
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

Design and analysis of a coherent memory
sub-system for FPGA-based embedded systems

Vahid Roostaie

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-16

Cache coherence and memory consistency are of the most decisive
and challenging issues in the design of shared-memory multi-core sys-
tems that influence both the correctness and performance of parallel
programs. In this thesis, we identify and analyze the problem of de-
signing a coherent/consistent memory subsystem in general and then
focus on FPGA-based multi-core embedded systems containing gen-
eral purpose CPUs and dedicated hardware accelerators. We narrow
down the range of the problem by targeting only the stream-based
applications and developing dedicated application-specific solutions.
A flexible Windowed-FIFO communication pattern is proposed to
be used by the parallel programs being run on the multi-core sys-
tem. The software APIs for the FPGA platform are implemented
and tested, a customized streaming cache memory is designed, im-
plemented and tested based on the proposed communication pattern
and in the end, example embedded systems are developed and tested
on the FPGA platform to prove the correct functionality of the APIs,
the cache memory and the coherent data communication between
the cores. All the tests are done on a Xilinx Spartan3dsp develop-
ment board and all the hardware and software aspects of the FPGA
platform are studied and their influence on the memory system is

analyzed. The simulations and analyses show that the developed solution has less complexity and more
scalability and portability comparing to existing solutions while it provides a flexible range of functionality
that different streaming parallel applications can benefit from.

Design and analysis of a coherent memory
sub-system for FPGA-based embedded systems

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Vahid Roostaie
born in Tehran, Iran

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Design and analysis of a coherent memory
sub-system for FPGA-based embedded systems

by Vahid Roostaie

Abstract

C
ache coherence and memory consistency are of the most decisive and challenging issues in
the design of shared-memory multi-core systems that influence both the correctness and
performance of parallel programs. In this thesis, we identify and analyze the problem of

designing a coherent/consistent memory subsystem in general and then focus on FPGA-based
multi-core embedded systems containing general purpose CPUs and dedicated hardware acceler-
ators. We narrow down the range of the problem by targeting only the stream-based applications
and developing dedicated application-specific solutions. A flexible Windowed-FIFO communica-
tion pattern is proposed to be used by the parallel programs being run on the multi-core system.
The software APIs for the FPGA platform are implemented and tested, a customized streaming
cache memory is designed, implemented and tested based on the proposed communication pat-
tern and in the end, example embedded systems are developed and tested on the FPGA platform
to prove the correct functionality of the APIs, the cache memory and the coherent data communi-
cation between the cores. All the tests are done on a Xilinx Spartan3dsp development board and
all the hardware and software aspects of the FPGA platform are studied and their influence on
the memory system is analyzed. The simulations and analyses show that the developed solution
has less complexity and more scalability and portability comparing to existing solutions while it
provides a flexible range of functionality that different streaming parallel applications can benefit
from.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-16

Committee Members :

Advisor: Dr. Ir. Said Hamdioui, CE, TU Delft

Advisor: Dr. Ir. Jos Van Eijndhoven, Vector Fabrics B.V. Eindhoven

Chairperson: Dr. Ir. Said Hamdioui, CE, TU Delft

Member: Dr. Ir. Stephan Wong, CE, TU Delft

Member: Dr. Ir. Rene van Leuken, CAS, TU Delft

i

ii

To my beautiful and kind wife;“Aisan”, for her true companionship
and honest friendship over the years. Also to my mother for all her

sacrifices since I was a child.

iii

iv

Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Vector Fabrics B.V. 2
1.2 Problem statement . 2
1.3 Related work . 4
1.4 Thesis contributions . 7
1.5 Thesis organization . 8

2 Background 9
2.1 What is memory consistency . 10
2.2 Consistency examples . 12
2.3 Synchronization . 14
2.4 Memory Barriers . 15
2.5 The impact of architectural and compiler optimizations 17

2.5.1 Program order requirement . 17
2.5.2 Atomicity requirement . 18
2.5.3 Write buffers . 19
2.5.4 Compiler optimizations . 20

2.6 Common consistency models . 21
2.6.1 Relaxed consistency models . 21

2.7 Cache coherence . 24
2.7.1 Hardware-based protocols . 25
2.7.2 Software-based protocols . 27

2.8 Cache coherence vs memory consistency 28

3 Design pattern 31
3.1 Program specific approach . 31
3.2 Review of some communication models . 32

3.2.1 MPI(Message Passing Interface) 33
3.2.2 FIFO channels . 34
3.2.3 Ping pong buffers . 36
3.2.4 Windowed-FIFO . 37

3.3 The proposed design pattern . 37

v

4 Development platform 41
4.1 Xilinx environment . 41
4.2 Memory system . 44

4.2.1 Block RAMs . 44
4.2.2 External memory . 45

4.3 BUS infrastructure . 45
4.3.1 LMB (Local Memory Bus) . 45
4.3.2 FSL Links . 46
4.3.3 XCL(Xilinx Cache link) . 46
4.3.4 PLB(Processor Local Bus) . 46
4.3.5 AXI BUS . 47

4.4 Accelerators . 50
4.5 Processor . 50
4.6 The architecture of our embedded systems 52

5 Accelerator cache memory 53
5.1 Brief introduction to caches . 53
5.2 Cache in VF embedded systems . 55

6 Software lib and APIs 59
6.1 Basic design pattern . 59

6.1.1 Microblaze cache handling . 60
6.2 The stream library . 61

6.2.1 Basic definitions and concepts . 62
6.2.2 VFStream main APIs . 65

6.3 VFStream on a Dual-Microblaze platform 68

7 SW-HW platform 75
7.1 Basic concepts . 75
7.2 SW-HW system architecture . 76
7.3 FIFO Interface Module . 77

8 Tests and results 81
8.1 Functional verification of the cache memory 81

8.1.1 System level test . 81
8.1.2 Module level test . 81

8.2 Synthesis results . 84
8.3 Testing the WFIFO . 85

9 Conclusion 89
9.1 Summary . 89
9.2 Contributions and achievements . 90
9.3 Open issues . 91
9.4 Future work . 91

Bibliography 97

vi

List of Figures

1.1 FPGA-based embedded systems of Vector Fabrics 3
1.2 Heterogenous platforms of Vector Fabrics 3
1.3 ARM-based embedded systems of Vector Fabrics 4

2.1 A simple flag on a dual-processor system 10
2.2 Conceptual representation of sequential consisteny 12
2.3 Flag-based synchronization on a dual-processor system 12
2.4 Dual-processor code example one . 13
2.5 Dual-processor code example two . 13
2.6 Three-processor code example . 14
2.7 Four-processor code example . 14
2.8 Using test and set between two processors 15
2.9 Flag-based synchronization . 16
2.10 Memory barrier . 16
2.11 Atomicity requirement on a four-processor system 18
2.12 Flag-based syncrhonization between three processors 19
2.13 Dekker’s mutual exclusion algorithm . 20
2.14 Store forwarding . 21
2.15 Data replication and cache coherence in shared memory multi-core systems 25
2.16 Incoherent local copies of data due to data replication 25
2.17 Cache coherence vs memory consistency 29

3.1 MPI communication environment . 33
3.2 AXI-Stream FIFO Core Block Diagram 35
3.3 Ping pong buffer data pattern . 36
3.4 Concept of Windowed-FIFO . 37
3.5 The proposed design pattern . 39

4.1 XPS(Xilinx Platform Studio) . 42
4.2 Block diagram veiw of the embedded system of figre 4.1 43
4.3 Main window of Xilinx software Development kit (SDK) 44
4.4 AXI read channel . 48
4.5 AXI write channel . 49
4.6 General architecture of our FPGA-based embedded systems 52

5.1 Memory Hierarchy . 54
5.2 Direct map cache access . 55
5.3 Basic types of cache organizations . 56
5.4 Address bus mapping . 56
5.5 Cache memory of the accelerator in VF embedded systems 57

6.1 Block level software-based cache coherence 60
6.2 Circular FIFO channel structure . 62

vii

6.3 Standard object access . 65
6.4 Wide token access with offsetting . 65
6.5 External shared memory sections . 72
6.6 Dual-Microblaze hardware architecture . 73

7.1 Hardware architecture of the Accelerator-Microblaze system 77
7.2 First phase of FIM interface . 78
7.3 Second phase of FIM interface . 79

8.1 Module level verification of the cache controller 82
8.2 Waveform of a sample test scenario . 83
8.3 Test set-up of the WFIFO . 86

viii

List of Tables

2.1 A brief description of three relaxed consistency models 23

6.1 Memory sections for the writer processor 70

7.1 Encoding of request on FIM interface . 79

8.1 Synthesis results of Virtex-first cache organization 85
8.2 Synthesis results of Virtex-second cache organization 85
8.3 Synthesis results of Spartan-first cache organization 85
8.4 Synthesis results of Spartan-second cache organization 86

ix

x

Acknowledgements

When I first went to Vector Fabrics office for an interview about the thesis assignment,
I got a very positive impression about the technical drive of the company’s projects
and also the attitude of Dr. Jos Van Eijndhoven, that is why I eventually chose Vector
Fabrics over my other options. During the project, I learned a lot discussing with Jos
and observing his work style. He was not only technically strong and a practical up-
to-date engineer, but also theoritically deep and personally patient and easy going. I
would like to sincerely thank him for his helps and useful advices during the project.
I would also like to show my appreciation to Vector Fabrics for the opportunity and
their nice and friendly work environment. I am sure we will hear more from Vector
Fabrics in near future. I additionally express my gratitude to my advisor in TU Delft;
Dr. Said Hamdioui. He accepted to supervise my work even though I asked him after
a few months that the project had started and I needed to change my supervisor due
to organizational issues. I benefited a lot from his valuable remarks specially on project
management and work discipline. And last but not least, I have to deeply thank my
wife for her great patience during my whole master study at TU Delft. I was away from
home a lot and she was always supporting, caring and underestanding despite all the
difficulties I put her through.

Vahid Roostaie
Delft, The Netherlands
December 5, 2011

xi

xii

Introduction 1
With the tremendous demand for speed and efficiency in digital systems, multi-
processors and parallel systems have been playing an important role in the development
of recent embedded systems for high throughput applications. Meanwhile, over the past
decade, FPGAs have had a huge growth in terms of logic capacity and speed so that
nowadays, a multi-processor system can be implemented on a commercial FPGA fabric.
Hardware acceleration, inter-processor communication, shared resource management
and many other concepts and design issues have standard solutions proposed by FPGA
vendors and their development environments. However, in some applications and areas,
more work is needed to come up with a tailored solution and implementation. These
solutions will be still developed, compiled and built using the standard tools of the
FPGA vendors and this makes them easily portable and reusable. An embedded system
in general consists of two major parts: a low-level software (we may call it firmware)
part and a hardware part. The hardware part could be a co-processor or accelerator
that is supposed to boost up the overall performance of the whole system. Having the
entire system on an FPGA proposes some restrictions specially on area comparing to
big multi-processor platforms with multiple chips and general interconnection networks.
One of the most complex and important features of a shared-memory multi-processor
system is having a coherent and consistent memory sub-system [1]. Memory system is
a major performance and power bottleneck in embedded systems as the performance
gap between processors and memories is ever increasing [2]. The global memory or
shared memory on these systems is the main data and program storage and having
different cores reading and writing to the same place concurrently and simultaneously
requires a conceptual model for the semantics of memory operations to let programs
correctly use the shared memory [3]. This model is called memory consistency model
or in short, memory model. Beside memory consistency, we have the cache coherence
issue in multi-core systems. These two main issues are closely tied together and have
mutual influences on one another. The memory consistency model of a shared-memory
multi-processor system affects both the performance and the programmability of the
system [4]. One of the goals of this thesis project was to study and analyze coherence
and consistency issues at all the levels of FPGA-based embedded systems. Throughout
the rest of this report, we might see these issues and their impacts at the level of any
software or hardware component of the system.

The remainder of this chapter is organized as follow: Section 1.1 briefly intro-
duces Vector Fabrics B.V. which is the company that this thesis project was carried out
at. Section 1.2 defines the main problem that this thesis project is addressing. Section
1.3 discusses the related work and compares the existing solutions. Section 1.4 details
the tasks and contributions done in the project and eventually Section 1.5 clarifies the

1

2 CHAPTER 1. INTRODUCTION

structure of the rest of the report.

1.1 Vector Fabrics B.V.

Vector Fabrics B.V. is a start up company active in the field of embedded systems tool
development. The company was founded in 2007 and just a few month ago officially
released its first product. Vector Fabrics tools facilitate the creation of a parallel embed-
ded system and helps the users to parallelize their sequential codes and map them on a
specific multi-core platform. Parallel programming is a tough and very time-consuming
task and using VF tools the users can easily analyze their programs, generate an em-
bedded system, parallelize their codes and eventually port them to a heterogeneous X86
platform or an embedded FPGA-based multi-core system. This thesis assignment was
carried out in Vector Fabrics office in Eindhoven. More information about Vector Fabrics
B.V. and its tools can be found on Vector Fabrics website.

1.2 Problem statement

The embedded systems created by Vector fabrics tools in general contains multiple CPUs
and co-processors, connected to some global system bus infrastructure. The target plat-
form could be an FPGA fabric. The bus infrastructure implements a global memory map
over a distributed memory implementation. Co-processors are dedicated hardware units
that implement an application-specific function with high throughput. The hardware
platform used to develop and test the embedded systems and the proposed solution for
this project is a Xilinx FPGA. Figure 1.1 illustrates the general architecture of these
embedded-systems consisting of Microblaze processors and dedicated hardware acceler-
ators all accessing the shared external memory through their local cache memories and
the global bus. In principle, there is no limit to the number of CPUs and accelerators
except the logic capacity of the particular FPGA chip being used.

The local memory allows frequent and fast access to local data. Caches allow a more
efficient use of the system bus bandwidth. However, the various co-processor caches
and the CPU caches may introduce the system level issues of memory consistency and
cache coherence. In traditional computer architectures, these issues are usually solved
by a rigorous implementation of a hardware cache-coherence control. However, for more
function-specific embedded systems on FPGAs, this traditional and generic solution is
rather expensive to implement. Furthermore, embedded processors often do not provide
standard cache-coherent interfaces for customized co-processors. In this project we seek
to use application analysis results to create a more dedicated solution tailored for the
class of stream-based applications. This will result in a ’cooperative’ method, where the
co-processors as well as the remaining application code on CPUs are already aware of
required data synchronization points and critical sections to explicitly issue coherence
control commands or take care of the consistency. A cache controller needs to be designed
that is suitable for VF tools target applications. The application-specific solution works
based on a design pattern that defines the nature of the shared memory accesses across

1.2. PROBLEM STATEMENT 3

External DDR II

Accelerator

Cache

Microblaze

Cache

Microblaze

Cache

Accelerator

Cache

PLB Bus

Figure 1.1: FPGA-based embedded systems of Vector Fabrics

the cores. In principle, the design pattern determines the type of memory accesses of the
cores in the system with respect to each other and the way the data is being exchanged
or shared between the cores. The term design pattern is originally used in the field of
software engineering where it refers to description of communicating objects and classes
that are customized to solve a general design problem in a particular context [5].

FPGA

Accelerator

DMA Cache

Memory bridgeDDR II

Cache

X86 Multi-core

Figure 1.2: Heterogenous platforms of Vector Fabrics

The general design problem that is addressed in this project is creating parallel
application codes with a coherent/consistent data communication and the context is
in general a CPU/FPGA platform. The applications are stream-based applications

4 CHAPTER 1. INTRODUCTION

FPGA

Accelerator

CacheDMA

AXI Bus

ARM Multi-processor
(HW Coherence Interface)

Memory controllerDDR II

Figure 1.3: ARM-based embedded systems of Vector Fabrics

like multimedia, encoding, signal processing, etc that are typically characterized by
their excessive data memory accesses but with regular access patterns for stream
data structures [2]. FPGA-based multi-processor systems are viable solutions for
stream-based embedded applications [6]. The proposed solution in this thesis can be
still usable on a heterogeneous platform like the one in Figure 1.2. or an ARM-based
multi-core system using AXI bus [7] as represented in Figure 1.3. It is obvious that some
modifications are needed to be applied to the implementation of the solution on each
on of these platforms, but the design pattern and the basic concepts are the same and
the same level of functionality is achieved. These two platforms (Figure 1.2 and Figure
1.3) are also supported by VF tools, however, as mentioned before, the target platform
of this thesis project is only a Xilinx FPGA-based embedded system. Summarizing all
the aforementioned points and putting them all into one statement, it would be that
“we want to have the same solution based on the same design pattern on the same kind
of memory system architecture.

Coherence and consistency issues for us have two major meanings at two different
levels: one is inside the proposed cache memory and the other one is at system level
when it is about the global memory interactions/requests issued from different cores and
the way the memory sub-system appears to them. More details will be given in the
following chapters of this report.

1.3 Related work

In this section we will review and compare the state of the art with respect to the
main problem addressed in this project and then explain that how the proposed solution
removes their shortcomings. We first review the related work for the cache design and
then cover the communication patterns and models.

1.3. RELATED WORK 5

Streaming cache design

Cache design for stream-based systems has had so many different solutions that in general
fall into two main categories:

1. Data prefetching: these solutions are based on the key technique of data prefetch-
ing to hide some part of the latency of the extensive continuous memory ac-
cesses [8, 9]. In these systems, there must be an algorithm to prefetch some data
blocks that are not currently used but will be very likely requested by the processor
in near future. The main idea is to reduce the rate of mandatory misses or cold
misses in the cache by already bringing them in before they want to be accessed
for the first time.

(a) Hardware-based techniques implement complex prediction logics for
prefetching the data. [10] and [11] are two examples of such systems. [12]
has also proposed a hardware-based prefetching scheme that makes use of
reference prediction tables to predict the next memory access.

(b) software-based algorithms are basically based on an exhaustive static anal-
ysis of the code and inserting prefetching instructions at specific locations of
the program. [8] reviews and compares several examples of such algorithms

(c) Locality optimizations [9] are another kind of software-based techniques
that use run-time transformations to change the data layout of the program
and hence the probability that the next requested data is already in the cache.
In case of success, the average latency and bandwidth usage will be reduced
due to a reduction on memory accesses.

2. Multiple cache modules: In [2] and [13] we see a methodology to design the
memory hierarchy with specific memory and cache modules each used for storing
a specific kind of variable. They work based on some initial analysis to discover
the memory access pattern of the program and use specific memory modules to
accommodate different parts of their data. The result is multiple physical memory
modules.

The above solutions have some shortcomings comparing to the proposed solution in
this thesis that can be briefly summarized as follows:

1. The solutions based on the use of multiple cache modules are complex and based on
an exhaustive analysis of the data locality. They analyze the input code to classify
its memory access pattern to propose a cache system consisting of multiple stream
caches each caching a part of the memory, while in our approach we want to take
advantage of the fact that the final parallel program is generated by VF tools and
its structure in terms of shared data access, critical sections and synchronization
points is already known based on the design pattern. As a result, contrary to [2]
and [13], we do not produce a different memory sub-system for a different program
and always use the same cache system but take advantage of the WFIFO pattern
and the stream-based cache memory to have less cache misses and exchange data
coherently.

6 CHAPTER 1. INTRODUCTION

2. Hardware-based prefetching solutions are complex and have high area and power
overheads and so not very economic to implement in more critical embedded sys-
tems. These methods work dynamically in run-time and could be more efficient and
faster comparing to software-based solutions. Software-based prefetching solutions
have the advantage of saving the area of the chip and reducing the complexity of
the hardware but might not perform well in some situations as the prediction is not
possible in compile-time in many cases. Both hardware-based and software-based
solutions target the mandatory misses and are rather complex and may introduce
lower performance in case of incorrect prediction, while the proposed cache ar-
chitecture in this thesis focuses on reducing the conflict misses. It has a simple
and novel architecture that does not have a huge area overhead and avoids using
sophisticated prefetching algorithms. It has been specifically implemented to work
perfectly for streaming data communication on FPGA-based embedded systems.

Streaming communication models

Different implementations and solutions are available for stream-based communication
patterns and inter-core data communication:

1. In [14] and [15], task-level APIs and interfaces are presented for structured design
and programming of embedded multi-processor systems and flexible token-based
data communication between processors and tasks. However, they still lack a
strong cache management and also a hardware-software communication support.

2. [16] has presented a framework to build FPGA multi-processor systems for stream-
based applications by generating homogeneous networks of Microblaze processors
connected by buses and direct FSL links. This approach is depending on specific
hardware FIFOs. Furthermore, it has an area overhead if the number of cores
is increased. A big disadvantage of FIFO-based communication models are their
restricted functionality as data items can be read and written once and can not be
skipped or read and written in different lengths.

3. In [6] a hardware windowed-FIFO implementation in Xilinx FPGAs is introduced.
It offers a great deal of functionality, however it has some shortcomings: it can not
be easily ported to other platforms, it uses block RAMs of the FPGA and is not
easily scalable as the area overhead and memory usage grows if we want to use
multiple channels, it is rather an on-chip point-to-point solution and not a system
level solution through the global memory that deals with cache memories and their
coherence.

