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Abstract
Celiac disease is a genetic autoimmune disorder
caused by a negative reaction to gluten associ-
ated with alterations in the gut microbiome. This
study explored the potential of machine learning
models and feature selection methods in identify-
ing biomarkers for celiac disease using gut micro-
biome data. The performance of several machine
learning models was evaluated, and the impact
of different feature selection methods, including
MRMR, ANOVA, and information gain, was ex-
amined. The findings revealed comparable perfor-
mance among the models without feature selection.
However, the choice of feature selection method
had varying effects on model performance, with lo-
gistic regression and support vector machines be-
ing more sensitive than random forest and XG-
Boost models. Notably, several identified bacte-
ria species, such as Bacteroides eggerthii, Parabac-
teroides johnsonii, Faecalibacterium prausnitzii,
and Ruminococcus_D bicirculans, have been pre-
viously associated with celiac disease, reinforcing
their potential as biomarkers for celiac disease.

1 Introduction
Celiac disease is an autoimmune disorder that affects approx-
imately 1.4% of the global population (Singh et al., 2018),
caused by an adverse reaction to gluten, a protein found in
wheat, barley, and rye (Lindfors et al., 2019). Celiac disease
is associated with potential complications, including osteo-
porosis and intestinal lymphoma (Catassi et al., 2022). The
current standard for diagnosis is a combination of blood tests
and an endoscopic biopsy of the small intestine (Lebwohl et
al., 2018), both invasive and painful procedures.

Recent research has suggested that the gut microbiome,
the collection of microorganisms that live in the digestive
tract, may play a role in the development and progression of
celiac disease (Sacchetti and Nardelli, 2020). Specifically,
alterations in the composition of the gut microbiome have
been observed in individuals with celiac disease compared to
healthy individuals (Marasco et al., 2016; Rossi et al., 2023;
Sellitto et al., 2012).

However, identifying biological markers in the gut micro-
biome that are associated with celiac disease is a complex and
challenging task. Previous research has used machine learn-
ing to analyze the gut microbiome in various disease contexts,
including inflammatory bowel disease (IBD) and colorectal
cancer (Marcos-Zambrano et al., 2021) using stool samples
collected from patients, using non invasive and painless pro-
cedure. These studies have shown that machine learning can
be a powerful tool for identifying disease-specific biological
markers in the gut microbiome (Ai et al., 2019; Qin et al.,
2010). By analyzing large amounts of data from the gut mi-
crobiome samples using machine learning, researchers can
identify patterns and relationships that may not be trivial.

However, no previous studies have specifically focused on
using machine learning to identify biological markers in the

gut microbiome for celiac disease. Therefore, the knowledge
gap in this area is significant, and this research aims to fill this
gap by using machine learning to identify biological markers
that could aid in the diagnosis and treatment of celiac disease.

The main question this research is trying to answer is the
following: Can machine learning be used to identify biolog-
ical markers in the gut microbiome that are associated with
celiac disease? Additionally, this research aims to answer the
following sub-questions:

• Which machine learning algorithms excel in classifying
celiac disease samples using gut microbiome data?

• Which feature selection methods work best with selected
machine learning methods?

• What are the specific bacterial species associated with
celiac disease identified by feature selection methods?

2 Materials and Methods
In the context of disease prediction and biomarker identifi-
cation using gut microbiome data and machine learning the
most common type of information used as features is relative
abundance. Relative abundance refers to the proportionate
representation of microbial taxa within a sample, reflecting
the relative prevalence of each taxon to the overall microbial
community.

2.1 Datasets
The raw DNA sequencing data and associated metadata for
all samples were obtained from two independent studies:
"Dataset A" (El Mouzan et al., 2022; PRJNA757365) and
"Dataset B" (Francavilla et al., n.d.; PRJNA904924). Dataset
A comprised 80 samples, while Dataset B comprised 132
samples. The data was initially downloaded in Sequence
Read Archive (SRA) format (Leinonen et al., 2011) and sub-
sequently converted to FASTQ format using SRA-Toolkit
(version 3.0.1) (National Center for Biotechnology Informa-
tion (NCBI), 2023).

