbel (s) N.linLS 1(4.41,16.80)

5 Weibull LinLS Log-normal MAX (4.30,16.59)

Discussion

Evaluating both goodness of fit criteria, it is clear that the models poorly fit the data. This is probably
due to the small correlation between the wave height and wave period observations.

Observing the theoretical scatter diagrams of appendix 7, it is seen that model 3 and 5 correspond
mostly to the shape of the empirical scatter plot.

With respect to estimated return values, it appears that the bivariate models tend to follow their
marginals. The horizontal and vertical part of the quantile lines corresponds to the marginal return
values of Hs and T, respectively.
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Data set 2; The hurricane observations

The best fitting marginals are used for the bivariate models. These are the Gumbel distribution for H,
and the Log-normal distribution for T,. (Section 8.3.1). The tested bivariate functions are listed in table
8.16 and shown in the figures below.

The fit of bivariate model 2, the Fang and Hogben distribution, is not shown. Again it appeared that
this modified version of the bivariate Log-normal distribution was almost identical to the “normal”
version (bivariate model 1). Also bivariate model 3, the model with a conditional distribution for T, is
not used. The data set (25 points) was far too smail to obtain a reasonable fit.

The goodness of fit should be analyzed on basis of visual comparison of the contour plots of the
models. Because of the small number of data points, the proposed methods based on the scatter
diagram of the observations (section 5.3) can not be applied.

Table 8.16: Tested bivariate models for the Hurricane observations of Karwar

Figure | Mode! | Marginal distribution for Hs Marginal distribution for T, The remaining

parameters
Nr Distribution Parameter estimtaion Distribution Parameter
method estimation method
8.44 1 Log-normal MAX Log-normal MAX p=0.82
8.45 4 Exponential Lin. LS Normal MAX par. wavesteep. distr..
(wave steepness d.) §=0.0083 1=0.028

8.48 5 Gumbel Lin. LS Log-normai MAX dependence parameter:

=187

Tp(s! Tole]

Fig 8.44 Bivariate Lognormal distribution Fig 8.45 Bivariate model 5 consisting of a Gumbe/
distribution for Hs and & Log-normal

distribution for T,

in bivariate model 4, the wave steepness s is modelled by the Normal distribution:

1 1{log(x)—4 g
8. X)= X e T A ——
@D J© V278 e\p{: 2( 1) j :*

Fig 8.46 shows the distribution of the deep water wave steepness (s) during the hurricane. In fig 8.47
the data points of s are plotted against the data of Hs. The assumption that the observations of s are
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independent of the observations of H; seems to be reasonable. In figure 8.48 the contour piot of model
4 consisting of a Gumbel distribution for Hy and a Normal distribution for s is shown.

s.Normal maximum itkelihood method . Karwar hurnicane wave data (POT({1.53))
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Fig 8.46 The distribution of the deep water steepness Fig 8.47 The wave steepness observations during
the hurricane plotted against the significant wave

height observations (25 points)

the model over
predicts the extremes
in this area

Fig 8.48 Contour plot of mode/ 4 consisting of a Gumbel
distribution for Hs and a Log-normal distribution for s

Return values
The values of (Hs(50),T,(50)) for s=3% are shown in table 8.17.

Table 8.17 (H«(50),T«(50Q)) corresponding to s=3%

[ Figure | Model | Marginal distribution for M, Marginal distribution for T, (Hs(50), T,(50)
Nr Distribution Parameter estimation Distribution Parameter
method estimation method
8.26 1 Log-normal MAX Log-normal MAX (5.70,11.03)
8.30 4 Exponential Lin. LS Normal MAX (6.20,11.51)
(wave steepness d.)
8.27 5 Gumbei Lin. LS Log-normal MAX (6.74,12.00)
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Discussion

The bivariate Log-normal distribution underpredicts the extreme part of the observations. This is to be
expected since the marginal distribution of H; also poorly fits the extremes. Further, it is seen that the
contour plots of the three models differ significantly.

The joint probability density function of model 4 overpredicts sea states with relative high wave periods
as illustrated in figure 8.49. This is due to the fact that the scale parameter of the conditional
probability density function of T, corresponding to this model is constant. (Fig. 8.49).

r/\ﬂ
/' AN
// : .
_ -
;. P TN
je® /N
/ ..’:’\/\ // overprediction
/ SN / Y of joint pdf
/ /( 4 ‘\\ / s
.—E—. ,_é—./. . ® \ /
= e ® %o S .
P ee®ee Vo
T R S
// ’/. 'y . /S
/s .
- * /
e P e
O ey N e
/g/ * @ . .’
P .
//‘/ -
P -
,////
Tp [s]

Fig 8.49. The relation between the significant wave height and the peak period. In the figure, the conditional
probabifity density function of Hs corresponding to model 4 has been given for a number of

values of Hs.. The location parameter of the conditional function is described as a parabolic curve similar to the
wave steepness equation (e.q. 3.10). The scale parameter of the function is constant. This leads to an
overestimation of sea states with relative high peak periods (illustration)
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The tested models are listed in table 8.18. The best fitting marginals (table 8.8) are used for the
bivariate functions. The applied parameter estimation methods are the ones that provided the best
results in the marginal case.

