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SUMMARY

Future quantum networks will enable the realisation of a large family of quantum pro-
tocols, hence allowing for implementation of various tasks ranging from quantum cryp-
tography through quantum computing to quantum metrology.

In this thesis we analyse and develop the building blocks of quantum repeater net-
works. These networks consist of quantum repeater nodes, which are equipped with
quantum memories enabling storage of quantum information. The repeater nodes are
connected using optical fibres that enable for the transmission of photonic quantum
signals between the repeater nodes.

We specifically focus on the two building blocks: remote entanglement generation
and entanglement distillation. We then investigate various proof of principle quantum
repeater schemes used for generating shared secret key between distant parties. The
repeater schemes that we consider utilise one to three memory nodes capable of gen-
erating memory-photon entanglement. Finally, we introduce a novel framework for in-
vestigating a foundational aspect in the use of quantum communication related to the
uncertainty principle.

Efficient remote entanglement generation is an indispensable building block of most
near-term quantum repeater networks. In this thesis we consider various remote en-
tanglement generation schemes that permit multiplexing, which aims at increasing the
throughput of this procedure. We find that for the specific schemes that are suitable for
platforms with a single communication qubit and multiple memory qubits, the perfor-
mance of the multiplexing approach is strongly dependent on the time it takes to per-
form local operations within the memory nodes.

Entanglement distillation enables for filtering out the noise from imperfect entan-
gled states using only local operations and classical communication. Using a general
framework for optimising such schemes, which we have developed, we have proven op-
timality of specific generic and experimentally relevant distillation schemes. We have
developed a general framework for optimising such schemes, which we have used to
prove optimality of various generic and experimentally relevant distillation schemes.

In designing proof of principle quantum repeater schemes we assume an information-
theoretic approach, which enables us to assess their performance in a hardware-agnostic
way. We find that all the schemes that we consider can prove useful in specific parame-
ter regimes for the nitrogen-vacancy centre platform. Moreover, we find that one scheme
which has already been realised experimentally in the context of remote entanglement
generation, is expected to significantly outperform every possible system based on di-
rect communication without repeaters. However, our analysis shows that encapsulating
the nitrogen-vacancy centres in optical cavities for the enhancement of the emission
rates is a necessary requirement for such a successful demonstration of the first proof-
of-principle quantum repeater.

xi



xii SUMMARY

Finally, we investigate the quantum uncertainty principle which is a fundamental
feature of quantum mechanics, allowing for security in many quantum cryptographic
protocols. We find that in a particular scenario, relevant from the perspective of quan-
tum key distribution, a significant part of the observed uncertainty is in fact due to lack
of information rather than intrinsic. If the eavesdropper could access that information,
she would be able to much better, or in some cases even with certainty, guess the value
of the raw bit of the generated key.



SAMENVATTING

Toekomstige kwantumnetwerken zullen het mogelijk maken om een groot aantal proto-
collen in de kwantumcryptografie, kwantumcomputatie en kwantummetrologie te rea-
liseren.

In deze thesis analyseren en ontwikkelen wij de bouwblokken voor netwerken die
op kwantum repeaters gebaseerd zijn. Zulk soort netwerken bestaan uit kwantum-
knooppunten, die kwantumgeheugens bezitten die kwantuminformatie kunnen bewa-
ren. Verschillende knooppunten kunnen met elkaar verbonden zijn met optische fibers,
die gebruikt kunnen worden om fotonen door te sturen.

Hier zijn we specifiek geïnteresseerd in twee van de bouwblokken, namelijk de ge-
neratie van kwantum verstrengeling over lange afstanden en de distillatie van deze ver-
strengeling. We onderzoeken experimenteel toegankelijke kwantum repeater protocol-
len die het mogelijk maken om cryptografische sleutels tussen twee personen te generen.
Deze repeater protocollen gebruiken één tot drie knooppunten, waarvan elk in staat is
om verstrengeling te generen tussen het geheugen en een foton. We concluderen met
een nieuw perspectief op fundamentele aspecten van de kwantumcommunicatie gere-
lateerd aan het onzekerheidsprincipe.

De effectieve generatie van verstrengeling is essentieel voor bijna alle kwantum re-
peater netwerken. In deze thesis onderzoeken wij verschillende protocollen voor de ge-
neratie van verstrengeling, die geparallelliseerd kunnen worden, wat de generatie van
verstrengeling versnelt.

De distillatie van verstrengeling is een protocol om de fouten in verstrengeling te
verminderen, waarbij enkel gebruik wordt gemaakt van lokale operaties en klassieke
communicatie. Wij ontwikkelen een nieuwe procedure voor de optimalisatie van ver-
strengeling distillatie protocollen. We gebruiken deze procedure om de optimaliteit van
bepaalde algemene en experimentele relevante distillatie protocollen aan te tonen.

Wij gebruiken een informatie-theoretisch perspectief om verschillende repeater pro-
tocollen tegen elkaar af te wegen. Dit maakt het mogelijk om de protocollen op een
hardware-onafhankelijke manier te beoordelen. We bevinden dat elk van de overwogen
protocollen gebaseerd op stikstof-gatcentra voor bepaalde parameters nuttig kunnen
zijn voor de generatie van verstrengeling op lange afstand. In het bijzonder bevinden
we dat één bepaald protocol – dat al experimenteel geïmplementeerd is – veelbelovend
is, en de capaciteit heeft om effectiever cryptografische sleutels te genereren dan the-
oretisch mogelijk is met directe communicatie. Echter, dit vereist wel dat het stikstof-
gatcentrum wordt ingesloten in een optische trilholte, wat de emissie van fotonen effec-
tiever maakt.

Ten slotte onderzoeken wij kwantum onzekerheidsrelaties – één van de fundamen-
tele kenmerken van de kwantum mechanica. Kwantum onzekerheidsrelaties worden
toegepast in het aantonen van de veiligheid van vele kwantumcryptografie protocollen.
Wij onderzoeken een relevante situatie voor het genereren van cryptografische sleutels,

xiii
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waar een groot deel van de onzekerheid niet intrinsiek is, maar zijn oorsprong vindt in
het ontbreken van informatie. Mocht een mogelijke afluisteraar die informatie achter-
halen, dan is het mogelijk om de cryptografische sleutel effectiever – en soms zelfs met
complete zekerheid – te raden.
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2 1. INTRODUCTION

Quantum information, or more specifically, quantum communication and quan-
tum cryptography rely on the most fundamental features of quantum physics. In the
twentieth century those features could in general only be observed in individual proof
of principle experiments. Hence, in the early days of quantum information, it was a
scientific field mostly inhabited by theorists who, working in an abstract Hilbert space
where quantum states can be easily generated, stored, manipulated and transmitted, de-
vised lot of fascinating practical applications based on quantum mechanical phenom-
ena. However, due to the recent experimental progress in control of various quantum
systems, multiple of those application protocols or their parts no longer take place ex-
clusively in the Hilbert space, but can also be realised in a lab. Finally, the field of quan-
tum engineering has recently emerged in response to the recent experimental progress
in the development of various quantum technologies.

The subfields of quantum communication and quantum cryptography rely on two
fundamental corner-stones of the quantum theory: the uncertainty principle and quan-
tum correlations. The first one, originally formalised by Heisenberg [1], Kennard [2] and
Robertson [3] in the context of standard deviations, has over the years been subjected to
a new, information-theoretic approach. This has led to the development of the entropic
formulation of the uncertainty principle [4] which has become a fundamental tool in
analysing and proving security of various quantum cryptographic protocols. Quantum
correlations on the other hand have first led to a strong turmoil in the quantum physics
community after the release of the famous EPR paper [5]. The later developed math-
ematical framework of Bell’s inequalities [6], enabling rigorous and practical quantifi-
cation of these correlations, has become another fundamental tool within the field of
quantum cryptography.

The first cryptographic applications of quantum theory can be linked to Wiesner’s
proposal for quantum money [7]. This has been followed by the BB84 prepare-and-
measure quantum key distribution protocol [8] and the protocol based on quantum cor-
relations for which the security is quantified using Bell’s Theorem [9]. Since then, a large
number of quantum cryptographic protocols have been proposed. The common feature
of most of them, together with certain protocols from the fields of quantum computing
and quantum metrology, is the requirement for being able to either generate remote en-
tanglement between distant parties, or be able to reliably transmit between them at least
certain specific quantum states.

Recent experimental developments in the ability to prepare, transmit and measure
individual photons and weak laser pulses have opened the way for the real-life demon-
strations of many of those proposed quantum communication protocols. Nevertheless,
the ability to transfer quantum states over arbitrarily long distances is still a technolog-
ical challenge. In this thesis, guided by the recent experimental milestones in the de-
velopment of quantum communication technologies, we propose, optimise and assess
various practical schemes and protocols for demonstrating different building blocks of
the quantum repeater network.

In Chapter 2 we introduce the mathematical tools that we use throughout the the-
sis. In particular we introduce the quantum channel formalism that we use to model
quantum operations and noise processes. We then introduce various relevant ways for
quantifying entanglement and the framework of semidefinite programming which will
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prove useful in dealing with multiple optimisation problems. In Chapter 3 we provide
a basic introduction to different types of quantum repeaters and their building blocks.
We also discuss different ways of assessing the performance of such quantum repeater
networks. In Chapter 4 we analyse remote entanglement generation between two mem-
ory nodes, each equipped with one communication qubit with an optical interface, and
possibly multiple additional memory qubits, enabling multiplexing. We assess differ-
ent remote entanglement generation schemes for this setup aiming at maximising the
throughput. We then apply our model to the nitrogen-vacancy (NV) centre platform.
In Chapter 5 we develop a framework for assessing optimality of existing, realistic en-
tanglement distillation schemes and for finding new schemes starting from the existing
ones. We then apply this framework to multiple generic and experimentally relevant sce-
narios. In Chapter 6 we assess the performance of a simple proof of principle repeater
scheme utilising one memory node. We again perform a specific numerical analysis for
the NV-centre setup. This time we use a different metric than throughput, which allows
us to make information-theoretic statements about the candidate repeater scheme. In
Chapter 7 we extend this analysis to three additional NV-centre based schemes utilis-
ing two or three memory nodes. In Chapter 8 we revisit the fundamental feature of the
quantum theory - the uncertainty principle. We consider a particular guessing game
scenario, which provides a natural extension to the well-known framework from the lit-
erature used for developing novel entropic uncertainty relations. Moreover, this sce-
nario directly reflects certain attacks of the eavesdropper in quantum key distribution
and therefore our investigation provides new insights into security of specific crypto-
graphic protocols. Finally, in Chapter 9 we summarise the results of this thesis, briefly
discuss the prospects of applying our models to other physical platforms, and provide
an outlook for the future research.
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2
MATHEMATICAL PRELIMINARIES

In this chapter we introduce certain mathematical concepts and tools that we will fre-
quently use throughout the thesis. Firstly we will introduce the general framework for
quantum channels and quantum operations. We will also provide specific examples of
channels that we will later use to model the noise or loss in our quantum repeater schemes.
Secondly, we will introduce a few ways of quantifying the quality of entanglement which
we will use in assessing the performance of quantum repeater schemes and their individ-
ual building blocks. Finally we will introduce the convex optimisation method of semidef-
inite programming that is widely used in quantum information theory and which we ex-
tensively use in Chapters 5 and 8.

5



2

6 2. MATHEMATICAL PRELIMINARIES

2.1. QUANTUM CHANNELS AND OPERATIONS
Transformations between different quantum states are at a core of quantum informa-
tion theory. In general we can consider two types of transformations. Firstly, we want
to be able to manipulate quantum states in a controlled manner in order to be able to
perform desired quantum operations. Secondly, various noise processes will necessarily
also transform a quantum state and these are the transformations that ideally we would
like to suppress. In fact all such transformations describing valid physical processes can
be treated together within the framework of quantum channels. Quantum channels are
described by Completely Positive Trace Preserving (CPTP) linear maps [1] which we de-
fine below together with the linear operators on which they act.

Definition 2.1.1. A linear operator B acting on a Hilbert space H , is a linear map from
H onto itself, B : H → H . The set of all linear operators acting on a Hilbert space H is
denoted as B (H ).

Definition 2.1.2. A Completely Positive Trace Preserving (CPTP) linear map ΛA→Â is a
linear map transforming linear operators B (H A) acting on a Hilbert space H A into lin-
ear operators B

(
H Â

)
acting on a Hilbert space H Â :

ΛA→Â : B (H A) →B
(
H Â

)
, (2.1)

such that:

• It is trace-preserving, that is:

∀ρ ∈B (H A) : tr[ΛA→Â(ρ)] = tr[ρ] (2.2)

• It is completely positive, that is:

∀ρ ∈B (H A ⊗HB ) , such that ρ ≥ 0 : (ΛA→Â ⊗1B→B̂ )ρ ≥ 0. (2.3)

A useful way of describing the action of a channel is by using its Kraus operators.

Theorem 2.1.3. To every CPTP map ΛA→Â : B (H A) → B
(
H Â

)
we can associate the set

of Kraus operators {Ei }, such that the action of the channel can be represented as:

∀ρ ∈B (H A) : ΛA→Â(ρ) =∑
i

EiρE †
i (2.4)

The trace-preserving property of the channel requires the Kraus operators to satisfy the
condition

∑
i E †

i Ei = I.
In this thesis we will be mostly concerned with the action of quantum channels on

density matrices, hence we will study the action of CPTP maps on the elements of the set
D (H ) ⊂ B (H ) such that: D (H ) = {ρ ∈ B (H ) : ρ ≥ 0∧ tr[ρ] = 1}. Moreover, from now
on, we will use ρ to denote density matrices, i.e. the elements of the set D (H ).

We will now provide a few examples of well-known qubit channels [1] that we will
often use throughout the thesis to describe various noise and loss processes.
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2.1.1. DEPOLARISING CHANNEL
A depolarising channel with parameter λ performs the mapping:

Λλ(ρ) =λρ+ (1−λ)
I

2
. (2.5)

This channel can also be described in terms of its Kraus operators:

E0 =
p

1+3λ

2
I, E1 =

p
1−λ
2

X , E2 =
p

1−λ
2

Y , E3 =
p

1−λ
2

Z . (2.6)

We see that this channel with probability 1−λ erases all the information about the
state. Hence we can often think of a depolarising channel as a worst case scenario model
of a particular noise process. We will often use this channel to model the noise due to
imperfect gates performed within the quantum nodes and to model certain decoherence
noise processes within NV (Nitrogen-Vacancy) centre memory nodes (the NV platform
is discussed in more detail in Chapters 4, 6 and 7).

2.1.2. DEPHASING CHANNEL
The dephasing channel is defined with respect to a given basis. A dephasing in the basis
P ∈ {X ,Y , Z } with parameter λ performs the mapping:

Λλ(ρ) =λρ+ (1−λ)PρP . (2.7)

This channel can also be described in terms of its Kraus operators:

E0 =
p
λI, E1 =

p
1−λP . (2.8)

The dephasing channel will be used as a common noise model for the dominant deco-
herence noise processes within NV centre memory nodes as well as for loss of informa-
tion about the optical phase of the photonic qubit.

2.1.3. AMPLITUDE DAMPING CHANNEL
An amplitude damping channel is best described using its Kraus operators. Specifically,
the amplitude damping channel with damping parameter γ has Kraus operators:

E0 =
(
1 0
0

√
1−γ

)
, E1 =

(
0

p
γ

0 0

)
. (2.9)

This channel will be used to describe the effect of photon loss when the qubit is en-
coded in the presence/absence of a photon.

2.1.4. ERASURE CHANNEL
An erasure channel is a channel which probabilistically erases the qubit. Such a channel
with an erasure probability γ can be described by a mapping:

Λ(ρ) = γρ+ (1−γ)| ⊥〉〈⊥ | . (2.10)

Here, | ⊥〉 is a flag carrying the information that the qubit ρ has been erased. This flag
is orthogonal to all the input states. An erasure channel will be used to describe effect
of photon loss when the dual rail encoding of the photonic qubit is used e.g. time-bin
encoding.
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2.2. QUANTIFYING ENTANGLEMENT
Bipartite quantum states can be divided into two classes of states: entangled states and
separable states [2]. Let us first define these two terms:

Definition 2.2.1. A bipartite quantum state ρAB is a separable state if there exists a convex
decomposition:

ρ =∑
i

piσ
i
A ⊗τi

B (2.11)

for some {pi } such that ∀i , pi ≥ 0 and
∑

i pi = 1 and for some ensembles of quantum states
{σi } and {τi }. We will label the set of all such separable states as SEP.

Definition 2.2.2. A bipartite quantum state ρAB is an entangled state if it does not admit
a decomposition of the form given in Eq. (2.11). In other words ρAB is entangled if and
only if ρ ∉ SEP.

In general it is an NP-hard problem to determine whether a given ρ is in SEP or
not [3, 4]. To help us characterise entangled states we will now introduce two ways of
quantifying entanglement that we will use in this thesis. Firstly, let us introduce the
notion of an entanglement monotone and an entanglement measure. We note that
throughout the literature there have been many different definitions of these two no-
tions. In particular, some definitions impose on these notions large number of necessary
properties such as, e.g. additivity or convexity while others do not, see e.g. [2, 5, 6]. Here
we introduce minimalistic definitions that are sufficient for our purposes.

Definition 2.2.3. An entanglement monotone g is a function that maps a quantum state
to a non-negative real number:

g : D (H ) →R≥0 (2.12)

such that:

• the function g does not increase under local operations and classical communica-
tion (LOCC).

Definition 2.2.4. An entanglement measure G is a function that maps a quantum state
to a non-negative real number:

G : D (H ) →R≥0 (2.13)

such that:

• the function G is an entanglement monotone,

• ∀ρ ∈ SEP,G(ρ) = 0

Clearly the second condition implies that if G(ρ) > 0, then ρ must be entangled. A
widely used entanglement measure which has a clear operational meaning is the distill-
able entanglement [5, 6].

Definition 2.2.5. Let |Φ+
D〉 = 1p

D

∑D−1
i=0 |i i 〉 denote an EPR pair of local dimension D and

let Φ+
D = |Φ+

D〉〈Φ+
D |. Then the distillable entanglement of a state ρ is defined as:

ED (ρ) = sup

{
r : lim

n→∞

(
inf

Λ∈LOCC

∥∥Λ(
ρ⊗n)−Φ+

2r n

∥∥
1

)
= 0

}
. (2.14)
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Here ‖.‖1 denotes the trace norm. As this rigorous definition might not be very intu-
itive, let us try to paraphrase it in an informal and non-rigorous way.

Let N (ρ) denote the number of available copies of the state ρ. Let MΛ(N (ρ)) denote
the number of close to perfect EPR pairs of local dimension D = 2 that can be distilled
from those N copies of the state ρ with the LOCC distillation protocol Λ such that for
large N these output states approach perfect EPR pairs [6]. Then the distillable entan-
glement of the state ρ can be interpreted as:

ED (ρ) = lim
N→∞

sup
Λ∈LOCC

MΛ(N (ρ))

N (ρ)
(2.15)

In other words distillable entanglement of the state ρ is an optimal rate of distilling
perfect Bell pairs in the limit of infinitely many copies of the input state ρ and after opti-
mising over all LOCC protocols.

Let us now list some useful properties of distillable entanglement. Let ρ ∈ D(H A ⊗
HB ) be a bipartite state acting on the Hilbert space H A⊗HB , where dim(H A) = dim(HB ) =
D . Then:

• 0 ≤ ED (ρ) ≤ logD

• ED (ρ) = logD if and only if there exists a local unitary U such that (I⊗U )ρ(I⊗U †) =
Φ+

D . That is the value of logD is reached only by maximally entangled states of local
dimension D .

Unfortunately distillable entanglement is in general very hard to compute. Therefore
here we will often use a different way of assessing the amount of entanglement using
fidelity to the closest maximally entangled state referred to also as the singlet fraction.
Let us first define fidelity between two quantum states [1].

Definition 2.2.6. Let ρ1 ∈ D(H ) and ρ2 ∈ D(H ) denote two quantum states acting on
the Hilbert space H , such that dim(H ) = D. Then the fidelity of ρ1 to ρ2 is defined as:

f (ρ1,ρ2) =
(
tr

[√p
ρ2ρ1

p
ρ2

])2

(2.16)

Remark 2.2.7. We note that ifρ2 = |ψ〉〈ψ| is a pure state, then fidelity reduces to f (ρ, |ψ〉) =
〈ψ|ρ|ψ〉.

Now let us define the singlet fraction, which is just the fidelity to the closest maxi-
mally entangled state [7].

Definition 2.2.8. Let U denote a local unitary of dimension D. The singlet fraction of the
bipartite quantum state ρ ∈ D(H A ⊗HB ) acting on the Hilbert space H A ⊗HB , where
dim(H A) = dim(HB ) = D, is then given by:

F (ρ) = max
U

f (ρ, (I⊗U )Φ+
D (I⊗U †)) (2.17)
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We note that in most cases it is very obvious what the closest maximally entangled
state is or we want to measure fidelity to a fixed maximally entangled state such as |Φ+

D〉.
Hence in this thesis we will often use just the term fidelity to describe both fidelity to a
specific maximally entangled state and the singlet fraction, as in most cases they will be
the same.

Such a singlet fraction has certain very useful properties which allow us to make var-
ious claims about the entanglement of the state:

Lemma 2.2.9. Let ρ ∈D(H A ⊗HB ) be a bipartite state acting on the Hilbert space H A ⊗
HB , where dim(H A) = dim(HB ) = D. Then:

• F (ρ) = 1 if and only if there exists a local unitary U such that (I⊗U )ρ(I⊗U †) =
Φ+

D . That is the value of one is reached only by maximally entangled states of local
dimension D.

• ∀ρ ∈ SEP,F (ρ) ≤ 1
D [8].

• If F (ρ) > 1
D then ED (ρ) > 0 [8].

An important comment to be made here is that while fidelity is easy to compute, it
is not an entanglement measure. Not only does it not vanish for separable states but it
can also increase under LOCC. In particular there exists a class of entangled two-qubit
states with 1/3 ≤ F < 2/3 for which it is possible to increase the singlet fraction using
LOCC. This is quite obvious in the regime F < 0.5 where one can just replace the state
with a product state for which F = 0.5 (possibly destroying all the entanglement), but
it is interesting to note that even for some entangled states for which F > 0.5 it is still
possible to increase the singlet fraction via LOCC. For two-qubit states, for high fidelities
the singlet fraction becomes close to certain entanglement monotones and therefore can
no longer increase via LOCC [9]. Hence, although throughout this thesis we will often
aim at maximising fidelity of remote entangled states it must be noted that it is only the
high fidelity regime, where fidelity can be treated as a reliable indicator of the amount of
entanglement in the state. This is also the regime in which we are interested, as highly
entangled states are needed for most practical applications of quantum networks.

In this section we have already been explicitly referring to specific maximally entan-
gled states. Throughout this thesis we will most often be interested in two-qubit maxi-
mally entangled states. We will then frequently use the four maximally entangled states
defining the so called Bell basis: {|Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉}, where:

|Φ±〉 = 1p
2

(|00〉± |11〉) , (2.18)

|Ψ±〉 = 1p
2

(|01〉± |10〉) . (2.19)

Moreover we will often use the notation ψ to denote the density matrix corresponding
to the pure state |ψ〉.
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2.3. SEMIDEFINITE PROGRAMMING
The last section of this chapter will discuss the tool of semidefinite programming which
is a widely used tool from convex optimisation that has many applications in quantum
information.

Let us first define the concept of a convex optimisation problem. For that we will
need to define the notions of a convex set and convex function.

Definition 2.3.1. A given set S is a convex set if for every a,b ∈ S and for every p ∈ [0,1], it
holds that pa + (1−p)b ∈ S.

Definition 2.3.2. A given real valued function f defined on a convex set S:

f : S →R (2.20)

is a convex function if for all a,b ∈ S and for every p ∈ [0,1], it holds that f (pa+(1−p)b) ≤
p f (a)+ (1−p) f (b).

Analogously we can also define a concave function:

Definition 2.3.3. A given real valued function f defined on a convex set S:

f : S →R (2.21)

is a concave function if for all a,b ∈ S and for every p ∈ [0,1], it holds that f (pa+(1−p)b) ≥
p f (a)+ (1−p) f (b).

Now we define the general form of a convex optimisation problem:

Definition 2.3.4. A convex optimisation problem is an optimisation problem that can be
written in the form:

minimize f (x)
subject to x ∈ S .

Optimisation Program 1.

where S is a convex set and f is a convex function on the set S.

Note that every problem that can be written in this form can also be written in the
form of a maximisation problem (e.g. by just redefining the objective function f (x) →
g (x) =− f (x)):

maximize g (x)
subject to x ∈ S .

Optimisation Program 2.

where S is a convex set and g is a concave function on the set S.
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Hence for convex optimisation we require the objective function to be convex for
minimisation problems and concave for maximisation ones. The crucial property of the
convex optimisation problems is that any local optimum of such a problem is guaran-
teed to be a global one. This property makes it possible to solve such problems effi-
ciently.

Semidefinite programs (SDP) form a specific family of convex optimisation prob-
lems. In a semidefinite program the set S is defined via linear and semidefinite con-
straints. Such a set is a convex set and the objective function f is linear. We remark
that an appealing feature of semidefinite programs is the duality [10] of the SDP. For ev-
ery SDP that we will call a primal program and where we perform optimisation over the
variable X so that we can denote the objective function as p(X ), there exists a dual pro-
gram which depends on variables Y1,Y2 and whose objective function we will denote
as d(Y1,Y2). If we choose the convention that the primal problem is the maximisation
problem, then its dual is then a minimisation problem. It is an appealing feature of SDP
duality - known as weak duality - that

d(Y1,Y2)−p(X ) ≥ 0. (2.22)

Finding values for Y1,Y2, that satisfy the constraints of the dual SDP thus always results
in upper bounds d(Y1,Y2) ≥ p∗, where p∗ denotes the optimal solution of the primal
program. Furthermore, if such variables satisfy d(Y1,Y2) = p(X ), then we know that the
optimal solution has been found.

We remark that it is this feature that makes SDPs highly appealing as a numerical
method, since a numerical SDP solver will find primal and dual variables which form
a certificate for optimality, or - if due to finite precision in numerical calculations opti-
mality is reached only approximately - a certificate for approximate optimality in which
the difference between the dual and primal (d −p) is sufficiently small [10]. In addition,
however, SDPs can thus also be used to prove optimality analytically, if one can make an
educated guess for the primal and dual variables.

Let us now be more specific and specify exactly the forms of the two problems. There
are various ways of presenting a general semidefinite program. It is most convenient for
our purposes to use the following form, given in [11], for an SDP and its dual:

• Primal:

maximise tr[AX ]
subject to Φ1(X ) = B1 ,

Φ2(X ) ≤ B2 ,
X ≥ 0 .

Optimisation Program 3.

• Dual:
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minimize tr[B1Y1] + tr[B2Y2]
subject to Φ†

1(Y1)+Φ†
2(Y2) ≥ A ,

Y1 = Y †
1 ,

Y2 ≥ 0 .

Optimisation Program 4.

Here A,B1,B2 are Hermitian matrices,Φ1 andΦ2 are Hermiticity preserving linear maps
andΦ† is a Hermiticity preserving linear map uniquely defined in terms ofΦ through the
following relation: tr[Φ(X )Y ] = tr

[
XΦ†(Y )

]
for all Hermitian matrices X and Y . Notice

that the map Φ† reverses the order of the spaces as compared to the original mapΦ.
The variables of the primal SDP are the matrix elements of the Hermitian matrix X

and any X that satisfies the constraints is termed a feasible X . Likewise the variables
of the dual SDP are the Hermitian matrices Y1 and Y2, and such matrices are termed
feasible if they satisfy the constraints of the dual SDP. It is a very straightforward obser-
vation that feasible points of the dual SDP can be used to provide bounds on the primal
optimum and vice versa. To show this consider feasible variables X ,Y1,Y2; then we have

d(Y1,Y2)−p(X ) = tr [B1Y1]+ tr [B2Y2]− tr [AX ]

= tr [Φ1(X )Y1]+ tr [Φ2(X )Y2]

+ tr [(B2 −Φ2(X ))Y2]− tr [AX ]

= tr
[

X (Φ†
1(Y1)+Φ†

2(Y2)− A)
]
+ tr [(B2 −Φ2(X ))Y2] ≥ 0.

(2.23)

The first equality just comes from implementing the equality constraints of the primal
SDP. The second equality is just an application of the definition of Φ†, and the final in-
equality arises from the inequality constraints of the SDP and the fact that tr[X Y ] ≥ 0 if
X ≥ 0 and Y ≥ 0. This weak duality is the key tool that we will use in Chapters 5 and 8.
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3
QUANTUM REPEATER BASED

QUANTUM NETWORKS

This chapter introduces the concept of a quantum repeater network and discusses the three
conceptually different techniques of distributing long distance entanglement, the so called
three generations of quantum repeaters. These three generations offer a trade-off between
the efficiency of the network and required experimental resources. For the first generation,
which will be the focus of this thesis, we then in detail introduce the three main building
blocks of such a network: remote entanglement generation, entanglement distillation and
entanglement swapping. Finally we introduce different measures of assessing and quanti-
fying the performance of both the total repeater network as well as its individual building
blocks for different quantum information processing tasks. We also discuss in detail the
advantages and disadvantages of each of these assessment methods.
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3.1. QUANTUM REPEATERS
Quantum communication enables the implementation of tasks with qualitative advan-
tages with respect to classical communication, including secret key distribution [1, 2],
various two-party cryptographic tasks [3–7], clock synchronization [8, 9], extending base-
line of telescopes [10], anonymous state transfer [11] and secure quantum cloud com-
putation [12, 13]. Unfortunately, the transmission of both classical and quantum infor-
mation over optical fibres decreases exponentially with the distance. While the problem
of losses applies both to classical and quantum communication, classical information
can be amplified at intermediate nodes, preventing the signal from dying out and thus
increasing the rate of transmitted information. At the same time, the existence of a quan-
tum analogue of a classical amplifier is prohibited by the no-cloning theorem [14]. For-
tunately, in principle it is possible to construct a quantum repeater to increase the rate
of transmission without having to amplify the signal [15, 16]. Hence, the construction
of a quantum repeater would represent a fundamental milestone towards long-distance
quantum communications.

The basic idea of a quantum repeater protocol has undergone many changes since
its original proposal [15]. The authors of this scheme showed that by dividing the entire
communication distance into smaller segments, generating entanglement over those
short links and performing an entanglement swapping operation at each of the interme-
diate nodes in a nested way, one can establish long-distance entanglement. It was also
shown that by including the procedure of entanglement distillation, one can further-
more overcome the problem of noise. Effectively, the authors proposed a scheme that
enables one to generate a high-quality long-distance entangled link with an overhead in
resources that scales polynomially with distance. Unfortunately, this model does not go
into detail of how the physical imperfections of realistic devices, such as decoherence of
the quantum memories with time or possibly the probabilistic nature of entanglement
swapping, affect the performance. These observations have led to the development of
significantly more detailed and accurate, but at the same time significantly more com-
plex, repeater schemes [17–21]. Many quantum repeater proposals require significant
resources and are thus not within experimental reach. However, the recent experimental
progress in the development of quantum memories [22–24] has brought the realisation
of a quantum repeater closer than ever.

Before we start discussing specific repeater proposals, it is important to note that
such quantum repeater networks could be used for different tasks. In fact different stages
of a future quantum internet have been proposed [25] where each higher stage intro-
duces new capabilities. It is clear that designing a repeater scheme that only enables
long distance quantum key distribution (QKD) is experimentally easier than designing a
scheme for distribution of long distance entanglement that can later be stored for some
time and possibly operated on in some way. In particular, even entanglement-based
QKD does not require an individual moment in time in which Alice and Bob directly hold
entangled particles. This can significantly reduce the required quantum storage time
with respect to entanglement distribution networks. However, it must be emphasised
that whenever we refer here to QKD networks we still require the intermediate quan-
tum repeaters to be untrusted. This means that in none of the intermediate nodes is it
allowed for the encoded bit value to be decoded into classical information and subse-
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quently encoded again in the new quantum signal. Such trusted repeater networks for
QKD already exist and require one to trust the intermediate decoding/encoding nodes.

3.2. GENERATIONS OF QUANTUM REPEATERS
Over the years a large number of repeater schemes have been proposed. The main
bottle-neck is related to the classical communication within the network. Not only does
a large amount of classical communication make the network slow, but more impor-
tantly, it places high requirement on the storage capabilities of quantum memories. Such
long required storage time might become unachievable for any realistic quantum mem-
ories which provides a strong motivation for developing repeater schemes with reduced
storage demand. As we will see, there is a trade-off between the required capabilities of
the quantum operations that we can perform and the required storage time.

3.2.1. FIRST GENERATION
The first generation of quantum repeaters requires the ability to perform relatively sim-
ple quantum operations but if it is applied over large distances, it requires quantum
memories with very long coherence times. A primary example of a quantum repeater
from within this generation is the original repeater scheme [15]. This scheme consists of
the following building blocks:

• Remote entanglement generation of the elementary links,

• Entanglement distillation,

• Entanglement swapping.

The general idea behind the first generation repeaters is also depicted in Fig. 3.1.
We will later go into more detail with regard to each of these building blocks. For the

moment let us assume that we have a way of generating entanglement between neigh-
bouring nodes in a network which are sufficiently close to each other such that with
dominant probability an entangled link can be generated within a fixed time. Many
experimental platforms allow for various multiplexing techniques which can help us
achieve this goal, see e.g. [26–31] and Chapter 4.

Entanglement distillation is a technique for overcoming noise. In particular, it en-
ables us to concentrate entanglement from a number of weakly entangled copies into a
smaller number of more strongly entangled ones. Such entanglement distillation tech-
niques are normally probabilistic, yet heralded. Most of the studied practical entan-
glement distillation schemes operate on two copies and aim at distilling a single more
strongly entangled copy. We will go into more detail with regard to entanglement dis-
tillation later. For now let us also assume that we can perform single- and two-qubit
operations and that the noise introduced by those operations is sufficiently small such
that it indeed pays off to perform entanglement distillation.

Finally, the generated and distilled high quality entangled links are then connected
at the intermediate memory nodes using entanglement swapping, which is effectively a
Bell state measurement that enables us to perform the transformation: |Φ〉AB1 |Φ〉B2C →
|Φ〉AC |Φ〉B1B2 . Here A and C are the end-nodes with a single intermediate node storing
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Figure 3.1: The general framework of a first generation quantum repeater scheme. For simplic-
ity distillation is excluded from this figure. In the step "1. Generation", Bell-pairs are generated
between physical qubits located at neighbouring repeater nodes. In the step "2. Connection",
Bell measurements are performed at the repeater stations. Depending on the specific repeater
scheme, the order in which different repeaters perform entanglement swapping can vary, with
possible inclusion of entanglement distillation in between the swaps. Entanglement swapping can
be either probabilistic or deterministic depending on the specific physical platform. In this the-
sis we will focus mostly on deterministic swapping implemented inside NV-centre based memory
nodes. For those systems the Bell measurement can be performed using a single two-qubit gate
followed by two single-qubit measurements as shown in the green-framed window. Such a Bell
measurement gives a two-bit outcome carrying information about which effective Bell state pro-
jector was implemented. Finally, in the step "3. Pauli Frame", this information about the Bell
measurement outcomes from all the repeater stations is forwarded to the end nodes. This deter-
mines the Pauli frame for those end-node qubits, or equivalently, it determines the local correction
that the end nodes need to implement in order to obtain a desired long-distance Bell state. Figure
taken from [18], courtesy of Liang Jiang.
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two qubits B1B2 on which the Bell state measurement is performed and |Φ〉 denotes a
maximally entangled state. As was discussed in [15, 26, 32] thanks to the possibility of
independent entanglement generation of each of the elementary links, even with prob-
abilistic entanglement distillation, the time of generating the effective states increases
only polynomially with the total distance between Alice and Bob. The number of needed
qubits per node increases also either polynomially or logarithmically depending on the
way entanglement distillation is performed [15]. We note that some memories enable
the implementation of deterministic entanglement swapping [33, 34] while the so called
read-and-write memories require us to perform this operation optically which is inher-
ently probabilistic, even in the limit of no intrinsic losses [26]. Fortunately, it has been
shown that even if the entanglement swapping is probabilistic, one can still maintain
polynomial scaling of the generation time [26]. Let us now for a moment assume that
we have access to memories allowing for deterministic swapping. We have hence en-
visioned a highly optimistic scenario: memories enabling deterministic swapping with
high quality gates enabling efficient entanglement distillation.

However, although we have already mentioned that we want to include entangle-
ment distillation in order to increase the quality of the generated quantum states, we
have not discussed yet what would be the effective quality of the resulting state. This is-
sue is very strongly linked to the coherence time of the quantum memories that we use.
Within our repeater protocol there are many processes that require us to be able to store
quantum states while other operations are being performed.

First of all, unfortunately being able to connect all entangled links requires us to
firstly generate all of them. While we effectively can start performing entanglement
swapping between the neighbouring nodes before all the elementary links are there, we
will inevitably need to store some of the states while waiting for the generation of certain
other links. The corresponding decoherence can significantly decrease the quality of en-
tangled links, even if they were generated absolutely perfect, if we do not have access to
quantum memories with sufficiently long coherence times.

Secondly, there are certain storage requirements related to entanglement distillation
itself. It has been proposed that one should interleave entanglement swapping with mul-
tiple rounds of entanglement distillation to preserve the effective quality of the state [15].
Unfortunately scaling up such a procedure is a significant challenge, since, as we will
discuss later, entanglement distillation requires two-way communication and hence ef-
fectively the required waiting time would scale with the total distance between Alice and
Bob. While for first short network demonstrations this might not be a problem, for larger
networks such a scheme could possibly be rendered unscalable by the fact that stor-
age time corresponding to multiple rounds of communication over very long distances
might not be achievable.

This naturally brings us to a question whether this entanglement distillation at every
nested level is actually necessary. Unfortunately even small imperfections in the opera-
tions can significantly decrease quality of entanglement during multiple entanglement
swappings. Finally, even perfect entanglement swapping will significantly decrease the
quality of the resulting states if the Bell pairs to be swapped are imperfect. Let us con-
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sider a scenario, where just before swapping the copies are in an isotropic state:

ρ = p|Φ〉〈Φ|+ (1−p)
I

4
. (3.1)

Then performing entanglement swapping on such two copies would effectively result in
a state:

ρ = p2|Φ〉〈Φ|+ (1−p2)
I

4
. (3.2)

These considerations make it clear that it is indeed necessary to continuously keep com-
pensating for the loss of fidelity during swapping by performing repeated entanglement
distillation, which as we mentioned, places high demands on the quantum memories.
This procedure would not be necessary only if all the elementary links at the time of
entanglement swapping and the local operations are close to perfect.

Of course systems with probabilistic entanglement swapping make this even more
challenging. They will either require us to be able to store certain links for longer while
we try to restore certain neighbouring links which failed during swapping or it can ex-
ponentially decrease the success rate of the total link in case all the swapping operations
were performed at the same time. The second option could also only be taken into con-
sideration if the noise coming from other sources than memory decoherence was neg-
ligible, as discussed in the previous paragraph. Finally, independently which option we
choose, if the goal of the repeater scheme is to generate end to end entanglement rather
than only generate shared secret key, then probabilistic swapping will in general also re-
quire the end nodes to store quantum information while awaiting failure/success infor-
mation from all the swapping stations, again requiring quantum storage scaling linearly
with the length of the network.

We see that the main challenge of the first generation quantum repeaters relates
to the requirement on quantum storage. However, since for many physical systems
achieving coherence times of the order of at least seconds has already been demon-
strated [22, 35–39], in principle it should be possible to face this challenge. Another
advantage of such repeater schemes is that they only require the ability to perform a
limited number of simple single- and two-qubit operations hence placing very limited
demands on the processing power of the individual nodes. For these reasons we will
focus in this thesis on developing reliable building blocks of certain repeater schemes
belonging to this category.

Nevertheless, there have been many proposals for repeater architectures that signifi-
cantly reduce the storage requirement of the memories and allow for much faster remote
entanglement generation. However, as we will now see, they require the ability to per-
form much more involved local operations and therefore it is not expected that the first
proof of principle repeaters will be of this kind. These higher generations are introduced
in the next sections.

3.2.2. SECOND GENERATION
To overcome the necessity of communication time scaling linearly with the total distance
between the end nodes, one needs to replace the corresponding problematic compo-
nents which impose these limitations. These are entanglement distillation and proba-
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bilistic entanglement swapping. As we have already discussed, probabilistic entangle-
ment swapping can be overcome just by using specific platforms that allow for perform-
ing deterministic Bell measurements between matter qubits.

The problem of two way communication needed for heralding success of distillation
is more tricky. To overcome this problem it was proposed to replace such heralded dis-
tillation with either distillation based on one-way quantum error correction [32, 40–42]
or with classical error correction combined with entanglement swapping performed on
the encoded level [18]. In the first method we effectively perform a deterministic entan-
glement distillation. In the second method we can also obtain protection against imper-
fect entanglement swapping. Specifically, we convert the physical elementary links into
large encoded Bell pairs where the encoding guarantees protection against operational
errors. Then all the entanglement swapping operations can be reliably performed on this
encoded level such that no distillation is now necessary, see Figure 3.2. In this way the
required storage time scales linearly only with the distance corresponding to the initial
elementary links. Moreover, it has been also found that for such a scheme the average
time of generating long distance entanglement will grow only poly-logarithmically with
distance.

Hence, we see that the second generation of quantum repeaters significantly reduces
the requirement on the memory storage time and improves the scaling of the rate of
generating these pairs. However in order to be able to realise such a repeater scheme, a
much larger number of possibly more complicated operations needs to be performed,
hence requiring the ability to perform much better gates than for the first generation
repeaters.

3.2.3. THIRD GENERATION

In the second generation repeaters error correction has been used to overcome only the
operational errors and noise. It has also been suggested that loss tolerant codes could as
well be used to overcome the problem of losses. In this way heralded remote entangle-
ment generation will no longer be required, eliminating the need to maintain coherence
during the communication time over the elementary links. These proposals form the
basis of third generation repeaters [20, 43]. In those schemes, logical qubits become en-
coded in large number of photons using such loss tolerant codes. These photons are
then transmitted to the next neighbouring node where the encoded state is transferred
to the memories. The loss errors are then corrected and the logical qubit is again trans-
ferred to photonic qubits and then forwarded to the next node. We depict such a third
generation repeater in Fig. 3.3. Now the only requirement on the memories is to be able
to reliably store the state during the process of error correction, making it completely
independent of the communication time between nodes. Of course, using error correct-
ing codes to overcome both the operational errors and losses requires more advanced
operations than in the second generation repeaters. This in turn requires even higher
gate fidelities. Finally it must be noted that such one-way loss tolerant codes can only
tolerate losses up to 50% [44]. Intuitively this can be explained by noting that for losses
of more than 50%, effectively, Eve could receive more signal from Alice than Bob. This
means that the repeater stations are now required to be placed much more densely.
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Figure 3.2: Schematic overview of the second generation repeater scheme proposed in [18]. In
phase "1. Encoded Generation", encoded Bell states are generated between neighbouring repeater
nodes. This can be achieved by i) encoding local qubits in neighbouring nodes, ii) using additional
physical qubits in those nodes to generate physical Bell pairs, iii) using the physical Bell pairs to
transform the tensor product of the encoded qubits in the two nodes into an encoded Bell pair. In
phase "2. Encoded Connection", a logical noise-tolerant entanglement swapping is performed on
the encoded Bell pairs at the repeater nodes. Each node generates two bits of classical information
carrying information about the outcome of the Bell measurement on the encoded level. In phase
"3. Pauli Frame" these classical bits are sent to the end nodes, carrying information about the
Pauli frame of the logical end-qubits and effectively allowing for establishment of a target logical
long-distance Bell-pair. Figure taken from [18], courtesy of Liang Jiang.
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Figure 3.3: Schematic overview of a third generation repeater scheme. Each repeater node con-
tains a large number of memory qubits and the optical fibre enables simultaneous transmission
of a large number of single photonic qubits. The quantum state is then encoded in those photonic
qubits using some loss-tolerant code. Photons are then sent to the next repeater station where
the state is transferred to the memory qubits. Error correction on this logical state is performed in
the repeater node followed by again encoding the state in photons and sending them to the next
repeater. Such procedure is subsequently performed at all the repeater nodes until the state be-
comes successfully transmitted from Alice to Bob. Figure taken from [43], courtesy of Liang Jiang.
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3.3. BUILDING BLOCKS OF THE FIRST GENERATION REPEATERS
Having provided a background with regard to different repeater frameworks that have
been considered, we will now zoom into the first generation repeater architectures. Al-
though the slowest, these repeater architectures have very moderate hardware require-
ment compared to the second and third generation repeaters, making them promising
candidates for the first demonstration of a quantum internet. We also note that the ini-
tial networks are expected to cover moderate distances which means that the memory
storage time requirement due to the two-way communication needed for entanglement
distillation does not need to be a significant constraint. Hence, in this thesis we will fo-
cus on specific implementations of such first generation repeaters, or more specifically
of the corresponding building blocks that we have already mentioned. Let us now go
through all these building blocks in detail.

3.3.1. REMOTE ENTANGLEMENT GENERATION OF THE ELEMENTARY LINKS
The first step in the original repeater protocol [15] (also known as the BDCZ protocol)
is the generation of the elementary entangled links between the individual repeater sta-
tions. From the theorist’s perspective a natural way of doing so would be to locally gener-
ate an EPR pair in one of the nodes and then send one-half of it to the neighbouring node.
However, deterministic or even heralded state transfer of a qubit state from a photon to
a memory is still a very significant challenge and is not expected to be realised with high
fidelity on a significant number of physical platforms in the near future. In systems that
utilise cavities this task can be performed, provided that one can realise a low-loss over-
coupled cavity with high cooperativity. While such a scenario has been demonstrated
experimentally in trapped atoms by achieving the strong coupling regime [45], demon-
strating high cooperativity is very challenging in general.

Due to this experimental reason, many physical platforms use the help of a middle
heralding station to facilitate such a remote entanglement generation procedure. This
middle heralding station effectively implements an optical Bell state measurement sim-
ilar to entanglement swapping. Effectively the two nodes generate memory-photon en-
tanglement and transmit the two photonic qubits to a heralding station. This station
then entangles the two memories by performing a Bell state measurement on the two
photonic qubits. The remote entanglement generation and quantum repeater schemes
that make use of such a heralding station are analysed in Chapters 4 and 7. A compar-
ison of specific repeater schemes that make use of either a heralded state transfer from
a photonic qubit to a quantum memory or of the heralding stations are described in
Section 6.9.3 in Chapter 6.

Here we will consider two ways of encoding a qubit into a photonic state. These two
types of photonic encodings are qualitatively different from each other and we describe
them in more detail below.

PHOTON NUMBER ENCODING AND THE SINGLE-PHOTON ENTANGLEMENT GENERATION SCHEME

The first encoding is the photon-number or the so-called single-rail encoding. In this
encoding the two logical states correspond to the presence and absence of the photon
respectively. The main limitation of this encoding is that photon loss maintains the qubit
in the logical subspace thus resulting in noise. This can already be seen intuitively by
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noting that a loss of a photon cannot be distinguished from the logical zero. Let us show
it in a more mathematical way. We start by preparing a qubit:

|ψ〉 =α|0〉+β|1〉 , (3.3)

where |0〉 (|1〉) denote the absence (presence) of the photon. Now the so-called pure
loss channel which we will subsequently use to model the loss processes during photon
transmission can be represented by a simple beam-splitter with the signal entering at
one port and vacuum entering at the other one. As a result only a fraction of the sig-
nal becomes transmitted and the remaining part gets lost to the environment [46, 47].
Hence, a pure-loss channel of transmissivity η can be represented in Heisenberg picture
using the following transformation of the optical modes:

âin → âout =p
ηâin +

√
1−ηâenv (3.4)

One can show that for such a photon number encoding, this channel effectively acts as
an amplitude damping channel with the damping parameter given by one minus the
transmissivity [46]. Hence, under the action of the pure-loss channel, the state |ψ〉 will
become transformed into:

ρ =
(
|α|2 + ∣∣β∣∣2

η
)
|φ〉〈φ|+ ∣∣β∣∣2 (1−η)|0〉〈0| , (3.5)

where

|φ〉 = 1√
|α|2 + ∣∣β∣∣2

η)

(
α|0〉+βpη|1〉) . (3.6)

Let us now also denote the two states of the memory qubit as | ↑〉 and | ↓〉. We will
refer to the first of these states as a bright state since applying a specific optical pulse to
it will result in a photon emission and the second one we will call a dark state as it will
not emit a photon in that case. Hence, preparing the memory in the state:

|ψ〉 = sinθ| ↓〉+cosθ| ↑〉 (3.7)

and applying the optical pulse, results in a spin-photon entangled state:

|ψ+〉 = sin(θ) | ↓〉|0〉+cos(θ) | ↑〉|1〉 . (3.8)

Let us now consider the scenario where this operation is performed at two distant
nodes to which we will refer here as Alice and Bob. Both Alice and Bob perform locally
such a memory-photon entanglement generation protocol and transmit the photonic
qubits to a heralding station located halfway between them so that the transmissivity of
the channel between Alice or Bob and the heralding station is η. Hence, the memory-
photon state after the photon has arrived in the heralding station will be:

ρ = (
sin2(θ)+ηcos2(θ)

) |ψ+
η 〉〈ψ+

η |+ (1−η)cos2(θ)| ↑〉〈↑ ||0〉〈0| , (3.9)

where:

|ψ+
η 〉 =

1√
sin2(θ)+ηcos2(θ)

(sin(θ) | ↓〉|0〉+p
ηcos(θ) | ↑〉|1〉) . (3.10)
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The heralding station is effectively just a beamsplitter with two detectors. Here we con-
sider the scenario with non photon-number resolving detectors. Assuming for the mo-
ment the scenario without dark counts, we have at most two photons in the system.
Therefore we can consider three possible outcomes of our optical measurement: left de-
tector clicked, right detector clicked, none of the detectors clicked. The measurement
operators can be easily derived by noting that in our scenario without dark counts, each
of the detectors can be triggered either by one or two photons and no cross-clicks be-
tween detectors are possible due to the photon-bunching effect. Then we can apply the
reverse of the beam splitter mode transformations to the projectors on the events with
one or two photons in each of the detectors to obtain these projectors in terms of the
input modes. Finally we truncate the resulting projectors to the qubit space since in our
scenario it is not possible for more than one photon to be present in each of the input
modes of the beam splitter. In this way we obtain the following measurement operators:

A0 = |Ψ+〉〈Ψ+|+ 1p
2
|11〉〈11| ,

A1 = |Ψ−〉〈Ψ−|+ 1p
2
|11〉〈11| ,

A2 = |00〉〈00| .

(3.11)

Here |Ψ±〉 corresponds to the two Bell states that are orthogonal to the product state |11〉.
Specifically the first two outcomes correspond to the click in the left/right detector while
the third outcome A2 corresponds to the no-click event. Applying this measurement
to the two photonic qubits of the state ρ⊗2 and post-selecting on the outcomes A1 or
A2, projects the two memories into an entangled state. In particular in the limit of high
losses η→ 0 the resulting state of the two memories can be brought to the form:

ρAB = sin2θ|Ψ+〉〈Ψ+|+cos2θ| ↑↑〉〈↑↑ | (3.12)

with probability of success psucc = 2ηcos2θ. We indeed see that although we have as-
sumed perfect operations, the resulting state is not a perfect maximally entangled state
since losses affect the quality of the resulting state. Fortunately the experimentally tune-
able parameter θ allows for a trade-off between the probability of success and the fidelity
of the resulting state. The important feature of this scheme is that the probability of suc-
cess scales linearly with η while the total transmissivity between Alice and Bob is η2. As
we will later see this makes the single-photon entanglement generation scheme [48] a
promising candidate for a proof of principle quantum repeater in itself.

The main experimental challenge with this scheme is that high optical stability of
the setup is required. In particular, the photonic qubits acquire optical phase both from
the lasers at the emission time and while being transmitted through the optical fibre. If
the difference in phase between these two photonic qubits is not known, an unknown
local phase will become imprinted on the state in Eq. (3.12), see [49]. If this phase is
completely unknown all entanglement becomes lost. Hence, optical phase stabilisation
is one of the key requirements of this single-photon scheme.

We discuss in more detail the experimental demonstrations of this scheme and the
repeater proposals based on such single-photon interference in Chapter 7.
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DUAL-RAIL ENCODING AND TWO-PHOTON ENTANGLEMENT GENERATION SCHEME

The second photon encoding that we will consider here is the so called dual-rail en-
coding, where the logical qubit is encoded in some additional degree of freedom of the
photon, e.g. polarisation or time-bin. Using the relation in Eq. (3.4) one can show that
on this encoding the pure loss channel acts as an erasure channel with the erasure prob-
ability given by one minus the corresponding transmissivity η,

D(ρ) = ηρ+ (1−η)| ⊥〉〈⊥ | . (3.13)

Here | ⊥〉 is the loss flag, corresponding to the non-detection of a photon. Now it is pos-
sible to post-select the successful transmission events by declaring success only when a
photon detection event occurred.

Let us now consider the remote entanglement generation for this encoding. Here we
will consider specifically the time-bin encoding, but an analogous procedure exists for
polarisation. This remote entanglement generation scheme using time-bin encoding of
photons has been devised by Barrett and Kok [50] and can effectively be seen as run-
ning the single-photon entanglement generation scheme twice with a bit flip applied to
the two memories between the two runs. That is, we start with a locally generated spin
photon state given in Eq. (3.8). After applying the bit flip to the memory followed by the
second optical pulse, we obtain a state:

|ψ+〉 = sin(θ) | ↑〉|l〉+cos(θ) | ↓〉|e〉 , (3.14)

where now |e〉 = |1〉e |0〉l and |l〉 = |0〉e |1〉l refer to the early and late photon respectively.
These photonic qubits from Alice and Bob are then sent to the heralding station, each
through a pure loss channel of transmissivity η. Hence just before the heralding station
the spin-photon state reads:

ρ = η|ψ+〉〈ψ+|+ (1−η)
(
sin2 (θ) | ↑〉〈↑ |+cos2 (θ) | ↓〉〈↓ |)⊗|00〉〈00|e,l . (3.15)

Then at the heralding station the two photons from Alice and Bob interfere on the beam-
splitter followed by photon detection over the two time-windows. One can show that
depending on the specific detection event configuration, detecting a photon in each of
the two time windows implements one of the two projectors |Ψ±〉〈Ψ±|, where

|Ψ±〉 = 1p
2

(|el〉± |l e〉) . (3.16)

These corresponding outcomes herald success, while all the configurations in which
there is no photon detection in at least one of the two time-windows are treated as fail-
ure. One can then show that successful events projects the memories into one of the
two perfect Bell states 1p

2
(| ↑↓〉± | ↓↑〉) where the total probability of success is given by

psucc = 2η2 sin2 (θ)cos2 (θ) which achieves its maximum value for θ = π/4 giving pmax
succ =

η2/2. We now see that while the Barrett-Kok scheme enables for the generation of perfect
EPR pairs, it achieves it at a rate that is quadratically worse than for the single-photon
scheme.

An additional advantage of the Barrett-Kok scheme is that it does not require phase
stabilisation, we only require this phase to be stable over the two consecutive time-
windows. This can be easily seen by noting that in equation Eq. (3.14), if we apply a
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phase e iφ to both the early and late photon states, this phase factorises and becomes an
irrelevant global phase.

OTHER REMOTE ENTANGLEMENT GENERATION SCHEMES

There also exists a third remote entanglement generation scheme utilising the heralding
station, that is able to extract the benefits from both previous schemes: in the ideal case
the rate of generating the EPR pairs should scale linearly with η and achieve a fidelity
of one. This scheme generates two copies of the state in Eq. (3.12) and distils a perfect
EPR pair from them [51, 52]. Moreover, it also does not require high optical phase sta-
bility. However, entanglement distillation involves more complex operations and longer
quantum storage than needed for the previous two entanglement generation schemes.
We discuss the details of the corresponding distillation procedure in Section 3.3.2 and in
Chapter 5.

Finally we will also consider an entanglement generation scheme that utilises a source
of entangled photons placed in the middle between Alice and Bob. This scheme together
with the Barrett-Kok and the scheme based on entanglement distillation are analysed in
the context of multiplexing in Chapter 4.

3.3.2. ENTANGLEMENT DISTILLATION
The second crucial component of first generation quantum repeaters is entanglement
distillation which is used to compensate for all the operational errors. Entanglement dis-
tillation is a procedure by which large dimensional entanglement can be concentrated
into smaller dimensional systems, thus effectively increasing “the density of entangle-
ment”. While in quantum information theory one often considers optimal distillation
procedures that can be performed on asymptotically many copies and using a large
number of ancilla systems, here we will focus on practical distillation schemes which op-
erate only on few copies. In most cases we will focus on the scenario where two weakly
entangled copies are distilled to a single copy. In this few copy regime, most entangle-
ment distillation protocols are probabilistic yet heralded, which means that the distill-
ing parties know whether the distillation procedure succeeded or not. If it did, they are
guaranteed that the entanglement has been successfully condensed into the, in general,
smaller dimensional output state. We note here that certain subtleties need to be con-
sidered. Specifically, here we will use fidelity to the closest maximally entangled state as
a quantifier of the amount of entanglement in the state and we will aim at establishing
distillation protocols that maximise this fidelity. However, as discussed in Section 2.2 in
Chapter 2 fidelity is not an entanglement measure and loses its meaning as a quantifier
of entanglement for its lower values.

Due to a limited lifetime of local quantum memories, practical distillation schemes
are not expected to employ multi-round operations in the near future. Instead, prac-
tically employed schemes consist of applying a local operation and measurement on
Alice’s and Bob’s side, followed by a single exchange of measurement outcomes using
classical communication in order to decide success or failure. Here, we will refer to this
subset of Local Operations and Classical Communication (LOCC) as measure and ex-
change (MX) operations due to their reduced technical demands. The general frame-
work of distillation using MX operations is depicted in Figure 3.4.
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CC

Figure 3.4: The general framework of realistic entanglement distillation using the measure and
exchange (MX) operations. Alice and Bob share a state ρAB . Each of them applies their local
operation denoted by Λ. Alice and Bob output then a state σAB , which, in general, will be smaller
dimensional than the input state ρAB . Additionally, they output classical flags which carry the
information regarding success or failure of the protocol. These flags are then exchanged over the
classical channel to determine whether the distillation succeeded or not.
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Figure 3.5: Distillation circuit of a specific class of 2 → 1 distillation protocols. In this circuit firstly
Alice and Bob apply bilocal CNOT gates followed by a measurement of the target copy in the stan-
dard basis. They then exchange the outcomes of that measurement. Depending on the protocol,
different outcome configurations determine success or failure. Another difference between the
protocols from this class is that before applying this circuit Alice and Bob need to apply specific
local rotations to their individual qubits which also depend on the specific protocol.

From the experimental perspective performing operations on three input copies can
be already very challenging. Hence, here we will mostly consider distillation protocols
that distil from two to one copies. A large family of such protocols involves firstly apply-
ing specific single qubit rotations to each qubit followed by the implementation of the
circuit depicted in Figure 3.5.

We will consider here three distillation protocols from this class. In general, the more
information we have about the states we are distilling, the better we can tailor the distil-
lation protocol to that state. Having little information about the state requires us to apply
a very generic distillation protocol whose efficiency is in general low. We will start here
with the most generic distillation protocol from this class which requires us only to know
the specific maximally entangled state to which the fidelity is the highest. Moreover, we
require this fidelity to satisfy F > 0.5 in order for this protocol to be able to increase it.
In this protocol Alice and Bob firstly twirl the state over the group {U ⊗U∗} to bring the
state to the isotropic form given in Eq. (3.1) without affecting the fidelity. Here, twirling
over the group means applying uniformly at random operations corresponding to the
elements of that group. This so-called BBPSSW [53] protocol is described in Algorithm 1.

If we possess more information about the two two-qubit states, in particular if addi-
tionally to the dominant Bell state we also know the ordering in terms of magnitude of
the other three Bell diagonal coefficients, then we can apply a more efficient protocol.
This protocol uses this information by twirling only over the smaller group of correlated
Pauli operators: {I⊗I, X ⊗ X ,Y ⊗Y , Z ⊗ Z }. Applying these operations at random trans-
forms the state into the Bell diagonal state which contains more information than the
isotropic state used in BBPSSW. Here, we consider a version of DEJMPS protocol [54] in
which the Bell coefficients are first permuted in a way which maximises output fidelity
[55]. Again, this protocol is applicable to states whose fidelity with some maximally en-
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Algorithm 1 BBPSSW protocol

1: Depolarise the two available copies of the state to the isotropic state form:

τ= p|Φ+〉〈Φ+|+ (1−p)
I

4
,

with fidelity F = (3p +1)/4.
2: Apply bi-local CNOT gates between the two copies.
3: Measure the target qubits and communicate the results.
4: if The measured flags are 00 or 11 (this occurs with probability psucc = F 2 + 2F (1−

F )/3+5[(1−F )/3]2) then
5: The source (first) copy becomes more entangled than before (fidelity to |Φ+〉 in-

creases). We obtain a Bell diagonal state with fidelity F ′ such that

F ′ = F 2 + [(1−F )/3]2

psucc
.

6: return

tangled state satisfies F > 0.5. The DEJMPS protocol is described in Algorithm 2

Finally let us come back to the remote entanglement generation through distillation.
As we have seen, the main source of errors for the single-photon entanglement genera-
tion scheme comes from the photon loss. However, this noise in the state in Eq. (3.12) is
of a very specific form. Hence, it is reasonable to think that since the form of the state
is known, there could exist a specific distillation scheme that targets these states and
therefore is more efficient than the BBPSSW and DEJMPS protocols for these states. In
fact such a protocol is known and was proposed in [56], see Algorithm 3 for its descrip-
tion. Since this distillation protocol is utilized within the Extreme Photon Loss (EPL)
entanglement generation scheme [51, 52] (see below), we refer to it here as EPL-D.