2.2 Raw data processing
To extract the relative abundance data from the originally col-
lected raw DNA sequencing data, a pipeline consisting of
three consecutive steps was employed for each sample:

1. The first step involved processing the raw sequencing
data to filter out low-quality DNA reads, remove any
machine contamination, and trim the DNA reads. To
accomplish this, we used the Trimommatic tool (version
0.39) (Bolger et al., 2014). Trimommatic is a widely-
used tool for quality control and preprocessing of se-
quencing data. The following parameters were used for
running Trimommatic, as shown in Table 1.

2. To assign taxonomic labels to DNA sequences, the pro-
cessed DNA reads were matched against a Unified Hu-
man Gastrointestinal Genome (UHGG) v2.0.1 database
(Almeida et al., 2021) using the Kraken 2 tool (Wood et
al., 2019) with the default settings for paired-end reads.

3. For the estimation of relative abundance, the Bracken
tool (version 2.8) (Lu et al., 2017) was used. Bracken
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utilizes a statistical algorithm to approximate the relative
abundance for every taxon for the specified taxonomic
rank detected in a given sample based on the taxonomic
assignments provided by Kraken2 software (Wood et al.,
2019) from the previous step in the pipeline.

Trimming step Parameter
SLIDINGWINDOW 4:20
ILLUMINACLIP TruSeq3-PE.fa:2:40:15
HEADCROP 5
MINLEN 35
TOPHRED33 True

Table 1: Parameters used to run Trimommatic (version 0.39).

This pipeline allowed us to obtain relative species abundance
data for each sample, which served as features for the ma-
chine learning classification task.

2.3 Mapping of the original samples classes
In a problem of identifying biomarkers associated with celiac
disease, the classification of samples into two distinct cate-
gories becomes crucial, constituting a binary classification
problem. To facilitate this, a mapping was developed fol-
lowing original studies to transform the original class names
into binary labels. In this binary classification context, label 1
corresponds to samples with celiac disease, while label 0 rep-
resents healthy samples. The mapping of the original classes
to binary labels used in this research is outlined in Table 2.
This mapping resulted in an even distribution of binary labels
with 106 samples labeled as 0 and 106 labeled as 1.

Original class Binary label
Healthy 0
tCD-TG- 1
tCD-TG+ 1
Untreated CD 1
Celiac 1
Non-Celiac 0

Table 2: Mapping of original classes names of the samples to binary
labels.

2.4 Machine learning models selection
Choosing an appropriate machine learning model is crucial
for the success of the task. There are several machine learning
algorithms used for identifying biological markers in the gut
microbiome for a disease (Marcos-Zambrano et al., 2021).
For this research, the following models were selected: XG-
Boost (Chen and Guestrin, 2016), random forest (RF) (Ho,
1995), support vector machines (SVM) (Cortes and Vapnik,
1995) and logistic regression (LR). Random forest, support
vector machines and logistic regression models were imple-
mented using scikit-learn (sklearn) Python library (version
1.2.2). XGBoost model was implemented using xgboost
Python library (version 1.7.5).

2.5 Feature Selection
In this research for feature selection, the following methods
were implemented: Information Gain (IG) (KENT, 1983),
Analysis of Variance (ANOVA) (Ding et al., 2014) and Min-
imum Redundancy Maximum Relevance (MRMR) (Peng et
al., 2005). Information Gain and ANOVA algorithms were
implemented using scikit-learn (sklearn) Python library (ver-
sion 1.2.2). MRMR was implemented using mrmr_selection
Python library (version 0.2.6).

2.6 Hyperparameters optimization
In this research, RandomizedSearchCV was used due to its
simplicity and relative effectiveness (Yang and Shami, 2020).
RandomizedSearchCV was implemented using the scikit-
learn (sklearn) Python library (version 1.2.2) (Pedregosa et
al., 2018). It was performed on the "train" split of the data
in combination with StratifiedKFold cross-validation with 10
splits. Distributions for parameters used for Randomized-
SearchCV can be found in Table 3, uniform and randint
functions were implemented using scipy.stats package from
python library SciPy (version 1.10.1).