Table 8.18 Tested bivariate models for the North Sea data

Treshold | Mode | Marginal distribution for Hs Marginal distribution for T,
level [m] |1
Nr Distribution | Parameter estimation Distribution | Parameter estimation
methods methods.
200 1 Log-normal | MAX Log-normal | MAX
200 3 Gumbel MOM/MAX/Lin LS Log-normal | MAX
2.00 4 Gumbel MOMMAX/Lin LS Weibull(s) | LinlLS
2.00 S Gumbel MOMMAX/Lin LS Log-normal | MAX
2.00 5 Gumbel MOMMAX/Lin LS Weibull MAX
450 1 Log-normal | MAX Log-normal | MAX
450 3 Weibull Lin LS/N. Lin. LS Log-normal | MAX
4.50 3 Exponential | MAX/Lin LS Log-normal | MAX
4.50 4 Weibull Lin LS/N. Lin, LS Weibull LinLS
4.50 4 Weibuii Lin LS/N. Lin. LS Weibull LinLS
450 5 Weibull Lin LS/N. Lin. LS Log-normal | MAX
5.00 1 Log-normal | MAX Log-normal | MAX
5.00 4 Weibull MOM/MAX/Lin LS/N. Lin. LS | Weibull LinLS
5.00 4 Weibull MOMMAX/Lin LS/N. Lin. LS | Waeibull LinLS
5.00 5 Weibull MOMMAX/Lin LS/N. Lin. LS | Waeibull MAX

The modeis are illustrated with figures containing a contour plot and a quantile line representing the
once per 50 years return period values of Hs and T,. The endpoint of the vertical part of the quantile
line is associated with a wave steepness of s=9%. The endpoint of the horizontal part corresponds to
a wave steepness of s=3%.
The quantile lines have not been presented for the first set of data. The preceding marginal analyses
have indicated that the extreme observations of H; are largely overpredicted by the marginal
distributions. Since the marginals of H; are substituted in the bivariate models, it is clear that the joint

probability density functions will also overpredict the extremes.



Case studies
8-30

Data set 1: The observations above H;=2.00 m

Model 1: the bivariate Log-normal distribution
The contour plot of the bivariate model is shown in figure 8.50.

8

Fig 8.50 Contour plot of the bivariate Log-normal distribution. (Hs>2.00 m; observations of wind waves)

In section 3.4.2, it has been shown that the model relates the significant wave height and the zero-up-
crossing period by the following complex formula

1)
82) g(H,)=ET, |H,)= exp{@, + p( = )(logﬁs ~ Ay, )J

T:

On basis of physical consideration, one could suggest to describe the relation with a parabolic
function similar to the formula of the deep water wave steepness (e.qg. 3.10). In that case, the relation
follows as

®3) gH,)=aH)"*
in which

a = constant.

By comparing both curves, one gets an impression of the relation between the physical proces and the
purely statistical model. In figure 8.50, the parabolic curve ssq, representing the value of the wave
steepness that is not reached by 50% of the waves (The wave steepness is described by a Weibull
distribution. See bivariate model 4. An example of the curve ssq, is given on page 3-13) is plotted
together with the exponential function (e.q. 8.2). As can be seen from the figure, for lower values of Hs
and T, the lines are almost identical. However, in the extreme part of the plot the difference between
the curves of the functions increases.
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Model 3: The model based on a marginal distribution for H; and a conditional function for T,
In this bivariate model, the marginal distribution of H, is modelled by a Gumbel distribution and the
conditional distribution of T, is described by a Log-normal distribution.

The parameters of the conditional distribution are defined as functions of Hs. Empirical regression
functions are used to describe these relationships. In the left part of figure 8.51, the estimation of the
scale parameter is shown. As can be noticed from the figure, it is far from easy to obtain a reasonable
fit. The linear function seems to be the best option. The value of the scale parameter decreases with
an increasing wave height. This agrees with the fact that in general the range of periods narrows at
the higher values of H,.

Scale estimator Tz data sets Location estimator Tz data sets

007 " — 257 A linear (eq. 3.21(1))
g 006 g < €9.3.23
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Fig 8.51 Estimators of the scale and the location parameter of the conditional distribution function. The estimators
correspond to chosen classes of Hs (see section 3.4.). Used distributions: Gumbel distribution (Hs) and Log-
normal distribution (T, ). Shown regression lines: linear (dashed line; eq. 3.21(1)) and parabolic (salid line, eq.
3.21 (2)). For the location parameter, the parabolic function defined by eq. 3.23 is also shown.

[n the right part of the figure, the estimation procedure for the location parameter is illustrated. in the
figure, three regression functions are shown: the linear and the parabolic function of eq. (3.21), which
are fully empirical, and the parabolic function that is similar with the formula of the deep water wave
steepness (eq. 3.23). On basis of visual inspection, the conclusion can be drawn that all functions fit
the data equally well. On basis of physical grounds, however, it is suggested to prefer the latter
parabolic function (eq. 3.23).

In figure 8.52 the bivariate model is compared with model 4, which is based on the marginal
distributions of the significant wave height and the wave steepness. As can be seen, for model 3 the
width of the conditional probability function (pdf) of T, decreases with increasing Hs. For model 4 the
width of the conditional pdf is constant. The two models become similar when in the case of model 3
the scale parameter of the conditional pdf of T, is constant and the location parameter is described by
the parabolic function of eq. 3.23.
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Fig 8.52 Comparison between model 3 and model 4. For both models, the conditional probability density function
of T, for a number of significant wave height levels has been given

In figure 8.53, the contour plot of bivariate model 3 is shown.

Hs[m]

p(Hs Tz).. Met
4

hod piHs. Tzj=p(Hs)*p{Hsy p(Hs{Tz).. Gumbel{Hs) ..