When applied to two copies of the state in Eq. (3.12), arising in the remote entan-
glement generation scheme that uses a single photon detection scheme, the EPL-D pro-
tocol extracts a perfect maximally entangled state with probability of success given by
psucc = sin4θ/2. Hence, EPL-D will be a very natural element of such a remote entan-
glement generation scheme. The scheme for remote entanglement generation using a
single photon detection scheme and a distillation operation under the condition of ex-
treme photon loss has been proposed in [51]. Here we will consider an adaptation of
this entanglement generation scheme as proposed in [52], which performs distillation
on a modified version of the state given in Eq. (3.12) that includes also the noise arising
from the lack of knowledge about the internal phase of the generated entangled state
due to low optical stability of the setup. The intuition why this protocol works is as fol-
lows. Firstly, as established in [56], the success condition of measuring the flags to be
11 can only be satisfied if both of the states were actually in the |Ψ+〉 part of the mixture
in Eq. (3.12). Now let us have a look at the case if that term in both states has acquired
a fixed phase e iφ. Then the action of the CNOT for this successful case with the phase
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Algorithm 2 DEJMPS protocol

1: Twirl the two available copies of the state to the Bell diagonal state
2: Perform local rotations on both Alice’s and Bob’s qubits so that the two copies are in

the form
τ= p1|Φ+〉〈Φ+|+p2|Ψ+〉〈Ψ+|+p3|Φ−〉〈Φ−|+p4|Ψ−〉〈Ψ−|,

with p1 > 0.5, p1 > p2 ≥ p3 ≥ p4 and p1 +p2 +p3 +p4 = 1. This ordering of the Bell
coefficients allows to achieve the highest fidelity [55].

3: Perform additional rotations: rotate both qubits on Alice’s side by π/2 around X -axis
and by −π/2 on Bob’s side.

4: Apply bi-local CNOT gates between the two copies.
5: Measure the target qubits and communicate the results.
6: if The measured flags are 00 or 11 (this occurs with probability psucc = (p1 + p4)2 +

(p2 +p3)2) then
7: The source (first) copy becomes more entangled than before (fidelity to |Φ+〉 in-

creases). We obtain a state:

η= p ′
1|Φ+〉〈Φ+|+p ′

2|Ψ+〉〈Ψ+|+p ′
3|Ψ−〉〈Ψ−|+p ′

4|Φ−〉〈Φ−|,

with p ′
1 = (p2

1 +p2
4)/psucc, p ′

2 = (p2
2 +p2

3)/psucc, p ′
3 = 2p2p3/psucc, p ′

4 = 2p1p4/psucc.

8: return

Algorithm 3 EPL-D protocol

1: Apply bi-local CNOT gates between the two copies.
2: Measure the target qubits and communicate the results.
3: if The measured flags are 11 then
4: Output the source (first) copy.

5: return
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included is (forgetting the normalisation):

(|01〉A1B1 +e iφ|10〉A1B1 )(|01〉A2B2 +e iφ|10〉A2B2 ) → bilocal CNOTs →
(|01〉A1B1 +e2iφ|10〉A1B1 )|00〉A2B2 +e iφ(|01〉A1B1 +|10〉A1B1 )|11〉A2B2 .

(3.17)

Hence, indeed we see that the phase becomes the global irrelevant phase for the suc-
cessful scenario where the target qubits are measured in 11. Note however, that while it
is now not required to know what that phase is, it is still necessary for this phase to be
stable over the generation of these two copies so that the acquired phase e iφ is the same
for both copies. The scheme presented in [52], which we will refer to here as the Extreme
Photon Loss (EPL) scheme utilizes EPL-D to eliminate both the effect of photon loss and
lack of knowledge about the internal phase of the generated states. Let us first define the
state:

|Ψ+(φ)〉 = 1p
2

(
|01〉+e iφ|10〉

)
(3.18)

We then describe the EPL entanglement generation scheme in Algorithm 4.

Algorithm 4 EPL entanglement generation scheme

1: Generate node-photon entanglement at both remote nodes, where the photonic
qubit is encoded in the presence-absence of a photon.

2: Send the photonic qubit towards a beam-splitter station in the middle.
3: Conditioned on the detection of a single photon, store the resulting state in quantum

memories.
4: Repeat the above procedure to generate the second copy.
5: Assuming stability of the experimental apparatus over the time of generating those

two copies, Alice and Bob share then an effective state:

ρAB (p) = 1

2π

∫
dφτA1B1(φ, p)⊗τA2B2(φ, p),

where
τAB (φ, p) = p|Ψ+(φ)〉〈Ψ+(φ)|+ (1−p)|11〉〈11|.

6: Apply EPL-D distillation scheme.
7: if EPL-D succeeds (this occurs with probability psucc = p2/2) then
8: We obtain a perfect Bell state:

η ÂB̂ = |Ψ+(φ= 0)〉〈Ψ+(φ= 0)|.

9: return

In Chapter 5 we consider a more realistic noise model for the EPL scheme, where we
also include a dephasing noise.

Finally we will now also introduce the concept of filtering. It is clear that it is not
possible to increase the amount of entanglement using LOCC. However, it is possible to
do that probabilistically in a post-selected fashion. This shows that it is in fact possible
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to perform distillation on a single copy of a two-qubit state using POVM measurements.
A well-known filtering protocol [57] is detailed below.

Algorithm 5 Filtering protocol

1: Perform local measurements given by the POVMs: {M 0
A , M 1

A} and {M 0
B , M 1

B } with

M 1
A = (A1

A)† A1
A , where A1

A = p
ε|0〉〈0| + |1〉〈1| and M 0

A = (A0
A)† A0

A = I− M 1
A and with

M 1
B = (A1

B )† A1
B , where A1

B = p
ε|1〉〈1| + |0〉〈0| and M 0

B = (A0
B )† A0

B = I− M 1
B for some

parameter ε ∈ [0,1].
2: Communicate the results.
3: if The measurement outcomes corresponding to M 1

A and M 1
B are obtained then

4: Output the post-measurement state.

5: return

This protocol is designed to perform well for the stateρAB = p|Φ+〉〈Φ+|+(1−p)|01〉〈01|
[which is the state defined in Eq. (3.12) up to a local bit flip]. For this state, conditioned

on success the post-measurement state is: η ÂB̂ = pε
psucc

|Φ+〉〈Φ+|+ (1−p)ε2

psucc
|01〉〈01| with fi-

delity F = pε
psucc

and with the probability of success of the filtering procedure given by

psucc = pε+ (1−p)ε2. At the end of Appendix 5.6.2.2 in Chapter 5 we describe the mod-
ification of this filtering scheme that allows us to achieve higher fidelities for the above
defined states ρAB with smaller values of p in the case of larger desired probability of
success.

3.3.3. ENTANGLEMENT SWAPPING
The final building block of a first generation quantum repeater scheme is entanglement
swapping performed within the quantum memories. In this thesis we will consider the
implementation of NV-center based quantum memories which allow for performing de-
terministic entanglement swapping by effectively performing a CNOT gate between the
two memories followed by single-qubit measurements, see Chapters 6 and 7 for more
details. However, there are many other platforms such as atomic ensembles, for which
entanglement swapping needs to be performed optically in an inherently probabilistic
manner. For those systems there in principle exist various strategies that could overcome
this problem. We briefly discuss such methods in Section 9.2.1 in Chapter 9.

3.4. ASSESSING THE PERFORMANCE OF QUANTUM REPEATERS

3.4.1. SECRET-KEY RATE AND E-BIT RATE
We have already established two crucial metrics of performance of remote entanglement
generation and repeater schemes in general. These are the probability of success or more
generally the rate of generating the long distance entanglement and the quality of the
resulting state (which we often measure by the fidelity to the closest maximally entangled
state). It would now be useful to have some way of combining these two metrics into a
single figure of merit.

Fortunately quantum key distribution, which seems experimentally to be the easiest
application of quantum networks, provides us with such a figure of merit. This figure of
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merit is effectively the rate of generating shared secret key. This rate can be seen as a
product of the amount of key that can be extracted from a single copy of a state, called
a secret-key fraction, and the yield of generating those states, with some possible pre-
factors depending on the specific QKD protocol that we implement. The secret-key frac-
tion, which we will denote as r , quantifies the quality of the state. It is a function of the
so-called quantum bit error rate (QBER) which effectively tells us what is the probabil-
ity that if both Alice and Bob use the same basis, they will obtain uncorrelated results.
Clearly if Alice and Bob share a perfect EPR pair and measure in the same basis, for each
of those bases they will always obtain correlated results and so the QBER is in that case
equal to zero for all the bases (we note that depending on the shared maximally en-
tangled state, the perfect correlation might manifest itself as anti-correlated bits; QBER
effectively quantifies the deviation from the measurement outcomes that would occur
for a perfect maximally entangled state).

We also note that for simplicity we will consider here the secret-key fraction in the
asymptotic regime, that is in the limit when Alice and Bob generate infinitely many raw
bits from infinitely many copies of the shared quantum states. Clearly that assumes a
huge amount of classical post-processing, which however, due to its classical nature,
should not be challenging from the technological perspective. Another independent
motivation for assessing the repeater with respect to the task of generating secret keys
is related to the fact that quantum key distribution is, at the moment, the most mature
quantum technology [58]. Finally, we note that estimating QBER can be also useful for
assessing other tasks than secret key generation. In particular, with the QBER at hand,
one can also estimate an optimal rate of sending qubits over the corresponding noisy
quantum channel [59].

One could also consider a similar figure of merit for the rate of generating remote
entanglement. In this case a natural counterpart to the asymptotic secret-key fraction
would be the distillable entanglement of the generated state. However, there are two
problems with this concept. Firstly, distillable entanglement assumes that we are able to
perform an effectively infinite amount of quantum processing, acting on infinitely many
qubits at once and without introducing any noise. Of course this is practically infeasible
to implement. Secondly, distillable entanglement is very difficult to calculate in most
cases and we can only calculate certain upper and lower bounds for it. Hence, we will
not pursue this direction here.

Moreover, it is worth noting that in practical large quantum networks there might be
some links which will need to be used very often and for which the yield would need to
be high. Certain other links reaching to specific end users might not need to be used so
often and hence for them one could sacrifice some of the yield in order to improve the
quality of the generated state. Hence, it many cases it might be useful to keep the yield
and the fidelity (or some other way of quantifying the quality of generated entanglement)
as two separate independent metrics.

3.4.2. CHANNEL USES PICTURE VERSUS THROUGHPUT PICTURE

We have discussed here the rate of generating secret-key or EPR pairs. However, we have
not yet specified in what units we will be evaluating this rate. Here there are two distinct
perspectives that we need to discuss. It is clear that on the practical level we would like to
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quantify how fast we can generate the remote entangled states or the secret key. Hence it
is natural for the yield to be evaluated with respect to time and the corresponding rate of
secret-key bits or e-bits per second we will refer to here as throughput. It is natural then
to aim at designing a repeater scheme that achieves as high a throughput as possible.

This brings us to a very fundamental question, regarding what actually is a quantum
repeater. Let us imagine that we are able to experimentally implement the BDCZ re-
peater scheme as proposed by the authors. That is we implement remote entanglement
generation of the elementary links, entanglement distillation and entanglement swap-
ping. However, because of all the noise in the system and intrinsic losses we find that
the achieved throughput is much lower that in a similar experiment where we just use a
direct transmission channel. Can we then claim that we have implemented a quantum
repeater? Clearly this is highly debatable.

One way of defining a quantum repeater that has been originally proposed is by the
argument based on the scaling of resources [15, 32]. Let us apply this argument to the
task of remote entanglement generation. As we mentioned earlier we can now consider
two quantities, the time (or rate) of generating the remote entanglement and the fidelity
of the generated state. Let us now fix the target fidelity. Now, if we find that using the
specific proposed scheme, both the time needed to generate these long-distance links of
the target fidelity and the number of required quantum systems per each network node
scale polynomially or better with distance, then our scheme is indeed an implementa-
tion of a quantum repeater.

It is unfortunately very unlikely, that this criterion could be applied to the first proof
of principle repeaters. The first experimental realizations of various proposed schemes
will certainly be demonstrated over limited distance with very small number of repeater
stations, possibly not even more than one or two. In such a scenario based on such
a short distance it is indeed very hard to talk about any scaling arguments. This sug-
gests that different methods should be applied for benchmarking such proof of principle
quantum repeaters.

One of the ways to solve this problem is to consider the information-theoretic frame-
work. In quantum channel theory one of the vital questions that one considers is how
to find optimal quantum encoding and decoding procedures for reliably performing dif-
ferent tasks over a specific quantum channel [60]. The communication performance
through such a channel is quantified with respect to the number of times that we make
use of this channel. Effectively making use of the channel corresponds to inputing a
specific state into the channel. This concept of a channel use has practical motivation
as of course every time we input a quantum state into the channel we effectively need to
mark this channel as occupied and at that time cannot make use of it for any other task.
Of course such mathematical channels can have certain dimensional restrictions, e.g. if
a channel is a qubit channel, then in each channel use we cannot input a state that is
higher dimensional than a qubit.

One of the fundamental questions of quantum communication theory then is to find
the optimal rate with respect to the number of such channel uses of performing different
quantum information processing tasks over different quantum channels. This optimal
rate is called a capacity of a channel [60]. For the reason mentioned in the previous
subsection, we will focus here on the rate of generating secret key and therefore we will
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consider the so called private capacity, which is the number of secret bits per channel
use that can be generated over the channel in the limit of infinite number of channel
uses. The specific channel that is of primary importance to us is a pure-loss channel as it
provides a reliable model of the loss processes in the optical fibre. Hence we will then say
that if a given repeater scheme allows us to demonstrate a secret-key rate, defined with
respect to the number of channel uses, that is larger than the private capacity of such a
pure loss channel between the end parties, then we can indeed claim the experiment to
be a demonstration of such a proof of principle quantum repeater [61].

We also note that the secret-key rate is more universal in the sense that it can be
easily converted into the throughput using the repetition rate of the scheme (number of
attempts we can perform in a unit time). The converse, that is converting capacity into
the optimal throughput achievable with direct transmission is also possible. However,
that requires making an assumption about the use of a particular source with a fixed
repetition rate. Therefore comparison of the achieved throughput with such an optimal
throughput of the direct transmission channel cannot be formulated without a reference
to a specific direct transmission setup, hence losing the universal aspect of the channel
uses picture.

Nevertheless, one must be aware of the limitations of the secret-key rate metric. In
particular, it does not take into account the waiting time related to transmission latency
or, in general, the repetition time of the protocol. This means that a hypothetical plat-
form with perfect memories and operations and high efficiencies but with a constraint
that each attempt to generate memory-photon entanglement can be performed only
once per day, could easily overcome the secret-key capacity. These differences between
secret-key rate and the throughput for specific repeater proposals are discussed in more
detail in Chapter 7.
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Quantum networks distributed over distances greater than a few kilometers will be limited
by the time required for information to propagate between nodes. We analyze protocols
that are able to circumvent this bottleneck by employing multi-qubit nodes and multi-
plexing. For each protocol, we investigate the key network parameters that determine its
performance. We model achievable entangling rates based on the anticipated near-term
performance of nitrogen-vacancy centres and other promising network platforms. This
analysis allows us to compare the potential of the proposed multiplexed protocols in dif-
ferent regimes. Moreover, by identifying the gains that may be achieved by improving par-
ticular network parameters, our analysis suggests the most promising avenues for research
and development of prototype quantum networks.
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Recent progress in the generation, manipulation, and storage of distant entangled
quantum states has opened up an avenue to the construction of a quantum network
over metropolitan-scale distances in the near future [1, 2]. One of the key challenges
in realizing such quantum networks will be to overcome the communications bottle-
neck induced by the long distances separating nodes. This occurs because probabilistic
protocols require two-way communication and, for such distances, the entanglement
generation rate becomes limited by the time required for quantum and classical signals
to propagate.

It is unlikely that quantum networks will attain sufficient levels of complexity in the
near future to support the transmission of complex multi-photon entangled states nec-
essary to overcome this bottleneck through error correction [3, 4]. This motivates the
development of alternative methods to circumventing this limited communication rate,
of which the most promising near-term approach is through multiplexing entanglement
generation [5–10].

Previous proposals have developed multiplexed entanglement-generation protocols
for networks based on atomic-ensemble quantum memories and linear optics [6, 9, 11]
and for networks in which each node consists of many optically accessible qubits that
can be temporally, spectrally or spatially multiplexed [5, 7, 8, 10]. However, these propos-
als are not effective for promising multi-qubit hybrid network node architectures [12], in
which one (or a few) optically accessible communication qubits in each node provide a
communication bus to interface with multiple local memory qubits. Several platforms
have demonstrated the key elements of such a system, including nitrogen-vacancy (NV)
centres in diamond [13, 14], trapped ions [2], and quantum dots[14, 15].

Here we focus on the scenario of efficiently generating heralded remote entangle-
ment between two hybrid multi-qubit nodes separated by tens of kilometers in a quan-
tum network (Fig. 4.1). We propose two strategies for multiplexing entanglement gen-
eration using multi-qubit architectures, identifying the scaling of the entangling rates
with the distance between nodes. We compare these strategies to an alternative proto-
col based on the distribution of entangled photon-pairs [16], modelling all three proto-
cols analytically and with Monte Carlo simulations. This allows us to identify optimal
protocols for different regimes of distance and node performance.

In order to be able to effectively assess the potential of these network protocols, it is
vital to incorporate the known and anticipated limitations of potential platforms from
the start. In this paper we therefore use network parameters representing the expected
near-term performance of NV centre nodes. These centres are promising nodes for such
a network, combining a robust and long-lived 13C nuclear-spin quantum register [17, 18]
with a photonic interface (Fig. 4.1). Our conclusions are nonetheless broadly appli-
cable to other platforms with comparable system performances, particularly including
trapped ions [2].

4.1. QUANTUM NETWORK PROTOCOLS
We begin by briefly introducing the three candidate protocols that we consider for a
metropolitan-scale quantum network. For each network, we identify the scaling of the
entanglement generation rate with the system transmission efficiency and the distance
between nodes.
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Memory qubit
(13C spin)

NV spin
interface

Figure 4.1: Quantum networks have the potential to reach metropolitan scales in the near term,
opening up new challenges due to the time required to signal successful entanglement generation
between nodes separated by many kilometers. Nitrogen-vacancy centres in diamond are promis-
ing candidates for the nodes of such a network, combining an electronic spin communication
qubit interface for entanglement generation and local processing with long lived 13C nuclear-spin
memory qubits.
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4.1.1. MULTIPLEXED BARRETT-KOK PROTOCOL
The first scheme is a multiplexed version of the Barrett-Kok (BK) protocol. In this scheme,
entanglement is generated at both nodes locally between the spin state of the commu-
nication qubit and the modal occupation of a single photon (typically the photonic state
is time-bin encoded for NVs). This procedure constitutes a single attempt to generate
remote entanglement. The two photons are then transmitted to a remote beam splitter,
where a probabilistic joint Bell state measurement (BSM) on the photons projects the
two distant communication qubits into an entangled state upon measurement of the
appropriate outcomes [19].

In this protocol each photon needs to be transmitted over a distance d/2 from the
nodes to the central BSM station. This is followed by the transmission of classical infor-
mation over the same d/2 distance heralding to the nodes the success or failure of the
entangling attempt. Hence in the standard BK protocol, the entanglement attempt rate
rBK is limited by the combined quantum and classical communication time (tc = d/c)
required to establish whether the protocol succeeded: rBK ∼ t−1

c . Even for modest dis-
tances, this time delay is sizable; e.g. for d = 50 km the delay is tc = 250µs, limiting the
attempt rate to 4 kHz.

This rate limitation can be mitigated by using a multiplexed version of the BK proto-
col (Fig. 4.2), in which the spin state of the communication qubit is swapped to a mem-
ory qubit directly after spin-photon entanglement generation, freeing up the communi-
cation qubit for additional entanglement generation attempts. For the NV system, nat-
urally occuring nearby 13C nuclear spins provide robust memory qubits [18, 20]. The
state is stored in this memory qubit until information about the success of the attempt
arrives. In the meantime, spin-photon entanglement generation and subsequent state
swapping to other memories can continue until all of the memories are occupied. The
multiplexed protocol allows N qubits per node to be utilised, where N includes both the
communication qubit and the memory qubits.

The maximum number of qubits per node that can be usefully employed in this pro-
tocol is given by Nmax = dtc /tsg e * where tsg is the duration of the swap gate (typically
much longer than the duration of entanglement generation attempts teg ). The attempt
rate of the multiplexed Barrett-Kok (mBK) protocol is therefore a factor N larger than
for the standard BK scheme: rmBK ∼ N /tc for N ≤ Nmax. This rate is upper bounded by
rmBK ≤ 1/tsg .

The success of each attempt of the BK scheme is conditioned on the detection of both
the photons emitted by the communication qubits in the BSM. As a result, the system
transmission efficiency η appears quadratically in the entanglement success rate RmBK.
Hence for N ≤ Nmax:

RmBK ∼ rmBK
η2

2
= 1

2
N η2/tc . (4.1)

The factor of half corresponds to the probability of a successful BSM at the beam splitter.

4.1.2. MULTIPLEXED EXTREME-PHOTON-LOSS PROTOCOL
In the case of high levels of photon loss (η¿ 1), a protocol based on entanglement dis-
tillation can be more effective than the BK protocol. In this protocol, instead of directly

*dxe denotes ceil(x)
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1) Create entangled states

2) Swap to memories

3) Repeat steps 1 and 2
with available memories

4) Continue conditional
on communicated results

tc/2

tc/2

d
teg

tsg

Figure 4.2: Multiplexing concept. The protocol starts with a creation of local entanglement be-
tween the communication qubits and single photons at both nodes (step 1). The state of the com-
munication qubits is then immediately transferred to the memory qubits (step 2), which allows for
a second entanglement attempt before the result of the first one is known (step 3). Once the signal
heralding success or failure of the attempt is received at the nodes, the occupied memories can be
reused for new attempts (step 4).
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trying to generate a maximally entangled state |Ψ〉 = (1/
p

2)(|01〉+ |10〉), two weakly en-
tangled states of the form ρ ≈ 1

2 |Ψ〉〈Ψ|+ 1
2 |00〉〈00| are efficiently generated conditional on

the detection of only a single photon at the beam splitter station [12, 21]. Here |0〉 (|1〉)
denotes the state of the communication qubit from which a photon is (is not) emitted.
These weakly entangled states contain a contribution |00〉〈00| from the case in which
both communication qubits emitted a photon, but only one was detected. After the two
states are successfully generated, an entanglement distillation procedure is performed
using local operations and classical communication. This distillation produces a pure
entangled state with a 1/8 probability. Since two raw states are consumed to generate
a final entangled state, this extreme-photon-loss (EPL) protocol requires at least two
qubits per node, as the first state has to be stored in a memory qubit until the second
entangled state is generated.

The advantage of this scheme over the BK protocol is that it does not require the
detection of coincident photons, instead allowing for multiple attempts to generate the
second state. This results in a success probability that is proportional to η rather than
η2 and thus an entangling rate REPL ∼ η/(16tc ), where a factor 1/8 corresponds to the
probability that the distillation operation succeeds, and a factor 1/2 reflects the need to
generate two entangled states.

Analogously to the BK protocol, a multiplexed version of the scheme can be envi-
sioned in which multiple entanglement generation attempts are performed within one
communication cycle. Since, in the second stage of the protocol one memory is contin-
uously occupied by the first entangled state, the maximum number of qubits that can be
effectively utilised is one more than in the BK protocol: Nmax = dtc /tsg e+1. The resulting
entanglement success rate RmEPL for the multiplexed extreme-photon-loss protocol for
N ≤ Nmax is proportional to the inverse of the sum of the time spent in the first stage
(tc /(ηN )) and second stage (tc /(η(N −1))) of the protocol:

RmEPL ∼ N (N −1)

2N −1

η

8tc
. (4.2)

The entangled state fidelity in this protocol is sensitive to decoherence of the memo-
ries during entanglement attempts. In order to ensure a minimum fidelity, stored entan-
gled states can be discarded after a set number of subsequent entanglement attempts,
at the expense of decreasing the entanglement rate. Entanglement generated from a
single photon detection event is expected to succeed within at most a few hundred at-
tempts (∼100 attempts at 50 km, ∼1000 attempts at 100 km) for the range of parame-
ters considered here. For nitrogen-vacancy centre nodes, recent results indicate that 13C
nuclear-spin memories may effectively preserve quantum states over this number of at-
tempts [18], and so this effect is not expected to significantly impact our conclusions.

4.1.3. MIDPOINT-SOURCE PROTOCOL
The final configuration that we consider is the midpoint-source (MPS) protocol follow-
ing Ref. [16]. In addition to the two nodes, this protocol requires an entangled-photon
source (which emits pairs of photons with probability pem) positioned midway between
the nodes (Fig. 4.3). In this protocol, pairs of entangled photons generated by the pho-
ton source are split and one is sent to each of the two nodes. At each of the nodes, a
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BSM is performed between this photon and a photon generated by the local commu-
nication qubit. Entanglement swapping succeeds only if both BSMs succeed (requiring
the detection of four photons in total).

1) Midpoint source and local nodes
continuously create entangled
states

2) Swap to memory upon local
success, communicate result

Figure 4.3: Midpoint-source (MPS) protocol. The photon source in the middle continuously gen-
erates pairs of entangled photons with probability pem and transmits them to the two nodes (step
1). At the same time both nodes synchronously generate local entanglement between the com-
munication qubit and emitted photons. Local beam splitter stations at each node perform BSM
measurements between photons emitted from the source and the the photons emitted from the
local node. This gives the local node immediate knowledge of the local success or failure of each
attempt. This information is also communicated to the other node, arriving d/c later.

Since the successes of the BSMs can be reported to their local nodes immediately, in
the case of local failure the nodes can quickly proceed to a new entanglement genera-
tion attempt. In this way the entanglement attempt rate can be significantly increased.
The attempt rate is upper bounded by rMPS ≤ t−1

eg , where teg is the duration of the spin-
photon entanglement generation.

This upper bound is saturated if the number of successful local BSMs per commu-
nication time tc , n = pBSM tc /teg ≈ (1/2)pemη tc /teg , satisfies n ¿ 1. In this limit the
protocol can be effectively run with a single qubit per node, and the rate is therefore
insensitive to the swap gate time tsg. When operating the MPS protocol in this low n
regime, the entanglement success rate is given by

RMPS ∼ pemη2/(4teg ), (4.3)

where the factor of 1/4 arises because both BSMs must succeed in the same round, and
η includes the system losses for both the photon from the entangled photon source and
the locally generated photon.
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This scaling is different to that identified in Ref. 16 since, for the system parameters
that we consider, teg is not small enough to ensure that the expected number of suc-
cesses n per communication time tc approaches unity. As shown in Fig 4.5, for a shorter
teg , the network could leave this low-success-probability regime. If the attempt rate is
high enough to ensure that at least one attempt succeeds locally per tc , the overall en-
tanglement success rate will only primarily depend on whether there was a simultaneous
success at the other node; the scaling is thus effectively proportional to η, which is the
scaling described in Ref. 16. However, achieving this limit clearly requires a shorter teg

as the loss (1-η) increases.
For n ∼ 1, the inclusion of additional memory qubits becomes beneficial to prevent

idle time. In this case, after a local success, the communication qubit state is swapped to
a memory qubit. This swapping operation therefore prevents the node from performing
further entanglement generation attempts during a time tsg, limiting the overall attempt
rate.

4.2. MODELLING
We model each of the protocols described in the previous section with an approximate
analytical approach as well as with Monte Carlo simulations. We use system parame-
ters that are expected to be achievable for NVs and trapped ions in the near term (Tab.
4.1). The outcoupling efficiency of the NV centre is assumed to benefit from coupling
to an optical cavity (with outcoupling efficiency pout = 0.3), and emitted photons are as-
sumed to be frequency-converted to telecom-wavelength photons with efficiency pfc =
0.3. Fiber losses are therefore limited to standard telecom values of α = 0.2 dB/km.
Hence the overall system transmission efficiency is given by η = pout pfc 10−αd/20 where
the last term corresponds to the fiber losses over a distance of d/2.

It is as yet unclear how much progress will be made in the near term in overcoming
the technical challenges necessary to demonstrate an entangled-photon-source with a
high brightness and with spectral properties that are well-matched to the node emission.
We therefore consider two possible values for pem (0.1 and 0.01), taking 0.01 to be more
technically feasible [22, 23].

Table 4.1: Anticipated near-term parameters for a quantum network based on NV centers [13, 17,
24, 25]. These parameters are also anticipated to be achievable using trapped ions [2].

Variable Description Value
N Total number of qubits at each node 2
pfc Frequency-conversion efficiency 0.3

pout NV-outcoupling efficiency 0.3
teg Spin-photon entanglement genera-

tion time
1 µs

tsg NV-carbon swap gate time 200 µs
pem Midpoint-source photon-pair emis-

sion probability
0.01, 0.1
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4.2.1. SCALING WITH DISTANCE
The modelled dependency of the entangling rate on the node separation is shown in
Fig. 4.4. As expected from Section 7.2, the scaling with distance is most favorable for the
mEPL protocol (RmEPL ∼ 10−αd/20 d−1), whereas the BK protocol scales worst (RmBK ∼
10−αd/10 d−1). Even for an MPS protocol with an extremely efficient source (pem = 0.1),
the mEPL protocol outperforms it for distances greater than ∼ 100 km since RMPS scales
less favourably with distance as RMPS ∼ 10−αd/10.

mBK

mEPL

MPS pem=0.01

MPS pem=0.1

0 20 40 60 80 100 120
0.1

0.5

1

5

10

50

100

Node sep. (km)

R
at
e
(H
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Figure 4.4: Modelled entanglement generation rates as a function of distance for the system pa-
rameters listed in Table 4.1. Plotted lines give the results of our analytical model while the circles
give equivalent Monte Carlo simulation data. Although two qubits are available to the system, the
MPS protocol is always found to be in the low success probability regime (n < 1), in which only
one qubit is required. For distances to the left of the red vertical dashed line the memory storage
time tsg is larger than the communication time tc . In this regime it is optimal to use only one qubit
for the mBK scheme. As the mEPL-scheme requires one memory qubit to store the first generated
state in the second part of the protocol, for all distances both qubits are actively employed. The
error bars associated with the Monte Carlo simulations are smaller than the plotted circles.

In Fig. 4.5 we justify our claim that the MPS protocol will not benefit from more than
a single qubit per node. We plot the expected number of successful BSMs n during the
communication time as a function of distance, and observe that for our network param-
eters this stays well below one even for the case of a very efficient source (pem = 0.1).

4.2.2. SCALING WITH NUMBER OF MEMORIES
Notably, for these near-term parameters, scaling up to a large number of qubits per node
does not speed up the entanglement rate. As previously noted, the MPS protocol always
operates in the low success probability regime in which only the communication qubit
is actively used. For the mBK and mEPL protocols, the duration of the swap gate signif-
icantly limits the number of qubits per node that can be used over relevant node sep-
arations. We investigate the rate dependency of the mEPL protocol on the number of
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teg=1 μs, pem=0.01

teg=1 μs, pem=0.1

teg=0.3 μs, pem=0.1
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Figure 4.5: Expected number of successful local BSMs n at each node per communication time tc
for the MPS protocol as a function of node separation. We see that for both values of pem and for
all distances n < 1, and hence a single qubit per node is sufficient.

memory qubits in Fig. 4.6 for a fixed node separation of d = 50 km and a varying swap
gate duration tsg. For tsg ¿ tc the rate scales linearly with the number of qubits. How-
ever, as explained in Section 7.2, once N tsg ≈ tc is reached, adding more memory qubits
does not boost the entangling rate.

4.3. CONCLUSIONS
Our analysis highlights the potential of multiplexed distillation-based schemes to pro-
vide high rates of remote entanglement generation and the most favourable scaling with
respect to losses. For such schemes, we have identified the swap gate time tsg between
the communication and the memory qubits as the key parameter in constraining the
achievable entanglement generation rate, as this limits the number of quantum mem-
ories that can be used. This highlights the importance of developing methods to in-
crease this storage rate while ensuring that memories remain robust to decoherence.
One promising approach for nitrogen-vacancy centre nodes may be to use pairs of strongly
coupled carbons to encode quantum memories in decoherence protected subspaces
that combine rapid gates (due to their strong coupling) with long memory lifetimes [18].

We find that the midpoint-source protocol has a different dependence on the sys-
tem parameters, with its performance only weakly constrained by the memory storage
time. However, its increased sensitivity to losses hinders its performance over long dis-
tances. In addition, there is considerable uncertainty in the projected performance of
entangled-pair sources in the near-term, particularly with regard to the source bright-
ness. Until brightnesses on the order of 0.1 per attempt can be achieved, our analysis
suggests that these schemes will not perform as effectively as the multiplexed distillation-
based protocols.
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Figure 4.6: Modelled entanglement-generation rate for the mEPL scheme as a function of the num-
ber of qubits per node at d = 50 km. The three curves correspond to different values of the swap-
gate time tsg. An initial linear scaling of the rate with the total number of qubits is observed, as
predicted by Equation (4.2). The rate increases only up to Nmax = dtc /tsge+1, beyond which there
is no further benefit. This rate saturation occurs over the addition of two qubits. This is because,
while generating the second entangled state in the mEPL protocol, one memory qubit is always
occupied by the first generated state. The addition of a further memory qubit beyond N = dtc /tsge
therefore ensures that there are dtc /tsge qubits available for entanglement generation during both
phases. However, this memory qubit is only used for the second state generation and so does not
contribute as much as previous qubits. Error bars associated with the Monte Carlo simulations are
smaller than the plotted circles.
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5
OPTIMIZING PRACTICAL

ENTANGLEMENT DISTILLATION

Filip Rozpędek *, Thomas Schiet *, Le Phuc Thinh, David
Elkouss, Andrew Doherty and Stephanie Wehner

The goal of entanglement distillation is to turn a large number of weakly entangled states
into a smaller number of highly entangled ones. Practical entanglement distillation schemes
offer a tradeoff between the fidelity to the target state, and the probability of successful
distillation. Exploiting such tradeoffs is of interest in the design of quantum repeater pro-
tocols. Here, we present a number of methods to assess and optimize entanglement dis-
tillation schemes. We start by giving a numerical method to compute upper bounds on
the maximum achievable fidelity for a desired probability of success. We show that this
method performs well for many known examples by comparing it to well-known distilla-
tion protocols. This allows us to show optimality for many well-known distillation proto-
cols for specific states of interest. As an example, we analytically prove optimality of the
distillation protocol utilized within the Extreme Photon Loss (EPL) entanglement gener-
ation scheme, even in the asymptotic limit. We proceed to present a numerical method
that can improve an existing distillation scheme for a given input state, and we present an
example for which this method finds an optimal distillation protocol. An implementation
of our numerical methods is available as a Julia package.

The results of this chapter have been published in Phys. Rev. A 97, 062333 (2018).
*These authors contributed equally.
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5.1. INTRODUCTION
Entanglement distillation forms an important element of many proposals for quantum
repeaters [1–5], as well as networked quantum computers [6, 7]. It has seen widespread
study across several areas ranging from practical entanglement distillation schemes [7–
13] and their experimental implementations [14–18], to a general understanding of some
of its possibilities and limitations in quantum information theory [19]. The general goal
of bipartite entanglement distillation is to convert a state ρAB into a state η ÂB̂ that is
close to a maximally entangled state ΦÂB̂ using only local operations and classical com-
munication (LOCC) between the network node holding A (Alice) and the one holding B
(Bob). Here by A and B we denote the input registers and by Â and B̂ the output ones.
Closeness is measured in terms of the fidelity

F = 〈ΦD |η ÂB̂ |ΦD〉 ≥ 1−ε , (5.1)

to the target state

|ΦD〉 = 1p
D

D−1∑
j=0

| j 〉Â | j 〉B̂ , (5.2)

which is maximally entangled across Â and B̂ .
There is a slight difference between the meaning of entanglement distillation in the

quantum information theory literature and in practical schemes. In quantum informa-
tion theory, one typically considers the case where ρAB ≈ (τab)⊗n consist of n copies of
a state τab . If we want to distil states that are arbitrarily close to the perfect maximally
entangled state, then the distillable entanglement ED (τab) of τab answers the question
of how large this output state can be. Specifically, it tells us what would be the dimension
|ÂB̂ | relative to the input dimension |AB |, under distillation using LOCC as n →∞ [20].
As such, the dimension of the output state |ÂB̂ | is generally smaller than the dimen-
sion |AB | of the input state, unless the input is already maximally entangled. While ED

is difficult to compute in general, several computable bounds have been proposed [21–
24]. Recent years have seen one-shot variants of distillable entanglement in which n can
be finite, or indeed ρAB may have an arbitrary structureless form [25–27]. Bounds on
the one-shot distillable entanglement may be computed numerically [28]. Crucially, the
task of entanglement distillation as it is considered in quantum information theory al-
ways produces an output state η ÂB̂ , and considers no failure. The possibility of failure is
allowed implicitly by assuming that if the entanglement distillation procedure fails, then
Alice and Bob output an arbitrary state leading to a reduced fidelity of the output state
to the target state.

In contrast, practical schemes for entanglement distillation explicitly allow for the
possibility of failure [7–13]. The fidelity F to the target state is in that case of interest
only in the event of success. Not surprisingly, there exist interesting tradeoffs between
this fidelity F , and the probability of success psucc of the distillation procedure. A simple
example of such a tradeoff is the possibility of filtering in which the dimensions |Â| and
|B̂ | of the output systems Â and B̂ are equal to the input dimensions |A| and |B |, that is,
|Â| = |A| and |B̂ | = |B |. Yet, it is possible to probabilistically increase the fidelity to the
target state by LOCC, where a higher fidelity F leads to a lower success probability psucc.
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More generally, trading off the fidelity F against psucc is relevant to the construction
of quantum networks: here, the initial generation of entanglement is typically already
probabilistic such as when using a heralded scheme to produce the initial (imperfect)
entanglement [29, 30]. Most significantly, however, the local quantum memory used to
store entanglement is itself imperfect. This means that both the initial as well as the re-
sulting entanglement cannot be preserved for an arbitrary amount of time. Clearly, the
success probability psucc dictates the rate at which we can hope to produce high-fidelity
entanglement between different nodes in the network. This rate imposes requirements
on the coherence times of the memory if multiple entangled pairs are generated such
that they should undergo further processing, for example, to generate more complex en-
tangled states in a multi-node network. In such a scenario, one may thus wish to obtain
a higher probability of success at the expense of a lower fidelity (or vice versa) in relation
to the local storage capabilities of the nodes.

We have already discussed in Section 3.3.2 in Chapter 3 that due to hardware limita-
tions, practical distillation protocols can be restricted to a class involving only one round
of local operations followed by one round of classical communication. We have referred
to these operations as the measure and exchange (MX) operations (see Section 5.3.1 for a
precise definition). Here we will be specifically interested in this class of protocols.

5.2. OVERVIEW
In this paper, we develop a set of tools for optimising and assessing existing practical dis-
tillation schemes. Specifically, our tools allow for a detailed investigation of the tradeoff
between the possible output fidelity and probability of success of distillation schemes.

• In Section 5.3.1, we first formally define the set of measure and exchange (MX)
operations, and illustrate it with an example of an existing filtering protocol.

• In Section 5.3.3, we state a semidefinite programming (SDP) method to compute
upper bounds on the achievable fidelity (or success probability) of a distillation
scheme for a given success probability (or fidelity). These methods adapt the ideas
of Rains [21] as well as the later methods of Bose symmetric extensions [31, 32]
to the case of MX operations, where immediate measurements are performed to
decide success or failure. We implement these methods in a numerical package
that is freely available on GitHub [33].

• In Section 5.3.4, we present a numerical seesaw method based on semidefinite
programming that takes a specific distillation scheme and entangled state as in-
put, and iteratively searches for a better distillation scheme adapted to the state of
interest. This method is also included in our numerical package.

• In Section 5.4, we illustrate our method with a variety of examples, considering dif-
ferent entangled states of interest. We compare upper bounds attained with exist-
ing distillation schemes (and interpolations between existing distillation schemes)
to determine their performance. We observe optimality for a number of schemes
for specific states of interest, including modifications of such schemes and certain
new schemes obtained from existing ones using our tools. Specifically, we present
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an instance in which the seesaw method will find an optimal distillation scheme
from an existing one that is suboptimal for the given state.

• In the appendix (summary in Section 5.4) we employ our semidefinite program-
ming methods to analytically prove optimality of the DEJMPS protocol [9] for dis-
tilling Bell diagonal states of rank up to three. Furthermore we show optimality of
the distillation procedure used within the Extreme Photon Loss (EPL) remote en-
tanglement generation scheme as described in [7, 13], even in the limit of asymp-
totically many copies.

5.3. OPTIMISATION METHODS
Let us now first define MX operations, and specify the problem of interest in terms of
such operations. Throughout, we will use the convention σX = trY (σX Y ) to denote the
marginalσX of a larger stateσX Y . Moreover, for the purpose of the compactness of nota-
tion, we will often omit writing explicitly the identity matrix or the identity channel. That
is, for (IA ⊗MB )ρAB we will often use the shorthand MBρAB and for (1A ⊗ΛB→B̂ )(ρAB )
we will use ΛB→B̂ (ρAB ).

5.3.1. MEASURE AND EXCHANGE (MX) OPERATIONS
All MX operations can be modelled as completely positive trace-preserving (CPTP) maps,
e.g for Alice

ΛA→ÂFA
: D (H A) →D

(
H ÂFA

)
, (5.3)

where H A and H ÂFA
:=H Â ⊗HFA denote the input and output spaces respectively and

D denotes the set of density operators living on the space. The registers FA and FB de-
note classical flag registers, which Alice and Bob will compare in order to decide success
or failure. Applying these maps locally yields the state

σÂFA B̂FB
=ΛA→ÂFA

⊗ΛB→B̂FB

(
ρAB

)
. (5.4)

Since Alice and Bob use classical communication to compare the flags, we may without
loss of generality assume that the state after a measurement on FA and FB is of the form

σÂB̂FA FB
= ∑

f A , fB

σ
f A , fB

ÂB̂
⊗| f A〉〈 f A |FA ⊗| fB 〉〈 fB |FB , (5.5)

where the sum is taken over strings f A and fB , and 0 ≤ tr(σ f A , fB

ÂB̂
) ≤ 1. Comparing the

flags to decide success or failure can be understood as subsequently projecting the state
using a projector

P3 = ∑
( f A , fB )∈S

| f A〉〈 f A |FA ⊗| fB 〉〈 fB |FB , (5.6)

where S = {( f A , fB ) | Alice and Bob declare success}. The success probability can thus
be expressed as

psucc = tr
(
P3σFA FB

)
. (5.7)
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The global state conditioned on success can in turn be written as

η ÂB̂FA FB
=

(IÂB̂ ⊗P3)σÂB̂FA FB
(IÂB̂ ⊗P3)

psucc
, (5.8)

which has a fidelity to the ideal maximally entangled state

F = 〈ΦD |η ÂB̂ |ΦD〉 . (5.9)

Our formalism captures all practical schemes by appropriate definition of P3.
As an example let us consider the filtering protocol [34]. This protocol is adapted to

perform well for an input state with |A| = |B | = 2 of the form

ρAB = p|Φ2〉〈Φ2|+ (1−p)|01〉〈01| . (5.10)

In this procedure, Alice performs a measurement given by the POVM: {M 0
A , M 1

A} with

M 1
A = (A1

A)† A1
A , where A1

A = p
ε|0〉〈0| + |1〉〈1| and M 0

A = (A0
A)† A0

A = I− M 1
A for some pa-

rameter ε determining the tradeoff between F and psucc. In terms of the map this mea-
surement can be expressed as

ΛA→Â,FA
(ρ) = ∑

f A∈{0,1}
A f A

A ρ
(

A f A
A

)† ⊗| f A〉〈 f A |FA . (5.11)

Similarly, Bob performs a measurement given by the POVM: {M 0
B , M 1

B } with M 1
B = (A1

B )† A1
B ,

where A1
B =p

ε|1〉〈1|+ |0〉〈0| and M 0
B = (A0

B )† A0
B = I−M 1

B , giving the map

ΛB→B̂ ,FB
(ρ) = ∑

fB∈{0,1}
A fB

B ρ
(

A fB
B

)† ⊗| fB 〉〈 fB |FB . (5.12)

Alice and Bob declare success if f A = fB = 1, corresponding to a choice of P3 = |11〉〈11|FA FB .
When optimising over measure and exchange operations, it is sometimes convenient

to consider a slightly more general class of operations which we call measure and ex-
change operations with shared randomness (MXS operations). As the name suggests,
Alice and Bob have additional access to classical shared randomness, which is easy to
distribute ahead of time. Specifically, if Alice and Bob have a classical symbol r chosen
with probability pr , then they can perform MX operations that depend on r . This means
the output state is of the form

σÂB̂FA FB
=∑

r
prΛr,A→ÂFA

⊗Λr,B→B̂FB

(
ρAB

)
. (5.13)

Note the set of MXS operations is a convex set unlike the set of MX operations.

5.3.2. OPTIMISING OVER MX OPERATIONS

GENERAL FORM

We are now going to consider various optimisations related to the distillation problem.
As we have seen, we would like to optimize one of the three parameters D, psucc, ε, where
D is the local output dimension, psucc is the success probability and the fidelity is 1− ε.
We will typically fix the output dimension D and for now we will consider optimising
the fidelity for fixed success probability psucc = δ. It is straightforward to adapt the
techniques below to optimize psucc instead. Ideally, we thus wish to solve the follow-
ing (quadratic) optimisation problem over maps ΛA→ÂFA

and ΛB→B̂FB
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maximise 1
δ tr

(
|ΦD〉〈ΦD |ÂB̂ ⊗P3 σÂB̂FA FB

)
subject to tr

(
P3σFA FB

)= δ
σÂB̂FA FB

=ΛA→ÂFA
⊗ΛB→B̂FB

(
ρAB

)
.

Optimisation Program 5.

SIMPLIFYING THE OPTIMISATION PROBLEM

How do we optimize over quantum operations? The key is to employ the Choi isomor-
phism which gives a one-to-one correspondence between quantum channels and quan-
tum states with certain properties. Specifically, for any quantum channel ΓS→R from a
system S to system R, there corresponds a unique Choi state

CRS′ = ΓS→R ⊗1S′ (ΦSS′ ) , (5.14)

satisfying

CRS′ ≥ 0 ,CS′ = IS′

|S| , (5.15)

whereΦSS′ is the density matrix of the normalised maximally entangled state from Eq. (5.2)
of dimension D = |S|. The Choi state carries all information of the original channel, in
the sense that

tr
[
MRΓS→R (ρS )

]= |S| tr[MR ⊗ρT
S′ (CRS′ )] (5.16)

for all matrices MR on R.
For the case of MX operations the Choi states take a product form. This is because a

maximally entangled state of a larger system whose dimension D is a composite number
is formed by taking the tensor product of maximally entangled states:

C ÂFA B̂FB ,A′B ′ =ΛA→ÂFA
⊗ΛB→B̂FB

(ΦA A′ ⊗ΦBB ′ )

=C ÂFA A′ ⊗CB̂FB B ′ . (5.17)

This translates the optimisation to the space of product of two Choi states. Similarly, for
MXS operations we obtain the optimisation over the subset of separable Choi states that
can be decomposed as follows (we denote this set here as SEP-C):

C ÂFA B̂FB ,A′B ′ =
∑

r
pr Cr,ÂFA A′ ⊗Cr,B̂FB B ′ . (5.18)

Note that SEP-C is a strict subset of the set SEP of separable states, since we require that
the individual components satisfy the Choi condition Eq. (5.15).

Before delving into the various approaches to optimize our function below, let us
first simplify the problem slightly. Our goal will be to remove the registers FA and FB

from the expressions above. In particular, let us imagine that C∗
ÂFA ,A′ and C∗

B̂FB ,B ′ are

optimal solutions to the optimisation problem above. We then claim that

C̃ ÂFA ,A′ =
∑

f A∈{0,1}
| f A〉〈 f A |FA C∗

ÂFA A′ | f A〉〈 f A |FA , (5.19)

C̃B̂FB ,B ′ =
∑

fB∈{0,1}
| fB 〉〈 fB |FB C∗

B̂FB B ′ | fB 〉〈 fB |FB , (5.20)
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are also optimal. This is an immediate consequence of the fact that in our optimisa-
tion problem, we always measure the registers FA and FB . We can thus without loss of
generality assume that both states are cq-states

C̃ ÂFA A′ =
∑

f A∈{0,1}
Ĉ f A ,Â A′ ⊗| f A〉〈 f A |FA , (5.21)

C̃B̂FB B ′ =
∑

fB∈{0,1}
Ĉ fB ,B̂B ′ ⊗| fB 〉〈 fB |FB , (5.22)

that is the flags are always classical registers.
Observing that our optimisation problem is only concerned with the case that Alice

and Bob succeed, we can now express the problem in terms of the Choi states. We can
now consider two cases:

1. Some protocols have local success flags, e.g. the protocol succeeds if Alice and
Bob both measure “1”, which is the case in the filtering protocol described in Sec-
tion 5.3.1 or the distillation protocol used within the EPL scheme (both are also
described in Section 3.3.2 in Chapter 3). The meaning of “local” refers to the fact
that here Alice and Bob can individually already declare failure if they observe a
“0” (success evidently requires a comparison). For this example we arrive at the
optimisation problem

maximise |A||B |
δ tr

(
|ΦD〉〈ΦD |ÂB̂ ⊗ρT

A′B ′
(
Ĉ1,Â A′ ⊗ Ĉ1,B̂B ′

))
subject to |A||B | tr

[
ρT

A′B ′
(
Ĉ1,A′ ⊗ Ĉ1,B ′

)]= δ ,
Ĉ1,Â A′ ≥ 0, Ĉ1,B̂B ′ ≥ 0 ,

Ĉ1,A′ ≤ IA′
|A| , Ĉ1,B ′ ≤ IB ′

|B | .

Optimisation Program 6.

Here the last condition follows from the Choi condition Eq. (5.15) because we have
eliminated the states Ĉ0,Â A′ and Ĉ0,B̂B ′ from explicit consideration.

2. The other case is the one of the non-local success flags, e.g. Alice and Bob succeed
if f A = fB . This is the case for example for the BBPSSW [8] or DEJMPS [9] protocols
(again see also Section 3.3.2 in Chapter 3). In this case we obtain

maximise |A||B |
δ tr

(
|ΦD〉〈ΦD |ÂB̂ ⊗ρT

A′B ′
(
Ĉ1,Â A′ ⊗ Ĉ1,B̂B ′ + Ĉ0,Â A′ ⊗ Ĉ0,B̂B ′

))
subject to |A||B | tr

[
ρT

A′B ′
(
Ĉ1,A′ ⊗ Ĉ1,B ′ + Ĉ0,A′ ⊗ Ĉ0,B ′

)]= δ ,
Ĉ1,Â A′ ≥ 0, Ĉ1,B̂B ′ ≥ 0, Ĉ0,Â A′ ≥ 0, Ĉ0,B̂B ′ ≥ 0 ,

Ĉ1,A′ + Ĉ0,A′ = IA′
|A| , Ĉ1,B ′ + Ĉ0,A′ = IB ′

|B | .

Optimisation Program 7.
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5.3.3. RELIABLE UPPER BOUNDS USING SDP RELAXATIONS
The Choi isomorphism only transfers the optimisation from channel space to state space,
but it does not deal with the (quadratic) non-convex nature of the program. In this sec-
tion we perform a set of convex relaxations on the domain of optimisation. First, in Sec-
tion 5.3.3.1 we consider optimisation over positive partial transpose (PPT) operations
and in Section 5.3.3.2 we add an additional constraint related to the extendibility of sep-
arable states. We will call the resulting bounds reliable, since these numerical methods
are guaranteed to produce an upper bound on our objective function. In contrast, later
in Section 5.3.4 we discuss a heuristic method which does not have this property.

PPT RELAXATIONS

The first method to obtain an upper bound on the objective is a direct extension of
Rains [21]. Here, we relax the set of SEP-C states to the set of PPT Choi states— Choi
states which are positive under partial transpose. We perform an easy adaption of this
method to the case of MX operations including classical flags, resulting in Optimisation
Program 8. This method is implemented in our numerical software package available
at [33].

Enforcing the PPT condition is an SDP constraint, whereas membership of SEP is
more difficult to characterise and optimisation over the set of separable states is in gen-
eral hard. Applying the PPT constraint to our problem means that we construct a single
Choi state variable on all the registers, such that it obeys the PPT condition, i.e.,

CΓ
ÂFA A′B̂FB B ′ ≥ 0, (5.23)

where Γ denotes the transpose on all the registers of Bob.
To introduce some helpful notation, we can split this Choi of the distillation channel

into the success and failure parts

C ÂFA A′B̂FB B ′ = Ĉ3,ÂFA A′B̂FB B ′ + Ĉ7,ÂFA A′B̂FB B ′ (5.24)

obeying the condition

Ĉ3,A′B ′ + Ĉ7,A′B ′ = IA′B ′

|A||B | . (5.25)

For a protocol with local flags we have

Ĉ3,ÂFA A′B̂FB B ′ = Ĉ1,Â A′ ⊗ Ĉ1,B̂B ′ ⊗|11〉〈11|FA FB , (5.26)

whereas for a protocol with non-local flags

Ĉ3,ÂFA A′B̂FB B ′ = Ĉ1,Â A′ ⊗ Ĉ1,B̂B ′ ⊗|11〉〈11|FA FB

+ Ĉ0,Â A′ ⊗ Ĉ0,B̂B ′ ⊗|00〉〈00|FA FB . (5.27)

Clearly Ĉ3,ÂFA A′B̂FB B ′ and Ĉ7,ÂFA A′B̂FB B ′ are orthogonal on the flag registers. As a
result imposing the PPT constraint on C ÂFA A′B̂FB B ′ is equivalent to imposing it on both

Ĉ3,ÂFA A′B̂FB B ′ and Ĉ7,ÂFA A′B̂FB B ′ . Finally, Ĉ7,ÂFA A′B̂FB B ′ does not appear explicitly in our



5.3. OPTIMISATION METHODS

5

63

optimisation problem, but because of the relation in Eq. (5.25), it translates directly to
the following condition on the marginal of Ĉ3,ÂFA A′B̂FB B ′ :

ĈΓ
3,A′B ′ ≤ IA′B ′

|A||B | , (5.28)

where Γ again denotes the partial transpose on all registers of B. Of course Eq. (5.25) also
implies that

Ĉ3,A′B ′ ≤ IA′B ′

|A||B | . (5.29)

Since in our program we have already eliminated the flags, our SDP variable is Ĉ3,Â A′B̂B ′ .
We note that both the case with local and non local flags as well as any other flag config-
uration reduce to exactly the same relaxed PPT program. All other constraints in terms of
the reduced state of Ĉ3,Â A′B̂B ′ remain the same so that now we will obtain the following
program:

maximise |A||B |
δ tr

[(|ΦD〉〈ΦD |ÂB̂ ⊗ρT
A′B ′

)
Ĉ3,Â A′B̂B ′

]
subject to |A||B | tr

[(
IÂB̂ ⊗ρT

A′B ′
)

Ĉ3,Â A′B̂B ′
]
= δ ,

Ĉ3,Â A′B̂B ′ ≥ 0 ,
ĈΓ

3,Â A′B̂B ′ ≥ 0 ,

Ĉ3,A′B ′ ≤ IA′B ′
|A||B | ,

ĈΓ
3,A′B ′ ≤ IA′B ′

|A||B | .

Optimisation Program 8.

We give a side remark regarding terminologies. Such a PPT Choi state C ÂFA A′B̂FB B ′
corresponds to an operation that Rains defines as a PPT operation [21, 35, 36]. These PPT
operations include all LOCC operations as a strict subset. Hence our relaxed program
provides upper bounds on the achievable fidelity not only over MX and MXS operations
but also over all LOCC operations. See Appendix 5.6.1 for a short discussion of these PPT
channels.

The Optimisation Program 8 is a semidefinite program with very high symmetry. This
allows considerable further simplifications (see Appendix 5.6.3). We finally obtain the
semidefinite program corresponding to the Rains style bound on the fidelity of distilla-
tion with fixed success probability δ

maximise p(MA′B ′ ,E A′B ′ ) = |A||B |
δ tr

[
ρT

A′B ′MA′B ′
]

subject to MA′B ′ ≥ 0, E A′B ′ ≥ 0 ,

MA′B ′ +E A′B ′ ≤ IA′B ′
|A||B | ,

MΓ
A′B ′ +EΓ

A′B ′ ≤ IA′B ′
|A||B | ,

|A||B | tr
[
ρT

A′B ′ (MA′B ′ +E A′B ′ )
]= δ ,

MΓ
A′B ′ + 1

D+1 EΓ
A′B ′ ≥ 0 ,

−MΓ
A′B ′ + 1

D−1 EΓ
A′B ′ ≥ 0 .

Optimisation Program 9.

Recall that ρA′B ′ is the initial input state that Alice and Bob are attempting to distil and in
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most examples considered here, it will consist of two copies of some two-qubit state. In
what follows and on all the plots shown in Section 5.4 we will refer to the bound obtained
using this program as the PPT bound.

We note here that by following an analogous procedure, one can construct a similar
program which aims at maximising probability of success subject to a constraint of fixed
output fidelity. This program can also be relaxed to a PPT program which is also an SDP.
Effectively it results in a similar program to the one above just with the objective function
and constraint on probability of success interchanged:

maximise |A||B | tr
[
ρT

A′B ′ (MA′B ′ +E A′B ′ )
]

subject to MA′B ′ ≥ 0, E A′B ′ ≥ 0 ,

MA′B ′ +E A′B ′ ≤ IA′B ′
|A||B | ,

MΓ
A′B ′ +EΓ

A′B ′ ≤ IA′B ′
|A||B | ,

tr
[
ρT

A′B ′ [(1−F )MA′B ′ −F E A′B ′ ]
]= 0 ,

MΓ
A′B ′ + 1

D+1 EΓ
A′B ′ ≥ 0 ,

−MΓ
A′B ′ + 1

D−1 EΓ
A′B ′ ≥ 0 .

Optimisation Program 10.

Now F is a constant fidelity and so the fidelity constraint is just:

tr[ρT
A′B ′MA′B ′ ]

tr[ρT
A′B ′ (MA′B ′ +E A′B ′ )]

= F. (5.30)

Hereafter, we will drop the subscripts on ρ,E and M to simplify the notation.

BOSE SYMMETRIC EXTENSIONS

The goodness of the relaxation above depends on how well the set of PPT Choi states
approximates the set SEP-C. A sharper approximation could evidently be obtained by
approximating the set of separable states SEP itself by more stringent conditions. A stan-
dard technique for doing so is by the method of extensions [31, 32] which is closely re-
lated to the sums-of-squares relaxations for polynomial optimisation problems.

In the case at hand, in addition to the PPT constraint in Eq. (5.23) we will add the
constraint that the state is k-Bose-symmetric-extendible (k-BSE) [37]. By definition, a
(Choi) state Ĉ(Â A′)B̂B ′ is k-BSE iff there exists Ĉ(Â1 A′

1)...(Âk+1 A′
k+1)B̂B ′ satisfying

1. Ĉ(Â1 A′
1)...(Âk+1 A′

k+1)B̂B ′ ≥ 0,

2. tr(Â2 A′
2)...(Âk+1 A′

k+1)

(
Ĉ(Â1 A′

1)...(Âk+1 A′
k+1)B̂B ′

)
= Ĉ(Â A′)B̂B ′ ,

3.
(
PSym ⊗IB̂B ′

)(
Ĉ(Â1 A′

1)...(Âk+1 A′
k+1)B̂B ′

)
= Ĉ(Â1 A′

1)...(Âk+1 A′
k+1)B̂B ′ , where PSym is the pro-

jector onto the symmetric subspace of (Â1 A′
1) . . . (Âk+1 A′

k+1).

It is clear that adding this constraint to the PPT constraint constitutes a sharper approx-
imation of SEP-C because any separable state is k-BSE for all k ∈ N. To see this, it is
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sufficient to note that
∑

i pi |ui 〉〈ui |⊗k+1 ⊗|vi 〉〈vi | is a k Bose symmetric extension of the
separable state

∑
i pi |ui 〉〈ui |⊗ |vi 〉〈vi |.

In this way, we obtain a sharper and sharper approximation of SEP-C by choosing
larger values of k — the accuracy scales not worse than O(|Â A′|2/(k +1)2) [38]. The only
drawback is the size of the resulting SDP. Although it increases only polynomially with k,
for practically interesting problems we were only able to introduce k = 1 Bose symmetric
extensions. We refer to Appendix 5.6.5 for the detailed calculations and the exact form
of the resulting SDP. Whenever we refer to the 1-BSE bound, we mean the bound arising
from this optimisation over Choi matrices that are both PPT and 1-BSE.

5.3.4. OPTIMISING EXISTING SCHEMES

While the previous methods are concerned with deriving upper bounds on the fidelity,
we can as well start from an existing distillation protocol and try to find a better protocol.
In the following we discuss one such a scheme that we dub the seesaw method. Look-
ing at the original Optimisation Programs 6 and 7, we see that there is no need for any
PPT style relaxation if one of the distillation maps for either Alice or Bob is fixed: for a
fixed value of one of the maps, the optimisation problem is already an SDP. If we thus
fix the operation of Alice (or Bob), then we may use an SDP solver to optimize over the
possible distillation schemes in terms of the Choi state of Bob (or Alice). Once solved,
we may iterate the procedure in a seesaw fashion. We now fix the operation of Bob (Al-
ice) with the outcome of the previous step and we optimize over the operation of Alice
(Bob). The optimisation problem is again an SDP. These steps can then be repeated, as
often as desired optimising iteratively over either Alice or Bob. While not guaranteed to
find the optimal solution, the seesaw method often performs rather well in practice and
is implemented in our numerical package [33]. In fact, in the next section we provide an
example where this method finds an optimal filtering scheme, as the numerical results
show that it achieves fidelities corresponding to the PPT bound. We remark that given
the new Choi states, one may find the corresponding isometry (or unitary) that imple-
ments the map using an ancilla (see, e.g., lecture notes [39]) and then compile it into a
quantum circuit for the specific architecture in question.