Model Parameter Name Distribution

RF

’n_estimators’ randint(1, 500)
’criterion’ [’gini’, ’entropy’]
’max_depth’ [None] +

list(range(1,30))
’min_samples_split’ randint(2,20)
’max_features’ [’sqrt’, ’log2’]

XGBoost

’n_estimators’ randint(1,500)
’learning_rate’ uniform(0.01,1.0)
’max_depth’ randint(1,10)
’subsample’ uniform(0.6,0.4)
’colsample_bytree’ uniform(0.6,0.4)
’reg_alpha’ uniform(0,1)
’reg_lambda’ uniform(0,1)

LR ’C’ uniform(1,1000)
’solver’ [’liblinear’, ’saga’]

SVM

’C’ uniform(1,100)
’kernel’ [’linear’, ’poly’ ,

’rbf’, ’sigmoid’]
’degree’ randint(1,4)
’gamma’ [’scale’, ’auto]

Table 3: Names and distributions for parameters used for finetuning
random forest (RF), XGBoost, logistic regression (LR) and support
vector machines (SVM). uniform and randint functions were imple-
mented using scipy.stats package from python library SciPy (version
1.10.1).

2.7 Performance evaluation and comparison
The following metrics were chosen to evaluate the perfor-
mance of the models, as they are well suited for the task and
commonly used in similar studies: F1 score (2), Accuracy
(1), Area Under the Curve (Rubenzer, 2018). However, we
will primarily focus on comparing the Area Under the Curve
(AUC) performance metric as it provides the most reliable



estimation of a model’s performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

F1 score =
2 ∗ Precision ∗Recall

Precision+Recall
(2)

To evaluate the performance of individual models and com-
pare their effectiveness, we employ 95% confidence intervals
(CI). This approach offers a deeper understanding of the true
performance of the models (Berrar and Lozano, 2013). Con-
fidence intervals were constructed using bootstrapping on the
test set over 1000 iterations.

In addition, we utilized 5x2 cross-validation (Dietterich,
1998) in combination with a paired t-test to compare the per-
formance of machine learning models. The paired t-test was
implemented using the mlxtend.evaluate.paired_ttest_5x2cv
function from the Mlxtend Python library (version 0.22.0)
(Raschka, 2018). The significance level was set at α = 0.05.

2.8 Responsible research
The most important ethical concern associated with this re-
search are reproducibility and ethical implications.

Reproducibility ensures that the findings can be indepen-
dently verified and built upon. To uphold reproducibility, this
research provides comprehensive details of the implementa-
tion, including the machine learning algorithms, feature se-
lection methods and evaluation metrics used. Moreover, the
research paper includes a step-by-step description of the ex-
perimental setup, data preprocessing steps, and hyperparame-
ter settings. By providing such thorough documentation, any
researcher can replicate the experiments and verify the ob-
tained results.

Ethical considerations play a significant role in research in-
volving human data. In this study, ethical guidelines and reg-
ulations were strictly followed. The gut microbiome datasets
utilized in this research do not contain any personal informa-
tion that can help identify participants.

By addressing reproducibility and ethical implications, this
research aims to uphold rigorous scientific standards and con-
tribute to the advancement of knowledge in the field of identi-
fying biomarkers for celiac disease using machine learning.

3 Results and Discussion
3.1 Comparable performance of models without

feature selection
To assess whether there is a significant difference in perfor-
mance among the models without utilizing any feature selec-
tion methods, 95% confidence intervals were constructed for
the models’ AUC performance metric on the test set. The
plot in Figure 1 presents the mean AUC scores along with
their corresponding 95% confidence intervals for the XG-
Boost, Random Forest (RF), Logistic Regression (LR), and
Support Vector Machines (SVM) models. It can be observed
that the models exhibit comparable performance, as there is a
significant overlap in the confidence intervals. Furthermore,
all p-values obtained from pairwise comparisons of the mod-
els were found to be greater than the established threshold of

Figure 1: Mean AUC score on bootstrapped test set with 95% confi-
dence intervals for XGBoost, Random Forest (RF), Logistic Regres-
sion (LR), and Support Vector Machines (SVM) models without any
feature selection. Points represent the mean AUC score, error bars
indicate 95% confidence intervals and ’n.s.’ indicates that the differ-
ence in performance is not statistically significant.

0.05, indicating no statistically significant difference in per-
formance.

Overall, the analysis suggests that without feature selec-
tion, the XGBoost, RF, LR, and SVM models demonstrate
similar performance in terms of AUC scores. These models
can be considered comparable options when feature selection
is not employed and can be used as the baseline for evaluating
the effectiveness of feature selection methods.

3.2 Impact of feature selection methods on model
performance

In order to evaluate the impact of different feature selection
methods (FSM) on model performance, all models were fine-
tuned and trained using 100 features selected by feature selec-
tion methods on the training set, and their performance was
evaluated on the test set.