The flexible windowed-FIFO communication pattern proposed in this project for our
parallel programs works in conjunction with the proposed cache memory and communi-
cates data coherently via external global shared memory. This solution has important
advantages over the existing solutions described above and removes their shortcomings:

1. It has less complexity comparing to prefetching and locality optimization solutions.

1.4. THESIS CONTRIBUTIONS 7

2. It removes the restrictions of a sole FIFO communication and establishes the
windowed-FIFO channel in both software-software and software-hardware systems.

3. It has less area overhead and improves the scalability by making use of the global
external memory as the main data storage. It means that multiple WFIFO chan-
nels can be easily defined in the shared system for data communication between
multiple groups of cores regardless of the fact that they are general purpose CPUs
or hardware accelerators.

4. It handles the cache coherence at a high level without needing the same kind of
standard cache coherence protocol interface on the cores.

5. It can be ported to other platforms with global shared memory architecture with
minimum modifications as it is not too dependent on a specific hardware compo-
nent.

1.4 Thesis contributions

The main tasks and contributions done in the thesis project can be summarized as
follows:

1. Different architectures of cache controllers were studied and investigated and a
suitable architecture for VF embedded systems was proposed.

2. A pipelined cache controller was designed, implemented and verified for the accel-
erators using synthesizable parametrized Verilog.

3. Cache coherence and memory consistency issues were studied and analyzed in
general and documented for Vector Fabrics for its future use.

4. A cooperative memory consistency model and a communication pattern suitable for
stream-based application-specific embedded systems on FPGAs was investigated
and proposed.

5. Software APIs of the coherent communication pattern were developed and tested
on the FPGA platform.

6. AXI-based and ARM-based systems were analyzed and compared against PLB-
based systems in Xilinx FPGAs in terms of memory behavior and consis-
tency/coherence issues to be used as future reference by Vector Fabrics.

7. Several test applications and their corresponding embedded systems were designed
and created for demonstrating the correct memory consistency and cache coherence
on the FPGA board.

8 CHAPTER 1. INTRODUCTION

1.5 Thesis organization

The rest of the thesis is organized as follows:

Chapter 2 reviews the cache coherence and memory consistency issues in more
details and as general issues in mult-core computer systems. Chapter 3 focuses on
the design pattern and reviews the proposed communication model to address the
consistency issues in the target platform of this project. Chapter 4 reviews the Xilinx
development environment and its main features. Chapter 5 discusses the architecture
and implementation details of the proposed cache controller for the accelerators.
Chapter 6 explains the APIs and software libraries of a SW-SW embedded system.
Chapter 7 explains how the WFIFO communication channel is mapped and works on
a SW-HW embedded system. Chapter 8 presents the test methodologies and results,
while Chapter 9 summarizes the report, reviews the potential unresolved issues and
proposes some ideas for future work.

Background 2
In uni-processor systems, the semantics of the memory sub-system is simple, all the
memory requests are normally issued in order by the processor and are completed in
order by the memory sub-system. In such systems, applying optimizations in compiler
or in the hardware will not impair the correct functionality of the programs. Reads
always return the last written values to the variables and the CPU always has a
consistent and intuitive view of the memory. Out of order execution used in dynamic
execution techniques or instruction re-ordering at compile-time can be still used to
increase the performance. The only limitation is to prevent these optimizations when
accessing the same memory location with different load and stores. This will actually
result in the illusion of sequentiality in the programs in uni-processor systems which
is all the programs need to observe with respect to memory behavior. As long as
there is no dependency among different memory access instructions, the compiler can
statically or the CPU can dynamically re-order them without affecting the correctness
of the program. Many of these techniques have been developed over the past twenty
years and all of them take advantage of this key observation. [17] and [18] are of the
best resources for understanding how these techniques work. In multi-core systems
however, the situation is totally different. When a HW/SW system has more than
one core, it certainly has to provide some ways for these cores to communicate and
exchange data. Every core might have its own cache memory that basically could cache
a part of memory that is also cached by other cores. The path between the cores to
the memory may consist of many components like bus interconnects, NOCs, bridges,
memory controllers, etc. The processors themselves might also want to apply some
optimizations to improve the performance. In this situation, the memory contents
may be seen differently from different cores point of views and this is a potential
threat to the correctness of the parallel program. It is obvious that these issues start
to show up when multiple cores aim to access the same data or when they want to
communicate with each other. If there is not any shared data access (which is not a
very realistic case), then there is not any coherence or consistency issue. We will first
review the memory consistency and its related concepts and then see its difference with
cache coherence. In the following chapters we will see how the proposed design pat-
tern will eliminate these issues in the class of applications targeted by this thesis project.

The rest of this chapter is organized as follows: Section 2.1 describes what mem-
ory consistency is and defines its principles, Section 2.2 reviews and explains a few
example pseudo codes about memory consistency, Section 2.3 specifically discusses the
need for synchronization in multi-core systems and explains how it is related to the
behavior of the memory system, Section 2.4 presents the basics of memory berries and
how they can be used to maintain program orders in parallel programs, Section 2.5

9

10 CHAPTER 2. BACKGROUND

reviews the impact of the compiler and CPU optimizations on the memory behavior
and its consistency, Section 2.6 reviews some of the most common memory consistency
models and summarizes their features, Section 2.7 focuses on cache coherence issue
in multi-core systems and explains its principles and finally Section 2.8 explains the
difference between memory consistency and cache coherenc.

2.1 What is memory consistency

Symmetric shared-memory multi-processor systems are the most common architecture
of multi-core systems nowadays. They have some advantages over message passing or
private memory multi-processors like scalability [17] or simplified data partitioning and
dynamic load distribution [3]. Physically distributed logically shared memory multi-
processors or Distributed shared-memory multi-processor systems are another form of
shared memory multi-processor systems that have two main advantages: they are more
cost effective in terms of bandwidth when most of the accesses are to local memories
of the cores and they reduce the latency to access the local memory of the nodes [17].
Shared memory architectures can be used for systems with relatively smaller number
of cores as the shared memory system can still satisfy the memory demands of the
cores. All the cores might use their cache memories to reduce the bandwidth request
on the shared global bus even more, however, this leads to issues with cache coherence
that have different software and hardware solutions. The consistency model of a multi-
processor defines the program’s view of the time-ordering of events that occur on different
processors. These events include memory read and write operations, and synchronization
operations [19]. Allowing different cores to read and write from/to the same memory
location makes it more complex to predict the memory behavior in different runs of the
program. Consider the piece of code shown in Figure 2.1.

A = X;

Flag = 1;

While(!Flag)

B = A;

Processor A Processor B

Figure 2.1: A simple flag on a dual-processor system

Suppose that both A and flag are initially equal to 0. This piece of code is a simple
producer-consumer pattern when Processor B must always see the new value of A and
set B to X. The flag is simply used to synchronize the programs and enforce a predeter-
mined order of events. However, Processor B might see the old value of A despite the
synchronization. Here are two reasons that this can happen:

• If processor A simply reorders the writes to A and flag because it detects no
dependency between them from its own point of view.

2.1. WHAT IS MEMORY CONSISTENCY 11

• If A is physically allocated in a memory module that takes more time to be updated
and flag is for instance in a local memory that is faster.

In both cases above, processor A gets past the while loop and reads the value of A
while it might have not been yet updated in the memory. This simple example shows the
necessity of having a comprehensive and intuitive model to define the memory behavior
and how the cores observe it. The most common and natural memory consistency
model is sequential consistency [20] originally defined by Leslie Lamport as follows:

Sequential consistency:A multi-processor is sequentially consistent if the result
of any execution is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program [21].
In the case of the program of Figure 2.1, this definition makes sure that processor B
always sees the new value of A at any execution of the program. Sequential consistency
is the most desirable and simplest memory model from the programmer’s point of
view. It guarantees the most natural way that programmers expect to see the memory
system. However, its implementation differs from platform to platform and it creates
so many restrictions to the system at many levels. An important observation of the
program in Figure 2.1 is in fact one of the significant differences between a uni-processor
system and a multi-processor system: in a uni-processor system, the memory access
instructions can be executed out of order to achieve more performance as long as there
is no dependency between them, however, this reordering might be detected by other
cores who are having access to these memory locations.

Figure 2.2 depicts the concept of sequential consistency model. The system simply
consists of multiple uni-processors P1 to Pn all sharing the same global memory. The
concept of this picture can be seen as a non-deterministic or arbitrary interleaving be-
tween executions of the instructions of the programs being run on the cores while each
program is issuing and completing its memory requests in order. Each memory operation
also appears atomically to the other cores. In other words, it is like having an arbitrary
selection of all the operations of all the cores and running them in one single sequential
order.

For a program result to be sequentially consistent, there must be at least one execution
on the conceptual sequentially consistent system that generates the exact same result
like the execution of that program. It means that the result of the execution of a parallel
program could be considered as sequentially consistent even if it does not necessarily
enforce the requirements of the sequential consistency model at each and every one of the
operations being executed in the system. For example, consider the simple piece of code
shown in Figure 2.3. The result of the program is still sequentially consistent as long as
there are some ways to guarantee that processor B is always seeing the updated value of
variables A and B. It means that other operations on both processors might be executed
out of order. In other words, the result of the execution of a program is considered
as the values returned by the reads in that program and not necessarily the final state

12 CHAPTER 2. BACKGROUND

Shared memory

P1 P2 Pn

Figure 2.2: Conceptual representation of sequential consisteny

of the memory. Therefore, if the result of the execution of a program do not violate
the sequential consistency model, then we conclude that the program is sequentially
consistent. In fact, we are only talking about the order in which the operations appear
to execute. This fact is the beginning point of adding some optimizations to sequential
consistency model.

Mul(...);

.

.

.

While(!Flag)

X = A;

Y = B;

.

.

.

Processor A Processor B

A = B;

B = D;

.

.

.

Flag = 1;

.

.

.

Figure 2.3: Flag-based synchronization on a dual-processor system

2.2 Consistency examples

In this section, we will look into some more example pseudo codes to clarify more aspects
of sequential consistency. For simplicity we can label the result of the program execution
as (x,y,z). In Figure 2.4 a result like (0,0,0) or (1,1,1) is sequentially consistent, it is clear
that a result like (0,1,1) is also sequentially consistent because for all these executions

2.2. CONSISTENCY EXAMPLES 13

there is a total order of all the operations that is matching with the sequential consistency
model which is (A1, A2, B1, B2, B3, A3) for (0,1,1). Now, consider a result like (1,0,0),
this one is not sequentially consistent because if c is updated by A3 on processor A and
returned by B1 on processor B then the next two reads (B2 and B3) must also see the
new values updated by processor A. This result naturally should not be allowed on a
sequentially consistent system because it is not expected by a program like Figure 2.4.

Processor B

A1: a = 1

A2: b = 1

A3: c = 1

B1: x = c

B2: y = b

B3: z = a

Processor A

Figure 2.4: Dual-processor code example one

Figure 2.5, shows another example. In this simple program, a result like (0,0) or
(1,1) is not sequentially consistent but (1,0) and (0,1) are sequentially consistent with
program orders (B1,B2,A1,A2) and (A1,A2,B1,B2) respectively.

Processor A

A1: a = 1

A2: x = b

Processor B

B1: b = 1

B2: y = a

Figure 2.5: Dual-processor code example two

Figure 2.6 shows a three-processor example. In this program, a (x,y,z) equal to
(1,1,1) or (0,1,1) is sequentially consistent, however, a result like (1,1,0) is violating the
sequential consistency model. The reason is that if processor B has seen the new value
of variable a updated by processor A and then updated variable b to 1 and this has also
been seen by C1 in processor C to update variable y. Consequently, processor C, must
also see the new value of a executing operation C2. In simpler words, processor B has
seen variable a and then updated variable b for processor C. So, if processor C sees the
new value of y, it also has to see the new value of a.

Another example is shown in Figure 2.7. In this example, we have four processors
and (x,y,w,z) equals to (1,0,1,0) has a conflict with sequential consistency. Because it
basically means that Processor B has seen the write to a happened before the write to b,
but processor D has seen the opposite order. In sequential consistency, all the processors

14 CHAPTER 2. BACKGROUND

Processor B

A1: a = 1 B1: x = a

B2: b = 1

Processor A

C1: y = b

C2: z = a

Processor C

Figure 2.6: Three-processor code example

should see the same order of all the writes in the whole system.

Processor B

A1: a = 1 B1: x = a

B2: y = b

Processor A

C1: b = 1

Processor C

D1: w = b

D2: z = a

Processor D

Figure 2.7: Four-processor code example

2.3 Synchronization

One important concept in multi-processor environments and programs is synchroniza-
tion. Synchronization might be used for a few different reasons in parallel systems.
Usually, every multi-processor platform provides some standard synchronization prim-
itives that are guaranteed by that platform to have a reliable result. Both hardware
and software parts of an embedded system are involved for a synchronization procedure
to complete successfully. In this section, we will review the concept of synchronization
and how it might need to be used under sequential consistency. Even thought sequential
consistency guarantees the program order to be kept sequential among the operations
of one processor, it still allows the operations of other cores to arbitrary interleave at
the instruction granularity. Synchronization is needed when we need to enforce a de-
terministic order of the operations of all the cores. Mutual exclusion algorithms like
Dekker’s or Peterson [22] can be used for synchronization purposes (the typical usage of
these algorithms is to protect a shared critical section). All the parallel platforms often
provide a set of atomic instructions like set and lock, read-modify-write or load-locked
store-conditional to implement synchronization among operations. Microblaze processor
which is the processor used in this project provides the pair of LWX and SWX instruc-
tions for implementing exclusive accesses, synchronization and semaphore mechanisms
like test and set, compare and swap, exchange memory, and fetch and add [23]. ARM
processor which is the next generation of the platforms that is going to host the proposed
solution has an instruction pair LDREX and STREX [24] for these purposes. To clarify
the situation let us look at a few simple examples. Figure 2.8 is the first example that
illustrates the concept of using a test-and-set instruction pair. The instruction pair is

2.4. MEMORY BARRIERS 15

supposed to be atomic. This atomicity is actually a service provided and guaranteed by
the platform.

Processor B

while test&set(Lock)==0)

A = ...

B = ...

C = ...

.

.

.

Lock =0

X = A

Y = B

Z = C

.

.

.

Lock = 0

Processor A

Figure 2.8: Using test and set between two processors

In the above example, the test-and-set instruction pair is executed together and
atomically and only one of the two competing processors eventually succeeds to enter
the critical section. Mutual exclusion is not the only use of synchronization. In fact, we
more focus on the other application of synchronization which is maintaining a particular
order of the operations among the processors to communicate data. The piece of code in
Figure 2.9 makes this more clear. It is a simple producer-consumer pattern. Processor
B is waiting for the flag to be set by processor A and then it can read the updated value
of A. It must be noted that this flag is a conceptual representation. It means that the
main purpose of this flag as a concept is to notify the other processor as the consumer
that the data is ready to be read or consumed. The actual implementation of this flag
could be by writing into a specific memory location or by sending a particular value
into a special hardware interface or anything similar. However, in any case, the most
important point is that synchronization must guarantee that the consumer processor
always sees the new value of the updated memory locations. The example of Figure 2.9
is with this assumption that sequential consistency is already performed in the system
so that the writing of Flag in processor A is always seen by other cores before seeing the
write to A. More information about synchronization concepts, hardware requirements
and their implementation techniques could be found in [25], [26] and [27].

2.4 Memory Barriers

Another mechanism for maintaining a particular order in the program is using memory
barriers or fence instructions [28]. Memory barriers are special instructions explicitly
used by programs at special places to make sure that all the outstanding memory op-
erations are completed and all the output or store buffers are empty before issuing any
new memory request after the barrier instruction. It also causes a central processing unit
(CPU) or compiler to enforce an ordering constraint on memory operations issued before

16 CHAPTER 2. BACKGROUND

Processor A

A = X(p,q)
.
.

Flag =1

while(Flag==0)

B = Y(A)

Processor B

Figure 2.9: Flag-based synchronization

and after the barrier instruction. It is in fact a barrier in the order of the program to
enforce a determined order at critical points in the program sequence. Memory barriers
should be used with utmost care and there are some conditions for them to work prop-
erly. Their successful completion depends on some factors and how and where in the
program they are being used or on what bus interconnect the previous memory access to
the barrier is being executed. Consider the program in Figure 2.10. Suppose that there
is no sequential consistency in the system that the program is running on. We want to
use the mem bar instruction to make sure that the write to A is finished and then update
the flag for the other core to see the new value of it. We also assume that A and Flag are
located in two different memory modules that have different access times. Compiler and
system designers need to consult the reference manual of the processor(s) for the details
of the operation of memory barrier instruction, however, if the system (the compiler
with its system intrinsics) offers the memory barrier intrinsic, then the user can assume
that it operates as it should. If A is accessed on a bus interface that has absolutely no
way to make sure that the store is updated or at least received by the memory module,
then the barrier instruction might fail to accomplish its mission. This fact shows another
aspect of memory consistency that how it could depends on different bus protocols and
communication infrastructures and the way they are implemented in the system. We
will review this in more details later. Microblaze processor provides a memory barrier
instruction named mbar [23] and ARM processor provides IMB instruction [24, 29].

A = X(p,q)

Mem_bar

Flag = 1

While(!Flag)

B = A

Processor A Processor B

Figure 2.10: Memory barrier

2.5. THE IMPACT OF ARCHITECTURAL AND COMPILER OPTIMIZATIONS 17

2.5 The impact of architectural and compiler optimiza-
tions

In order to achieve sequential consistency in our multi-core environment, we have to
guarantee two fundamental requirements: program order and atomicity.

• Program order requirement: All the operations are issued and completed in
order on individual processors, or in simpler words, they at least appear to be
executing in program order.

• Atomicity requirement: All the operations of individual processors must appear
atomic with respect to others.

Over the past few decades, modern processors have been using several architectural
optimizations to improve their performance. Meanwhile, more advanced interconnect
infrastructures like NOCs and high speed buses have been being used for the same
reason. Faster memory modules that come with more complicated memory controllers
with multiple channels and ports are quite common in recent systems. These factors
have all added more complications to the issue of memory consistency.

2.5.1 Program order requirement

Processors might issue their instructions out of the original program order. Dynamic
execution is used in many processors to hide the latency of some slow instructions that
may be waiting for a resource to become available or a message to be received. If the
instructions are issued out of order, they are going to be completed out of order and
this might ruin the sequential consistency. Consider the simple program in Figure 2.4.
If processor B issues the first read operation for whatever architectural reason, then it
might read the wrong value and a result like (1,0,0) is possible which violates sequential
consistency. A similar outcome is possible if the writing processor issues the writes out
of order. The simple conclusion to this is that processors must make sure to always issue
their memory operations in order and always wait for them to be completed before issuing
the next one to prevent other processors in the system to detect an unwanted scenario.
Even if the processors maintain their program order, memory operations might still get
reordered after they leave the processor. The operations may have to take a long journey
all the way down to the memory through a complex NOC and a memory controller.
There might be scheduling policies on different routes of the interconnect network or
arbitration mechanisms on the ports of the memory controller. Putting it all together,
instructions might end up being reordered even if they have been issued in order by the
processor due to network optimizations and this will create a situation that destroys the
program order requirement. In more complex systems with distributed memory models
and huge interconnection networks, another issue can show up. Consider the program in
Figure 2.3 again. If flag is allocated in a memory that is faster than the memory which
has accommodated A and C or the write to the flag has to travel a shorter path on the
network comparing to A and C, it is possible for processor B to see the new value of flag

18 CHAPTER 2. BACKGROUND

but reads the old value of A and C. Having an interconnect network with multiple paths
is the main reason for this kind of reorderings that leads to a sequentially inconsistent
result. In order to eliminate the reordering described above, the solution is to have all
the processors issue their own instructions in program order and then wait for them to
be completed before issuing another one. In most systems this means that the processors
need an explicit acknowledgment message from the memory module indicating that the
write has actually taken place in the memory. This facility depends on the organization
of the interconnect network being used and the memory subsystem architecture and so
is not available on all platforms.

2.5.2 Atomicity requirement

The second main requirement for sequential consistency is atomicity. This requirement is
more associated with systems which have cache memories for individual cores. Caching
the shared data creates another issue called cache coherence which will be reviewed in
section 2.7. Under SC, we need the write operations in the system to appear atomic to
other cores. It is obvious that in reality, these instructions are not atomic and it becomes
worse in presence of data replication in different cache memories. In multi-processors
with caches, when a processor updates a shared memory location it will also send either
an invalidate or an update message to other cores to make sure that all the other copies
of the shared data is properly re-evaluated. To make this more clear we can take a look
to the example in Figure 2.11 from [3].