5.4. STATES AND DISTILLATION SCHEMES

Let us now illustrate our methods with a number of states commonly studied in the en-
tanglement distillation literature, or arising in experiments. We thereby demonstrate the
use of our methods as a numerical tool to compute the trade-offs between the fidelity
F and probability of success psucc, as well as their use as an analytical tool to formally
prove optimality of certain entanglement distillation schemes. We also provide a sim-
ple example illustrating the use of the seesaw method to improve an existing distillation
scheme for a specific state.

Here we will use the term “a copy of a state” to denote a two-qubit state shared be-
tween Alice and Bob. In these examples, we will for simplicity only consider distillation
to a single copy i.e. when the output of the procedure is a two-qubit state. More exam-
ples can easily be explored using the freely available numerical package [33].
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5.4.1. ISOTROPIC STATES

As a warm-up, let us consider distilling isotropic states. These states are often consid-
ered in the quantum information theory literature due to their beautiful symmetries.
Moreover, they are the states that arise when a maximally entangled state undergoes
depolarising noise, which is often used as a simplified pessimistic model for the noise
caused by the imperfect operations in physical implementations of quantum memories.
Specifically, an isotropic state is of the form

τAB = p|ΦD〉〈ΦD |+ (
1−p

) I
D2 , (5.31)

where |ΦD〉 is the maximally entangled state defined in Eq. (5.2). The isotropic state is
invariant under U ⊗U∗ on A and B for all U .

NUMERICAL EXAMPLES

FIG. 5.1 illustrates the upper bounds obtained by PPT and the 1-BSE relaxation, in com-
parison to the BBPSSW and DEJMPS protocols when distilling 2 copies of the isotropic
state ρAB = τ⊗2

ab to a single two-qubit state (see Section 3.3.2 in Chapter 3 for the descrip-
tion of these well-known protocols). We remark that when performing a single round of
distillation, the two protocols coincide for the case of the isotropic state. The continu-
ous red line corresponds to an achievable scheme based on the interpolation or extrap-
olation of those existing schemes. The details of how this is performed are included in
Appendix 5.6.2.2 and for simplicity on the plots we always label this curve arising from
both extrapolation and interpolation as “Interpolation”. Similarly in FIG. 5.2 we depict
the corresponding results for distilling 3 copies of the isotropic state ρAB = τ⊗3

ab to a two-
qubit state.

In FIG. 5.1 and FIG. 5.2 we see that both the PPT and 1-BSE bounds are non trivial
and the 1-BSE bound is tighter than the PPT bound for smaller values of the probability
of success. In particular we observe that deterministic distillation (with psucc = 1) when
operating on 2 copies of the isotropic state is not possible. For 3 copies it is possible to
deterministically increase the fidelity, and this can be achieved, e.g., using the protocol
DEJMPS A (see caption of FIG. 5.2 for details of this protocol).

5.4.2. BELL DIAGONAL STATES

More generally, we now consider states τAB that are diagonal in the Bell basis given by

|Φ+〉 = |Φ2〉, (5.32)

|Φ−〉 = (I⊗Z )|Φ2〉, (5.33)

|Ψ+〉 = (I⊗X )|Φ2〉, (5.34)

|Ψ−〉 = (I⊗X Z )|Φ2〉. (5.35)

These are interesting states to consider since indeed any two-qubit state ρAB can be
brought into this form by twirling it over the group of correlated Pauli operators:
{X ⊗X ,Y ⊗Y , Z ⊗Z ,I⊗I}. This can be achieved if Alice and Bob have access to some
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Figure 5.1: Distilling the isotropic states τ⊗2
ab with D = 2 and p = 0.7 in Eq. (5.31) to a two-qubit

state. The fidelity of each input copy is Fin = 0.775 and we observe that deterministic distillation
(with psucc = 1) is not possible for two copies of the isotropic state. We also find that the method
of 1-BSE provides tighter bounds than the PPT method alone.

shared randomness. We can thus consider entangled states

τAB =p1|Φ+〉〈Φ+|+p2|Ψ+〉〈Ψ+|+p3|Φ−〉〈Φ−|
+ (1−p1 −p2 −p3)|Ψ−〉〈Ψ−| , (5.36)

where p1 > 0.5 and p1 > p2 ≥ p3 ≥ 1−p1 −p2 −p3. Any Bell diagonal state for which one
of the Bell coefficients is larger than 0.5 can be rotated into this form using only local
Clifford operations performed by Alice and Bob.

The distillation of such states has been studied in the literature, and we will focus
here on the action of the DEJMPS protocol on these states since it is known for achiev-
ing higher fidelities than the BBPSSW protocol. Specifically, Alice and Bob share two
copies of a Bell diagonal state τAB , that is, ρAB = τ⊗2

ab . The decreasing order of the Bell
coefficients in τAB is important as this specific ordering allows us to achieve the highest
fidelity over all the orderings [40].

We note that it has been recently shown that the DEJMPS protocol achieves the high-
est possible fidelity over LOCC operations when distilling a two-qubit state from two
copies of a Bell diagonal state of rank two [41]. Moreover, in [40] protocols that permute
Bell states in the mixture were analyzed and it was claimed that for two copies of all Bell
diagonal states, DEJMPS protocol achieves the highest achievable fidelity when distilling
a two-qubit state, but only among all such permuting protocols. Here our results indi-
cate that we can make a much wider range of optimality statements about DEJMPS in
relation to Bell diagonal states than has been known before.
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Figure 5.2: Distilling the isotropic states τ⊗3
ab with D = 2 and p = 0.7 in Eq. (5.31) to a two-qubit

state. The fidelity of each input copy is Fin = 0.775. The protocol DEJMPS A corresponds to ap-
plying DEJMPS to the first two copies and outputting the resulting state in case of success and
outputting the remaining third copy in case of failure. This protocol allows for deterministic in-
crease of fidelity. The protocol DEJMPS B corresponds to applying DEJMPS to the first two copies
and then conditioned on success, applying it to the remaining two copies. Failure at any stage
results in outputting the failure flag. The 1-BSE bound was already computationally too expensive
for this 3-copy scenario.
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NUMERICAL EXAMPLES

We first investigate a number of examples using our numerical procedure. We present
the results in FIG. 5.3 and in FIG. 5.4. We again emphasize that for simplicity we only
consider distilling a two-qubit state from two copies of a Bell diagonal state and we note
that all these optimality statements apply when optimising over all LOCC protocols.

First, we observe that for all Bell diagonal states of rank up to three DEJMPS achieves
the highest possible output fidelity and achieves it with the highest possible probabil-
ity of success, as can be seen in a specific example in FIG. 5.3. This statement we also
prove analytically as described in the next subsection. Moreover, as we also illustrate in
FIG. 5.3, we numerically observe that for Bell diagonal states of rank up to three, extrap-
olating from DEJMPS allows us to achieve the highest possible output fidelity for each
extrapolation protocol’s probability of success.

Finally, we also numerically observe that for Bell diagonal states of rank four, apart
from a certain set of states including and around the isotropic state, DEJMPS achieves
the highest possible fidelity for this protocol’s probability of success when applied to
these states. In FIG. 5.5 we fix p1 and p2 and plot the gap between our numerical upper
bound and the output fidelity of DEJMPS, both evaluated at the probability of success
of DEJMPS, versus the parameter p3. We see that in this space of Bell coefficients the
gap vanishes when one moves far enough from the isotropic state. In this space, we
observe a similar gap in any other direction away from the isotropic state. However, only
by moving exactly along the axis of one of those coefficients do we obtain a gap that is
symmetric around the isotropic state as in FIG. 5.5. The reason for this fact is that on
those axes the two states that are located symmetrically on two sides of the peak at the
isotropic state are the same up to the permutation of the Bell coefficients.

OPTIMAL FIDELITY AND SUCCESS PROBABILITY

Semidefinite programming duality now allows us to prove analytically that DEJMPS is
an optimal protocol for distilling from two copies of all Bell diagonal states of rank up to
three, which was not known before.

Theorem 5.4.1. (Informal) Given two copies of a Bell diagonal state of rank at most three
and distillation towards the target maximally entangled state with D = 2, there is no pro-
tocol that achieves a larger fidelity than DEJMPS and there is no protocol that achieves
this fidelity with a larger success probability than DEJMPS.

In the following we sketch the proof of Theorem 5.4.1. We leave the full details in-
cluding a precise definition of optimality to Appendix 5.6.7.

The entangled Bell diagonal states of rank up to three can be written as

τAB = p1|Φ+〉〈Φ+|+p2|Ψ+〉〈Ψ+|+ (1−p1 −p2)|Φ−〉〈Φ−|, (5.37)

with p1 > 0.5 and p1 > p2 ≥ 1−p1 −p2. First, we note that the DEJMPS protocol applied
to two copies of the state in Eq. (5.37) conditioned on success results in a state

ρ ÂB̂ = p ′
1|Φ+〉〈Φ+|+p ′

2|Ψ+〉〈Ψ+|+ (1−p ′
1 −p ′

2)|Ψ−〉〈Ψ−|, (5.38)
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Figure 5.3: Distilling the Bell diagonal states of rank-three τ⊗2
ab with D = 2 and p1 = 0.7, p2 =

0.2, p3 = 0.1 in Eq. (5.36) to a two-qubit state. The fidelity of each input copy is Fin = 0.7 and
we observe that deterministic distillation (with psucc = 1) is not possible for two copies of this
state. We see that DEJMPS is optimal for a mixture of three Bell states. Moreover, extrapolating
from DEJMPS to higher probability of success as described in Appendix 5.6.2.2, we see that the
extrapolation curve overlaps with the PPT bound for all values of the probability of success. This
means that this extrapolation also results in optimal schemes achieving the highest possible out-
put fidelity for the specific fixed probability of success. The 1-BSE bound is not included because
it overlaps with the PPT bound.
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Figure 5.4: Distilling the Bell diagonal states of rank-four τ⊗2
ab with D = 2 and p1 = 0.7, p2 =

0.15, p3 = 0.1 in Eq. (5.36) to a two-qubit state. The fidelity of each input copy is Fin = 0.7 and we
observe that deterministic distillation (with psucc = 1) is not possible for two copies of this state.
We also find that the 1-BSE bound is tighter than the PPT bound for smaller values of the proba-
bility of success. Finally, we observe that DEJMPS achieves the highest possible output fidelity for
this protocol’s probability of success for a mixture of four Bell states which are far enough from the
isotropic state.



5

72 5. OPTIMIZING PRACTICAL ENTANGLEMENT DISTILLATION

0.00 0.05 0.10 0.15
p3

0.0025

0.0050

0.0075

0.0100

0.0125

F P
PT

F D
EJ

M
PS

Optimality gap p1 = 0.7, p2 = 0.1

Figure 5.5: Distilling the Bell diagonal states of rank-four τ⊗2
ab with D = 2 and p1 = 0.7, p2 = 0.1

in Eq. (5.36) to a two-qubit state. The fidelity of each input copy is Fin = 0.7. The plot shows the
difference between the PPT bound and the fidelity achievable through DEJMPS as a function of
p3 for the probability of success of DEJMPS. We see that DEJMPS achieves the highest possible
output fidelity for this protocol’s probability of success for a mixture of four Bell states which are
far enough from the isotropic state (the middle of the peak). Clearly the states considered on this
plot for which p3 6= 0.1 do not satisfy the condition p1 > p2 ≥ p3 ≥ 1−p1−p2−p3, therefore when
applying the DEJMPS protocol to such a state we first permute the Bell coefficients to this order.
The 1-BSE bound is not included because it overlaps with the PPT bound.
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where

p ′
1 =

p2
1

N
, (5.39)

p ′
2 =

p2
2 + (1−p1 −p2)2

N
, (5.40)

and N = p2
1 + (1−p1)2 is the probability that the protocol succeeds. Note that p ′

1 > p ′
2 ≥

1−p ′
1 −p ′

2. Moreover the fidelity increases, that is, p ′
1 > p1.

The strategy to show optimal fidelity relies on the dual formulation of the SDP in
Optimisation Program 9. In particular, we prove that there exists a feasible solution of
the dual program with the objective function value corresponding to p ′

1 for all δ ∈ (0,1].
Hence p ′

1 is an upper bound on the achievable fidelity for all δ and there cannot exist an
LOCC protocol that takes two copies of the state in Eq. (5.37) and outputs a state with
fidelity larger than p ′

1.
The proof of N being the optimal success probability for all protocols that output

fidelity equal to p ′
1 also follows from SDP duality. That is, we show that there exists a

feasible solution of the dual program for optimising the probability of success with the
objective function taking the value N for the output fidelity F = p ′

1.

5.4.3. R STATES
Another interesting class of states are quantum states that form a mixture between a
maximally entangled state and a product state. In particular let us first consider a case
where the product part of the mixture is orthogonal to the maximally entangled part.
Specifically let us consider the state

τAB = p|Ψ±〉〈Ψ±|+ (1−p)|11〉〈11|, (5.41)

which we will call an R state. We note that up to a local X or X Z gate this state is exactly
the state in Eq. (5.10) that we considered in the filtering example in Section 5.3.1 (this
local flip on one side will be helpful when discussing remote entanglement generation
in the following section).

This type of state is interesting for two reasons. The first one is “mathematical”. The
above R state is a simple example of a state that as expressed in [42] possesses local in-
formation, in the sense that the reduced state on Alice and Bob individually is not a max-
imally mixed state. This local information can also be seen in the non-zero off-diagonal
elements when the state is expressed in the Bell basis. Since for the DEJMPS and BBPSW
protocols the output fidelity and probability of success are completely independent of
those off-diagonal coefficients, this local information is completely neglected in those
protocols. Hence one could expect that for these states there exist distillation strategies
that utilize this local information and in this way possibly outperform the DEJMPS pro-
tocol.

As observed in [20] this is indeed the case, since for any value of 0 < p ≤ 1 it is possible
to extract a perfect Bell state from two copies of the R state by performing a bilateral
CNOT, measuring the target copy in the standard basis and post-selecting the events
for which both Alice and Bob measured the target copy to be one. In such a scenario
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of applying this protocol to two copies of the R state the fidelity of F = 1 is achieved
with probability of success psucc = p2/2. Note that depending on the value of p the R
state might actually have fidelity to any maximally entangled state smaller than or equal
to half. This shows a fundamental difference with respect to the protocols that do not
utilize this local information like DEJMPS or BBPSSW for which it is required that the
initial fidelity to some maximally entangled state is larger than 0.5 *.

The second reason for considering these states is experimental. These states arise
in certain protocols for remote entanglement generation that use a single photon de-
tection scheme in the presence of photon loss [7, 13, 45]. In particular, [7] describes an
entanglement generation procedure that generates two copies of a state closely related
to the R state (see the next section for more details) and then performs the above de-
scribed distillation protocol proposed in [20] to combat the effect of photon loss. Since
the authors refer to this entire entanglement generation scheme as the Extreme Photon
Loss scheme (EPL), here we will refer to this distillation protocol used within the EPL
procedure as EPL-D. As already mentioned and as we will discuss in the next section, the
R state is still only an idealisation of the actual raw state generated within the remote
entanglement generation schemes described in [7, 13]. In particular the R state includes
only noise due to the photon loss while all realistic implementations will also suffer from
other types of noise.

NUMERICAL EXAMPLES

We first look at filtering a single copy of the R state, since as stated in Section 5.3.1, there
exists a well-known protocol for filtering those states. Optimal filtering schemes have
been studied in the literature [44, 46, 47], but not in the context of the optimal tradeoff
of fidelity and probability of success.

First, we note that the filtering scheme described in Section 5.3.1 (here we assume
that before filtering, Alice applies an X or XZ operation to bring the R state to the form
in Eq. (5.10)) clearly cannot increase the fidelity deterministically, while from [44] we
know that for all p < 2/3 there exists a way of deterministically increasing the fidelity of
the R state by running a probabilistic filtering protocol and outputting a product state
of fidelity half in case of failure. Inspired by this result we consider here a modified ver-
sion of the discussed filtering scheme in which for certain larger values of the desired
success probability for R states with p < 2/3, conditioned on the failure of that original
scheme Alice and Bob probabilistically output a state of fidelity half. The details of this
modification are discussed in Appendix 5.6.2.2. In FIG. 5.6 and in FIG. 5.7 we compare
this modified filtering scheme with our numerical bounds. We consider one example for
which the input fidelity is larger and one for which it is smaller than half.

The original filtering scheme allows us to choose the desired probability of success
by making a suitable choice of the ε parameter, while in our modified scheme success
probability can also be varied by changing the probability of outputting a product state
in case of failure of the original scheme (here we maximise the fidelity over those two
parameters for each probability of success). We note that independently of the value of

*It must be noted that there also exists a general procedure for distilling any inseparable two-qubit state, and
in particular any two-qubit state whose fidelity to any maximally entangled state is smaller than or equal to
half and which therefore cannot be distilled using DEJMPS or BBPSSW, see [43, 44].
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Figure 5.6: Filtering R state τAB with D = 2 and p = 0.8 in Eq. (5.41) to a two-qubit state. The fidelity
of the input copy is Fin = 0.8 and in accordance with [44] we observe that deterministic filtering
(with psucc = 1) is not possible for this state. We see that the filtering scheme perfectly overlaps
with the PPT bound, which proves its optimality for this state. The 1-BSE bound is not included
because it overlaps with the PPT bound.

the parameter p (provided that it is non-zero), in the limit of zero success probability,
this filtering scheme allows for obtaining a state that is arbitrarily close to a maximally
entangled state. From the numerical results we observe that for the considered values of
p, we have that for all probabilities of success our PPT bound perfectly overlaps with the
modified filtering scheme, proving that no higher fidelity can be achieved for the fixed
value of probability of success than already achieved by our modified filtering scheme.
Hence the modified filtering scheme is in fact optimal for these states.

We also present two numerical examples for distillation from two to one copies of
the R state in FIG. 5.8 and in FIG. 5.9. In FIG. 5.8 we consider two copies of the R state
with input fidelity of 0.8. We see that while our achievable interpolation scheme cannot
deterministically increase fidelity for this state, the non-trivial numerical bounds still
allow for this possibility. We also see that for this state the PPT operations allow for dis-
tilling a state very close to a maximally entangled state for much larger probability of
success than the achievable interpolation scheme. In FIG. 5.9 we consider two copies of
the R state whose input fidelity is smaller than half. In this case the interpolation scheme
allows for deterministic increase of fidelity above 0.5 (as discussed in the previous para-
graph, for this value of p that is possible even with just the modified filtering, but the
interpolation scheme performs better). We see that here the PPT operations do not al-
low for distilling a state with fidelity close to one for probabilities of success much larger
than that of the EPL-D protocol.
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Figure 5.7: Filtering R state τAB with D = 2 and p = 0.4 in Eq. (5.41) to a two-qubit state. The
fidelity of the input copy is Fin = 0.4. As first shown in [44], we observe that for the smaller values
of p deterministic filtering of R states is possible and can be achieved with our scheme. We also
see that the filtering scheme perfectly overlaps with the PPT bound, which proves its optimality
for this state. The 1-BSE bound is not included because it overlaps with the PPT bound.
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Figure 5.8: Distilling the R states τ⊗2
ab with D = 2 and p = 0.8 in Eq. (5.41) to a two-qubit state. The

fidelity of the input copy is Fin = 0.8 and we observe that while the extrapolation from DEJMPS
does not allow for deterministic distillation (with psucc = 1) in this case, the PPT bound still allows
for this possibility. We also see that EPL-D allows for achieving unit fidelity. The 1-BSE bound is
not included because it overlaps with the PPT bound.
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Figure 5.9: Distilling the R states τ⊗2
ab with D = 2 and p = 0.4 in Eq. (5.41) to a two-qubit state. The

fidelity of the input copy is Fin = 0.4 and we observe that deterministic distillation (with psucc =
1) which achieves output fidelity larger than half is easily achievable for two copies of this state.
We also see that EPL-D allows for achieving unit fidelity even if p ≤ 0.5. The 1-BSE bound is not
included because it overlaps with the PPT bound.

5.4.4. REMOTE ENTANGLEMENT GENERATION
Here we expand on the experimentally relevant ideas described in the previous section
on R states to reliably model the remote entanglement generation through distillation,
including most of the experimentally relevant sources of noise as described in [7] and as
realised experimentally in [18]. Specifically, in most experimental implementations of
this specific entanglement generation scheme the actual state that is created will be of
the form

ρAB (p) = 1

2π

∫
dφτA1B1(φ, p)⊗τA2B2(φ, p), (5.42)

where
τAB (φ, p) = p|Ψ+(φ)〉〈Ψ+(φ)|+ (1−p)|11〉〈11|, (5.43)

and

|Ψ+(φ)〉 = 1p
2

(
|01〉+e iφ|10〉

)
, (5.44)

|Ψ−(φ)〉 = 1p
2

(
|01〉−e iφ|10〉

)
. (5.45)

Hereφ is a phase that arises due to the optical apparatus and in most cases is completely
unknown. We see that the complete lack of knowledge of the phase φ leads to the uni-
form averaging over that phase. However, if the system is stable over the duration of
generation of the two copies of ρ, one can assume that both of those copies are corre-
lated in that phase.
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In the next step we make this model even more precise by acknowledging the fact that
the first copy of ρ will actually undergo dephasing while trying to generate the second
copy. Moreover, the phase will in general not be exactly the same for both copies since
in any realistic setting it could drift with respect to the first copy. Mathematically, those
two effects can be combined together into a single dephasing process that affects one of
the two copies

ρAB (p, pd ) = 1

2π

∫
dφτA1B1(φ, p, pd )⊗τA2B2(φ, p,1), (5.46)

where

τAB (φ, p, pd ) = p
(
pd |Ψ+(φ)〉〈Ψ+(φ)|

+(1−pd )|Ψ−(φ)〉〈Ψ−(φ)|))+ (1−p)|11〉〈11|. (5.47)

Here we shall refer to the state in Eq. (5.46) as “R-state correlated phase”. In this scenario
the successful implementation of the EPL-D distillation protocol (followed by a local ro-
tation) leads to the output state

η ÂB̂ (pd ) = pd |Φ+〉〈Φ+|+ (1−pd )|Φ−〉〈Φ−|, (5.48)

with probability of success psucc = p2/2. We also provide a more detailed description of
this remote entanglement generation scheme in Appendix 5.6.2.1.

NUMERICAL EXAMPLES

We present two numerical examples for applying distillation to the state ρAB (p, pd ) in
FIG. 5.10 and in FIG. 5.11. We observe that EPL-D saturates the bound by achieving the
highest possible fidelity with the highest possible probability of success. Moreover, we
observe that extrapolating from EPL-D to higher values of probability of success also
achieves the highest possible fidelity for the corresponding value of the probability of
success.

OPTIMAL FIDELITY AND PROBABILITY OF SUCCESS

The numerical examples suggest that the EPL-D protocol is optimal for distilling states
ρAB (p, pd ) given in Eq. (5.46) both in terms of output fidelity and probability of success.
This means that the EPL scheme utilizes the optimal distillation protocol in this respect.

Theorem 5.4.2. Given a state of the form ρAB (p, pd ) given in Eq. (5.46) and distillation
towards the target maximally entangled state with D = 2, there is no protocol that achieves
a larger fidelity than EPL-D and there is no protocol that achieves this fidelity with a larger
success probability than EPL-D.

It turns out that in this case it is possible to analytically prove this optimality in a
simple way without using the SDP formulation. Specifically, see Appendix 5.6.8 for the
proof, that after performing the integration over the phase φ, the state ρAB (p, pd ) is ac-
tually block diagonal in the standard basis, where one of the blocks is of size two and
all the other blocks are of size one. Clearly the blocks of size one correspond to sepa-
rable states. Hence, output fidelity is maximised by projecting onto the size two block.
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Figure 5.10: Distilling the R-state correlated phase ρAB (p, pd ) given in Eq. (5.46) with D = 2 and
p = 0.8, pd = 1 to a two-qubit state. We see that EPL-D is an optimal distillation protocol for the
EPL remote entanglement generation scheme. The red extrapolation curve perfectly overlaps with
the PPT bounds which means that the protocols arising by extrapolating EPL-D to higher values
of probability of success are also optimal and achieve the maximum possible fidelity for the cor-
responding probability of success. The 1-BSE bound is not included because it overlaps with the
PPT bound.
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Figure 5.11: Distilling the R-state correlated phase ρAB (p, pd ) given in Eq. (5.46) with D = 2 and
p = 0.5, pd = 0.8 to a two-qubit state. EPL-D is an optimal distillation protocol for the EPL remote
entanglement generation scheme. The red extrapolation curve perfectly overlaps with the PPT
bounds which means that the protocols arising by extrapolating EPL-D to higher values of proba-
bility of success are also optimal and achieve the maximum possible fidelity for the corresponding
probability of success. The 1-BSE bound is not included because it overlaps with the PPT bound.

Finally, this block is equivalent up to a local relabelling to the state η ÂB̂ (pd ) in Eq. (5.48).
Since this state is non-filterable in the sense that even probabilistically no LOCC scheme
can increase its fidelity [44], the optimal protocol cannot achieve fidelity higher than pd

which is achieved by EPL-D within the EPL scheme.
The same argument also implies that within EPL, EPL-D achieves fidelity pd with

maximum probability. More concretely, the probability of the projection onto the size-
two block succeeds with probability at most p2/2 which is the success probability of
EPL-D within EPL.

OPTIMALITY WITH RESPECT TO DISTILLABLE ENTANGLEMENT

Recall that the distillable entanglement of a state is defined as the optimal asymptotic
rate at which it is possible to transform copies of the state into copies of the maximally
entangled state. It turns out that within EPL, EPL-D is also optimal for distillable entan-
glement. More concretely:

Theorem 5.4.3. Given a state of the form ρAB (p, pd ) given in Eq. (5.46), there is no pro-
tocol with the success probability of EPL-D that outputs a state with larger distillable en-
tanglement. Equally there is no protocol that outputs a state with the same distillable
entanglement as EPL-D and succeeds with larger probability.

We defer the proof of Theorem 5.4.3 to Appendix 5.6.8. The informal argument re-
lies on the fact that the distillable entanglement of the output of a distillation protocol
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multiplied by the rate of successful distillation cannot be larger than the distillable en-
tanglement of the original state; that is, we must have that

psucc,EPLED (η ÂB̂ (pd )) ≤ ED ((ρAB (p, pd )). (5.49)

In the case of EPL, the distillable entanglement of the stateρAB (p, pd ) equals psucc,EPL(1−
h(pd )) (see Appendix 5.6.8) while the distillable entanglement of the output state of EPL-
D, η ÂB̂ (pd ), is 1−h(pd ), where h(x) =−x log x−(1−x) log(1−x) is the binary entropy func-
tion [48]. This proves that we actually have equality in Eq. (5.49). The result is stronger in
the case that there is no dephasing, i.e. pd = 1. In this case, EPL-D outputs perfect EPR
pairs at the distillable entanglement rate. Hence, EPL-D is then by definition optimal
within EPL.

5.4.5. S STATES
We have already looked at the R state, a simple mixture of a Bell state with a product state.
However, we have only considered the scenario when the product state is orthogonal to
the given Bell state. As we have already seen those states are easy to both distil and filter.
Specifically, we have seen that from two copies of such a state we can obtain a perfect
maximally entangled state with finite probability of success and even from a single copy
in the limit of zero probability of success, a perfect maximally entangled state can also be
filtered. It is now interesting to see what happens if this product noise is not orthogonal
to that Bell state. Hence we will now consider the state

τAB = p|Φ+〉〈Φ+|+ (1−p)|11〉〈11|, (5.50)

which we will call an S state.

NUMERICAL EXAMPLES

The first property of this S state that we have verified numerically is that it is less filterable
than the R state, meaning that even at the expense of the probability of success it is not
possible to achieve arbitrarily high output fidelity through local filtering. However, we
show here that by applying the seesaw optimisation from existing schemes to such local
filtering of the S state, we find a new protocol that is more suited to those states. Namely,
we start from the filtering scheme described in Section 5.3.1. We see in FIG. 5.12 that the
seesaw method improves the output fidelity of the original filtering protocol designed to
perform well on states given in Eq. (5.10). We observe that the new protocol obtained
using the seesaw method overlaps with the PPT bound which proves its optimality for
the considered state.

We then investigate distillation on two copies of such an S state. We plot our numeri-
cal results in FIG. 5.13. We see that distilling these states is harder than distilling R states
in the sense that the output fidelity of one is no longer achievable for any probability of
success. Moreover, our interpolation scheme does not allow for deterministic increase
of fidelity which we see is possible using PPT operations. The numerical results also
suggest that DEJMPS protocol is optimal for distilling these states, such that it allows us
to achieve the highest possible output fidelity for this protocol’s probability of success
when operating on these states.
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Figure 5.12: Filtering S state τAB with D = 2 and p = 0.5 in Eq. (5.50) to a two-qubit state. The
fidelity of the input copy is Fin = 0.75. We see that deterministic increase of fidelity (psucc = 1) is
not possible. We also observe that the filtering scheme designed to work well for states given in
Eq. (5.10) is not able to improve the fidelity of the S state for any value of the probability of success.
However, after applying the seesaw method to this protocol we obtain a new filtering protocol that
allows for increasing fidelity of this state. Since the curve corresponding to that protocol overlaps
with the PPT bound, we see that this protocol is in fact optimal for this state. The 1-BSE bound is
not included because it overlaps with the PPT bound.
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Figure 5.13: Distilling the S states τ⊗2
ab with D = 2 and p = 0.6 in Eq. (5.50) to a two-qubit state. The

fidelity of the input copy is Fin = 0.75 and we observe that while the extrapolation from DEJMPS
does not allow for deterministic distillation (with psucc = 1) in this case, the PPT bound still allows
for this possibility. We also observe that DEJMPS allows us to achieve the highest fidelity for the
corresponding probability of success. The 1-BSE bound is not included because it overlaps with
the PPT bound.

5.5. DISCUSSION
We have provided and studied several methods to understand the trade-off between fi-
delity and probability of success in practical entanglement distillation schemes. The
fidelity is thereby of interest not only because it is a commonly estimated measure in ex-
periment, but most significantly because it bears a direct relation to the possible fidelity
of teleportation using the entanglement generated [49]. Given that the deterministic
transmission of qubits in present day systems relies on the heralded generation of en-
tanglement, followed by deterministic teleportation (see e.g. [50]), the fidelity is thus of
central interest in a quantum network. Evidently, it is an interesting open question to
derive tradeoffs between the success probability and different entanglement measures.

Looking at the method of Bose symmetric extensions employed here, one might
wonder whether one might also employ methods based on ε nets (see, e.g., [51]) in or-
der to tackle our optimisation problem. Here an ε net is placed on the set of operations,
and every point in this ε net is checked. Whereas this “try everything” approach seems
rather trivial it does actually (in terms of ε) not lead to a computationally (in terms of k)
more expensive optimisation than the methods of k Bose symmetric extensions when
optimising over the set of separable states. We remark that while this comparison is ev-
idently very interesting and fruitful from a complexity theoretic perspective, it is not of
great practical interest for the small values of k for which it is feasible to evaluate the
SDP. Here, the corresponding ε of the net is still very large, meaning we try out only rel-
atively few points, leading to uninteresting solutions. In contrast, the method of k Bose
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symmetric extensions actually performs not so badly even for k = 1 in a more practical
fashion. We remark that the method of ε nets can of course be used to optimize over
MX operations directly. It is straightforward to adapt the methods of [51] to derive con-
ditions for optimising over the set of Choi states instead of all states, and then explore
the resulting ε net to optimize. This evidently leads to statements on the complexity of
optimising over Choi states, but does not lead to a practically realizable method which
is the interest of the present article.

One might also wonder whether there exist good heuristic methods based on semidef-
inite programming in order to derive actual distillation schemes other than using the
seesaw method starting from an existing scheme. This indeed may sound quite appeal-
ing given heuristics for imposing rank constraints on SDP variables: in our case, we could
make explicit a potential ancilla that Alice and Bob may use in their distillation scheme.
Fixing an ancilla of a desired maximum size, the Choi state is then pure if we include
the purifying ancilla. As such, heuristics such as [52] that confine the rank of the entire
state including the ancilla to be 1, approximate the set of pure states, and could thus give
rise to a heuristic method for optimising over MX operations directly. In our situation,
however, an implementation of [52] did not lead to any interesting results, which is why
this method is omitted from this article. Nevertheless, it is an interesting open question
to find good heuristic methods for optimising over the set of MX operations.

5.6. APPENDIX

5.6.1. PPT CHOI STATES
In this appendix we briefly discuss the connection between the PPT channels and PPT
Choi states. The connection between the PPT channels and Jamiolkowski operator has
been discussed in [21]; however here we are interested in the Choi isomorphism and so
for clarity we describe this connection for the Choi isomorphism.

Following [35], we first recall the definition of a PPT operation:

Definition 5.6.1. A quantum operation ΨAB→ÂB̂ is a PPT operation if the superoperator
ΨΓ

AB→ÂB̂
is completely positive. Here, ΨΓ

AB→ÂB̂
is defined such that:

ΨΓ
AB→ÂB̂

: ρAB → (ΨAB→ÂB̂ (ρΓB
AB ))ΓB̂ , (5.51)

with ΓB and ΓB̂ denoting partial transposes on systems B and B̂.

Now we can easily prove that a PPT Choi state corresponds to a PPT operation.

Lemma 5.6.2. A quantum operation ΨAB→ÂB̂ is a PPT operation if and only if its Choi
state C ÂB̂ A′B ′ (Ψ) is PPT.

Proof. We use without proof the following simple observation: for every linear map
ΨA→Â , it follows

(ΨA→Â ⊗1B )(ΦAB ) = (1Â ⊗TB ◦ (ΨB̂→B )† ◦TB̂ )(ΦÂB̂ ) (5.52)

where T denotes the transpose map and Ψ† is the adjoint of Ψ (i.e., the unique linear
map satisfying tr

(
ρΨ(σ)

)= tr
(
σΨ†(ρ)

)
).
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Consider the Choi matrix of the map ΨΓ:

C ÂB̂ A′B ′ (ΨΓ) = (ΨΓ
AB→ÂB̂

⊗1A′B ′ )ΦAB A′B ′ = (TB̂ ◦ΨAB→ÂB̂ ◦TB ⊗1A′B ′ )ΦAB A′B ′ (5.53)

= (TB̂ ◦ΨAB→ÂB̂ ⊗TA′B ′ ◦ (TB ′ )† ◦TA′B ′ )ΦAB A′B ′ (5.54)

It can be easily verified that (TB ′ )† = TB ′ , so that

C ÂB̂ A′B ′ (ΨΓ) = (TB̂ ⊗TB ′ )C ÂB̂ A′B ′ (Ψ) =C ÂB̂ A′B ′ (Ψ))ΓB̂B ′ (5.55)

Now it can be clearly seen that

(C ÂB̂ A′B ′ (Ψ))ΓB̂B ′ ≥ 0 ⇐⇒ C ÂB̂ A′B ′ (ΨΓ) ≥ 0 ⇐⇒ ΨΓ is a completely positive map (5.56)

which concludes the proof.

5.6.2. BACKGROUND: MODIFIED DISTILLATION PROTOCOLS

The well-known distillation protocols from the literature which we compare to our PPT
and 1-BSE bounds have already been introduced in Section 3.3.2 in Chapter 3. However,
in this chapter we have considered a more realistic version of the EPL remote entangle-
ment generation protocol introduced in Section 3.3.2 in Chapter 3 which additionally
to all the sources of noise introduced before, also includes additional dephasing noise.
Hence, we restate that protocol here in this more accurate form. We also describe how
we can interpolate or extrapolate new schemes from those existing ones in order to ob-
tain schemes that allow us to succeed with arbitrary desired probability.

MODIFIED NOISE MODEL FOR EPL

In this section we will reconsider the EPL protocol described in Algorithm 4 in Sec-
tion 3.3.2 in Chapter 3. In particular, here we also consider possible additional dephasing
noise due to decoherence of the memories or possible drifts in the optical phase of the
apparatus between the generation of the two copies. We describe the whole procedure
in detail below.
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Algorithm 6 EPL entanglement generation scheme

1: Generate node-photon entanglement at both remote nodes, where the photonic
qubit is encoded in the presence-absence of a photon.

2: Send the photonic qubit towards a beam-splitter station in the middle.
3: Conditioned on the detection of a single photon, store the resulting state in quantum

memories.
4: Repeat the above procedure to generate the second copy.
5: Assuming stability of the experimental apparatus over the time of generating those

two copies, Alice and Bob share then an effective state:

ρAB (p, pd ) = 1

2π

∫
dφτA1B1(φ, p, pd )⊗τA2B2(φ, p,1),

where

τAB (φ, p, pd ) = p
(
pd |Ψ+(φ)〉〈Ψ+(φ)|+ (1−pd )|Ψ−(φ)〉〈Ψ−(φ)|))+ (1−p)|11〉〈11|.

The dephasing noise corresponds to the decoherence of the quantum memories
storing the first copy, while attempting to generate the second one and to the pos-
sible small drifts in the phase φ between the two copies.

6: Apply EPL-D distillation scheme.
7: if EPL-D succeeds (this occurs with probability psucc = p2/2) then
8: After Alice applies additional local rotation, we obtain a state:

η ÂB̂ (pd ) = pd |Φ+〉〈Φ+|+ (1−pd )|Φ−〉〈Φ−|,

with fidelity pd .

9: return

INTERPOLATING AND EXTRAPOLATING BETWEEN AND FROM THE FIXED SCHEMES

We note that having access to shared randomness, Alice and Bob can also apply a mix-
ture of existing schemes. Consider two protocols with probability of success given by p1

for the first one and p2 for the second one. Also let the output fidelity conditioned on
success be given by F1 and F2 for the two protocols respectively. Then if Alice and Bob
share a classical coin with probability distribution (r,1− r ), i.e., with probability r the
coin outputs head and with probability 1− r it outputs tail, then they can construct a
new protocol in which they first toss the coin and depending on the outcome they apply
either the first or the second scheme. This new scheme has a probability of success given
by:

psucc = r p1 + (1− r )p2, (5.57)

and the output fidelity conditioned on success will now be given by:

F = 1

psucc

(
r p1F1 + (1− r )p2F2

)
. (5.58)

It is also possible to easily extrapolate from an existing scheme. Consider a protocol
that succeeds with probability p1 with the output fidelity conditioned on success given
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by F1. Then one can also trivially achieve the same fidelity for any smaller value of psucc

by first performing that protocol, then conditioned on its success throwing a coin and
effectively accepting the output of the protocol only for one of the outcomes of the coin.

It is also possible to extrapolate in the direction of higher probability of success. For
all the considered states apart from the scenario of remote entanglement generation and
R states with smaller values of the p parameter, we consider the following extrapolation
scheme from a fixed protocol P when considering distillation from two to one copies.
Alice and Bob first throw a coin with probability distribution (r,1− r ) and depending
on the outcome they either apply the protocol P , which upon success occurring with
probability p outputs a state of fidelity Fout, or they output one of the input copies of
fidelity Fin. This scheme has a probability of success

psucc = r p + (1− r ), (5.59)

and the output fidelity conditioned on success will now be given by:

F = 1

psucc

(
r pFout + (1− r )Fin

)
. (5.60)

In the case of remote entanglement generation using EPL, the state from which we
distill is not a simple tensor product of two copies and therefore the above extrapolation
scheme could not be applied in this case. Hence, we then apply a different scheme. In
this case Alice and Bob first apply the EPL-D protocol which upon success occurring
with probability p outputs a state of fidelity Fout. In the case in which EPL-D fails, they
throw a coin with probability distribution (r,1− r ). Then for one of the coin outcomes
Alice and Bob output a separable state of fidelity 1/2, and declare failure for the other
outcome. This gives

psucc = p + (1−p)r, (5.61)

with the output fidelity given by:

F = 1

psucc

(
pFout + (1−p)r

1

2

)
. (5.62)

It also turns out that for R states with Fin < 2−p
2 it is also better in terms of output fi-

delities to apply this extrapolation scheme to EPL-D without interpolating with DEJMPS
at all.

Finally we also describe the extrapolation-based modified filtering protocol which
we apply to the states defined in Eq. (5.10) (rotated R states). In this scheme Alice and
Bob apply the filtering protocol as described in Algorithm 5 in Section 3.3.2 in Chapter 3,
but in the case of failure they throw a coin with probability distribution (r,1− r ) and
depending on the outcome they either output a state of fidelity half or declare a failure.
This leads to the new overall probability of success given by psucc = pε+ (1−p)ε2 + (1−
pε− (1−p)ε2)r and new output fidelity given by F = [2pε+ (1−pε− (1−p)ε2)r ]/2psucc.
For fixed value of the probability of success one can then optimize the fidelity over ε and
r . The result shows that the modification (throwing a coin with non zero probability of
outputting a product state) helps for p < 2/3 for larger values of the success probability.
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In particular after fixing psucc the optimal output fidelity that can be obtained using this
protocol is given by

F =


1
2

(
1+ p2

4psucc(1−p)

)
p ≤ 2

3 ∧psucc ≥ 3p2

4(1−p) ,
2p

p+
p

p2+4psucc(1−p)
otherwise.

(5.63)

We note that it is the first parameter regime of the above function where probabilistically
adding the product noise of fidelity half helps. The second regime corresponds to just
applying the original filtering scheme. We also note that setting psucc = 1 in the above
expression we recover the result of [44] for maximum fidelity obtainable from a single
copy of the R state using trace preserving LOCC operations.

5.6.3. SYMMETRY REDUCTION
If the structure of the SDP optimisation exhibits a certain symmetry we can exploit this

to simplify the optimisation before actually evaluating it numerically. Inspired by the
observation of Rains [21] we make a similar symmetry reduction to the main SDP in this
section. Specifically, note that the target maximally entangled state ΦD satisfies

∀U , U Â ⊗U∗
B̂

(ΦD )(U Â ⊗U∗
B̂

)† =ΦD . (5.64)

Let T (·) be the twirling operation defined as

T (ρ ÂB̂ ) =
∫

dU (U Â ⊗U∗
B̂

)ρAB (U Â ⊗U∗
B̂

)†. (5.65)

We can then re-express the symmetry in Eq. (5.64) as T (ΦD ) =ΦD . This means that with-
out loss of generality our optimal solution exhibits the same symmetry, because both the
constraints and objective function of the SDP in Optimisation Program 8 are invariant
under the symmetry:

objective :

|A||B |
δ

tr
(
|ΦD〉〈ΦD |ÂB̂ ⊗ρT

A′B ′Ĉ3,Â A′B̂B ′
)
= |A||B |

δ
tr

((
T (|ΦD〉〈ΦD |ÂB̂ )⊗ρT

A′B ′
)

Ĉ3,Â A′B̂B ′
)

= |A||B |
δ

tr
((|ΦD〉〈ΦD |ÂB̂ ⊗ρT

A′B ′
)
T †(Ĉ3,Â A′B̂B ′ )

)
= |A||B |

δ
tr

((|ΦD〉〈ΦD |ÂB̂ ⊗ρT
A′B ′

)
T (Ĉ3,Â A′B̂B ′ )

)
,

constraints :

|A||B | tr
[(
IÂB̂ ⊗ρT

A′B ′
)

Ĉ3,Â A′B̂B ′
]
= |A||B | tr

[(
IÂB̂ ⊗ρT

A′B ′
)
T (Ĉ3,Â A′B̂B ′ )

]
,

(5.66)

and similarly for the other constraints. In other words, if Ĉ3,Â A′B̂B ′ is an optimal solution,
then so is

T (Ĉ3,Â A′B̂B ′ ) =
∫

dU (U Â ⊗U∗
B̂
⊗IA′B ′ )Ĉ3,Â A′B̂B ′ (U Â ⊗U∗

B̂
⊗IA′B ′ )† , (5.67)
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and it is intuitive that T (Ĉ3,Â A′B̂B ′ ) contains a smaller number of variables compared

to Ĉ3,Â A′B̂B ′ . Thus, declaring and optimising over the variable T (Ĉ3,Â A′B̂B ′ ) is a more
efficient approach.

In order to explicitly write down the symmetry-reduced optimisation, we need to
understand the structure of the twirling operation (5.65). Using the tools from represen-
tation theory of the unitary group [53] we can write

T (ρ ÂB̂ ) = trÂB̂

[
ρ ÂB̂ |ΦD〉〈ΦD |ÂB̂

] |ΦD〉〈ΦD |ÂB̂

+ trÂB̂

[
ρ ÂB̂ (I−|ΦD〉〈ΦD |)ÂB̂

] IÂB̂ −|ΦD〉〈ΦD |ÂB̂

D2 −1
.

(5.68)

This gives us the new form of our optimisation variable as follows

T (Ĉ3,Â A′B̂B ′ ) = trÂB̂

[
Ĉ3,Â A′B̂B ′ (|ΦD〉〈ΦD |ÂB̂ ⊗IA′B ′ )

]
⊗|ΦD〉〈ΦD |ÂB̂

+ trÂB̂

[
Ĉ3,Â A′B̂B ′

(
(I−|ΦD〉〈ΦD |)ÂB̂ ⊗IA′B ′

)]⊗ IÂB̂ −|ΦD〉〈ΦD |ÂB̂

D2 −1
.

(5.69)

With the definitions

MA′B ′ := trÂB̂

[
Ĉ3,Â A′B̂B ′ (|ΦD〉〈ΦD |ÂB̂ ⊗IA′B ′ )

]
, (5.70)

E A′B ′ := trÂB̂

[
Ĉ3,Â A′B̂B ′

(
(I−|ΦD〉〈ΦD |)ÂB̂ ⊗IA′B ′

)]
, (5.71)

we have

T (Ĉ3,Â A′B̂B ′ ) = MA′B ′ ⊗|ΦD〉〈ΦD |ÂB̂ +E A′B ′ ⊗ IÂB̂ −|ΦD〉〈ΦD |ÂB̂

D2 −1
, (5.72)

and it is evident that we have reduced the number of variables to those contained in
MA′B ′ and E A′B ′ .

Now we are ready to derive the form of our SDP in terms of the new variables MA′B ′
and E A′B ′ . Using (5.72) in the objective function gives

|A||B |
δ

tr
[(|ΦD〉〈ΦD |ÂB̂ ⊗ρT

A′B ′
)
T

(
Ĉ3,Â A′B̂B ′

)]
= |A||B |

δ
tr

[
ρT

A′B ′MA′B ′
]

. (5.73)

Similarly, the equality constraint transforms as

|A||B | tr
[(
IÂB̂ ⊗ρT

A′B ′
)
T (Ĉ3,Â A′B̂B ′ )

]
= |A||B | tr

[
ρT

A′B ′ (MA′B ′ +E A′B ′ )
]= δ . (5.74)

The inequality constraint Ĉ3,Â A′B̂B ′ ≥ 0 becomes two inequality constraints MA′B ′ ≥ 0

and E A′B ′ ≥ 0. The PPT relaxation constraint ĈΓ
3,Â A′B̂B ′ ≥ 0 becomes

T (Ĉ3,Â A′B̂B ′ )Γ = |ΦD〉〈ΦD |Γ
ÂB̂

⊗MΓ
A′B ′ +

(IÂB̂ −|ΦD〉〈ΦD |ÂB̂ )Γ

D2 −1
⊗EΓ

A′B ′

= 1

D
(PS ÂB̂

−P A ÂB̂
)⊗MΓ

A′B ′ +
(
1− 1

D

)
PS ÂB̂

+ (
1+ 1

D

)
P A ÂB̂

D2 −1
⊗EΓ

A′B ′

= PS ÂB̂
⊗

(
1

D
MΓ

A′B ′ +
1− 1

D

D2 −1
EΓ

A′B ′

)
+P A ÂB̂

⊗
(
− 1

D
MΓ

A′B ′ +
1+ 1

D

D2 −1
EΓ

A′B ′

)
≥ 0 ,

(5.75)
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where we have used ΦΓ = (PS −P A)/D and IΓ = PS +P A , where PS and P A are projectors
onto the symmetric and anti-symmetric subspace, respectively. The orthogonality of PS

and P A allows us to read off this constraint as two inequality constraints

MΓ
A′B ′ + 1

D +1
EΓ

A′B ′ ≥ 0 , −MΓ
A′B ′ + 1

D −1
EΓ

A′B ′ ≥ 0 . (5.76)

Finally, the last two inequality constraints of SDP in Optimisation Program 8 become

MA′B ′ +E A′B ′ = trÂ,B̂ (T (Ĉ3,Â A′B̂B ′ )) = Ĉ3,A′B ′ ≤ IA′,B ′

|A||B | , (5.77)

MΓ
A′B ′ +EΓ

A′B ′ = (trÂ,B̂ (T (Ĉ3,Â A′B̂B ′ )))Γ = ĈΓ
3,A′B ′ ≤

IA′,B ′

|A||B | . (5.78)

In summary, putting things together we obtain the following simplified SDP optimi-
sation problem, as stated in Optimisation Program 9 in the main text:

maximise |A||B |
δ tr

[
ρT

A′B ′MA′B ′
]

subject to MA′B ′ ≥ 0, E A′B ′ ≥ 0 ,

MA′B ′ +E A′B ′ ≤ IA′B ′
|A||B | ,

MΓ
A′B ′ +EΓ

A′B ′ ≤ IA′B ′
|A||B | ,

|A||B | tr
[
ρT

A′B ′ (MA′B ′ +E A′B ′ )
]= δ ,

MΓ
A′B ′ + 1

D+1 EΓ
A′B ′ ≥ 0 ,

−MΓ
A′B ′ + 1

D−1 EΓ
A′B ′ ≥ 0 .

Optimisation Program 11.

5.6.4. DERIVATIONS OF DUAL SDPS
In this appendix we will use the duality relations between the primal and dual programs
as explained in Section 2.3 to derive the form of the dual SDPs for optimising fidelity and
probability of success.

OPTIMISING FIDELITY

The SDP in Optimisation Program 9 for finding the optimal output fidelity can be written
in the primal form presented in Section 2.3 by defining:

A = |A||B |
δ

(
ρT 0
0 0

)
, X =

(
M X12

X †
12 E

)
, B1 = δ, B2 =


I

|A||B | 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

|A||B |

 ,

Φ1(X ) = |A||B | tr[ρT (M +E)],

Φ2(X ) =


M +E 0 0 0

0 −MΓ− 1
D+1 EΓ 0 0

0 0 MΓ− 1
D−1 EΓ 0

0 0 0 MΓ+EΓ

 .

(5.79)
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Observe that the SDP induced by this choice is equivalent to the original SDP in Optimi-
sation Program 9 because the constraint X ≥ 0 reduces to M ≥ 0 and E ≥ 0 without loss
of generality. More precisely, the X ≥ 0 implies M ≥ 0 and E ≥ 0 so the optimum of the
original SDP in Optimisation Program 9 is at least as large as the optimum of the SDP
defined here. Conversely, for any feasible pair M ,E of the original SDP in Optimisation
Program 9 we can define a feasible X of the above SDP by setting X12 = 0 so the optimum
of the original SDP in Optimisation Program 9 is at most the optimum of the above SDP.

Now in order to dualize, we need to calculate Φ†
1 and Φ†

2. Since Φ1 maps to a scalar,
we conclude that Y1 = y is a scalar and we must have, by definition of adjoint,

tr [Φ1(X )Y1] = |A||B | tr[ρT (M +E)]y = tr
[

XΦ†
1(Y1)

]
, (5.80)

from which we conclude that

Φ†
1(Y1) = |A||B |

(
ρT y 0

0 ρT y

)
. (5.81)

Turning now to Φ2, we note that Y2 will be a 4-by-4 block matrix and we will label the

blocks as Y i j
2 . Observe that

tr[Φ2(X )Y2] = tr[(M +E)Y 11
2 ]+ tr

[(
−MΓ− 1

D +1
EΓ

)
Y 22

2

]
+ tr

[(
MΓ− 1

D −1
EΓ

)
Y 33

2

]
+ tr[(MΓ+EΓ)Y 44

2 ]

= tr[(M +E)Y 11
2 ]+ tr

[(
−M − 1

D +1
E

)
(Y 22

2 )Γ
]

+ tr

[(
M − 1

D −1
E

)
(Y 33

2 )Γ
]
+ tr[(M +E)(Y 44

2 )Γ].

(5.82)

With Φ†
2(Y2) expressed as a 2-by-2 block matrix

Φ†
2(Y2) =

(
W1 W2

W †
2 W4

)
, (5.83)

we have
tr

[
XΦ†

2(Y2)
]
= tr[MW1]+ tr[X †

12W2]+ tr[X12W †
2 ]+ tr[EW4]. (5.84)

The definition of the adjoint map, namely tr[Φ2(X )Y2] = tr
[

XΦ†
2(Y2)

]
, allows us to di-

rectly compare (5.82) and (5.84) and read off

W1 = Y 11
2 − (Y 22

2 )Γ+ (Y 33
2 )Γ+ (Y 44

2 )Γ,

W2 = 0,

W3 = 0,

W4 = Y 11
2 − 1

D +1
(Y 22

2 )Γ− 1

D −1
(Y 33

2 )Γ+ (Y 44
2 )Γ.

(5.85)
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Therefore, using the definition of the dual as stated in Section 2.3, the dual program
becomes:

minimize yδ+ tr[Y 11
2 +Y 44

2 ]
|A||B |

subject to

(|A||B |yρT +W1 0
0 |A||B |yρT +W4

)
≥

( |A||B |
δ ρT 0

0 0

)
,

y ∈R ,
Y2 ≥ 0 .

Optimisation Program 12.

For ease of notation we will define J = Y 11
2 ,G = Y 22

2 , H = Y 33
2 ,K = Y 44

2 . The off-diagonal
blocks of the matrix variable Y2 can always be chosen to be zero and thus the dual SDP
can be written as follows without loss of generality:

minimize yδ+ tr[J+K ]
|A||B |

subject to J ,G , H ,K ≥ 0, y ∈R ,
|A||B |(y − 1

δ

)
ρT + J −GΓ+HΓ+K Γ ≥ 0 ,

|A||B |yρT + J − 1
D+1GΓ− 1

D−1 HΓ+K Γ ≥ 0 .

Optimisation Program 13.

Here all the matrices are on registers A′B ′. Thus we have obtained the form of the dual
semidefinite program for the optimal output fidelity.

OPTIMISING PROBABILITY OF SUCCESS

Similarly, we can now find the dual of the SDP in Optimisation Program 10 for optimising
probability of success. Again, using the form specified in [54], we obtain:

A = |A||B |
(
ρT 0
0 ρT

)
, X =

(
M X12

X †
12 E

)
, B1 = 0, B2 =


I

|A||B | 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

|A||B |

 ,

Φ1(X ) = (1−F ) tr[ρT M ]−F tr[ρT E ],

Φ2(X ) =


M +E 0 0 0

0 −MΓ− 1
D+1 EΓ 0 0

0 0 MΓ− 1
D−1 EΓ 0

0 0 0 MΓ+EΓ

 .

(5.86)

Now we need to calculate Φ†
1 and Φ†

2. Since Φ1 maps to a scalar, we conclude that Y1 = y
is a scalar and we must have, by definition of adjoint:

tr [Φ1(X ),Y1] = (
(1−F ) tr[ρT M ]−F tr[ρT E ]

)
y = tr

[
XΦ†

1(Y1)
]

, (5.87)

from which we conclude that:

Φ†
1(Y1) =

(
(1−F )yρT 0

0 −F yρT

)
. (5.88)
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Turning now to Φ2, we note that it is the same as in the program for optimising fidelity,
see Eq. (5.79). Hence Φ†

2(Y2) remains the same as given in Eq. (5.83) and in Eq. (5.85).
Therefore the dual problem becomes:

minimize
tr[Y 11

2 +Y 44
2 ]

|A||B |
subject to

(
(1−F )yρT +W1 0

0 −F yρT +W4

)
≥ |A||B |

(
ρT 0
0 ρT

)
,

y ∈R ,
Y2 ≥ 0 .

Optimisation Program 14.

This SDP can be rewritten as

minimize tr[J+K ]
|A||B |

subject to J ,G , H ,K ≥ 0, y ∈R ,
[(1−F )y −|A||B |]ρT + J −GΓ+HΓ+K Γ ≥ 0 ,
[−F y −|A||B |]ρT + J − 1

D+1GΓ− 1
D−1 HΓ+K Γ ≥ 0 .

Optimisation Program 15.

5.6.5. k BOSE SYMMETRIC EXTENSIONS
This section details the calculations leading to the 1-BSE optimisation program men-
tioned in the main text. We first explain how the variable is defined for a k-BSE. Con-
sidering Ĉ(Â A′)B̂B ′ to be k-BSE means that there exists Ĉ(Â1 A′

1)...(Âk+1 A′
k+1)B̂B ′ satisfying the

BSE constraints. We are changing the optimisation variable from the former to the lat-
ter, which lives only on the symmetric subspace of (Â1 A′

1) . . . (Âk+1 A′
k+1). The full Hilbert

space of Alice decomposes as

H(Â1 A′
1)...(Âk+1 A′

k+1) =HSym ⊕H ⊥
Sym, (5.89)

into symmetric subspace and its orthogonal complement. Hence, the joint Hilbert space
of Alice and Bob’s systems has the corresponding form

H(Â1 A′
1)...(Âk+1 A′

k+1)B̂B ′ = (HSym ⊕H ⊥
Sym)⊗H B̂ ,B ′ = (HSym ⊗H B̂ ,B ′ )⊕ (H ⊥

Sym ⊗H B̂ ,B ′ ).

(5.90)
Under this decomposition, the operator Ĉ(Â1 A′

1)...(Âk+1 A′
k+1)B̂B ′ has the simple form

Ĉ(Â1 A′
1)...(Âk+1 A′

k+1)B̂B ′ =
(
Ws 0
0 0

)
, (5.91)

with Ws being some operator acting on HSym⊗H B̂ ,B ′ . Since our derivations in the main
text are performed in the standard basis, let USym→Std be the change of basis from the
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“symmetric” basis to the computational basis of Alice’s systems. We finally obtain the
form of our new variable in the standard basis

Ĉ(Â1 A′
1)...(Âk+1 A′

k+1)B̂B ′ =USym→Std ⊗IB̂ ,B ′

(
Ws 0
0 0

)
U †

Sym→Std ⊗IB̂ ,B ′ . (5.92)

In the final SDP which will be presented at the end of this section, we will only declare
and optimize over the smaller variable Ws .

Now we specialize to the case of 1-BSE. Considering Ĉ(Â A′)B̂B ′ to be 1-BSE means

that there exists Ĉ(Â1 A′
1)(Â2 A′

2)B̂B ′ satisfying the BSE constraints. Since we have only two

subsystems on Alice’s side (corresponding to the indices 1 and 2), the orthogonal com-
plement H ⊥

Sym turns out to be the subspace consisting of antisymmetric vectors HASym.
We need to compute the change of basis operator in

Ĉ Â1 A′
1 Â2 A′

2B̂B ′ =USym→Std ⊗IB̂ ,B ′

(
Ws 0
0 0

)
U †

Sym→Std ⊗IB̂ ,B ′ . (5.93)

In the case when the input dimensions of Alice and Bob are the same and the target is
the maximally entangled state of dimension D , we have dimensions |Â1| = |Â2| = |B̂ | = D
and |A′

1| = |A′
2| = |B ′| =C , so Alice’s first (Â1 A′

1) and second (Â2 A′
2) subsystems each have

dimension C D . We can construct the change of basis USym→Std forCC D⊗CC D using stan-
dard techniques. Let {|i 〉 : i = 0, . . . ,C D} denote the standard basis of a C D-dimensional
system. Then the basis for the symmetric subspace on (A1 A′

1)(A2 A′
2) consists of the vec-

tors in Vs =V1 ∪V2 where

V1 =
{
|i 〉A1 A′

1
⊗|i 〉A2 A′

2
|i = 0,1, . . . ,C D

}
,

V2 =
{

1p
2

(
|i 〉A1 A′

1
⊗| j 〉A2 A′

2
+| j 〉A1 A′

1
⊗|i 〉A2 A′

2

)
|i , j = 0,1, . . . ,C D and j > i

}
.

(5.94)

Similarly, the basis for the antisymmetric subspace on (A1 A′
1)(A2 A′

2) consists of the vec-
tors in

Va =
{

1p
2

(
|i 〉A1 A′

1
⊗| j 〉A2 A′

2
−| j 〉A1 A′

1
⊗|i 〉A2 A′

2

)
|i , j = 0,1, . . . ,C D and j > i

}
. (5.95)

The coefficients of these vectors form the entries of the matrix USym→Std.

We are now left with rewriting the optimisation in terms of Ws , a (C D)2(C D+1)
2 × (C D)2(C D+1)

2
matrix. The objective function

|A||B |
δ

tr

((
IÂ1 A′

1
⊗|ΦD〉〈ΦD |Â2,B̂ ⊗ρT

A′
2B ′

)(
USym→Std ⊗IB̂ ,B ′

(
Ws 0
0 0

)
U †

Sym→Std ⊗IB̂B ′

))
(5.96)

can be rewritten as (since the trace is cyclic under permutation of operators)

tr

(
X

(
Ws 0
0 0

))
, (5.97)

where we convert the input data written in standard basis to the "symmetric" basis

X = |A||B |
δ

U †
Sym→Std ⊗IB̂B ′

(
IÂ1 A′

1
⊗|ΦD〉〈ΦD |Â2B̂ ⊗ρT

A′
2B ′

)
USym→Std ⊗IB̂B ′ . (5.98)
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This means that only Xs , the component of X living in the symmetric subspace, i.e. the

first (C D)2(C D+1)
2 rows and columns of X , will appear in the objective function and the ob-

jective function becomes tr(XsWs ). Similarly, the constraint on the probability of success
can be rewritten as tr(YsWs ) = δ, where

Y = |A||B |U †
Sym→Std ⊗IB̂B ′

(
IÂ1 A′

1
⊗IÂ2B̂ ⊗ρT

A′
2B ′

)
USym→Std ⊗IB̂B ′ , (5.99)

and again Ys is just a matrix that consists of the first (C D)2(C D+1)
2 rows and columns of Y .