Figure 2 presents the mean performance of all models with
different feature selection methods, along with 95% confi-
dence intervals. The findings suggest that there is no statisti-
cally significant difference in performance between the XG-
Boost and RF models with any of the feature selection meth-
ods. However, for the LR model, a statistically significant
difference is observed when using the MRMR and IG feature
selection methods. Additionally, a statistically significant dif-
ference in performance is found when using the SVM model
in combination with the MRMR method.

The findings suggest that feature selection methods have a
limited impact on the performance of the RF and XGBoost
models. However, for LR and SVM, the choice of feature
selection method can significantly influence performance.

3.3 Intersections between sets of selected features
Given the similar performance of the three feature selection
methods (FSM), namely MRMR, ANOVA, and information
gain, for RF and XGBoost models, it was of interest to ex-
amine the overlap between the sets of selected features. Such



Figure 2: Mean AUC score on bootstrapped test set with 95% con-
fidence intervals for XGBoost, Random Forest (RF), Logistic Re-
gression (LR), and Support Vector Machines (SVM) models using
different feature selection methods. Bars represent mean AUC score,
error bars indicate 95% confidence intervals. ’n.s.’ indicates that the
difference in performance is not statistically significant. ’*’ indi-
cates that there is a statistically significant difference with p < 0.05.

overlap could potentially indicate a higher level of importance
for these features.

A total of 11 features were selected by all three FSM:
Bacteroides eggerthii, CAG-41 sp900066215, Campylobac-
ter_A concisus, Faecalibacterium prausnitzii_H, Faecalibac-
terium prausnitzii_I, Gemmiger qucibialis, Parabacteroides
johnsonii, Paraprevotella clara, Roseburia sp900552665, Ru-
minococcus_D bicirculans, SFEL01 sp004557245. To de-
termine the actual importance of these features, we com-
pared the performance of models using the full set of features
against models using only these 11 selected features. The
results are presented in Figure 3, displaying the mean AUC
scores with 95% confidence intervals. Notably, there was no
statistically significant difference in performance.

These findings suggest that the subset of 11 commonly
selected features is sufficient to achieve comparable perfor-
mance to using the full set of features. This indicates the
potential of these bacteria species as biomarkers for celiac
disease.

3.4 Correspondence of selected features with
existing findings

In order to investigate if these species can be considered po-
tential biomarkers for celiac disease we analyzed findings of
multiple previous studies on celiac disease. Figure 4 provides
a visual representation of the mean relative abundance, high-
lighting statistically significant differences.

Bacteroides eggerthii and Parabacteroides johnsonii have
been identified as significantly associated with celiac dis-
ease (El Mouzan et al., 2022). This study utilized one of
the datasets employed in our research (PRJNA757365), pro-
viding support for the potential importance of these bacte-

Figure 3: Performance comparison of models on the full set of fea-
tures vs 11 commonly selected features by MRMR, ANOVA and
information gain methods. Points represent the mean AUC score,
error bars indicate 95% confidence intervals and ’n.s.’ indicates that
the difference in performance is not statistically significant.

Figure 4: Comparison of mean relative abundance of bacteria be-
tween healthy and celiac samples. "n.s." indicates p > 0.05, "*"
indicates p ≤ 0.05, "**" indicates p ≤ 0.01 and "***" indicates
p ≤ 0.001.

ria species as biomarkers. The difference in relative abun-
dance for Parabacteroides johnsonii is statistically signifi-
cant (p-value = 0.0026). However, for Bacteroides eggerthii,
the difference in mean relative abundance between healthy
and celiac samples is not statistically significant (p-value =
0.051). Nonetheless, this does not diminish the potential sig-
nificance of this feature, as it may work in conjunction with
other bacteria to provide valuable insights.