Lognormal{ Tz}

T
'

Fig. 8.53 Contour plot of bivariate model 3 consisting of a Gumbel (Hs) and a Log-normal (T) distribution
(Regression lines for parameters of conditional function both linear). (Hs>2.00 m; wind waves)
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Model 4: the model based on the marginal distribution of the significant wave height and the
wave steepness

In figure 8.54 the observations of H are plotted against the observations of s. According to the figure,
the correlation between the data points is weak. In figure 8.55 the Weibull distribution is fitted to the
observations of s. In figure 8.56, the contour plot of the bivariate model is shown consisting of a
Gumbel distribution for Hs and a weibull distribution for s.

3. Weibuil Jsast squares method (inear) Euro piatform data (POT{2.01))
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Fig 8.55 Weibull distribution fitted to observations
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Fig 8.56 Contour plot of bivariate model 4 consisting of Gumbel cdf for Hs
and Weibull cdf for T, (Hs>2.00 m)
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Model 5: The bivariate model with given marginals
The bivariate model tested is composed form a Gumbel distribution for Hg and Log-normal distribution
for T,. The contour plot of the model is shown 8.57.

p{Hs 7z}, Method Morton and Bowers (1997). Gumbel{Hs).. Lognormal(Tz)
8 - T

T T T
H | i ' l

Fig 8.57 Contour plot of bivariate model 5 consisting of Gumbel cdf
for Hs and Log-normal distribution for T,
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Data set 2: The observations above H.= 4.50 m (59 points)
The fit of the models is illustrated in the figures below.
e Fig. 8.58 : Contour plot of the bivariate Log-normal distribution.
(Shown quantile line : (1) MAX (Hs) + MAX (T2))
e Fig. 8.59: Contour plot of model 3: Weibull (Hs) + Log-normal (T5).
{Shown quantile lines : (1) Lin LS (Hs) + MAX (T;), (2) Non lin LS (Hs) + MAX (T2))
e Fig. 8.60: The wave steepness observations plotted against the significant wave heights
« Fig. 8.61: The Weibull distribution fitted to the wave steepness data
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e Fig. 8.62: Contour plot of model 4: Weibull (Hs) + Weibull (s).
(Shown quantile lines : (1) Lin LS (Hs) + MAX (T}, (2) Non fin LS (Hs) + MAX (T2))

Fig. 8.63 : Contour plot of model 5: Weibull (Hs) + Log-normal (T;).

(Shown quantile lines : (1) Lin LS (Hs) + MAX(T,), (2) Non lin LS (Hs) + MAX (T3))
1
§ | j £ é
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Fig 8.63
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Data set 2: The observations above H.= 5.00 m (22 points)

The fit of the models is illustrated in the figures below.

e Fig 8.64 : Contour plot of the bivariate Log-normal distribution

(Shown quantile lines ; (1) MAX (Hs) + MAX (T3))

8-37

+ Fig. 8.65: The wave steepness observations plotted against the significant wave height observations

s Fig 8.66: The Weibull distribution fitted the wave steepness data

e Fig. 8.67 : Contour plot of model 4. Weibull (Hs) + Weibu

Il (s).

(Shown quantile lines : (1) MAX (Hs) + Lin LS (s), (2) Lin LS (Hs)+ Lin LS (s),

(3) Non LS (Hs) +Lin LS (s))

4 5 : : ; ;
Y S S S OO S SOyears: ... R

ca75+-

Lo}

O

Fig 8.64

N,
Hsfm)

shape par - 34332

scate par, . 0.C2151€

lecaton par 0050296

302 Cees C 068

Fig 8.66

2088 907 £C72 €074 2076 2078 008
st

o
(84

Hs rr]

(SR

o
e T




Case studies
8-38

* Fig 8.68 : Contour plot of model 5: Weibull (Hs) + Weibull (T).
{Shown quantile lines : (1) MAX (Hs) + MAX (T), (2) LIN LS (Hs) + MAX (T,), (3) Non Lin LS (Hs) + MAX(T3))

Hs{m)
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Goodness of fit
Tabie 8.15 shows the computed chi-square values.
Tabie 8.15 Chi-square values
Treshold | Model | Marginal distribution for H, Marginal distribution for T, Chi-square value
level m]
Nr Distribution Parameter estimation Distribution Parameter
methods estimation
methods.

200 1 Log-normal MOM Log-normal MAX 231.48
2.00 3 Gumbel MOM Log-normal MAX 156.12
2.00 3 Gumbel MAX Log-normal MAX 182.25
2.00 3 Gumbel Lin LS Log-normal MAX 261
200 4 Gumbei MOM Weibull Lin LS 22537

(wavesteepness)
2.00 4 Gumbel MAX Weibull MAX 24598
2.00 4 Gumbel LinLS Weibull MAX 223.06
2.00 5 Gumbel MOM Weibull MAX 177.34
2.00 5 Gumbel MAX Weibull MAX 195.29
2.00 5 Gumbel Lin LS Weibull MAX 178.31
450 1 Log-normal MAX Log-normai MAX 4417
450 3 Weibull LinLS Log-normal MAX 67.79
4.50 3 Weibulf Nonlin LS Log-normal MAX 77.02
450 4 Weibuil LinLS Weibull LinLS 12.67

(wavesteepness)
450 4 Weibull Non lin LS Weibull MAX 12.58
4.50 5 Weibull LinLS Log-normal MAX 100.20
450 5 Weibull Nnlin LS Log-normal MAX 60.84
5.00 1 Log-normal MAX Log-normal MAX 17.33
5.00 4 Weibull MAX Weibull MAX 11.07
500 4 Weibull Lin LS Weibull LinLS 9.79

(wavesteepness)
5.00 4 Weibull Nonlin LS Weibull MAX 10.62
5.00 5 Weibull MAX Weibull MAX 8.63
5.00 5 Weibull LinLS Weibull MAX 10.56
5.00 5 Weibull Nonlin LS Weibull MAX 9.56

Return values
The values of (Hs(50),T,(50)) for s=7% are shown in table 8.16.