All other constraints become unaffected so the SDP becomes

maximise tr
(

Xs Â1 A′
1 Â2 A′

2B̂B ′Ws Â1 A′
1 Â2,A′

2,B̂ ,B ′
)

subject to tr
(
Ys Â1 A′

1 Â2 A′
2B̂B ′Ws Â1 A′

1 Â2 A′
2B̂B ′

)
= δ ,

Ws Â1 A′
1 Â2 A′

2B̂B ′ ≥ 0 ,

trÂ1 A′
1

(
USym→Std ⊗IB̂ ,B ′

(
Ws 0
0 0

)
U †

Sym→Std ⊗IB̂ ,B ′

)Γ
≥ 0 ,

trÂ1 A′
1 Â2B̂

(
USym→Std ⊗IB̂B ′

(
Ws 0
0 0

)
U †

Sym→Std ⊗IB̂ ,B ′

)
≤

IA′2B ′
|A||B | ,

trÂ1 A′
1 Â2B̂

(
USym→Std ⊗IB̂B ′

(
Ws 0
0 0

)
U †

Sym→Std ⊗IB̂ ,B ′

)Γ
≤

IA′2B ′
|A||B | .

Optimisation Program 16.

In the scenario most frequently considered in this paper, that is of distillation from
two to one copies of a two-qubit state, we have that C = 4 and D = 2 and so our variable
Ws is a 288×288 matrix.

5.6.6. DEFINITIONS OF OPTIMALITY
In this section we introduce certain terminology that will later allow us to make precise
optimality claims of the different distillation protocols. We also introduce and prove
specific lemmas that later allow us to prove our optimality claims with respect to the
EPL-D protocol in Appendix 5.6.8.

Let Λ denote the map corresponding to a distillation protocol and P3 be the projec-
tor on the success space of the flags. We introduce the following shorthands:

Ψ(Λ,P3,ρ) = trF
(
(IÂB̂ ⊗P3)ΛAB→ÂB̂F (ρ)

)
, (5.100)

η(Λ,P3,ρ) = Ψ(Λ,P3,ρ)

p(Λ,P3,ρ)
, (5.101)

where
p(Λ,P3,ρ) = tr(Ψ(Λ,P3,ρ)). (5.102)

That is, Ψ,η are, respectively, the unnormalised and normalised output state condi-
tioned on success. We introduce two additional shorthands for the fidelity of Ψ and η

to |Φ+〉 = |Φ2〉, which for simplicity we will now denote as simply Φ:

g (Λ,P3,ρ) = F
(
Ψ(Λ,P3,ρ),Φ

)
, (5.103)

f (Λ,P3,ρ) = F
(
η(Λ,P3,ρ),Φ

)
. (5.104)
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Note that η(Λ,P3,ρ) and f (Λ,P3,ρ) are defined only if p(Λ,P3,ρ) > 0.
We define the optimal output fidelity fopt(ρ) and the optimal success probability

popt(ρ) when optimized over all LOCC distillation operations Λ and success projectors
P3 as follows:

fopt(ρ) = sup
Λ∈LOCC,P3|p(Λ,P3,ρ)>0

f (Λ,P3,ρ) (5.105)

and
popt(ρ) = sup

Λ∈LOCC,P3|p(Λ,P3,ρ)>0 and f (Λ,P3,ρ)= fopt(ρ)
p(Λ,P3,ρ) . (5.106)

With this notation, we introduce two different definitions of optimality:

Definition 5.6.3. We call a protocolΛwith the success projector P3 fidelity-optimal with
respect to the quantum state ρ if

f (Λ,P3,ρ) = fopt(ρ) (5.107)

and
p(Λ,P3,ρ) = popt(ρ). (5.108)

We emphasise here that the above definition concerns distillation towards the max-
imally entangled state with D = 2, but it can be easily generalised to higher values of
D .

Definition 5.6.4. We call a protocol Λ with the success projector P3 distillation-optimal
with respect to the quantum state ρ if

p(Λ,P3,ρ)ED (η(Λ,P3,ρ)) = ED (ρ), (5.109)

where ED (ρ) is the distillable entanglement of ρ.

Note that our definition of a protocol being distillation optimal implies that no pro-
tocol can achieve a better tradeoff between success probability and distillable entangle-
ment of the output state (Lemma 5.6.7). We recall that the distillable entanglement is
defined as an optimisation over arbitrary distillation protocols and, in general, can only
be achieved if Alice and Bob hold an infinite number of copies of the state ρ.

In the following, we prove several basic facts of these definitions.

Lemma 5.6.5. Let ρ =∑
i λiρi such that ∀i ,λi > 0 and

∑
i λi = 1. Then,

fopt

(∑
i
λiρi

)
≤ max

i
fopt(ρi ). (5.110)

Proof.

fopt

(∑
i
λiρi

)
= sup
Λ∈LOCC,P3|p(Λ,P3,ρ)>0

g
(
Λ,P3,

∑
i λiρi

)
p

(
Λ,P3,

∑
j λ jρ j

)
= sup
Λ∈LOCC,P3|p(Λ,P3,ρ)>0

∑
i |p(Λ,P3,ρi )>0λi f

(
Λ,P3,ρi

)
p

(
Λ,P3,ρi

)∑
j λ j p

(
Λ,P3,ρ j

)
≤ max

i
fopt(ρi ).

(5.111)
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Lemma 5.6.6. Let ρ =∑
i λiρi such that ∀i ,λi > 0 and

∑
i λi = 1, letΛ and P3 correspond

to a distillation protocol such that f (Λ,P3,ρ) = fopt(ρ) = maxi fopt(ρi ) and let the index
k be such that f (Λ,P3,ρk ) = maxi f (Λ,P3,ρi ) is unique. Then,

p
(
Λ,P3,ρ

)≤λk . (5.112)

Proof. From Lemma 5.6.5 we see that we must have

f (Λ,P3,ρk ) = fopt(ρ) = max
i

fopt(ρi ) = fopt(ρk ). (5.113)

Then:

fopt(ρk ) = f

(
Λ,P3,

∑
i
λiρi

)

=
∑

i |p(Λ,P3,ρi )>0λi f
(
Λ,P3,ρi

)
p

(
Λ,P3,ρi

)
p

(
Λ,P3,ρ

)
= λk p

(
Λ,P3,ρk

)
p

(
Λ,P3,ρ

) fopt(ρk )+ ∑
i 6=k

p(Λ,P3,ρi )>0

λi p
(
Λ,P3,ρi

)
p

(
Λ,P3,ρ

) f (Λ,P3,ρi ).

(5.114)

Now note that
∑

i λi p(Λ,P3,ρi )/p(Λ,P3,ρ) = 1 and ∀i 6= k, f (Λ,P3,ρi ) < fopt(ρk ). That
is we have a convex combination of fopt(ρk ) and all the other f (Λ,P3,ρi ) that are smaller
than fopt(ρk ). As this convex combination needs to equal fopt(ρk ), we require that
λk p(Λ,P3,ρk )

p(Λ,P3,ρ) = 1 and ∀i 6= k, p
(
Λ,P3,ρi

)= 0. This means that

p
(
Λ,P3,ρ

)=λk p
(
Λ,P3,ρk

)≤λk . (5.115)

Lemma 5.6.7. Given a bipartite state ρ and an LOCC protocol ΛAB→ÂB̂F together with a
projector P3, it holds that

p(Λ,P3,ρ)ED (η(Λ,P3,ρ)) ≤ ED (ρ). (5.116)

Proof. Suppose that there exists ΛAB→ÂB̂F together with a projector P3 such that

p(Λ,P3,ρ)ED (η(Λ,P3,ρ)) > ED (ρ). (5.117)

Then it would be possible to take n copies of ρ, obtain approximately np(Λ,P3,ρ) copies
of η(Λ,P3,ρ), and for large enough n distill np(Λ,P3,ρ)ED (η(Λ,P3,ρ)) EPR pairs which
would be strictly larger than nED (ρ). However, this is not possible since by definition
ED (ρ) is the maximum rate at which EPR pairs can be distilled from ρAB by LOCC.

5.6.7. BELL DIAGONAL STATES
In Section 5.4.2.2, we stated Theorem 5.4.1 and argued that the DEJMPS distillation pro-
tocol is optimal for distilling two copies of rank three Bell diagonal states. In this ap-
pendix we make this argument rigorous. The formal statement that we show is as fol-
lows:
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Theorem 5.6.8. DEJMPS is fidelity-optimal with respect to the state ρ = τ⊗2, where

τ= p1|Φ+〉〈Φ+|+p2|Ψ+〉〈Ψ+|+ (1−p1 −p2)|Φ−〉〈Φ−| , (5.118)

with p1 > 0.5 and p1 > p2 ≥ 1−p1 −p2.

Remark 5.6.9. Every Bell diagonal state of rank up to three can be transformed to the form
in Eq. 5.118 using only local Clifford operations, hence Theorem 5.6.8 effectively applies to
all Bell diagonal states of rank up to three.

The proof is structured as follows. In Appendix 5.6.7.1, we prove some basic proper-
ties of Bell diagonal states. In Appendix 5.6.7.2, we show that DEJMPS protocol achieves
f (DEJMPS,ρ) = fopt(ρ) for states of the form in Eq. (5.118) and we complete the argu-
ment in Appendix 5.6.7.3, where we show that the success probability for these states is
p(DEJMPS,ρ) = popt(ρ).

PROPERTIES OF THE BELL DIAGONAL STATES

Consider the Bell diagonal states

τ= p1|Φ+〉〈Φ+|+p2|Ψ+〉〈Ψ+|+p3|Φ−〉〈Φ−|+ (1−p1 −p2 −p3)|Ψ−〉〈Ψ−|. (5.119)

Given the parameters (p1, p2, p3) we have that tr[τ] = 1 and the eigenvalues of τ are posi-
tive so long as p1, p2, p3 ≥ 0 and 1−p1−p2−p3 ≥ 0. Geometrically the set of Bell diagonal
states forms a tetrahedron. Notice that p1 = tr

[|Φ+〉〈Φ+|τ] and so on.
We can give an alternative parameterization for τ as follows:

τ= 1

4
(II+ r1X X + r2Y Y + r3Z Z ) , (5.120)

where for Pauli matrices Pi we use the shorthand notation Pi ⊗P j = Pi P j . Notice that
r1 = tr [X Xτ] and so on. The convenience of this parameterization is that

τΓ = 1

4
(II+ r1X X − r2Y Y + r3Z Z ) , (5.121)

so that in these coordinates the partial transpose is a reflection. (This follows because
Y T = −Y and other Pauli matrices are unaffected by transpose.) Notice that the partial
transpose of a Bell diagonal state is a Bell diagonal matrix.

We can use the definitions to find

p1 = (1+ r1 − r2 + r3)/4, (5.122)

p2 = (1+ r1 + r2 − r3)/4, (5.123)

p3 = (1− r1 + r2 + r3)/4, (5.124)

1−p1 −p2 −p3 = (1− r1 − r2 − r3)/4. (5.125)

These formulas make it possible to tell when τ is positive even if it is expressed in terms
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of the parameters ri . Now if we have two copies of τ we of course have

τ⊗τ= 1

4
(II+ r1X X + r2Y Y + r3Z Z )⊗ 1

4
(II+ r1X X + r2Y Y + r3Z Z )

= 1

16

[
IIII+ r1(IIX X +X X II)+ r2(IIY Y +Y Y II)+ r3(IIZ Z +Z ZII)

+r 2
1 X X X X + r1r2(X X Y Y +Y Y X X )+ r1r3(X X Z Z +Z Z X X )

+r 2
2 Y Y Y Y + r2r3(Y Y Z Z +Z Z Y Y )

]
.

(5.126)

In the dual SDP we will restrict attention to dual variables V that have the same symme-
try as the matrices τ⊗τ; specifically,

V = 1

16
[v0IIII+ v1(IIX X +X X II)+ v2(IIY Y +Y Y II)+ v3(IIZ Z +Z ZII)

+v11X X X X + v12(X X Y Y +Y Y X X )+ v13(X X Z Z +Z Z X X )

+v22Y Y Y Y + v23(Y Y Z Z +Z Z Y Y )]

(5.127)

and so

V Γ = 1

16
[v0IIII+ v1(IIX X +X X II)− v2(IIY Y +Y Y II)+ v3(IIZ Z +Z ZII)

+v11X X X X − v12(X X Y Y +Y Y X X )+ v13(X X Z Z +Z Z X X )

+v22Y Y Y Y − v23(Y Y Z Z +Z Z Y Y )] .

(5.128)

Here Γ denotes the transpose on Bob’s systems, that is on the second and fourth Pauli
matrices. Notice that in this parameterization v13 = tr [(X X Z Z )V ] and so on. Alterna-
tively we can expand V in terms of projections on the Bell states as follows:

V = w1|Φ+〉〈Φ+||Φ+〉〈Φ+|+w2(|Φ+〉〈Φ+||Ψ+〉〈Ψ+|+ |Ψ+〉〈Ψ+||Φ+〉〈Φ+|)
+w3|Ψ+〉〈Ψ+||Ψ+〉〈Ψ+|+w4|Φ−〉〈Φ−||Φ−〉〈Φ−|
+w5(|Φ+〉〈Φ+||Φ−〉〈Φ−|+ |Φ−〉〈Φ−||Φ+〉〈Φ+|)
+w6(|Ψ+〉〈Ψ+||Φ−〉〈Φ−|+ |Φ−〉〈Φ−||Ψ+〉〈Ψ+|)
+w7|Ψ−〉〈Ψ−||Ψ−〉〈Ψ−|+w8(|Φ+〉〈Φ+||Ψ−〉〈Ψ−|+ |Ψ−〉〈Ψ−||Φ+〉〈Φ+|)
+w9(|Ψ+〉〈Ψ+||Ψ−〉〈Ψ−|+ |Ψ−〉〈Ψ−||Ψ+〉〈Ψ+|)
+w10(|Φ−〉〈Φ−||Ψ−〉〈Ψ−|+ |Ψ−〉〈Ψ−||Φ−〉〈Φ−|).

(5.129)

Here we use a shorthand notation |ψ〉〈ψ|⊗ |φ〉〈φ| = |ψ〉〈ψ||φ〉〈φ|. In terms of this param-
eterization V ≥ 0 if and only if wi ≥ 0 for all i .

In constructing a dual semidefinite program in the main text we consider a restricted
set of V such that V Γ = V . It is clear from Eq. (5.127) and Eq. (5.128) that the condition
V Γ =V is equivalent to v2 = 0 = v12 = v23. Thus we require the following three conditions

v2 = −w1 +w3 +w4 +2w6 −w7 −2w8 = 0, (5.130)

v12 = −w1 +w3 −w4 +2w5 +w7 −2w9 = 0, (5.131)

v23 = −w1 +2w2 −w3 +w4 +w7 −2w10 = 0. (5.132)
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In the main text we construct a dual feasible solution for the SDP that arises in the
restricted case of a Bell diagonal state where 1 − p1 − p2 − p3 = 0, and therefore p3 =
1−p1 −p2. Making the definitions

λ1 = p2
1, λ2 = p1p2, λ3 = p2

2, λ4 = (1−p1−p2)2, λ5 = p1(1−p1−p2), λ6 = p2(1−p1−p2),
(5.133)

we obtain

τ⊗τ=λ1|Φ+〉〈Φ+||Φ+〉〈Φ+|+λ2(|Φ+〉〈Φ+||Ψ+〉〈Ψ+|+ |Ψ+〉〈Ψ+||Φ+〉〈Φ+|)
+λ3|Ψ+〉〈Ψ+||Ψ+〉〈Ψ+|+λ4|Φ−〉〈Φ−||Φ−〉〈Φ−|
+λ5(|Φ+〉〈Φ+||Φ−〉〈Φ−|+ |Φ−〉〈Φ−||Φ+〉〈Φ+|)
+λ6(|Ψ+〉〈Ψ+||Φ−〉〈Φ−|+ |Φ−〉〈Φ−||Ψ+〉〈Ψ+|).

(5.134)

OPTIMAL FIDELITY OF DEJMPS
We will first show that f (DEJMPS,ρ) = fopt(ρ), when ρ consists of two copies of some Bell
diagonal state of rank up to three. The dual SDP for maximizing fidelity has the form:

minimize d(y, J ,G , H ,K ) = yδ+ tr[J+K ]
|A||B |

subject to J ,G , H ,K ≥ 0, y ∈R ,
|A||B |(y − 1

δ

)
ρT + J −GΓ+HΓ+K Γ ≥ 0 ,

|A||B |yρT + J − 1
D+1GΓ− 1

D−1 HΓ+K Γ ≥ 0 ,

Optimisation Program 17.

For rank-two and rank-three Bell diagonal states, the output fidelity of DEJMPS is F =
p ′

1 = p2
1/N , where N = p2

1 + (1−p1)2 is the probability that the protocol succeeds. Hence
we require a feasible solution of the dual program whose objective function takes the
value p ′

1. Here we find such a solution that is valid for all all δ ∈ (0,1]. As an ansatz

consider a solution with y = p ′
1
δ and J =G = K = 0. This means that the objective function

takes the value p ′
1. We now need to show that there exists a matrix H such that

H ≥ 0, (5.135)

|A||B |
δ

(p ′
1 −1)ρT +HΓ ≥ 0, (5.136)

|A||B |
δ

p ′
1ρ

T −HΓ ≥ 0, (5.137)

To make it simpler we can assume that H = |A||B |
δ V and so now we need to find the matrix

V such that

V ≥ 0, (5.138)

(p ′
1 −1)ρT +V Γ ≥ 0, (5.139)

p ′
1ρ

T −V Γ ≥ 0. (5.140)
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Since the input state in our SDP is ρ = τ⊗τ given by Eq. (5.134), we further restrict V by
requiring that V =V Γ. We can also ignore the transpose on ρA′B ′ in the above equations
as here we work with the Bell diagonal states. The chosen dual variable V that satisfies
the above conditions can be specified as follows in terms of the coefficients in Eq. (5.129):

w1 = p ′
1(1−p1)2, w2 = p ′

1(1−p1)p2, w3 = p ′
1p2

2, w4 = p ′
1(1−p1 −p2)2,

w5 = p ′
1(1−p1)(1−p1 −p2), w6 = p ′

1p2(1−p1 −p2), w7 = 0 = w8 = w9 = w10.
(5.141)

Clearly V ≥ 0 since wi ≥ 0 for all i . It is straightforward to check that each of equations
(5.130-5.132) are satisfied and therefore V = V Γ. Since V Γ is diagonal in the same basis
as ρA′B ′ , to verify the conditions (5.139) and (5.140) we just need to verify a set of scalar
equations:

(p ′
1 −1)λi +wi ≥ 0, (5.142)

p ′
1λi −wi ≥ 0, (5.143)

where the coefficients λi are defined in Eq. (5.133). It is straightforward to determine
that each of these equations is satisfied so long as p1 ≥ 1/2 as was specified originally.
This shows that V defined through Eq. (5.129) and Eq. (5.141) satisfies Eq. (5.139) and
Eq. (5.140) and therefore we have found a feasible solution of the dual problem for which
the objective function takes the value p ′

1 for all values of δ ∈ (0,1]. This proves that for
all those values of δ there exists no protocol that can achieve higher fidelity than p ′

1, and
hence DEJMPS protocol achieves the highest fidelity for two copies of all Bell diagonal
states of rank up to three, when optimising over all LOCC protocols.

OPTIMAL PROBABILITY OF SUCCESS OF DEJMPS
Now we will show that DEJMPS also satisfies the second condition required for being
fidelity-optimal, namely p(DEJMPS,ρ) = popt(ρ). In other words, we will show that it is
also not possible to achieve the output fidelity of DEJMPS with probability of success
larger than that of DEJMPS. We recall that the dual SDP for the probability of success
reads

minimize tr[J+K ]
|A||B |

subject to J ,G , H ,K ≥ 0, y ∈R ,
[(1−F )y −|A||B |]ρT + J −GΓ+HΓ+K Γ ≥ 0 ,
[−F y −|A||B |]ρT + J − 1

D+1GΓ− 1
D−1 HΓ+K Γ ≥ 0 .

Optimisation Program 18.

As an ansatz we consider a solution with J = |A||B |R, y = |A||B |s and G = K = 0, where

R = [
p2

1|Φ+〉〈Φ+||Φ+〉〈Φ+|+p2
2|Ψ+〉〈Ψ+||Ψ+〉〈Ψ+|+ (1−p1 −p2)2|Φ−〉〈Φ−||Φ−〉〈Φ−|

+p2(1−p1 −p2)
(|Ψ+〉〈Ψ+||Φ−〉〈Φ−|+ |Φ−〉〈Φ−||Ψ+〉〈Ψ+|)]

(5.144)

and

s =− N

(1−p1)(2p1 −1)
. (5.145)
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This means that the objective function takes the value N . We now need to show that
there exists a matrix H such that

H ≥ 0, (5.146)

[(1−F )y −|A||B |]ρT + J +HΓ ≥ 0, (5.147)

[−F y −|A||B |]ρT + J − 1

D −1
HΓ ≥ 0. (5.148)

To make it simpler we can assume that H = |A||B |V and so now we need to find the
matrix V such that

V ≥ 0, (5.149)

[(1−F )s −1]ρT +R +V Γ ≥ 0, (5.150)

[−F s −1]ρT +R − 1

D −1
V Γ ≥ 0. (5.151)

Here F = p ′
1 is the output fidelity of DEJMPS and N = p2

1 + (1− p1)2. Again, since we
work in the Bell basis with Bell diagonal states, we can ignore the transpose in the above
equations. We specify the Bell coefficients of V as

w1 =
(1−p1)p2

1

2p1 −1
, w2 =

p2
1p2

2p1 −1
, w3 =

p2
1p2

2

(1−p1)(2p1 −1)
, w4 =

p2
1(1−p1 −p2)2

(1−p1)(2p1 −1)
,

w5 =
p2

1(1−p1 −p2)

2p1 −1
, w6 =

p2
1p2(1−p1 −p2)

(1−p1)(2p1 −1)
, w7 = w8 = w9 = w10 = 0.

(5.152)

where w ’s are the Bell coefficients as expressed in the definition Eq (5.129). Now we will
show that these variables satisfy all the constraints. Clearly V ≥ 0 since wi ≥ 0 for all
i . It is straightforward to check that each of equations (5.130-5.132) are satisfied and
therefore V =V Γ. Since V Γ is diagonal in the same basis as ρA′B ′ , to verify the conditions
(5.150) and (5.151) we just need to verify a set of scalar equations:

[(1−F )s −1]λi + [R]i i +wi ≥ 0, (5.153)

(−F s −1)λi + [R]i i −wi ≥ 0. (5.154)

where the coefficients λi are again defined in Eq. (5.133) and [R]i i are the diagonal en-
tries of R in the Bell basis.

We can easily check that for p1 > 0.5, all the constraints are satisfied and so we have
found a feasible solution to the dual SDP for probability of success. The value of the
objective function is tr[J ]

|A||B | = N . Hence we have found a feasible solution of the dual min-
imisation problem (that provides upper bounds for achievable probability of success)
that can be in fact achieved with DEJMPS. That is, we have proven that DEJMPS is also
optimal with respect to probability of success. That is, for Bell diagonal states of rank
up to three, it is impossible to achieve the output fidelity of DEJMPS with probability of
success larger than that of DEJMPS. This concludes the proof that DEJMPS is fidelity-
optimal for two copies of all Bell diagonal states of rank up to three.
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5.6.8. REMOTE ENTANGLEMENT GENERATION THROUGH EPL SCHEME
Here, we show that EPL-D is the optimal distillation protocol within the EPL remote en-
tanglement generation scheme according to our two definitions. That is, we formally
state and prove Theorems 5.4.2 and 5.4.3 which we now formulate as one theorem:

Theorem 5.6.10. EPL-D is both fidelity-optimal and distillation-optimal for states of the
form:

ρAB (p, pd ) = 1

2π

∫
dφτA1B1(φ, p, pd )⊗τA2B2(φ, p,1), (5.155)

where

τAB (φ, p, pd ) = p
(
pd |Ψ+(φ)〉〈Ψ+(φ)|+ (1−pd )|Ψ−(φ)〉〈Ψ−(φ)|))+(1−p)|11〉〈11|. (5.156)

We postpone the proof of fidelity-optimal to Appendix 5.6.8.1 and the proof of distillation-
optimal to Appendix 5.6.8.2.

EPL-D IS FIDELITY-OPTIMAL

We note that for states of the form Eq. (5.46) the integration over the phase can be per-
formed analytically:

ρAB (p, pd ) = p2

4

[
PoddA1B1 ⊗PoddA2B2 + (2pd −1)(|01〉〈10|A1B1 ⊗|10〉〈01|A2B2

+ |10〉〈01|A1B1 ⊗|01〉〈10|A2B2)]

+ (1−p)p

2

[|11〉〈11|A1B1 ⊗PoddA2B2 +PoddA1B1 ⊗|11〉〈11|A2B2
]

+ (1−p)2|11〉〈11|A1B1 ⊗|11〉〈11|A2B2,

(5.157)

where Podd = |01〉〈01| + |10〉〈10| is the projector on the odd-parity subspace of the two-
qubit space. Let us now permute the order of the registers to A1A2B1B2. After the per-
mutation, ρ takes the following diagonal form in the standard basis:

ρAB (p, pd ) =



03

a
02

Q
01

b
a

b
b

c


, (5.158)

where 0i denotes an i×i zero matrix, all the non filled elements are 0, and the shorthands
Q, a,b,c and d stand for

Q =


a 0 0 ad
0 b 0 0
0 0 0 0

ad 0 0 a

 , (5.159)
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a = p2

4
, (5.160)

b = 1

2
(1−p)p, (5.161)

c = (1−p)2, (5.162)

d = 2pd −1, (5.163)

Let

L(p, pd ) =



03

a
07

b
a

b
b

c


,

I (p, pd ) =



06

0 0 0 0
0 b 0 0
0 0 0 0
0 0 0 0

06

 ,

F (p, pd ) =



06

a 0 0 ad
0 0 0 0
0 0 0 0

ad 0 0 a
06

 .

(5.164)

Now we can rewrite ρ as a function of L, I and F :

ρAB (p, pd ) = tr[L]ρL + tr[I ]ρI + tr[F ]ρF , (5.165)

where:

ρL = 1

tr[L]
L, ρI = 1

tr[I ]
I , ρF = 1

tr[F ]
F. (5.166)

Both ρL and ρI are diagonal in the standard basis. In consequence, the output fidelity
on these states is upper bounded by 0.5. Hence by Lemma 5.6.5 we see that:

fopt
(
ρAB (p, pd )

)≤ fopt(ρ
F ). (5.167)

Note that ρF only has support on a bipartite two-qubit subspace:

ρF = 1

2
(|01〉〈01|A ⊗|10〉〈10|B +d |01〉〈10|A ⊗|10〉〈01|B

+d |10〉〈01|A ⊗|01〉〈10|B +|10〉〈10|A ⊗|01〉〈01|B ) .
(5.168)
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Hence, Alice and Bob can redefine their state according to:

|01〉A →|0〉A ,

|10〉A →|1〉A ,

|01〉B →|1〉B ,

|10〉B →|0〉B .

(5.169)

Under such local relabeling the state ρF becomes

ρF = pd |Φ+〉〈Φ+|+ (1−pd )|Φ−〉〈Φ−|. (5.170)

We know from [44] that it is not possible to increase the fidelity of the state in Eq. (5.170)
through local filtering. In consequence,

fopt
(
ρAB (p, pd )

)≤ pd . (5.171)

Since the output fidelity of EPL-D is exactly pd , EPL-D achieves the optimal fidelity. Now
we show that it achieves this output fidelity with the highest possible probability of suc-
cess. From Lemma 5.6.6, it follows that this probability of success is upper bounded by
the relative weight of ρF in ρAB (p, pd ), which is p2/2. Since EPL-D achieves the output
fidelity of pd with success probability p2/2, we can conclude that it is also optimal with
respect to probability of success. Hence EPL-D is fidelity-optimal for the EPL remote
entanglement generation.

EPL-D IS DISTILLATION-OPTIMAL

Let us consider the distillable entanglement of the state in Eq. (5.157). Unfortunately,
there is no straightforward way of calculating distillable entanglement. However, distill-
able entanglement is upper bounded by the relative entropy of entanglement [55]:

ER (ρ) = min
σ∈SEP

S(ρ||σ), (5.172)

where S(ρ||σ) is the relative entropy defined as

S(ρ||σ) = tr[ρ logρ]− tr[ρ logσ]. (5.173)

Moreover, S(ρ||σ) for any σ ∈ SEP is an upper bound on ER (ρ) and, in consequence, on
ED (ρ). Consider the separable state

σSEP
AB (p) = p2

4
PoddA1B1 ⊗PoddA2B2 +

(1−p)p

2

[|11〉〈11|A1B1 ⊗PoddA2B2 (5.174)

+PoddA1B1 ⊗|11〉〈11|A2B2
]+ (1−p)2|11〉〈11|A1B1 ⊗|11〉〈11|A2B2. (5.175)

Then we can calculate

S(ρAB (p, pd )||σSEP
AB (p)) = p2

2
(1−h(pd )), (5.176)

where h denotes the binary entropy function. We can conclude that ED (ρAB (p, pd )) ≤
p2

2 (1−h(pd )).
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Now, we note that a possible distillation scheme would be to first perform the EPL-D
protocol on the individual copies of the state in Eq. (5.157) and then perform the optimal
achievable distillation procedure on the output states. Hence it is possible to distil EPR
states from the states in Eq. (5.157) at a rate given by

R = psucc,EPL-DED
(
η ÂB̂ (pd )

)
. (5.177)

The success probability of EPL-D is p2

2 and the distillable entanglement of rank-two Bell
diagonal states is [48]

ED
(
η ÂB̂ (pd )

)= 1−h(pd ). (5.178)

Hence we can conclude that ED (ρAB (p, pd )) = p2

2 (1−h(pd )) and so ED (ρAB (p, pd )) =
psucc,EPL-DED

(
η ÂB̂ (pd )

)
. This proves that EPL-D is distillation-optimal for EPL remote

entanglement generation scheme.
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SEQUENTIAL QUANTUM REPEATER
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Ronald Hanson, Stephanie Wehner and David Elkouss

Quantum key distribution allows for the generation of a secret key between distant par-
ties connected by a quantum channel such as optical fibre or free space. Unfortunately,
the rate of generation of a secret key by direct transmission is fundamentally limited by
the distance. This limit can be overcome by the implementation of so-called quantum re-
peaters. Here, we assess the performance of a specific but very natural setup called a single
sequential repeater for quantum key distribution. We offer a fine-grained assessment of
the repeater by introducing a series of benchmarks. The benchmarks, which should be
surpassed to claim a working repeater, are based on finite-energy considerations, thermal
noise and the losses in the setup. In order to boost the performance of the studied repeaters
we introduce two methods. The first one corresponds to the concept of a cut-off, which
reduces the effect of decoherence during storage of a quantum state by introducing a max-
imum storage time. Secondly, we supplement the standard classical post-processing with
an advantage distillation procedure. Using these methods, we find realistic parameters for
which it is possible to achieve rates greater than each of the benchmarks, guiding the way
towards implementing quantum repeaters.

The results of this chapter have been published in Quantum Sci. Technol. 3, 034002 (2018).
*These authors contributed equally.
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6.1. INTRODUCTION
In Chapter 3 we have already discussed that assessing quantum repeaters with respect
to their ability of generating secret key provides a very natural quantification of the per-
formance of such a quantum network. In this chapter, we evaluate a realistic setup of a
so-called single sequential quantum repeater on how it performs for this specific task of
quantum key distribution. The setup considers two parties which we call Alice and Bob
who are spatially separated, and want to generate a shared secret key. The setup that we
will investigate here was originally proposed in [1], where the authors were inspired by
the memory-assisted measurement-device-independent QKD setup (MA-MDI QKD) [2].
Alice and Bob use a single sequential quantum repeater located between them, where
both of them are connected to the quantum repeater by optical fibre. The repeater is
composed of two quantum memories, both of which have the ability to become entan-
gled with a photon, see FIG. 6.1. However, the repeater has a single photonic interface,
which means that it can only address Alice and Bob in a sequential fashion. Examples
where only one of the qubit memories has an interface to the photonic channel include
modular ion traps [3] and nitrogen-vacancy centres in diamond [4–6]. The situation is
similar for atoms or ions trapped in a single cavity [7]. In this case, both memories can
have a photonic interface. However, typically only one of the interfaces can be active at
a given moment.

As discussed in Chapter 3, the figure of merit that we have chosen to evaluate the
repeater is the secret-key rate. That is, the ratio between the number of generated secret
bits and the number of uses of the quantum channel connecting the two parties. The
secret-key rate is a very natural quantifier of the performance of the studied scheme for
the task of the secret key generation. It depends both on the success rate of the protocol
as well as on the quality of the transmission. We compare the secret-key rate achievable
with the repeater with a set of benchmarks that we introduce here. The most strict of
these benchmarks is the capacity of the channel [8]. That is, the optimal secret-key rate
achievable over optical fibre unassisted by a quantum repeater [9] as discussed in Chap-
ter 3. The other benchmarks correspond to the optimal rates achievable with additional
restrictions. In consequence, these benchmarks form a set of stepping stones towards
the first quantum repeater able to produce a secure key over large distances.

The idea of assessing quantum repeaters by comparing with the optimal unassisted
rates [9–16] has spurred a significant amount of research devoted to developing sophis-
ticated repeater proposals. Analysis of practical systems that utilise only parametric
down-conversion sources and optical measurement setups [17] has shown that such
systems do not allow for overcoming the channel capacity, which hints at the impor-
tance of quantum memories in repeater architectures. Specific architectures that utilise
entangled-photon pair sources together with multimode quantum memories have also
been considered in this context [18, 19]. Their analysis suggests that the required ef-
ficiency of those entangled-photon pair sources and number of storage modes might
be experimentally very challenging for implementation in the very near future. Finally,
the so called all-optical repeaters that do not require quantum memories but allow to
overcome the channel capacity have been proposed [20]. However, they necessitate the
ability to create large photonic cluster states which are beyond current experimental ca-
pabilities.
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Alice Bob

direct transmission
vs.

quantum repeater

QM2QM1
ηA ηB

ηf = ηAηB

⇑

⇓

Capacity
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1

Figure 6.1: The quantum repeater will send photons entangled with the QM1 to Alice through the
optical fibre of transmissivity ηA . After receiving one photon she will perform a BB84 or six-state
measurement. After Alice has measured a photon and communicated her success to the quantum
repeater, the quantum repeater tries to send a photon entangled with the QM2 to Bob through
the optical fibre of transmissivity ηB . If Bob does not receive a photon within some pre-defined
amount of trials (i.e. the cut-off), Alice and Bob will abort the round. This is done to prevent
the state in the QM1 from decohering excessively. If Bob does succeed, the quantum repeater
performs a Bell state measurement on the two quantum memories.

A detailed analysis of a realistic, single-node proof of principle repeater that includes
all the specific system imperfections has been recently performed [1]. In particular, the
analysis identified parameter regimes where it would be possible to surpass the optimal
direct transmission rates with a repeater scheme that is close to experimental imple-
mentation. We build upon the analysis of [1] by introducing two methods that allow us
to achieve higher rates. The first of these methods is the introduction of a maximum stor-
age time for the memories in the quantum repeater. This restriction effectively reduces
the effect of decoherence. We derive tight analytical bounds for the secret-key rate as a
function of the maximum storage time. In this way we can perform efficient optimisation
of the secret-key rate over the maximum storage time. The second of these methods is
advantage distillation [21], a two-way classical post-processing technique that allows for
distilling secret key at a higher rate than achievable with only one-way post-processing.

The structure of the paper is as follows. In Section 6.2 we detail our key distribution
protocol. The sources of errors, such as losses in the apparatus and noisy operations and
storage, are discussed in Section 6.3. In Section 6.4, we calculate the secret-key rate that
the single sequential quantum repeater would achieve. We define the benchmarks in
Section 6.5, and in Section 7.6 we numerically explore the parameter regimes for which
the quantum repeater implementation overcomes each benchmark and determine how
the secret-key rate of the proposed protocol scales as a function of the distance. We end
in Section 7.7 with some concluding remarks.
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6.2. PROTOCOL FOR A SINGLE SEQUENTIAL QUANTUM REPEATER
A quantum key distribution protocol consists of two main parts. First, Alice and Bob
exchange quantum signals over a quantum channel and measure them to obtain a raw
key that is post-processed in a second, purely classical part into a secure key [22]. Here,
we focus our interest on the entanglement-based version of the BB84 [23] and the six-
state [24] protocols. In this section, we describe the first part of both key distribution
protocols.

The physical setup consists of two spatially separated parties Alice and Bob con-
nected to an intermediate repeater via optical fibre channels. We note that such a re-
peater does not need to be positioned exactly half-way between Alice and Bob. The
repeater is composed of two qubit quantum memories which we denote by QM1 and
QM2. The repeater is then able to generate memory-photon entanglement, where the
photonic degree of freedom in which the qubits are encoded is assumed to be time-bin.
Alice and Bob each have an optical detector setup that performs a BB84 or a six-state
measurement. For technical reasons (see Section 6.3.2), we consider slightly different
setups for BB84 and six-state. More concretely, for BB84 we consider an active setup that
switches randomly between the two measurement bases, while in the six-state protocol
we consider a passive setup that chooses between the three measurement bases by a
passive optical construction [25].

Let us now describe a first version of the protocol without a maximum storage time.
First, the quantum repeater attempts to generate an entangled qubit-qubit state be-
tween a photon and the first quantum memory QM1, after which the photon is sent
through a fibre to Alice. Such a trial is attempted repeatedly until a photon arrives at Al-
ice’s side, after which Alice performs either a BB84 or a six-state measurement. Second,
the quantum repeater attempts to do the same on Bob’s side with the second quantum
memory QM2 while the state in QM1 is kept stored. We denote the number of trials per-
formed until a photon arrives at Alice’s and Bob’s sides nA and nB respectively. After Bob
has received and measured a photon, a Bell state measurement is performed on the two
states in QM1 and QM2. We denote by pbsm the probability that the measurement suc-
ceeds. The classical outcome of the Bell state measurement is communicated to Bob.
This concludes a single round of the protocol. We note that in this protocol every round
ends with a successful generation of one bit of raw key. Such a protocol is closely re-
lated to the memory-assisted measurement-device-independent QKD setup (MA-MDI
QKD) [2]. We discuss this connection in Appendix 6.9.3.

One of the main problems in a quantum repeater implementation is that a quantum
state will decohere when it is stored in a quantum memory. This means that if it takes
Bob a large amount of trials to receive a photon, the state in the quantum memory QM1
will have significantly decohered, preventing the generation of secret key. This motivates
the introduction of a cut-off. A cut-off is a limit on the amount of trials that Bob can
attempt to receive a photon. We denote this maximum number by n?.

The protocol that we consider here modifies the protocol above as follows: if in a
given round Bob reaches the cut-off without success, the round is interrupted and a new
round starts from the beginning with the quantum repeater again attempting to send a
photon to Alice. In this scheme a large number of rounds might be required until a single
bit of raw key is successfully generated. See Algorithm 7 for a description of the modified
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protocol with the cut-off.

Algorithm 7 Generation of a bit of raw key with a single sequential quan-
tum repeater

1: Initialize:
nA ← 0, nB ← 0, k ← 0

2: loop
3: k ← k +1 . Increment the number of rounds
4: repeat
5: nA ← nA +1 . Increment the number of Alice’s channel uses
6: Generate entangled photon-QM1 pair
7: Send entangled photon through fibre towards Alice
8: until Alice receives photon
9: Alice performs a BB84 or a six-state measurement, stores result

10: repeat
11: nB ← nB +1 . Increment the number of Bob’s channel uses
12: Generate entangled photon-QM2 pair
13: Send entangled photon through fibre towards Bob
14: until Bob receives photon or nB = kn?

15: if Bob received photon then
16: Bob performs a BB84 or a six-state measurement, stores result
17: Perform the Bell state measurement on the memories, commu-

nicate result
18: Store max(nA ,nB ) . Store channel uses
19: return

6.3. SOURCES OF ERRORS
In this section, we model the different elements in the setup to identify the sources of
losses and noise. The losses in the system are not only due to the transmissivity of the
fibre; depending on the implementation a significant amount of photons is lost before
they enter the fibre or due to the non-unit detector efficiency. The causes of noise are the
experimental imperfections of the operations, measurements and quantum memories.

6.3.1. LOSSES

We model the process of generating and sending an entangled photon through a fibre as
follows (see FIG. 6.2). First, the photon has to be generated at some photon source and
be captured in the fibre. This process happens with probability pem. Depending on the
experimental implementation, only a fraction pps of the photons entering the fibre can
be used for secret key generation. This can occur for any number of reasons, for instance
photons might be filtered according to frequency or a certain time-window [6, 7]. The
filtering can happen either before or after the transmission through the fibre. The fibre
losses are modelled as an exponential decay of the transmissivity η f with the distance L,

i.e. η f = exp(− L
L0

) for some fibre attenuation length L0. We denote by ηA the fibre losses
on Alice’s side and by ηB the fibre losses on Bob’s side. Finally, the arriving photons
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pem
Post-selection
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1

Figure 6.2: General model of all photon losses occurring in the repeater setup. pem is the prob-
ability of generating and capturing a photon into the fibre. For experimental reasons a fraction
(1−pps) of photons are additionally filtered out. The fibre has a transmissivity η f . After exiting the
fibre, the photons produce a click in the detector with probability pdet. The total efficiency of the
apparatus is described by one parameter, papp = pempdet.

will be captured by the detectors with an efficiency pdet. This probability of detecting
a photon will be increased by the presence of dark counts (which will also inevitably
add noise to the system), see the discussion of the dark counts at the bottom of this
section and in Appendix 6.9.1. We define the quantity papp = pempdet describing the
total efficiency of our apparatus.

6.3.2. NOISE
We model all noise processes either by the action of a dephasing channel in the Z-basis
with parameter λ1 or that of a depolarising channel with parameter λ2 as defined in
Section 2.1 in Chapter 2, specifically in Eqs. (2.7) and (2.5).

The noise processes occur due to imperfect operations, decoherence of the state
while stored in QM1 and dark counts in the detectors.

The noise from imperfect quantum operations is captured by two parameters: Fprep

and Fgm. Fprep is a dephasing parameter which corresponds to the preparation fidelity of
the memory-photon entangled state [26]. Fgm is a depolarising parameter that describes
the noise introduced by the imperfect gates and measurements performed on the two
quantum memories during the protocol [27, 28]. Hence, the noise can be modelled by a
dephasing and a depolarising channel with λ1 = Fprep and λ2 = Fgm.

The decoherence is modelled by a decay of the fidelity in the number of trials n. This
decoherence is caused by two distinct effects. Firstly, there is the decoherence due to the
time that the quantum repeater has to wait between sending photons. This time is the
time it takes to confirm whether the photon got lost plus the time it takes to generate a
photon entangled with the memory. We model this effect through an exponential decay
of fidelity with time [29], which is expected whenever excess dephasing is suppressed
(e.g. by dynamical decoupling [30]). However, we note that this is not the only possible
model of decay, in several experiments a Gaussian decay has been observed [3, 31–33].
Secondly, attempting to generate an entangled photon-memory pair at QM2 might also
decohere the state stored in the QM1. For example, this effect is the most prominent de-
coherence mechanism in nitrogen-vacancy implementations [5], where an exponential
decay of fidelity with the number of trials was observed. This is also how we model that
effect here.
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The quantum state ρ that is subjected to those effects undergoes an evolution given
by the dephasing and depolarising channels with λ1 = (1+ e−an)/2 and λ2 = e−bn . The
two parameters a and b are given by

a = a0 +a1

(
2nriLB

c
+ tprep

)
, (6.1)

b = b0 +b1

(
2nriLB

c
+ tprep

)
, (6.2)

where nri is the refractive index of the fibre, c is the speed of light in vacuum, LB the
distance from the quantum repeater to Bob and tprep is the time it takes to prepare for
the emission of an entangled photon. Here a0 and b0 quantify the noise due to a sin-
gle attempt at generating an entangled state and a1 and b1 quantify the noise during
storage per second. Finally, the dark counts in the detectors introduce depolarising
noise. This model is justified for the two quantum key distribution protocols that we
consider, see [25, 34]. We let αA/B denote the corresponding depolarising parameter on
Alice’s/Bob’s side. The details of this model are presented in Appendix 6.9.1.

6.4. SECRET-KEY RATE OF A SINGLE SEQUENTIAL QUANTUM RE-
PEATER

The secret-key rate R is defined as the amount of secret-key bits generated by a protocol
divided by the number of channel uses and the number of optical modes. In the partic-
ular case of our sequential quantum repeater, the secret-key rate is given by

R = Y

2
r . (6.3)

The yield Y of the protocol is defined as the rate of raw bits per channel use. The secret-
key fraction r is defined as the average amount of secret key that can be extracted from
a single raw bit. The factor of a half is due to the fact that the encoding uses two optical
modes. Since we consider two possible quantum key distribution protocols we take

r = max{rBB84,rsix-state} . (6.4)

where rBB84 and rsix-state are the secret-key fractions of the BB84 and six-state protocols,
respectively (see Eq. (6.10) and Appendix 6.9.4).

6.4.1. YIELD
The yield can be calculated as pbsm (i.e. the success probability of the Bell state mea-
surement) divided by the (average) number of channel uses needed for the successful
detection of a photon by both Alice and Bob in the same round. With a single sequential
quantum repeater it is not obvious how to count the number of channel uses. As in [1],
we count the maximum of the two channel uses on Alice’s and Bob’s sides respectively,

Y = pbsm

E [N ]
= pbsm

E [max(NA , NB )]
. (6.5)
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where N , NA and NB are the random variables that model the number of channel uses,
the number of channel uses at Alice’s side and the number of channel uses at Bob’s side,
respectively.

Without the cut-off, it is possible to obtain an analytical formula for the average num-
ber of channel uses [1, 2],

E [max(NA , NB )] = 1

p A
+ 1

pB
− 1

p A +pB −p A pB
, (6.6)

where p A and pB depend on the quantum key distribution protocol and are given by the
following equations (see Appendix 6.9.1),

p A/B ,BB84 = 1− (1−pappppsηA/B )(1−pd )2 , (6.7)

p A/B ,six-state = 1− (1−pappppsηA/B )(1−pd )6 . (6.8)

Here pd is the probability of measuring a dark count.
Every time that Bob reaches n? trials, Alice and Bob restart the round and start over

again. The cut-off thus increases the average number of channel uses. We have devel-
oped an analytic approximation of E [N ] which is essentially tight (see Appendix 6.9.5 for
the derivation and error bounds)

E [max(NA , NB )] ≈


1

p A

(
1−(1−pB )n?

) 1
p A

> n?

1
p A

+ 1
pB

− 1
p A+pB−p A pB

1
p A

≤ n? .
(6.9)

6.4.2. SECRET-KEY FRACTION
Here we consider the secret-key fraction of the BB84 and six-state protocols. As we dis-
cussed previously, we consider the BB84 protocol with an active measuring scheme and
the six-state protocol with a passive one. Moreover, we consider a fully asymmetric ver-
sion of BB84 and a fully symmetric version of six-state. Fully symmetric means that all
bases are used with equal probability while fully asymmetric means that the ratio at
which one of the bases is used is arbitrarily close to one. Finally, we consider a one-
way key distillation scheme for BB84 [22] while for the six-state protocol we consider
the advantage distillation scheme in [35]. Advantage distillation [21] is a classical post-
processing technique that allows to increase the secret-key fraction at all levels of noise.

The reasons for not analysing the BB84 protocol with advantage distillation and the
fully asymmetric six-state with advantage distillation are technical. In the case of BB84,
computing the rate with advantage distillation requires the optimisation over a free pa-
rameter. The combination of the optimisation over the cut-off together with the extra
free parameter was computationally too intensive to consider here.

For the six-state protocol there is, to our knowledge, no security proof that can deal
with the asymmetric six-state protocol with photonic qubits without introducing extra
noise [25, 36]. However, these protocol choices do not have a strong impact on our analy-
sis. Advantage distillation does not significantly increase the amount of distillable key for
low error rates. Hence, asymmetric BB84 without advantage distillation is only slightly
suboptimal. For higher error rates, where advantage distillation plays a role, the sym-
metric six-state protocol with advantage distillation is a factor of three away from the
asymmetric version.
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The expression for the secret-key fraction of both protocols depends on the error
rates in the X , Y and Z bases, which we denote by eX , eY and eZ . In the case of the BB84
protocol, [22, 37] it is given by

rBB84 = 1−h(eZ )−h(eX ) , (6.10)

where h(p) =−p log2 p−(1−p) log2(1−p) is the binary entropy function. The expression
for rsix-state is more complex; we leave its discussion to Appendix 6.9.4.

We can directly evaluate the error rates in each basis as a function of the general
parameters of Section 6.3.2. For the single sequential quantum repeater these average
errors are

eX = eY = eX Y = 1

2
− 1

2
FgmαAαB

(
2Fprep −1

)2
〈

e−(a+b)n
〉

, (6.11)

eZ = 1

2
− 1

2
FgmαAαB 〈e−bn〉 . (6.12)

where 〈e−cn〉 is the average of the exponential e−cn over a geometric distribution over
the first n? trials. The detailed derivation of the error expressions is presented in Ap-
pendix 6.9.2.

6.5. BENCHMARKS FOR THE ASSESSMENT OF QUANTUM REPEATERS
We introduce a set of benchmarks to assess the performance of a quantum repeater im-
plementation.

The first benchmark that we consider is the rate that would be achieved with the
same parameters for the system losses and dark counts and for the same protocol but
without a quantum repeater. Overcoming this benchmark gives the first indication that
the repeater setup is useful; it means that the repeater setup outperforms the setup with-
out repeater. We call this benchmark the direct transmission benchmark.

The remaining benchmarks represent the optimal secret-key rate that Alice and Bob
could achieve if they were to communicate over the same quantum channel without a
repeater under some constraints.

The optimal secret-key rate without a repeater highly depends on the channel model.
The first modelling decision is the placement of the boundary between Alice’s and Bob’s
laboratories and the quantum channel. This is because it is not a priori clear where the
channel begins and ends. However, this decision has a strong impact on the optimal
achievable rate; if the channel includes most of Alice’s and Bob’s laboratories, then the
channel is more lossy and noisy and the benchmark is easier to overcome. If, on the
other hand, the channel is just the optical fibre cable the benchmark becomes more dif-
ficult to overcome.

We consider three cases in terms of the individual lossy components of our setup
(see FIG. 6.1, FIG. 6.2 and their captions):

Case 1: Fibre only, in this case the transmissivity is: η= ηf = ηAηB .

Case 2: Fibre and different filters, then the channel transmissivity becomes: η =
ηfpps.
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Case 3: Fibre, filters and Alice’s and Bob’s apparatus, then the transmissivity be-
comes: η= ηfppspapp.

Note that although in the experimental implementation of the repeater the terms pps

and papp appear twice in the expression of the transmissivity, they appear only once in
the benchmarks which include them. The reason is that in a scenario without a repeater
the emission inefficiency and the filters only affect the transmissivity once.

The second design parameter for these benchmarks is the type of channel. Trans-
mission of photons through fibres is modelled as a pure-loss channel [38], where only a
fraction η of the input photons reach the end of the channel. The first type of channel
that we consider is the pure-loss channel without any additional restriction. The opti-
mal achievable rate over one mode of the pure-loss channel is given by the secret-key
capacity [9]

− log2

(
1−η)

. (6.13)

This is the maximum secret-key rate achievable, meaning that even if Alice and Bob had
perfect unbounded quantum computers and memories, they could not generate secret
key at a larger rate. If, by using a quantum repeater setup, a higher rate can be achieved
than − log2(1−η f ), we are certain our quantum repeater setup allowed us to do some-
thing that would be impossible with direct transmission. Surpassing the secret-key ca-
pacity has been widely used as a defining feature of a quantum repeater [1, 9–11, 17–
20, 39–41]. Note that for high losses the scaling of this capacity with distance is propor-

tional to η f = exp
(
− L

L0

)
. At the same time with an ideal (noiseless) single quantum re-

peater placed half-way between Alice and Bob, the expected secret-key rate would scale
proportionally to

p
η f = exp(− L

2L0
) [1].

The second type of channel that we consider is the pure-loss channel when the trans-
mitter has a limitation in the energy that can be introduced into the channel. There has
been some recent work studying the optimal rate per mode of the finite-energy pure-loss
channel [11, 12, 39]. However, the optimal rate remains unknown. The bound that we
consider here [39] is given by

g
((

1+η)
P/2

)− g
((

1−η)
P/2

)
, (6.14)

where g (x) := (x +1)log2(x +1)− x log2 x and P is the mean photon number. In our re-
peater setup, the finite energy restriction arises from the fact that, on average, only a
fraction of a photon enters the fibre in each trial. More precisely, the average photon
number satisfies P = pem in cases 1 and 2 above and P = 1 in case 3. Unfortunately,
since Eq. (6.14) is an upper bound, it is only strictly smaller than the capacity of the
pure-loss channel for small mean photon number. Expanding the bounds from equa-
tions Eq. (6.13) and Eq. (6.14) around η = 0 shows that the cross-over between the two

bounds occurs when pem log2

(
pem+2

pem

)
= 1

ln2 . In other words, for high losses the finite-

energy bound is tighter when pem . 0.796. This implies that the finite-energy bound
does not yield an interesting benchmark in case 3.

The third type of channel that we consider is the thermal-loss channel. An upper
bound on the capacity of the thermal-loss channel is

− log2[
(
1−η)

ηn]− g
(
n

)
, (6.15)
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if n < η
1−η and zero otherwise [9]. Here, n is the average number of thermal photons

per channel use [38]. The secret-key capacity of the thermal channel has been studied
extensively [9, 11, 40–45]. This is an interesting channel because the effect of dark counts
can be seen as caused by the thermal photons. Hence this type of channel becomes
relevant for case 3, where detectors, and therefore also the dark counts, are regarded as
part of the channel. The details of the dark count model are presented in Appendix 6.9.1.
There we also show how to easily convert the experimentally relevant dark count rate of
the detector and the duration of the detection window tw into n and pd , the probability
of getting a dark count within the given time-window.

The combinations of a channel boundary together with a channel type give us a set of
benchmarks. Not all combinations yield interesting benchmarks. In Table 6.1, we sum-
marise the benchmarks that we consider.

Infinite Finite Thermal Direct transmission
Case 1: ηf 1a 1b − −

Case 2: ηfpps 2a 2b − −
Case 3: ηfppspapp − − 3c 3d

Table 6.1: Labels of the benchmarks that we use to assess the performance of a quantum repeater.
These labels are frequently referred to in the numerical results. Each row corresponds to a dif-
ferent channel boundary, which translates into an effective channel transmissivity. Each column
corresponds to a different type of channel: pure loss, pure loss with energy constraint and thermal
channel, and the final column corresponds to the direct transmission benchmark.

6.6. IMPLEMENTATION BASED ON NITROGEN-VACANCY CEN-
TRE SETUP

Our model is fully general and can be applied to a wide range of physical platforms. To
illustrate its performance we will now consider one of such potential near-term realisa-
tions of a single sequential quantum repeater. For this particular example we choose
to base our system on Nitrogen-Vacancy (NV) centres in diamond. NVs are a prime
candidate for this task due to their optical interface featuring high-fidelity single-shot
readout [46] and their recently demonstrated capabilities to distribute spin-photon en-
tanglement while faithfully storing quantum states [28].

In the following we expand on the required experimental techniques (see Fig. 6.3).
The NV centre itself can be readily used as a generator of spin-photon entanglement at
cryogenic temperatures [47]. Firstly, we generate spin-photon entanglement and send
the emitted photon off to Alice who reports successful detection events back to the re-
peater station. Note that electron spin decoherence during communication rounds is
negligible since second-long coherence times have been demonstrated by employing
XY8 dynamical decoupling sequences [48].

Upon success the optical interface of the NV is reused for communication with Bob.
To this end, the NV spin state that is correlated with Alice’s measurement outcome is
stored on a 13C nuclear spin in the vicinity of the electron spin, which itself is then reini-
tialised [28]. We choose a configuration in which the always-on magnetic hyperfine cou-
pling between both spins is weak (on the order of a few kHz). This configuration has
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been experimentally shown to result in a highly-addressable quantum memory [49].
The protocol then proceeds as described in Section 6.2 by communicating with Bob.

We note that the 13C nuclear spin memory can retain coherence for thousands of remote
entangling attempts despite stochastic electron spin reset operations, quasi static noise
and microwave control infidelities during the subsequent probabilistic entanglement
generation attempts [5, 50]. Nevertheless, these repeated communication attempts will
eventually decohere the memory state due to the always-on hyperfine interaction be-
tween the two spins. This constitutes the main source of error in this system (parametrised
by a0 and b0, see Section 6.3.2).

After a successful state transmission to Bob, we conduct a sequential two-step Bell
state measurement. Specifically, in the NV node containing both the electron and carbon
nuclear spin it is possible to perform a deterministic Bell-state measurement on the two
spins. A combination of two nuclear-electron spin gates and two sequential electron
spin state measurements reads out the combined nuclear-electron spin state in the Z -
and X -bases, enabling us to discriminate all four Bell states [47].

For an NV center in free space, only ∼ 3% of photons are emitted in the zero-phonon-
line (ZPL) that can be used for secret-key generation. This poses a key challenge for a
repeater implementation, since this means that the probability of successfully detect-
ing an emitted photon is low. Therefore, we consider a setup in which the NV center is
embedded in an optical cavity with a high ratio of quality factor Q to mode volume V
to enhance this probability via the Purcell effect in the weak coupling regime [51]. This
directly translates into a lower optical excited state lifetime that is beneficial to shorten
the time-window during which we detect ZPL photons after the beam splitter, reducing
the impact of dark counts on the entangled state. Additionally, a cavity introduces a pref-
erential mode into which the ZPL photons are emitted that can be picked up efficiently.
This leads to a higher expected collection efficiency than the non-cavity case [52]. En-
hancement of the ZPL has been successfully implemented for different cavity architec-
tures, including photonic crystal cavities [53–60], microring resonators [61], whispering
gallery mode resonators [62, 63] and open, tunable cavities [64–66]. However, cavity-
assisted entanglement generation has not yet been demonstrated for these systems, lim-
ited predominantly by broad optical lines of surface-proximal NV centers. Therefore, we
focus on the open, tunable microcavity approach [67], since it has the potential of in-
corporating micron-scale diamond slabs inside the cavity, while allowing to keep high
Q/V values and providing in-situ spatial and spectral tunability [68]. In these diamond
slabs, an NV centre can be microns away from surfaces, potentially allowing to maintain
bulk like optical and spin properties as needed for the considered repeater protocols. We
note here that as no particular low-loss cavity design has been implemented with NVs
yet, we rely purely on the aforementioned ZPL enhancement. However, more specific
cavity configurations that allow for reflection based mechanisms rely on the realisation
of a low-loss overcoupled cavity to be efficient [69] and might become available in the
future.

6.7. NUMERICAL RESULTS
In this section, we perform a numerical analysis of our model applied to the physical
system based on NV centres as described in Section 6.6. All numerical results have been
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Figure 6.3: Single sequential quantum repeater based on an electron spin associated with an NV
(purple) and 13C nuclear spin (orange) in diamond. The previous quantum memories QM1,2 are
now represented by the electron and nuclear spin respectively. The optical interface of the NV
is strongly Purcell-enhanced by an optical cavity with low-mode volume and allows for efficient
photon transmission to Alice and Bob.

obtained using a Mathematica notebook. [70]. Unless specified otherwise, we use the
following parameters that we call “expected parameters”. These parameters represent
best-case scenarios from the chosen references. These experimental capabilities do not
fundamentally contradict or exclude each other and seem therefore achievable in a sin-
gle experimental NV setup.

• a0 (dephasing due to interaction) = 1
2000 per attempt [5, 50],

• a1 (dephasing with time) = 1
3 per second [71],

• b0 (depolarisation due to interaction) = 1
5000 per attempt [5],

• b1 (depolarisation with time) = 1
3 per second [71],

• tprep (memory-photon entanglement preparation time) = 6µs [72],

• Fgm (depolarising parameter for gates and measurements) = 0.9 [28],

• Fprep (dephasing parameter for the memory-photon state preparation) = 0.99 [72],

• pem (probability of emission) = 0.49 [52, 72],

• pps (post-selection) = 0.46 [66],

• pdet (detector efficiency) = 0.8 [72],

• pbsm (Bell state measurement success probability) = 1 [47],

• Dark count rate = 10 per second [72],

• tw (detection window) = 30 ns [72],

• L0 (attenuation length) = 0.542 km [72],

• nri (refractive index of the fibre) = 1.44 [73].
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Before we present the results, we note that the emission frequency of the nitrogen-
vacancy centres results in a relatively low L0 which in turn does not allow to achieve large
distances. In practical quantum key distribution networks, assuming that dedicated fi-
bres are used for which one can choose which frequency mode one wants to transmit at,
this problem might be overcome using the frequency conversion of the emitted photons
into a telecom frequency, which will yield an increased L0. Note that the benchmarks
in Table 6.1 will scale accordingly. There is a range of frequencies used in fibre-based
communication and for each of those frequencies the attenuation length varies greatly
depending on the type of the fibre used. To give some examples, the best fibres at 1560
nm have losses of 0.1419 dB/km (L0 ≈ 30.6 km) [74], while at 1310 nm standard single-
mode fibres exhibit losses of 0.4 dB/km (L0 ≈ 10.9 km) [75]. Clearly our model is general
and can be applied to a channel with any value of L0. Here, throughout most of this sec-
tion, we consider the transmission through the channel at the same wavelength as the
emission line of the NV-centre setup, as such a channel for this specific physical system
has been realised in an experiment [72] using fibre with losses of 8 dB/km (L0 = 0.542
km as given in the list of parameters above). At the end we present an additional plot de-
scribing the scenario in which a telecom channel with the commonly used in the quan-
tum repeater community attenuation length of L0 ≈ 22 km is available. In this case the
frequency conversion of the emitted photons to telecom is applied.