Furthermore, Faecalibacterium prausnitzii_H and Faecal-
ibacterium prausnitzii_I exhibit statistically significant dif-
ferences in abundance between healthy individuals and those
with onset celiac disease (Leonard et al., 2021). These find-
ings align with our research, as both species demonstrate a p-
value lower than 0.01, indicating a substantial statistical dif-
ference. Notably, these bacteria species are known for their
anti-inflammatory effects, which further supports the findings
given the association between celiac disease and inflamma-

https://www.ncbi.nlm.nih.gov/bioproject/757365


tion (Quévrain et al., 2016).
Paraprevotella clara displays increased abundance in the

breast milk microbiota of mothers whose children later de-
velop the celiac disease (Benítez-Páez et al., 2020). Consis-
tent with these findings, our research reveals a statistically
significant difference in the mean relative abundance of Para-
prevotella clara between the two groups, with a p-value lower
than 0.05. The identification of Paraprevotella clara as an
important bacterium in both the gut and breast milk micro-
biota is highly intriguing. However, the precise implications
of Paraprevotella clara in the development or progression of
the celiac disease remain uncertain. Further comprehensive
research is necessary to elucidate the specific mechanisms
and significance of Paraprevotella clara in both the gut and
breast milk microbiota within the context of celiac disease.

Ruminococcus_D bicirculans has been shown to exhibit
lower abundance in samples with celiac disease compared to
healthy samples (Francavilla et al., n.d.). This study was con-
ducted using one of the datasets employed in our research
(Francavilla et al., n.d.; PRJNA904924). Our research aligns
with these findings, as we also observe a statistically signifi-
cant difference in the mean relative abundance of Ruminococ-
cus_D bicirculans with p-value = 0.0011.

However, none of the following bacteria species has been
previously shown to be associated with celiac disease: CAG-
41 sp900066215, Campylobacter_A concisus, Gemmiger
qucibialis, Roseburia sp900552665, SFEL01 sp004557245.
It is important to note that the absence of previous associ-
ations could be due to potential misclassification during the
data preprocessing step or the use of a different database for
classification, resulting in different classification names for
these bacteria species. While this does not necessarily negate
the possibility of these bacteria species being associated with
celiac disease, it is crucial to emphasize that there is currently
no supporting evidence. Notably, for all of these species, the
difference in mean relative abundance between healthy and
celiac samples was statistically significant. However, fur-
ther research is necessary to determine whether these bacteria
species can be considered biomarkers for celiac disease.

4 Conclusions and future work
4.1 Conclusions
This study successfully demonstrated the feasibility of using
machine learning to identify biological markers for celiac dis-
ease in the gut microbiome. The findings revealed several
important insights.

First, the models employed in this study, including XG-
Boost, Random Forest, Logistic Regression, and Support
Vector Machines, showed comparable performance in pre-
dicting celiac disease when feature selection was not applied.

Second, impact of feature selection methods varied, partic-
ularly for Logistic Regression and Support Vector Machines,
indicating the need for careful consideration when choosing
an appropriate feature selection approach. Interestingly, a
subset of 11 species commonly selected by all three feautes
selection methods proved to be as effective as using the full
set of feature, highlighting the potential of these bacterial
species as biomarkers for celiac disease.

Furthermore, several of these bacteria species, such as
Bacteroides eggerthii, Parabacteroides johnsonii, Faecal-
ibacterium prausnitzii, and Ruminococcus_D bicirculans,
have been previously associated with celiac disease, sup-
porting their relevance in this context. However, other
species, such as CAG-41 sp900066215, Campylobacter_A
concisus, Gemmiger qucibialis, Roseburia sp900552665, and
SFEL01 sp004557245, lack previous evidence of associa-
tion. Although, statistically significant differences in abun-
dance between healthy and celiac samples indicate that fur-
ther research is necessary to establish their role as potential
biomarkers for celiac disease.

4.2 Future work and limitation
Despite the insightful findings obtained in this study, there
are several limitations and possible improvements for future
research. The limitations include the population size and
the choice of machine learning models and feature selection
methods.

Firstly, the population size in this study may limit the sta-
tistical power and generalizability of the results. Increasing
the sample size and including more diverse populations can
provide a more comprehensive understanding of the gut mi-
crobiota’s role in celiac disease. It is important to include in-
dividuals from different ethnic backgrounds and geographical
locations to account for potential variations in gut microbiota
composition (Gaulke and Sharpton, 2018; Gupta et al., 2017).

Secondly, the choice of feature selection methods and ma-
chine learning models can impact the performance and in-
terpretability of the results. While various feature selection
methods and models were explored in this study, there may
be alternative approaches that could yield different results.
For example, future research can consider using the recursive
feature elimination (RFE) method for feature selection (Song
et al., 2016). This can potentially improve the selection of
bacteria species in the gut microbiome associated with celiac
disease.
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