Processor B

A = 1

B = 1

Processor A Processor C Processor D

A = 2

C = 1

While(B != 1) {...}

While(C != 1) {...}

X = A

While(B != 1) {...}

While(C != 1) {...}

Y = A

Figure 2.11: Atomicity requirement on a four-processor system

Assume that A,B,C and D are initially 0. We also assume that the processors execute
their memory operations in order. It is still possible to violate sequential consistency
if the updates/invalidates of the writes to A reaches to processors C and D in different
order and X and Y get different values. This can happen in systems that have a big
interconnect network with multiple paths so that messages travel along different paths
towards the destination. Such violations are fixed by imposing a condition named write
serialization [30]. It basically means that writes to the same location are all seen in
the same order by all the processors. Achieving this serialization in reality has some
complications. One solution could be to have all the invalidates or updates originate
from the same location (like a central directory) and also make the network to preserve
the ordering of such messages. Another approach would be delaying an invalidate or
update to be sent out until any other invalidate or update issued by a previous write to
the same location is acknowledged [3]. Even having write serialization is not yet enough

2.5. THE IMPACT OF ARCHITECTURAL AND COMPILER OPTIMIZATIONS 19

to maintain sequential consistency. Consider the simple program in Figure 2.12. This
program is a simple flag-based synchronization between three processors.

Processor B

A = 1

Processor A Processor C

If (A)

B = 1

If (B)

C=A

Figure 2.12: Flag-based syncrhonization between three processors

Again, we assume that we are using an update protocol and all the variables are
initially cached by all the processors. In addition, we assume that processors issue their
memory operations in order and wait for them to be acknowledged before sending out
the next one. The writes are properly serialized as described above. It is still possible
to violate sequential consistency. Consider this scenario:

1. Processor A writes to A and broadcasts the corresponding update to the the other
cores.

2. Processor B receives the new value of A before processor C receives it.

3. Processor B writes to B and broadcasts the corresponding update to the other
cores.

4. Processor C receives the new value of B while it has not yet received the new value
of A.

5. Processor C sees B as 1 and then proceeds to set C to the old value of A.

The complicated scenario described above can happen in systems using an inter-
connect network with multiple paths and leads to a non-atomic write operation. The
violation in this case is allowed to take place because processor B has the permission to
return the value of the write to A before processor C has seen the update generated for
this very write operation. One solution to this problem could be preventing a read from
returning a value newly written until all the cache copies have been properly acknowl-
edged the reception of the invalidate or update messages generated by the write [3].

2.5.3 Write buffers

Some systems have write buffers or something similar for performance boost purposes.
In these systems, a write is placed into the write buffer and the processor considers the
write completed and goes on with the rest of the program. In a uni-processor system, if
a following read wants to access the same address, the write buffer is first gets checked
if it has a copy of the data requested by read and will return the value to the processor
if it does, and if it does not, the write buffer can be bypassed without affecting the

20 CHAPTER 2. BACKGROUND

uni-processor data dependency status. However, in a multi-core system where all the
processors have write buffers, it is possible that this bypassing optimization would make
the sequential consistency to be violated. Let’s take a look at the famous Dekker’s
mutual exclusion algorithm in Figure 2.13.

Processor B

F1 = 1

If(F2==0)

Critical section

.

.

.

Processor A

F2 = 1

If(F1==0)

Critical section

.

.

.

Figure 2.13: Dekker’s mutual exclusion algorithm

We assume that F1 and F2 are initially 0. If both processors put their writes to
the flags to their write buffers and continue to the read operation afterward, they will
both see a 0 in response to the read and enter the critical section. This has a simple
conclusion: under sequential consistency, we can not just simply put the write in a write
buffer and continue executing the program [17]. Analogous situations can happen in case
of using a victim cache or having write-merging or overlapped-writes, etc. For instance,
in a multi-core system with caches and store forwarding as depicted in Figure 2.14, a
scenario can happen where there are two copies of a variable in both the cache and the
store buffer and even if the data copy in the cache gets invalidated or updated under a
cache coherence protocol, the processor might gets the old value in its store buffer upon
the execution of a following read. The solution is to make the store buffers and caches
synchronized.

2.5.4 Compiler optimizations

Besides architectural optimizations in the hardware, compilers use optimization tech-
niques too. Many of these optimizations that are the result of some static analysis
during compile-time eventually load to reordering of the operations. The violation of SC
here is the same as it is in hardware reordering. Some more advanced compilers might
have more intelligent algorithms to deal with reordering and synchronization points in
the program, but in the absence of such algorithms the solution is to make the compilers
to avid any reordering in the program. As a result, optimizations like code motion, reg-
ister allocation ,loop blocking or software pipelining are restricted. In summery, many of
the compiler optimizations that can be easily employed in a uni-processor system must

2.6. COMMON CONSISTENCY MODELS 21

Processor A

Cache

Store

buffer

Interconnection network

Shared Memory

Processor B

Cache

Store

buffer

Figure 2.14: Store forwarding

be avoided in a multi-processor system. Compilers that are specifically designed and
developed for parallel systems and multi-processor environments have enough in-depth
knowledge about the parallelism of the program and its shared data status so that they
can efficiently apply essential optimizations without harming the sequentially consistent
behavior of the whole system. There are some algorithms to analyze the program and
find the locations at which we have to prevent reordering to keep the sequential con-
sistency. These algorithms are complicated, limited and depend on a comprehensive
dependency analysis of the program, [31] and [32] are two examples of such algorithms.

2.6 Common consistency models

So far, we have seen one consistency model; sequential consistency. In order to implement
sequential consistency, we have to impose many restrictions to entire system and this will
defeat the performance improvement and all the advancements and modern techniques
that have been proposed in the past few decades. It is clear that we want to avoid it.

2.6.1 Relaxed consistency models

To eliminate the restrictions imposed by sequential consistency on performance, relaxed
memory models were introduced. These models actually relax some constraints of the
sequential consistency model and allow some of them to happen out of order to have the
opportunity to employ the optimizations blocked by sequential consistency. Before we

22 CHAPTER 2. BACKGROUND

proceed with relaxed models we take a look at sequential consistency from two different
perspectives. As it was discussed before, there are some minimum requirements for
sequential consistency. In [21] and [33], these requirements are described respectively as
follows:

• Lamports Requirements for Sequential Consistency:

1. Each processor issues its memory requests in the order specified by its pro-
gram.

2. Memory requests from all processors issued to an individual memory module
are serviced from a single FIFO queue. Issuing a memory request consists of
placing the request in this queue.

• Scheurich and Dubois Requirements for Sequential Consistency:

1. Each processor issues memory requests in the order specified by its program.

2. After a write operation is issued, the issuing processor should wait for the
write to complete before issuing its next operation.

3. After a read operation is issued, the issuing processor should wait for the read
to complete, and for the write whose value is being returned by the read to
complete, before issuing its next operation.

4. Write operations to the same location are serialized in the same order with
respect to all processors.

Now, we can have a better definition of write completion. A write is considered
to be completed when it has updated the memory and all the other copies in other
processors caches are properly invalidated or updated. We can further simplify this
based on Lamport definition that a write can be considered complete as soon as it
reaches the memory input FIFO. It is a very important conclusion that if we are sure
that a write has reached the memory subsystem and queued in its buffer or FIFO, and
we are also sure that all the following requests are going to be buffered after the write,
we can consider the write completed even if it has not yet really updated the physical
memory location. A more aggressive implementation of write completion would be the
idea of lazy caching first was introduced by Yehuda Afek [34]. The idea is that the
processor that updates or invalidates a cache block can consider it completed if the
invalidate or update has been received and buffered by the nodes who have a copy of
that block. All of these solutions rely on having an acknowledgement mechanism on
the network to signal the reception of the message. Scheurich and Dubois’s definition
is a more generic one comparing to Lamport’s and it deals with systems with caches
and interconnection networks. In relaxed consistency models, the programmer should
have a better understanding of the memory semantics and the underlying hardware.
That is why sequential consistency is the easiest and most desirable memory model from
programmer’s viewpoint as it takes care of the sequential behavior of the program every
where and the programmer would not get involved with the complications of the memory
operations across the cores. However, we have to make a trade-off to be able to still take

2.6. COMMON CONSISTENCY MODELS 23

Relaxation W → R W →W R → RW Read other
writes early

Read own
write early

BM 370 Yes No No No No
TSO Yes No No No Yes
PC Yes No No Yes Yes

Table 2.1: A brief description of three relaxed consistency models

advantage of the optimizations that are eliminated by sequential consistency. Relaxed
memory models may relax some program orders: Read to Write/Read order(R-RW),
Write to Read order(W-R) and Write to Write order(W-W). We briefly look at three
famous relaxed memory models. Other memory models may be available and used by
different multi-processor systems. Table 2.1 shows a brief description of three common
relaxed consistency models.

• BM 370: a read can complete before an earlier write to a different address, but a
read can not return the value of a write unless all processors have seen the write.

• SPARC V8 Total Store Ordering (TSO): a read can complete before an
earlier write to a different address, but a read can not return the value of a write
by another processor unless all processors have seen the write (it returns the value
of own write before others see it).

• Processor Consistency (PC): a read can complete before an earlier write (by
any processor to any memory location) has been made visible to all.

A very common relaxed memory model is weak ordering or weak consistency that
relaxes all the constrains in Table 2.1 except read other writes early. Under weak or-
dering, operations are classified as data and synchronization and reordering can happen
in-between synchronization points. For example, a counter can keep track of the number
of outstanding data operations and a synchronization is not issued until the counter
is zero. Data operations are not allowed to begin unless the previous synchronization
has been completed. This memory model enables many optimizations and relaxes the
sequential consistency to a high extent, however, it is not always the best choice as it
can not be used with every kind of program and data pattern. We will take advantage
of this model in this project. It will be explained in chapter 3. Weak consistency yields
high performance and alleviates the latency established by sequential consistency but
the programmer needs to analyze, understand and identify the synchronization points
and data operations in the program and this can be a very cumbersome task in systems
with a high number of cores. Release Consistency(RCpc, RCrc) extend weak consistency.
Operations are first distinguished as ordinary and special. These two categories loosely
correspond to data and synchronization categories in weak consistency [3]. RC works
based on acquire and release concepts. Under release consistency, a special variable or
address must be first acquired to be written to. It will be later released and only af-
ter that can be accessed by other cores for reading. Most of the commercial systems

24 CHAPTER 2. BACKGROUND

are not sequentially consistent and use some kind of relaxed model. They rely on the
programer at some points to take care of the correct functionality of the program by
writing consistent and well -designed programs. The extent to which the user needs to
take care of the consistency depends on the relaxed model being used by the multi-core
system and the architecture of the program itself. In [35] a performance analysis and
comparison and benchmarking is done between different memory consistency models. It
can be consulted to understand more about their differences and suitability for different
contexts and platforms.

2.7 Cache coherence

In this section, we will review the cache coherence issue in multi-core systems. It is not
intended to explain all the details of the current cache coherence protocols. We may
only refer to them and rather analyze and compare them at system level. In multi-core
systems that communicate through the same shared global memory, we have the issue
of cache coherence(cache consistency) besides memory consistency that is a significant
performance limiting factor [36]. The problem simply arises from the fact that each core
might have its own private cache memory to improve its performance. This local caching
is also helping to save the bandwidth requests on the shared global interconnect network
to the shared memory. Nevertheless, as long as there is not any shared data between the
cores, there is no cache coherence issue. It all starts when we have more than one copy
of a shared data in more than one cache memory of the system. Processors might want
to read or write the shared data and this will take place in their own cache memories
in the first place. After this moment, there will be mismatching multiple copies for the
same data in multiple caches. We need to have a mechanism to resolve this issue to
guarantee that different cores in the system can always reliably access the correct and
updated values of the shared memory locations. Although processors logically access
the same memory, on-chip cache hierarchies are crucial to achieving fast performance
for the majority of memory references made by processors. Thus, a key problem of
shared-memory multi-processors is providing a consistent view of memory with various
cache hierarchies [37]. Cache coherence can also have impacts on memory consistency.
We will first look into the cache coherence as an individual design issue. Figure 2.15
depicts a conceptual representation of the shared memory in multi-core systems and the
root of the coherence issues. Figure 2.16 shows a simple situation that incoherent cache
management creates unwanted results.

suppose that the value of x is initially zero in the memory and none of the cores
already have read it. After some time both cores have read the variable and copied it
into their own cache. If later on processor 1 updates x (in this case the shared memory
is also updated as it is assumed that the cache is using write through policy) then the
other core has no clue that the copy of x that it has is no longer valid. The coherence
control protocols in general aim to resolve these kinds of issues in all the situations. In
general, there are two major kinds of cache coherence protocols: hardware-based and
software-based.

2.7. CACHE COHERENCE 25

Processor 0

Cache

Interconnection network

Shared Memory

Processor 1

Cache

Processor N

Cache

X

y

X

y

X

y

X

y

·
·

·

Figure 2.15: Data replication and cache coherence in shared memory multi-core systems

Processor 1 Processor 2

X = 1

X = 1

X = 0

Shared memory

Figure 2.16: Incoherent local copies of data due to data replication

2.7.1 Hardware-based protocols

There are three major types of hardware cache coherence protocols:

26 CHAPTER 2. BACKGROUND

• Snooping: caches keep track of the sharing status of all the blocks, No centralized
state is kept in the system, when a processor detects on the bus that a block of
data is updated by another core, it will invalidates its own copy of that data block.
This category is associated with write-invalidate protocols [38].

• Directory-based: sharing status of any block in memory is kept in one location:
the directory. First described in [39].

• Snarfing: like snooping except the cache controller checks the data and address
buses both and will update its own copy of the data block when it detects a write
into that address. This category is associated with write-update protocols,

Another classification of hardware-based cache coherence protocols is:

• Write-invalidate protocols:

– Guarantees that only one writer has a valid copy of a block.
– Other copies in other caches are invalidated.

• Write-update protocols:

– When a processor writes to a block, it also broadcasts the new value to other
cores.

Each one of the above protocols have their own pros and cons.

• Snooping/snarfing protocols [38]:

– Advantages:
∗ easier to implement.

– Disadvantages:
∗ uses a lot of bandwidth of the global bus due to broadcasts needed on a

cache miss.
∗ harder to use with higher number of cores as the broadcast medium has

to support a higher degree of broadcasts.

• Directory-based protocols [40]:

• Advantages:

– More scalability, easier to use in systems with higher number of cores.
– Demands less bandwidth of the centralized shared memory.

• Disadvantages:

– More complex to be implemented.
– Uses more area and memory for the directory specially when the number of

cores and shared memory blocks grow.

There are several hardware-based snooping and directory-based protocols. Examples
of snooping protocols are:

2.7. CACHE COHERENCE 27

Software-based protocols

• MSI (Modified, Shared, Invalid)

• MESI (Modified, Exclusive, Shared, Invalid)

• MOSI (Modified, Owned, Shared, Invalid)

• MOESI (Modified, Owned, Exclusive, Shared, Invalid)

directory-based protocols

[41]:

• Bit-vector/Coarse-vector

• Dynamic Pointer Allocation

• Scalable Coherent Interface (SCI)

All the protocols briefly reviewed above are generic and complex protocols capable
of effectively resolving cache coherence issues in hardware using huge state machines
and controllers to continuously check and control the status of individual cache blocks.
The task of keeping the cache coherent in multi-core systems could be time consuming.
Depending on the application, the cost for maintaining a coherent view of the memory
may easily account for half of the execution time or more [42]. In this thesis however,
instead of trying to solve the problems for any random parallel program with arbitrary
memory accesses to the shared memory in general purpose systems, we are looking for
more application-specific solutions that fix the issues of a limited class of applications that
are implemented based on a more organized and predictable architecture on FPGA-based
embedded systems. In embedded systems, area and throughput are just too precious and
need to be spent very carefully. On such systems, we may concentrate only on a given
set of applications [2].

2.7.2 Software-based protocols

To alleviate the complexity of hardware-based cache coherence protocols, software-based
protocols may be used. Software cache coherence is attractive because the overhead
of detecting stale data is transferred from run-time to compile time, and the design
complexity is transferred from hardware to software. However, software schemes may
perform poorly because compile-time analysis may need to be conservative, leading to
unnecessary cache misses and main memory updates [43]. The goal of software-based
protocols is to prevent the existence of an inconsistent data in the cache by only caching
a data item at safe times. It means that an analysis phase is needed to identify cacheable
or non-cacheable data. This is the job of a complex compiler. One simple and relatively
naive solution would be making all the shared data non-cacheable. A better way is
to make sure that the date is shared when it is safe and the compiler has to analyze
and identify the time intervals when this safety is established. The main idea behind

28 CHAPTER 2. BACKGROUND

software-based cache coherence protocols is the static analysis or cacheablity marking
done by the compiler [44]. The compiler has to identify the shared data and categorize
the accesses to it into some main classes like the following:

1. Read-only for an arbitrary number of processes.

2. Read-only for an arbitrary number of processes and read-write for exactly one
process.

3. Read-write for exactly one process.

4. Read-write for an arbitrary number of processes.

Basically, the main task of the compiler is to analyze the data dependencies and issues
appropriate cache control commands like invalidates and flushes to maintain the data in
the cache consistent with the global memory. The static data partitioning takes place
during compilation of the programs and the way they are shared between computational
units is identified and the accesses to shared data from different computational units are
managed by inserting cache control commands at appropriate locations in the program.
The excellent paper by Hoichi Cheong and Alexander V. Veidenbaum [45] can be used
for more information. Also in [46] a very useful classification between software-based
cache coherence solutions is presented. We will review this subject in a more specific
way tailored to the context of this thesis project in chapter 3.

2.8 Cache coherence vs memory consistency

So far, we have reviewed two main issues in multi-core systems: cache coherence and
memory consistency. At this point, It is worthwhile to emphasize on their differences to
avoid any confusion. A system is cache coherent if any read to a specific address returns
the latest data written to it. Cache coherence protocols are responsible to make sure
that all the writes to the same location in the system are serialized and eventually seen
by all the cores in the same order(write serialization). However, this is not yet enough
to guarantee a sequentially consistent memory system. Under sequential consistency, a)
all the operations of one processor need to complete in the program order and b) all the
writes to all the locations must be seen in the same order by all the processors. In other
words, SC deals with the question of when the data is consistent or when other cores
can access the right data. Sequential consistency gives more accuracy to the meaning of
latest data. Consider the simple example code in Figure 2.17 from [4]:

Two processors are writing to two locations and two processors are reading those
locations. Assume that a and b are initially 0 and consider the following two results of
the program for (x,y,z,w):

1. (1,2,2,1):
This result is not possible under cache coherence nor it is under sequential consis-
tency, because the writes on processors A and B are to the same location.

2.8. CACHE COHERENCE VS MEMORY CONSISTENCY 29

Processor B

a = 1 a = 2

Processor A

x=a

y=a

Processor C

z=a

w=a

Processor D

Processor B

a = 1 b = 2

Processor A

x=a

y=b

Processor C

z=b

w=a

Processor D

Figure 2.17: Cache coherence vs memory consistency

2. (1,2,2,1):
This result is possible under cache coherence but is not possible under sequential
consistency, because the writes on processors A and B are to different locations
and the cache coherence is not violated.

In this thesis project, a cache controller (cache memory) was designed and imple-
mented (chapter 5) and was used to design a coherent and consistent memory sub-system
on Xilinx-based multi-core embedded systems. The hardware components, software com-
ponents and the design pattern together constitute the consistent memory sub-system
of our embedded system. In the following chapters more details will be given on each of
these aspects.

30 CHAPTER 2. BACKGROUND

Design pattern 3
A pattern describes a problem that happens in our target environment and then talks
about finding the core solution to the problem in such a way that we can use it over
and over again without actually overdoing it in the same way twice [5]. In this project,
we aim to define a design pattern that in fact determines how our context looks like and
what exactly the problem is. Our design pattern defines the way our parallel programs
or their architecture appear in terms of memory accesses, inter-core communication and
data sharing. It is a set of communicating tasks, exchanging data through streaming
communication, enriched with some global shared-memory features, to support creating
applications that fit this style. We will focus on the applications that can be developed
and constructed based on this design pattern. Consequently, we will describe the
problems existing in the system and propose solutions to solve them and eventually
implement the solutions. After this point, we will be able to have a correct execution of
any program that has been developed based on the design pattern and is being run in
the context of our applications. The design pattern might be even called communication
pattern as we are actually focusing on solving the problem of data communication and
transfer between cores. However, the term design pattern is what we will mostly use in
the rest of this report.

The remainder of this chapter is organized in four sections: Section 3.1 presents
the concept of program specific approach in defining a memory consistency model and
how it has been used in this project, Section 3.2 reviews several common communication
models and compares them and finally Section 3.3 explains the features and principles
of the proposed design pattern used in this project.