Tightness of the error bounds for the secret-key rate. We have derived upper and lower
bounds on the yield, and thus also on the secret-key rate, for the two studied protocols.
In FIG. 6.4, we plot both the upper and the lower bound on the achieved rate with the
current and improved parameters (pps = pem = 0.6 and Fgm = 0.97) and optimised cut-
off as a function of the distance in units of L0. There are two regimes visible on the plot.
This is a consequence of the fact that our bounds have a different analytical form in the
two regimes (see Appendix 6.9.5). Since for practical purposes our bounds are essentially
tight, from now on we will refer to the upper bound as the expected secret-key rate, and
will omit the lower bound for the legibility of the plots.

The impact of the cut-off on the secret-key rate. In FIG. 6.5 we plot the secret-key
rate versus the cut-off for different sets of parameters. The repeater is assumed to be
positioned half-way between Alice and Bob. We observe a strong dependency of the
secret-key rate on the cut-off. In particular, for large cut-off the secret-key rate drops to
zero. This is due to the inclusion of rounds where the state has significantly decohered.
This implies that the cut-off is essential for generating a key at large distances. Moreover,
we observe that the optimal cut-off highly depends on the explored parameter regime.

Optimal positioning of the repeater. The asymmetry of the studied sequential proto-
col raises the question of whether it is best to position the repeater half-way between
Alice and Bob. In fact, in the absence of a cut-off this is not the case [1]. For suffi-
ciently large distances, shifting the repeater towards Bob can increase both the secret-
key rate and the distance over which the secret-key rate is non-zero in the presence of
dark counts. Specifically, the optimal positioning remains a fixed distance away from
Bob independently of the actual total distance. Here, we find that with the cut-off and for
the parameters considered this phenomenon disappears. We see in FIG. 6.6 that the op-
timal position with the cut-off optimisation appears to be exactly in the middle of Alice
and Bob. Nevertheless, we note that the bounds for the yield derived in Appendix 6.9.5
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Figure 6.4: Upper- and lower bounds on the secret-key rate rate with a quantum repeater as a
function of the distance in units of L0 = 0.542 km. The repeater is positioned half-way between
Alice and Bob. The curves correspond to the expected and improved parameters with optimised
cut-off. The improved parameters correspond to setting pps = pem = 0.6 and Fgm = 0.97. For high
losses, the upper- and lower bounds become essentially tight. For this reason, the upper bound
on the achieved rate forms a reliable estimate of the secret-key rate.

are valid under the condition ηB ≥ ηA . This means that we can only study the effect of
moving the repeater towards Bob. However, we do not expect any benefit in shifting the
repeater towards Alice as this could only increase the noise due to decoherence. From
now on for the scenarios with the cut-off optimisation, we always consider the repeater
to be placed half-way between Alice and Bob. Interestingly, in FIG. 6.6 we also see that
the rates for the two scenarios with and without the cut-off start to coincide after the
quantum repeater is shifted within a certain distance of Bob. Intuitively this happens
when the probability of Bob getting a photon is large enough so that the significance of
the cut-off becomes marginal.

Cut-off versus no cut-off. Having established the optimal positioning of the repeater,
we can now compare the two scenarios: optimised cut-off with middle positioning of the
repeater and no cut-off with optimised positioning. We find that in the absence of dark
counts the scaling with distance of both schemes is the same, with a small advantage of
the cut-off scheme. However, the cut-off is more robust against dark counts. Hence, for
imperfect detectors the cut-off allows distributing keys at larger distances. These results
can be seen in FIG. 6.7 and FIG. 6.8, which show the secret-key rate as a function of
distance for detectors without and with dark counts, together with the channel capacity
of the optical fibre (i.e. benchmark 1a). We plot the data for the expected and improved
parameters (pps = pem = 0.6 and Fgm = 0.97).

In FIG. 6.7 where we assume no dark counts, we see that for small distances the rate
scales approximately with the square root of the transmissivity for both scenarios. That
is, they are proportional to the theoretical optimum [1] of

p
η f = e−L/2L0 . For sufficiently



6

126 6. PARAMETER REGIMES FOR A SINGLE SEQUENTIAL QUANTUM REPEATER

0 500 1000 1500 2000 2500
0

5.× 10-8

1.× 10-7

1.5× 10-7

2.× 10-7

2.5× 10-7

3.× 10-7

3.5× 10-7

Cut-off

R
at
e Expected parameters

Reduced losses

Reduced SPAM and gate errors

Reduced decoherence

Figure 6.5: Secret-key rate as a function of the cut-off for the expected parameters with the re-
peater positioned half-way between Alice and Bob. The reduced losses are for p ′

app = (papp)0.9

and p ′
ps = (pps)0.9, the reduced SPAM (state preparation and measurement) and gate errors are for

F ′
gm = (Fgm)0.7 and F ′

prep = (Fprep)0.7 and the reduced decoherence is for a′ = a/2 and b′ = b/2.

The optimal n? shifts depending on the parameters. The kinks arise due to the fact that we opti-
mise over two protocols: fully asymmetric BB84 and symmetric six-state protocol with advantage
distillation which itself consists of two subprotocols. The optimal protocol depends on the bit
error rates. The data have been plotted for the distance of 15L0, where L0 = 0.542 km.

large distances time-dependent decoherence of the memory QM1 becomes a problem.
Both schemes overcome it at the expense of reducing the yield. As a result, the scaling
becomes proportional to η f = e−L/L0 for both schemes. In FIG. 6.8 however we see that
the presence of dark counts affects the two schemes quite differently. While for both
schemes the effect of dark counts becomes the dominant source of noise after a certain
distance, this distance is shorter for the no cut-off scheme than for the scheme with the
cut-off. In other words, we see that the cut-off is more robust towards dark counts than
the repositioning method. This fact can be explained by noting that shifting the repeater
towards Bob increases the losses on Alice’s side and as a result makes the Alice-repeater
link vulnerable to dark counts. With the cut-off however, the repeater remains in the
middle making both of the individual links Alice-repeater and repeater-Bob shorter than
the Alice-repeater link in the no cut-off scheme. As a result the setup with the cut-off and
with the improved parameters allows us to overcome the channel capacity (1a) more
confidently and over larger range of distances, than without the cut-off.

Comparison with the proposed benchmarks. Let us now investigate the secret-key
rate achievable with the expected parameters and how it compares with the proposed
benchmarks. The comparison is depicted in FIG. 6.9. The benchmarks corresponding to
direct transmission (3d), the thermal-loss channel (3c) and the pure-loss channel with
energy constraint and inclusion of post-selection (2b) are outperformed. The achievable
secret-key rate is also very close to the pure-loss channel benchmark with post-selection
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Figure 6.6: Secret-key rate with and without the cut-off as a function of the distance in units of
L0 = 0.542 km between Alice and quantum repeater. The total distance between Alice and Bob is
fixed to 11L0. We see that with the cut-off optimisation, positioning the repeater half-way between
Alice and Bob is optimal. This behaviour was also observed for other parameter regimes. This
result contrasts with the optimal positioning for the no cut-off scenario, for which we see that
shifting the repeater towards Bob is beneficial. We also note that the two rates overlap when the
repeater is shifted towards Bob.
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Figure 6.7: Secret-key rate as a function of the distance in units of L0 = 0.542 km, assuming detec-
tors without dark counts. The black lines correspond to the protocol with cut-off and the blue lines
to the protocol without the cut-off but with optimised positioning of the repeater. We plot the data
for both the expected and improved parameters. The improved parameters correspond to setting
pps = pem = 0.6 and Fgm = 0.97. Finally, the channel capacity (1a) is also included for comparison.
It can be seen that both the cut-off and repositioning of the repeater allows to generate key for all
distances.
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Figure 6.8: Secret-key rate as a function of the distance in units of L0 = 0.542 km with dark counts.
The black lines correspond to the protocol with cut-off and the blue lines to the protocol without
the cut-off but with optimised positioning of the repeater. We plot the data for both the expected
and improved parameters. The improved parameters correspond to setting pps = pem = 0.6 and
Fgm = 0.97. Finally, the channel capacity (1a) is also included for comparison. It can be seen that
the protocol with the cut-off is more robust against dark counts than the protocol without the
cut-off.

(2a). The other benchmarks are not overcome but are within experimental reach.

Parameter trade-off. Let us now give a general overview of how good the improved
parameters need to be in order to overcome individual benchmarks. This information is
presented on two contour plots. In FIG. 6.10, we study the parameter regions for which
it is possible to beat the benchmarks in Table 6.1 as a function of pps and pem. A simi-
lar plot as a function of Fgm and pem can be seen in FIG. 6.11. We omit here the direct
transmission benchmark which, as we have already seen, can be easily surpassed with
the expected parameters. Moreover, we note that the capacity of the thermal channel in
the benchmark (3c) goes to zero for very low pps and pem for which it is still possible to
generate key with the quantum repeater. Hence it is trivially easy to beat this benchmark
for low pps and pem. In that sense this benchmark is not so interesting in that regime. It
is for this reason that this regime is not depicted on the contour plots. In both FIG. 6.10
and FIG. 6.11 we observe a crossing between the finite energy benchmarks (1b) and (2b)
and their infinite energy counterparts (1a) and (2a) at pem ≈ 0.796, as discussed in Sec-
tion 6.5.

Comparison with the proposed benchmarks for a commonly used telecom channel.
Let us now again investigate the secret-key rate achievable with the expected parame-
ters and how it compares with the proposed benchmarks, but this time assuming that
we have an available channel at the commonly used telecom wavelength with attenu-
ation length L0 = 22 km. Hence in this case the frequency conversion of the emitted
light into telecom would be applied. We consider such a conversion process with effi-
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Figure 6.9: Secret-key rate with the quantum repeater implementation for the expected param-
eters with optimised cut-off as a function of the distance in units of L0 = 0.542 km. The rate is
compared to all the benchmarks defined in Table 6.1.

ciency of 30% [76]. This parameter can be added to pem so that we define p ′
em = 0.3 pem.

We note here that the assumed value of this parameter is a choice based on the specific
experimental implementation. However, higher conversion efficiencies are in princi-
ple achievable. The comparison is depicted in FIG. 6.12. We see that for this choice of
the direct channel, the benchmarks are more difficult to overcome. In particular only
the benchmarks corresponding to direct transmission (3d) and the thermal-loss chan-
nel (3c) can be outperformed. The other benchmarks seem to be far from near-term
experimental reach.

6.8. CONCLUSIONS
In this work, we have analysed numerically a realistic quantum repeater implementation
for quantum key distribution. We have introduced two methods for improving the rates
of the repeater with respect to previous proposals: advantage distillation and the cut-off.
Advantage distillation is a classical post-processing method that increases the secret-key
rate at all levels of noise. The cut-off on the other hand allows for a trade-off between
the channel uses required and the secret-key fraction. Utilising the cut-off results in
three benefits with respect to the previous scheme for the single sequential quantum re-
peater [1]. Firstly, the cut-off method achieves a higher rate for all distances. Secondly,
the protocol is more robust against dark counts, in the sense that non-zero secret key can
be generated over larger distances. Finally, the cut-off can be adjusted on the fly, unlike
the repositioning of the repeater [1]. This is especially convenient in the scenario where
the experimental setup might be modified. With the previous scheme for example, im-
proving the coherence times of the memories would lead to a new optimal position. The
repositioning of the repeater node would be both costly and time-inefficient, while mod-
ifying the cut-off corresponds to a simple change in the programming of the devices.
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Figure 6.10: Contour plot of regions of pem versus pps with the expected parameters where the
benchmarks listed in Table 6.1 can be surpassed. The contour lines correspond to the parameters
that achieve the corresponding benchmarks while the parameter regimes above the curves allow
us to surpass them. The data is plotted for the distance of 9.6L0, where L0 = 0.542 km.

We note here that one could also use the secret-key rate per unit time to assess the
performance of a quantum repeater. The secret-key rate per unit time can be calculated
by multiplying the secret-key fraction with the inverse of the (average) time it takes to
generate a single raw bit between Alice and Bob. This time will depend on the travel
time of the photons from the quantum repeater to Alice and Bob, the generation time of
the entangled photon-memory pairs and the time it takes to perform the required oper-
ations such as the Bell state measurement. To compare the secret-key rate per unit time
to the benchmarks, the benchmarks too must then be re-expressed in the secret-key rate
per unit time. This can be achieved by multiplying the benchmarks with a fixed emission
rate of a photon source [77]. Note that there is now an ambiguity in the benchmarks, as
they depend on the fixed emission rate. Since the emission rate is limited by engineer-
ing constraints, the benchmarks are dependent on current technologies and cannot be
claimed to be fundamental.

By optimising over the cut-off, we have found realistic parameter regions where it
is possible to surpass several different benchmarks including the secret-key capacity.
These benchmarks are relevant milestones towards claiming a quantum repeater, and
thus form an important step in the creation of the first large-scale quantum networks. To
make our arguments concrete, we have chosen a specific parameter set induced by some
recent experimental results. However, other platforms or technological advances might
allow to improve upon our results and predict particularly simple setups for performing
the first quantum repeater experiment. For example, our work could be extended by in-
cluding other types of encoding, such as polarisation encoding, in which case additional
depolarising noise in the fibre could become relevant. We leave the investigation of other
parameter regimes open. In this respect our model has a very broad functionality, as it
allows us to perform efficient optimisation of the secret-key rate over the cut-off for any
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Figure 6.11: Contour plot of regions of Fgm versus pem with the expected parameters where the
benchmarks listed in Table 6.1 can be surpassed. The contour lines correspond to the parameters
that achieve the corresponding benchmarks while the parameter regimes above the curves allow
us to surpass them. The data is plotted for the distance of 9.6L0, where L0 = 0.542 km.

set of parameters. We achieve this functionality by finding tight analytical bounds for
the number of channel uses needed to generate one bit of raw key as a function of the
cut-off. Our numerical package is freely available for further exploration [70].

6.9. APPENDIX

6.9.1. DARK COUNTS
In this section we detail the effect of dark counts in the detectors of Alice and Bob on our
protocol. In particular, we briefly go over the concept of so-called squashing models [25,
34], after which we will be able to calculate the induced depolarising noise. We conclude
with explaining how dark counts increase the yield.

Quantum states of light are naturally described by operators on an infinite-dimensional
Hilbert space. However, a significant number of optical experiments have been per-
formed where the infinite-dimensional states and operations are approximated by a
lower dimensional description. An example of this is where the state of light is assumed
to lie within a two-dimensional subspace spanned by the vacuum state and a single-
photon excitation. Such an approximation is valid in the sense that the theoretical pre-
dictions of measurement statistics correspond accurately to those that are observed ex-
perimentally.

However, in cryptographic contexts one usually has to make unconditional state-
ments about the information held by a third party. This third party might be malicious
and all-powerful, and her measurement statistics are, by definition, unknown. This im-
plies that there is not necessarily a bound on the information held by a malicious third
party, despite the fact that the truncation of the Hilbert space is a good approximation
for experimental statistics.
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Figure 6.12: Secret-key rate for the telecom channel with L0 = 22 km with the quantum repeater
implementation for the expected parameters with optimised cut-off as a function of the distance
in units of km. The rate is compared to all the benchmarks defined in Table 6.1.

Since the theoretical analysis in an infinite-dimensional Hilbert space is difficult, one
would prefer to be able to bound the information held by a third party, while at the same
time applying a truncation to the finite-dimensional Hilbert space. This can be done if
a so-called squashing model exists, which is a way of relating measurements performed
on a high-dimensional state to a truncated space. As an approximation we consider here
the squashing models for measurements of qubits encoded in the polarisation of pho-
tons. In this case squashing models exist for both the fully asymmetric BB84 protocol
and the symmetric six-state protocol (with only passive measurements), implying that
one can, without loss of generality, perform the fully asymmetric BB84 and symmetric
(passive) six-state protocol with photons [25, 34]. The squashing model also dictates how
multiple clicks in different detectors give rise to noise in the truncated space. In the next
section, we discuss how to map the dark counts in the detectors to depolarising noise
according to the corresponding squashing model.

The parameters typically used to quantify detectors are the dark counts per second
and the detection window tw, which is the duration of the integration period of the de-
tectors. The number of thermal photons n relevant for the thermal benchmark is given
by tint times the dark counts per second. Assuming a Poisson distribution of the dark
counts, it follows that the probability pd of getting at least a single dark count click within
the time-window of awaiting the signal photon is given by pd = 1−exp(−n) ≈ n for small
n.

The noise caused by the dark counts at Alice’s or Bob’s detector can then be mod-
elled by a depolarising channel, where the depolarising parameter αA/B depends on the
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implemented protocol,

αA/B , BB84 =
pappppsηA/B (1−pd )

1− (1−pappppsηA/B )(1−pd )2 , (6.16)

αA/B , six-state =
pappppsηA/B (1−pd )5

1− (1−pappppsηA/B )(1−pd )6 . (6.17)

That is, conditioned on a click in at least one of the detectors, Alice or Bob receive the de-
sired state if they receive the signal photon and no other detector was triggered. Due to
the squashing map all other events can be mapped onto a maximally mixed state [25, 34].
To explain the exponents, we note that the active BB84 protocol requires an optical mea-
surement setup with two detectors, while for the six-state protocol such a measurement
setup will consist of six detectors.

Furthermore, independent of the existence of a squashing map, the dark counts in-
crease the total probability that Alice or Bob gets a click. This probability depends on
whether the BB84 or six-state protocol is implemented, and is given by

p A/B , BB84 = 1− (1−pappppsηA/B )(1−pd )2 , (6.18)

p A/B , six-state = 1− (1−pappppsηA/B )(1−pd )6 . (6.19)

6.9.2. QUANTUM BIT ERROR RATE
In this appendix we derive the expressions for the average quantum bit error rate in the
X , Y and Z basis as a function of the experimental parameters. It is given by

〈eX 〉 = 〈eY 〉 = 1

2
− 1

2
FgmαAαB

(
2Fprep −1

)2
〈

e−(a+b)n
〉

, (6.20)

〈eZ 〉 = 1

2
− 1

2
FgmαAαB 〈e−b·n〉 , (6.21)

where the average is performed over the geometric distribution with only the first n?

trials. That is, the average of the exponential e−cn is given by

〈e−cn〉 =
∑n?

n=1 pB
(
1−pB

)n−1 e−cn∑n?
n=1 pB

(
1−pB

)n−1 (6.22)

= pB e−c

1− (
1−pB

)n?
1− (

1−pB
)n? e−cn?

1− (
1−pB

)
e−c

.

To derive these quantum bit error rates, let us firstly define the two-qubit Bell states
as

|ψ(x,z)〉 = 1p
2

(|0〉|0+x〉+ (−1)z|1〉|1+x (mod2)〉), (6.23)

for x,z ∈ {0,1}. The noise in the preparation can be modelled as dephasing noise [26].
The initially generated entangled state between the quantum memory and the state of
the photon flying to Alice is then

ρAR = Fprep|ψ(1,0)〉〈ψ(1,0)|+ (1−Fprep)|ψ(1,1)〉〈ψ(1,1)| , (6.24)
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where Fprep is the preparation fidelity of this state. The state in the first quantum mem-
ory is now kept stored there. During this time, a second entangled photon-memory is
attempted to be generated at the second quantum memory. During these attempts, the
state stored in the first quantum memory decoheres through time-dependent dephasing
and depolarising noise acting on it. This means that at the time when the second copy is
generated, the first copy will have decohered. This second copy will be of the same form
as the first one. The decohered first copy is of the form

ρ′
AR = FT1 [Fprep(FT2 |ψ(1,0)〉〈ψ(1,0)|+ (1−FT2 )|ψ(1,1)〉〈ψ(1,1)|) (6.25)

+ (1−Fprep)
(
FT2 |ψ(1,1)〉〈ψ(1,1)|+ (1−FT2 )|ψ(1,0)〉〈ψ(1,0)|)]+ (1−FT1 )

I

4
,

where FT1 ,FT2 are respectively the depolarising and dephasing parameters due to the
decoherence processes on the stored state in the first memory. The fidelity decays ex-
ponentially with the number of attempts [5] and hence these parameters can be written
as

FT1 = e−b·n , (6.26)

FT2 =
1+e−a·n

2
. (6.27)

Here n is the number of attempts that have been performed on the second memory to
successfully generate the repeater-Bob entanglement and the decay rates a and b are
defined in the main text. Hence we can rewrite the state of ρ′

AR as

ρ′
AR = FT1 (Fdeph,AR |ψ(1,0)〉〈ψ(1,0)|+ (1−Fdeph,AR )|ψ(1,1)〉〈ψ(1,1)|)+ (1−FT1 )

I

4
. (6.28)

where

Fdeph,AR = 1+ (2Fprep −1)e−an

2
. (6.29)

The entanglement swapping is performed at the two memories at the repeater node.
Since the situation is symmetric for all the four measurement outcomes, without loss of
generality we can consider the resulting state on AB as if the repeater measured |ψ(1,0)〉.
If a different Bell state was measured, a Pauli rotation could be used to bring the state to
this form. The state that we obtain is

ρ′′
AB = FT1

([
Fdeph,AR Fprep + (1−Fdeph,AR )(1−Fprep)

] |ψ(1,0)〉〈ψ(1,0)| (6.30)

+ [
Fdeph,AR (1−Fprep)+ (1−Fdeph,AR )Fprep

] |ψ(1,1)〉〈ψ(1,1)|)+ (
1−FT1

) I
4

.

Finally we note that the operations such as Bell state measurements or any other re-
quired gates performed on the memories are also noisy. We will model them by the de-
polarising channel here [27]. The depolarising channel commutes with the dephasing
channel. For the two copies of the Bell-diagonal state, it also commutes with the entan-
glement swapping, in the sense that applying it to one of our memory qubits is mathe-
matically equivalent to applying the same channel to one of the photons flying to Alice
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or Bob. Hence independently of when exactly in the protocol those gates or measure-
ments on the memories are applied, we can add the resulting depolarisation to the final
state shared between Alice and Bob, so that we obtain

ρ′′
AB = FgmαAαB FT1

([
Fdeph,AR Fprep + (1−Fdeph,AR )(1−Fprep)

] |ψ(1,0)〉〈ψ(1,0)| (6.31)

+ [
Fdeph,AR (1−Fprep)+ (1−Fdeph,AR )Fprep

] |ψ(1,1)〉〈ψ(1,1)|)+ (
1−FgmαAαB FT1

) I
4

.

Here by Fgm we denote the product of all the depolarising parameters corresponding to
all noisy gates and measurements and αA/B corresponds to the noise caused by the dark
counts on Alice’s/Bob’s side. From the final state it follows that

〈eX 〉 = 〈eY 〉 = 1

2
− 1

2
FgmαAαB

(
2Fprep −1

)2
〈

e−(a+b)n
〉

, (6.32)

〈eZ 〉 = 1

2
− 1

2
FgmαAαB 〈e−b·n〉 . (6.33)

where the average is over the geometric distribution with only the first n? trials. This is
due to the fact that, by construction, the state is never allowed to decohere more than n?

trials.

6.9.3. COMPARISON WITH MEMORY-ASSISTED

MEASUREMENT-DEVICE-INDEPENDENT QKD SCHEMES
The setup of the proof of principle repeater analysed in this paper bears close resem-
blance to the memory-assisted measurement-device-independent QKD (MA-MDI QKD)
setups proposed in [2], which were analysed in more detail in the particular context
of NV centres in [78]. However, in contrast to our focus on key per channel use, these
schemes were mostly assessed on their performance of generating key per unit time. In
this section, we will briefly discuss these schemes and their advantages and disadvan-
tages in comparison to the scheme analysed in this paper. In particular, we will focus
both on their relevance in the context of secret-key generation per channel use, and on
the complexity of their experimental implementation.

The three schemes that we compare with can be found in Figure 6.13. These schemes
have the advantage of high expected rate per unit time, since heralding of the successful
events now takes place at the repeater. Thus, after a failed attempt the repeater can
immediately prepare for receiving another photon, without the need for waiting on any
classical communication from Alice and Bob. Furthermore, these schemes are secure
against detector side-channel attacks [79], since in each scheme there is no quantum
information sent from the repeater to Alice or Bob.

However, these advantages, while relevant in practical QKD setups, might not nec-
essarily translate directly in higher secret-key rate per channel use for proof of principle
repeaters. Moreover, there are experimental challenges that make these MA-MDI QKD
schemes more difficult to implement than the sequential quantum repeater that we con-
sider. This is particularly important, since the goal of this paper is to analyse a protocol
that would be simple from the implementation perspective, and would have the capa-
bility to exceed the benchmarks in Section 6.5.
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Figure 6.13: Three different setups for the memory-assisted measurement-device-independent
quantum key distribution (MA-MDI QKD). Here, BSM stands for Bell state measurement. The first
setup a) corresponds to the scheme of MA-MDI QKD with direct heralding. Specifically, the imple-
mentation of this setup requires that a photonic state can be transferred into a quantum memory
QM1 and QM2 in a heralded fashion. That is, following the transfer attempt, one obtains the infor-
mation whether the state of the photon emitted at Alice or Bob has been successfully transferred
to the desired quantum memory. The second setup b) with indirect heralding is a modification
of the first one. Here the requirement of the heralded state transfer has been dropped, at the cost
of probabilistic Bell state measurements between two photonic qubits at the outer BSM stations.
Finally, the setup in c) is a modification of b), which uses sources of entangled photons (Ψ). In this
way, the attempt to transfer the quantum state of the photon into the memory is performed only
after a successful Bell state measurement. This can increase the rate per unit time, since writing
unto and resetting the memory is a time-consuming process.
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Let us now go over each of these schemes. Firstly, let us consider the first scheme a).
This scheme seems to require a similar number of components as our proposed scheme,
with the exception that the two detector setups have now been replaced with the sources
of BB84 states. The main difficulty with implementing such a scheme lies in the require-
ment of heralded quantum state transfer from a single photon into the quantum mem-
ory. We have already discussed in Section 3.3.1 in Chapter 3 that this is a great challenge
from the experimental perspective.

Due to the reasons explained in Section 3.3.1 in Chapter 3, scheme b) seems more
realistic than scheme a) with the current state-of-the-art technology. However, a larger
number of components is needed and the two additional optical Bell state measure-
ments will reduce the rate by a factor of four. In particular, photonic states need to be
emitted both from the quantum memories and the BB84 sources. These need to be syn-
chronised such that the Bell state measurements can be performed on both of them.
While there is nothing fundamentally challenging with this scheme, it requires larger
number of components and is more complicated than the scheme analysed in this pa-
per. Similar conclusions apply to the more complex scheme proposed in c), which adds
sources of entangled photons (denoted here by Ψ) into the scheme of b). A comparison
of the achieved secret-key rate with the secret-key capacity, for a variant of scheme c),
has been performed in [80].

6.9.4. SECRET-KEY FRACTION AND ADVANTAGE DISTILLATION

In this section the secret-key fraction formula for the six-state protocol with advantage
distillation of [35] is briefly reviewed. We note here that while the analysis in Appendix 6.9.2
has the state |ψ(1,0)〉 as the target state, here we follow the analysis of [35] for which
|ψ(0,0)〉 is the target state. This doesn’t affect the overall analysis as the final state from
Appendix 6.9.2 can be rotated locally such that |ψ(0,0)〉 could be made the target state.
The secret key fraction can be expressed in terms of the Bell coefficients of the Bell diag-
onal state

ρAB =∑
x,z∈{0,1}

PXZ(x,z)|ψ(x,z)〉〈ψ(x,z)| . (6.34)

Here PXZ is a probability distribution and we will abbreviate PXZ(x,z) as pxz. For the
description of the advantage distillation protocol we refer the reader to [35]. It is shown
there that the secret-key fraction can be written as

rsix-state = 1

3
max

[
1−H(PXZ)+ PX̄(1)

2
h

(
p00p10 +p01p11

(p00 +p01)(p10 +p11)

)
,

PX̄(0)

2
(1−H(P ′

XZ))

]
,(6.35)
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where

PX̄(0) = (p00 +p01)2 + (p10 +p11)2 , (6.36)

PX̄(1) = 2(p00 +p01)(p10 +p11) , (6.37)

P ′
XZ(0,0) = p2

00 +p2
01

(p00 +p01)2 + (p10 +p11)2 , (6.38)

P ′
XZ(1,0) = 2p00p01

(p00 +p01)2 + (p10 +p11)2 , (6.39)

P ′
XZ(0,1) = p2

10 +p2
11

(p00 +p01)2 + (p10 +p11)2 , (6.40)

P ′
XZ(1,1) = 2p10p11

(p00 +p01)2 + (p10 +p11)2 , (6.41)

and H(PXZ) is the Shannon entropy of the distribution PXZ. The factor of a third arises
from the fact that for a symmetric six-state protocol only a third of the measurements
will be performed in the same basis by Alice and Bob.

In our model we only consider depolarising noise and dephasing noise in standard
basis. Hence for the six-state protocol the error rates in X and Y basis will be the same.
Therefore

p10 +p11 = eZ , (6.42)

p01 +p11 = eX Y , (6.43)

p01 +p10 = eX Y , (6.44)

p00 +p01 +p10 +p11 = 1 . (6.45)

Hence

p00 = 1− eZ

2
−eX Y , (6.46)

p01 = eX Y − eZ

2
, (6.47)

p10 = p11 = eZ

2
. (6.48)

And so

PX̄(0) = 1−2eZ +2e2
Z , (6.49)

PX̄(1) = 2(1−eZ )eZ . (6.50)

6.9.5. YIELD
In this appendix we derive the analytical approximation for the yield with the cut-off n?.
The yield Y is given by

Y = pbsm

E [N ]
= pbsm

E [max(NA , NB )]
. (6.51)

The approximation used for E [max(NA , NB )] is

E [max(NA , NB )] ≈


1

p A

(
1−(1−pB )n?

) 1
p A

≥ n?

1
p A

+ 1
pB

− 1
p A+pB−p A pB

1
p A

< n?,
(6.52)
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where p A and pB are defined in Eq. (6.18) for BB84 and in Eq. (6.19) for the six-state pro-
tocol. In the rest of this appendix, we will motivate this approximation by finding tight
analytical lower and upper bounds on E [N ].

We note that we consider separately two parameter regimes. One of them is the
regime where on average the dominant number of channel uses per round is on Alice’s

side
(

1
p A

> n?
)
. This corresponds to the high-loss regime since the number of channel

uses per round on Bob’s side is upper bounded by the cut-off. The other regime is the

low-loss regime
(

1
p A

≤ n?
)
. In this regime we will show that the cut-off does not play

any significant role, so that in this regime the formula for the yield with no cut-off [1, 2]
can be used. Moreover, for our derivation to be valid we require an additional constraint
to be satisfied, namely pB ≥ p A . This means that we cannot consider scenarios when
the repeater is positioned closer to Alice than to Bob. Such a constraint is well-justified
since the time-dependent decoherence in quantum memory QM1 would only increase
by shifting the repeater towards Alice.

HIGH-LOSS REGIME

The high-loss regime is the regime where the losses on Alice’s side together with the cut-
off on Bob’s side ensure that the predominant number of channel uses is almost always
on Alice’s side, i.e. E [N ] = E [max(NA , NB )] ≈ E [NA]. This regime is described by the con-
dition p An? < 1. More specifically, as we will show in this section, if

1

p A
:=µ=βn?, β> 1 , (6.53)

then

E[NA] ≤ E [N ] ≤ (
gerr(p A , pB ,n?)+1

)
E[NA] , (6.54)

where E[NA] = 1
p A (1−(1−pB )n? )

(see Eq. (6.62)) and gerr(p A , pB ,n?) = O
(

1
β2

)
is a function

defined in Eq. (6.81). This implies that for β large enough, E [N ] can be accurately ap-
proximated by 1

p A (1−(1−pB )n? )
.

We start the proof of Eq. (6.54) by first noticing that E [NA] ≤ E [N ]. It is, thus, only
necessary to find an upper bound for E [N ]. Now, let p(K = k) = (1− pr )k−1pr be the
probability that Bob succeeds in round k. Here pr = 1− (1−pB )n? is the probability that
Bob succeeds in a given round. Then

E [N ] = E [max(NA , NB )]

=
∞∑

k=1
p(K = k)

( ∞∑
nA=k

(
kn?∑

nB=(k−1)n?+1

p(NA = nA ∧NB = nB |K = k)max(nA ,nB )

))
.

(6.55)

One can split the sum over nA in two, depending on whether nA is greater than nB or
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vice versa. We get

E [N ] =
∞∑

k=1
p(k)

(
kn?∑

nB=(k−1)n?+1

(
nB∑

nA=k
p(nA ∧nB |k)nB

)

+
kn?∑

nB=(k−1)n?+1

( ∞∑
nA=nB+1

p(nA ∧nB |k)nA

))
,

(6.56)

where p(k) = p(K = k), and p(nA ∧nB |k) = p(NA = nA ∧NB = nB |K = k). The first term
of Eq. (6.56) can be upper bounded noticing that nB ≤ kn?, i.e.

∞∑
k=1

p(k)

(
kn?∑

nB=(k−1)n?+1

(
nB∑

nA=k
p(nA ∧nB |k)nB

))
≤

∞∑
k=1

p(k)p (NA ≤ NB |K = k)kn?. (6.57)

The second term of Eq. (6.56) can be upper bounded in the following way

∞∑
k=1

p(k)

(
kn?∑

nB=(k−1)n?+1

( ∞∑
nA=nB+1

p(nA ∧nB |k)nA

))
≤

∞∑
k=1

p(k)

( ∞∑
nA=k

p(nA |k)nA

)
(6.58)

=
∞∑

k=1
p(k)

∞∑
nA=1

p(nA |k)nA (6.59)

=
∞∑

nA=1
p(nA)nA = E [NA] . (6.60)

Inputting Eq. (6.57) and Eq. (6.60) back into Eq. (6.56), we obtain

E[N ] ≤
(

n?

E[NA]

∞∑
k=1

p(k)p (NA ≤ NB |k)k +1

)
E[NA] . (6.61)

Let N i
A be the random variable describing the number of trials on Alice’s side in round i .

Since p(N i
A = ni

A) = (1−p A)ni
A−1p A , we clearly have that E[N i

A] = 1
p A

= µ. Then we note
that

E[NA] =
∞∑

k=1
p(k)

k∑
i=1

∞∑
ni

A=1

p(ni
A)ni

A =
∞∑

k=1
p(k)

k∑
i=1
E[N i

A] =µ
∞∑

k=1
p(k)k

= E[K ]µ= 1

p A pr
= 1

p A(1− (1−pB )n? )
.

(6.62)

Here, we first express E[NA] by calculating the average number of trials in each of the
k rounds. Then, we sum the k averages together, and finally, we average over the total
number of rounds k. Since all the rounds are independent, we replace each E[N i

A] by µ
as stated above. By inputting Eq. (6.62) into Eq. (6.61), we get

E [NA] ≤ E [N ] ≤
(

1

E[K ]β

∞∑
k=1

p(k)p (NA ≤ NB |k)k +1

)
E[NA] . (6.63)
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We now upper bound the p (NA ≤ NB |k) term. Note that

p (NA ≤ NB |k) = p

(
k∑

i=1
N i

A ≤
k∑

i=1
N i

B

∣∣∣k)
. (6.64)

We note that conditioned on K = k, we have that
∑k

i=1 N i
B = (k−1)n?+N k

B . It then follows
that

p (NA ≤ NB |k) = p

(
k∑

i=1
N i

A ≤ (k −1)n?+N k
B

∣∣∣k)
≤ p

(
k∑

i=1
N i

A ≤ kn?
∣∣∣k)

. (6.65)

Condition Eq. (6.53) and −∑k
i=1 N i

A ≥ −kn? is equivalent to kµ−∑k
i=1 N i

A ≥ k(β−1)n?.
Hence,

p

(
k∑

i=1
N i

A ≤ kn?
∣∣∣k)

= p

(
kµ−

k∑
i=1

N i
A ≥ k(β−1)n?

∣∣∣k)
. (6.66)

We can use the Chernoff bound to upper bound this probability. The Chernoff bound for
a random variable X is

p(X ≥ a) ≤ E[e t X ]

e t a , t > 0 . (6.67)

Let X be the sum of k random variables X1, X2, . . . , Xk , where

Xi =µ−N i
A , (6.68)

i.e. X = ∑k
i=1 Xi = kµ−∑k

i=1 N i
A . From this we can now bound the desired probability.

Using (6.67) and a = k(β−1)n?, we obtain the inequality

p

(
kµ−

k∑
i=1

N i
A ≥ k(β−1)n?

∣∣∣k)
≤
E
[

exp
(
t
(
kµ−∑k

i=1 N i
A

))∣∣∣k]
e tk(β−1)n?

(6.69)

= exp
[
tk

(
µ− (β−1)n?

)]
E
[
Πk

i=1e−t N i
A |k

]
. (6.70)

Let us now focus on E
[∏k

i=1 e−t N i
A |k

]
,

E

[
k∏

i=1
e−t N i

A |k
]
=

k∏
i=1
E
[

e−t N i
A |k

]
=

k∏
i=1

 ∞∑
ni

A=1

p A(1−p A)ni
A−1 e−tni

A

=
(

p Ae−t

1− (1−p A)e−t

)k

.

(6.71)
Here, after the first equality sign we have used the fact that the random variables N i

A are
independent for different i ’s. After the second equality we note that all of them have ex-
actly the same geometric distribution over the k rounds. Specifically, it is now important
to note that this holds provided that k is the value of K on which we have conditioned,
i.e., the success on Bob’s side occurs exactly in the k’th round. Furthermore, the com-
mon ratio (1−p A)e−t satisfies the convergence condition

∣∣(1−p A)e−t
∣∣ < 1 for all t > 0.

This yields

p (NA ≤ NB |K = k) ≤
(
exp

[
t

(
1

p A
− (β−1)n?

)]
p Ae−t

1− (1−p A)e−t

)k

. (6.72)
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Let’s define the function f (t ) as

f (t ) := exp

[
t

(
1

p A
− (β−1)n?

)]
p Ae−t

1− (1−p A)e−t . (6.73)

This function should be minimised subject to t > 0 to obtain the tightest bound. A single
stationary point is analytically found at

t0 = ln

(
(1−p A)(p A(β−1)n?−1)

p A(β−1)n?+p A −1

)
. (6.74)

We now want to make sure that t0 always satisfies the condition t > 0, necessary for
applying the Chernoff bound. By condition Eq. (6.53), the denominator of the above
expression inside the logarithm is p A(β−1)n?+p A−1 = 1−p An?+p A−1 = p A(1−n?) < 0
as long as n? > 1. From this it follows that t0 > 0 if and only if

(1−p A)(p A(β−1)n?−1) < p A(β−1)n?+p A −1 . (6.75)

Clearly this condition is equivalent to −p2
A(β−1)n? < 0 which is satisfied for β> 1. This

means that t0 > 0 is always satisfied. Now note that f (t = 0) = 1. Moreover, one can
also easily verify that f ′(t = 0) = n?(1−β) < 0 for β > 1, and that limt→∞ f (t ) → ∞ as
long as n? > 1. These properties of f (t ), together with the continuity of f (t ), prove that
t = t0 corresponds to the global minimum of this function in the regime t > 0 and that
f (t0) < 1. Hence, we can now calculate f (t0) which gives

f (t0) =
(

(p A(β−1)n?−1)(1−p A)

p A(β−1)n?+p A −1

) 1
p A

−(β−1)n?−1

(1−p A(β−1)n?) . (6.76)

This formula can be simplified by substituting the condition Eq. (6.53) to eliminate β

f (t0) = p An?
(

n?(1−p A)

n?−1

)n?−1

. (6.77)

E [N ] can now be upper bounded by an expression that depends on f (t0), that is

E [N ] ≤
(

1

E[K ]β

∞∑
k=1

p(K = k) f (t0)k k +1

)
E[NA] . (6.78)

We can now average over the number of rounds k,

∞∑
k=1

pr

(1−pr )

[
(1−pr ) f (t0)

]k k = pr f (t0)[
1− (1−pr ) f (t0)

]2 . (6.79)

Moreover, E[K ] = 1
pr

and again removing β through condition Eq. (6.53) yields

E [N ] ≤
(

p2
r p An? f (t0)[

1− (1−pr ) f (t0)
]2 +1

)
E[NA] =

(
(1− (1−pB )n? )2p An? f (t0)[

1− (1−pB )n? f (t0)
]2 +1

)
E[NA] .

(6.80)
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Now by taking the number of channel uses to be E [NA], we can define the relative error
gerr(p A , pB ,n?),

gerr(p A , pB ,n?) := (1− (1−pB )n? )2p An? f (t0)[
1− (1−pB )n? f (t0)

]2 , (6.81)

with f (t0) given in Eq. (6.77), so that

E[NA] ≤ E [N ] ≤ (
gerr(p A , pB ,n?)+1

)
E[NA] , (6.82)

where the conditions required to satisfy the above formula are n? > 1 and p An? < 1.
Finally, we can now show how gerr(p A , pB ,n?) scales with β. Note that

f (t0) ≤ p An?
(
1+ 1

n?−1

)n?−1

≤ p An?e . (6.83)

This together with f (t0) < 1 gives

gerr(p A , pB ,n?) < p2
r (p An?)2e

p2
r

= e

β2 . (6.84)

Therefore gerr(p A , pB ,n?) =O
(

1
β2

)
, implying that the bounds in the high-loss regime are

good enough to tightly bound the achieved yield.

LOW-LOSS REGIME

Now we consider the complementary low-loss regime characterised by the condition
p An? ≥ 1. Firstly, since in our protocol there is never any benefit in placing the repeater
closer to Alice than to Bob, we also have that pB ≥ p A . This implies that 1

pB
≤ 1

p A
=

E[N i
A] ≤ n?. This is the regime where the cut-off is large in comparison with the average

number of channel uses required to detect a single photon on Bob’s side. That is,

β′

pB
= n?, n? ≥β′ ≥ 1 . (6.85)

As we will show in this section, in this region we can approximate E [N ] = E [max(NA , NB )]
by NNC , where

NNC = 1

p A
+ 1

pB
− 1

p A +pB −p A pB
, (6.86)

is the average number of channel uses in the no cut-off (NC) scenario [1, 2]. Intuitively,
this is because Alice and Bob almost never have to restart due to Bob reaching the cut-
off. More specifically, we show that

NNC ≤ E [N ] ≤ (
g̃err(p A , pB ,n?)+1

)
NNC , (6.87)

where g̃err(p A , pB ,n?) is defined in Eq. (6.99). Since g̃err(p A , pB ,n?) =O
(
β′e−β

′)
, for suf-

ficiently large β′ the expectation value E [N ] can be accurately approximated by NNC .
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Here we detail a proof of Eq. (6.87). We note that the presence of the cut-off increases
the number of needed channel uses with respect to the no cut-off scenario, i.e. NNC ≤
E[N ]. For the upper bound we can write now

E [N ] = E [max(NA , NB )] (6.88)

=
∞∑

k=1
p(K = k)

( ∞∑
nA=k

(
kn?∑

nB=(k−1)n?+1

p(nA ∧nB |K = k)max(nA ,nB )

))
(6.89)

= p(K = 1)
n?∑

nB=1

∞∑
nA=1

p(nA |K = 1)p(nB |K = 1)max(nA ,nB )

+
∞∑

k=2
p(K = k)

(
kn?∑

nB=(k−1)n?+1

( ∞∑
nA=k

p(nA ∧nB |k)max(nA ,nB )

))
. (6.90)

In Eq. (6.90) we split the sum over k into two terms, one with k = 1 and the other with
k > 1. Since the first term has fixed k = 1, the variables NA and NB are independent
here (there is only one round in which Bob for sure succeeds, so the value of nB doesn’t
affect the value of nA). Moreover, the geometric distribution of NB is normalised over
the interval [1, . . . ,n?].

E [N ] ≤ p(K = 1)NNC +
∞∑

k=2
p(K = k)

(
kn?∑

nB=(k−1)n?+1

( ∞∑
nA=k

p(nA ∧nB |k)max(nA ,kn?)

))
.

(6.91)
We have upper bounded the first term of Eq. (6.90) by upper bounding the sum

∑n?
nB=1

with
∑∞

nB=1 . In this case the expression after p(K = 1) in the first term becomes NNC . In
the second term we upper bound nB by kn?. Since the second term does not depend on
nB anymore we upper bound it by removing the constraints on NB completely from the
probabilities p(nA ∧nB |K = k), i.e.

E [N ] ≤ p(K = 1)NNC +
∞∑

k=2
p(K = k)

∞∑
nA=k

p(nA |K = k)max(nA ,kn?)

= p(K = 1)NNC +
∞∑

k=2
p(K = k)

(
kn?∑

nA=k
p(nA |K = k)kn?+

∞∑
nA=kn?+1

p(nA |K = k)nA

)
,

(6.92)

where in the last line of Eq. (6.92) we split the second term into two terms corresponding
to the regime where kn? is larger than nA and vice versa. Since kn? does not depend on
nA , we upper bound this term by removing the constraints on nA ,

E [N ] ≤ p(K = 1)NNC +
∞∑

k=2
p(K = k)kn?+

∞∑
k=2

p(K = k)
∞∑

nA=k
p(nA |K = k)nA . (6.93)

Eq. (6.93) can be greatly simplified. We can perform the sum over nA in the third term
obtaining kµ. Then the sums over k can also be easily evaluated so that the right hand
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side of Eq. (6.93) can be rewritten as

p(K = 1)NNC +
∞∑

k=2
p(K = k)kn?+

∞∑
k=2

p(K = k)kµ (6.94)

= p(K = 1)NNC + (n?+µ)(E(K )−p(K = 1)) (6.95)

=
(

pr + n?+µ
NNC

(
1

pr
−pr

))
NNC (6.96)

=
(

pr +
(

n?+µ
NNC

)(
1−p2

r

pr

))
NNC . (6.97)

Hence we have that

NNC ≤ E [N ] ≤ (
g̃err(p A , pB ,n?)+1

)
NNC , (6.98)

where g̃err(p A , pB ,n?) is defined as

g̃err(p A , pB ,n?) := (1−pB )n?
[(

n?+µ
NNC

)(
2− (1−pB )n?

1− (1−pB )n?

)
−1

]
. (6.99)

We now show that g̃err(p A , pB ,n?) is small compared to the other quantities in Eq. (6.98).
Observe that

(1−pB )n? =
(
1− β′

n?

)n?

≤ e−β
′

. (6.100)

From Eq. (6.99) it follows that

g̃err(p A , pB ,n?) ≤ e−β
′
[

n?+ 1
p A

NNC

(
2

1−e−β′

)
−1

]
. (6.101)

To upper bound the relative error, we start by upper bounding the first term inside the
brackets, namely

n?+ 1
p A

NNC
=

n?+ 1
p A

1
p A

+ 1
pB

− 1
p A+pB−p A pB

≤
n?+ 1

p A

1
p A

+ 1
pB

− 1
p A+pB−p A

= p An?+1 . (6.102)
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g̃err(p A , pB ,n?), then, is upper bounded by

g̃err(p A , pB ,n?) ≤ e−β
′
[

(p An?+1)

(
2

1−e−β′

)
−1

]
(6.103)

= e−β
′

1−e−β′ (2p An?+1+e−β
′
) (6.104)

≤ e−β
′

1−e−β′ (2β′+1+e−β
′
) (6.105)

= e−β
′
(

2β′

1−e−β′ +coth

(
β′

2

))
(6.106)

< e−β
′
(

2β′

1−e−1 +coth

(
1

2

))
(6.107)

< e−β
′
coth

(
1

2

)(
2β′+1

)
(6.108)

< 3coth

(
1

2

)
β′e−β

′
. (6.109)

Therefore g̃err(p A , pB ,n?) =O
(
β′e−β

′)
.
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Quantum channels enable the implementation of communication tasks inaccessible to
their classical counterparts. The most famous example is the distribution of secret keys.
However, in the absence of quantum repeaters the rate at which these tasks can be per-
formed is dictated by the losses in the quantum channel. In practice, channel losses have
limited the reach of quantum protocols to short distances. Quantum repeaters have the
potential to significantly increase the rates and reach beyond the limits of direct trans-
mission. However, no experimental implementation has overcome the direct transmission
threshold. Here, we propose three quantum repeater schemes and assess their ability to
generate secret key when implemented on a setup using NV centers in diamond with near-
term experimental parameters. We find that one of these schemes - the so-called single-
photon scheme, requiring no quantum storage - has the ability to surpasses the capacity -
the highest secret-key rate achievable with direct transmission - by a factor of seven, estab-
lishing it as a prime candidate for the first experimental realization of a quantum repeater.

The results of this chapter have been published in Phys. Rev. A 99, 052330 (2019).
*These authors contributed equally.
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7.1. INTRODUCTION

In this chapter we build upon the ideas presented in the previous chapter to devise fur-
ther proof of principle repeater schemes. Specifically, in this chapter we propose three
such new schemes and together with the fourth scheme analyzed before in [1] and Chap-
ter 6, we assess their performance for generating secret key. We again consider their
implementation based on nitrogen-vacancy centers in diamond (NV centers), a system
which has properties making it an excellent candidate for long-distance quantum com-
munication applications [2–10].

The four considered schemes are: the “single sequential quantum repeater node”
(first proposed and studied in [1], then further analyzed in Chapter 6), the single-photon
scheme (proposed originally in the context of remote entanglement generation [11] as
introduced in Chapter 3, also studied in the context of secret-key generation without
quantum memories [12]), and two schemes which are a combination of the first two.
See Fig. 7.1 for a schematic overview of the repeater proposals considered in this work.

We compare the secret-key rate of each of these schemes to the highest theoretically
achievable secret-key rate using direct transmission, the secret-key capacity of the pure-
loss channel [13]. We show that one of these schemes, the single-photon scheme, can sur-
pass the secret-key capacity by a factor of seven for a distance of ≈ 9.2 km with near-term
parameters. This shows the viability of this scheme for the first experimental implemen-
tation of a quantum repeater.

In Section 7.2 we discuss and detail the different repeater proposals that will be as-
sessed in this work. In Section 7.3 we expand on how the different components of the
repeater proposals would be implemented experimentally. Section 7.4 details how to
calculate the secret-key rate achieved with the quantum repeater proposals from the
modeled components. In Section 7.5 we discuss how to assess the performance of a
quantum repeater. The comparison of the different repeater proposals is performed in
Section 7.6, which allows us to conclude with our results in Section 7.7. The numerical
results of this article were produced with a Python and a Mathematica script, which are
available upon request.

7.2. QUANTUM REPEATER SCHEMES

In the following section we present the quantum repeater schemes that will be assessed
in this work. All these schemes use NV center based setups which involve memory nodes
consisting of an electron spin qubit acting as an optical interface and possibly an addi-
tional carbon 13C nuclear spin qubit acting as a long-lived quantum memory. Specifi-
cally, the optical interface of the electron spin allows for the generation of spin-photon
entanglement, where the photonic qubits can then be transmitted over large distances.
The carbon nuclear spin acts as a long-lived memory, but can be accessed only through
the interaction with the electron spin. Here, we briefly go over all the proposed schemes,
motivate why they are interesting from an experimental perspective and discuss their
advantages and disadvantages. The first scheme of the Single Sequential Quantum Re-
peater (SiSQuaRe) has already been introduced in Chapter 6.
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Figure 7.1: Schematic overview of the four quantum repeater schemes assessed in this chapter.
From top to bottom: the Single Sequential Quantum Repeater (SiSQuaRe) scheme (A), the single-
photon scheme (B), the Single-Photon with Additional Detection Setup (SPADS) scheme (C) and
the Single-Photon Over Two Links (SPOTL) scheme (D). The purple particles represent NV electron
spins capable of emitting photons (red wiggly arrows) while the yellow particles represent carbon
13C nuclear spins. Dark blue squares depict the beam splitters used to erase the which-way in-
formation of the photons, followed by blue photon detectors. For more details on the different
proposals, see Section 7.2.
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7.2.1. THE SINGLE-PHOTON SCHEME

Let us now recall the single-photon scheme introduced in Section 3.3.1 in Chapter 3. This
scheme devised by Cabrillo et al. [11] is a procedure that allows for the heralded genera-
tion of entanglement between a separated pair of matter qubits (their proposal discusses
specific implementation with single atoms, but the scheme can also be applied to other
platforms such as NV centers or quantum dots) using linear optics. For the atomic en-
semble platform this scheme also forms a building block of the DLCZ quantum repeater
scheme, named after the authors Duan, Lukin, Cirac, and Zoller [14]. The requirement of
successful transmission of only a single photon from one node to the middle heralding
station makes it possible for this scheme to qualify as a quantum repeater (see below for
more details).

Recall, that the basic setup of the single-photon scheme consists of placing a beam
splitter and two detectors between Alice and Bob, with both parties simultaneously send-
ing a photonic quantum state towards the beam splitter. The transmitted quantum state
is entangled with a quantum memory, and the state space of the photon is spanned by
the two states corresponding to the presence and absence of a photon. Immediately after
transmitting their photons through the fiber, both Alice and Bob measure their quantum
memories in a BB84 or six-state basis (see the discussion of which quantum key distri-
bution protocol is optimal for each scheme in Section 7.4.2 and in Section 7.6.1). Note
that this is equivalent to preparing a specific state of the photonic qubit and therefore is
closely linked to the measurement device independent quantum key distribution (MDI
QKD) [15] as discussed in Appendix 7.8.9. However, preparing specific states that involve
the superposition of the presence and absence of a photon on its own is generally experi-
mentally challenging. The NV-implementation allows us to achieve this task precisely by
preparing spin-photon entanglement and then measuring the spin qubit. Afterwards, by
conditioning on the click of a single detector only, Alice and Bob can use the information
of which detector clicked to generate a single raw bit of key, see Appendix 7.8.5 and [11]
for more information.

The main motivation of this scheme is that, informally, we only need one photon to
travel half the distance between the two parties to get an entangled state. This thus ef-
fectively reduces the effects of losses, and in the ideal scenario the secret-key rate would
scale with the square root of the total transmissivity η, as opposed to linear scaling in η

(which is the optimal scaling without a quantum repeater [16]).

However, as discussed in Section 3.3.1 in Chapter 3, one problem that one faces when
implementing this scheme is that the fiber induces a phase shift on the transmitted pho-
tons. This shift can change over time, e.g. due to fluctuations in the temperature and
vibrations of the fiber. The uncertainty of the phase shift induces dephasing noise on
the state, reducing the quality of the state.

To overcome this problem, a two-photon scheme was proposed by Barrett and Kok [17]
which we have also already introduced in Section 3.3.1 in Chapter 3. We have shown
there that this scheme does not place such high requirement on the optical stability of
the setup. Specifically, in the Barrett and Kok scheme the problem of optical phase fluc-
tuations is overcome by requiring two consecutive clicks and performing additional spin
flip operations on both of the remote memories. The Barrett and Kok scheme has seen
implementation in many experiments [18–21]. However, the requirement of two consec-
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utive clicks implies that a setup using only the Barrett and Kok scheme with two memory
nodes will never be able to satisfy the demands of a quantum repeater. Specifically, the
probability of getting two consecutive clicks will not be higher than the transmissivity of
the fiber between the two parties and therefore will not surpass the secret-key capacity.

In the single-photon scheme, on the other hand, the dephasing caused by the un-
known optical phase shift is overcome by using active phase-stabilization of the fiber
to reduce the fluctuations in the induced phase. This technique has been used in the
experimental implementations of the single-photon scheme for remote entanglement
generation using quantum dots [22, 23], NV centers [2] and atomic ensembles [24]. For
experimental details relating to NV-implementation, we refer the reader to Section 7.3.
This phase-stabilization technique effectively reduces the uncertainty in the phase, al-
lowing us to significantly mitigate the resulting dephasing noise, see Appendix 7.8.1 for
mathematical details.

In contrast to the Barrett and Kok scheme, the single-photon scheme cannot produce
a perfect maximally entangled state, even in the case of perfect operations and perfect
phase-stabilization. This is because losses in the channel result in a significant proba-
bility of having both nodes emitting a photon which can also lead to a single click in one
of the detectors, yet the memories will be projected onto a product state as discussed in
Section 3.3.1 in Chapter 3. This noise can be traded versus the probability of success of
the scheme by reducing the weight of the photon-presence term in the generated spin-
photon entangled state. This is also discussed in more detail below and the full analysis
is presented in Appendix 7.8.5.

The single-photon scheme with phase-stabilization is a promising candidate for a
near-term quantum repeater with NV centers. We note here that recently other QKD
schemes that use the MDI framework have been proposed. These schemes, similarly
to our proposal, use single-photon detection events to overcome the linear scaling of
the secret-key rate with η [12, 25, 26]. In these proposals, in contrast to our single-
photon scheme, no quantum memories are used, but instead Alice and Bob send phase-
randomized optical pulses to the middle heralding station.

SETUP AND SCHEME

In the setup of the single-photon scheme Alice and Bob are separated by a fiber where in
the center there is a beam splitter with two detectors (see Fig. 7.2). They will both create
entanglement between a photonic qubit and a stored spin and send the photonic qubit
to the beam splitter.

Alice and Bob thus perform the following,

1. Alice and Bob both prepare a state |ψ〉 = sinθ| ↓〉|0〉 + cosθ| ↑〉|1〉 where | ↓〉/| ↑〉
refers to the dark/bright state of the electron-spin qubit, |0〉/|1〉 indicates the ab-
sence/presence of a photon, and θ is a tunable parameter.

2. Alice and Bob attempt to both separately send the photonic qubit to the beam
splitter.

3. Alice and Bob both perform a six-state measurement on their memories.

4. The previous steps are repeated until only one of the detectors between the parties
clicks.



7

158 7. NEAR-TERM QUANTUM-REPEATER EXPERIMENTS WITH NV CENTERS

Figure 7.2: Schematic overview of the single-photon scheme. Alice and Bob simultaneously trans-
mit a photonic state from their NV centers towards a balanced beam splitter in the center. This
photonic qubit, corresponding to the presence and absence of a photon, is initially entangled with
the NV electron spin. If only one of the detectors (which can be seen at the top of the figure) reg-
isters a click, Alice and Bob can use the information of which detector clicked to generate a single
raw bit of key.

5. The information of which detector clicked gets sent to Alice and Bob for classical
correction.

6. All the previous step are repeated until sufficient data have been generated.

The parameter θ can be chosen by preparing a non-uniform superposition of the
dark and bright state of the electron spin |ψ〉 = sinθ| ↓〉+cosθ| ↑〉 via coherent microwave
pulses. This is done before applying the optical pulse to the electron which entangles it
with the presence and absence of a photon. The parameter θ can then be tuned in such
a way as to maximize the secret-key rate. In the next section, we will briefly expand on
some of the issues arising when losses and imperfect detectors are present. We defer the
full explanation and calculations until Appendix 7.8.5.

REALISTIC SETUP

In any realistic implementation of the single-photon scheme, a large number of attempts
is needed before a photon detection event is observed. Furthermore, a single detec-
tor registering a click does not necessarily mean that the state of the memories is pro-
jected onto the maximally entangled state. This is due to multiple reasons, such as losing
photons in the fiber or in some other loss process between the emission and detection,
arrival of the emitted photons outside of the detection time-window and the fact that
dark counts generate clicks at the detectors. Photon loss in the fiber effectively acts as
amplitude-damping on the state of the photon when using the presence/absence state
space [13, 27]. Dark counts are clicks in the detectors, caused by thermal excitations.
These clicks introduce noise, since it is impossible to distinguish between clicks caused
by thermal excitations and the photons traveling through the fiber if they arrive in the
same time-window. All these sources of loss and noise acting on the photonic qubits are
discussed in detail in Appendix 7.8.1. Finally we note that we assume here the applica-
tion of non-number resolving detectors. This can lead to additional noise in the low loss
regime, since the event in which two photons got emitted cannot be distinguished from
the single-photon emission events even if no photons got lost. However, in any realistic
loss regime this is not a problem, since the probability of two such photons arriving at
the heralding station is quadratically suppressed with respect to events where only one
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Figure 7.3: Schematic overview of the SPADS scheme. First, the two NV centers run the single-
photon scheme, such that Alice measures her electron spin directly after every attempt. After
success, the middle node swaps its state to the carbon spin. Then the middle node generates
electron-photon entangled pairs where the photonic qubit is encoded in the time-bin degree of
freedom and sent to Bob. This is attempted until Bob successfully measures the photon or until
the cut-off is reached. If the cut-off is reached, the scheme gets restarted, otherwise the middle
node performs an entanglement swapping on its two memories and communicates the classical
outcome to Alice and Bob, who can correct their measurement outcomes to obtain a bit of raw key.

photon arrives. In the realistic regime, almost all the noise coming from the impossi-
bility of distinguishing two-photon from single-photon emission events is the result of
photon loss. Namely, if a two-photon emission event occurs and the detector registers
a click, then with dominant probability it is due to only a single photon arriving, while
the other one being lost. Hence the use of photon-number resolving detectors would
not give any visible benefit with respect to the use of the non-number resolving ones.
For a detailed calculation of the effects of losses and dark counts for the single-photon
scheme, see Appendix 7.8.5.

7.2.2. SINGLE-PHOTON WITH ADDITIONAL DETECTION SETUP (SPADS)
SCHEME

The third scheme that we consider here is the Single-Photon with Additional Detection
Setup (SPADS) scheme, which is effectively a combination of the single-photon scheme
and the SiSQuaRe scheme as shown in Fig. 7.3. If the middle node is positioned at two-
thirds of the total distance away from Alice, the rate of this setup would scale, ideally,
with the cube root of the transmissivity η.