It must be stressed that the shown return values are under assumption that the Euro platform
is located in deep water. However, this assumption is doubtful, especially for the extreme significant

wave heights and periods.

Table 8.16 (Hs(50),To(50)) corresponding to s=7%

Treshold | Model | Marginal distribution for H, Marginal distribution for T, (Hs(30), T(50))
level [m} [m.s]
Nr Distribution Parameter estimation Distribution Parameter
methods estimation
methods.
4.50 1 Log-normal MAX Log-normal MAX (6.82,7.90)
450 3 Weibull LinLS Log-normal MAX (7.50,8.30)
450 4 Weibull Non lin LS Weibull Lin LS (7.72,8.40)
(wave steepness)
4.50 5 Weibull Non lin LS Log-normail MAX (6.99,8.00)
5.00 1 Log-normal MAX Log-normai MAX (6.80,7.90)
5.00 4 Weibull Lin LS Weibull Lin LS (7.35,8.30)
(wave steepness)
5.00 5 Weibull MAX Weibull MAX (8.09,8.60)
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Discussion

To obtain an accurate fit of the models to the extreme sea states, only the extreme data points
should be involved in the analysis. When a low treshoid level is used for the selection of data, the
estimated models tend to overpredict the extremes.

The bivariate Log-normal distribution underpredicts the extreme sea states. This follows directly
from the marginal analysis

The quantile lines of the models again agree with the marginal return values

The assumption that the wave steepness is independent of the significant wave height is
acceptable for the used data.

Model 4 appears to be a good alternative for the bivariate statistics of Hs and T. Mainly when the
significant wave height is modelled by the Weibull distribution (in that case the probability of sea
states below the treshold level is equal to zero, at least when A .=treshold level-0.1 m) the model
fits very well the data.

Model 3, the model with a conditional distribution for T,, appears to be only applicable when a
sufficient number of observations is available.
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9 Conclusions and recommendations

In this report, probability distributions for the long-term, significant wave height and wave period have
been compared. The marginals as well as the joint statistics of the two variables have been analyzed.
The study has been focussed on extreme, deep-water wave fields. For this, sets of data measured at
Karwar (India) and at the Euro platform located in the North Sea have been used. It must be stressed
that in this study it is assumed that the wave field near the Euro platform is a deep-water wave field.
However, this assumption is doubtful, especially for the extreme values of Hs and T.

In the following part, conclusions and recommendations are given for each phase of the presented
wave analysis.

Data selection

¢ In the Peak over Treshold method the choice of the treshold strongly determines the estimated
return values. In each case study it is found that a lower treshold gives more peak wave data and
an increase in the estimated return value. This corresponds to results of earlier case studies
(Mathiesen et al. 1993, Maes et al. (1994)).

+ For an extremal analysis, only the extreme observations of H, and T should be taken into account.
If other types of waves such as swell are included, it is seen that in such case the distributions
tend to overpredict the extreme observations.

Marginal distributions

+ With regard to the significant wave height, the Gumbel and Weibull distribution provided the best
fits to the data. The Log-normal tends to underpredict the extreme observations, which was earlier
found by Fang and Hogben (1982) and Ochi (1978). The Frechet distribution provided a very poor
fit. it must be noted that these results strongly depend on the data sets used.

» With regard to the wave period (the zero-up-crossing period or the spectral peak period), the Log-
normal distribution gave the closest fit to the data. This also followed from studies made by
Burrows et al (1986), Haver (1985), and Mathisen et al. (1990).

+ The distribution of the deepwater wave steepness has been described with the Gumbel, Normal
and Weibull distribution. The advantage of the Weibull distribution is that it contains three
parameters. Due to the inclusion of the shape parameter, the distribution can be fitted very close
to the steepness data.

Bivariate distributions

+ The bivariate Log-normal distribution tend to underpredict the upper sea sates. This directly
follows from the poor fit of the marginal Log-normal distribution. The disadvantage of this model is
obvious: only the Log-normal can be used for the marginal description of Hg and T.

o The Fang and Hogben distribution has previously been proposed as a modified version of
bivariate Log-normal distribution. In both case studies, however, the model was almost identical to
the “normal” bivariate Log-normal distribution. No improvements were found in the fit to the
extreme sea states.

+ The conditional distribution approach, model 3, performs very well when a large number of
observations are invoived in the fittings procedure. However, when a small number of
observations is available, (when a relative high treshold level is used), this model is less suitable.
A Linear regression function appears to be best the best aiternative for the description of the
parameters of the conditional distribution as a function of Hy,

e Model 4, the model based on transforming the joint distribution of the significant wave height and
the (deepwater) wave steepness, provided good results. it must be noted, however, that the
assumption is being made that H; and s are independent. The observations of Hg and s that have
been analyzed showed no correlation.

e Model 5, the bivariate model proposed by Morton and Bowers (1997) is relative complicated. The
model is not fully understood by the author. Since the model does not provide a much better fit to
the data than the other models, there seems to be no reason to use this model instead of the
other, much simpler, modeis.
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In general, it is seen that the fit of the bivariate models to wave data is accurate when there is a
high correlation between the two wave variables. In the case of the North Sea data, the (linear)
correlation coefficient between the observed values of Hs and T, was 0.85, and consequently the
models fitted the data very well, especially when a high treshold level was used.