3.1 Program specific approach

The necessary requirements presented so far are used to maintain the sequential
consistency in parallel systems. However, it is not always essential to keep the order
at any part of the program to have a sequentially consistent result. It means that
one approach could be defining a standard methodology to gather and analyze some
information about the program and its shared data with other cores and enforce the
consistency requirements whenever it is necessary. These solutions are more complicated
and need a comprehensive static analysis of the programs, they also complicates the
compilers. The result of this analysis can be used by the hardware and/or compilers
to apply reordering when it is safe. As an example, consider the simple program in
Figure 2.3. It is obvious that because of synchronization, the expected sequentially
consistent result is (x,y) = (1,1), however, it is not essential to keep the order between
the write to A and the write to B on processor A, this processor can reorder these writes

31

32 CHAPTER 3. DESIGN PATTERN

and still the final outcome of the program is sequentially consistent. There are some
algorithms and methodologies to find the critical instruction orders in the programs
that really need to be kept to guarantee a sequentially consistent result. In [32], a
method is presented for this purpose. These methods are not perfect. In the case
of [32] for instance, writes are assumed to be atomic, while in reality, it is not always
the case, specially in the presence of local caches and data replication. In this thesis
project, we use program specific approach. In other words, we rely on program specific
analysis results and define our design pattern based on them. How this analysis is
done is another topic beyond the scope of this thesis. The work in this thesis actually
starts from the point that the analysis is done on the program which is supposed to be
ported on the multi-core system and the synchronization points and critical sections
are identified. After this analysis, it is clear that how the data is shared and who is
accessing it at a given point during the execution. Vfanalyst [47] is the tool from Vector
Fabrics that does the analysis on the sequential C codes received from the user and
seeks for the parallelization opportunities in it. This tool together with Vfembbeded [48]
are used to map the parallelized program to the hardware platform. The final parallel
program is generated by VF tools has a structure defined by our design pattern.
Vfembedded supports a few different platforms and the knowledge acquired during this
thesis and its outcome is used in the implementation of this tool-set, specifically on the
FPGA-based platforms supported by the tool. As mentioned before, the proposed so-
lution is reusable on other platforms by adding some modifications to its implementation.

The main target application class of VF embedded tools are stream-based appli-
cations like multimedia, coding-decoding, signal processing, etc. The focus is on
the applications which are potential candidates for performance improvement using
block-level functional parallelism. Vfanalyst is responsible for the analysis and detection
of the appropriate communication pattern of the program. In general, both data
parallelism and functional parallelism are supported in Vector Fabrics tools. After the
static analysis of the sequential codes, it is possible to request a data parallel version
or a functional parallel version of the application. The data parallelized programs are
typically ported on GPU-accelerated platforms which are very effective in this domain
due to their high number of independent parallel functional units, and the functional
parallelized programs are normally ported to hardware accelerated platforms on FPGAs
or a heterogeneous X86 platform with multiple CPUs and dedicated hardware units
(accelerators). The functional parallelized programs have a producer-consumer-like
structure. So, the final program being run on the platform is not supposed to have an
arbitrary non-predictable memory access pattern.

3.2 Review of some communication models

During this thesis project, a lot of time was spent on studying different communication
protocols and standards to come up with a suitable one for our target FPGA platform
and applications. It is not possible nor intended to discuss all the details of the studied
standards, however, a brief review is given in this section for the sake of future re-
usability.

3.2. REVIEW OF SOME COMMUNICATION MODELS 33

3.2.1 MPI(Message Passing Interface)

MPI or message passing interface is a set of library specifications and associated APIs
proposed as a comprehensive message passing protocol in complex multi-process contexts.
The simple intention of this interface is allowing the data to be passed between processes
in a distributed memory environment. MPI supports heterogeneous parallel architectures
and offers a great deal of functionality. MPI libraries and routines can be included and its
functions and APIs can be used in C or FORTRAN programs. Under MPI, a data item
can be exchanged between two processes as a message. The fundamental assumptions
in MPI are:

• A parallel program consists of multiple processes each with its own data memory
and no process can directly access the memory of other processes.

• Data sharing only takes place via message passing. The data needs to be explicitly
sent as a message to the other node.

MPI is a comprehensive standard. Using MPI it is possible to define different types
of messages and communications and because it is standardized, the codes are supposed
to be portable on other supported platforms. In MPI, a point-to-point communication
has the following principles:

• It happens between two processes.

• The source process sends the message to the destination process.

• The destination process receives the message.

• Communication takes place within a communicator.

• The destination process is identified using its rank in the communicator.

Figure 3.1: MPI communication environment

34 CHAPTER 3. DESIGN PATTERN

Figure 3.1 shows a conceptual representation of MPI system. MPI standard docu-
mentation [49] can be consulted for more information. After understanding MPI it was
concluded that it was not a suitable option for our platform. The main reasons can be
summarized as follows:

• It is originally proposed and implemented for multi-task and multi-process envi-
ronments.

• It is too complicated to be easily ported to our FPGA-based embedded system.

• It is originally dedicated to distributed memory systems and message passing con-
texts that are not exactly our main target in this project.

• It does not directly deal with cache coherence issues.

• It is originally developed and more suitable for message passing, while we need
extensive data communication and transfer.

Despite above reasons, it is clear that technically, porting an MPI compatible inter-
face to our FPGA-based platform is still possible. However, it is not easy and economic.
Specially when there are hardware accelerators present and they use their own cache
memories. What was needed for this project was a simpler standard that is able to
handle the communication through the central shared memory, is powerful enough to
support the target applications and can be used by hardware accelerators more eas-
ily. Message passing schemes are typically more compatible with distributed memory
multi-processor systems.

3.2.2 FIFO channels

FIFO channels are another communication pattern that can be used for data exchange
between the cores, they can be implemented in software or hardware. Sending the
data to the consumer via some available FIFO interface is possible on the FPGA. In
Xilinx FPGAs, two hardware FIFO interfaces are available that are supported by Mi-
croblaze processor and can be also easily interfaced on the accelerator. Fast Simplex
Link(FSL) [50] and AXI-stream [51] are the supported hardware FIFO interfaces. Dur-
ing this thesis project, these two interfaces were tested and simulated using some simple
examples.

FSL link

• Main features:

– Implements uni-directional point-to-point communication.

– FIFO depth is configurable ranging from 1 to 8K.

– Supports unshared and non-arbitrated communication mechanism.

– Provides extra one control bit to be used by the receiver core.

– Supports both synchronous and asynchronous modes.

3.2. REVIEW OF SOME COMMUNICATION MODELS 35

– Can be implemented using Xilinx block RAMs or LUT distributed RAMs.

The functional description and signaling of FSL interface can be found in [50]. This
interface is proposed by Xilinx and supported in its tool-set as the standard interface for
the communication between the processor and the user peripheral modules added to the
embedded system. It can also be used as a channel for two processors to communicate.
An example is the Microblaze-based multi-processor system implemented in [52]. Using
FSL in Xilinx FPGAs is straight forward and simple as it is fully standardized and all
the APIs, drivers and documents are available. One Microblaze can support up to 8 FSL
links and adding and removing them is easily done in Xilinx EDK tool.

AXI stream FIFO

AXI-stream is newly supported by Xilinx. It is based on AXI-lite [7] from ARM and can
be used as a streaming interface, it allows memory mapped access to an AXI streaming
interface. Xilinx provides standardized IP cores that can be used to write and read data
packets in a FIFO fashion without getting directly involved with AXI signaling. Similar
to FSL links, AXI-stream interface is fully supported by Microblaze and can be easily
instantiated and used in the FPGA designs within Xilinx tools. The only limitation is
that all the AXI family interfaces are only supported by Xilinx starting from Virtex6
and Spartan6 families and ISE 12.3. Figure 3.2 taken from [51] illustrates the core block
diagram of AXI-stream FIFO interface.

Figure 3.2: AXI-Stream FIFO Core Block Diagram

• AXI STR TXD-Axi Stream Transmit Data.

• AXI STR TXC-Axi Stream Transmit Control.

36 CHAPTER 3. DESIGN PATTERN

• AXI STR RXD-Axi Stream Receive Data

Both of the FIFO interfaces described above can be easily used as an inter-core
communication channel. However, they are not the perfect choices as the main basis
of our design pattern. The reason is that they are vendor-specific and would defeat
the original purpose of portability of the solution. FSL links and AXI-stream are not
available on all platforms and in future they might be replaced with another interface
or might not even be available on Xilinx platform at all. Making our design solutions
developed based on these interfaces is not a wise choice and so was avoided in this thesis
project. Another drawback is the area overhead in case the number of cores grows. In
this case, we need to use several hardware interfaces.

3.2.3 Ping pong buffers

In a producer-consumer fashion, blocks of data may be exchanged between the producer
core and the consumer core. A ping pong buffer may be simply interpreted as something
like Figure 3.3.

Channel buffer Channel buffer

Core 1 Core 2

Synchronization

Figure 3.3: Ping pong buffer data pattern

Channel buffers are arrays in the memory that contain the data. Two separated
buffers are accessed by the producer and consumer at different times. While one buffer
is being used by the writer, the reader is working with the data from the other buffer.
The ownership of the buffers are exchanged at the end of the processing using some
synchronizations. Needless to say that this synchronization might be a standard primitive
provided by the platform or implemented by the designer. In both cases, it has to be
coherent and atomic so that it can guarantee to the other core that the buffer being
synchronized does contain the updated valid data after the synchronization takes place.
This model is a simple pattern that can be easily implemented in many platforms.

3.3. THE PROPOSED DESIGN PATTERN 37

Nevertheless, it is not a powerful one. It is not flexible and systematic. It also seems too
simplistic to support complicated parallel structures and does not provide a wide range
of functionality.

3.2.4 Windowed-FIFO

A windowed FIFO (WFIFO) is in fact a FIFO with extended functionality and more
flexibility. Even though a FIFO pattern is an acceptable communication model for
streaming applications and has also been used in Vector Fabrics tools before, it still
lacks flexibility and presents some restrictions. In a normal FIFO channel, data have
to be always read one at a time and exactly in the same order that it is written. It is
not possible to skip or remove a data item from the FIFO. Another limitation is that
in a FIFO channel, it is normally not possible to read the same data item multiple
times. WFIFO removes these limitations from normal FIFO model and provides more
functionality and flexibility. WFIFO can be implemented in hardware like [6] or software.
A conceptual representation of windowed-FIFO is shown in Figure 3.4.

FIFO channel buffer
window

Acquire Commit

Figure 3.4: Concept of Windowed-FIFO

A window which is a range of data is acquired for data access and then is released.
The window is sliding through the FIFO channel buffer and can wrap around it. Both
the writer and the reader are performing a procedure like what is illustrated in Figure
3.4. Using WFIFO, parallel programs can exchange data more efficiently and read and
write the items from/to windows with more freedom. They can skip a data item if they
do not want it. A positive point about WFIFOs is that reads are not destructive like
normal FIFOs.

3.3 The proposed design pattern

Up to this point, several communication models were reviewed and compared. Since
the main target applications of this thesis project in particular and a wide range of the
supported applications of VF tools in general are streaming applications and multimedia
programs with determined memory access patterns, a FIFO-like design pattern is a
wise basic choice to define the structure of the programs. Obviously, it needed to be
discussed in Vector Fabrics and approved within the company whether they prefer
this model or not. The KPN (Kahn Process Networks) model [53] is the high level

38 CHAPTER 3. DESIGN PATTERN

description of how the multi-processor applications look like at process level. Under this
model, the application is decomposed into several individual processes communicating
through unbounded FIFO channels. A producer-consumer like communication is also
interpretable based on this model where the producer process or processor is producing
data for the consumer process and these data is being transferred through FIFO chan-
nels. We change these FIFO channels to WFIFO channels to gain more functionality
and efficiency like described in previous section. WFIFO could be considered as a great
extension to a simple ping pong buffer in terms of data exchange and to normal FIFOs
in terms of communication pattern.

The final design pattern used in this thesis project is based on the above princi-
ples. The WFIFO control interface and administrative structures were implemented
both in software and hardware. The channel buffers themselves are allocated in the
shared memory. The hardware interface is used by the accelerators and their cache
controllers and the software interface implemented as software libraries and APIs is used
by CPU and the C code running on it. The final implemented design pattern can be
considered as a software-based WFIFO communication. Regarding cache coherence, we
know that for relatively well-structured and deterministic programs, software schemes
perform significantly better than hardware schemes [43]. So, Software-based cache
methods are used for controlling the cache coherence of the memory sub-system during
FIFO operation and data transfer. Back to the background knowledge discussion in
chapter 2, we can conclude that the consistency model used in the proposed design
pattern is in fact a special case of weak consistency named release consistency model as
the coherence and consistency is taken care of at synchronization points of the windows
at the time of acquiring and releasing. We will see later how exactly this happens
in our embedded systems. The formal definition of Release consistency says: The
system is said to provide release consistency, if all write operations by a certain node
are seen by the other nodes after the former releases the object and before the latter
acquires it. Figure 3.5 depicts a functional overview of the proposed design pattern.
Many tests and analyses needed to be done to identify and understand the exact
behavior and characteristics of all the software and hardware components, Microblaze
processor libraries and APIs, the bus infrastructure and controllers and memory and
memory controllers and their impact on the coherent and consistent operation of the
implemented design pattern. In the following chapters, more detailed information will
be given on all of these steps. Back to the original issue of cache coherence and memory
consistency, we can now see that in this project, these issues are not managed at the
granularity of all the operations since the programs being run on our FPGA-based
multi-processor system has the high level structure in terms of data sharing that is
described by the design pattern. So the coherence and consistency of all the data need
to be taken care of at block levels and synchronization points and this has to happen
at both the CPU side and the accelerator side regardless of the internal architecture
of their cache memories. in chapter 5, the features and architectural details of the
proposed and implemented cache memory for accelerators will be completely explained.
In chapter 6, the main features of the proposed design pattern and their associated
APIs will be reviewed.

3.3. THE PROPOSED DESIGN PATTERN 39

Microblaze or AccelratorMicroblaze

External shared memory

FIFO channel buffer
window

Acquire Release

Producer Consumer

Global Bus

Figure 3.5: The proposed design pattern

In principle, the system has a master processor that starts the communication chan-
nel. The other core could be another processor or a hardware accelerator. In both cases,
the proposed FIFO channel interface is used to access the data items and control the
FIFO administration. Multiple channel buffers can be defined in the shared memory
and they can be accessed by different cores. Because the proposed FIFO channel is
implemented in shared memory, it can be easily scaled and even ported to other plat-
forms. This solution is not depending on specific features of the hardware platform or
any special IP or component. It has to be reiterated again that minor changes to the
implementation or taking advantage of different kinds of synchronization primitives or
memory accesses on another platform are inevitable and can not be considered as sig-
nificant platform dependability. But, if the solution was totally dependent on a special
hardware FIFO, an internal resource of some specific FPGA series or a particular mem-
ory module or architecture, it would be something more platform-dependent that we did
not want.

40 CHAPTER 3. DESIGN PATTERN

Development platform 4
All the hardware and software developments were done using Xilinx tools. Xilinx EDK
or Embedded Development Kit [54, 55] is the development environment for embedded
system design and test on Xilinx FPGAs. Before embarking on the hardware and
software implementation of our embedded systems, a lot of time was spent during this
thesis project on understanding and learning Xilinx embedded solutions and acquiring
in-depth knowledge of the procedure of creating, simulating and testing a complete
embedded system consisting both hardware and software sides and their interface. In
this chapter, we will review the most important aspects of the development environment
and explain how they are used. We also review the technical features of the basic
constituent hardware components of our systems. This chapter is a good introductory
reference for future re-usability in Vector Fabrics. However, it does not cover all
the details and it is recommended to consult Xilinx manuals and literature for more
information.

The remainder of this chapter is organized as follow: Section 4.1 explains more
details about the development environment and the main tools from Xilinx for software
and hardware developments, Section 4.2 introduces and compares the kinds of memory
modules available on our embedded system, Section 4.3 reviews the available bus and
interconnection networks used in our embedded systems, Section 4.4 illustrates the
general features of the hardware accelerators and their role in our embedded systems,
Section 4.5 reviews the main features of the general purpose processor in our embedded
systems and explains its influence on the consistency and finally Section 4.6 illustrates
the architecture of our target FPGA-based embedded systems and its memory issues.

4.1 Xilinx environment

The main synthesis and place and route tool of Xilinx is ISE [56]. It was used for RTL
implementation and simulation, RTL synthesis, FPGA configuration and on-board tests.
EDK is part of ISE. We will also see in next chapter that the cache controller was imple-
mented using HDL guidelines from Xilinx. To create a complete embedded system to be
configured on Xilinx FPGAs, we have to first design and create the hardware platform.
The hardware platform consists of all the hardware components of the system and their
connections through buses and hardware interfaces. Addresses of the components are
defined and all the hardware components are configured if it is needed. These steps are
all done in XPS (Xilinx Platform Studio) which is part of EDK. There are already lots
of standard supported modules available in the tool that can be added to the hardware
platform. Their APIs and software drivers are also provided so that they can be accessed
and used from within the C code running on the processor. Figure 4.1 shows how XPS

41

42 CHAPTER 4. DEVELOPMENT PLATFORM

hardware platform creation window looks like.

Figure 4.1: XPS(Xilinx Platform Studio)

In XPS, it is also possible to import and add user defined peripherals and connect
them to the rest of the embedded system. XPS user interface and wizards make it very
straight forward to manage the hardware components and their connection. It is possible
to create the embedded system for a specific Xilinx development board or to do it from
the scratch for a custom board. In this project, a standard Spartan-3dsp 3400A [57]
board was used. Using a standard development board means that EDK already knows
all the available interfaces and components on the board and how and where they are
connected to the FPGA IO pins. So the user has no trouble defining the pin connections
of the FPGA chip to the outside world. We can define uni-processor systems or multi-
processor systems. It is possible to add as many processors or any other component to
the system as we need. The only real limitation is the logic capacity of the FPGA chip
being used to accommodate the whole embedded system. Figure 4.1, depicts a standard
dual-processor system with two Microblaze processors in XPS. In general, Xilinx FPGAs
support two kind of processors. On some FPGA families like Virtex there are power PC
processors [58] available. And in almost all the FPGA families from Xilinx it is possible
to add and use the softcore Microblaze processor. At system level, these two processors
are both used in the same way in the tools. However, their features and architecture are
definitely different. In this thesis project, Microblaze processors are used as first, they
are very easily portable to all the FPGAs because they are softcores. And second, they
are the standard processors used in embedded systems generated by VF tools. As it is
clear in Figure 4.1, in system assembly view, all the components added to the system
are shown in the main window and their connections via buses are shown next to them.
Connections to the buses can be easily disconnected and reconnected and new addresses
can be defined in the address tab. The IP catalog tab contains the available modules
that can be inserted into the system. If we define a new user specific peripheral we need

4.1. XILINX ENVIRONMENT 43

to provide its HDL implementation and it will be also shown in this window and can
be treated like other standard peripherals. Multiple buses and interconnects can be also
added to the system like any other component. The embedded system of Figure 4.1
has two Microblaze processors. The block diagram view of XPS gives a nice view of the
blocks in the system. Figure 4.2 is the block diagram of the embedded system of Figure
4.1.

Figure 4.2: Block diagram veiw of the embedded system of figre 4.1

By double clicking on any hardware component in the system assembly view, a new
window specific to that component will open. All the available options for this component
can be seen in this window and configurations can be done here. There is also a link to
open the data sheet of the component to get more information about its features. After
building the hardware side of the embedded system in XPS, we can save it in standard
Xilinx formats and project files. It can be always reopened for further modifications. So
many standard and customized examples were done in this thesis project to gain enough
knowledge of the tool and the way it can be used. After the hardware platform of our
embedded system is ready, we can start writing our programs to be executed on it. Our
C/C++ programs are built on and linked against the hardware platform libraries and
software drivers. Xilinx provides a separated tool for embedded software development
named SDK (Software Development Kit) [54, 55] which is another part of EDK. The
designed hardware platform is exported in the form of a XML file to be later on imported
into SDK. SDK provides an eclips-like software development environment and is used for
writing the codes and compiling them with GCC-mb which is the Microblaze C compiler.
In SDK, we can also configure the FPGA with the hardware bitstream (generated by
XPS), download and launch the executable image files and even debug the programs that
are running on the board through the JTAG connection between the SDK software on

44 CHAPTER 4. DEVELOPMENT PLATFORM

the PC and the board and see the results on the PC screen. XPS and SDK together offer
a complete suit of hardware/software co-design development, simulation and debugging
environment for Xilinx embedded systems. Figure 4.3 shows the appearance of the
SDK. On the left side (project explorer) window, the hardware platform and all the
software projects defined for this hardware platform can be seen. The third component
in SDK that completes our embedded system is defining the board support package.
It is the complete set of the drivers and libraries compiled for this specific hardware
platform. The codes that we write will be compiled and built on top of this package.
In the example system shown in Figure 4.3, two board support packages are defined:
standalonebsp0andstandalonebsp1.Thesearealsovisibleintheprojectexplorerwindow.

Figure 4.3: Main window of Xilinx software Development kit (SDK)

4.2 Memory system

In our FPGA-based embedded system, we have two major types of memories: local
RAMs and External RAM. They can in general be used for any type of data or program
storage.