This scheme runs as follows:

1. Alice and the repeater run the single-photon scheme until success, however, only
Alice performs her spin measurement immediately after each spin-photon entan-
glement generation attempt. This measurement is either in a six-state or BB84
basis.

2. The repeater swaps the state of the electron spin onto the carbon spin.

3. The repeater runs the second part of the SiSQuaRe scheme with Bob. This means
it generates spin-photon entanglement between an electron and the time-bin en-
coded photonic qubit. Afterwards, it sends the photonic qubit to Bob. This is re-
peated until Bob successfully measures his photon in a six-state or BB84 basis or
until the cut-off n∗ is reached in which case the scheme is restarted with step 1.
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4. After Bob has received the photon and communicated this to the repeater, the
repeater performs a Bell-state measurement on its two quantum memories and
communicates the classical result to Bob.

5. All the previous steps are repeated until sufficient data have been generated.

The motivation for introducing this scheme is two-fold. Firstly, we note that by using
this scheme we divide the total distance between Alice and Bob into three segments: two
segments corresponding to the single-photon subscheme and the third segment over
which the time-bin encoded photons are sent. This gives us one additional independent
segment with respect to the single-photon or the SiSQuaRe scheme on their own. Hence,
for distances where no cut-off is required, we expect the scaling of the secret-key rate
with the transmissivity to be better than the ideal square root scaling of the previous two
schemes. Furthermore, dividing the total distance into more segments should also allow
us to reach larger distances before dark counts become significant. When considering
the resources necessary to run this scheme, we note that the additional third node needs
to be equipped only with a photon detection setup.

Secondly, we note that the SPADS scheme can also be naturally compared to the sce-
nario in which an NV center is used as a single photon source for direct transmission
between Alice and Bob. Both the setup for the SPADS scheme and such direct transmis-
sion involve Alice using an NV for emission and Bob having only a detector setup. Hence,
the SPADS scheme corresponds to inserting a new NV-node (the repeater) between Al-
ice and Bob without changing their local experimental setups at all. This motivates us
to compare the achievable secret-key rate of the SPADS scheme and direct transmission.
We perform this comparison on a separate plot in Section 7.6.

7.2.3. SINGLE-PHOTON OVER TWO LINKS (SPOTL) SCHEME
The final scheme that we study here is the Single-Photon Over Two Links (SPOTL) scheme,
and it is another combination of the single-photon and SiSQuaRe schemes. A node is
placed between Alice and Bob which tries to sequentially generate entanglement with
their quantum memories by using the single-photon scheme (see Fig. 7.4). The moti-
vation for this scheme is that, while using relatively simple components and without
imposing stricter requirement on the memories than in the previous schemes, its secret-
key rate would ideally scale with the fourth root of the transmissivity η.

SETUP AND SCHEME

The setup that we study is the following:

1. Alice and the repeater run the single-photon scheme until success with the tun-
able parameter θ = θA . However, only Alice performs her spin measurement im-
mediately after each spin-photon entanglement generation attempt. This mea-
surement is in a six-state basis.

2. The repeater swaps the state of the electron spin onto the carbon spin.

3. Bob and the repeater run the single-photon scheme until success or until the cut-
off n∗ is reached in which case the scheme is restarted with step 1. The tunable
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Figure 7.4: Schematic overview of the setup for the SPOTL scheme. This scheme is a combination
of the SiSQuaRe and single-photon scheme. Instead of sending photons directly through the fiber
as in the SiSQuaRe scheme, entanglement is established between the middle node and Alice/Bob
using the single-photon scheme.

parameter is set here to θ = θB . Again, only Bob performs his spin measurement
immediately after each spin-photon entanglement generation attempt and this
measurement is in a six-state basis.

4. The quantum repeater performs a Bell-state measurement and communicates the
result to Bob.

5. All the previous steps are repeated until sufficient data have been generated.

We note that for larger distances the optimal cut-off becomes smaller. Then, since we
lose the independence of the attempts on both sides, the scaling of the secret-key rate
with distance is expected to drop to

p
η, which is the same as for the single-photon

scheme. However, the total distance between Alice and Bob is now split into four seg-
ments. Alice and Bob thus send photons over only one fourth of the total distance. Thus,
this scheme should be able to generate key over much larger distances than the previous
ones, as the dark counts will start becoming significant for larger distances only.

7.3. NV-IMPLEMENTATION
Having proposed different quantum repeater schemes, we now move on to describe
their experimental implementation based on nitrogen-vacancy centers in diamond [28].
Most of the components are the same as required for the SiSQuRe scheme and therefore
have already been described in Section 6.6 of Chapter 6. Here we describe the addi-
tional components utilised only by the three new schemes. We also refer the reader to
Appendix 7.8.2 for details relating the noise model of the NV-based memory qubits.

By applying selective optical pulses and coherent microwave rotations, we first gen-
erate spin-photon entanglement at an NV center node [20]. To generate entanglement
between two distant NV electron spins, these emitted photons are then overlapped on
a central beam splitter to remove their which-path information. Subsequent detection
of a single photon heralds the generation of a spin-spin entangled state [20]. For all
schemes based on single-photon entanglement generation, we need to employ active
phase-stabilization techniques to compensate for phase shifts of the transmitted pho-
tons, which will reduce the entangled state fidelity, as introduced in Section 7.2.1. These
fluctuations arise from both mechanical vibrations and temperature induced changes in
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optical path length, as well as phase fluctuations of the lasers used during spin-photon
entanglement generation. This problem can be mitigated by using light reflected off the
diamond surface to probe the phase of an effectively formed interferometer between
the two NV nodes and the central beam splitter, and by feeding the acquired error signal
back to a fiber stretcher that changes the relative optical path length [2].

7.4. CALCULATION OF THE SECRET-KEY RATE
With the modelling of each of the components of the different setups in hand, the per-
formance of each setup can be estimated. The performance of a setup is again assessed
by its ability to shared generate secret key between two parties Alice and Bob quantified
by the secret-key rate, which allows us to make concrete information-theoretical state-
ments about our ability to generate such secret key. We further discuss the significance
of the secret-key rate and its relation to throughput in Section 7.6.5.

Recall, that the secret-key rate R is equal to

R = Y · r

Nmodes
, (7.1)

where Y and r are the yield and secret-key fraction, respectively. The yield Y is de-
fined as the average number of raw bits generated per channel use and the secret-key
fraction r is defined as the amount of secret key that can be extracted from a single raw
bit (in the limit of asymptotically many rounds). Here Nmodes is the number of optical
modes needed to run the scheme. Time-bin encoding requires two modes while the
single-photon scheme uses only one mode. Hence Nmodes = 2 for all the schemes that
use time-bin encoding in at least one of the arms of the setup. For the schemes that use
only the single-photon subschemes as their building blocks we have that Nmodes = 1.

In the remainder of this section, we will briefly detail how to calculate the yield and
secret-key fraction, from which we can estimate the secret-key rate of each scheme.

7.4.1. YIELD
The yield depends not only on the used scheme, but also on the losses in the system.
We model the general emission and transmission of photons through fibers from NV
centers in diamond similarly as in Chapter 6. However, the modelled considered here
is made more accurate than in the previous chapter by including also the element of
variable detection time-window. Moreover, since here we consider exclusively the NV
based implementation, we adjust the names of the parameters defined in Chapter 6 to
reflect that fact. We represent the loss processes graphically in Fig. 7.5. Specifically, with
probability pce spin-photon entanglement is generated and the photon is coupled into
a fiber. The photons that successfully got coupled into the fiber might not be useful
for quantum information processing since they are not coherent. Thus, we filter out
those photons that are not emitted at the zero-phonon line, reducing the number of
photons by a further factor of pzpl. Then, over the length of the fiber, a photon gets

lost with probability 1−η f = 1− e
− L

L0 , where L0 is the attenuation length and η f is the
transmissivity. After exiting the fiber the photon gets registered as a click by the detector
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Figure 7.5: The model of photon loss proccesses occurring in our repeater setups. The parameter
pce is the photon collection efficiency, which includes the probability that the photon is success-
fully coupled into the fiber. Only photons emitted at the zero phonon line (ZPL) can be used for
quantum information processing. All non-ZPL photons are filtered out, such that a fraction pzpl
of the photons remains. The photons are then transmitted through a fiber with transmissivity η f .
Such successful transmissions are registered by the detector with probability pdet. Additionally,
a significant fraction of photons can arrive in the detector outside of the detection time-window
tw. Such photons will effectively also get discarded. Here we describe the total efficiency of our
apparatus by a single parameter, papp = pcepzplpdet.

with probability pdet. Finally, the photon gets accepted as a successful click if the click
happens within the time-window tw of the detector (see Appendix 7.8.1 for more details).

Recall that the yield can then be calculated as the reciprocal of the expected number
of channel uses needed to get one single raw bit,

Y = 1

E[N ]
, (7.2)

with N being the random variable that models the number of channel uses needed
for generating a single raw bit.

YIELD OF THE SINGLE-PHOTON SCHEME

The yield of the single-photon scheme is relatively easy to calculate, since the single con-
dition heralding the success of the scheme is a single click in one of the detectors in the
heralding station. Therefore the yield Y is simply the probability that an individual at-
tempt will result in a single click in one of the detectors. This probability will depend on
the losses in the system, dark counts and the angle θ. A full calculation of the yield is
given in Appendix 7.8.5.

YIELD OF THE SISQUARE, SPADS AND SPOTL SCHEMES

The SiSQuaRe, SPADS and SPOTL schemes require two conditions for the heralding of
the successful generation of a raw bit, namely the scheme needs to succeed both on
Alice’s and Bob’s side independently. In this case we are going to take a very conservative
perspective and assume the total number of channel uses to be the sum of the required
channel uses on Alice’s and Bob’s side of the memory repeater node

E[N ] = E[NA +NB ] . (7.3)

Moreover, every time Bob reaches n∗ attempts, both parties start the scheme over again.
The cut-off increases the average number of channel uses, thus decreasing the yield.
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Denoting by p A and pB the probability that a single attempt of the subscheme on Alice’s
and Bob’s side respectively succeeds, we find (see Appendix 7.8.3 for the derivation),

E[NA +NB ] = 1

p A

(
1− (

1−pB
)n∗) + 1

pB
. (7.4)

7.4.2. SECRET-KEY FRACTION

Similarly as in Chapter 6 we consider the same two asymptotic protocols for generating
secret key: BB84 with standard one-way error correction and six-state with advantage
distillation [29]. We recall that for technical reasons within our model it is not possible
to run an asymmetric six-state protocol when time-bin encoded photons are to be mea-
sured by Alice or Bob, see Chapter 6. The expressions for the secret-key fraction for these
protocols have already been discussed in Chapter 6. In Appendix 7.8.7 we elaborate on
specific subtleties relating to the basis in which the key is extracted.

Now we can state explicitly which QKD protocols will be considered for each scheme,
which in turn depends on the type of measurements that Alice and Bob perform in that
scheme. There are two physical implementations of measurements that Alice and Bob
perform, depending on the scheme under consideration. That is, they either measure a
quantum state of a spin or of a time-bin encoded photons. Since the fully asymmetric
six-state protocol with advantage distillation has higher efficiency than both symmet-
ric and asymmetric BB84 protocol with one-way error correction, we will use this six-
state protocol for both the single-photon and SPOTL scheme. The SiSQuaRe and SPADS
schemes involve direct measurement on time-bin encoded photons. Hence, for these
schemes we consider the maximum of the amount of key that can be obtained using the
fully asymmetric BB84 protocol and the symmetric six-state protocol with advantage
distillation (which can tolerate more noise, but has three times lower efficiency than the
fully asymmetric BB84 protocol).

To estimate the QBER, we model all the noisy and lossy processes that take place dur-
ing the protocol run. From this, we calculate the qubit error rates and yield, from which
we can retrieve the secret-key fraction. We invite the interested reader to read about the
details of these calculations in Appendices 7.8.5 and 7.8.6. The derivation of the QBER
and the yield for the SiSQuaRe scheme is performed in Chapter 6. Moreover, in this work
we introduce certain refinements to the model which we discuss in Appendix 7.8.4. With
the QBER in hand, we can calculate the resulting secret-key fraction for the considered
protocols as presented in Chapter 6 and in the Appendix 7.8.7.

We note here that we consider only the secret-key rate in the asymptotic limit, and
that we thus do not have to deal with non-asymptotic statistics.

7.5. ASSESSING THE PERFORMANCE OF QUANTUM REPEATER

SCHEMES
In this section we will detail four benchmarks that will be used to assess the perfor-
mance of quantum repeaters. These benchmarks are analogous to the benchmarks used
in Chapter 6.
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Again, the considered benchmarks are defined with respect to the efficiencies of pro-
cesses involving photon loss when emitting photons at NV centers, transmitting them
through an optical fiber and detecting them at the end of the fiber as described in Sec-
tion 7.4.1 and as shown in Fig. 7.5.

Having this picture in mind, we can now proceed to present the considered bench-
marks. The first three of these benchmarks are inspired by fundamental limits on the
maximum achievable secret-key rate if Alice and Bob are connected by quantum chan-
nels which model quantum key distribution over optical fiber without the use of a (pos-
sible) quantum repeater.

The first of these benchmarks is, similarly to Chapter 6, the capacity of the pure-loss
channel [13], which models the losses occuring in the optical fiber with transmissivity
η f linking Alice and Bob. Unfortunately, as we have observed in Chapter 6, surpass-
ing the capacity is experimentally challenging. This motivates the introduction of other,
easier to surpass, benchmarks. These benchmarks are still based on (upper bounds on)
the secret-key capacity of quantum channels which model realistic implementations of
quantum communications over fibers.

The second benchmark is again built on the idea of including the losses of the ap-
paratus into the transmissivity of the fiber. The resultant channel with all those losses
included we call here the extended channel. The benchmark is thus equal to

− log2

(
1−η f papp

)
. (7.5)

Here papp describes all the intrinsic losses of the devices used. That is, the collection
efficiency pce at the emitting diamond, the probability that the emitted photon is within
the zero-phonon-line pzpl (which is necessary for generating quantum correlations) and
photon detection efficiency pdet, so that papp = pcepzplpdet. Note that this definition of
papp is different than in Chapter 6, where the pps corresponding here to pzpl was not
included in the definition of papp.

The third benchmark we consider is again the thermal channel bound, which takes
into account the effects of dark counts. We have already defined it in Chapter 6. We only
note that the transmissivity of the channel η is here taken to be η f papp similarly as in the
second benchmark. We note here that the time-window of the detector tw is not fixed
in our model, but is optimized over for every distance in order to achieve the highest
possible secret-key rate. Hence in this benchmark we fix tw = 5 ns which is the shortest
duration of the time-window that we consider in our secret-key rate optimization.

Finally, the secret-key rate achieved with direct transmission using the same devices
can be seen as a fourth benchmark. Specifically, here we mean the secret-key rate
achieved when Alice uses her electron spin to generate spin-photon entanglement and
sends the time-bin encoded photon to Bob. She then measures her electron spin while
Bob measures the arriving photon. However, to take a conservative view, we will only
use this direct transmission benchmark for the SPADS scheme. This is motivated by the
fact that for both the SPADS scheme and the direction transmission scheme the exper-
imental setups on Alice’s and Bob’s side are the same, ensuring that the two rates can
be compared fairly. We note that similarly as in the modeled secret-key rates achiev-
able with our proposed repeater schemes, also for this direct transmission benchmark
we optimize over the time-window tw for each distance.
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The secret-key capacity is the main benchmark that we consider. Surpassing it es-
tablishes the considered scheme as a quantum repeater. The two additional capac-
ity bounds and the achieved rate with direct transmission are additional benchmarks,
which guide the way towards implementation of a quantum repeater. We define all the
considered benchmarks for the channel with the same fiber attenuation length L0 as the
channel used for the corresponding achievable secret-key rate.

7.6. NUMERICAL RESULTS
We now have a full model of the rate of the presented quantum repeater protocols as a
function of the underlying experimental parameters. In this section we will firstly state
all the parameters required by our model and then present the results and conclusions
drawn from the numerical implementation of this model. In particular, in Section 7.6.1
we will first provide a deeper insight into the benefits of using the six-state protocol and
advantage distillation in specific schemes. In Section 7.6.2 we determine the optimal po-
sitioning of the repeater nodes for our schemes and investigate the dependence of the
secret-key rate achievable with those schemes on the photon emission angle θ and the
cutoff n∗ for the appropriate schemes. In Section 7.6.3 we then use the insights acquired
in the previous section to compare the achievable secret-key rates for all the proposed
repeater schemes with the secret-key capacity and other proposed benchmarks. In par-
ticular, we show that the single-photon scheme significantly outperforms the secret-key
capacity and hence can be used to demonstrate a quantum repeater. Finally, in Sec-
tion 7.6.4 we determine the duration of the experiment that would allow us to demon-
strate such a quantum repeater with the single-photon scheme.

Here we will use the same parameters as stated in Chapter 6 with small modifications
relating to the fact that the model used here has been made more accurate than in Chap-
ter 6 (see Appendix 7.8.4) and certain parameters characterise specifically the single-
photon scheme which has only been proposed in this chapter. We again emphasise that
these are the parameters that have been achieved in an experiment, or correspond to
expected parameters when the NV center is embedded in an optical Fabry-Perot micro-
cavity. The additional parameters to those defined in Chapter 6 are:

• Fm (depolarizing parameter for the measurement of the electron spin) = 0.95 [2]

• Fg (depolarizing parameter for two qubit gates in quantum memories) = 0.98 [4]

• τ (characteristic time of the NV emission) = 6.48 ns [30, 31]

• t offset
w (detection window offset) = 1.28 ns [18]

• ∆φ (optical phase uncertainty of the spin-spin entangled state) = 14.3° [2]

We note that the parameters Fm and Fg replace the parameter Fg m from Chapter 6
(see Appendix 7.8.4). As discussed, the parameters pem and pps from Chapter 6 have
been renamed to pce and pzpl respectively but maintain their values from Chapter 6.
Moreover, the detector time-window tw which in Chapter 6 has been fixed is now a vari-
able over which we optimise. Finally, note that the parameters that have not been dis-
cussed in the main text are discussed in the appendix.
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7.6.1. COMPARING BB84 AND SIX-STATE ADVANTAGE DISTILLATION PRO-
TOCOLS

We first investigate here when the BB84 or six-state advantage distillation protocol per-
forms better. It was shown in Chapter 6 that in the SiSQuaRe scheme there is a trade-
off - for the low noise regime (small distances) the fully asymmetric BB84 protocol is
preferable, while in the high noise regime (large distances) the problem of noise can be
overcome by using a six-state protocol supplemented with advantage distillation. This
technique allows us to increase the secret-key fraction at the expense of reducing the
yield by a factor of three, since a six-state protocol in which Alice and Bob perform mea-
surements on photonic qubits does not allow for the (fully) asymmetric protocol within
our model. Numerically, we find that for the SPADS and SPOTL scheme advantage distil-
lation is necessary to generate non-zero secret-key at any distance. This is due to the fact
that there is a significant amount of noise in these schemes. Thus, for the SPADS (SPOTL)
scheme the (a)symmetric six-state protocol with advantage distillation is optimal.

To provide more insight into the performance of those different QKD schemes for
different parameter regimes, we plot the achievable secret-key fraction for the SPADS
and SPOTL schemes as a function of the depolarizing parameter due to imperfect elec-
tron spin measurement Fm in Figure 7.6 (see Appendix 7.8.2 for the discussion of the
corresponding noise model). Noise due to imperfect measurements is one of the signif-
icant noise sources in our setup, since the SPADS scheme involves three and the SPOTL
scheme four single-qubit measurements on the memory qubits. The data have been
plotted for a fixed distance of 12.5L0, where L0 = 0.542 km is the attenuation length of
the fiber. Moreover, since on this plot we aim at maximizing only the secret-key fraction
over the tunable parameters, we set the cutoff n∗ to one and the detection time-window
tw to 5 ns (the smallest detection time-window we use) for both schemes. Furthermore,
within the single-photon subscheme the heralding station is always placed exactly in the
middle between the two memory nodes. We also consider the positioning of the memory
repeater node to be two-thirds away from Alice for the SPADS scheme and in the middle
for the SPOTL scheme as discussed in the next section. For the SPOTL scheme we also
assume θA = θB which we will justify in the next section.

We see that for the current experimental value of Fm = 0.95 both schemes can gen-
erate key only if the advantage distillation post-processing is used. As Fm increases, we
observe that for the SPADS scheme firstly the six-state protocol without advantage distil-
lation and then the BB84 protocol start generating key. For the SPOTL scheme the value
of Fm at which the six-state protocol without advantage distillation starts generating key
is much larger than the corresponding value of Fm for any of the studied protocols for
the SPADS scheme. This is because the SPOTL scheme involves more noisy processes
than the SPADS scheme. This also provides an approximate quantification of the ben-
efit of using advantage distillation. Specifically, looking at the SPOTL scheme, it can be
observed that while at the current experimental value of Fm = 0.95 advantage distilla-
tion allows for generating key, at a higher value of the depolarizing parameter Fm = 0.97,
still no key can be generated with standard one-way post-processing. Moreover, we see
that utilizing advantage distillation for the SPADS scheme allows for the generation of
key, even with very noisy measurements when Fm = 0.91. We also observe two distinct
scalings of the secret-key fraction with Fm in the regime where non-zero amount of key
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Figure 7.6: Secret-key fraction as a function of the depolarizing parameter due to noisy mea-
surement Fm for the total distance of 12.5L0. We see that for the current experimental value of
Fm = 0.95 (marked with a dashed black vertical line) both schemes can generate key only if the
advantage distillation post-processing is used. As Fm increases the protocols that do not utilize
advantage distillation also start generating key. We also see that the curves can be divided into two
groups in terms of their slope in the regime where they generate non-zero amount of key. Those
two groups correspond to the scenarios where a fully asymmetric (bigger slope) or a symmetric
(smaller slope) protocol is used. For all the plotted protocols the cutoff n∗ is set to one and tw = 5
ns (the smallest detection time-window we use) to maximize the secret-key fraction. Moreover,
for each value of Fm we optimize the secret-key fraction over the angle θ. For the SPOTL scheme
we assume θA = θB . For the SPADS scheme we position the repeater node 2/3 away of the total
distance from Alice and in the middle between Alice and Bob for the SPOTL scheme.

is generated. These two scalings depend on whether we use a symmetric or asymmetric
protocol. Specifically, for the SPADS scheme the symmetric six-state protocol is used.
Therefore the corresponding two curves have a slope that is approximately three times
smaller than the other three curves corresponding to the protocols that run in the fully
asymmetric mode.

7.6.2. OPTIMAL SETTINGS
We see that the above described repeater schemes include several tunable parameters.
These parameters are the cut-off n? for Bob’s number of attempts until restart, the angle
θ in the single-photon scheme and the positioning of the repeater. These parameters
can be optimized to maximize the secret-key rate. Here we will approach this optimiza-
tion in a consistent way - we gradually restrict the parameter space by making specific
observations based on numerical evidence.

The first claim that we will make is in relation to the optimal positioning of the re-
peater. In Chapter 6 we have conjectured that for the SiSQuaRe scheme the middle posi-
tioning of the repeater is optimal. For the single-photon scheme we want the probability
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Figure 7.7: Secret-key rate as a function of the relative positioning of the repeater for few different
total distances for the SPADS scheme. The total distances are expressed in terms of the fiber atten-
uation length L0 = 0.542 km. We see that positioning the repeater two-thirds of the distance away
from Alice (marked by the vertical black dashed line) is a good positioning for all the distances.
For each total distance considered and each positioning the secret-key rate is optimized over the
cutoff n∗, the angle θ and the time-window of the detector tw.

of transmitting the photons from each of the two nodes to the beam splitter heralding
station to be equal. This effectively sets the target state between the electron spins to be
the maximally entangled state. Hence, if we restrict ourselves to the case where the emis-
sion angles θ of both Alice and Bob are the same, then it is natural to position the herald-
ing station symmetrically in the middle between them. Hence, the only non-obvious
optimal positioning is for the SPADS and SPOTL scheme.

For the SPADS scheme, positioning the repeater at two-thirds of the relative distance
away from Alice could intuitively be expected to be optimal. This is due to the fact that
the single-photon scheme runs on two segments: Alice-beam splitter, beam splitter-
repeater, while the one half of the SiSQuaRe scheme runs only over a single segment
between repeater and Bob. By segment we mean here a distance over which we need to
be able to independently transmit a photon. In Fig. 7.7 we show the secret-key rate as
a function of the relative positioning of the repeater for a set of different total distances.
We see there that despite the fact that positioning the repeater at two-thirds is not al-
ways optimal, it is a good enough positioning for all distances for our purposes. For each
data point on the plot we independently optimize over the cut-off n∗, the angle θ of the
single-photon subscheme and the duration of the detector time-window tw.

The SPOTL scheme has the same symmetry as the SiSQuaRe scheme, in the sense
that the part of the scheme performed on Alice’s side is exactly the same as on Bob’s
side. This symmetry is only broken by the sequential nature of the scheme. Since we
have already observed that the middle positioning is optimal for the SiSQuaRe scheme,
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Figure 7.8: Secret-key rate as a function of the relative positioning of the repeater for few different
total distances for the SPOTL scheme. The total distances are expressed in terms of the fiber atten-
uation length L0 = 0.542 km. We see that positioning the repeater in the middle between Alice and
Bob (marked by the vertical black dashed line) is a good positioning for all the distances. For each
total distance considered and each positioning the secret-key rate is optimized over the cutoff n∗,
the angles θA and θB and the time-window of the detector tw.

we expect to see the same behavior for the SPOTL scheme. Indeed, we confirm this
expectation numerically in Fig. 7.8. Here for each data point we independently optimize
over the cut-off n?, the angle θA (θB ) of the single-photon subscheme on Alice’s (Bob’s)
side and the duration of the detection time-window.

To conclude, we will always place the heralding station within the single-photon
(sub)protocol exactly in the middle between the two corresponding memory nodes. More-
over, we will also always place the memory repeater node in the middle for the SPOTL
scheme and two-thirds of the distance away from Alice for the SPADS scheme.

Having established the optimal positioning of the repeater, we look into the relation
between θA and θB for the SPOTL scheme. We observe that the relative error resulting
from optimizing the secret-key rate over a single angle θA = θB rather than two inde-
pendent ones is smaller than 1% for all distances. Hence from now on we will restrict
ourselves to optimizing only over one angle θ for the SPOTL scheme.

Having resolved the issues of the optimal positioning of the repeater for all schemes
and reducing the number of angles to optimize over for the SPOTL scheme to one, we
now investigate how our secret-key rate depends on the remaining parameters. These
parameters are the angle θ, the cut-off n? and the duration of the detection time-window
tw. The optimal time-window follows a simple behavior for all schemes: for short dis-
tances the probability of getting a dark count pd is negligible compared to the probability
of detecting the signal photon. Hence for those distances we can use a time-window of
30 ns to make sure that almost all the emitted photons which are not polluted by the
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Figure 7.9: (Color online) Secret-key rate as a function of the θ angle for the single-photon scheme
for the total distance of 12.5L0, where L0 = 0.542 km. We see that there is a relatively large range of
angles for which non-zero amount of key can be generated. For each value of θ the secret-key rate
is optimized over the time-window tw. The kink on the plot is a consequence of the fact that the
six-state protocol with advantage distillation involves optimization over of two subprotocols.

photons from the optical excitation pulse arrive inside the detection time-window. We
always need to sacrifice the photons arriving within the time t offset

w after the optical pulse
has been applied to filter out the photons from that pulse, see Appendix 7.8.1 for details.
Then, for larger distances where pd starts to become comparable with the probability
of detecting the signal photon, the duration of the time-window is gradually reduced.
This reduces the effect of dark counts at the expense of having more and more photons
arriving outside of the time-window. See Appendix 7.8.1 for the modeling of the losses
resulting from photons arriving outside of the time-window.

The dependence of the secret-key rate on the angle θ, the tunable parameter that
Alice and Bob choose in their starting state |ψ〉 = sinθ| ↓〉|0〉+ cosθ| ↑〉|1〉 in the single-
photon scheme, is more complex. We observe that the optimal value of θ is closer to
π
2 for schemes that involve more noisy processes. Informally, this means that Alice and
Bob send ‘less’ photons towards the beam splitter, to overcome the noise coming from
events in which both nodes emit a photon. At π

2 however, no photons are emitted and
the rate drops down to zero. We illustrate this in Figs. 7.9, 7.10, and 7.11. We see that for
the SPADS and SPOTL scheme, there is only a restricted regime of the angle θ for which
one can generate non-zero amount of key. In particular, the SPOTL scheme requires
a larger number of noisy operations, and therefore cannot tolerate much noise arising
from the effect of photon loss in the single-photon subscheme. This means that there
is only a small range of θ that allows for production of secret key. The single-photon
scheme involves much less operations and can tolerate more noise, and so lower values
of the parameter θ still allow for the generation of key.



7

172 7. NEAR-TERM QUANTUM-REPEATER EXPERIMENTS WITH NV CENTERS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Angle  (rad)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Se
cr

et
-k

ey
 ra

te

x10 7

SPADS

Figure 7.10: Secret-key rate as a function of the θ angle for the SPADS scheme for the total distance
of 12.5L0, where L0 = 0.542 km. We see that due to more noisy processes the range of θ that allows
us to generate key is much more restricted than for the single-photon scheme. For each value of θ
the secret-key rate is optimized over the cutoff n∗ and the time-window tw.
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Figure 7.11: Secret-key rate as a function of the angle θ = θA = θB for the SPOTL scheme for the
total distance of 12.5L0, where L0 = 0.542 km. We see that, due to the increased amount of noisy
processes, this scheme requires θ to be in a much narrower regime than for the single-photon and
SPADS schemes, as can be seen by comparing the plot with the plots in FIG. 7.9 and in FIG. 7.10.
This corresponds to the overwhelming dominance of the dark state of the spin (no emission of the
photon) in order to avoid any extra noise coming from the photon loss. For each value of θ the
secret-key rate is optimized over the cutoff n∗ and the time-window tw.
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Figure 7.12: Secret-key rate as a function of the cut-off for the SiSQuaRe and SPADS scheme for the
total distance of 12.5L0, where L0 = 0.542 km. We see that the SPADS scheme requires lower cut-off
than the SiSQuaRe scheme because it involves more noisy operations. For each value of the cutoff
n∗ we optimize the secret-key rate over the time-window tw and for the SPADS scheme also over
the θ angle. The kink for the SiSQuaRe scheme arises because of the optimization over the fully
asymmetric one-way BB84 protocol and symmetric six-state protocol with advantage distillation,
which itself involves optimization over two subprotocols.

We also investigate the dependence of the rate on the cut-off. Both the SPADS and
SPOTL scheme require a lower cut-off than the SiSQuaRe scheme, see Fig. 7.12 and 7.13.
This is caused by the fact that each of them involves more noisy operations, and hence
less noise tolerance is possible.

7.6.3. ACHIEVED SECRET-KEY RATES OF THE QUANTUM REPEATER PRO-
POSALS

Now we are ready to present the main results, the secret-key rate for all the considered
schemes as a function of the total distance when optimized over θ, the cut-off n? and
the duration of the time-window tw. We compare the rates to the benchmarks from Sec-
tion 7.5.

In Fig. 7.14 we plot the rate of all four of the quantum repeater schemes as a function
of the distance between Alice and Bob. We observe that already for realistic near-term
parameters, the single-photon scheme can outperform the secret-key capacity of the
pure-loss channel by a factor of seven for a distance of ≈ 9.2 km.

We have also investigated what improvements would need to be done in order for
the SPADS and SPOTL schemes to also overcome the secret-key capacity. An example
scenario in which the SPADS scheme outperforms this repeaterless bound includes bet-
ter phase stabilization such that ∆φ = 5° and reduction of the decoherence effects in
the carbon spin during subsequent entanglement generation attempts such that a0 =
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Figure 7.13: Secret-key rate as a function of the cut-off for the SPOTL scheme for the total distance
of 12.5L0, where L0 = 0.542 km. We see that due to the large number of noisy operations, this
scheme requires a low cut-off in order to be able to generate key. For each value of the cutoff n∗
we optimize the secret-key rate over the time-window tw and the θ angle.

1/8000 and b0 = 1/20000. Further improvement of these effective coherence times to
a0 = 1/20000 and b0 = 1/50000 allows the SPOTL scheme to also overcome the secret-
key capacity. We note that maintaining coherence of the carbon-spin memory qubit for
such large number of subsequent remote entanglement generation attempts is expected
to be possible using the method of decoherence-protected subspaces [8, 32].

As mentioned before, the SPADS scheme can be naturally compared against the bench-
mark of the direct transmission using NV as a source. The results are depicted in Fig. 7.15.
We see that the SPADS scheme easily overcomes the NV-based direct transmission and
the thermal benchmark for larger distances for which these benchmarks drop to zero.

In Fig. 7.14 we observe that for the SPOTL scheme, the total distance over which key
can be generated is significantly smaller than for the SPADS scheme. This is despite the
fact that the full distance is divided into four segments. The rather weak performance of
this scheme is due to the fact that it involves a larger number of noisy operations. As a
result, the scheme can tolerate little noise from the single-photon subscheme, requiring
the angle θ to be close to π

2 as can be seen in Fig. 7.11. Hence, the probability of pho-
ton emission becomes greatly diminished and so the distance after which dark counts
start becoming significant is much smaller than for the SPADS scheme. To overcome
this problem one would need to reduce the amount of noise in the system. One of the
main sources of noise is the imperfect single-qubit measurement. Hence, we illustrate
the achievable rates for the scenario with the boosted measurement depolarizing pa-
rameter Fm = 0.98 in Fig. 7.16. Additionally, in this plot we also consider the application
of probabilistic frequency conversion to the telecom wavelength at which L0 = 22 km.
Frequency conversion has already been achieved experimentally in the single-photon
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Figure 7.14: Rate of all studied quantum repeater schemes as a function of the distance between
Alice and Bob, expressed in the units of L0 = 0.542 km. We also plot the different benchmarks
from Section 7.5. We see that the single-photon scheme outperforms the secret-key capacity. For
the achievable rates the secret-key rate is optimized over the cutoff n∗, the angle θ and the time-
window tw independently for each distance.
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Figure 7.15: Comparison of the SPADS scheme with the rate achievable using the direct transmis-
sion, with NV being the photon source. The secret-key rates for those schemes are plotted as a
function of the distance between Alice and Bob, expressed in the units of L0 = 0.542 km. We also
plot the different benchmarks. We see that the SPADS scheme easily overcomes the direct trans-
mission and the thermal benchmark (see Section 7.5). For the secret-key rate achievable with the
SPADS scheme we perform optimization over the cutoff n∗, the angle θ and the time-window tw
independently for each distance. Similarly, we also optimize the secret-key rate achievable with
direct transmission over the time-window tw.
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Figure 7.16: Secret-key rate as a function of distance in units of km for transmission at telecom
channel with L0 = 22 km, along with the benchmarks from Section 7.5. We consider an improved
measurement depolarizing parameter of Fm = 0.98. The frequency conversion efficiency is as-
sumed to be 0.3. We observe that the SPOTL scheme allows for the generation of secret-key over
a distance of more than 550 km. For the achievable rates the secret-key rate is optimized over the
cutoff n∗, the angle θ and the time-window tw independently for each distance.

regime with success probability of 30% [33]. This is also the success probability that we
consider here. The corresponding benchmarks have also been plotted for the new chan-
nel with L0 = 22 km. We see in Fig. 7.16 that with the improved measurement and using
frequency conversion, the SPOTL scheme allows now to generate secret key over more
than 550 km. We also see that under those conditions the single-photon scheme can also
overcome the secret-key capacity of the telecom channel.

7.6.4. RUNTIME OF THE EXPERIMENT
While the theoretical capability of an experimental setup to surpass the secret-key ca-
pacity is a necessary requirement to claim a working quantum repeater, it does not nec-
essarily mean that this can be experimentally verified in practice. Indeed, if a quantum
repeater proposal only surpasses the secret-key capacity by a narrow margin at a large
distance, the running time of an experiment could be too long for practical purposes. In
this section, we will discuss an experiment which can validate a quantum repeater setup
and calculate the running time of such an experiment, where we demonstrate that the
single-photon scheme could be validated to be a quantum repeater within twelve hours.

A straightforward way of validating a quantum repeater would consist of first gener-
ating secret-key, calculating the achieved (finite-size) secret-key rate and then compar-
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ing the rate with the secret-key capacity. However, this requires a large number of raw
bits to be generated, partially due to the loose bounds on finite-size secret-key genera-
tion. What we propose here is an experiment where the QBER and yield are separately
estimated to lie within a certain confidence interval. Then, if with the (worst-case) values
of the yield and the QBER the corresponding asymptotic secret-key rate still confidently
beats the benchmarks, one could claim that, in the asymptotic regime, the setup would
qualify as a quantum repeater.

As we show in Appendix 7.8.8, it is possible to run the single-photon scheme over a
distance of 17L0 ≈ 9.2 km for approximately twelve hours to find with high confidence
(≥ 1−1.5 ·10−4) that the scheme beats the capacity (see Eq. (6.13)) at that distance by a
factor of at least three.

7.6.5. DISCUSSION AND FUTURE OUTLOOK

It is worth noting that our figure of merit - the secret-key rate - is weakly impacted by
the latency of transmission, which grows linearly with distance for the SiSQuaRe, SPADS
and SPOTL schemes. Its only effect on the secret-key rate is the resulting decoherence
time in the quantum memories while the memory nodes await the success/failure sig-
nals. This decoherence due to the waiting time is negligible in comparison to the noise
due to interaction, arising from subsequent entanglement generation attempts. On the
other hand, this latency would clearly be very visible in low throughput of these schemes.
Single-photon scheme on the other hand has an advantage of the repetition rate being
limited only by the local processing of the memory nodes which would result in a higher
throughput. We observe this fact in the modest expected duration of the experiment,
even in the high loss regime needed for overcoming the secret-key capacity. It is worth
noting that while the single-photon scheme maintains constant latency for QKD, there
exist schemes where such constant latency can be maintained also for remote entangle-
ment generation, see e.g. [34]. It is hence clear that there are certain important prop-
erties of an efficient quantum repeater scheme that are not captured by the secret-key
rate. However, achieving high throughputs for arbitrary distances would require almost
all the components to be efficient in terms of rates and memories to be of high quality in
terms of operational and long-storage fidelities. It is clear that demonstrating all these
features together in a single experiment is still a future goal. The advantage of the secret-
key rate is that overcoming the secret-key capacity would form a crucial step towards an
implementation of an efficient and practical, long-distance quantum repeater architec-
ture whose validity would carry an information-theoretic significance and will therefore
be totally independent of any hardware-based reference scenario.

In our model we have identified significant amount of noise arising in the system.
As a result, we find that it is not always beneficial to just divide the fixed distance into
more elementary links. Hence, it is a natural question whether this noise could be elim-
inated e.g. using entanglement distillation. In fact for the noise arising due to photon
loss in the single-photon scheme not only does there exist an efficient distillation pro-
cedure [35, 36], but it has also already been demonstrated in the NV-platform [4]. More-
over, in the ideal case of noiseless operations and storage, a scheme based on generat-
ing two entangled states through the single-photon scheme and then distilling them as
demonstrated in [4] should effectively also be able to overcome the secret-key capacity
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(see Chapter 4) and provide a significant boost by completely removing the noise due
to photon loss. Furthermore, an implementation of such a distillation-based remote
entanglement generation scheme would alleviate the requirement of the optical phase
stabilisation of the system. Therefore this distillation based scheme could be a natural
fifth candidate for a proof of principle repeater. Nevertheless, we believe that the fideli-
ties of quantum operations and the effective coherence times of the memories used in
this paper might need to be improved before this distillation would prove useful.

7.7. CONCLUSIONS

We analyzed four experimentally relevant quantum repeater schemes on their ability to
generate secret key. More specifically, the schemes were assessed by contrasting their
achievable secret-key rate with the secret-key capacity of the channel corresponding to
direct transmission. The secret-key rates have been estimated using near-term experi-
mental parameters for the NV center platform. The majority of these parameters have
already been demonstrated across multiple experiments. A remaining challenging ele-
ment of our proposed schemes is the implementation of optical cavities. These cavities
would enable the enhancement of both the photon emission probability into the zero-
phonon line and the photon collection efficiency to the desired level.

With these near-term experimental parameters, our assessment shows the viability
of one of the schemes, the single-photon scheme, for the first experimental demonstra-
tion of a quantum repeater. In fact, the single-photon scheme achieves a secret-key rate
more than seven times greater than the secret-key capacity. We also estimated the du-
ration of an experiment to conclude that a rate larger than the secret-key capacity is
achievable. The duration of the experiment would be approximately twelve hours.

Finally, we show that a scheme based on concatenating the single-photon scheme
twice (i.e. the SPOTL scheme), has the capability to generate secret-key at large dis-
tances. However, this requires converting the frequency of the emitted photons to the
telecom wavelength and modestly improving the fidelity at which measurements can be
performed.

7.8. APPENDIX

7.8.1. LOSSES AND NOISE ON THE PHOTONIC QUBITS

In this appendix we describe how the losses and noise affect our photonic qubits. In
particular, we first recall how the two types of encoding result in the losses acting as
different quantum channels on the states. Then, we study the effects of a finite detector
time-window. More specifically, we firstly show that the arrival of a photon outside the
time-window is equivalent to all the other loss processes and secondly we calculate the
probability of registering a dark count within the time-window. We also show how to
model the noise arising from those dark counts for the SiSQuaRe and SPADS schemes.
Finally, we calculate the dephasing induced by the unknown phase shift for the single-
photon scheme.
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EFFECTS OF LOSSES FOR THE DIFFERENT ENCODINGS
The physical process of probabilistically losing photons corresponds to different quan-
tum channels depending on the qubit encoding. In our repeater schemes we use two
types of encoding: time-bin and presence-absence of a photon. For a time-bin encoded
qubit in the ideal scenario of no loss we always expect to obtain a click in one of the de-
tectors. Hence loss of a photon resulting in a no-click event raises an erasure flag which
carries the failure information. Therefore it is clear that for this encoding the physi-
cal photon loss process corresponds to an erasure channel with the erasure probability
given by one minus the corresponding transmissivity,

D(ρ) = ηρ+ (1−η)| ⊥〉〈⊥ | . (7.6)

Here | ⊥〉 is the loss flag, corresponding to the non-detection of a photon. Since we are
only interested in the quantum state of the system for the successful events when a de-
tection event has occurred, we effectively post-select on the non-erasure events.

For presence-absence encoding the situation is different since now there is no flag
available that could explicitly tell us whether a photon got lost or not. In fact for this
encoding the photon loss results in an amplitude-damping channel applied to the pho-
tonic qubit. Here the damping parameter equals one minus the transmissivity of the
channel [37].

EFFECTS OF THE DETECTOR TIME-WINDOW
The detector only registers clicks that fall within a certain time-window. It is a priori not
clear what kind of noisy or lossy channel should be used to model the loss of information
due to non-detection of photons arriving outside of the time-window. This is because in
a typical loss process we have a probabilistic leakage of information to the environment.
In the scenario considered here, the situation is slightly different as effectively no leakage
occurs, but rather certain part of the incoming signal effectively gets discarded. Here
we will show that despite this qualitative difference, within our model this process can
effectively be modeled as any other loss process.

Now, let us provide a brief description of the physics of this process. Firstly, the de-
tection time-window is chosen such that the probability of detecting a photon from the
optical excitation pulse used to entangle the electron spin with the photonic qubit is
negligible [18]. For that reason the detection time-window is opened after a fixed offset
t offset

w with respect to the beginning of the decay of the optical excited state of the elec-
tron spin. We note that for the considered enhancement of the ZPL-emission using the
optical cavity we predict the characteristic time of the NV emission τ to be approximately
a half of the corresponding value of τ if no cavity is used [18, 30, 31]. Therefore here we
consider the scenario where the duration of the optical excitation pulse is made twice
shorter with respect to the one used in [18]. This will allow us to filter out the unwanted
photons from the excitation pulse by setting t offset

w to half of the offset used in [18].
Secondly, we note that the detection time-window cannot last too long, specifically,

it needs to be chosen such that there is a good trade-off between detecting coherent and
non-coherent (i.e. dark counts) photons. In this subsection we will discuss the effects of
photons arriving outside of this time-window and the effects of registering dark counts
within this time-window.
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LOSSES FROM THE DETECTOR TIME-WINDOW

The NV center emits a photon through an exponential decay process with characteristic
time τ. Therefore the probability of detecting a photon during a time-window starting at
t offset

w and lasting for tw is

pin(tw) = 1

τ

∫ t offset
w +tw

t offset
w

dt exp(− t

τ
) = exp(− t offset

w

τ
)−exp(− t offset

w + tw

τ
) . (7.7)

Clearly the process of a photon arriving outside of the time-window is qualitatively dif-
ferent from the loss process where the photons get lost to the environment. In the re-
mainder of this section we will now look at the difference between these two phenomena
in more detail.

The emission process of the NV center is a coherent process over time. Consider a
generic scenario in which we divide the emission time into two intervals, denoted by
“in” and “out”, respectively. Coherent emission then means that the state of the photon
emitted by the electron spin in state | ↑〉 will be

|ψ〉 =p
pin|1〉in|0〉out +

√
1−pin|0〉in|1〉out . (7.8)

Now let us come back to our specific model, in which the “in” mode corresponds to the
interval

[
t offset

w , t offset
w + tw

]
and the “out” mode to all the times t ≥ 0 lying outside of this

interval (t = 0 is the earliest possible emission time). Here, the emission into the “in”
mode occurs with probability pin(tw). Hence the spin-photon state resulting from the
emission by the α| ↓〉+β| ↑〉 spin state is

|ψ〉 =α| ↓〉|0〉in|0〉out +β| ↑〉
(√

pin(tw)|1〉in|0〉out +
√

1−pin(tw)|0〉in|1〉out

)
. (7.9)

If the presence-absence encoding is used, such a photonic qubit is then transmitted to
the detector. Since only the spin and the “in” mode of the photon will be measured, we
can now trace out the “out” mode

ρ =
(
|α|2 + ∣∣β∣∣2 pin(tw)

)
|φ〉〈φ|+ ∣∣β∣∣2 (1−pin(tw))| ↑〉〈↑ |⊗ |0〉〈0|in , (7.10)

where

|φ〉 = 1√
|α|2 + ∣∣β∣∣2 pin(tw)

(
α| ↓〉|0〉in +β

√
pin(tw)| ↑〉|1〉in

)
. (7.11)

Note that this state can be obtained by passing the photonic qubit of the state

|ψ〉 =α| ↓〉|0〉+β| ↑〉|1〉 , (7.12)

through the amplitude-damping channel with the damping parameter given by 1−pin(tw).
Hence we can conclude that for the photon number encoding, the possibility of the pho-
ton arriving outside of the time-window of the detector can be modeled in the same way
as any other photon loss process, namely an amplitude-damping channel applied to that
photonic qubit.

In the case of time-bin encoding we effectively have four photonic qubits, since now
we have an “in” and “out” mode for both the early (denoted by “e”) and the late (denoted
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by “l”) time-window. We assume here that the slots do not overlap. That is, a photon
emitted in the “out” mode of the early time-window is always distinct from any pho-
ton in the late time-window. This can be achieved by making the time gap between the
“in” modes of the early and late window long enough. In this case the emission process
results in a state

|ψ〉 =α| ↓〉
(√

pin(tw)|1〉e,in|0〉e,out|0〉l ,in|0〉l ,out +
√

1−pin(tw)|0〉e,in|1〉e,out|0〉l ,in|0〉l ,out

)
(7.13)

+β| ↑〉
(√

pin(tw)|0〉e,in|0〉e,out|1〉l ,in|0〉l ,out +
√

1−pin(tw)|0〉e,in|0〉e,out|0〉l ,in|1〉l ,out

)
.

(7.14)

Again, tracing out the “out” modes results in a state

ρ = pin(tw)|φ〉〈φ|+ (1−pin(tw))
(
|α|2 | ↓〉〈↓ |+ ∣∣β∣∣2 | ↑〉〈↑ |

)
⊗|00〉〈00|e,l , (7.15)

where
|φ〉 =α| ↓〉|1〉e |0〉l +β| ↑〉|0〉e |1〉l =α| ↓〉|e〉+β| ↑〉|l〉 . (7.16)

Here |00〉e,l corresponds to the loss flag from which we see that for the time-bin encoding
the possible arrival of a photon outside of the time-window results in an erasure chan-
nel with the erasure probability given by (1− pin(tw)). Hence this process can be also
modeled as any other loss process for this encoding.

We have just shown that for both photon presence/absence and time-bin encodings
the process of the photon arriving outside of the time-window can be modeled by the
source which prepares photons in a coherent superposition of the “in” and “out” modes
and the detector tracing out (losing) the “out” modes. We have also shown that those
two elements combined together result effectively in a loss process corresponding to the
same channel as any other loss process for that encoding (amplitude-damping for pho-
ton presence/absence and erasure channel for time-bin encoding).

However, between the source and the detector there are other lossy or noisy com-
ponents resulting in other quantum channels that need to be applied before the tracing
out of the “out” mode at the detector. Now we show that for all loss and noise processes
that occur in our model, the tracing out of the “out” mode can be mathematically com-
muted through all those additional noise/lossy processes. This means that the tracing
out can be applied directly after the source, such that the above described reductions to
amplitude-damping or erasure channel can be applied.

Consider the quantum channels acting on the photonic qubits of the form

N =∑
i

pi N
i

in ⊗N i
out . (7.17)

Effectively these are the channels that do not couple the “in” and “out” modes. Since in
reality “in” and “out” modes correspond to different time modes, their coupling would
require some kind of memory inside the channel. Hence we can think of the above de-
fined channels as channels without memory. Now it is clear that for a quantum state ρ
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that among its registers includes both the “in” and the “out” mode, we have that

trout[N (ρ)] = trout

[∑
i

pi N
i

in ⊗N i
out(ρ)

]
=∑

i
pi N

i
in(ρin) . (7.18)

Now, firstly tracing out the “out” modes and then applying the channel N (only the “in”
part can be applied now) also results in

∑
i pi N

i
in(ρin) at the output. Hence the tracing

out of the “out” modes commutes with all the channels that are of the form (7.17), which
correspond to channels without memory. Clearly the noise/loss processes that occur
before the detection, such as photon loss or dephasing due to uncertainty in the opti-
cal phase of the photon, belong to this class of channels. In particular this means that
for photon presence/absence the amplitude-damping due to photon loss in the channel
and due to photon arrival outside of the time-window can be both combined into one
channel with the single damping parameter given by 1−ηpin(tw) (η denotes the trans-
missivity due to the loss process e.g. the transmissivity of the fiber). The same applies to
time-bin encoding where we now have a single erasure channel with erasure probability
1−ηpin(tw).

To conclude, the arrival of the photon outside of the time-window can be modeled
in the same way as any other loss process for both photon encodings used and therefore
we can now redefine the detector efficiency p ′

det = pdet ·pin(tw) and the total apparatus
efficiency p ′

app = pcepzplp
′
det. We can then define ηtotal = p ′

appη f as the total transmis-
sivity - with probability ηtotal a photon will be successfully transmitted from the sender
to the receiver.

DARK COUNTS WITHIN THE DETECTOR TIME-WINDOW

Photon detectors are imperfect, and due to thermal excitations, they will register clicks
that do not correspond to any incoming photons. These undesired clicks are called dark
counts and can effectively be seen as a source of noise. The magnitude of this noise de-
pends on the ratio between the probability of detecting the signal photon and measuring
a dark count. Clearly, dark counts become a dominant source of noise when the prob-
ability of detecting the signal photon becomes comparable to the probability of a dark
count click. The probability pd of getting at least one dark count within the time-window
tw of awaiting the signal photon is given by pd = 1−exp(−tw ·DCpS), where DCpS is the
number of dark counts per second of the detector, see Chapter 6.

In the SiSQuRe scheme Alice and Bob perform measurements on time-bin encoded
photons. The same applies to Bob in the SPADS scheme. Since at least two detectors
are required to perform this measurement, the presence of dark counts means that the
outcome may lie outside of the qubit space. Moreover, this measurement needs to be
trusted. In consequence, a squashing map needs to be used to process the multi-click
events in a secure way. Here as an approximation we consider the squashing map for the
polarization encoding [38] in the same way as described in Appendix 6.9.1 in Chapter 6.
Hence this measurement can also be modeled as a perfect measurement preceded by a
depolarizing channel with parameterαwhich depends on whether the BB84 or six-state
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protocol is used. The parameter α is given by (see Chapter 6):

αA/B , BB84 =
p ′

appηB (1−pd )

1− (1−p ′
appηA/B )(1−pd )2 , (7.19)

αA/B , six-state =
p ′

appηA/B (1−pd )5

1− (1−p ′
appηA/B )(1−pd )6 . (7.20)

Here ηA/B denotes the transmissivity of the fiber between the memory repeater node and
Alice’s/Bob’s detector setup. Finally we note that dark counts increase the probability
of registering a successfull measurement event. For the optical measurement schemes
utilising the squashing map the probability of registering a click in at least one detector
is given by (see Chapter 6):

p A/B , BB84 = 1− (1−p ′
appηA/B )(1−pd )2 , (7.21)

p A/B , six-state = 1− (1−p ′
appηA/B )(1−pd )6 . (7.22)

The effect of dark counts in the single-photon scheme, which carries over to the SPOTL
scheme, is analyzed in Appendix 7.8.5.

NOISE DUE TO OPTICAL PHASE UNCERTAINTY
Another important noise process affecting photonic qubits is related to the fact that for
the photon presence/absence encoding the spin-photon entangled state will also de-
pend on the optical phase of the apparatus used. Specifically, it will depend on the
phase of the lasers used to generate the spin photon entanglement as well as the optical
phase acquired by the photons during the transmission of the photonic qubit. Knowl-
edge about this phase is crucial for being able to generate entanglement through the
single-photon scheme. In any realistic setup however, there would be a certain degree
of the lack of knowledge about this phase acquired by the photons. Since in the end
what matters is the knowledge about the relative phase between the two photons, we
can model this source of noise as the lack of knowledge of the phase on only one of the
incoming photonic qubits. This noise process can be effectively modeled as dephasing.
In this section we will show that the phase uncertainty induces dephasing with a param-
eter λ equal to

λ=
I1

(
1

(∆φ)2

)
2I0

(
1

(∆φ)2

) + 1

2
, (7.23)

where ∆φ is the uncertainty in the phase and I0/1 is the Bessel function of order 0/1.
Let us assume that for Alice, the local phase of the photonic qubit has a Gaussian-like
distribution on a circle, with standard deviation ∆φ as observed in [2]. This motivates
us to model the distribution as a von Mises distribution [39]. The von Mises distribution
reads

f (φ) = eκcos(φ−µ)

2πI0(κ)
. (7.24)
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Here µ is the measure of location, i.e. it corresponds to the center of the distribution, κ
is a measure of concentration and can be effectively seen as the inverse of the variance
and I0 is the modified Bessel function of the first kind of order 0. One can then show [39]
that ∫ π

−π
dφ f (φ)e±iφ = I1(κ)

I0(κ)
e±iµ . (7.25)

Since we are only interested in the noise arising from the lack of knowledge about the
phase rather than the actual value of this phase, without loss of generality we can assume
µ= 0. Moreover, the experimental parameter that we use here is effectively the standard
deviation of the distribution ∆φ and therefore we can write κ= 1

(∆φ)2 .

Hence, let us write the spin-photon entangled state that depends on the optical phase
φ.

|ψ±(φ)〉 = sin(θ)| ↓ 0〉±e iφ cos(θ)| ↑ 1〉 . (7.26)

Now, the lack of knowledge about this phase leads to a mixed state:

∫ π

−π
f (φ)|ψ±(φ)〉〈ψ±(φ)|dφ= sin2(θ)| ↓ 0〉〈↓ 0|+cos2(θ)| ↑ 1〉〈↑ 1|

± sin(θ)cos(θ)
∫ π

−π
f (φ)(e iφ| ↑ 1〉〈↓ 0|+e−iφ| ↓ 0〉〈↑ 1|)dφ .

(7.27)
Let us now try to map this state onto a dephased state

λ|ψ±(0)〉〈ψ±(0)|+ (1−λ)|ψ∓(0)〉〈ψ∓(0)| = sin2(θ)| ↓ 0〉〈↓ 0|+cos2(θ)| ↑ 1〉〈↑ 1|
± sin(θ)cos(θ)(2λ−1)(| ↑ 1〉〈↓ 0|+ | ↓ 0〉〈↑ 1|) .

(7.28)
Hence, we observe that

2λ−1 =
I1

(
1

(∆φ)2

)
I0

(
1

(∆φ)2

) . (7.29)

→λ=
I1

(
1

(∆φ)2

)
2I0

(
1

(∆φ)2

) + 1

2
. (7.30)

7.8.2. NOISY PROCESSES IN NV-BASED QUANTUM MEMORIES

In our setups we use 13C nuclear spins in diamond as long-lived memory qubits next to
a Nitrogen Vacancy (NV) electron spin taking the role of a communication qubit. In this
appendix, we will detail our model of the noisy processes in the NV. For most of these
processes we use the model that has already been discussed in Section 6.3.2 of Chap-
ter 6. However, certain small modifications apply for the three new schemes proposed
in this chapter. Moreover, some of the noise processes are modelled in more detail in
this chapter than in Chapter 6. Here we discuss all these modifications.

For all the schemes that utilise quantum storage in the carbon spin memory during
subsequent entanglement generation attempts, we apply the noise model discussed in
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Section 6.3.2 of Chapter 6, where the amount of noise is quantified by the dephasing
parameter λ1 and the depolarising parameter λ2. Recall, that the parameters depend as
follows on the number of attempts n,

λ1 = FT2 =
1+e−an

2
, (7.31)

λ2 = FT1 = e−bn , (7.32)

where a and b are given by

a = a0 +a1

(
Ls · nr i

c
+ tprep

)
,b = b0 +b1

(
Ls · nr i

c
+ tprep

)
. (7.33)

Here nr i is the refractive index of the fiber, c is the speed of light in vacuum, tprep is the
time it takes to prepare for the emission of an entangled photon and Ls is the distance
the signal needs to travel before the repeater receives the information about failure or
success of the attempt. Let LB denote the distance between the memory repeater node
and Bob. Then for the SiSQuaRe and SPADS schemes Ls = 2LB as in each attempt first
the quantum signal needs to travel to Bob who then sends back to the middle node the
classical information about success or failure. For the SPOTL scheme Ls = LB as in this
case both the quantum and the classical signals need to travel only half of the distance
between the middle node and Bob since the signals are exchanged with the heralding
station which is located half-way between the middle memory node and Bob. The pa-
rameters a0 and b0 quantify the noise due to a single attempt at generating an entangled
spin-photon, induced by stochastic electron spin reset operations, quasi static noise and
microwave control infidelities. The parameters a1 and b1 quantify the noise during stor-
age per second.

Gates and measurements in the quantum memory are also imperfect. We model
those imperfections via two depolarizing channels. The first one acts on a single qubit
with depolarizing parameter λ2 = Fm corresponding to the measurement of the electron
spin. The second one acts on two qubits with depolarizing parameter λ2 = Fg corre-
sponding to applying a two-qubit gate to both the electron spin and the 13C spin. This
means that every time a measurement is done on a e− qubit of a quantum state ρ, it is
actually done on D

Fm
depol(ρ). Also a swapping operation between the e− spin and the nu-

clear spin (done experimentally via two two-qubit gates, see main text) leads to an error
modeled by a depolarizing channel of parameter Fswap = F 2

g . Following the same logic,
a Bell state measurement will cause the state to undergo an evolution given by a depo-
larizing channel. Specifically, following the decomposition of the Bell measurement into
elementary gates for the NV-implementation as described in Section 6.6 in Chapter 6,
this evolution will consist of a depolarizing channel with parameter F 2

g acting on both

of the measured qubits and the depolarizing channel with parameter F 2
m acting only on

the electron spin qubit.

7.8.3. EXPECTATION OF THE NUMBER OF CHANNEL USES WITH A CUT-OFF
In this appendix we derive an analytical formula for the expectation value of the number
of channel uses between Alice and Bob needed to generate one bit of raw key for the
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SiSQuaRe, SPADS and SPOTL schemes,

E[N ] = 1

p A · (1− (1−pB )n∗) + 1

pB
. (7.34)

For these three schemes, we implement a cut-off which is used to prevent decoherence.
Each time the number of channel uses between the repeater node and Bob reaches the
cut-off n∗, the entire protocol restarts from the beginning. Here we take a conservative
view and define the number of channel uses N between Alice and Bob as the sum NA +
NB , where NA (NB ) corresponds to the number of channel uses between Alice (Bob) and
the middle node. From the linearity of the expectation value we have that

E[NA +NB ] = E[NA]+E[NB ] . (7.35)

We denote by p A and pB the probability of a successful attempt on Alice’s and Bob’s
side respectively. Bob’s number of channel uses follows a geometric distribution with
parameter p = pB , so that E[NB ] = 1

pB
. Without the cut-off, Alice’s number of channel

use would follow a geometric distribution with parameter p = p A . However, the cut-off
parameter adds additional channel uses on Alice side. Since the probability that Bob
succeeds within n∗ trials is psucc = 1− (1−pB )n∗

, we in fact have that Alice’s number of
channel uses follows a geometric distribution with parameter p ′

A = p A ·psucc. Hence it is
straightforward to see that

E[NA +NB ] = 1

p ′
A

+ 1

pB
(7.36)

= 1

p A · (1− (1−pB )n∗) + 1

pB
. (7.37)

7.8.4. SISQUARE SCHEME ANALYSIS

The analysis of the SiSQuare scheme has been performed in Chapter 6. In this work
we use the estimates of the yield and QBER as derived in Chapter 6 with the following
modifications:

• For the calculation of the yield we now adopt a conservative perspective and calcu-
late the number of channel uses as E[NA+NB ], as derived in Appendix 7.8.3, rather
than E[max(NA , NB )]. Note that E[max(NA , NB )] ≤ E[NA +NB ] ≤ 2E[max(NA , NB )].