Parameter estimation methods

The major differences found in this study are due to the different methods (treshold ievels) of data
selection, i.e. which peak wave data should be included in the statistical analysis. The differences
between the results obtained through the various fitting techniques was relative small. Trends
similar with previous studies (Mathisen et al. (1993)) were found: in general, the least squares
methods provide a higher prediction of return values than the maximum likelihood method and the
method of moments.

Goodness of fit

The data set of the south-west monsoon at Karwar and the sets of the Euro platform were
suspected to be inhomogeneous. The empirical cdf's of the data showed some irregularities,
which indicate the inhomogeneity of the data. In the case of the monsoon data, this might be
explained by the fact that the set contains observations of both wind waves and swell. In the case
of the North Sea data, the set might probably contain storms of different directions.

Due to the inhomogeneity of the data, it was hard to obtain a reasonable fit of the probability
functions

The fits of the marginal distributions to the data have mainly been judged visually. Furthermore,
the linear correlation coefficient has been used just as two empirical rejection criteria, i.e. the DOL
and REC criteria (see section 5.2). The selection of the best fitting distribution on basis of the
correlation coefficient did agree with the visual judgement.

The two criteria of Goda gave generally poor results. Only distributions were rejected which very
clearly did not fit the data.

The fit of the bivariate models was assessed on basis of the two dimensional histogram (scatter
diagram) of the two variables. A visual judgement was made by comparing the scatter diagram of
the observations to scatter diagrams computed with the theoretical models (section 5.3.1).
Furthermore, a two-dimensional chi-square test was applied. Both tests perform well when a large
amount of data points is available. However, often the number of data points is too small to
compose a 2-dimenional histogram. As far as known to the author, no better goodness of fit
criteria is present in literature. Therefore, it might be useful to study this topic in future.
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Appendix 1

This appendix provides a description of the computer program that has been written for the declustering of wave
observations. The description is specified to the wave data set that consists of observations, which come from the
Euro platform located in the North Sea. (See chapter 8).

To decluster the observations, first the time interval between successive storm events has to be
chosen. With respect to the wave field of the North Sea, earlier studies used a time interval varying
from 18 h (Mathiesen (1993)) to 30 h (Morton and Bowers(1997)). Here 24 h is taken as minimum time

between storm events.

The declustering of the data is started by dividing the data set in parts of 24 hours. For each part, the
maximum wave height is determined. The wave period that is selected, corresponds to the maximum
significant wave height in the time interval. This is illustrated in figure 1.

{
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time interval 1(24h) time interval 2 (24 h)

Fig 1. Declustering of data

Figure 2 and 3 show the flows charts of the computer program that has been written. The first chart

flow covers the above procedure.

The next procedure, presented in the second flow chart, is the declustering of the selected maximum
wave heights. As shown in figure 1, it is possible that the time between the selected maximum
significant wave heights of two successive intervals is less than 24 hours. {n such case, the program

censors the lowest of the two maxima.
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Appendix 2

in this appendix some additional information is given about the bivariate Log-normal distribution.

The aim of this appendix is o show some typical features of this distribution. The bivariate Log-normal
distribution is given by

0.5

S(x,y) = ¥
xymd, S, 1-p?
Q) " )
Fexpl - 05 | (ogx—A4,) _2p(logx-)~x)(logyw%,,,)+(logywly)
2 l_pz_ 5x2 6_3(5)/ 0“)'2

in which x represents the wave period and y represents the significant wave height. For this
distribution the contour lines with equal probability density are ellipses:

(logx-2,)" 2pUogx-7,)logy-2,) (ogy-7,)"

2
@ 5. 5.5, s’

C

In this equation C is some constant value. Tangents of these ellipses are defined as

&)

R
ox

Vertical tangents are defined as

T

@ LA
dy

which follow as

5,
(5) log(»)— 4, = pg‘-—[log(x) -]

X

This equation can be simplified to

5,
(6) y= exp{ly + p—g—-(log(x) - Ay )}

X

Simultaneously the equation for horizontal tangents can be derived. This gives

M x= exp{ 2o+ p 25 fogn -2, )}

v
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Equation (6) and (7) are equal to the mean value of the conditional distribution functions f(y|x) and

f(yix), respectively. The function f(x]y) is defined as:
N2

x- t:&x + p[g’i)(logy - Ay)}
S(x.p) 1 1 ¥ ’
8 )y = = 3 ——
® /x» S xr)“xﬁ;r_(]—p) P 2 5“//1_,02
Thus

s,
© E(x|y)= exp{/’-x + p(—g‘—)(log y=2 )J

X

Equation (9) is called the regression of x on y. In figure 1 and 2 the regression functions defined by
equation 6 and 7 (or 9) are shown, together with some contour lines of the bivariate Log-normal
distribution function. The line, which represents equation (8), is indicated with 1. Equation (7) is
presented by line 2.

Standardidev. Tp : 2.4343
35

Standardidev. Hs : 0.1(0537

linear cor :0.27031

——

)
\ j/ T

15 /

14 16 18
Tpls]

@
-
Q
-y
N

Fig 1 An example of a contour plot of a bivariate Lognormal distribution (1)

Observing equation (6) and (7), it can be seen that the parameters p, 8, and &, determine the
steepness of the regression lines. When the linear correlation value increases, both lines become
steeper. That means that the ellipses become narrower. This agrees with the fact that when the
spread of the data points decreases, the value of the correlation coefficient increases.