4.2.1 Block RAMs

Local RAMs have two types: BRAMs(Block RAMs) [59] and distributed RAMs. The
block RAMs are built-in memory blocks inside the FPGA that can be instantiated in the
system with different sizes and widths and distributed RAMs are actually small memory
pieces distributed throughout the chip in LUTs(look-up tables). BRAMs are usually
used by Xilinx tools when bigger memory blocks are required and distributed RAMs
are used otherwise. It is also possible to explicitly determine if we prefer either one of

4.3. BUS INFRASTRUCTURE 45

them. Simulation models and behavioral VHDL/Verilog descriptions of these memories
are available for verification and RLT development purposes. Normally, in our embedded
systems, BRAMs are used as small local memories for storing boot-up program images
and specific local data. BRAMs can be used to store any program or data but due to
their small size they are usually not considered as the main storage place for application
codes or data blocks.

4.2.2 External memory

The main global memory of the system is the shared external DDR II or DDR III module
on the board. The external memory can be used to store the data or the instructions. In
this project, a 256 MB DDR II memory module available on the spartan3dsp board was
used. The external memory can be accessed using a fully parametrized memory controller
module provided by Xilinx [60]. This multi-port memory controller is a versatile module
with configurable number of ports and a wide range of supported interfaces. The way
this module works is very important that may have serious impacts on the correctness
and performance of the system. It needed to be studied and tested using some example
systems for some behavior analysis before being used in the final solution.

• MPMC can have up to 8 input ports.

• Each port is configurable as PLB, XCL, MIB, etc.

• The arbitration policy between the cores can be configured by user.

All the memory requests to the external memory are eventually delivered to MPMC
for actual execution. As a result, it is extremely important to understand how this
module process these requests. Transactions are buffered and serviced in order on a
single port. Across multiple ports however, there is no guarantee that transactions issued
by different ports will complete in order [60]. It is possible to change the arbitration
policy so that a specific port is favored over the others, but this is only a mechanism to
partially influence transaction orderings and not enough to guarantee a specific order in
the whole system. In the design of the hardware architecture of the proposed solution,
we take advantage of the fact that transactions are guaranteed to complete in order on
one port. We will see more details on this shortly in this chapter.

4.3 BUS infrastructure

All the components of the embedded system are connected to a global bus infrastructure.
The global address space is defined over this global bus. There are also some other bus
interconnects in the FPGA that can be used for other partial connections.

4.3.1 LMB (Local Memory Bus)

LMB [61] is a simple synchronous bus that is used to connect to BRAMs. Fast access
to local memories are managed on this bus. In Figures 4.1 and 4.2, it is clear that LMB
buses are used to connect the processors to their local data and instruction memories.

46 CHAPTER 4. DEVELOPMENT PLATFORM

4.3.2 FSL Links

As discussed in the previous chapter, FSL links are high performance hardware FIFO
channels.

4.3.3 XCL(Xilinx Cache link)

XCL interface [23] is a high performance channel for connecting the processor to external
memory. It is designed based on integrated FSL links. This interface is only activated
on the Microblaze when the caches are enabled. It is only dedicated to accessing the
cached memory area of the external memory. This interface does not reorder memory
requests as it has a FIFO-based nature. The main purpose of XCL in Xilinx is having a
fast and direct connection to memory controller(MPMC).

4.3.4 PLB(Processor Local Bus)

PLB bus [62, 63] is the global bus infrastructure in Xilinx FPGAs and also in our
embedded systems. It is a 128-bit wide high performance bus that can be used to connect
an optional number of masters and slaves to the same address space. The original PLB
bus standard is simplified in Xilinx. The Xilinx version of the bus has the following
features:

• Arbitration support for a configurable number of PLB master devices.

• PLB address and data steering support for all masters.

• 128-bit, 64-bit, and 32-bit support for masters and slaves.

• PLB address pipelining (supported in shared bus mode or point-to-point configu-
ration).

• Supports a configurable number of slave devices.

• PLB watchdog timer.

• Selectable round robin or fixed priority arbitration.

PLB bus does not reorder the transactions. All the memory requests complete in the
same order that they are issued with respect to the issuing master. PLB bus signaling and
protocol details are rather complicated. In this project, a customized PLB bus master
module was used to connect to PLB system. The bus master simplifies the data transfer
process and acts as a bridge between the accelerator and the bus interconnect. Microblaze
processor has its own PLB interface port. In the next chapter, more information will be
given on PLB bus master and how it has been used in the system with accelerators.

4.3. BUS INFRASTRUCTURE 47

4.3.5 AXI BUS

Starting from Spartan-6 and Virtex-6 FPGA families and ISE design software version
12.3, Xilinx started to support the high performance AXI bus standard from ARM
[64, 7]. AXI or Advanced Extendable Interface, is part of the famous ARM AMBA bus
family specification. AXI was first released in 2003 with ABMA 3.0 and the last version
was released with AMBA 4.0 in 2010. there are three types of AXI interfaces:

• AXI4: for high performance memory mapped requirements.

• AXI4-lite: for simple, low-throughput applications.

• AXI4-stream: for high speed streaming data.

Having three types of interfaces, AXI is a perfect and flexible kind of standard that se-
riously improves the productivity of the FPGA-based embedded systems. Is also provides
more availability as it is a very well documented and accepted bus standard worldwide,
and designers can have access to all kinds of support and documentation. At the time of
doing this thesis project, there was still no development board available that supported
AXI at Vector Fabrics. Furthermore, the original intention of the thesis was to address
the memory issues and propose solutions for the PLB-based systems of Vector Fabrics
tools. However, AXI bus was studied and analyzed in Xilinx systems and in this report
the hypothetical role of this bus in VF FPGA-based embedded systems and how it influ-
ences the proposed design pattern and solutions are reviewed as an introduction to the
next generation of these systems. AXI bus and many AXI-based IPs and modules are
at the moment available in Xilinx tooling to be used with Microblaze. In near future,
Xilinx is going to start supporting ARM processor in its FPGAs. Having hardcores
of ARM inside the FPGA is a very excellent facility. Vector Fabrics is supporting the
ARM platform without hardware accelerators now and is going to travel to ARM-based
Xilinx FPGAs after it is launched. AXI4 bus will be the standard global bus in these
new systems. As stated before, the proposed solution of this thesis could be used on the
new platform even with some modifications on its implementation. AXI4 bus protocol
consists of five different channels:

• Read Address Channel.

• Write Address Channel.

• Read Data Channel.

• Write Data Channel.

• Write Response Channel.

Data can be transferred at both directions between masters and slaves and the size
of the transfer can vary. The burst size is limited to 256 data transfers in AXI4 while
this number is 1 data transfer per transaction for AXI4-lite. The concept of read and
write channels are depicted in Figures 4.4 and 4.5 respectively. As it can be seen, AXI4

48 CHAPTER 4. DEVELOPMENT PLATFORM

allows separated connections for the address and data which simply means simultaneous
bidirectional data transfers for reads and writes. AXI4 bus protocol has so many se-
lectable options that make the interface suitable for high throughput systems. Options
like bursting, data up-sizing and downsizing, multiple outstanding addresses, and out-
of-order transaction processing. AXI bus has a feature to reorder memory requests that
have been assigned different ID tags. This is for performance improvement throughout
the whole system. Normally, the requests originated from a master have the same ID
tag and will be completed in order. Two very important features of AXI4 interface at
least to our systems are exclusive access and acknowledgment in the response channels.

Master Slave

Read address channel

Address and

control

Read data channel

Read

Data

Read

Data
Read

Data

Figure 4.4: AXI read channel

Exclusive access

This feature can be used to establish an exclusive access to an addressed range or location
that could have been mapped to a part of memory or a shared resource. Exclusive access
is a very decisive feature that can be used in some critical parts of parallel programs to
implement shared resource management or reliable standard mutual exclusion. In order
to acquire an exclusive access, a procedure needs to be started. The access is terminated
by releasing it. Unfortunately, Xilinx has not yet started to fully support this nice feature
of AXI standard [64]. This is part of the original features of AXI4 that are dropped by
current simplifications of Xilinx.

1. A master performs an exclusive read from an address location.

4.3. BUS INFRASTRUCTURE 49

Master Slave

Write address channel

Write data channel

Write response channel

Address and

control

Write

Data
Write

Data

Write

Data

Write

response

Figure 4.5: AXI write channel

2. At some later time, the master attempts to complete the exclusive operation by
performing an exclusive write to the same address location.

3. The exclusive write access of the master is signaled as:

• Successful: if no other master has written to that location between the read
and the write accesses.

• Failed: if another master has written to that location between the read and
write the accesses. In this case the address location is not updated.

A test-and-set, read-modify-write or load-link/store-conditional facility can be im-
plemented using this feature of AXI interface. This could be very useful in resolving
consistency issues in some situations. We will see how this can be used in chapter 6.
In Microblaze processor, the exclusive LWX and SWX instructions operate taking the
exclusive access status on the global AXI bus into account. However, since this feature
is not yet supported in Xilinx FPGAs, a exclusive access request eventually leads to a
failure and it is not possible to establish an exclusive access on a multi-processor sys-
tem. SWX and LWX can still be used for making exclusive accesses in a multi-thread
environment on one Microblaze processor.

50 CHAPTER 4. DEVELOPMENT PLATFORM

Response channels

Having independent response channels offer a very useful feature to parallel programs. It
is possible for a writing node in the system to make sure if its data has been received by
the receiving node. If the receiving node is an AXI-compatible memory controller, then
it simply means that the writer can have the confidence that the data is at least buffered
in the memory queue. This feature can be used if the producer processor wants to signal
to the consumer(s) that the data is updated. We will see in the following chapters, how
this feature of AXI bus can be employed in resolving consistency issues of our system.

4.4 Accelerators

Accelerators in VF embedded systems are dedicated hardware unit implemented in Ver-
ilog to increase the overall throughput of the system. They are inserted into the embed-
ded system in Xilinx embedded environment as user defined peripherals. Accelerators
are not general purpose processing units, they are only developed to run a specific high-
throughput task and deliver the result within a shorter period of time. Nevertheless,
at system level, we can look at accelerators as processing nodes in the same position
with respect to the bus infrastructure and shared memory as CPUs. They access the
external memory, they can have their own local memories and they communicate with
other nodes whether it is another accelerator or CPU via shared memory or even a ded-
icated FSL or AXI-stream link. The local memories of accelerators are normally private
memories connected to them on LMB bus. However, these memories can be put on the
shared global bus to be accessible by other cores via PLB bus slave interface that would
lead to a distributed shared memory multi-core system. This kind of local memories
are not used as the main systematic data communication channel between the cores,
which is the main focus of this project. In addition, their contents are not cached by the
cores anyway as they are on-chip memories. So technically, they are not any concern to
the main issues addressed in this project. Accelerators are generated by VF tools us-
ing high level synthesis techniques. They can be anything like a FFT engine, advanced
arithmetic unit, video processing or signal processing module. They can have their own
cache controllers. Part of this thesis project was designing and implementing a cache
controller for accelerators (covered in chapter 5). The interface to accelerators is also
defined and implemented, however, designing a specific accelerator module itself depends
on the application and was not one of the goals of this project. Moreover, accelerators
will be automatically generated by VF tools anyhow.

4.5 Processor

The general purpose processor used in our embedded system is Microblaze. Microblaze
is a highly configurable softcore processor from Xilinx. It is very widely used and well
documented by Xilinx. Microblaze has a Harvard architecture. Since it is an embedded
processor, it does not provide advanced optimization techniques like dynamic execution
or superscalar architecture. The processor has a three/five stage pipeline. Behavioral
and simulation models are available for Microblaze and this makes it easy to simulate

4.5. PROCESSOR 51

the whole embedded system in a HDL simulation environment for signal level debugging.
Microblaze provides a wide range of configurable features. Microblaze reference manual
could be consulted for the full description. The main features are:

• 32-Bit general purpose registers.

• 32-Bit address bus.

• Single Issue pipeline.

• Optional one level of data cache.

• Optional one level of instruction cache.

• Branch target address with branch prediction scheme.

• Virtual memory management.

• Three or five stage pipeline.

• Floating point Unit.

• Multiple bus interface supporting.

– FSL - Fast Simplex Link.

– PLB - Processor Local Bus.

– AXI - Advanced Extensible Interface.

– XCL - Xilinx Cache Link.

– LMB - Local Memory Bus.

Microblaze hardware does not reorder instructions. Regarding the compiler, it does
not reorder the instructions by default and it does not really matter even in case it does,
if we use a weak/release consistency model and the synchronization is made sure to take
effect and be seen by the other cores after the data access is complete. Consequently,
we will not be worried about the destructive effect of compilers or CPU architecture
optimizations on the consistency of our parallel programs. Microblaze processor is a
very versatile and optimized processor and a very good choice for embedded solutions
due to its high degree of availability, productivity and flexibility and also a full support
in terms of tooling for design and documentation. As stated before, Vector Fabrics is
also going to support ARM processors in FPGA-based embedded systems in near future.
It means that in some applications, Microblaze will be replaced with ARM cores in the
embedded system. It is obvious that many details will be different, but the original idea
of this thesis was to come up with the design pattern and implement and test it on the
FPGA only with this idea in mind that ARM-based architectures will accommodate it
too. The main reason of studying AXI bus infrastructure was because of this fact, because
the ARM processor itself provides all the functionality that is used from Microblaze in
this project. Having a comprehensive review of the ARM processor however, was not
intended.

52 CHAPTER 4. DEVELOPMENT PLATFORM

4.6 The architecture of our embedded systems

We can now see how our embedded systems generally look like. Figure 4.6 illustrates
the overall architecture of our embedded systems implemented on Xilinx FPGAs. A
global PLB bus connects all the components. In principle, multiple processors and
accelerators can be in the system. In this thesis project, two systems are used and tested
to implement and demonstrate the proposed solution. One Dual-Microblaze system and
one Accelerator-Microblaze system. The solution can be further extended in Vector
Fabrics tools to embedded systems with more cores. Memory accesses from different
cores shown in Figure 4.6 with colored dash-lines through their local caches and all the
way down through the bus to external memory cause the potential consistency/coherence
issues in our parallel programs. These issues are restricted and eliminated by having the
proposed WFIFO-based design pattern on a system like Figure 4.6.

cache

Xilinx MicroBlaze

Processor
Xilinx MicroBlaze

Processor

External shared memory

Local mem Local mem

Local memLocal mem

Global Bus Interconnect -- PLB

cache cache

cache

DDR II

MPMC

Accelerator Accelerator

BRAM BRAM

BRAM BRAM

Figure 4.6: General architecture of our FPGA-based embedded systems

Accelerator cache memory 5
In this chapter, Section 5.1 gives a brief introduction to cache memories and their role
in the design of computer systems, Section 5.2 specifically focuses on the need of cache
memory for hardware accelerators in our target embedded systems, Sections 5.3 to 5.5
that explain the details of the micro-architecture of the cache memory are removed from
this public version of the report due to Vector Fabrics company confidentiality.

5.1 Brief introduction to caches

There are lots of books and papers written about memory hierarchy and cache de-
sign. Caches are small amounts of high speed memory [65]. Caches have long been a
mechanism for speeding up the memory access and are popular in embedded hardware
architectures from Microcontrollers to core-based ASIC designs [66]. They were basically
designed to fill the performance gap between the CPUs and main memories and they
sit between them. Over the years, there have been a huge revolution in both architec-
tural and fabrication properties of CPUs that has led in more and more performance
and speed, however, main memories like SRAMS, DDR II or DDR III have never been
able to catch up with this growth and are lagging behind CPUs in terms of speed and
throughput. On the other hand, the need for larger main memory would not let engineers
to put all the memory on the chip as it is too expensive. Therefore, memory hierarchy
was invented to logically fill the gap and make it faster for the CPU to access its desired
data. Figure 5.1 shows the memory hierarchy concept. As it is clear in the figure, the
further the address leaves the CPU to access a data item, the slower it becomes. In this
context, the first level of memory hierarchy is smaller than the next one but it is way
faster and can service the processor more efficiently if it contains the requested data.
Different design policies and architectural tricks are used nowadays to have a cache con-
taining the most frequently used parts of the main memory that are needed the most by
CPU. Creative techniques are used to decrease the miss rate of the cache and increase
the probability of having the data needed by CPU. It is not intended to go into all the
details about cache policies and their characteristics in this chapter. [17, 18] could be
referred to for more information. [67] can be used for more in-depth knowledge about
caches and memory hierarchy.

By definition, caches are actually the first level of the memory hierarchy that the
address encounters once it leaves the processor [17]. It means that traditionally, CPU
does not know anything about the cache existence and just simply requests what it
needs. It is up to the cache controller to set up the interface between the CPU and the
next level of memory hierarchy and send back the proper and usually faster response to
the CPU. As stated before, cache is meant to hold the CPU’s most desirable data, so

53

54 CHAPTER 5. ACCELERATOR CACHE MEMORY

Cache Main Memory Disk

Memory

Bus

I/O

BUS

CPU

Registers

Size:

Access time:

400 Bytes

100 ps

2 Mega Bytes

1 ns

4 GB

100 ns

1 TB

10 ms

Figure 5.1: Memory Hierarchy

there is a need to figure out how different locations of the main memory are going to be
mapped into the cache and how they are going to be accessed and later on replaced with
newer data. The simple question to be asked here is that: where is one word or block
of the main memory exactly going to be mapped in the cache? Answering this question
infer different types of caches. There are in general three main types: Fully associative
caches are the ones that can store the desired block anywhere and there is not any
specific place for the data. In direct map caches, the block of data read from main
memory has only one place to go in the cache, it means that there are several data blocks
from main memory targeting the same place in the cache. Set associative caches are
something in between, they let the memory block to be placed in any one of the n places
inside one set in a n-way set associative cache. The example in Figure 5.3 illustrates
the concept. More complicated systems may use a combination of these three basic types.

To the cache controller, the address generated by CPU seems like what is shown in
Figure 5.4. This address is in fact targeting a data item in the main memory. It is
interpreted by the cache controller like Figure 5.4 to locate the requested data in the
cache.

• Block offset is the address for the desired word/byte of data inside the data block.

• Block address is the address of the data block. Block address can be further
divided into two fields:

– Tag which is the high portion of the data used by cache controller to be
compared against the tag field of the data block stored in the cache to see if
we have a cache hit.

– Index that selects the appropriate cache set or cache line in the cache. The
size of the cache or more accurately the number of cache blocks stored in
total in the cache determines the value of index. Figure 5.2 depicts a simple
example of a direct mapped cache read procedure. If the high portion of the
address of the requested data block matches the tag field of the data block
already stored in the cache, then there is a cache hit and we can read out the
corresponding data out of the cache, otherwise, there is a cache miss and the
data should be fetched from main memory.

5.2. CACHE IN VF EMBEDDED SYSTEMS 55

Address

Tag 0

Tag n

Data 0

Data n

Tag m Data m

m

Data m

Yes/No

Block

offset
IndexTag

=

Figure 5.2: Direct map cache access

5.2 Cache in VF embedded systems

In this section, we will take a closer look to the position of the cache controller with
respect to the accelerator and the whole embedded system. Figure 5.5 shows how the
cache memory fits in a VF embedded system with one accelerator and one Microblaze
processor. The access time to external memory for VF accelerator is not trivial in this
architecture and that is exactly where the cache controller comes in. The developed cache
controller module is going to sit between VF accelerator and PLB bus master interface
to speed up the data traffic to/from external memory. VF accelerator still initiates its
load and store requests and can have no idea about the intervening cache controller who
receives these requests and acknowledges the accelerator with proper data and control
signals. The interface of PLB Bus master is a simple synchronous interface called the
ld/st interface. Both sides of the cache controller should work based on this interface.
This leads to the situation that the cache controller is transparent to the accelerator.

56 CHAPTER 5. ACCELERATOR CACHE MEMORY

Block 0

Block 31

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 0

Block 1

Block 2

Block 3

Block 5

Block 6

Block 7

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 12

Set 0

Set 1

Set 2

Set 3

Block 4

Block 0

Block 1

Main Memory Fully associative:

Block 12 can

go anywhere

Direct map:

Block 12 can only go

to block 4

(12 mod 8)

2-way set associative:

Block 12 can go

any where in set 0

(12 mod 4)

Figure 5.3: Basic types of cache organizations

Block Address

Tag Index
Block

offset

Figure 5.4: Address bus mapping

5.2. CACHE IN VF EMBEDDED SYSTEMS 57

PLB Bus

DDR ||

Memory

DDR ||

Controller

VF

Accelerator

PLB Bus MasterPLB Bus Slave

Xilinx MicroBlazeXilinx BRAM

LMB Bus

PLM master PLM slave

Cache

Figure 5.5: Cache memory of the accelerator in VF embedded systems

58 CHAPTER 5. ACCELERATOR CACHE MEMORY

Software lib and APIs 6
This chapter reviews the principles and features of the implemented WFIFO communi-
cation channel and its main APIs. Section 6.1 reviews the idea of software-based cache
coherence control and explains the basic design pattern and the way the its cache coher-
ence is maintained, Section 6.2 presents the details of the streaming library and its main
software APIs, the main concepts and definitions are discussed in this section for the user
and finally Section 6.3 explains in details how a SW-SW embedded system consisting of
two Microblaze processors is designed on the FPGA platform and how the software APIs
and the streaming library are used to establish the WFIFO communiucation channel.