• The total depolarising parameter for gates and measurements Fgm defined in Chap-
ter 6 is now decomposed into individual operations as described in Appendix 7.8.2.
That is, in this work depolarisation due to imperfect operations on the memories is
expressed in terms of depolarising parameter due to imperfect measurement, Fm ,
and imperfect two-qubit gate, Fg . Since in the analysis of the SiSQuaRe scheme
we only deal with Bell diagonal states, the overall noise due to imperfect swap gate
and the Bell measurement leads to Fgm = F 4

g F 2
m .
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• In Chapter 6 we have assummed the duration of the detection time-window to be
fixed to 30 ns and assumed that all the emitted photons will fall into that time-
window. Here, similarly as for other schemes, we perform a more refined analysis
in which we include the trade-off between the duration of the time-window and
the dark count probability as described in Appendix 7.8.1.

Additionally, we note that in Chapter 6 we assumed that the amount of key that can
be generated in the Y - and X -basis will be the same as in the Z -basis for the advantage
distillation scheme. This turns out not to be the case. In particular, here we find that for
this scheme more key can be extracted in those two bases than in the Z -basis, giving an
overall expression that achieves higher secret-key fraction than the expression used in
Chapter 6. This point is discussed in more detail in Appendix 7.8.7.

7.8.5. SINGLE-PHOTON SCHEME ANALYSIS
In this appendix we provide a detailed analysis of the single-photon scheme between
two remote NV-center nodes. This section is structured as follows. First, we describe
the creation of the spin-photon entangled state followed by the action of the lossy chan-
nel on the photonic part of this state, including the noise due to the uncertainty in the
phase of the state induced by the fiber. Second, we apply the optical Bell measurement.
Then we evaluate the effect of dark counts which introduce additional errors to the gen-
erated state. Finally we calculate the yield of this scheme and extract the QBER from the
resulting state.

SPIN-PHOTON ENTANGLEMENT AND ACTION OF A LOSSY FIBER ON THE PHO-
TONIC QUBIT
Firstly, both Alice and Bob generate spin-photon entangled states, parameterized by θ.
As we will later see, this parameter allows for trading off the quality of the final entangled
state of the two spins with the yield of the generation process. The ideal spin-photon
state would then be described as

|ψ+〉 = sin(θ) | ↓〉|0〉+cos(θ) | ↑〉|1〉 . (7.38)

The preparation of the spin-photon entangled state is not ideal. That is, the spin-photon
entangled state is not actually as described above, but rather of the form (see Appendix 7.8.2)

ρ = Fprep|ψ+〉〈ψ+|+(1−Fprep)(I⊗Z )|ψ+〉〈ψ+|(I⊗Z ) = Fprep|ψ+〉〈ψ+|+(1−Fprep)|ψ−〉〈ψ−| .
(7.39)

Here
|ψ−〉 = sin(θ) | ↓〉|0〉−cos(θ) | ↑〉|1〉 . (7.40)

For the next step we need to consider two additional noise processes that affect the
photonic qubits before the optical Bell measurement is performed. The first one is the
loss of the photonic qubit. This can happen at the emission, while filtering the photons
that are not of the required ZPL frequency, in the lossy fiber, in the imperfect detectors,
or due to the arrival outside of the time-window in which detectors expect a click. All
these losses can be combined into a single loss parameter

η= ηtotal = pcepzpl
√
η f p ′

det , (7.41)
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with η f = exp(− L
L0

), where L is the distance between the two remote NV-center nodes in
the scheme (see Fig. 7.5 and Appendix 7.8.1). Hence, a photon is successfully transmitted
through the fiber and detected in the middle heralding station with probability η. Now
we note that the action of the pure-loss channel on the qubit encoded in the presence or
absence of a photon corresponds to the action of the amplitude-damping channel with
the damping parameter 1−η [37].

The second process that effectively happens at the same time as loss, is the dephasing
noise arising from the optical instability of the apparatus as described in Appendix 7.8.1.
We note that the amplitude-damping and dephasing channel commute, hence it does
not matter in which order we apply the two noise processes corresponding to the loss of
the photonic qubit and unknown drifts of the phase of the photonic qubit in our model.
Here we firstly apply the dephasing due to the lack of knowledge of the phase on Alice’s
photon and then amplitude-damping on both photons due to all the loss processes.

Following the model in Appendix 7.8.1, the lack of knowledge about the optical phase
will effectively transform Alice’s state to

ρA = (
Fprepλ+ (1−Fprep)(1−λ)

) |ψ+〉〈ψ+|+(
(1−Fprep)λ+Fprep(1−λ)

) |ψ−〉〈ψ−| . (7.42)

where

λ=
I1

(
1

(∆φ)2

)
2I0

(
1

(∆φ)2

) + 1

2
. (7.43)

Now we can apply all the transmission losses modeled as the amplitude-damping
channel. The action of this channel on the photonic part of the state ρ results in the
state that we can describe as follows. Firstly, let us introduce two new states

|ψ±
η 〉 =

1√
sin2(θ)+ηcos2(θ)

(sin(θ) | ↓〉|0〉±p
ηcos(θ) | ↑〉|1〉) . (7.44)

Then, after the losses and before the Bell measurement, the state of Alice can be written
as

ρ′
A = (

sin2(θ)+ηcos2(θ)
)((

Fprepλ+ (1−Fprep)(1−λ)
) |ψ+

η 〉〈ψ+
η |+

(
(1−Fprep)λ+

Fprep(1−λ)
) |ψ−

η 〉〈ψ−
η |

)
+ (1−η)cos2(θ)| ↑〉〈↑ ||0〉〈0| ,

(7.45)

and for Bob

ρ′
B = (

sin2(θ)+ηcos2(θ)
)(

Fprep|ψ+
η 〉〈ψ+

η |+ (1−Fprep)|ψ−
η 〉〈ψ−

η |
)
+(1−η)cos2(θ)| ↑〉〈↑ ||0〉〈0| .

(7.46)

STATES AFTER THE BELL MEASUREMENT
Now we need to perform a Bell measurement on the photonic qubits within the states ρ′

A
andρ′

B . Here we consider the scenario with non photon-number resolving detectors. As-
suming for the moment the scenario without dark counts, we have at most two photons
in the system. For this scenario, we have already derived in Section 3.3.1 in Chapter 3
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the measurement operators {A0, A1, A2} corresponding to the three possible outcomes:
left detector clicked, right detector clicked, none of the detectors clicked. The three
corresponding outcomes occur with the following probabilities,

p0 = p1 = ηcos2(θ)
(
1− η

2
cos2(θ)

)
, (7.47)

p2 = (1−ηcos2(θ))2 . (7.48)

The post-measurement state of the two spins for the outcome A0 is

ρ0 = 2sin2(θ)

2−ηcos2(θ)

(
a|Ψ+〉〈Ψ+|+b|Ψ−〉〈Ψ−|)+ cos2(θ)(2−η)

2−ηcos2(θ)
| ↑↑〉〈↑↑ | . (7.49)

Here

|Ψ±〉 = 1p
2

(| ↓↑〉± | ↑↓〉) , (7.50)

a =λ(F 2
prep + (1−Fprep)2)+2Fprep(1−Fprep)(1−λ) , (7.51)

b = (1−λ)(F 2
prep + (1−Fprep)2)+2Fprep(1−Fprep)λ . (7.52)

For the outcome A1 the post-measurement state of the spins is the same up to a lo-
cal Z gate which Bob can apply following the trigger of the A1 outcome. The post-
measurement state of the spins for the outcome A2, that is when none of the detector
clicked, is

ρ2 = 1

(1−ηcos2(θ))2

(
sin4(θ)| ↓↓〉〈↓↓ |+ (1−η)cos2(θ)sin2(θ) (| ↓↑〉〈↓↑ |+ | ↑↓〉〈↑↓ |)

+(1−η)2 cos4(θ)| ↑↑〉〈↑↑ |) .
(7.53)

This is a separable state and so events corresponding to outcome A2 (that is, no click in
any of the detectors) will be discarded as failure. However, dark counts on our detectors
can make us draw wrong conclusions about which of the three outcomes we actually
obtained.

The effect of dark counts can be seen as follows

• We measured A2 (no actual detection) but one of the detectors had a dark count.
This event will happen with probability 2p2pd (1−pd ) and will make us accept the
state ρ2. Note that this is a classical state so application of the Z correction by Bob
does not affect this state at all.

• We measured A1 or A2 but we also got a dark count in the other detector. This
event will happen with probability (p0 + p1) · pd . This will effectively lead us to
rejection of the desired state ρ0. Hence effectively ρ0 will only be accepted if we
measured A1 or A2 but the other detector did not have a dark count, which will
happen with probability (p0 +p1) · (1−pd ).
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THE YIELD AND QBER
Taking dark counts into account, we see that the yield of the single-photon scheme,
which is just the probability of registering a click in only one of the detectors, will be

Y = (p0+p1)(1−pd )+2p2pd (1−pd ) = 2(1−pd )
[
ηcos2(θ)

(
1− η

2
cos2(θ)

)
+ (1−ηcos2(θ))2pd

]
.

(7.54)
The effective accepted state after a click in one of the detectors will then be

ρout = 1

Y

(
(p0 +p1)(1−pd )ρ0 +2p2pd (1−pd )ρ2

)
. (7.55)

Note that both Alice and Bob perform a measurement on their electron spins imme-
diately after each of the spin-photon entanglement generation events. This measure-
ment causes an error modeled as a depolarizing channel of parameter Fm on each qubit,
which means that after a successful run of the single-photon protocol, the effective state
shared by Alice and Bob including the noise of their measurements will be given by

ρAB = F 2
mρout + (1−Fm)Fm

[
I2,A

2
⊗ trA[ρout]+ trB [ρout]⊗

I2,B

2

]
+ (1−Fm)2 I4,AB

4
.

(7.56)

One can then extract the QBER for this state in all the three bases using the appropriate
correlated/anti-correlated projectors such that:

ez = Tr((|00〉〈00|+ |11〉〈11|)ρAB ) , (7.57)

ex y = Tr((|+−〉〈+−|+ |−+〉〈−+|)ρAB ) = Tr((|0y 1y 〉〈0y 1y |+ |1y 0y 〉〈1y 0y |)ρAB ) . (7.58)

Here |+〉 and |−〉 denote the two eigenstates of X and |0y 〉 and |1y 〉 denote the two eigen-
states of Y . We note that for our model of the single-photon scheme the QBER in X - and
Y - bases are the same and therefore we denote both by a single symbol ex y .

7.8.6. SPADS AND SPOTL SCHEMES ANALYSIS
In order to compute the quantum bit error rate (QBER) of the Single-Photon with Addi-
tional Detection Setup (SPADS) scheme and the Single-Photon Over Two Links (SPOTL)
scheme, we derive step by step the quantum state shared between Alice and Bob. The
following results have been found using Mathematica. Finally, we also calculate the yield
of the SPADS and SPOTL schemes.

GENERATION OF ELEMENTARY LINKS

SINGLE-PHOTON SCHEME ON ALICE SIDE

The application of the single-photon scheme on Alice’s side leads Alice and the quantum
repeater to share a state given in Eq. (7.55). This state can be rewritten as

ρA-QRe = A1|Ψ+〉〈Ψ+|+B1|Ψ−〉〈Ψ−|+C1 (|10〉〈10|+ |01〉〈01|)+D1|11〉〈11|+E1|00〉〈00| ,
(7.59)
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with A1 = A(θA ,YA), B1 = B(θA ,YA), C1 = C (θA ,YA), D1 = D(θA ,YA) and E1 = E(θA ,YA).
Here we have that

A(θ,Y ) = 1

Y
2cos2(θ)sin2(θ)η(1−pd )

[
(F 2

prep + (1−Fprep)2)λ+2Fprep(1−Fprep)(1−λ)
]

,

B(θ,Y ) = 1

Y
2cos2(θ)sin2(θ)η(1−pd )

[
(F 2

prep + (1−Fprep)2)(1−λ)+2Fprep(1−Fprep)λ
]

,

C (θ,Y ) = 2

Y
cos2(θ)sin2(θ)pd (1−pd )(1−η) ,

D(θ,Y ) = 1

Y
cos4(θ)

(
2(1−η)η(1−pd )+η2(1−pd )+2(1−η)2pd (1−pd )

)
,

E(θ,Y ) = 2

Y
sin4(θ)pd (1−pd ) .

(7.60)

In the above Y denotes the yield or the probability of success of the single-photon scheme
and is given by Eq. (7.54). Subscript A indicates that in that expression for the yield
and for each of the above defined coefficients we use θ = θA . Moreover, we have made
here the following change of notation with respect to the Appendix 7.8.5, | ↓〉 → |0〉 and
| ↑〉→ |1〉.

SWAP GATE IN THE MIDDLE NODE

In the next step a SWAP gate is applied in the middle node to transfer the electron state to
the nuclear spin of the NV center. This causes a depolarizing noise of parameter Fswap =
F 2

g (see Appendix 7.8.1). The resulting state can then be written as

ρA-QRC = FswapρA-QRe + (1−Fswap) trQR[ρA-QRe ]⊗ I2,QR

2
. (7.61)

THE PROCEDURE ON BOB’S SIDE

We now use the electron spin of the quantum repeater to generate the second quantum
state. Here the procedures for the SPADS and SPOTL schemes diverge.

In the procedure for the SPADS scheme, the quantum repeater generates a spin-
photon entangled state where the photonic qubit is encoded in the time-bin degree of
freedom. Since the spin-photon entangled state is imperfect, the electron and the pho-
ton share a state

ρQRe−B = Fprep|Ψ+〉〈Ψ+|+ (1−Fprep)|Ψ−〉〈Ψ−| . (7.62)

Here we use the following labeling for time-bin encoded early and late mode of the pho-
ton: |e〉 = |1〉, |l〉 = |0〉. This photon is then sent towards Bob’s detector. The lossy channel
acts on such a time-bin encoded qubit as an erasure channel and so the quantum spin-
photon state of the successful events in which the photonic qubit successfully arrives at
the detector is unaffected by the lossy channel.

For the SPOTL scheme the repeater’s electron spin and Bob’s quantum memory gen-
erate a second state of the form given in Eq. (7.55). We can rewrite this state as

ρQRe−B = A2|Ψ+〉〈Ψ+|+B2|Ψ−〉〈Ψ−|+C2 (|10〉〈10|+ |01〉〈01|)+D2|11〉〈11|+E2|00〉〈00| ,
(7.63)

with A2 = A(θB ,YB ), B2 = B(θB ,YB ), C2 =C (θB ,YB ), D2 = D(θB ,YB ) and E2 = E(θB ,YB ).
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DECOHERENCE IN THE QUANTUM MEMORIES

Decoherence of the carbon spin in the middle node can be modeled identically for both
the SPADS and SPOTL scheme.

During the n < n∗ attempts to generate the state ρQRe -B, the carbon spin in the mid-
dle node holding half of the state ρA-QRC will decohere. Using the decoherence model
discussed in Appendix 7.8.2, decoherence of the carbon spin will thus give us

ρ′
A-QRC = FT1 (FT2ρA-QRC +(1−FT2 )(I2⊗Z )ρA-QRC (I2⊗Z )†)+(1−FT1 ) trQR[ρA-QRC ]⊗ I2,QR

2
.

(7.64)
For key generation, Alice (SPADS and SPOTL schemes) and Bob (SPOTL scheme) can
actually measure their electron spin(s) immediately after the generation of spin photon
entanglement, preventing the effect of decoherence on these qubit(s).

NOISE DUE TO MEASUREMENTS

MEASUREMENT OF THE QUBITS OF ALICE AND BOB

In the SPADS scheme Alice performs a measurement on her electron spin immediately
after each of the spin-photon entanglement generation events to prevent any decoher-
ence with time of this qubit. This measurement causes an error modeled as a depolariz-
ing channel of parameter Fm . Bob on the other hand performs a measurement on a pho-
tonic qubit that is encoded in the time-bin degree of freedom. His measurement utilises
the squashing map so that we can model the noise arising from this measurement as a
depolarising channel with parameter αB as described in Appendix 7.8.1. Hence the total
state just before the Bell measurement is given by

ρA−QR−B = FmαBρ
′
A-QRC ⊗ρQRe−B + (1−Fm)αB

I2,A

2
⊗ trA[ρ′

A-QRC ]⊗ρQRe−B

+ (1−αB )Fmρ
′
A-QRC ⊗ trB [ρQRe−B ]⊗ I2,B

2

+ (1−Fm)(1−αB ) trAB [ρ′
A-QRC ⊗ρQRe−B ]⊗ I4,AB

4
.

(7.65)

For the SPOTL scheme, both Alice and Bob perform a measurement on their electron
spins immediately after each of the spin-photon entanglement generation events. This
measurement causes an error modeled as a depolarizing channel of parameter Fm on
each qubit, which means that after both Alice and Bob succeeded in performing the
single-photon scheme with the repeater, the total, four-qubit state just before the Bell-
measurement and including the noise of the measurements of Alice and Bob will be
given by

ρA−QR−B = F 2
mρ

′
A-QRC ⊗ρQRe−B

+ (1−Fm)Fm

[
I2,A

2
⊗ trA[ρ′

A-QRC ]⊗ρQRe−B +ρ′
A-QRC ⊗ trB [ρQRe−B ]⊗ I2,B

2

]
+ (1−Fm)2 trAB [ρ′

A-QRC ⊗ρQRe−B ]⊗ I4,AB

4
.

(7.66)
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BELL STATE MEASUREMENT

Before the entanglement swapping, we have a total state ρA−QR−B . We now perform
a Bell state measurement on the two qubits in the middle node. The error coming
from this measurement is modeled by concatenation of depolarizing channels (see Ap-
pendix 7.8.1) which means that the measurement is actually performed on

ρfin = F 2
g F 2

mρA−QR−B+F 2
g (1−F 2

m) trQRe [ρA−QR−B ]⊗I2,QRe

2
+(1−F 2

g ) trQR [ρA−QR−B ]⊗I4,QR

4
.

(7.67)
While ρ′

A-QRC is not Bell diagonal for the SPADS scheme, ρQRe−B is, and so we find that

taking into account the classical correction (which will be performed on the measured
bit-value by Alice and Bob) the four cases corresponding to different measurement out-
comes are equivalent. This means that if we model the correction to be applied to the
quantum state rather than the classical bit, then the four post-measurement bipartite
states shared between Alice and Bob are exactly the same.

For the SPOTL scheme, both ρ′
A-QRC and ρQRe−B are not Bell diagonal which means

that the resulting state of qubits of Alice and Bob after the Bell state measurement de-
pends on the outcome of this Bell measurement and those four corresponding states
are not equivalent under local unitary corrections. In fact, the two states corresponding
to the Φ± outcomes and the two states corresponding to the Ψ± outcomes are pairwise
equivalent under local Pauli corrections. Hence, we will derive two different QBER cor-
responding to the following different resulting states shared between Alice and Bob,

ρΦ,AB = (IA ⊗UΦ±,B )TrQR

[
(I⊗|Φ±〉〈Φ±|⊗I)ρfin(I⊗|Φ±〉〈Φ±|⊗I)†

Tr(ρfin(I⊗|Φ±〉〈Φ±|⊗I))

]
(I⊗UΦ±,B )† ,

(7.68)

ρΨ,AB = (IA ⊗UΨ±,B )TrQR

[
(I⊗|Ψ±〉〈Ψ±|⊗I)ρfin(I⊗|Ψ±〉〈Ψ±|⊗I)†

Tr(ρfin(I⊗|Ψ±〉〈Ψ±|⊗I))

]
(I⊗UΨ±,B )† .

(7.69)

Here UΦ±,B and UΨ±,B denote the four Pauli corrections implemented by Bob after
the corresponding outcome of the Bell measurement. Note that for the SPADS scheme
ρΦ,AB = ρΨ,AB .

THE YIELD AND QBER
YIELD

For both SPADS and SPOTL scheme we calculate the yield as the inverse of the number
of channel uses required to generate one bit of raw key, Y = 1/E[N ], where E[N ] is given
by Eq. (7.34). For the SPOTL scheme in that formula we use p A/B = YA/B , where YA/B

denotes the yield of the single-photon scheme on Alice’s/Bob’s side given by Eq. (7.54).
For the SPADS scheme p A takes the same form as for the SPOTL scheme (but is now
calculated for two thirds of the total distance between Alice and Bob rather than half),
while pB is the probability of registering a click in Bob’s optical detection setup as in the
SiSQuaRe scheme.
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EXTRACTION OF THE QUBIT ERROR RATES

By projecting these final corrected states onto the correct subspaces, we can obtain the
qubit error rates ez and ex y (with our model we find that for both SPADS and SPOTL
schemes the error rates in X and Y bases are the same). The state shared between Al-
ice and Bob after the Pauli correction will always be the same for the SPADS scheme.
Thus, there is only a single QBER ez and ex y independently of the outcome of the Bell
measurement. For the SPOTL scheme that is not the case, there will be two set of QBER
corresponding to the states ρΦ,AB and ρΨ,AB .

ez,Φ = Tr((|00〉〈00|+ |11〉〈11|)ρΦ) , (7.70)

ez,Ψ = Tr((|00〉〈00|+ |11〉〈11|)ρΨ) , (7.71)

ex y,Φ = Tr((|+−〉〈+−|+ |−+〉〈−+|)ρΦ) = Tr((|0y 1y 〉〈0y 1y |+ |1y 0y 〉〈1y 0y |)ρΦ) , (7.72)

ex y,Ψ = Tr((|+−〉〈+−|+ |−+〉〈−+|)ρΨ) = Tr((|0y 1y 〉〈0y 1y |+ |1y 0y 〉〈1y 0y |)ρΨ) . (7.73)

Again, for the SPADS scheme ez,Φ = ez,Ψ = ez and ex y,Φ = ex y,Ψ = ex y .

AVERAGING THE QUBIT ERROR RATES

We have now derived the qubit error rates as a function of the experimental parameters.
For the SPOTL scheme we now average the QBER over the two outcomes to get the final
average QBER

〈ez〉 = 〈pΨez,Ψ+pΦez,Φ〉 , (7.74)

〈ex y 〉 = 〈pΨex y,Ψ+pΦex y,Φ〉 , (7.75)

where pΨ (pΦ) is the probability of measuring one of the |Ψ〉 (|Φ〉) states in the Bell
measurement and 〈...〉 is found by averaging the expression over the number of Bob’s
attempts n with the geometric distribution within the first n∗ trials. For the SPADS
scheme 〈ez〉 and 〈ex y 〉 can be averaged directly. The dependence on n arises from the
decoherence terms FT1 and FT2 . Indeed, those terms correspond to the decoherence
in the middle node during the attempts on Bob’s side. Denoting by pB the probability
that in a single attempt Bob generates entanglement with the quantum repeater using
the single-photon scheme for the SPOTL scheme and using direct transmission of the
time-bin encoded qubit from the repeater to Bob for the SPADS scheme, we have that
the exponentials in those expressions can be averaged as follows (see Chapter 6)

〈e−cn〉 = pB e−c

1− (1−pB )n∗
1− (1−p)n∗

e−cn∗

1− (1−pB )e−c . (7.76)

7.8.7. SECRET-KEY FRACTION AND ADVANTAGE DISTILLATION

In this section we discuss certain subtleties relating to the differences between gener-
ating key from measurements in different bases in the scenario where the QBER is not
uniform across all the bases. We also provide an expression for the asymptotic secret-key
fraction with one-way postprocessing.
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ONE-WAY BB84 PROTOCOL
For the fully asymmetric BB84 protocol with standard one-way post-processing, the
secret-key fraction has been given in Section 6.4.2 in Chapter 6. Note that this formula is
symmetric under the exchange of ex and ez - that is, the secret-key fraction is the same
independently of whether we extract the key in the Z - or X -basis. As we will see later in
this section, this is not the case for the six-state protocol with advantage distillation.

SIX-STATE PROTOCOL WITH ADVANTAGE DISTILLATION
Now we shall examine the six-state protocol with advantage distillation of [29]. In Ap-
pendix 6.9.4 in Chapter 6 we have already provided an expression for the secret-key frac-
tion as a function of QBER for this protocol. We have used there that expression to ap-
proximate the amount of key that can be extracted from a single raw bit independently
of the basis in which the key is generated. Here however, we note that this expression
specifically describes only the secret-key fraction in the case when the key is extracted in
the Z -basis.

It is important to note that for this advantage distillation scheme, the amount of gen-
erated secret key depends on the basis in which it is extracted, as has been shown in [40].
Let us now have a look at the amount of key that can be extracted in the X - and Y -bases.
As has been shown in [40], the secret-key fraction in these cases is also given by Eq. (6.35)
from Chapter 6 but now the Bell coefficients depend on QBER in the following way:

p00 = 1− ez

2
−ex y ,

p10 = ex y − ez

2
,

p01 = p11 = ez

2
.

(7.77)

And so

PX̄(0) = 1−2ex y +2e2
x y ,

PX̄(1) = 2(1−ex y )ex y .
(7.78)

We note that we have assumed here that in the case of key extraction in Y -basis,
either Alice or Bob applies a local bit flip in the Y -basis to the shared state, as the target
state |ψ(0,0)〉 is anti-correlated in that basis.

In [40] it has been also observed that in the considered case of having the QBER in
the X - and Y -bases being equal, the six-state protocol with advantage distillation allows
us to extract more key if it is extracted in the basis with higher QBER. This observation
determines the basis that we use for extracting key for the single-photon and the SPOTL
schemes that use fully asymmetric six-state protocol with advantage distillation. Specif-
ically, for the single-photon scheme we observe higher QBER in the Z -basis, while for
the SPOTL scheme the QBER is higher in the X - and Y -bases. Therefore these are the
bases that we choose to use for extracting key for those schemes.

For the SiSQuaRe and SPADS schemes the symmetric six-state protocol is used, hence
for those schemes we group the raw bits into three groups corresponding to three differ-
ent key-extraction bases and we extract the key separately for each of these bases. Finally,
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to obtain the final secret-key fraction, we note that for the symmetric six-state protocol
we also need to include sifting, that is only one third of all the raw bits were obtained by
Alice and Bob measuring in the same basis (the raw bits for the protocol runs in which
they measured in different bases are discarded). Hence, if we denote by ri the secret-key
fraction obtained from the group of raw bits in which both Alice and Bob measured in
the basis i , the final secret-key fraction for the six-state protocol for those schemes is
given by

r = 1

3

(
1

3
rx + 1

3
ry + 1

3
rz

)
. (7.79)

Clearly in our case we have rx = ry = rx y .
Since for the SiSQuRe scheme all the noise processes are modelled by the depolaris-

ing and the dephasing noise in Z -basis, we find there that ex y ≥ ez and therefore rx y ≥ rz .
This shows that approximating the amount of key that can be extracted in the X - and Y -
bases by the secret-key fraction from the Z -basis as has been done in Chapter 6, provides
actually a lower bound on the overall secret-key fraction. The actual expression given in
Eq. (7.79) and used for this scheme in this chapter achieves larger values.

ONE-WAY SIX-STATE PROTOCOL
In Figure 7.6 we have also plotted the secret-key fraction for the one-way six-state pro-
tocol. For the fully asymmetric protocol and the case in which the key is extracted in the
Z -basis, it is given by [41]

r = 1−ez h

(
1+ (ex −ey )/ez

2

)
− (1−ez )h

(
1− (ex +ey +ez )/2

1−ez

)
−h(ez ) . (7.80)

Although this formula does not appear to be symmetric under the permutation of ex , ey , ez ,
it is in fact invariant under this permutation [42]. This means that for the symmetric one-
way six-state protocol, in our case the final secret-key fraction is given by the expression
in Eq. (7.80) multiplied by the sifting efficiency of one-third.

7.8.8. RUNTIME OF THE EXPERIMENT
In this section we will detail how to perform an experiment that will be able to establish
that a setup can surpass the capacity of a quantum channel modeling losses in a fiber
(see Eq. (6.13)). This experiment can validate a setup to qualify as a quantum repeater,
without explicitly having to generate secret-key. We show then that, for the listed pa-
rameters in the main text, the single-photon scheme can be certified to be a quantum
repeater within approximately twelve hours.

The experiment is based on estimating the yield of the scheme and the individual
QBER of the generated states. More specifically, here we will calculate the probability
that, assuming our model is accurate and each individual run is independent and iden-
tically distributed, the observed estimate of the yield and the individual QBER are larger
and smaller, respectively, than some fixed threshold values. If, with these threshold val-
ues for the yield and QBER, the calculated asymptotic secret-key still surpasses the ca-
pacity, we can claim a working quantum repeater. The experiment consists of first per-
forming n attempts at generating a state between Alice and Bob, from which the yield
can be estimated by calculating the ratio of the successful attempts and n. Then, the
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QBER in each basis is estimated by Alice and Bob measuring in the same basis in each of
the successful attempts.

Central to our calculation is the fact that, for n instances of a Bernoulli random vari-
able with probability p, the probability that the number of observed successes S(n) is
smaller or equal than some value k is equal to

P (S(n) ≤ k) =
k∑

i=0

(
n

i

)
p i (

1−p
)n−i . (7.81)

Assuming the outcomes of our experiment are independent and identically distributed,
the observed yield Ȳ satisfies

P
(
Ȳ ≤ (Y − tY )

)= P
(
nȲ ≤ n (Y − tY )

)= bn(Y −tY )c∑
i=0

(
n

i

)
Y i (1−Y )n−i , (7.82)

where Y − tY is the lower threshold. Let us make this more concrete with a specific cal-
culation. For a distance of 17L0 the yield is equal to ≈ 5.6 ·10−6. Setting the maximum
deviation in the yield to Ȳ = Y − tY with tY = 2.0 ·10−7 and the number of attempts to
n = 5 ·109 (which corresponds to approximately a runtime of twelve hours assuming a
single attempt takes 8.5 ·10−6 s, corresponding to tprep and a single-shot readout lasting
2.5 ·10−6 s), we find that

P
(
Ȳ ≤ (Y − tY )

)≤ 9.2 ·10−10 . (7.83)

Similarly, for the individual errors {ek }k∈{x,y,z} in the three bases we have that

P (ēk ≥ (ek + tk )) = P (m · ēk ≥ m (ek + tk )) =
m∑

i=dm(ek+tk )e

(
m

i

)
(ek )i (1−ek )m−i . (7.84)

Here we set m = ⌊ n
3 (Y − tY )

⌋
, which is an estimate for the number of raw bits that Alice

and Bob obtain from measurements in each of the three bases, for the total n attempts
of the protocol. All the raw bits from those three sets are then compared to estimate
the QBER in each of the three bases. Note that we gather the same amount of samples
for each basis, even when an asymmetric protocol would be performed. Setting ti =
t = 0.015, ∀i ∈ {x, y, z} and, as before, n = 5 · 109, we find, at a distance of 17L0 where
ez ≈ 0.171 and ey = ex ≈ 0.141, that

P (ēz ≥ (ez + t )) ≤ 9.0 ·10−5 , (7.85)

P
(
ēy ≥

(
ey + t

))= P (ēx ≥ (ex + t )) ≤ 2.7 ·10−5 . (7.86)

Then, with probability at least

(1−P (ēx ≥ (ex + t ))) · (1−P
(
ēy ≥

(
ey + t

))) · (1−P (ēz ≥ (ez + t ))) · (1−P
(
Ȳ ≤ (Y − tY )

))
≥ 1−1.5 ·10−4 ,

(7.87)
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none of the observed QBER and yield exceed their threshold conditions. The corre-
sponding lowest secret-key rate for these parameters (with a yield of Y − tY and QBER of
ex + tx , ey + ty , ez + tz ) is ≈ 1.97 ·10−7, which we observe is greater than the secret-key
capacity by a factor ≈ 3.29 (see Eq.(6.13)) at a distance of 17L0, since the secret-key ca-
pacity equals − log2

(
1−e−17

)
. 5.97 ·10−8.

Thus, with high probability we can establish that the single-photon scheme achieves
a secret-key rate significantly greater than the corresponding secret-key capacity for a
distance of 17L0 ≈ 9.2 kilometer within approximately twelve hours.

7.8.9. MDI QKD
We note here that the single-photon scheme for generating key is closely linked to
the measurement device independent (MDI) QKD protocol [15]. In particular it is an
entanglement-based version of a scheme in which Alice and Bob prepare and send spe-
cific photonic qubit states to the heralding station in the middle, where the qubits are
encoded in the presence/absence of the photon. We note that in the ideal case of the
single-photon scheme, the spin-photon state is given in Eq. (7.38). For the six-state pro-
tocol the spin part of this state is then measured in the X -, Y - or Z - basis at random ac-
cording to a fixed probability distribution (this probability distribution dictates whether
we use symmetric or asymmetric protocol). Considering the probabilities of the indi-
vidual measurement outcomes, this is equivalent to the scenario in which Alice and Bob
choose one of the three set of states at random according to the same probability dis-
tribution and prepare each of the two states from that set with the probability equal to
the corresponding measurement outcome probability. These sets do not form bases, as
the two states within each set are not orthogonal. We will therefore refer to these sets
here as “pseudo-bases”. Depending on the chosen pseudo-basis they prepare one of the
six states encoding the bit value of “0” or “1” in that pseudo-basis. These states and the
corresponding preparation probabilities are

• pseudo-basis 1: {|0〉, |1〉} with probabilities {sin2θ, cos2θ},

• pseudo-basis 2: {sinθ|0〉+cosθ|1〉, sinθ|0〉−cosθ|1〉} with probabilities { 1
2 , 1

2 },

• pseudo-basis 3: {sinθ|0〉+ i cosθ|1〉, sinθ|0〉− i cosθ|1〉} with probabilities { 1
2 , 1

2 }.

These states are then sent towards the beam splitter station. The station performs
the standard photonic Bell-state measurement and sends the outcome to both Alice and
Bob. Alice and Bob discard all the runs for which the beam splitter station measured
A2 (recall the measurement operators in Eq. (3.11) in Chapter 3). They then exchange
the classical information about their pseudo-basis choice and keep only the data for the
runs in which they both used the same basis. For those data they apply the following
post-processing in order to obtain correlated raw bits

• pseudo-basis 1: for both outcomes A0 and A1 Bob flips the value of his bit.

• pseudo-basis 2: for the outcome A0 they do nothing, for the outcome A1 Bob flips
the value of his bit.



7

200 REFERENCES

• pseudo-basis 3: for the outcome A0 they do nothing, for the outcome A1 Bob flips
the value of his bit.

In this way Alice and Bob have generated their strings of raw bits.
We note here that the direct preparation of the six states from the three pseudo-bases

described above in the photonic presence/absence degree of freedom is experimentally
hard. This is related to the fact that linear optics does not allow to easily perform single
qubit rotations necessary to prepare these states. The use of memory-based NV-centers
offers a great advantage here, as in these schemes the rotations that allow us to obtain the
required amplitudes of the photonic states are performed on the electron spins rather
than the photons themselves. There has also been proposed an alternative scheme that
also benefits from single photon detection events in which Alice and Bob send coherent
pulses to the heralding station [12, 25].
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8
QUANTUM PREPARATION

UNCERTAINTY AND LACK OF

INFORMATION

Filip Rozpędek, Jędrzej Kaniewski, Patrick Coles and
Stephanie Wehner

The quantum uncertainty principle famously predicts that there exist measurements that
are inherently incompatible, in the sense that their outcomes cannot be predicted simul-
taneously. In contrast, no such uncertainty exists in the classical domain, where all un-
certainty results from ignorance about the exact state of the physical system. Here, we
critically examine the concept of preparation uncertainty and ask whether similarly in
the quantum regime, some of the uncertainty that we observe can actually also be under-
stood as a lack of information (LOI), albeit a lack of quantum information. We answer
this question affirmatively by showing that for the well known measurements employed
in BB84 quantum key distribution [1], the amount of uncertainty can indeed be related
to the amount of available information about additional registers determining the choice
of the measurement. We proceed to show that also for other measurements the amount of
uncertainty is in part connected to a LOI. Finally, we discuss the conceptual implications
of our observation to the security of cryptographic protocols that make use of BB84 states.

The results of this chapter have been published in New J. Phys. 19, 023038 (2017).
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8.1. INTRODUCTION
The uncertainty principle forms one of the cornerstones of quantum theory. As first ob-
served by Heisenberg [2] and then rigorously proven by Kennard [3], it is impossible to
perfectly predict the measurement outcomes of both position and momentum observ-
ables. This notion was generalised by Robertson to an arbitrary pair of observables [4]
showing that uncertainty is an inherent feature of any non-commuting measurements
in quantum mechanics. The described uncertainty is often referred to as preparation
uncertainty, because it states that it is impossible to prepare a quantum state for which
one could perfectly predict the measurement outcome of both observables.

A modern way of capturing the notion of preparation uncertainty is by means of a
guessing game [5]. Such a game makes the concept of preparation uncertainty opera-
tional and is of great use in proving the security of quantum cryptographic protocols [6].
Fig. 8.1 summarises the game, which in its simplest form works as follows. Bob prepares
system B in an arbitrary state ρB of his choosing and then passes it to Alice. Alice per-
forms one of two incompatible measurements labeled by r = 0 and r = 1 according to
a random coin flip contained in the register R and obtains measurement outcome X .
She then informs Bob which measurement she performed by sending him the register
R. Bob wins the game if he correctly guesses Alice’s measurement outcome X .

To see why this captures the essence of the uncertainty principle, note that if the
measurements are incompatible, then there exists no state ρB that Bob can prepare that
would allow him to guess the outcomes for both choices of measurements with certainty.
Uncertainty can thus be quantified by a bound on the average probability that Bob cor-
rectly guesses X . That is, a relation of the form

Pguess(X |Bob) = p(r = 0)Pguess(X |Bob,r = 0)

+p(r = 1)Pguess(X |Bob,r = 1) ≤ 2−ζ , (8.1)

for all ρB . Equivalently, we can relate the above defined guessing probability to the min-
entropy Hmin(X |Bob) = − logPguess(X |Bob) (in this article all logarithms are base 2), so
that we obtain an inequality:

Hmin(X |Bob) ≥ ζ . (8.2)

This expression forms an uncertainty relation as long as the RHS is non-trivial (i.e. ζ> 0).
Analogous relations exist for other entropies [6], but here we focus on the min-entropy
since it is the relevant measure for quantum cryptography and randomness generation,
and it quantifies the winning probability for the aforementioned guessing game.

In this work, we seek a deeper understanding of the uncertainty principle by consid-
ering a more general scenario than the typical guessing game and observing the condi-
tions under which Bob’s uncertainty vanishes. In particular, the generalisation we con-
sider is to allow Bob to have additional information - possibly quantum information -
about Alice’s measurement choice. This generalisation is closely related to recent pro-
posals for quantum control experiments [7, 8]. To elaborate, we note that Alice’s random
measurement choice in the guessing game can be implemented by preparing a qubit
R in the maximally mixed state ρR = I/2 and then performing a unitary operation on
B conditioned on the state of R (see Fig. 8.2 below). In the generalised game that we
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consider, we allow ρR to be a more general state, possibly with some coherence. As we
discuss below, allowing for coherence in ρR corresponds to giving Bob more informa-
tion.

Our motivation for considering this scenario is to distinguish between uncertainty
that is due to Bob’s lack of information (LOI) versus uncertainty that is intrinsic or un-
avoidable. To help clarify these notions, we remark that a classical theory admits no
intrinsic uncertainty. Classical here refers to commuting measurements that are jointly
diagonal in one predefined basis. If Alice employed such measurements in the afore-
mentioned guessing game, then the only way for her to prevent Bob from winning the
game would be for her to add noise to her measurement outcomes, i.e., implement noisy
measurements. Yet, we would classify Bob’s uncertainty in this case as LOI uncertainty,
as he simply lacks the information about the noise Alice adds. Hence, the arising uncer-
tainty is clearly not an intrinsic feature of the measurements.

Notice that preparing the register R in the maximally mixed state ρR = I/2 injects
classical randomness into the protocol. It is unclear whether or not this randomness
is ultimately responsible for the uncertainty principle, and this is a question we aim to
answer. We emphasise that the scenario we consider differs from other variants of the
uncertainty principle which derive bounds involving the purity or entropy of ρB [5, 9–
22].

Interestingly we find that in the special case where Bob’s system is a qubit (d = 2),
there is no intrinsic uncertainty but all the uncertainty is due to LOI. That is, if Bob has
complete knowledge about the preparation of R (i.e., R is in a pure state), then his uncer-
tainty vanishes. In contrast, for all dimensions d > 2, we find that there is always some
intrinsic uncertainty. That is, even with the full knowledge about the preparation of R,
Bob cannot win the guessing game with unit probability. Before we discuss these results
in detail, let us outline the physical setup.

8.2. PHYSICAL SETUP

8.2.1. DEGREES OF IGNORANCE

In this section we describe the generalised guessing game shown in Fig. 8.1. Here, Alice
prepares a register system R in some state ρR . Meanwhile Bob prepares system B in
state ρB and sends it to Alice. Alice measures B in a basis determined by the state of
R. Then she passes R to Bob, and he tries to guess her measurement outcome, possibly
using the information stored in R. We are interested in understanding how much of Bob’s
uncertainty (i.e., his inability to win this game) is due to LOI and how much corresponds
to intrinsic (or unavoidable) uncertainty.

To better understand this, let us examine what Bob does and does not have access
to in Fig. 8.1. Since ρR is generally a mixed state, it can be purified by considering an
additional system, P . Even though Bob is given access to R, we emphasise that he does
not have access to P in our guessing game. Hence, we can think of P as representing
Bob’s LOI.

For example, consider the case when ρR = I/2 is maximally mixed, which corre-
sponds to the case where the measurement choice is a classical coin flip (i.e., the typ-
ical uncertainty game considered in the literature [5]). The purification is a maximally
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Measurement

X

R

P
B

(3)Alice Bob

Figure 8.1: Uncertainty guessing game. The game runs as follows: (1) First, Bob prepares system B
in a state ρB and sends it to Alice. We show in Appendix 8.6.1 that Bob’s best strategy is to prepare a
pure state ρB = |φ〉〈φ|B . (2) Second, Alice measures B in a basis determined by the state of register
R. (3) Finally, Alice obtains the classical outcome X and sends R to Bob. Bob can then measure R
in order to help him guess X . Note that R may be initially prepared in a mixed state ρR , and Bob
does not have access to the purifying system of ρR , denoted as P in the figure. Hence, P embodies
Bob’s lack of information in this game.

entangled state such as

|ξRP 〉 = 1p
2

(|0〉R |0〉P +|1〉R |1〉P ) . (8.3)

At the other extreme is the case where ρR is pure, i.e.,

|ξRP 〉 = |ξR〉⊗ |ξP 〉 (8.4)

is a product state. We will take |ξR〉 = 1p
2

(|0〉+ |1〉), i.e., we choose an equal superposition

in correspondence with the idea that both measurements were previously chosen with
equal probability. Intuitively, when the initial state is maximally entangled, then Bob will
later suffer from a maximum LOI about P . However, in the case where the two systems
are uncorrelated, Bob does not need P at all. In other words, there is no LOI on his part,
because R is pure.

There are many ways to interpolate between these two extremes in terms of a mea-
sure of correlation between R and P . Here, we choose one that is intuitive when we
think about “how much” of P Bob is actually lacking. Concretely, we imagine that apart
from the classical coin C (which is a part of R), R and P are actually comprised of many
environmental subsystems E1, . . . ,En , and we quantify Bob’s LOI by the number of the
environment systems that are part of P instead of part of R. Specifically, we take

|ξRP 〉 = 1p
2

(
|0〉C ⊗

n⊗
i=1

|α〉Ei +|1〉C ⊗
n⊗

i=1
|β〉Ei

)
, (8.5)

where RP = C E1 . . .En . The environments E j ’s are two-dimensional registers and∣∣〈α|β〉∣∣= 1−ε, with ε> 0 and ε¿ 1 so that each individual E j holds very little information
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about the state of the coin C . However, we see that 〈α|β〉n → 0 as n →∞. We thus see that
for n →∞ and R =C , P = E1 . . .En , we approach the extreme case of R being essentially
classical, and |ξRP 〉 being maximally entangled. This idea of approximating the notion
of a classical register by “copying” information into a large number of environmental
systems E j is due to Zurek [23].

We can now interpolate between the two extremes by letting R = C E1 . . .E j and P =
E j+1 . . .En . We have that

ρR = 1

2
(|0〉〈0|+ |1〉〈1|+γ∗|0〉〈1|+γ|1〉〈0|) , (8.6)

where

|0〉R := |0〉C ⊗
j⊗

i=1
|α〉Ei , (8.7)

|1〉R := |1〉C ⊗
j⊗

i=1
|β〉Ei , (8.8)

γ= 〈α|β〉n− j . (8.9)

We see that
∣∣γ∣∣ increases monotonically with j , the number of environmental subsys-

tems contained in R, and hence the number of subsystems to which Bob is given access
later on. The extreme cases γ = 0 and γ = 1 correspond respectively to j = 0 and j = n
(again note that the number of environment subsystems is very large so that we always
consider the limit n →∞). In Appendix 8.6.1 we show that for the uncertainty game it is
only the modulus of γ that matters. Therefore, we will only consider the case of real and
positive γ, i.e. γ ∈ [0,1].

8.2.2. UNCERTAINTY GAME

Let us now revisit our uncertainty guessing game (see Fig. 8.1 and Fig. 8.2) with a more
detailed description. First, Bob prepares system B in a state ρB and sends it to Alice.
Second, Alice measures B and obtains the classical outcome X , with the measurement
basis determined by the state of register R given by:

ρR = 1

2
(|0〉〈0|+ |1〉〈1|+γ|0〉〈1|+γ|1〉〈0|) . (8.10)

Specifically, as depicted in Fig. 8.2, states |0〉 and |1〉 on R are, respectively, associated
with measuring in the standard basis and Fourier basis on B (we have chosen maximally
incompatible bases to maximise the “inherent” uncertainty). Next, Alice sends Bob the
register R. Finally Bob measures R to help him produce a guess for X . This defines a
two-parameter family of uncertainty games which depend on: d ∈ {2,3, . . .}, the number
of possible outcomes (which fixes the dimension of the quantum state ρB supplied by
Bob and the dimension of the Fourier transform in Fig. 8.2) and γ ∈ [0,1], describing the
amount of information about R that is held in P , or equivalently the amount of coher-
ence in R.
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ρR
t1 • t2 t3

ρx
R⊗

ρB F X

Figure 8.2: Quantum circuit of the uncertainty game. At time t1, Alice’s register R and Bob’s sys-
tem B are uncorrelated. We will assume that Alice measures in the standard basis and one ad-
ditional basis depending on the state of register R. To allow for maximum intrinsic uncertainty,
we take the other basis to be maximally incompatible. Here, we choose it to be the Fourier ba-
sis. Hence the two measurements correspond to measuring in two mutually unbiased bases. If
B is a qubit, then this means that Alice measures in the standard and Hadamard basis, which are
the two bases used in BB84 quantum key distribution. This basis choice is performed by Alice
applying a controlled unitary between the two registers, leading to a correlated state at time t2.
Alice then measures B to obtain the measurement outcome X . If the register R is classical, then
the two operations together correspond to performing a random measurement. If the register R
contains some non-zero coherence, then those operations describe a procedure which could be
understood as a “measurement in a superposition of two bases”. After time t3, Alice sends R to
Bob. At this stage, ρR X = ∑

x pxρ
x
R ⊗ |x〉〈x|X is a qc-state. Bob can then make a measurement in

order to distinguish the states ρx
R , i.e., to help him guess X . Note that Bob knows which states ρx

R
he wants to distinguish since he knows the form of the initial state |ξRP 〉 and the measurements
Alice can perform.

8.3. METHODS
Here we provide a high level overview of the methods used to obtain the results pre-
sented in the next section. For complete analysis we refer the reader to the appendices.

After Alice has performed her measurement, at time t3 in Fig. 8.2 the resulting qc-
state between the register R and the outcome register X is:

ρR X (γ,d ,ρB ) =∑
x
ρ̃x

R (γ,d ,ρB )⊗|x〉〈x|X , (8.11)

where ρ̃x
R (γ,d ,ρB ) = px (d ,ρB )ρx

R (γ,d ,ρB ) is the subnormalised post-measurement state
of the register R corresponding to the outcome X = x. In terms of Bob’s input state ρB ,
this state has the form:

ρ̃x
R (γ,d ,ρB ) = 1

2

( 〈x|ρB |x〉 γ〈x|ρB F †|x〉
γ〈x|FρB |x〉 〈x|FρB F †|x〉

)
, (8.12)

as derived in Appendix 8.6.1. Since Bob later gains access to register R, we see that in
order to guess the resulting outcome X = x, Bob should try to determine which quantum
state ρx

R (γ,d ,ρB ) he has received. Hence, his guessing problem becomes equivalent to
the problem of distinguishing quantum states {ρx

R (γ,d ,ρB )} occurring with probabilities
{px (d ,ρB )}.

The probability of Bob correctly discriminating those states with the optimal strategy,
i.e., with the optimal measurement on R (described by POVM elements {Mx }), is given
by [24]:

pguess(γ,d ,ρB ) = max
{Mx }

d−1∑
x=0

px (d ,ρB )Tr[Mxρ
x
R (γ,d ,ρB )] . (8.13)
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In Appendix 8.6.1 we show that to achieve pmax
guess(γ,d), the guessing probability opti-

mised over input states ρB , it is sufficient to consider only pure input states ρB = |φ〉〈φ|B .
Hence, the maximum value of pguess(γ,d ,ρB ) for a given γ and d is the result of optimis-
ing the guessing probability over all input states |φ〉B of Bob (for convenience we will
often omit the subscript “B” from |φ〉B ). That is,

pmax
guess(γ,d) = max

|φ〉
pguess(γ,d , |φ〉) . (8.14)

Solving this optimisation problem is not an easy task. Note that the function which we
want to optimise over all the POVM elements {Mx } in Eq. (8.13) is linear in those oper-
ators. Hence, for a specific input state |φ〉B the optimisation can be performed using
techniques of semi-definite programming. However, the above optimisation problem in
Eq. (8.14) involves optimisation both over POVM elements and input states |φ〉B . Clearly,
ρ̃x

R (γ,d , |φ〉B ) is quadratic in |φ〉B . Note that this problem can be made linear in the input
state by again considering optimisation over all mixed states ρB , i.e. our problem is then
linear in ρB . However, the full problem of optimising over both {Mx } and ρB :

pmax
guess(γ,d) = max

ρB
max
{Mx }

d−1∑
x=0

px (d ,ρB )Tr[Mxρ
x
R (γ,d ,ρB )] (8.15)

turns out not to be jointly concave in both of those variables and so cannot be solved
using techniques of convex optimisation.

8.3.1. TWO-DIMENSIONAL GAME
Nevertheless, we can solve this problem analytically for d = 2. For this case, we derived
our result (stated below in Theorem 8.4.1) by noting that the problem of optimising over
the POVM elements in Eq. (8.13) (for fixed states {ρx

R } occuring with fixed probabilities
{px }) has been solved analytically by Helstrom [25]:

pguess(γ,d = 2,ρB ) = 1

2

(
1+∥∥ρ̃0

R (γ,ρB )− ρ̃1
R (γ,ρB )

∥∥
1

)
, (8.16)

where ‖·‖1 denotes the trace norm and we have omitted the d = 2 argument in ρ̃0
R and

ρ̃1
R . In this way we obtain an expression for pguess(γ,d = 2,ρB ) which we then analytically

optimise over the input states ρB for every value of γ ∈ [0,1] to obtain pmax
guess(γ,d = 2) (see

Appendix 8.6.2). For completeness, we still optimise over all qubit states ρB , not only the
pure ones. This allows us to find all the qubit input states that achieve pmax

guess(γ,d = 2).

8.3.2. HIGHER-DIMENSIONAL GAMES
For d > 2 we cannot calculate pmax

guess(γ,d > 2) analytically, since there exists no known an-
alytical expression for the probability of correctly distinguishing more than two quantum
states. However, we can find pguess(γ,d , |φ〉) for an arbitrary state |φ〉 using techniques
from semi-definite programming. We obtain numerical lower bounds for pmax

guess(γ,d),
shown in Fig. 8.3, by solving a semi-definite programme for pguess(γ,d , |φ〉) and numer-
ically searching for local maxima of pguess(γ,d , |φ〉) with respect to the input state |φ〉
using the Nelder-Mead algorithm. We repeat the search multiple times with a randomly
generated initial state in each run, that is drawn uniformly from unit vectors on Cd .
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8.4. RESULTS
In Section 8.1 we discussed that classical uncertainty arises solely from LOI. Here we
show that even in the quantum case, uncertainty can in part be understood as a LOI
that Bob has - namely a lack of quantum information about the register P . For the case
of d = 2 and BB84 measurements as they are used in quantum key distribution (QKD),
this effect is indeed dramatic. We find (see Theorem 8.4.1 below) that there is no more
uncertainty at all in the case where R is pure and P is uncorrelated, meaning that Bob
does not suffer from any LOI.

First, we consider the typical uncertainty game where R is a classical coin, i.e., R
and P are maximally entangled (γ= 0). In this case the maximum value of the guessing
probability (for completeness derived in Appendix 8.6.3) is given by:

pmax
guess(γ= 0,d) = 1

2

(
1+ 1p

d

)
. (8.17)

The states ρB that achieve the guessing probability of Eq. (8.17) are the pure states

|φ j l 〉 := c(| j 〉+ω j l F †|l〉) , (8.18)

where c =
√p

d/(2
p

d +2) is the normalisation constant, F denotes a quantum Fourier
transform defined in Appendix 8.6.1, ω is the d-th root of unity and j and l are integer
indices that lie in the range {0,1, . . . ,d −1} so that the pure states | j 〉 and |l〉 denote the
corresponding eigenstates of the standard basis. The states defined in Eq. (8.18) are the
states where the dominant classical outcome for the measurement is j in the standard
basis and l in the Fourier basis.

Now we consider the more general case where R may have some coherence. For d = 2
we have found the analytical solution for all γ ∈ [0,1]. In this case the guessing prob-
ability is equal to the probability of successfully distinguishing the two possible post-
measurement states of the basis register, namely ρ0

R and ρ1
R corresponding to outcomes

0 and 1 respectively (see Fig. 8.2).

Theorem 8.4.1. The maximum guessing probability for a two-dimensional game (d = 2),
optimised over all input states ρB is given by:

pmax
guess(γ,d = 2) = 1

2

(
1+

√
2+2γ2

2

)
. (8.19)

In particular, for γ= 1 one achieves perfect guessing, that is pmax
guess(γ= 1,d = 2) = 1.

It is also possible to express this guessing probability in terms of the purity of the
basis register:

pmax
guess(γ,d = 2) = 1

2

(
1+

√
Tr[ρ2

R ]
)

. (8.20)

For all γ ∈ [0,1], this guessing probability can be achieved by one of two orthogonal in-
put states of Bob, |φ01〉 = c(|0〉+ |−〉) and |φ10〉 = c(|1〉+ |+〉), which are mapped by the
Hadamard transformation onto each other. (For γ = 0 this guessing probability can
of course also be achieved by |φ00〉 and |φ11〉, as then Eq. (8.19) reduces to Eq. (8.17).
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For γ = 1 the optimal input states form a continuous one-parameter family, see Ap-
pendix 8.6.2.)

From Eq. (8.19) we see that Bob can achieve perfect guessing probability for the case
when R is uncorrelated from P (and so P holds no information about R and there is
no LOI about the measurement process on Bob’s side). This is connected to the fact,
that for γ= 1 and a suitable choice of input state ρB , the joint state ρRB becomes maxi-
mally entangled at time t2 just before Alice’s measurement in Fig. 8.2 (see Appendix 8.6.4
below for discussion of this connection). The above results for d = 2 are derived in Ap-
pendix 8.6.2.

Now it is interesting to ask what happens to the measurement uncertainty in the
game with more than two measurement outcomes in higher dimension. It is intuitive
that the dramatic effect we see for d = 2 should be less prominent here. After all, Bob
is trying to guess measurement outcomes that can take on d values, while R and P each
remain two-dimensional and can hence only contain limited information about the out-
comes. We first make this intuition precise in the following theorem.

Theorem 8.4.2. For d-dimensional games with any d > 2 it is not possible to achieve
perfect guessing, i.e.,

pmax
guess(γ,d > 2) < 1, ∀ γ ∈ [0,1] . (8.21)

Crucially, however, coherence in register R always facilitates guessing.

Theorem 8.4.3. For d-dimensional games with d being arbitrary, the maximum guessing
probability when R has any non-zero amount of coherence is always strictly greater than
the case of maximally mixed R. That is, for all γ′ > 0

pmax
guess(γ= γ′,d) > pmax

guess(γ= 0,d) , ∀ d ≥ 2. (8.22)

Moreover, we show that for a subclass of the input states that are optimal for γ = 0,
the guessing probability monotonically increases with γ. Specific values of pmax

guess(γ,d)
are lower bounded numerically. Those results are depicted in Fig. 8.3.

8.5. DISCUSSION
We have shown that quantum preparation uncertainty is not always inherent to the mea-
surement process but on the contrary it depends on the amount of information that one
has about this process. In particular, for d = 2, if Bob has all the information about the
measurement process, then he can perfectly predict the measurement outcome. In the
cryptographic protocols that use BB84 states, ρR is a maximally mixed state. Hence, from
the perspective of cryptographic security, this shows that it is important for the purifica-
tion of ρR to remain inaccessible to the adversary. In particular, the more of the purifi-
cation P becomes incorporated into R, the larger the guessing probability becomes and
so the more the security of our cryptographic protocols becomes compromised. Passive
encoding schemes [26], which generate the QKD signal states by performing a measure-
ment on a quantum register (analogous to our R), would especially need to consider this
issue.

On the other hand, we found that there is always some unavoidable uncertainty for
guessing games in higher dimensions, d > 2. This result is somewhat intuitive when one
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Figure 8.3: The optimal guessing probabilities pmax
guess(γ,d) as a function of γ for different d . The

solid line corresponds to the analytical solution pmax
guess(γ,d = 2) for a two-dimensional game. The

remaining data corresponds to the numerical lower bounds pmax, lb
guess (γ,d) for d = 3,4,5. For γ =

0 the numerical values coincide with the analytical solution pmax
guess(γ = 0,d) = 1

2

(
1+ 1p

d

)
. The

crossing of the dotted lines corresponding to d = 4 and d = 5 is discussed in Section 8.5.

considers that our guessing game allows for two measurements, and hence system R
is only two-dimensional. The intuition behind this unavoidable uncertainty is that the
state ρR , in which the information about the measurement outcome becomes encoded,
is always a qubit, while the number of outcomes is d . Hence, even if Bob inputs a state
that results in entanglement between the two systems, this entanglement lives in a two-
dimensional subspace of the d-dimensional space HB . Therefore, the joint state cannot
be maximally entangled and since the Fourier transformation applied to elements of
the standard basis generates a basis that is unbiased to it, the correlations before the
measurement of Alice do not align with the standard basis in which the measurement is
performed. This fact can also be seen by noting that perfect guessing could only occur
if only two of the resulting outcomes had non-zero probability and if those outcomes
produced orthogonal post-measurement states of the register R. It turns out that all
those conditions cannot be met simultaneously.

The crossing of the dotted lines corresponding to d = 4 and d = 5 in Fig. 8.3 is an in-
teresting phenomenon. We have investigated it extensively using multiple methods and
numerical solvers on which we now elaborate. As mentioned in Section 8.3 the prob-
lem of optimisation over both input states and measurements is in general very hard
because the optimisation problem that we face is not convex. That is we can have no
guarantee that the solution that we find is the global maximum. Therefore the numer-
ical results are just the lower bounds on the pmax

guess, as they represent achievable values
of pmax

guess that have been found. Nevertheless we have used multiple methods to look for
these optimal bounds. Apart from the method described in Section 8.3.2 (where part of
the data was checked by rerunning the programme with multiple numerical solvers), we
have tried imposing a net over the statespace and solving the semi-definite programme
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Schmidt coefficients
d = 3 0.8122 0.5834
d = 4 0.8314 0.5556
d = 5 0.7415 0.6709

Table 8.1: Schmidt coefficients of the joint state on RB at time t2 for the input states that achieve

pmax, lb
guess (γ= 1,d).

over the measurements for each of those states. Then the procedure was repeated with
a denser net in the region where the highest guessing probability has been found. This
step of “zooming-in” has then been repeated multiple times. Finally we have also used
the “Penlab” solver, which can also provide achievability bounds for non-linear prob-
lems. Application of those other methods however resulted in much worse bounds and
so they shed no light on the nature of the crossing in Fig. 8.3.

Nevertheless, despite the fact that we only find achievable bounds, we believe that
the crossing seen in Fig. 8.3 could in principle arise even for the exact solution. We note
that while asymptotically we expect pmax

guess(γ,d) to tend to 0.5 as d tends to infinity, it is
possible for pmax

guess(γ,d) to be larger for d = 5 than for d = 4 above some threshold γ= γ0.
As we mentioned earlier, the optimal guessing probability depends on the optimal corre-
lations between two-dimensional register R and d-dimensional register B . The resulting
state is asymmetric and so it is possible that certain favourable correlations are possible
for d = 5, while not possible for d = 4. The complexity of the problem can be seen by
looking at the Schmidt coefficients of the joint state of registers R and B at time t2 in
Fig. 8.2. For d = 2 and γ= 1 the optimal input states are precisely the ones that lead to a
maximally entangled state between those two registers at time t2. One might intuitively
guess that also for d > 2 forming maximally entangled states within the two-dimensional
subspace of B will lead to the optimal guessing probability forγ= 1. This turns out not be
sufficient: we checked specific states that lead to maximal entanglement in dimensions
d = 3,4,5 and their performance is suboptimal. At the same time, all the optimal input
states found numerically that achieve pmax, lb

guess (γ= 1,d) for d = 3,4,5 lead to unbalanced

Schmidt coefficients. While we have found multiple states that achieve pmax, lb
guess (γ= 1,d)

for each of d = 3,4,5, all of them lead to exactly the same Schmidt coefficients of the joint
state, which we list in Table 8.1. This fact, together with the irregularity of our numerical
curves, reveals the complexity of the geometry of this problem.