When the standard deviation of the wave period decreases, line 1 becomes steeper. The slope of line
2 decreases. The complete distribution turns to the left and the slope of the ellipses become steeper.
Apparently this bivariate distribution function adjusts to the shape of the marginal distributions.
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Fig 2 An example of a contour plot of a bivariate Lognormal distribution (2)



Appendix 3
A-7

Appendix 3
In this appendix a detailed description of the bivariate model of Hs and T that has been developed by Morton and
Bowers (1997) is given.

1 Organization appendix

The organization of this appendix is as follows: section 2 provides a description of the transformation
of the variables. The choice of the joint treshold is dealt with in section 3. The modelling of the
dependence model is described in section 4, and the construction of the joint probability density
function is shown in section 5.

2 Transforming the variables

Having determined marginal distributions, the next stage is to consider the nature of the joint
distribution. As a preparatory step, it is recommended (Coles and Tawn (1994)) that the marginal
extremes are transformed such that their cumulative distributions become unit Frechet. This
transformation both scales the variables and also places a greater weight on the more extreme
observations, which helps to distinguish them. They appear to be a non-homogenous scattered
collection of points in space, while the less extremes observations appear homogenous and are thus
collapsed downwards the axes.

The unit Frechet transformation is undertaken by identifying a function Z(X) such that Z has a
cumulative distribution

0=>:z2z<0

1 P(Z<2)=
M (Z<2) {exp(—z"l):>2>0

in the article of Morton and Bowers, the Generalized Pareto distribution (GPD) has been chosen as
marginal cdf. Here the marginal distribution functions of chapter 5 are selected.
The required transformations for these distribution functions are listed in table 1.

Tabel1 Transformation formula unit Frechet space for the marginal cdf’s

Zj
Exponential 1
x—-A
log| 1 —exp| —
g{ p( ( 5 m
Gumbel _
exp[— (-x+ 7»)}
)
Weibull 1
o 1-o|-( 2]
(8] —exp| —| —
g p 5
Frechet (x _ k)ﬁ
)
Log-normal 1
1 ¢l 1 [log(x) - HJZ
lo —exp| ——
8 c\/?‘;z '[ X p( 2 [ o
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Having transformed the marginal variables, a second transformation is recommended (Coles and
Tawn(1994)) in order to combine these variables in such a way that their joint distribution may be
better appreciated. Pseudo-polar co-ordinates are constructed from unit Frechet variabies. The radial
components correspond to the combined magnitude of the extreme event while the angular
components capture the dependencies between the variables. In the bivariate case, the pseudo-polar
co-ordinates are defined as

@ pobtzy)
n
el

nr

3 Choice of joint treshold

The transformations described by equations (1)-(2) are designed to help distinguish the
characteristics of the marginal variables and inter-relationships between those variables. The inter-
relationships are then modelled by the dependence structure, which reflects the behaviour of the joint
extremes; this proces is summarised in block C of fig 3.11.

Morton and Bowers described a graphical method of choosing an appropriate joint treshold. In this
method, the angular co-ordinate w is be plotted against the radial co-ordinate, r for various values of

rmin- It is suggested that independence between the two pseudo-polar co-ordinates is satisfied when
the variance increases appreciably and at this point the joint treshold, u,, is chosen.

0207

0 151

Variance of the angular co-ordinate
(w) given r>min
o
1

0 05

60—

f 1 1 1 i i T 1
2.008 oagt0 0020 0050 0.100 0200 0 500 1.000

radial co-ordinate (r}

Fig 2 The variance of w given r (Taken from Morton and Bowers(1997))
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An application of this procedure is shown in figure 2. In this plot there is a significant change in the
variance of when r=0.033 as indicated by an arrow. Therefore this value was selected as the joint
treshold. The joint treshold for both data sets is thus expressed in r-values.

4 Modelling the dependence structure

Various models of the dependence between extreme variables have been suggested: logistic,
bilogistic and Dirichlet. However, it appears that the choice of dependence model is not usually critical
to the accuracy of the final model: previous studies (Coles and Tawn (1994); Anderson and Nadarajah
(1993); Cavanie (1993)) have found that each of the dependence models appear to describe the
distribution of bivariate data equally well.

Hence in the present study the simplest model was adopted, the logistic:

1
1Y (1))°
@) V(z)= (—) +[,—J
“1 L

The parameter o, the dependence measure, is determined by a consideration of the distribution of w.
The distribution of Z=(Z,,Z,) is modelled (Coles and Tawn (1994); Anderson and Nadarajah (1993)) as
a point proces, where P, ={n"Z;; i=1,2,...,n}, n being the number of observations. The limiting proces
of P, can be described by an intensity measure A where

(4) A(dr* dw) = d—;dH(w)
r

and H is the dependence function, which satisfies

5) [w,dHw)=1

The measure density, h, of the dependence function, H, in the case of a logistic model is
1
-2

®) h(w) = (o= Dw(L-w)**(w® +(1-w)*))*

In this model ¢=1 corresponds to independence between the two variables and ¢=~ implies perfect
dependence. The dependence measure has a corresponding negative log-likelihood function that can
be used to determine a suitable estimate of ¢

M —l(e;w)=—nlog(o-1)~(0-2)3 logw, (1~ w,)) - & - Z}ilogw —_

i=1 i=1
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5 Constructing the joint probability density function

Having established suitable marginal distributions and the dependence structure, a joint pdf may be
constructed. The details of the proces, in the bivariate case, may be described in terms of

62
8 o P(X,>x,X,>x,)
1 2
where
9 PX,>x,X,>x,)=exp(-V(z))
Therefore,
o’ - oz, oz,
(10) PX, > x, X, >x,) =V (2V,(2) -V, (2))—L =2 exp(-V (2))
Ox,0x, ox, 0x,
where

o V(z):([g_j H}

is the logistic model and

1
v oad (1Y (1Y)
(12 Mz =——=(z" 1)((——j +(-] J
0z, z, z,
oV Y (1Y)
(13) y(2) = =«—a”*{{*j'+ﬂﬁ)]
0z, z z,
1,

3 1Y (1Y)
(14 %@:;ﬁ=F4WW%MMﬂ%PJ+GJ}
0z,0z, 5 Z,

-
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For each of the candidate marginal distribution functions, except for the Log-normal distribution, the

-~

oz
formula of the two first order derivatives of Z, axj (7=1.2) are listed in table 2.