6.1 Basic design pattern

We first introduce the concept of the software-based cache coherence control in embedded
systems. Assume that we have a simple design pattern in a Dual-Microblaze system.
One processor is processing a block of data stored in the main memory and after the
processing is done, the block ownership is transferred to the other processor. This
ownership transfer is actually the synchronization that can happen through any hardware
or software channel between these two cores. Figure 6.1 illustrates the concept. The data
block is sequentially stored in the shared memory. Naturally, both CPUs would cache
the data block content as long as they are doing any kind of processing or access on/to
its contents. Our approach is not to transfer the whole data block via a hardware FIFO
channel or FSL link as it is not scalable nor vendor-independent. As a result, the data
transfer is nothing except the transfer of the ownership of the data block. In such a
scheme, CPU 2 will be notified by some means that it can now start accessing the data
block. It is obvious that the data block is only being accessed by one core at a given
time and so the domain of the coherence issues is limited. However, the synchronization
itself is still something in common between both cores and the data block itself has been
naturally updated in the cache of CPU 1 before the synchronization takes place. We
must therefore make sure that after CPU 2 sees the synchronization, it will only access
the latest values of data in the main memory updated by CPU 1. This can be achieved by
flushing out the data block to the main memory before the synchronization point I. After
CPU 2 is done reading the data block, it has to invalidate its local copy of the data block
in its cache before synchronization point II, because CPU 1 is going to modify the block
again. This simple model is the basic data structure of the proposed WFIFO design
pattern in terms of caching and synchronization. The data block could be elements
or windows of the WFIFO. Extra control structs and address management fields are
needed to establish the desired FIFO operation between the cores. The synchronization
also needs to be imported into the FIFO control structs in combination with high level
cache control commands to make sure about the coherent data exchange. If our parallel

59

60 CHAPTER 6. SOFTWARE LIB AND APIS

application works based on the basic pattern of figure 6.1, the cache coherence control
becomes simple: we need to flush out all the data items in the range of the data block
from the cache of CPU 1 to external memory before the synchronization point. The
flushing out can be achieved using the standard cache control APIs of the processor or
the cache control interface of the accelerator’s cache controller.

CPU 1 CPU 2

block

access

start

Synchronize I

Cache flush

Synchronize II

Cache invalidate

block

access

end

block

access

start

block

access

end

Figure 6.1: Block level software-based cache coherence

6.1.1 Microblaze cache handling

Most of the newer processors provide at least some basic cache control software APIs.
ARM and Microblaze also do so. In this project, the cache handling APIs of Microblaze
were used [68]. Microblaze processor has configurable optional caches for data and
instructions. Both caches are restricted to be only direct mapped. So they are not
optimum choices for our design pattern. It is possible to configure the data cache as
write through or write back. The cache size, tag size and block size are also configurable.
In this project, the data cache was configured as write-back with the cache block size
of 8 words. Microblaze provides cache control APIs for both instruction cache and data
cache. We do not interfere with the operation of the instruction cache and only manage
the data cache. The data cache control APIs of Microblaze [68] are as follow:

• Microblaze enable dcache()
Used for enabling and disabling the cache in the program. The cache must have
been already enabled in the hardware during the initial configuration of the pro-

6.2. THE STREAM LIBRARY 61

cessor in XPS environment. This function must be always used in the beginning
of all programs.

• void Microblaze flush dcache()
This function flushes out the whole content of the data cache to external memory.
It also invalidates the cache. This API is actually used when we are using a write-
back policy in the cache.

• void Microblaze flush dcache range(unsigned int cache addr, unsigned
int cache len)
The same functionality as the previous function but with more flexibility. It
will flush out the cache content within the specified address range cache addr to
cache addre + cache len -1.

• void Microblaze invalidate dcache()
Invalidates the entire cache content.

• void Microblaze invalidate dcache range(unsigned int cache addr, un-
signed int cache size)
Invalidates the specified address range in the cache. It can be used to invalidate
part of or all the data cache content.

Using the invalidation APIs are more dangerous to the data content of the cache
as the cache controller does not take care of the dirty data contents. In this thesis,
we used the Microblaze flush dcache range API in the software implementation of the
WFIFO. As discussed in chapter 5, the designed cache controller of the accelerator also
provides the same feature as these Microblaze APIs. This feature is used when using
the WFIFO interface between the CPU and the accelerator. It must be noted that
in all of these APIs, the invalidation or flush out starts from the cache block that the
cache addr belongs to and ends at the cache block that (cache addr + cache len - 1)
belongs to. Many tests were done to make sure about the functionality of these APIs
on a Dual-Microblaze system on the Spartan3dsp Development board. The C programs
were executed on each processor independently to exchange some blocks of data based
on the structure of figure 6.1. All the situations of the data channel were programmed
and tested on the FPGA board using different data traffics.

6.2 The stream library

In this section we will review the properties and details of our WFIFO streaming li-
brary and its APIs. VFStream [69] is a streaming library used for data exchange and
communication between POSIX threads. It is originally developed at Vector Fabrics
for WFIFO data communication in multi-thread Linux-based environments. It relies on
pthread libraries. The main feature of this library is its token-based implementation.
The channel buffer for data communication is constructed in the shared memory. In this
thesis project, the WFIFO was developed based on the structure of VFStream library

62 CHAPTER 6. SOFTWARE LIB AND APIS

that provides an API set according to our design pattern. The original implementation of
VFStream was completely modified and synchronization points and cache control APIs
were added to it appropriately. Some features of the original library were removed and
some new features were added. The new VFStream library can be used to establish a
coherent and consistent WFIFO communication channel on a multi-processor system on
Xilinx FPGAs. It can be also used for communication between hardware and software.
It is not possible to explain all the details of the implementation in this report. How-
ever, the main definitions and the most important APIs are discussed in the following
section. From this point on, VFStream means the version that was implemented and
tested for this thesis project. In the following section, we will review the principles and
concepts of the token-based WFIFO structure. These concepts are mainly from the
original VFstream library from Vector Fabrics that have been ported to our embedded
system.

6.2.1 Basic definitions and concepts

Figure 6.2 shows the architecture of the WFIFO core. It is a circular FIFO channel
buffer working in a first-in-first-out manner with the length of n.

Base
Limit

H
e
a
d

Tail

0

n-1

n

Figure 6.2: Circular FIFO channel structure

• Tokens
Tokens are the basic units of data being transferred in VFStream FIFOs. Tokens

6.2. THE STREAM LIBRARY 63

have starting address and length parameters.

• Base pointer
This is the address of the first data token of the FIFO channel in the memory. It
is set when the channel is created.

• Limit pointer
This is the first address beyond the the address of the last data token of the FIFO
channel. It is set when the channel is created.

• Head pointer
This is the address of the latest data token available in the FIFO to be read. It is
set to base when the channel is created.

• Tail pointer
This is the address of the next available room token for writing a data. It is set to
base when the channel is created.

Controlling the status of the FIFO is done using the above basic pointers. In the
beginning, the channel and the read and write ports are created. Read and write ports
have data and room pointers that are used with head and tail pointers to check if the
FIFO is full or empty. Data pointer of the read port is the address of the token that
can be read and the room pointer of the write port is the address of the token that can
be written to. Initially, the head, tail, room and data pointers are all set to base as the
FIFO is empty. If head and tail are equal then the FIFO is empty. The address just
before head is always unused so that tail would never bump into head again after it
wraps around. This is for distinguishing between a full FIFO and an empty FIFO. The
FIFO is first created and its data and control space is allocated in the memory. Then the
read port and write port are created to be connected to the created FIFO. Data write
and read are done via these ports. It is possible to define one read port and one write
port attached to each FIFO channel. However, multiple readers or writers can exits in
the system to read and write data from/to the FIFO. After defining the FIFO and its
ports, the following standard procedure should be followed to communicate data:

1. A room token must be acquired.

2. Data is written into the room token.

3. After the Writer is done with the room token, the room is released.

4. After this point, the room token is considered occupied until a reader acquires and
reads it.

The process above is executed using the provided APIs. The pointers of the FIFO
and the cache coherence controls are handled automatically. After at least one room
token is released in the FIFO, a reader processor can start accessing that token. The
procedure is as follows:

1. A data token must be acquired.

64 CHAPTER 6. SOFTWARE LIB AND APIS

2. Data is read out from the data token.

3. After the reader is done with the data token, the data is released.

4. After this point, the data token is considered empty until a writer again acquires
and writes into it.

In the write procedure, we refer to the token as room token and in the read procedure,
we refer to it as data token. Using this method of memory access we have a great
flexibility in data communication between processing units. The flexible features of this
WFIFO system are:

1. It is possible to acquire more than one room token. The room release will always
release the oldest acquired room.

2. Because the acquired room token is accessed using its address, a writer CPU or
accelerator has the possibility to do any kind of processing on the token space
in the memory. The room token can be temporarily read or written during the
processing and after the final values are written, the room will be released.

3. It is possible to acquire more than one data token. The data release will always
release the oldest acquired data token.

4. It is possible to define a token of any size. At the highest level, APIs are defined for
reading and writing the standard C-compatible data objects to the FIFO. However,
a layer lower and using the provided put and get primitives, it is also possible to
access each byte, half-word, word or double-word inside a wide token with an
offset parameter. This offsetting adds even more flexibility to the FIFO system
and freedom to processors. The Windowed-FIFO is in fact a FIFO constructed
this way, with wide tokens (windows) and the flexibility to access any byte in the
window by means of offset. Using this method, in a video application, we can
define a token as large as one video frame. After the first processing unit is done
with its work on this frame, it will be released so that the next processing unit
can access it for the next phase of the processing. In another application, we may
define a small FIFO only to send tiny data items to other cores.

5. It is possible to skip a data token without reading it. In many applications, this
improves the performance.

6. It is not necessary to completely fill a wide room token before releasing it or to
completely read a wide data token before releasing it.

7. Several FIFO channels can be defined in the main memory without any extra
overhead.

Figure 6.3 and 6.4 illustrate the standard object access and the wide token access
concepts respectively.

6.2. THE STREAM LIBRARY 65

Token 0

n* size off(token) bytes

Token 1Token n-1

acquirerelease

object access

Figure 6.3: Standard object access

Token n-1

Token 0

01m-1 m-201m-1m-2

n*m bytes

acquirerelease

Offsetting access

Figure 6.4: Wide token access with offsetting

Read port and write port are structs defined in the FIFO for handling the FIFO
administration. They have several fields that contain the parameters of the FIFO channel
and pointers to the next available token for read or write. So many data types and
functions are defined in the system that are not possible to be completely explained
here. However, in the following section, the main APIs are described in more details.

6.2.2 VFStream main APIs

• vfstream chan t* vfstream create chan(
int num tokens,
size t token size,
vfstream malloc t* ctl space,
vfstream malloc t* buf space)
This API is used to create a FIFO channel and initialize its control structs. The

66 CHAPTER 6. SOFTWARE LIB AND APIS

length of the FIFO is num tokens and the size of each token is token size bytes.
ctl space is the pointer to the memory management implementation that allocates
memory for storing the control structs of the FIFO. In our Microblaze platform, this
is a function that statically allocates some space in the shared memory on the un-
cached area. buf space is the pointer to the memory management implementation
that allocates memory for storing the channel buffer itself. In our Microblaze
platform, this is the standard malloc function of C that dynamically allocates
memory from heap section that is mapped to the shared cached area. The address
of the FIFO channel control struct is returned.

• vfstream wport t* vfstream create write port(
vfstream chan t* chan,
vfstream malloc t* port space)
This API is used to create a write port and initialize its control structs. It will
be connected to the FIFO channel pointed by chan. The port space points to
the memory management implementation. In our Microblaze platform, this is a
function that statically allocates some space from the shared memory in the un-
cached area. The address of the write port control struct is returned.

• vfstream rport t * vfstream create read port(
vfstream chan t *chan,
vfstream malloc t *port space)
This API is used to create a read port and initialize its control structs. It will
be connected to the FIFO channel pointed by chan. The port space points to
the memory management implementation. In our Microblaze platform, this is a
function that statically allocates some space from the shared-memory in the un-
cached area. The address of the read port control struct is returned.

• bool t vfstream room available(vfstream wport t* wport)
This API is used to check if there is any room token available in the FIFO connected
to the write port pointed to by wport. It returns true on success.

• bool t vfstream data available(vfstream rport t* rport)
This API is used to check if there is any data token available in FIFO connected
to the read port pointed to by rport. It returns true on success.

• vfstream token t* vfstream acquire room(vfstream wport t* wport)
This API is used to acquire a room token of the FIFO channel connected to the
write port pointed to by wport. It is blocking and on success returns the address of
the acquired room token. There is also a non-blocking version of this API available.
It will use the head and tail pointers and succeeds if the FIFO is not full.

• void vfstream release data(vfstream wport t* wport, vfstream token t*
token)
This API is used to release the token (pointed to by token) of the FIFO connected
to the write port (pointed to by wport) after writing it. It will take care of properly
flushing out the data to main memory, invalidating the cache content corresponding

6.2. THE STREAM LIBRARY 67

to the data token and updating the tail pointer of the FIFO. It is very important
to understand that this API writes all the latest updated values of the token to the
shared memory and invalidates the cache copies. This is done so that the reader
can have access to the latest values of the token through shared memory. The
invalidation is necessary because the next time that the writer processor wants to
write to this token, it must be allocated in the cache again for new updates.

• vfstream token t* vfstream acquire data(vfstream rport t* rport)
This API is used to acquire a data token of the FIFO channel connected to the
read port pointed to by rport. It is blocking and on success returns the address of
the acquired data token. There is also a non-blocking version of this API available.
It will use the head and tail pointers and succeeds if the FIFO is not empty.

• void vfstream release room(vfstream rport t* rport, vfstream token t*
token)
This API is used to release the data token (pointed to by token) of the FIFO
connected to the read port (pointed to by rport) after reading it. It will take
care of properly invalidating the cache range corresponding to the data token and
updating the head pointer of the FIFO. It is very important to understand that
this API only invalidates the values of the read token in the cache so that the next
time that this token is read again, its contents will be brought into the cache from
the shared memory as the old value in the cache has been already invalidated,
otherwise, we would have gotten the old values in the local cache of the reader
processor.

• void vfstream skip data(vfstream rport t* rport)
This API is used to skip a data token in the FIFO connected to the read
port(pointed to by rport).

• void vfstream write int8(vfstream wport t *wport, int8 t data)
This API is used to write one int8 object into the FIFO channel via its write port
pointed to by wport. This is a high level API that simply handles a standard data
object. It acquires the room, puts the data and releases the data token. Similar
APIs are implemented for writing all the other standard objects.

• int8 t vfstream read int8(vfstream rport t* rport)
This API is used to read one int8 object from the FIFO channel via its read port
pointed to by rport. This is a high level API that simply handles a standard data
object. It acquires the data, gets the data and releases the room token. Similar
APIs are implemented for reading all the other standard objects.

• vfstream put int8(vfstream token t* token, size t offset, int8 t data)
This is a lower-level API or primitive used to put one signed character to the token
pointed to by token and at the address offset from the token start address, This
API can be best used when using wide tokens. The token must have been already
acquired and should be released in the end. Several similar APIs are implemented
to put singed and unsigned data objects to the room token.

68 CHAPTER 6. SOFTWARE LIB AND APIS

• int8 t data vfstream get int8(vfstream token t* token, size t offset)
This is a lower-level API or ptomitive used to get one signed character from the
token pointed to by token and at the address offset from the token start address,
This API can be best used when using wide tokens. The token must have been
already acquired and should be released in the end. Several similar APIs are
implemented to get singed and unsigned data objects from the data token.

Based on the descriptions above, a basic data exchange starts with a vf-
stream acquire room to acquire a room token. Then the writer processing unit has the
freedom to do any kind of processing on the token area and in the end, it has to release
it using vfstream release data and the FIFO automatically goes to the next token. The
reader processing unit will be waiting until its blocking vfstream acquire data call returns
an acquired data token, then the reader can do any kind of read on the token area and
after it is done, it has to release the data token using vfstream release room.

6.3 VFStream on a Dual-Microblaze platform

In order to have a working VFStream library on the Dual-Microblaze platform, multiple
settings and configurations needed to be made. Reading the manuals, analyzing the
concepts and running several test programs on the FPGA board was the methodology to
prepare the needed basis on the Dual-Microblaze environment to properly accommodate
the VFStream FIFO system. The most important points and assumptions to establish
the coherent WFIFO system are as follow:

• A customized linker script was defined per processor. The linker scripts determine
the memory sections that the linker uses to allocate memory for the data and
instructions of the compiled programs. Since the EDK tool does not have the
facility to compile and build a program for a multi-processor system at once, special
attention was needed to properly take care of the data sharing and memory sections
on the shared memory from each processor’s point of view in such a way that in
the end, when both processors start working having no idea about the existence
of the other processor, we will have our desired parallel program and inter-core
WFIFO-based communication properly established in the system. Later on, the
whole settings and compilation can be done at once in VF tools.

• There should be always a master processor in the system that creates the channel,
the read port and the write port in a shared un-cached area in the memory so that
the other core(s) can also have access to it.

• The address to the read port of the channel is written to a specific shared location
for the reader processor(s). This location can be a hardware FIFO or in the case
of this thesis project, a specific address in the shared un-cached area.

• Using the address of the read port struct, the reader processor has the possibility
to access the FIFO and communicate with the writer processor.

6.3. VFSTREAM ON A DUAL-MICROBLAZE PLATFORM 69

• The synchronization is done per token and using the FIFO pointers and control
structs that are located in the un-cached area. This way, both processors are always
seeing the valid values of this control information.

• The definition of the cacheable and un-cacheable memory areas is done in XPS
when making the embedded system hardware. The CPUs are both configured to
have the same cacheable and un-cacheable memory ranges on the global address
space.

• The instructions and other variables that are not shared between the processors are
stored in the main memory in sections that are only accessed by that processor.
This is done by defining different memory sections in the linker script of each
processor.

• All the requests to the shared un-cached memory area are processed on the PLB
bus of the processor. As we have seen before, the requests are completed in order
on the PLB bus and eventually on the input port of MPMC. So even if the requests
on two ports of the MPMC get passed each other, the consistency of the whole
system is still maitained, because the FIFO control structs are updated on the
same PLB bus and after the last write to the token is done, they will be seen after
the token is updated in the memory.

• A potential consistency issue might still exist in this system that needs more precise
attention. After the token is released, Microblaze is flushing out the cache contents
to the cached area of the external memory. As we had seen before, this access is
done on the XCL interface. It is only after the execution of the cache flush APIs
that the FIFO pointers are updated in the un-cached area. This second memory
access is done on the PLB bus. When the cache flush API returns in the C program
and the execution of the simple writes to the pointers get started, there is actually
no firm guarantee that there is not any remaining transaction on the XCL bus.
There could be still some data on the XCL bus and there is a minor chance that
the FIFO pointers are updated in the memory and even seen by the other core, and
while the FIFO contents are not yet updated in the memory via XCL, the reader
processor starts reading at least some old bytes of the token. This is a very rare
scenario that never showed up in any of the multiple tests and simulations were run
for this project. Nevertheless, it had to be analyzed and reviewed. To make sure
that this problem never happens in our system, the MPMC was configured in such
a way that the port connected to the XCL interface of the writer processor had the
highest priority in the arbitration and the XCL interface of the reader processor
had the next lower priority. Below this level, other ports connected to the PLB
buses of the processors can have any priority order. In case of using the AXI bus,
this problem can be solved more efficiently. AXI-based Microblaze systems can be
configured in such a way that all the accesses to both the cached and un-cached
memory areas take place on the AXI bus. Since the bus can be configured to keep
the order, there will be no issue like the one described above. We can even further
use the acknowledgment feature of the read response channel to be absolutely sure
of data arrival in the memory controller before updating the FIFO pointers.

70 CHAPTER 6. SOFTWARE LIB AND APIS

Memory section Origin Length Description
ilmb dlmb 0x00000050 0x00001FB0 4 KB of on-chip RAM that

is usually used to store data
and instructions of the boot-
up image.

shared bram contrl 0 0x8A208000 0x00001000 4 KB of shared on-chip mem-
ory, can be used to store
any shared data between the
cores.

DDR2 SDRAM 0x90000000 0x00FFFFF8 16 MB space in the main
memory only used for this
processor to store the instruc-
tions and the unshared vari-
ables.

MALLOC SECTION 0x91FFFFF8 0x04000008 64 MB space in the main
memory. The heap section is
mapped to this memory sec-
tion. It will be used to hold
the FIFO channels.

DDR2 data 0x96000000 0x02000000 32 MB space in the main
memory to be used for any
cached shared data. This may
contain any data outside the
FIFO channel.

external uncached 0x98000000 0x08000000 128 MB, the rest of the main
memory is un-cacheable and is
used for storing the FIFO con-
trol structures and read and
write ports.