J

Tabel2 First order derivates of Z

oz,
ox
Exponential X=X
-1 « exr{_ [ ) }
_aNY -2
1og(1 ~ exp(—( 5 xm 3 [I - exr{— (x 5 m
Gumbel 1 (x - }\’)
gexp[—- 5 j}

Weibull ] (x ~ k)g
1 (x——k)ﬁ g s
LS - PR
log l—exp(— (%&) ] i l—exp[” [Ls*}t) j

Frechet (x B }\)B B
) (x-A)

For the cumulative distribution function of the Log-normal distribution there exists no analytical
expression. Only via numerical integration techniques this function can be approximated. Therefore,
the first order derivative of Z for a Log-normal distribution also has to be determined numerically. In
this case the derivative is calculated with

A
oz, Z,,-Z,

15
(19) ox 2Ax

In equation (15) Ax represents a step size. Here a step size of 0.05 m for the significant wave height
and a step size of 0.05 s for the wave period are taken.

The resultant pdf describes the distribution of the joint extremes. When there is a reasonably high
dependence between variables and only the extremes are of interest, this pdf is sufficient (Morton and
Bowers (1997)).
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Appendix 4

In this appendix the dertivation of the slope (A) and intercept (B) of the (linear) empirical regression function is
given.

The linear least squares method is based on minimization of the distance

™ >0, - (B +4x))

or

) x* =min__. > (¥, —(4+Bx,))’
i=l

The minimum of (1) is obtained by equating to zero the partial derivatives of (2) with respect to the
parameters:

3) G 9 9% _g
oA cB
This gives
@) :62(— =Y —2y,+2n4+) 2Bx, =0
0A i=1 i=1
% =3 —2yx, + > 264+ 3 2Bx =0
C. i=1 =1 =1

A and B solved gives:

(5) B — i=0 i:i)
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Appendix 5
In this appendix the derivation of the maximum likelihood estimators is presented for each selected distribution
function.

The maximum likelihood function of the Exponential distribution
The loglikelihood function of a random sample {x},i=1,2...n from this distribution is

n

Z o

1 log L = —nlog(d) — &L— + —
M g nlog(o) 5 5

Maximum likelihood estimating equations are obtained by finding the root of the partial derivatives of
log L with respect to the parameters. Since A < min(x;), A is maximum when

() A=rx, (x; =min(x))

The partial derivative 0L /0 is:

nA

6‘.

OlogL _ _n ;

cd & 9

X
)

&)

Setting this expression to zero gives the following simuitaneous equation for the maximum likelihood
estimator (MLE) 6 :

4) S=%-x

The maximum likelihood function of the maximum Gumbel distribution
The loglikelihood function of a random sample {x;},i=1,2...n from this distribution is

(5) logL:—nlogS—Z—x"—S——&-iexp{—(x’ng

i=1 i=1

Again maximum likelihood estimating equations are obtained by finding the root of the partial
derivatives of log L with respect to the parameters. Parameter estimates are then obtained as the
simultaneous solutions of these equations.

The partial derivatives of log L are:

clogl. n &1 x. —A
6 e R T Y —exp| |
© a5 ,:,seXp{ [ 5 ﬂ

AlogL _ n &x,—A Gx—h (x, =M
" 5 537Xy X% ex"[( 5 H

i=l
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Setting these expressions to zero gives the following simultaneous equations for the maximum
likelihood estimators (MLEs) A and & (Tucker, 1991):

) A= -8log(n > exp[— %}

i=1

© Sznglzxi _ = )

T Sea|-%]

The maximum likelihood function of the 3-parameter minimum Weibull distribution
The loglikelihood function of a random sample {x}, i=1,2...n from this distribution is

(10) logL—nlogK’B )}“(/’ ”{Z“’g( A)} z(ioj’)ﬂ

i=1

The estimating equations follow as

I URL AR S CR AR

(1) "IOgL “ Zlog(x K)——Z(x ~2)° log(x, —1)=0

=1

clog L n
ag ) ezz(x ~h)'=0

where, in order to simplify the derivatives, the scale parameter d has been replaced by

(12) 0 =25°

The three equations do not yield explicit solutions for the estimates. However as shown by
Cohen(1965), 6 can be estimated from the last two equations to give

-
n

>~ logle ~R) |,
" —x|==>(x,-1)=0.

N n
Z(xz - >\')B !

|
3

Pk

(13)

[0%]
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From the last equation of (11), we have
(14) 6=>(x,-1)F
i=1

When 1 is known, equation (13) can be solved iteratively for ﬁ . When A is unknown, the three

parameter distribution is converted to the two parameter distribution by preselecting the focation
parameter by inspection of data in a sample. Usually the parameter is set at the lowest value -0.1 of
the data set. By employing a trial and error procedure the best required estimation will be reached.