Table 6.1: Memory sections for the writer processor

• It is possible to put the synchronization in any other shared place between the
processors. It must be noted that the synchronization flags or variables can not
be cached themselves as there are the basis on which the data transfer and cache
coherence are working. That is the reason that the FIFO control structs are located
on the un-cached are of the main memory. If we store them in a shared BRAM
that is accessible by both processors on their PLB buses, then there is a higher
chance that the consistency is broken. Because the BRAM is on chip and it might
be updated and read before the data is updated in the main memory.

Table 6.1 shows the memory sections defined in the linker script of the writer pro-
cessor. The total size of the DDR II memory is 256 MB. The first half is configured as
cacheable area and the second half is configured as un-cacheable area. The amount of

6.3. VFSTREAM ON A DUAL-MICROBLAZE PLATFORM 71

un-cacheable area was significantly less than this, however, Microblaze only allows defin-
ing an un-cacheable memory area with a length of power of two. This can be changed if
this limitation is removed. The definition of the memory sections of the reader processor
is mostly the same except for the 16 MB section defined for the instructions and data
that are unshared. This is definitely not the only possible linker script. The size of
the memory sections can be changed based on the application or size of the available
DDR II memory on the FPGA board. Figure 6.5 depicts the memory map of the shared
main memory and its sections defined for the entire Dual-Microblaze system. We can
now see how the whole solution conforms to the original requirements of cache coherence
and memory consistency. The write serialization is guaranteed in the system using the
sequential PLB bus, the PLB bus master and priority settings on the ports of MPMC.
In the case of using the AXI bus, it is also guaranteed as it was explained before. The
atomicity requirement is also guaranteed, because the design pattern and FIFO control
take care of it. The consistency model used in the design pattern is release consistency
and the only memory interactions that actually need to be atomic are at token acquire
and release points. All the memory accesses before releasing the token are taking place
on the XCL interface, either to the cache if there is hit, or to the external memory if
there is miss. Even if the memory accesses were reordered, it would not affect the correct
functionality as first, the other processor has not yet started to access them and second,
the token address range will be all flushed out to the external memory in order at release
time and before the synchronization point. Figure 6.6 shows the hardware architecture
of the Dual-Microblaze embedded system that was designed to develop and test the final
WFIFO solution on the Spartan3dsp Xilinx FPGA. Modules like RS232 UART or MDM
(Microblaze debug module) are not shown in the figure for simplicity.

72 CHAPTER 6. SOFTWARE LIB AND APIS

DDR II main memory (128 MB)

Un-cachead area

Instruction-Data writer core

Instruction-Data reader core

MALLOC section

Shared cached Data

16 MB

16 MB

64 MB

32 MB

128 MB

Figure 6.5: External shared memory sections

6.3. VFSTREAM ON A DUAL-MICROBLAZE PLATFORM 73

Microblaze 1

MPMC(Multi-port Memory Controller)

Local BRAM

Shared BRAM

PLB Bus 1

PLB 1

LMB Bus

Microblaze 1

Local BRAM

LMB Bus

DDR II main memory

XCL1 XCL2 PLB 2

PLB Bus 2

Figure 6.6: Dual-Microblaze hardware architecture

74 CHAPTER 6. SOFTWARE LIB AND APIS

SW-HW platform 7
This chapter presents a SW-HW embedded system and the way that our WFIFO com-
munication channel works on it. Section 7.1 introduces the main concepts and features
of the SW-SW system, Section 7.2 illustrates the architecture of a SW-HW embedded
system and how it hosts the WFIFO channel and finally Section 7.3 introduces the FIFO
Interface Module(FIM) and explains how it is used by the accelerator to communicate
with the other core via WFIFO channel.

7.1 Basic concepts

A unique feature of the proposed solution in this thesis is that it can be established
between software and hardware too. The result is having a WFIFO communication
between the accelerator and the CPU. In principle, most of the functionality described
in chapter 6 can be accomplished on a SW-HW embedded system. To this end, the
most important requirements are a controllable cache controller for the accelerator and
a special hardware interface that can handle the FIFO administration in the shared
memory. The FIFO interface module (FIM) was designed and implemented for this
purpose. The accelerator can use this module to handle the WFIFO communication
with the other party. However, there are some requirements for this whole system to
work:

• The address of the read port and write port structs must be already known to the
accelerator and passed to FIM. This normally takes place at the initial phase of
setting up the whole embedded system.

• The FIM can not be used to create a FIFO channel and its read and write ports.
There must be a master processor to do these at system set up.

• The accelerator does not need to have a prior knowledge about the kind and size
of the tokens of the FIFO channel. It can receive them from FIM module.

• The FIM is a controller that already has the knowledge of how the FIFO control
structs look like and by receiving their address from accelerator, it will take care
of the FIFO control steps.

• One FIM module can be used to handle one read port and one write port of one
or two FIFOs in the memory.

• It is still the job of the accelerator to execute the main procedure to make use of
the FIFO. Steps like acquire and release are to be taken care of by the accelerator
using the FIM.

75

76 CHAPTER 7. SW-HW PLATFORM

• The accelerator can acquire multiple tokens. Releasing, will release the oldest
acquired token.

• The accelerator has two main ports: a VF ld/st port for connecting to the cache
controller and a FIM port.

• The accelerator must be able to distinguish between the cached and the un-cached
memory areas of the main memory. All the accesses to the cached area including
reading and writing from/to the tokens take place on the cached port via ld/st
interface.

• Before the token access, the accelerator should acquire it using the FIM interface
and after the token access is done the accelerator should take care of the cache
flush/invalidation using the cache control interface of the cache memory. The last
step will be releasing the token on the FIM interface so that the FIFO administra-
tion gets done properly. This is the main difference between a SW-SW system and
a SW-HW system. Contrary to the SW-SW system, the cache control is actually
separated from the FIFO synchronization phase.

7.2 SW-HW system architecture

Vector Fabrics tools are responsible to create the whole system and configure it. So,
all the above steps and also the steps explained in section 6.3 are parts of the system
set up that are integrated in and managed by Vector Fabrics tools, user will not be
directly involved in these steps. Figure 7.1 shows the hardware architecture of the
Accelerator-Microblaze system for WFIFO communication. Modules like RS232 UART
or MDM (Microblaze debug module) are not shown in the figure.

It is worthwhile now to review how the accelerator’s cache controller micro-architecture
fits in our communication model. In the proposed WFIFO communication, the accel-
erator can read from one FIFO and write to another FIFO through two independent
ports. The main feature of the cache controller was minimizing the possibility of conflict
misses in the cache. Since the normal situation is that the memory area allocated to the
FIFO elements being read is different from the memory area of the FIFO elements being
written, the cache controller works perfectly decreasing the misses in the cache. In other
words, the reader (CPU or accelerator) is normally reading from a FIFO and writing
to another FIFO that will be read by another reader later on. There would have been
a higher rate of conflict misses, if both the read FIFO and write FIFO memory areas
had been mapped into the same cache memory and so probably the same cache block.
This is in fact the separate read and write streams that was discussed in chapter 5.
The cache controller consistency protocol is still capable to resolve any other situation
in which the same data is shared between reads and writes, even thought it normally
is not suposed to happen on the same token based on the release consistency model
being used in the design pattern. In a system like the one shown in Figure 7.1, we can
have a FIFO system with wide tokens even bigger than the size of the cache memory
itself. This is another flexibility of this system. Because we know that in fact, having a

7.3. FIFO INTERFACE MODULE 77

bigger cache memory in a stream-based memory access does not considerably decrease
the miss rate unless the size of the cache can be as large as the size of the whole FIFO
which is not possible in many applications on a FPGA. The proposed cache controller
has the ability to decrease the cache misses in a FIFO-based communication due to its
separated read and write caches.

Microblaze

MPMC

Accelerator

Cache
FIFO Interface

Module(FIM)

Ld/st

Interface
FIM

Interface

Cache

control

interface

PLB Bus 2

PLB Bus 1

DDR II main memory

PLB portXCL port

Local BRAM

LMB Bus

Local BRAM

LMB Bus

PLB port 2PLB port 1 XCL port

Figure 7.1: Hardware architecture of the Accelerator-Microblaze system

7.3 FIFO Interface Module

The FIM interface that was designed and implemented for this project is explained in
this section. Basically, it is a simple interface in terms of timing and sequence of events
in two main phases.

1. First, the accelerator should configure the FIM with the address of at least one
read or write port.

2. After the address(es) are properly received by FIM, the actual work of FIFO man-
agement can get started.

78 CHAPTER 7. SW-HW PLATFORM

Figure 7.2 depicts the timing diagram of the first phase of the FIM interface. The
accelerator needs to use the port valid twice to program the read port address and the
write port address if it wants to use the FIM for both ports. X means don’t care.

Clock

Busy/Ack

Port_addr

RNW

valid X valid

Port_valid

Figure 7.2: First phase of FIM interface

After each port address configuration, the FIM needs some time to do some initial
checks. port addr, port valid and RNW must be kept valid until busy ack goes high for
one cycle indicating that the port address configuration is complete. Figure 7.3 shows
the timing diagram of the second phase of the FIM interface. The latency from a request
to its acknowledgment is not precisely determinable and depends on the traffic on the
BUS and memory controller. The number of cycles shown in Figure 7.3 is a hypothetical
latency used for simplicity in the timing diagram. In reality, it could be a lot more.

FIM can receive three types of requests:

1. Acquire (acq): means that accelerator wants to acquire a token from the FIFO.

2. Release(rel): means that accelerator wants to release a token.

3. Availability(ava): means that accelerator wants to check if there is a token
available.

Regardless of the request type, RNW determines if it is for the read port or for the
write port. 1 means read and 0 means write. After an acquire request, the busy/ack
signal goes high as long as FIM is busy processing. After the result is ready busy/ack
goes down meaning an acknowledgment to the request and the address and length of
the acquired token will be made available on token addr and token length respectively.
These two ports will be valid until another request is activated. The encoding of the

7.3. FIFO INTERFACE MODULE 79

Clock

Busy/Ack

Request

RNW

Token_addr

Token_length

acq rel

X

X

ava XXX

X

X

valid

valid 0/1

Figure 7.3: Second phase of FIM interface

Request Meaning
00 No request - the default value
01 Acquire
10 Release
11 Availability

Table 7.1: Encoding of request on FIM interface

request is shown in Table 2.3. FIM must be first configured with the port addresses(es)
based on the timing in Figure 7.2. If the write port address is not initially configured,
then a room acquire can not be requested or the FIM might go busy for ever until it is
explicitely stopped.

If the request is availability, the lsb bit of token length can be used by accelerator to
check the result. If this bit is 0 at the fall time of busy ack, it means that no token is
available. If this bit is 1 at the fall time of busy ack, then there is at least one token
available. FIM works in a blocking manner until it can acquire the token. If for some
reason, it is desired to stop the procedure, the stop input needs to become 1 for enough
number of cycles after the acquire is requested until busy ack goes down. This will reset
the procedure of the current running acquire process and the FIM will be ready to receive
a new request again, this is not shown in Figure 7.3. The request and RNW must be kept
valid at least until the clock edge that busy ack goes high. At this clock edge the value of
request and RNW are don’t care to FIM. Using FIM, the accelerator can handle reading

80 CHAPTER 7. SW-HW PLATFORM

from one port and writing to another port with a different token length. The accelerator
can use the three standard provided requests to skip a token by simply acquiring and
then immediately releasing the token. It is always possible to change the address of any
of the read and write ports as long as FIM is not busy. RTL simulations and on-board
tests were used to verify the functionality of the interface. A simple accelerator could be
used to read and write data through the channels just to verify the functionality of the
communication model.

Tests and results 8
This chapter presents the test methodologies used in the project and reviews the results.
Section 8.1 explains the procedure used to verify the functionality of the developed cache
memory, Section 8.2 reviews the results of the synthesis of the cache memory for two
different cache configuration on two different FPGAs and finally Section 8.3 explains the
test methodology and example programs developed to test the overall functionality of
the WFIFO channel on the FPGA board.

8.1 Functional verification of the cache memory

The test of the system had two main parts: testing the cache memory and testing the
WFIFO channel in both SW-SW and SW-HW systems. In general, there were two
different ways to verify the cache controller before actually using it in a system on the
FPGA board:

8.1.1 System level test

A complete HDL simulation environment was already set up and tested for one sample
Xilinx embedded system in ISE simulator. One way to simulate the cache controller
could be integrating it into this system as a component and verify the functionality of
the whole system with the cache controller as one of its sub-modules. This way was not
done in this project for several reasons:

1. Simulating/debugging a HDL model of the whole system is a very slow and time
consuming process.

2. It is very hard to create all the possible situations for the cache controller. Because
we should be able to have different systems running different C codes to eventually
result in what we want at the input of the cache controller.

3. We did not have any simulation model for the DDR II memory.

All the above reasons made it very hard and even unreasonable to verify the cache
controller integrated in the whole embedded system. The second alternative was so faster
and more efficient with better result:

8.1.2 Module level test

Since the input and output ld/st interface to/from the cache controller is simple in terms
of timing and functionality, it was reasonable to have a Verilog test-bench environment to
simulate and verify the cache controller. In this scheme, we can simply design and develop

81

82 CHAPTER 8. TESTS AND RESULTS

any possible test scenario for the cache controller and apply them to the module in the
test-bench and then monitor the output. All the verification procedure is happening
at module level and we can independently verify the cache controller’s functionality in
different situations. This way, we will be sure that it will integrate perfectly fine into
the embedded system. To this end, five major steps were done:

1. Several test scenarios and input stimulus similar to VF accelerator requests were
designed.

2. An abstract model for external memory system was developed in Verilog with two
ld/st interface ports to be each used by read and write caches. This module is some
behavioral always and initial blocks to understand the ld/st interface, interact with
read and write caches and execute their requests on a two dimensional array used
as external memory storage model.

3. An abstract behavioral Verilog block was designed and developed to play the role
of the accelerator and issue load and store requests.

4. Input test vectors and load/store requests were read from a file and appended
to the cache controller and its behavior was monitored to make sure about the
functionality.

5. In case of any inproper behavior, waveforms were analyzed and checked to find the
root of the bug.

Figure 8.1 illustrates the concept of the module level verification methodology em-
ployed for the cache controller.

Cache Controller
Abstract DDR ||

Model

Behavioral Accelerator

Ld/St

Monitor

Verification Environment

Figure 8.1: Module level verification of the cache controller

As an example of the cache controller functionality, the simulation output of one
scenario is depicted in Figure 8.2. In this scenario, first a read is requested starting
on address zero with the size of 8 bytes which has led into a miss (iR CACHE HIT

8.1. FUNCTIONAL VERIFICATION OF THE CACHE MEMORY 83

is zero at rising edge of oCOMMAND VALID). So main controller has issued a
oR CACHE REPLACE as the address has also missed on the write cache. From this mo-
ment on, read cache controller has retrieved the whole block from external memory and
droped its busy signal after it is done. And then, the main controller issued a reload to
redo the cache read and this time it has led to a hit on the read cache (iR CACHE HIT
is asserted) and the cache is able to consecutively serve eight read requests from VF
accelerator as they all targeted to the same read data block. The read data from the
cache is transferred to VF accelerator on the ld/st interface RDAT port (iRDAT) in
eight clock cycles in a row with oVFACK[1] as read data valid.

Figure 8.2: Waveform of a sample test scenario

As mentioned before, LRU algorithm is used to determine a cache block for replace-
ment on a miss. The algorithm works as follow: based on the degree of associativity, a
counter is considered for each way in the cache set. For example, if ASSOCIATIVITY is
2 then the counter is 2 bits to hold the history. At any hit on a cache way, its associated
LRU counter will be reset to 0 and the LRU fields of all the other valid ways with values
originally less than the hit way will be incremented by 1, the LRU field of other valid
ways will remain unchanged and the invalid ways LRU fields will be 0. if a cache miss
occurs and the cache set is not full (at least one invalid or empty way exists), the new
retrieved cache block will be written into that invalid way, its LRU field will be reset to
0 and all the other valid ways LRU fields will be incremented by 1. If a miss happens
and the cache set is full (all the ways of the set have a valid cache block), then there is

84 CHAPTER 8. TESTS AND RESULTS

definitely one way that has its LRU field bits all 1, this way will be selected (as the one
who has been accessed least recently) for replacement. The new arrived data block will
take its place, its LRU field will be reset to 0 and all the other valid ways LRU fields will
be incremented by 1. In this process, among all the ways in one full cache set, always
the least recently used one will be selected for replacement. The LRU field of invalid
cache ways in the set are always 0.

8.2 Synthesis results

Different synthesis runs were done using Xilinx ISE to make sure that there are no
critical synthesis warning/errors available. Post Synthesis simulation also showed proper
functionality of the system. In this section two different cache organizations synthesis
results are compared for two different FPGA chips: Virtex-5(XC5VLX85-1FF1153C)
and Spartan3dsp(xc3sd3400a-fg676c-4).

• First cache organization

– Write cache with 8 entries and 8-bytes cache blocks

– Read cache with 8KB total size, 64-bytes cache blocks and 2-way set associa-
tivity

• Second cache organization

– write cache with 8 entries and 8-bytes cache blocks

– Read cache with 8KB total size, 64-bytes cache blocks and 4-way set associa-
tivity

It can be seen in the synthesis results of Tables 8.1, 8.2, 8.3 and 8.4 that increasing
the degree of associativity will make the cache access time longer that leads into a lower
clock frequency. The reason is that a cache with a higher associativity degree has wider
multiplexers and bigger combinational logic blocks in its critical path so the number
of LUTs are also increased with a 4-way associative cache. Another conclusion of the
synthesis results is that using spartan3dsp gives a slower cache memory comparing to
Virtex-5. Newer FPGA families are even faster than Virtex-5 used in this project. The
final hardware platforms of VF tools will be mostly from newer FPGA families anyhow
which means even better timing results.

The synthesis results of the cache memory shows that on the Spartan3dsp FPGA, the
cache can only be directly connected to the accelerator in VF embedded systems if the
maximum achieved frequency is higher than the global clock speed of the embedded
system. However, in case that the accelerator wants to operate with a higher clock
frequency, it is essential to bridge the data between the accelerator and the cache
memory. For this purpose, asynchronous FIFOs can be used which are not tested in this
project. On the Virtex FPGA, the same problem may exist. The clock domain bridging
becomes necessary if we want to avoid slowing down the accelerator to the speed of

8.3. TESTING THE WFIFO 85

the cache memory. Another restriction of the clock speed is the maximum acceptable
frequency of the Microblaze processor. Normally, this is the same clock oscillator that is
used as the global clock connected to the accelerators as well. If the accelerator wants
to have a different clock than the CPU’s, more clock bridging issues will appear in the
system that need more attention. Even thought the most efficient design techniques are
used in the implementation of the cache memory like using separated combinational and
sequential parts or designing the controllers with two different processes, etc, the use of
huge multiplexers are the main bottleneck for the maximum achievable clock frequency.
Further work and optimizations on the micro-architecture of the cache memory itself
might lead to a higher maximum frequency.

Maximum Frequency: 117 MHz
Best achievable clock period: 8.54 ns
Inferred number of RAM blocks 4
Number of Slice Registers: 433 out of 51,840 1%
Number of Slice LUTs 1,037 out of 51,840 2%

Table 8.1: Synthesis results of Virtex-first cache organization

Maximum Frequency: 104 MHz
Best achievable clock period: 9.59 ns
Inferred number of RAM blocks 6
Number of Slice Registers: 432 out of 51,840 1%
Number of Slice LUTs 1,403 out of 51,840 2%

Table 8.2: Synthesis results of Virtex-second cache organization

Maximum Frequency: 51 MHz
Best achievable clock period: 19.53 ns
Inferred number of RAM blocks 4
Number of Slice Registers: 442 out of 47744 1%
Number of 4-input LUTs 1074 out of 51,840 2%

Table 8.3: Synthesis results of Spartan-first cache organization

8.3 Testing the WFIFO

The next step was testing the WFIFO communication on the development board. Using
EDK tool-set, embedded systems like Figure 6.6 and 7.1 were built and configured on
the board to run the tests. The master CPU was used to communicate with PC, read the
input test files on the compact flash memory on the FPGA board and start the WFIFO

86 CHAPTER 8. TESTS AND RESULTS

Maximum Frequency: 46 MHz
Best achievable clock period: 21.72ns
Inferred number of RAM blocks 6
Number of Slice Registers: 441 out of 47744 1%
Number of 4-input LUTs 1602 out of 47744 3%

Table 8.4: Synthesis results of Spartan-second cache organization

communication on the system. The final contents of the FIFO were also read by this
CPU and stored on another result file on the compact flash. The flash memory card
could be easily connected to the PC using a commercial USB card reader to see the
final data received in the FIFOs. A lot of time was spent on learning how to establish
a file access from Microblaze to the compact flash card on the board in C or how to
integrate the accelerator as a peripheral in the embedded system and so on. It is not
intended to discuss the details of these steps in this report. [68, 54, 55] and Xilinx help
pages of EDK were the main references for these tasks. Figure 8.3 shows the test set-up.
Xilinx tools are running on the PC and communicating with the development board via
the standard JTAG port. The FPGA configuration is also done via the JTAG port as
well as downloading the executable software images and monitoring the status. An extra
RS-232 port of the board was used to check the desired hotspots during the operation
of the embedded systems. This is a simple method used during debugging by inserting
small printf instructions in the program to be used as assertions checks.

PC

Spartan3dsp board

Embedded system USB
Xilinx platform USB cable

CompactFlash

FPGA

RS232

USB

JTAG

USB to Serial

Figure 8.3: Test set-up of the WFIFO

In order to show the correct functionality of the WFIFO system, several different
applications were developed and tested on the board. It must be noted that as long
as the WFIFO channel is working properly, there is in fact no real difference between
the applications being run as any application that is designed and working based on the
design pattern is the same in terms of data communication.

• Data transfer applications

8.3. TESTING THE WFIFO 87

Multiple data transfer tests were done on the board. Different FIFO sizes and data
traffics were tested. All the possible situations on the FIFO were also tested to
make sure about the correct operation of the FIFO synchronization and handshake.

• BTC(Block Turbo coding)
Another test was a Block Turbo Coding. It is a matrix-based coding scheme.
Hamming codes are applied on the rows of the matrix and then on the columns
of the matrix to increase the ability of detecting data corruption that might have
happened during transmission. It was tested in such a way that one CPU was
responsible for the rows and the other for the columns. The encoded matrices
were stored on the flash memory to be compared with the results of the original
codes on the desktop PC. The inter-core communication was based on the proposed
WFIFO.

• JPEG decoder
As a more complex application, a JPEG decoder program was also tested on the
SW-SW system. A functional parallelism was applied to the original JPEG codes
so that Huffmann decoding was done on the first processor and IDCT and color
conversion were done on the second processor. This test was not done on the
HW-HW system as it was not intended to spend time on developing an IDCT or
color conversion in Verilog. VF tools will be responsible to do so after the WFIFO
system is completely integrated in them.

88 CHAPTER 8. TESTS AND RESULTS

Conclusion 9
This thesis has reviewd and identified the general issue of memory consistency and
cache coherence in multi-core computer systems. Further, it has focused on FPGA-
based platforms and narrowed down the range of the problem by targeting multi-core
stream-based applications and to resolve their consistency and coherence issues. The
project was carried out at Vector Fabrics B.V. Eindhoven, The Netherlands. VF multi-
core embedded systems consists of general purpose CPUs and dedicated hardware units
called accelerators. This chapter presents a short summary of the work described in this
thesis, a brief review of the thesis contributions, the main achievements of the project,
the potential issues of the developed solutions and finally some suggestions for future
work.

9.1 Summary

Chapter 1 started with an introducion to the project, the company at which the project
was carried out was briefly introduced, the main problem addressed in this thesis was
described and the state of the art was reviewd and analyzed. This chapter also described
the thesis contributions and the organization of the whole thesis report. Chapter 2
presented a detailed description of memory consistency and cache coherence issues in
computer systems, several examples were used and discussed to show the principles and
concepts of these issues, the difference between memory consistency and cache coherence
was also illustrated. Chapter 3 presented the basics of the proposed design pattern,
several communication models were studied and compared in this chapter and eventually
the details of the proposed communication pattern were described. Chapter 4 presented
and reviewd the basics of the Xilinx FPGA platform used for the software and hardware
developments in the project, the main components of the FPGA-based embedded
systems were studied and their impact on the memory consistency was analyzed and
compared in this chapter. Chapter 5 described the architecture and features of the
designed and developed cache memory for hardware accelerators, the implementation
details of the cache memory and the way it can be used in FPGA-based embedded
systems were also described in this chapter. Chapter 6 described the principles of a basic
design pattern and presented the basics of software-based cache coherence control, the
software streaming library and its main APIs were discussed, a dual-processor embedded
system and the way that software APIs are used on it for coherent data communication
were also discussed in this chapter. Chapter 7 presented the principles of FPGA-based
embedded systems consisting of hardware accelerators and CPUs, it was described
in this chapter how the WFIFO communication pattern works on such systems and
how the cache memory of the accelerator fits in the streaming communication pattern.
Eventually, Chapter 8 presented the verification methodologies and explained the test

89

90 CHAPTER 9. CONCLUSION

example embedded systems and applications that were developed and used to show the
correct functionality of the developed software APIs and hardware cache memory, the
synthesis results of the cache memory were also presented and described in this chapter.

9.2 Contributions and achievements

Contributions

In this thesis project, a consistent/coherent memory sub-system was designed and im-
plemented for FPGA-based multi-core embedded systems running stream-based appli-
cations. Memory consistency and cache coherence issues were studied and analyzed in
general and then we focused on Xilinx-based embedded systems of Vector Fabrics and
reviewed the memory and cache related issues that they have. We considered stream-
based applications as the target applications of the system and based on their features
and also Vector Fabrics’needs, a suitable communication pattern was proposed that could
be used as the main basis of the architecture of the target parallel programs generated
by VF tools in terms of data exchange and communication. Several different commu-
nication models were reviewed and a flexible windowed-FIFO model was proposed as
the final communication pattern. The software APIs of the windowed-FIFO were imple-
mented and tested on both SW-SW and SW-HW systems on the FPGA platform. The
next step was designing and developing a cache memory using behavioral synthesizable
Verilog based on the proposed WFIFO communication pattern. The final result of the
project was a flexible windowed-FIFO communication channel through external shared
memory that can be used to coherently communicate and transfer data on a multi-core
embedded system on a Xilinx FPGA. The data communication can take place between
two Microblaze CPUs or a Microblaze CPU and a dedicated hardware accelerator. The
cache coherence issue between the cache memory of the CPU/accelerator and the cache
memory of the accelerator/CPU was resolved in the design of the Windowed-FIFO using
high level cache control facilities. The consistency model used in the design pattern was
release consistency. All the tests and simulations were done using Xilinx. ISE/EDK
tool-set. A spartan3dsp 3400 development kit was used for on-board tests. During this
project, around three months of the total time of the project was spent on learning and
understanding all the hardware and software aspects of the platform and their exact in-
fluence and running several tests and experiments on the FPGA board. Several manuals
and documents were studied to learn the tools. Three months were spent on software
and hardware development and two months were spent for testing and documenting the
project.

Achievements

Comparing to the existing solutions and based on the test results and simulations, the
work in this thesis project has shown improvements in four main directions:

1. Complexity: Separated read and write caches and avoiding complex static or
dynamic prefetching and locality optimization techniques decreases the level of

9.3. OPEN ISSUES 91

complexity of the proposed solution which in turn means easier integration and
porting to other platforms. Furthermore, contrary to some other solutions like [6]
the communication pattern is not fully implemented in hardware. This would
additionally decrease the complexity.

2. Scalability: Having the WFIFO channel implemented in the global shared mem-
ory has made the solution easier to scale up. Adding and defining multiple FIFO
channels and accessing them through software APIs that can be easily run on the
general purpose CPU can be easily done with negligible hardware overhead.

3. Flexibility: The proposed WFIFO channel offers a wide range of functionality on
the FPGA. By only modifying the APIs and the FIM module, it is possible to even
extend the functionality in future without significant amount of work.

4. Portability: The proposed WFIFO channel can be easily ported to other plat-
forms with minimum modifications as it is not too dependent on specific hardware
or software components of the system.

9.3 Open issues

The most important drawback or issue in the system is the potential problem of the PLB-
based systems. PLB bus protocol does not provide any feedback or acknowledgment
service on the data reception and this might be a problem in synchronization points.
This problem was solved by setting a higher priority for the memory port of the external
memory controller connected to the writing processor. However, this is not a systematic
solution as it is dependent on a specific memory controller module. As it was explained
in Chapter 4, AXI-based systems which are the next generation of VF embedded systems
can efficiently remove this potential problem.

9.4 Future work

The following extensions can be considered for future work:

• Cache controller
It only handles aligned requests in this version. It can be later extended so that it
can handle more complex inputs if needed. Another possible extension to the cache
controller could be defining a direct connection between the cache controller and
the cache memory of the processor to transfer the data between them. This was
avoided in this project due to its extra complexity and area overhead. However, in
a larger FPGA chip or in the next generation of Xilinx FPGA chips with integrated
ARM cores, it might be a realistic option.

• Windowed-FIFO porting
The implemented Windowed-FIFO solution can be ported to other supported plat-
forms of Vector Fabrics like X86 platform. Based on the concepts discussed in this
report and the knowledge acquired, it is not a difficult task as the critical points

92 CHAPTER 9. CONCLUSION

of the model were identified and discussed. Minor modifications are needed for the
porting.

• PLB to AXI
Another extension could be migrating to AXI-based systems on Xilinx FPGAs.
The AXI systems were analyzed and reviewed in this project and are now available
on newer FPGAs of Xilinx. The next generation of Vector Fabrics tools will support
AXI-based embedded systems too, so, this is a natural extension to this project.

• Microblaze to ARM
In near future, Xilinx will have ARM hardcores in its FPGAs. Microblaze can
be replaced with ARM. It is obvious that some modifications might be needed
in the implementation of the software APIs. AXI system can be used with both
Microblaze and ARM processor. So, an attractive version of the solution could be
on such a system consisting of both processors and also hardware accelerators.

Bibliography

[1] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “The complexity of verifying memory
coherence and consistency,” IEEE Trans. Parallel Distrib. Syst., pp. 663–671, July
2005.

[2] J. Lee, C. Park, and S. Ha, “Memory access pattern analysis and stream cache design
for multimedia applications,” in Proc. of the ASP-DAC 2003 Design Automation
Conf, p. 2227, 2003.

[3] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:a tutorial,”
September 1995.

[4] S. V. Adve, Designing Memory Consistency Models For Shared-Memory Multipro-
cessors. PhD thesis, University of Wisconsin-Madison, 1993.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] K. Huang, D. Grunert, and L. Thiele, “Windowed fifos for fpga-based multiprocessor
systems.,” in ASAP’07, pp. 36–41, 2007.

[7] ARM, AMBA protocol specifications and design tools, 4.0 ed., 2007-2010.

[8] T. fu Chen and J. loup Baer, “A performance study of software and hardware data
prefetching schemes,” in In Proceedings of the 21st Annual International Symposium
on Computer Architecture, 1994.

[9] A.-H. A. Badawy, A. Aggarwal, D. Yeung, and C.-W. Tseng, “The efficacy of
software prefetching and locality optimizations on future memory systems,” J.
Instruction-Level Parallelism, 2004.

[10] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to reduce data
access penalty,” in SC’91, pp. 176–186, 1991.

[11] J.-L. Baer and T.-F. Chen, “Effective hardware-based data prefetching for high-
performance processors,” IEEE Trans. Comput., pp. 609–623, May 1995.

[12] C. Zhang and S. A. McKee, “Hardware-only stream prefetching and dynamic access
ordering,” in Proceedings of the 14th international conference on Supercomputing,
ICS ’00, pp. 167–175, ACM, 2000.

[13] P. Grun, N. Dutt, and A. Nicolau, “Apex: access pattern based memory architecture
exploration,” in ISSS-01, pp. 25–32, 2001.

[14] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink, “Design
and programming of embedded multiprocessors: an interface-centric approach,”

93

94 BIBLIOGRAPHY

in Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, CODES+ISSS ’04, pp. 206–217, ACM,
2004.

[15] E. A. D. Kock, G. Essink, W. J. M. Smits, and P. V. D. Wolf, “Yapi: Applica-
tion modeling for signal processing systems,” in In Proc. 37th Design Automation
Conference (DAC2000, pp. 402–405, ACM Press, 2000.

[16] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer, “An automated exploration
framework for fpga-based soft multiprocessor systems,” in Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis CODES+ISSS ’05, pp. 273 – 278, 2005.

[17] J. L. Hennessy and D. A. Patterson, computer architecture, A Quantitative Ap-
proach. Morgan Kaufmann, 2007.

[18] J. L. Hennessy and D. A. Patterson, Computer Organization and Design. Morgan
Kaufmann, 2009.

[19] D. J. Lilja, “Cache coherence in large-scale shared memory multiprocessors: Issues
and comparisons,” ACM COMPUTING SURVEYS, vol. 25, pp. 303–338, 1993.

[20] C.-C. Wu, D.-L. Pean, and C. Chen, “Look-ahead memory consistency model.,” in
ICPADS’98, pp. 504–510, 1998.

[21] L. Lamport, “How to make a correct multiprocess program execute correctly on a
multiprocessor,” IEEE Trans. Comput., pp. 779–782, July 1997.

[22] G. Andrews, Concurrent Programming: Principles and Practice. Addison-Wesley,
1991.

[23] Xilinx, MicroBlaze Processor Reference Guide, 12.0 ed., March 2011.

[24] ARM, ARM Synchronization Primitives, August 2009.

[25] MIPS Technologies, Inc., MIPS R4000 Synchronization Primitives, 1993.

[26] A. Birrell, J. Guttag, J. J. Horning, and R. Levin, “Synchronization primitives for
a multiprocessor: A formal specification,” 1987.

[27] M. M. Michael and M. L. Scott, “Implementation of atomic primitives on distributed
shared memory multiprocessors,” in Proc. First Symp. on High Performance Com-
puter Architecture, pp. 222–231, 1995.

[28] P. E. Mckenney, “Memory barriers: a hardware view for software hackers,” 2009.

[29] ARM, ARM Architecture Reference Manual, 1996-2010.

[30] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
“Memory consistency and event ordering in scalable shared-memory multiproces-
sors,” in In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pp. 15–26, 1990.

BIBLIOGRAPHY 95

[31] A. Krishnamurthy and K. A. Yelick, “Optimizing parallel spmd programs,” in Pro-
ceedings of the 7th International Workshop on Languages and Compilers for Parallel
Computing, LCPC ’94, pp. 331–345, Springer-Verlag, 1995.

[32] D. Shasha and M. Snir, “Efficient and correct execution of parallel programs that
share memory,” ACM Trans. Program. Lang. Syst., pp. 282–312, April 1988.

[33] C. Scheurich and M. Dubois, “Correct memory operation of cache-based multipro-
cessors,” in Proceedings of the 14th annual international symposium on Computer
architecture, ISCA ’87, (New York, NY, USA), pp. 234–243, ACM, 1987.

[34] Y. Afek, G. Brown, and M. Merritt, “Lazy caching,” ACM Trans. Program. Lang.
Syst., pp. 182–205, January 1993.

[35] K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance evaluation of memory
consistency models for shared-memory multiprocessors,” in In Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 245–257, 1991.

[36] M. Brorsson and P. Stenstrom, “Modelling accesses to migratory and producer-
consumer characterised data in a shared memory multiprocessor,” in In Proceedings
of Sixth IEEE Symposium on Parallel and Distributed Processing, pp. 612–619, 1994.

[37] M. R. Marty, Cache coherence techniques for multicore processors. PhD thesis,
University of Wisconsin at Madison, Madison, WI, USA, 2008. AAI3314233.

[38] J. Archibald and J. loup Baer, “Cache coherence protocols: Evaluation using a
multiprocessor simulation model,” ACM Transactions on Computer Systems, vol. 4,
pp. 273–298, 1986.

[39] L. M. Censier and P. Feautrier, “A new solution to coherence problems in multicache
systems,” IEEE Transactions on Computers, pp. 1112–1118, 1978.

[40] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation of directory
schemes for cache coherence,” in In Proceedings of the 15th Annual International
Symposium on Computer Architecture, pp. 280–289, 1988.

[41] M. A. Heinrich, The performance and scalability of distributed shared-memory cache
coherence protocols. PhD thesis, Stanford University, 1999.

[42] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W. dietrich Weber, “Com-
parative evaluation of latency reducing and tolerating techniques,” in In Proceedings
of the 18th Annual International Symposium on Computer Architecture, pp. 254–
263, 1991.

[43] S. V. Adve, V. S. Adve, M. D. Hill, and M. K. Vernon, “Comparison of hardware
and software cache coherence schemes,” 1991.

[44] P. Stenström, “A survey of cache coherence schemes for multiprocessors,” Computer,
pp. 12–24, June 1990.

96 BIBLIOGRAPHY

[45] H. Cheong and A. V. Veidenbaum, “A cache coherence scheme with fast selective
invalidation,” in ISCA’88, pp. 299–307, 1988.

[46] I. Tartalja and V. Milutinovi, “Classifying software-based cache coherence solu-
tions,” IEEE Softw., pp. 90–101, May 1997.

[47] V. F. B.V., “Vf analyst data sheet,” 2010.

[48] V. F. B.V., “Vf embedded brochure,” 2011.

[49] M. P. I. Forum, “Mpi: A message-passing interface standard,” tech. rep., National
Science Foundation Science and Technology Center Cooperative, November 2003.

[50] Xilinx, LogiCORE IP Fast Simplex Link (FSL) V20 Bus, 2.11c ed., April 2010.

[51] Xilinx, LogiCORE IP AXI-Stream FIFO, 1.0 ed., September 2010.

[52] P. Huerta, J. Castillo, J. I. Mártinez, and V. López, “Multi microblaze system for
parallel computing,” in Proceedings of the 9th International Conference on Circuits,
pp. 31:1–31:6, World Scientific and Engineering Academy and Society (WSEAS),
2005.

[53] G. Kahn, “The semantics of a simple language for parallel programming,” in Infor-
mation processing, pp. 471–475, North Holland, Amsterdam, August 1974.

[54] Xilinx, Embedded System Tools Reference Manual, 13.1 ed., March 2011.

[55] Xilinx, EDK Concepts, Tools, and Techniques, 13.1 ed., March 2011.

[56] Xilinx, Xilinx ISE manual, 13.1 ed., March 2011.

[57] Xilinx, XtremeDSP Development Platform: Spartan-3A DSP 3400A Edition User
Guide, 2.2 ed., Novemeber 2008.

[58] Xilinx, PowerPC Processor Reference Guide, 1.3 ed., January 2010.

[59] Xilinx, IP Processor Block RAM (BRAM) Block Data Sheet, 2.3 ed., March 2011.

[60] Xilinx, LogiCORE IP Multi-Port Memory Controller (MPMC) (v6.03.a), 6.03a ed.,
March 2011.

[61] Xilinx, Local Memory Bus (LMB) v1.0 (v1.00a), 1.0 ed., April 2005.

[62] Xilinx, LogiCORE IP Processor Local Bus (PLB) v4.6 (v1.05a), 1.05a ed., Septem-
ber 2010.

[63] IBM, Processor Local Bus (128-bit), 4.6 ed., May 2007.

[64] Xilinx, AXI Reference Guide, 13.1 ed., March 2011.

BIBLIOGRAPHY 97

[65] E. T. Ososanya and . J. Matthews, D., “Design and performance evaluation of an
expendable modular directory scheme for maintaining cache coherency in multi-
processor systems,” in Proceedings of the 27th Southeastern Symposium on System
Theory (SSST’95), SSST ’95, IEEE Computer Society, 1995.

[66] B. Jacob, “Cache design for embedded real-time systems,” in Proceedings of the
Embedded Systems Conference, Summer, 1999.

[67] J. Handy, Cache Memory Book. Academic Press, 1998.

[68] Xilinx, OS and Libraries Document Collection, 13.1 ed., March 2011.

[69] V. Fabrics, “Vf stream library.” http://www.Vector Fabrics.com.

98 BIBLIOGRAPHY

Curriculum Vitae

I was born in Tehran, Iran in 1979. After my
graduation from high school I successfully passed
the global entrance exmination of Iranian Uni-
versities and was ranked 304 among more than
a milion of participants all around the country,
I started my bachelor in computer harware engi-
neering in Iran University of Science and Technol-
ogy (IUST) and graduated in 2002 when I started
working as a full time digital design engineer at
rastafann technologies. I was responsible for de-
sign and implementation of digital blocks on FP-
GAs using VHDL and Verilog on Xilixn and Al-
tera platforms. The company was active in the
field of telecommunication products and I was in-
volved in several projects. I joind Kavoshcom
R&D group after one and a half year at rastafann
and started as an ASIC/FPGA design engineer.
We taped out two RFID ICs at kavoshcom and
the results were successful. After two and half
years at Kavoshcom I left Iran for Malaysia. I
joined elecomp technologies and worked on high
speed digital protocol analyzers and excersizers.
The company was working with Lecroy and the
challenge and technical drive of the projects were
high enough that put me under pressure and gave

me the opportunity to gain more knowledge and insight on HW/SW co-design and ver-
ification on FPGAs. After a year at elecomp technologies, It was finally time to pursue
my original goal which was going to Europe. I chose Netherlands over my other options
for several reasons and started at Altran technologies as a Microelectronic consultant.
After almost 6 Months at Altran, I found the chance to go back to university again and
continue my education. I started my master at TU Delft in embedded systems. I chose
this major as my goal was to expand my low-level software skills and combine them
with my hardware experience to become a more versatile and complete digtial design
engineer.
Vahid Roostaie
Email: vahid.roostaie@gmail.com
Cell:+31-643176394