With A4 fixed, (13) is solved for &, and 8 follows from (14).(0log L/ dA), can be calculated by

substituting A4, 81, and 81 into the first equation of (11). If (0log L/JdA),=0, then A= A §=8,,

é = 0, , and the estimation proces is completed. Other, the cycle of computations with a new

approximation 1, will be repeated until a value for A is found for which eq (11) is approximately equal
to zero. For this procedure one can define a tolerance interval. When the outcome of eq. (11) falls
within this interval the iteration procedure is ended. The procedure is illustrated by fig. 1.

A=min(data)-0.1

%

& > eq. (13)
6 > eq. (14)

v

Substitute 1,5 and 6 n eq. (11)

Eq(11)~0

( Eq(11)>min tol interval.
and Eq(11)<max tol. Interval )

No. Yes.

End of iteration proces
New value A, }1 = 7&-

§=3,

6=0,

Fig 1.Maximum likelihood estimation procedure for the 3-par. Weibull distribution

The maximum likelihood function of the 2-parameter maximum Frechet distribution
Estimation of the two-parameter Frechet distribution can be reduced to the estimation of the Gumbel
distribution. Therefore, the following transformation is used

(15) Y =log(x—A)

The Frechet distribution of X is transformed into the Gumbel distribution of Y with the following relation
between the parameters
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(16) Ac =log(d;)
1
) 5, =—
G BF

The maximum likelihood function of the 3-parameter maximum Frechet distribution
The loglikelihcod function of a random sampie {x}, i=1,2...n from this distribution is

s (2 Y
(18)  logL= nlog( )“ﬁ“){zk’g(- /J} ,:l[xx-i]

The estimating equations follow as

” N
glogl _n nosl_9 | B_
Py ,8+('B+D5 Z( i j 0

ologl (s Y p
Y 2 (ol

(19)

Ologl
ap

n n
=-—+nlog(d)+ > ~log(x; -+
5 (o) Zl glx; ~4)

+Z log(x, — 1) - Z( '_;))ﬁmg((xoiﬂ)}o

The above set of equations has been determined by using the mathematical spreadsheet program
Mathcad. In spite of the Weibull distribution, no simplified formulas have been found in literature. With
the above set of equations, the maximum likelihood estimators of the three distribution parameters can
be caiculated iteratively. In this case, direct maximization of the (log) likelihood function will probably

be much simpler.
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The maximum likelihood function of the Log-normal distribution
The loglikelihood function of a random sample {x}, i=1,2...n from this distribution is

n

> [— (logx,)* + 21 log xi]

< 2
(20) log L = ~nlog(v/276) - Y _log x, + =L i B n/l2
i=l 26 20

The estimating equations follow as

231 .
ologL ,Z:,: o8 % _ 2nu
oA 267 267
S —~(1 N +241 :
alOgL »n i [ ( og(xx )) + Og xz] f?ﬂz
@1 == ; =3
150 ) ) )

Setting these expressions to zero gives the following simultaneous equations for the maximum
likelihood estimators (MLEs) {Land G :

(22) A=7

5= {n“zn;(zj -2)2}

J=1

with
Z, =log(x,)
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Appendix 6

In this appendix an analytical derivation of a confidence interval is given which includes statistical uncertainty. The
presented confidence bands are specified to the Gumbel distribution. For other distribution functions the
calculation procedure is similar.

Consider the Gumbel distribution,

Q) F(x)= exp(exp[— QC%——QD

The value of a return value of this function can be determined after transformation of the cumulative
distribution function:

@ %, = A - 8log(~log(F(x))
or

) %, = A+ 8u

with

@) u = —log(-log(F(x))

Ineq. (2) and (3) fp,fk. and 8 are mean vajues. With eq. (3) the variance of J?p can be derived from

the variance of i and 8:

var(x,) =
= E((%, - (%,)))
®) = E((A+8u—p(h) — u(®u)*)

= E((A - n(h)* + 2u(h - p(A)G - p@) + u G - né)™)
= var(}) + 2u(cov(i, 8)) + u* var(8)

The estimators of the Gumbel distributions are assumed to be Gaussian distributed. The variance of
these normal distributions is computed numencally by using the bootstrap procedure. (See appendix

[4.3]). For the covariance between ?» and 6 the covariance value between the two sets of bootstrap
data, i.e. the sets of data with 500 estimators of A and & , are used.
When the variance of a return value is known, the corresponding confidence intervals can be

calculated. Considering a 95% confidence interval, the expression follows as (Groeneboom et al.
(1995))

®) f LE,)-196 fvar(%,) < E(2,) < E(%,)+196 var(%,) §
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Appendix 7

In this appendix the theoretical scatterdiagrams of the first case studie are presented. They belong to the
bivariate functions fitted to the Karwar data above the treshold level Hs=1.95 m. For each bivariate model only
one theoretical scatterdiagram is presented (thus for only one parameter estimation method : the method of
moments ). It must be noted that due to round of errors, the total number of observations of the theoretical
scatterdiagrams do no always conform to the total number of observed observations. Therefore the theoretical
diagrams must be seen as a global indication of the fit of the functions to the data.

Figure 1to 4
e Treshold level ; 1.95m

¢ Number of observations : 167 points

e Fig. 1: Theoretical scatterdiagram of the Bivariate Log-normal distribution

o Fig. 2: Theoretical scatterdiagram of model 3: Gumbel (Hs) + Log-normal (Tz).
e Fig. 3: Theoretical scatterdiagram of model 3: Weibull (Hs) + Log-normal (Tz).

e Fig. 4 Theoretical scatterdiagram of model 4: Gumbel (Hs) + Gumbel (s).
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Fiure 5:

1.95m

Treshold level

167 points

Number of observations

Weibull (Hs) + Log-normal (Tp).

Theoretical scatterdiagram of model 5
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