In future work, it would be very natural to consider games with more than two mea-
surements. It would be interesting to investigate whether a higher dimensional register
R could then encode more information about the measurement outcome. Specifically,
for the scenario with d mutually unbiased measurements (if they exist) and d possible
outcomes, it is reasonable to ask whether one can again achieve perfect guessing (e.g.,
due to the possibility of creating maximal entanglement between R and B).

Another natural extension of our game would be to provide Bob with access to a
quantum memory [5]. In such a scenario an interesting task would be to investigate
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the effect of the trade-off between Bob’s amount of accessible information about the
measurement process and the quality of entanglement between B and Bob’s quantum
memory.

Finally, we would like to emphasise that while the described guessing game seems
to be only an abstract tool that we use to investigate the connection between quantum
preparation uncertainty and lack of information, the game described in Fig. 8.1 could
in fact be implemented experimentally, e.g., using a Mach-Zehnder interferometer for
single photons. For simplicity consider the case d = 2, although the following discussion
can be extended to d > 2 by considering an interferometer with more than two paths.
Suppose that system R is the photon’s polarisation, while B is the photon’s spatial degree
of freedom (the path that it takes in the interferometer). Allowing Bob to have access to
the first variable beam splitter of the interferometer allows him to prepare an arbitrary
pure qubit state ρB inside the interferometer (Bob is allowed to freely choose the re-
flectance and the relative phase of the beam splitter). The controlled Fourier transform
in Fig. 8.2 is implemented by making the second beam splitter of the interferometer a
so-called quantum balanced beam splitter [7]. That is, the photon’s polarisation controls
whether or not the balanced (50/50) beam splitter appears in the photon’s path. Hence,
this beam splitter can be effectively in a superposition of being absent and present, if one
chooses the polarisation to be in a superposition. This would be a so-called quantum
control experiment [8]. Let us note that such a quantum beam splitter has been imple-
mented experimentally [27–29]. The winning condition of the game for Bob is correctly
guessing which one of the two photon detectors clicked, after being able to measure the
polarisation state of the photon behind the quantum beam splitter.

8.6. APPENDIX

8.6.1. THE UNCERTAINTY GAME: DEFINITIONS AND BASIC DERIVATIONS

TIME EVOLUTION OF THE QUANTUM CIRCUIT

Following the quantum circuit of the uncertainty game in Fig. 8.2 (in the main article), we
derive the explicit form of the density matrices that Bob needs to distinguish in order to
win the game. There are different classes of games depending on the parameter d corre-
sponding to the dimension of the Fourier transform or equivalently, the number of possi-
ble outcomes of Alice. Bob prepares a stateρB of dimension d and sends it to Alice in reg-
ister B . She holds another register R in a state ρR (γ) = 1

2 (|0〉〈0|+|1〉〈1|+γ∗|0〉〈1|+γ|1〉〈0|),
where γ ∈ C and

∣∣γ∣∣ ≤ 1. This γ determines how coherent the register is. Specifically,
in the later part of this appendix we show that we can restrict γ to be real and γ ∈ [0,1].
Hence at the beginning (time t1) the total state of the entire system is:

ρRB (γ,ρB ) = ρR (γ)⊗ρB = 1

2
(|0〉〈0|R +|1〉〈1|R +γ∗|0〉〈1|R +γ|1〉〈0|R )⊗ρB . (8.23)

The state ρR (γ) determines the measurement basis in the following way: |0〉 corresponds
to the measurement in the standard basis and |1〉 to the measurement in the Fourier
basis (which is represented by applying the Fourier transformation to Bob’s state and
then measuring in the standard basis). Hence, the choice of the measurement basis can
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be represented by the controlled Fourier transform:

U = |0〉〈0|R ⊗IB +|1〉〈1|R ⊗FB . (8.24)

We adopt the following convention for the Fourier transform: F | j 〉 = 1p
d

∑d−1
k=0 ω

j k |k〉
with ω = exp

( 2πi
d

)
being the d-th root of unity. After Alice applies the above unitary,

the state at time t2 is:

ρ′
RB (γ,d ,ρB ) =UρRB (γ,ρB )U † =U (ρR (γ)⊗ρB )U † (8.25)

= 1

2
(|0〉〈0|R ⊗ρB +γ∗|0〉〈1|R ⊗ρB F †

B +γ|1〉〈0|R FBρB +|1〉〈1|R ⊗FBρB F †
B ) .

(8.26)

Then Alice performs her measurement and the outcome is stored in the output register
X. The total state after the measurement at time t3 is:

ρR X (γ,d ,ρB ) =∑
x

TrB [(IR ⊗|x〉〈x|B )ρ′
RB (γ,d ,ρB )]⊗|x〉〈x|X . (8.27)

Hence, we see that the subnormalised post-measurement states of the basis register cor-
responding to Alice’s measurement outcome x are:

ρ̃x
R (γ,d ,ρB ) = px (d ,ρB )ρx

R (γ,d ,ρB ) = TrB [(IR ⊗|x〉〈x|B )ρ′
RB ]

= 1

2

( 〈x|ρB |x〉 γ∗〈x|ρB F †|x〉
γ〈x|FρB |x〉 〈x|FρB F †|x〉I

)
,

(8.28)

where px (d ,ρB ) = Tr[ρ̃x
R (γ,d ,ρB )] is the probability that Alice observes outcome x ∈

{0,1, ...,d−1}. Note that px does not depend on γ, which only appears in the off-diagonal
elements of ρ̃x

R . These subnormalised ρ̃x
R ’s are the states to which Bob has access and so

his ability to predict Alice’s measurement outcome |x〉 is determined by how well he can
distinguish the quantum states {ρx

R } occurring with probabilities {px }.

SIMPLIFYING LEMMAS

In the second part of this appendix we prove two lemmas, which allow us to restrict
the coherence parameter γ to real and positive numbers and the input state ρB to pure
states.

Lemma 8.6.1. In our problem, we can describe all the possible qualitatively different
games just with γ ∈ [0,1]. That is, all games corresponding to γ ∈ C,

∣∣γ∣∣ ≤ 1 are equiva-
lent to some game with γ ∈ [0,1].

Proof. Let γ= ∣∣γ∣∣e iθ. Then:

ρ̃x
R (γ,d ,ρB ) = 1

2

( 〈x|ρB |x〉
∣∣γ∣∣e−iθ〈x|ρB F †|x〉∣∣γ∣∣e iθ〈x|FρB |x〉 〈x|FρB F †|x〉

)
, (8.29)

Let V (θ) denote the rotation matrix in the x y plane of the Bloch sphere by angle θ. That
is:

V (θ) =
(

1 0
0 e iθ

)
. (8.30)
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Then it can be easily verified that:

ρ̃x
R (γ,d ,ρB ) =V (θ)ρ̃x

R (
∣∣γ∣∣ ,d ,ρB )V †(θ) , (8.31)

where
∣∣γ∣∣ ∈ [0,1]. Hence all the output states ρ̃x

R (γ,d) up to a unitary rotation V (θ) are
the same as the corresponding states ρ̃x

R (
∣∣γ∣∣ ,d). Clearly, rotating all the output states of

register R by a fixed angle θ does not affect their distinguishability. Hence, it is sufficient
to consider real and positive γ ∈ [0,1].

The probability of successfully discriminating states ρx
R (γ,d ,ρB ), optimised over all

measurements is [24]:

pguess(γ,d ,ρB ) = max
{Mx }

d−1∑
x=0

px (d ,ρB )Tr[Mxρ
x
R (γ,d ,ρB )] = max

{Mx }

d−1∑
x=0

Tr[Mx ρ̃
x
R (γ,d ,ρB )] ,

(8.32)
where {Mx } is a POVM. Here, by pguess we denote the guessing probability optimised over
all POVM’s but for a specific input state ρB , while later we will use pmax

guess to denote the
guessing probability pguess optimised over all inputs states of Bob. Both pguess and pmax

guess
are calculated for a specific game parameterised by d ≥ 2 and for a specific γ ∈ [0,1].
Hence, we have pmax

guess(γ,d) = max
ρB

pguess(γ,d ,ρB ).

Lemma 8.6.2. To achieve pmax
guess it is sufficient for Bob to consider pure input states.

Proof. Firstly, let us consider the case when not only does Bob hold no quantum mem-
ory, but he also does not have any classical memory. Consider then a scenario in which
Bob sends Alice a mixed state ρB = ∑

i qi |φi 〉〈φi |, where he is given freedom to choose
the probabilities {qi }. Then using Eq. (8.12):

ρ̃x
R (γ,d ,ρB ) =∑

i
qi

1

2

( ∣∣〈x|φi 〉
∣∣2

γ〈x|φi 〉〈φi |F †|x〉
γ〈φi |x〉〈x|F |φi 〉

∣∣〈x|F |φi 〉
∣∣2

)
=∑

i
qi ρ̃

x
R,i (γ,d , |φi 〉) ,

(8.33)

where ρ̃x
R (γ,d , |φi 〉) denotes a post-measurement register state ρ̃x

R (γ,d ,ρB ) correspond-
ing to Bob inputting a pure state ρB = |φi 〉〈φi |. In this case the guessing probability from
Eq. (8.32) becomes:

pguess(γ,d ,ρB ) = max
{Mx }

d−1∑
x=0

Tr

[
Mx

∑
i

qi ρ̃
x
R (γ,d , |φi 〉)

]
≤∑

i
qi max

{Mx }

d−1∑
x=0

Tr[Mx ρ̃
x
R (γ,d , |φi 〉)]

=∑
i

qi pguess(γ,d , |φi 〉) ≤ max
i

pguess(γ,d , |φi 〉) = pguess(γ,d , |φm〉) ,

(8.34)

where pguess(γ,d , |φi 〉) = max
{Mx }

d−1∑
x=0

Tr[Mx ρ̃
x
R (γ,d , |φi 〉)] and by index m we denote the largest

of all pguess(γ,d , |φi 〉) over all i ’s. Hence it is optimal for Bob to prepare a state ρB =∑
i qi |φi 〉〈φi | = |φm〉〈φm | (so that qi = δi ,m), such that |φm〉 ∈ {|φi 〉} and pguess(γ,d , |φm〉) =

max
i

pguess(γ,d , |φi 〉).
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Now, if we allow Bob to have classical memory, he could then prepare a mixed state
ρB which is classically correlated to this memory. Then for each of the states ρi

B , corre-
sponding to the state of the classical memory |i 〉M , we need to solve a separate optimi-
sation problem given by Eq. (8.32). Hence, if Bob prepares a state:

ρB M =∑
i

siρ
i
B ⊗|i 〉〈i |M (8.35)

according to the probability distribution {si }, then the guessing probability will be a
weighted average of the individual guessing probabilities corresponding to each of the
states ρi

B , namely:

pguess(γ,d ,ρB ) =∑
i

si pguess(γ,d ,ρi
B ) ≤ pguess(γ,d ,ρk

B ) , (8.36)

where ρk
B is the input state that gives the highest guessing probability out of all the states

{ρi
B }. Hence, classical memory does not allow us to achieve guessing probability higher

than individual ρk
B , for which (as we have just seen) the guessing probability is upper

bounded by its value corresponding to the optimal pure state |φm〉 in the decomposition
ρk

B =∑
i qi |φi 〉〈φi |.

Hence we will restrict our attention to scenarios in which Bob prepares a pure state
|φ〉B . In this case the post-measurement states of the basis register are:

ρ̃x
R (γ,d , |φ〉B ) = 1

2

( ∣∣〈x|φ〉∣∣2
γ〈x|φ〉〈φ|F †|x〉

γ〈x|F |φ〉〈φ|x|〉 ∣∣〈x|F |φ〉∣∣2

)
. (8.37)

8.6.2. GUESSING PROBABILITY FOR TWO-DIMENSIONAL GAME (d = 2)
In this appendix we prove Theorem 8.4.1. That is, we derive the analytical formula for the
maximum guessing probability as a function ofγ ∈ [0,1], for a game with two-dimensional
Fourier transform (Hadamard transform) in our circuit and two possible outcomes. In
this game the state ρB that Bob prepares is a qubit. The two possible outcomes for Alice
are: 0 and 1. We firstly restate this theorem below.

Theorem 8.4.1. The maximum guessing probability for a two-dimensional game (d = 2),
optimised over all input states ρB is given by:

pmax
guess(γ,d = 2) = 1

2

(
1+

√
2+2γ2

2

)
. (8.38)

In particular, for γ= 1 one achieves perfect guessing, that is pmax
guess(γ= 1,d = 2) = 1.

Proof. The guessing probability is determined by how well Bob can distinguish states
ρ̃0

R and ρ̃1
R defined in Eq. (8.37) (for convenience we will omit writing out explicitly the

dependence on γ and d). The problem of distinguishing two states has been solved by
Helstrom [25] and the guessing probability is:

pguess = 1

2
(1+‖G‖1) , (8.39)
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where G = ρ̃0
R − ρ̃1

R = p0ρ
0
R −p1ρ

1
R and ‖·‖1 denotes the trace-norm of the matrix. Firstly

we note that for d = 2, F = F † = H . Secondly, since ρB is a qubit, it is convenient to use
the Bloch sphere representation:

ρB = 1

2

(
I+∑

i
ciσi

)
, (8.40)

with c2
x + c2

y + c2
z ≤ 1. Although we have already shown in Appendix 8.6.1 that the opti-

mal guessing probability pmax
guess will be achieved for a pure input state ρB , here we are

interested in all the qubit states that achieve this maximum guessing probability (under
the assumption of Bob having no classical memory; if Bob had access to some classical
memory, then any mixture of such optimal states correlated with this memory would
also be an optimal state). Hence, in this appendix we again assume ρB to be an arbi-
trary (possibly mixed) qubit state. Plugging the Bloch sphere representation of ρB into
Eq. (8.12), we can first calculate ρ̃0

R and ρ̃1
R and then G :

G = 1

2

 cz
γ(1−i ·cy )p

2
γ(1+i ·cy )p

2
cx

 . (8.41)

The eigenvalues of G are:

λ=
(cx + cz )±

√
(cx − cz )2 +γ2(1+ c2

y )

4
. (8.42)

Now, let us consider two cases:

(a) λ1 ·λ2 ≥ 0.

Then ‖G‖a
1 = |λ1|+|λ2| = |cx + cz |/2 (the superscript “a” labels the caseλ1 ·λ2 ≥ 0). We

are interested in the maximum possible value of ‖G‖a
1 for a given γ. Hence we want

to maximise the expression |cx + cz | subject to the constraint c2
x +c2

y +c2
z ≤ 1. Clearly,

this gives us |cx + cz | ≤
p

2. and so ‖G‖a, max
1 ≤

p
2

2 . In particular, this bound is tight
for cy = 0 and cx = cz = ± 1p

2
(those states clearly satisfy the condition λ1 ·λ2 ≥ 0).

Hence, ‖G‖a, max
1 =

p
2

2 .

(b) λ1 ·λ2 < 0.

Then:

λ1 =
(cx + cz )+

√
(cx − cz )2 +2γ2(1+ c2

y )

4
> 0 (8.43)

λ2 =
(cx + cz )−

√
(cx − cz )2 +2γ2(1+ c2

y )

4
< 0. (8.44)

Hence in this case:

‖G‖b
1 =λ1 −λ2 =

√
(cx − cz )2 +2γ2(1+ c2

y )

2
. (8.45)
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Now we need to optimise this expression subject to the constraint c2
x+c2

y +c2
z ≤ 1. Let

us use a substitution a = cx−czp
2

b = cx+czp
2

. Then the constraint becomes: a2+c2
y +b2 ≤

1 and the norm of G is:

‖G‖b
1 =

√
2a2 +2γ2(1+ c2

y )

2
. (8.46)

Clearly, since the term c2
y is scaled by the positive factor 2γ2 ≤ 2, while a2 is scaled

by a factor of exactly 2, optimising this expression corresponds to setting a2 to its
maximum possible value which is 1 (so that cx = −cz = ± 1p

2
). Then cy = b = 0 (one

can easily verify that those values satisfy the condition of (b) λ1 ·λ2 < 0, for all γ ∈
[0,1]). This gives:

‖G‖b, max
1 =

√
2+2γ2

2
, (8.47)

Clearly ‖G‖b, max
1 ≥ ‖G‖a, max

1 for all γ ∈ [0,1] (the equality relation holds only for γ = 0).
Hence:

‖G‖max
1 =

√
2+2γ2

2
, (8.48)

Using ‖G‖max
1 , for everyγwe can now calculate the maximum value of the guessing prob-

ability:

pmax
guess(γ,d = 2) = 1

2
(1+‖G‖max

1 ) = 1

2

(
1+

√
2+2γ2

2

)
. (8.49)

We see also that for a fully coherent register with γ= 1, we obtain pmax
guess = 1.

In order to find the optimal states we need to consider 3 separate cases depending
on the value of γ.

• γ = 0. In this case ‖G‖max
1 =

p
2

2 . This value occurs for two classes of states. One
of them satisfies a2 = 1 and b = cy = 0 which gives two solutions: cx =−cz =± 1p

2
.

Hence we obtain two states: (cx ,cy ,cz ) =
(

1p
2

,0,− 1p
2

)
and (cx ,cy ,cz ) =

(
− 1p

2
,0, 1p

2

)
.

The other class can be seen by noticing that ‖G‖max
1 =

p
2

2 = ‖G‖a, max
1 and so it can

also be obtained from the case (a) for two states that achieve this value: (cx ,cy ,cz ) =(
1p
2

,0, 1p
2

)
and (cx ,cy ,cz ) =

(
− 1p

2
,0,− 1p

2

)
.

• γ ∈ (0,1). Here we only have the class a2 = 1 and b = cy = 0, that is the states:

(cx ,cy ,cz ) =
(

1p
2

,0,− 1p
2

)
and (cx ,cy ,cz ) =

(
− 1p

2
,0, 1p

2

)
.

• γ= 1. Now ‖G‖b
1 =

√
2a2+2(1+c2

y )

2 , and so this expression subject to the Bloch sphere
normalisation is maximised by the pure states satisfying a2 + c2

y = 1 and b = 0.

These are all pure states with cz = −cx and cy = ±
√

1−2c2
x . We can use angular

parametrisation of those coefficients, in which case we can write this entire family
of states as (cx ,cy ,cz ) = (

sin(θ),±pcos(2θ),−sin(θ)
)

for all θ ∈ [−π
4 , π4 ]. Geometri-

cally, these states correspond to all pure states on the Bloch sphere that lie in the



8

222 8. QUANTUM PREPARATION UNCERTAINTY AND LACK OF INFORMATION

plane perpendicular to the Hadamard rotation axis and Hadamard transformation
rotates them by π rad to their orthogonal complement.

From Eq. (8.49) we see that the lowest value of pmax
guess occurs for γ = 0 and it is pmax

guess =
1
2

(
1+ 1p

2

)
. As the basis register state is becoming more pure by letting γ grow, the pmax

guess

grows, until pmax
guess = 1 for γ = 1. We can also rephrase the guessing probability in terms

of the purity of the basis register:

Tr[ρ2
R ] = 1

4
Tr

[(
1 γ

γ 1

)(
1 γ

γ 1

)]
= 1

4
Tr

[(
1+γ2 2γ

2γ 1+γ2

)]
= 1+γ2

2
. (8.50)

Hence:

pmax
guess(γ,d = 2) = 1

2

(
1+

√
Tr[ρ2

R ]
)

. (8.51)

8.6.3. GUESSING PROBABILITY FOR THE D-DIMENSIONAL GAME
We have already seen that in two dimensions utilising entanglement allows for guessing
with probability equal to 1. In higher dimensions however, we show that this is not pos-
sible. This fact is expressed in Theorem 8.4.2 in the main text. We restate and prove this
theorem below.

Theorem 8.4.2. For d-dimensional games with any d > 2 it is not possible to achieve
perfect guessing, i.e.,

pmax
guess(γ,d > 2) < 1, ∀ γ . (8.52)

Proof. We construct a proof by contradiction. Let us assume that there exists d > 2 and
γ ∈ [0,1], such that pmax

guess(γ,d) = 1. Since the states ρ̃x
R (γ,d , |φ〉) are two-dimensional,

it is only possible to perfectly distinguish at most 2 such states (if they are orthogonal).
Hence, that means that to achieve pmax

guess(γ,d) = 1 it is required that at least d −2 output
states ρx

R occur with probability zero. Hence, ρ̃x
R 6= 0 for at most two values of x. Let

us denote those two values of x ∈ {0,1, ...,d − 1} for which it is possible that ρ̃x
R 6= 0 by

x0 and x1. We assume that those values are distinct so that x0 6= x1. Specifically, let
us assume that ρ̃x0

R 6= 0, while ρ̃x1
R may or may not be equal to zero. Then let us define

P = {0,1, ...,d−1}\{x0, x1}. Therefore we require that ρ̃x
R = 0 for all x ∈P . Thus we obtain

the following two requirements:

1) 〈x|φ〉 = 0 for all x ∈P ,

2) 〈x|F |φ〉 = 0 for all x ∈P .

The requirement 1) implies that the physical input state of Bob must be of the form:

|φ〉 =α0|x0〉+α1|x1〉 , (8.53)

with
|α0|2 +|α1|2 = 1. (8.54)
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In this framework, the scenario in which only ρ̃x0
R 6= 0 would require α1 = 0. Now, note

that:

F †| j 〉 = 1p
d

d−1∑
k=0

ω− j k |k〉 , (8.55)

where ω= exp
( 2πi

d

)
and so:

〈φ|F †|x〉 = 1p
d

(α∗
0ω

−xx0 +α∗
1ω

−xx1 ) . (8.56)

Then 2) implies that:
α∗

0 +α∗
1ω

x(x0−x1) = 0, ∀x ∈P . (8.57)

Eq. (8.57) together with Eq. (8.54) require that α0 and α1 are of the form:

α0 = 1p
2

e iθ0 , (8.58)

α1 = 1p
2

e iθ1 . (8.59)

The above requirement shows that α1 cannot be zero, which in turn means that the sce-
nario in which only ρ̃x0

R 6= 0 is not possible. Plugging the above forms ofα’s into Eq. (8.57)
and using the fact that ω is the d-th root of unity, we obtain the following requirement:

θ0 ≡ θ1 +π+2π
[ x

d
(x1 −x0)

]
( mod 2π) , ∀x ∈P . (8.60)

Note that for d = 3, this expression can be easily satisfied since in this case |P | = 1, so
e.g. θ0 = θ1+π+2π

[ xP
d (x1 −x0)

]
, where xP ∈P satisfies Eq. (8.60). Hence the case d = 3

needs to be analysed separately. For d > 3 this equation can be satisfied if and only if:

x1 −x0

d
∈Z , (8.61)

whereZ denotes the set of integers. However, x0, x1 ∈ {0,d−1} and x0 6= x1. Therefore this
equation cannot be satisfied. Hence, for d > 3, it is not possible to have pguess(γ,d) = 1.
Now, let us consider the case d = 3. Eq. (8.53) and Eq. (8.58)-(8.60) imply that

|φ〉 = 1p
2

(|x1〉−ωxP (x1−x0)|x0〉
)

, (8.62)

where we fix the global phase by setting θ1 = 0. Since xP , x0, x1 must be all differ-
ent, there are 6 possible states |φ〉 corresponding to the above expression. Let |ψkl 〉 =

1p
2

(|l〉−ωxP (l−k)|k〉). Then note that for every value of xP , the state |φ〉 = |ψkl 〉 with

x0 = k, x1 = l and the state |φ〉 = |ψlk〉 with x0 = l , x1 = k up to the global phase corre-
spond to exactly the same state, since:

|ψkl 〉 =
1p
2

(
|l〉−ωxP (l−k)|k〉

)
=−ωxP (l−k) 1p

2

(
−ωxP (k−l )|l〉+ |k〉

)
=−ωxP (l−k)|ψl k〉 .

(8.63)
Hence, we need only to consider 3 separate cases:
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• For xP = 0, x0 = 1, x1 = 2, that is when ρ̃0
R = 0, we have:

|φ〉 = 1p
2

(|2〉− |1〉) . (8.64)

Then:

F |φ〉 = i
1p
2

(|2〉− |1〉) = i |φ〉 . (8.65)

This means that if we define a matrix

ρc (γ) = 1

2

(
1 −iγ

iγ 1

)
, (8.66)

then ρ̃0
R = 0, ρ̃1

R = ∣∣〈1|φ〉∣∣2
ρc (γ), ρ̃2

R = ∣∣〈2|φ〉∣∣2
ρc (γ). Hence, ρ̃1

R = ρ̃2
R = 1

2ρc (γ) and
so we see that ρ̃1

R and ρ̃2
R correspond to the same state ρc (γ) occurring with prob-

ability 0.5. This means that guessing probability in this case is 0.5 for all γ ∈ [0,1].

• For xP = 1, x0 = 2, x1 = 0 with ρ̃1
R = 0 the input state is:

|φ〉 = 1p
2

(|0〉−ω−2|2〉)= 1p
2

(|0〉−ω|2〉) . (8.67)

Then:

F |φ〉 = 1p
6

(1−ω)
(|0〉−ω2|2〉) . (8.68)

Hence,

ρ̃0
R = 1

4

(
1 γ 1p

3
(1−ω∗)

γ 1p
3

(1−ω) 1

)
, (8.69)

ρ̃1
R = 0, (8.70)

ρ̃2
R = 1

4

(
1 γ 1p

3
(1−ω∗)ω∗

γ 1p
3

(1−ω)ω 1

)
. (8.71)

One can now show that Tr[ρ̃0
R ρ̃

2
R ] 6= 0 for all γ ∈ [0,1]. Hence those states are not

orthogonal and perfect guessing is not possible.

• For xP = 2, x0 = 0, x1 = 1, with ρ̃1
R = 0 the input state is:

|φ〉 = 1p
2

(|1〉−ω2|0〉) . (8.72)

Then:

F |φ〉 = 1p
6

(
(1−ω2)|0〉+p

3i |1〉
)

. (8.73)

Hence,

ρ̃0
R = 1

4

(
1 γ 1p

3
(1−ω∗)

γ 1p
3

(1−ω) 1

)
, (8.74)

ρ̃1
R = 1

2
ρc (γ) , (8.75)

ρ̃2
R = 0. (8.76)
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Again Tr[ρ̃0
R ρ̃

1
R ] 6= 0 for all γ ∈ [0,1]. Hence also in this case perfect guessing is not

possible.

We have shown that perfect guessing in d = 3 case is not possible either. Therefore we
conclude that for all d > 2 and for all γ ∈ [0,1], pmax

guess(γ,d) < 1.

The case γ= 0 is a special case and can be solved analytically for all d ≥ 2.

Proposition 1. For γ= 0 the maximal guessing probability is:

pmax
guess(γ= 0,d) = 1

2

(
1+ 1p

d

)
, (8.77)

and under assumption of Bob having no classical memory, it is achieved if and only if
Bob’s input state ρB belongs to the following family of pure states:

|φ j l 〉 = c
(
| j 〉+ω j l F †|l〉

)
, (8.78)

where ω= exp
( 2πi

d

)
, j , l ∈ {0,1, ...,d −1} and c =

√ p
d

2
p

d+2
.

Proof. If one measures in the standard basis, the guessing probability for a fixed input
state ρB is:

pstandard
guess (d ,ρB ) = max

l
Tr[|l〉〈l |ρB ] . (8.79)

If one measures in the Fourier basis:

pFourier
guess (d ,ρB ) = max

l
Tr[|l〉〈l |FρB F †] = max

l
Tr[F †|l〉〈l |FρB ] . (8.80)

Since each measurement occurs with probability 50% and in the classical game the reg-
ister R only tells Bob which measurement basis was used, the guessing probability opti-
mised over all input states of Bob is:

pmax
guess(γ= 0,d) = 1

2
max
ρB

(pstandard
guess (d ,ρB )+pFourier

guess (d ,ρB ))

= 1

2
max
ρB

max
j ,l

Tr[(| j 〉〈 j |+F †|l〉〈l |F )ρB ]

= 1

2
max

j ,l

∥∥∥| j 〉〈 j |+F †|l〉〈l |F
∥∥∥∞ ,

(8.81)

where ‖·‖∞ denotes the infinity norm. The matrix whose infinity norm we need to find
is a rank-2 matrix. Let pguess = 1

2 ‖M‖∞ and M = |α〉〈α|+ |β〉〈β| be a rank-2 matrix. The
largest eigenvalue of such a matrix is ‖M‖∞ = λmax = 1+ ∣∣〈α|β〉∣∣. In our case: |α〉 = | j 〉
and |β〉 = F †|l〉. This means that ‖M‖∞ = 1+ 1p

d
and so:

pmax
guess(γ= 0,d) = 1

2

(
1+ 1p

d

)
. (8.82)

The eigenstate corresponding to this eigenvalue λmax is:

|φ j l 〉 = c
(
| j 〉+ω j l F †|l〉

)
. (8.83)

Hence only the states of this form will give us the maximum guessing probability.
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We will now show that for a subclass of the states of this form Bob will be guessing
always either j or l , for all γ ∈ [0,1] and all d ≥ 2, since those 2 outcomes have much
higher probabilities of occurrence p j (d , |φ j l 〉) and pl (d , |φ j l 〉) than all other outcomes

(i.e. we will show that for input state |φ j l 〉 = c
(| j 〉+ω j l F †|l〉) such that j 6= l the optimal

strategy aims at distinguishing only the two states ρ̃ j
R (γ,d , |φ j l 〉) and ρ̃l

R (γ,d , |φ j l 〉)).

Lemma 8.6.3. For all d ≥ 2, for all γ ∈ [0,1] and for all states |φ j l 〉 = c
(| j 〉+ω j l F †|l〉),

such that j , l ∈ {0,1, ...,d −1} and j 6= l , the optimal guessing probability can be achieved
by Bob if his measurement on the state of register R is a POVM with only two occurring
outcomes, that is the matrix elements of this POVM are: M j 6= 0, Ml 6= 0, Mk = 0, for all
k ∈P , where P = {0,1, ...,d −1} \ { j , l }.

Proof. The case d = 2 is trivial, since then there are only two output states.
Now considering the general case, let λmin(γ,d , |φ j l 〉) denote the guessing probabil-

ity corresponding to this restricted POVM. The “min” subscript indicates that this guess-
ing probability is a lower bound on pguess(γ,d , |φ j l 〉), the guessing probability optimised
over all POVMs. That is: λmin(γ,d , |φ j l 〉) ≤ pguess(γ,d , |φ j l 〉). We then have:

λmin(γ,d , |φ j l 〉) = max
M j ,Ml

Tr[M j ρ̃
j
R (γ,d , |φ j l 〉)]+Tr[Ml ρ̃

l
R (γ,d , |φ j l 〉)] , (8.84)

Effectively this is again the problem of distinguishing 2 states solved by Helstrom [25],
the only difference is that this time p j (d , |φ j l 〉)+pl (d , |φ j l 〉) ≤ 1. Hence

λmin(γ,d , |φ j l 〉) =
1

2

[∥∥G(γ,d , |φ j l 〉)
∥∥

1 +p j (d , |φ j l 〉)+pl (d , |φ j l 〉)
]

, (8.85)

where G(γ,d , |φ j l 〉) = ρ̃
j
R (γ,d , |φ j l 〉)− ρ̃l

R (γ,d , |φ j l 〉). Now we will show that this bound
is tight, i.e. we will show that the above λmin(γ,d , |φ j l 〉) is in fact also an upper bound
on pguess(γ,d , |φ j l 〉). For this purpose let us consider the dual program [24] in which we
consider all matrices

Q(γ,d , |φ j l 〉) ∈Z , where Z =
{

Q ∈C2×2 : Q =Q† ∧∀k ∈ {0,1, ...,d −1},

Q(γ,d , |φ j l 〉) ≥ ρ̃k
R (γ,d , |φ j l 〉)

}
.

(8.86)

Then for each Q ∈ Z we define λQ
max(γ,d , |φ j l 〉) = Tr[Q(γ,d , |φ j l 〉)]. From this it follows

that pguess(γ,d , |φ j l 〉) ≤ λ
Q
max(γ,d , |φ j l 〉) for all Q ∈ Z [24] and so λ

Q
max(γ,d , |φ j l 〉) is an

upper bound on pguess(γ,d , |φ j l 〉). For simplicity, we will now omit writing explicitly the
dependence on γ,d and |φ〉. Consider a hermitian matrix:

Q ′ = 1

2
(ρ̃ j

R + ρ̃l
R +|G|) . (8.87)

Then:

Tr[Q ′] = 1

2
(p j +pl +‖G‖1) =λmin . (8.88)

Now, if Q ′ satisfies Q ′ ≥ ρ̃k
R ,∀k, then Q ′ ∈Z and so Tr[Q ′] =λQ ′

max. And since then Tr[Q ′] =
λmin = λ

Q ′
max, this means that Tr[Q ′] = pguess. Hence, we will now prove that ∀d ≥ 3,γ ∈

[0,1] we have Q ′ ∈Z .
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Consider

Q ′− ρ̃ j
R = 1

2
(−ρ̃ j

R + ρ̃l
R +|G|) = 1

2
(−G +|G|) . (8.89)

Note that |G| ≥G and so Q ′− ρ̃ j
R ≥ 0. Hence Q ′ ≥ ρ̃ j

R . Analogously

Q ′− ρ̃l
R = 1

2
(ρ̃ j

R − ρ̃l
R +|G|) = 1

2
(G +|G|) . (8.90)

Clearly: |G| ≥ −G and so Q ′− ρ̃l
R ≥ 0. Hence Q ′ ≥ ρ̃l

R .

Now we need to prove that Q ′ ≥ ρ̃k
R ,∀k ∈P and for all γ ∈ [0,1],d ≥ 3. In order to do

that, we need to explicitly calculate all the output states of the register R. Those states
are:

ρ̃
j
R (γ,d , |φ j l 〉) =

1

2

(
A2 γABω− j 2

γABω j 2
B 2

)
, (8.91)

ρ̃l
R (γ,d , |φ j l 〉) =

1

2

(
B 2 γABω−l 2

γABωl 2
A2

)
, (8.92)

ρ̃k
R (γ,d , |φ j l 〉) =

B 2

2

(
1 γω j l− j k−kl

γω j k+kl− j l 1

)
, (8.93)

where A = c
(
1+ 1p

d

)
,B = cp

d
,k ∈P . Then Q ′− ρ̃k

R = 1
2 (ρ̃ j

R + ρ̃l
R −2ρ̃k

R +|G|). Consider the
operator:

D = ρ̃ j
R + ρ̃l

R −2ρ̃k
R

= 1

2

 A2 −B 2 γB
(

Aω− j 2 + Aω−l 2 −2Bω j l− j k−kl
)

γB
(

Aω j 2 + Aωl 2 −2Bω j k+kl− j l
)

A2 −B 2

 .

(8.94)
We will now show that for all k ∈ P we have D ≥ 0. Note that for 2×2 matrices, D ≥ 0
if and only if Tr[D] ≥ 0 and Det(D) ≥ 0. Firstly, we see that Tr[D] = A2 −B 2 ≥ 0,∀d ≥ 3.
Secondly, the determinant of D is:

Det(D) = 1

4

[
(A2 −B 2)2 −γ2B 2

(
2A2 +4B 2 +2A2 cos

(
2π( j 2 − l 2)

d

)
−4AB cos

(
2π( j 2 − j k −kl + j l )

d

)
−4AB cos

(
2π(l 2 − j k −kl + j l )

d

))]
.

(8.95)

Now we want to show that Det(D) ≥ 0 for all j , l ∈ {0,1, ...,d − 1},k ∈ P ,γ ∈ [0,1],d ≥ 3.
From the above expression we see that Det(D) is monotonic in γ ∈ [0,1]. Clearly for
γ= 0,Det(D) = 1

4 (A2 −B 2)2 ≥ 0. For γ= 1, we have:

Det(D) = 1

4

[
A4 −3B 4 −4A2B 2 −2A2B 2 cos

(
2π( j 2 − l 2)

d

)
+4AB 3 cos

(
2π( j 2 − j k −kl + j l )

d

)
+4AB 3 cos

(
2π(l 2 − j k −kl + j l )

d

)]
.

(8.96)
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Note that A = B(1+p
d). Thus we see that:

Det(D) = B 4

4

[
(1+

p
d)4 −3−4(1+

p
d)2 −2(1+

p
d)2 cos

(
2π( j 2 − l 2)

d

)
+4(1+

p
d)cos

(
2π( j 2 − j k −kl + j l )

d

)
+4(1+

p
d)cos

(
2π(l 2 − j k −kl + j l )

d

)]
≥ B 4

4

[
(1+

p
d)4 −3−4(1+

p
d)2 −2(1+

p
d)2 −4(1+

p
d)−4(1+

p
d)

]
= B 4

4

(
d 2 +4d

p
d −16

p
d −16

)
.

(8.97)
Let

y(d) =
(
d 2 +4d

p
d −16

p
d −16

)
, (8.98)

then Det(D) ≥ B(d)4

4 y(d). Clearly B(d) ≥ 0,∀d ≥ 3 and y(d) ≥ 0,∀d ≥ 4. Hence Det(D) ≥
0,∀d ≥ 4. For d = 3 we use the exact expression from the first part of Eq. (8.97) and we
find that for all the cases j 6= l , ∀k ∈P , Det(D) ≥ 0. Hence Det(D) ≥ 0,∀d ≥ 3. Since both
Det(D) ≥ 0 and Tr[D] ≥ 0, D ≥ 0 and so Q ′ ≥ ρ̃k

R ,∀k ∈ {0,1, ...,d−1} and for all γ ∈ [0,1],d ≥
3. Therefore Q ′ ∈Z and

Tr[Q ′] =λQ
max(γ,d , |φ j l 〉) =λmin(γ,d , |φ j l 〉) = pguess(γ,d , |φ j l 〉) . (8.99)

Now, knowing that the strategy of distinguishing only the two most probable out-
comes for the input state |φ j l 〉 = c

(| j 〉+ω j l F †|l〉), such that j 6= l is actually an optimal
strategy for those states, we can calculate the guessing probability for these states for all
d ≥ 2 and for all γ ∈ [0,1]:

pguess(γ,d , |φ j l 〉) =
1

2
(p j +pl +‖G‖1)

= 1

4(d +p
d)

(
2+2

p
d +d

+
√

d(2+
p

d)2 +2γ2(1+
p

d)2

(
1−cos

(
2π( j 2 − l 2)

d

)))
.

(8.100)

Clearly forγ= 0 the above expression reduces to Eq. (8.82). That is pguess(γ= 0,d , |φ j l 〉) =
pmax

guess(γ = 0,d), since the states for which we have evaluated pguess(γ,d) above are the

optimal states for γ = 0. Note that A2 = pmax
guess(γ = 0,d) and so it is easy to see that for

γ= 0 the optimal measurement is:

M j =
(

1 0
0 0

)
, Ml =

(
0 0
0 1

)
, Mk = 0, ∀k ∈P . (8.101)

We can also see that for the game with d = 2, the two cases j = 0, l = 1 and j = 1, l = 0
correspond to the two optimal states for all γ ∈ [0,1]. Hence, for these cases the above
equation reduces to Eq. (8.49).
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Lemma 8.6.4. There exist states for which pguess(γ1,d , |φ〉) > pguess(γ2,d , |φ〉) > pmax
guess(γ=

0,d), for γ1 > γ2 > 0,∀d ≥ 2.

Proof. Consider all input states of the form |φ j l 〉 = c
(| j 〉+ω j l F †|l〉) such that j 2−l 2

d ∉ Z
and ∀d ≥ 2. Then firstly, j 6= l and so the guessing probability corresponding to those
states is given by Eq. (8.100) and secondly the coefficient in front of γ2 is positive.
Hence in these cases pguess(γ,d , |φ j l 〉) is monotonically increasing in γ ∈ [0,1],∀d ≥ 2.

Hence, ∀d ≥ 2, for all input states |φ j l 〉 = c
(| j 〉+ω j l F †|l〉) such that j 2−l 2

d ∉ Z we have
pguess(γ1,d , |φ j l 〉) > pguess(γ2,d , |φ j l 〉) > pmax

guess(γ= 0,d), for γ1 > γ2 > 0.

Theorem 8.4.3 follows directly from the above lemma by noting that pmax
guess(γ,d) ≥

pguess(γ,d , |φ〉), for all γ ∈ [0,1],d ≥ 2 and for all states |φ〉.
One can also see that for the input states |φ j l 〉 = c

(| j 〉+ω j l F †|l〉) with j 6= l but with
j 2−l 2

d ∈ Z, Eq. (8.100) reduces to pguess(γ,d , |φ j l 〉) = 1
2

(
1+ 1p

d

)
= pmax

guess(γ = 0,d). That is

for those states pguess(γ,d , |φ j l 〉) stays constant in γ for all d .

8.6.4. COHERENCE AND QUANTUM CORRELATIONS
To give a deeper insight into the relation between the guessing probability and the co-
herence γ, we also look at the correlations between the registers B , R and P (the initial
purification of R), at times t1, t2 and t3 in Fig. 8.2 (in the main article). Specifically, we
focus on the two-dimensional game with optimal input states. We then quantify the
arising correlations using min-entropy and the results are depicted in Fig. 8.4. It needs
to be noted that independently of the dimension of our game, Bob’s requirements for
perfect guessing are perfect classical correlations between R and X , the classical register
denoting the measurement outcome after Alice has performed her measurement on the
system B at time t3 in Fig. 8.2. However, classical correlations are basis dependent and
effectively the measurement of Alice involves two mutually unbiased bases. Hence it is
impossible to have perfect guessing with just classically correlating the two systems be-
fore the measurement. From the perspective of the quantum circuit in Fig. 8.2, those per-
fect classical correlations that arise after the conditional Fourier transform will never be
perfectly aligned with the measurement basis of Alice (standard basis). As a result, even
if the system is classically perfectly correlated before the measurement, the correlations
are no longer maximal after the measurement on B . For two-dimensional game, this can
be seen in Fig. 8.4 where for γ= 0, Hmin(B |R) = 0, but Hmin(X |R) > 0. The advantage for
Bob coming from the quantum coherence in register R and the resulting quantum cor-
relations is that for maximal entanglement (which is possible if d = 2), independently of
the basis in which the system B has been measured, the outcomes of that measurement
are maximally correlated with the state of the register R. Hence, if the two systems be-
come maximally entangled (Hmin(B |R) =−1 for γ= 1), then the post-measurement state
becomes classically maximally correlated (Hmin(X |R) = 0) enabling perfect guessing.

8.6.5. CONDITIONAL MIN-ENTROPIES FOR THE TWO-DIMENSIONAL GAME
The controlled Fourier transform in the circuit in Fig. 8.2 (in the main article) results
in (quantum) correlations between the two systems B and R. These correlations are
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exploited by Bob in order to guess the measurement outcome on the state ρB . However,
this measurement has a destructive effect on these correlations. Here we quantify this
destructive effect of the measurement using min-entropy. The conditional min-entropy
will be calculated using the definition presented in [30]. Firstly let us define a correlation
measure:

qcorr(B |R) = d max
E

F
(
(ER ⊗ IB )(ρRB ), |Ψ〉〈Ψ|RB

)2 , (8.102)

where F is fidelity defined using the trace norm as F (ρ,σ) = ||pρpσ||1 (when one of the
states is pure, that is when σ = |Ψ〉〈Ψ|, the fidelity reduces to F (ρ,σ) = √〈Ψ|ρ|Ψ〉), d
is the dimension of subsystem B , E is a local operation described by a trace-preserving
completely positive map and |Ψ〉 is a maximally entangled state (note that qcorr(B |R) is
independent of which maximally entangled state we use, since all such states are the
same up to a unitary rotation on one of the qudits; this rotation can always be com-
pensated on ρRB by the corresponding rotation on system R as part of the local oper-
ation E ). Then one can calculate the conditional min-entropy of a quantum-quantum
(qq) state as Hmin(B |R) = − log(qcorr(B |R)). Note that for classical-quantum (cq) states,
qcorr(X |R) becomes the guessing probability pguess(X |R) (here X denotes the classical
subsystem) [30].

We are interested in the relation between the min-entropy Hmin(B |R) of a qq-state
(the min-entropy of the input state ρB before Alice’s measurement, given access to R)
and the min-entropy Hmin(X |R) of the cq-state after the measurement has been per-
formed (the min-entropy of the classical outcome X after Alice’s measurement, given
access to ρR ). For that purpose we will investigate the tightness of the inequality derived
in [15]:

Hmin(X |R) ≤ Hmin(B |R)+ log(d) , (8.103)

where d is the dimension of the outcome space. This inequality tells us that for two-
dimensional states, the increase of the conditional min-entropy due to the measurement
cannot exceed 1.

For d = 2 we will now calculate both of those entropies explicitly starting with Hmin(B |R).
In our calculation let us pick one of the two states which give us the maximum guessing
probability for all values of γ, namely |φ10〉 which in the Bloch sphere representation can

be expressed as (cx ,cy ,cz ) =
(

1p
2

,0,− 1p
2

)
[one can analogously show that the other state

|φ01〉 or equivalently (cx ,cy ,cz ) =
(
− 1p

2
,0, 1p

2

)
will give exactly the same Hmin(B |R)]. For

this input state, the overall state ρ′
RB (γ,d = 2, |φ〉) before the measurement at time t2 in

Fig. 8.2 is:

ρ′
RB (γ,d = 2, |φ〉) = 1

4

(
|0〉〈0|R ⊗ (I+ 1p

2
(σx −σz ))+γ[|0〉〈1|R ⊗ (HB + 1p

2
(σx −σz )HB )

+|1〉〈0|R ⊗ (HB + 1p
2

HB (σx −σz ))]+|1〉〈1|R ⊗ (I+ 1p
2

(σz −σx ))

)
.

(8.104)
We can now diagonalise this state so that we obtain:

ρ′
RB (γ,d = 2, |φ〉) = 1+γ

2
|ψ1〉〈ψ1|+ 1−γ

2
|ψ2〉〈ψ2| , (8.105)
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where the eigenstates written in their Schmidt bases are:

|ψ1〉 = 1p
2

(|0′〉R |1〉B +|1′〉R |0〉B ) , (8.106)

|ψ2〉 = 1p
2

(|0′′〉R |1〉B +|1′′〉R |0〉B ) . (8.107)

The Schmidt bases: {|0′〉, |1′〉} and {|0′′〉, |1′′〉} are given by:

|0′〉 = 1p
2

(
1√

2−p
2
|0〉− 1√

2+p
2
|1〉

)
, (8.108)

|1′〉 = 1p
2

(
1√

2+p
2
|0〉+ 1√

2−p
2
|1〉

)
, (8.109)

|0′′〉 = 1p
2

(
1√

2−p
2
|0〉+ 1√

2+p
2
|1〉

)
, (8.110)

|1′′〉 = 1p
2

(
1√

2+p
2
|0〉− 1√

2−p
2
|1〉

)
. (8.111)

The states |ψ1〉 and |ψ2〉 are mutually orthogonal maximally entangled states. To
calculate Hmin(B |R) we use the formulation of the min-entropy in terms of the semi-
definite programmes, as expressed in [30]. The primal, as stated before, is Hmin(B |R) =
− log(qcorr(B |R)) where qcorr(B |R) is given in Eq. (8.102). The dual problem is:

Hmin(B |R) =− log min
σR≥0

σR⊗IB≥ρRB

Tr(σR ) . (8.112)

For the primal programme, let us consider a local transformation E acting on subsystem
R which performs a rotation such that the state will now be diagonal in the basis that in-
cludes |Ψ〉RB , with maximal probability in this mixture corresponding to the state |Ψ〉RB .
This feasible solution gives:

max
E

F
(
(E ⊗ IB )(ρ′

RB ), |Ψ〉〈Ψ|RB
)≥√

1+γ
2

. (8.113)

Hence:
qcorr(B |R) ≥ 1+γ , (8.114)

and so:
Hmin(B |R) =− log qcorr(B |R) ≤− log(1+γ) . (8.115)

Similarly, for the dual programme, let us consider a matrix σR =
(

1+γ
2

)
IR ≥ 0. Then

σR ⊗IB =
(

1+γ
2

)
I4×4. Clearly σR ⊗IB ≥ ρ′

RB , so that we obtain:

Hmin(B |R) ≥− logTr[σR ] =− log(1+γ) . (8.116)
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Combining the results from the primal and dual programmes allows us to conclude that
Hmin(B |R) =− log(1+γ) for all γ ∈ [0,1].

The min-entropy after the measurement is related to the guessing probability as
Hmin(X |R) =− log pguess(X |R) and so it is:

Hmin(X |R) =− log

(
1

2

(√
2+2γ2

2
+1

))
= 1− log

(√
2+2γ2

2
+1

)
. (8.117)

Hence:

Hmin(X |R)−Hmin(B |R) = 1− log

(√
2+2γ2 +2

2(1+γ)

)
. (8.118)

We then see that Hmin(X |R)− Hmin(B |R) monotonically increases with γ ∈ [0,1] until it
reaches the value of one for γ = 1. Hence the inequality (8.103) is tight for γ = 1 which
corresponds to the greatest possible increase of the conditional min-entropy during the
measurement performed on a qubit (see Fig. 8.4).

We also compute the min-entropy Hmin(P |R) to get some insight into the correlations
between basis register R and its purification P as a function of γ. For that purpose, let
us redefine the way we label the states of registers R and P with respect to the labelling
and notation used in Eqs. (8.5) to (8.9). Specifically, let |α〉, |β〉 be now the two states
of the entire register P (joint states of all the environmental subsystems Ei that are in
P ) corresponding to the states |0〉, |1〉 of the register R respectively. The real parameter
γ ∈ [0,1], that quantifies the amount of information that P holds about R, satisfies now:

〈α|β〉 = γ , (8.119)

so that the joint state of registers R and P can be written as:

|ξ(γ)〉RP = 1p
2

(|0〉R |α〉P +|1〉R |β〉P ) . (8.120)

Note that the state |ξ(γ)〉RP defined in Eq. (8.120) is pure. Then Hmin(P |R) =− log(Tr[
p
ρR ])2

=− log(Tr[
p
ρP ])2. Note that Tr[

p
ρR ] = Tr[

p
ρP ] is the sum of the Schmidt coefficients of

the state |ξ(γ)〉RP . The eigenvalues of ρR (γ) defined in Eq. (8.6) (with real and positive γ)
are λ1 = 1+γ

2 and λ2 = 1−γ
2 . Hence:

Hmin(P |R) =− log

(√
1+γ

2
+

√
1−γ

2

)2

=− log(1+
√

1−γ2) . (8.121)

Similarly we calculate Hmin(P |R) after the conditional Fourier transform in Fig. 8.2
has been applied, to quantify the effect of this operation on the correlations between R
and P . Firstly we need to calculate ρRP at time t2. That is, again following the circuit in
Fig. 8.2 but now including the purification P , the initial state at time t1 is |Φ(γ,d , |φ〉)〉RPB =
|ξ(γ)〉RP ⊗|φ〉B . Then the state at time t2 is |Φ′(γ,d , |φ〉)〉RPB =U |Φ(γ,d , |φ〉)〉RPB , where
U is given by:

U = |0〉〈0|R ⊗IP ⊗IB +|1〉〈1|R ⊗IP ⊗FB . (8.122)
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Hence:

|Φ′(γ,d , |φ〉)〉RPB = 1p
2

(|0〉R |α〉P |φ〉B +|1〉R |β〉P FB |φ〉B ) , (8.123)

We can now trace out B .

ρ′
RP (γ,d , |φ〉) = 1

2

(
|0〉〈0|R ⊗|α〉〈α|P +〈φ|F †|φ〉|0〉〈1|R ⊗|α〉〈β|P

+ 〈φ|F |φ〉|1〉〈0|R ⊗|β〉〈α|P +|1〉〈1|R ⊗|β〉〈β|P
)

.
(8.124)

Now let us consider the two-dimensional game again with |φ〉B being one of the two
states that achieve pmax

guess(γ,d = 2) for all γ ∈ [0,1] (these are the states |φ〉 = |φ10〉 and
|φ〉 = |φ01〉). Then 〈φ|F |φ〉 = 0, so the state on R and P at t2 is:

ρRP (γ,d = 2, |φ〉) = 1

2

(|0〉〈0|R ⊗|α〉〈α|P +|1〉〈1|R ⊗|β〉〈β|P
)

. (8.125)

To calculate Hmin(P |R) we again use the formulation of min-entropy in terms of the
semi-definite programmes [30]. For the dual programme in Eq. (8.112), note thatρRP has

eigenvalues { 1
2 , 1

2 ,0,0}. Hence σR = IR

2
clearly satisfies the constraints, as then σR ⊗IP =

I4×4

2
and so σR ≥ 0 and σR ⊗ IP ≥ ρRP . The corresponding solution is Hmin(P |R) ≥ 0.

Similarly, in Eq. (8.102), let us consider E to be a quantum channel acting on R with
Krauss operators {Mi }, where M0 = |α〉〈0| and M0 = |β〉〈1|. Then:

ρ′
RP = (E ⊗ IP )(ρRP ) = 1

2

(|α〉〈α|R ⊗|α〉〈α|P +|β〉〈β|R ⊗|β〉〈β|P
)

. (8.126)

Since 〈α|β〉 = γ, we have 〈α⊥|β〉 = e iφ
√

1−γ2 for some phase φ, where 〈α|α⊥〉 =
0. Now, let |Ψ〉RP be a maximally entangled state of the form |Ψ〉RP = 1p

2
(|α〉R |α〉P +

e2iφ|α⊥〉R |α⊥〉P ). Therefore:

qcorr(P |R) = 2F
(
ρ′

RP , |Ψ〉〈Ψ|RP
)2

= 1

2

(
〈α|R〈α|P +e−2iφ〈α⊥|R〈α⊥|P

)
(|α〉〈α|R ⊗|α〉〈α|P

+|β〉〈β|R ⊗|β〉〈β|P
)(|α〉R |α〉P +e2iφ|α⊥〉R |α⊥〉P

)
= 1

2

(
1+ ∣∣〈α|β〉∣∣4 + ∣∣〈α⊥|β〉∣∣4 +e2iφ(〈α|β〉)2(〈β|α⊥〉)2 +e−2iφ(〈β|α〉)2(〈α⊥|β〉)2

)
= 1

2

(
1+γ4 + (

1−γ2)2 +2γ2 (
1−γ2))

= 1.
(8.127)

Hence the corresponding solution is Hmin(P |R) ≤ 0. Therefore combining the results
from the primal and dual programmes we conclude that Hmin(P |R) = 0 for all γ ∈ [0,1].
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Figure 8.4: Conditional min-entropies as a function of γ for the two-dimensional game (d = 2)
with Bob’s input state |φ01〉 = c(|0〉+ |−〉) or |φ10〉 = c(|1〉+ |+〉). The blue solid line corresponds to
the Hmin(B |R) at time t2 in Fig. 8.2. The red dashed line shows Hmin(X |R) at time t3 after Alice’s
measurement, where the state is averaged over all the outcomes, as Bob does not have access to
the measurement result. The yellow dotted line corresponds to Hmin(P |R) at time t1 and hence
shows the initial quantum correlations between R and its purification P . The correlations between
those systems at time t2 are illustrated by the purple dash-dotted flat line Hmin(P |R) = 0. By com-
paring the blue solid and red dashed lines, one can see that for γ= 1 the increase of the conditional
entropy between Hmin(B |R) and Hmin(X |R) due to the measurement on B is the greatest possible,
that is, it is equal to 1. The reason is that the measurement is the most destructive in this case, as
it destroys all the quantum correlations of a maximally entangled state. On the other end of the
spectrum, if γ = 0, there are no quantum correlations between B and R present and so the mea-
surement has a relatively small influence on the system. It only affects the classical correlations,
which are not aligned with the standard basis in which the measurement performed by Alice takes
place (the final measurement in the circuit in Fig. 8.2). Hence, in this case the increase of condi-
tional entropy is small. Comparing the yellow dotted and blue solid lines we see that decreasing
the amount of entanglement between P and R results in the increase in the amount of entangle-
ment between B and R that can be generated using the controlled Fourier transform. Finally, from
the flat purple dash-dotted line we see that independently of the coherence of R and its initial cor-
relations with P , the correlations between those two systems at time t2 can be only classical. All
the above entropies are derived in Appendix 8.6.5.
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9.1. SUMMARY OF RESULTS
We summarize the main results of this thesis as follows:

• We have established that current quantum technologies already possess the capa-
bilities for demonstrating efficient generation of long-distance entanglement and
a proof of principle quantum repeater. In particular we have verified these state-
ments for NV-centre platform where we have observed that the necessary prop-
erty of such experimental setups is the optical interface of the memories with high
photon extraction efficiency. It is expected that the demonstration of these pa-
rameters can be achieved by embedding the quantum memory system within an
optical cavity to enhance the emission into the desired zero phonon line and into
the preferential directional mode.

• We have examined the performance of multiplexed entanglement generation us-
ing quantum memories with a single-optical interface and multiplexed memory
qubits. We have found that for the NV centre platform the gate time of transferring
the quantum state between the communication qubit and the memory qubit plays
a crucial role in making such multiplexing possible. For currently achievable times
of such a swap gate which still allows for maintaining high coherence of the mem-
ory qubits for hundreds of subsequent entanglement generation attempts, using
more than one such multiplexed memory will no longer provide any benefit. This
shows that the ability to perform fast local gates at the memory nodes will play
a crucial role in future quantum repeater networks based on such multiplexing
schemes.

• We have established two crucial methods for quantum repeater networks that al-
low for counteracting the effect of noise in the system. The first one is the cut-off
on the storage time which enables overcoming the problem of decoherence in the
quantum memories at the expense of reducing the yield of the protocol. We find
that optimising over this cut-off can not only significantly boost the performance
of the studied repeater schemes but for large distances it is even necessary in order
to be able to demonstrate a non-zero performance. Moreover, from the implemen-
tation perspective, the application of the optimal cut-off corresponds only to ad-
justing the settings of the devices and hence is much easier to implement than the
previously suggested method of optimising the position of the repeater for spe-
cific sequential protocols. Secondly, we have shown that for QKD the secret-key
rate achievable with our repeater schemes can be significantly enhanced by in-
troducing two-way classical post-processing instead of typically considered one-
way error correction. Such a two-way advantage distillation scheme is known to
be very efficient in the high-noise regime, which is the regime in which realistic
proof of principle repeater schemes operate. In fact we show that for some more
complex schemes such advantage distillation is necessary in order to be able to
generate any non-zero amount of key. Again, implementation of such a two-way
post-processing does not carry any additional cost with respect to the one-way er-
ror correction as the entire procedure is implemented in a fully classical part of the
protocol.
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• We have proposed a general framework for investigating the trade-off between fi-
delity and probability of success in entanglement distillation and we have pro-
vided methods to improve existing distillation schemes. Using this framework,
we have demonstrated that specific well-known realistic entanglement distillation
schemes that operate on two copies of a two-qubit state and involve only one
round of local operations and classical communication are in fact optimal over
all LOCC protocols. To be more precise, we observe that they offer the optimal
trade-off between the output fidelity and probability of success. This shows that
in order to obtain better trade-off between those two figures of merit, it is neces-
sary in those cases to aim for implementation of protocols that can jointly operate
on more than two-copies of the input state.

• We have examined the origin of uncertainty in the quantum guessing games mod-
elling specific types of attacks of an eavesdropper in QKD. We have found that a
significant part, and in certain cases even all, of the resulting uncertainty is re-
lated to the lack of knowledge about the choice of the measured observable. If the
eavesdropper could gain access to the quantum information about this choice,
they would be able to guess the measurement outcomes with significantly higher
probability and even with full certainty for the specific cases, without being de-
tectable in any way. In this way we have demonstrated that it is vital for such
quantum information to remain inaccessible to Eve. From a broader perspective
we have shown that certain entropic formulations of the preparation aspect of the
quantum uncertainty principle do not quantify exclusively the intrinsic quantum
uncertainty but also include a classical component related to a lack of information.

9.2. FUTURE OUTLOOK

9.2.1. REMOTE ENTANGLEMENT GENERATION AND FIRST GENERATION QUAN-
TUM REPEATERS WITH OTHER PHYSICAL PLATFORMS

In this thesis we have looked at specific remote entanglement generation and proof of
principle repeater schemes and their implementation based on the NV-centre platform.
However, the multiplexed remote entanglement generation schemes that we propose in
Chapter 4 and the SiSQuaRe repeater scheme could also be applied to other platforms
where local nodes consist of multiple qubits with a single optical interface accessible at
any given moment.

An example of such a platform could consist of multiple ions confined to a single
trap [1]. In the corresponding implementation of the SiSQuaRe repeater scheme or the
multiplexed remote entanglement generation, one could consider multiple such ions
coupled to an optical cavity [2, 3]. Since we want to be able to independently operate
on each of the memories and make use of their photonic interface, similarly to the NV
based implementation, the memory-photon entanglement generation procedure would
need to be conducted in a sequential way. This can be done either by hiding/unhiding
the spectator ions during the memory-photon entanglement generation [4] or by com-
bining different atomic isotopes of different resonant frequencies in one trap [5, 6]. For
the implementation of the second method it is natural to consider one isotope as a com-
munication qubit with an optical interface and the other memories of different species
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as memory qubits as was implemented in [7]. Moreover, this platform also offers a func-
tionality of performing deterministic gates between the ions in a single trap, allowing
us to implement a deterministic local Bell measurement and a swap gate between the
ions. Hence, we see that effectively the qualitative capabilities of such a trapped ion
based system fit exactly within the general requirements of the SiSQuRe scheme and the
framework of multiplexed remote entanglement generation analysed in Chapter 4. A
significant advantage of this platform is that the interaction between the two ions can be
switched on and off on demand, hence completely eliminating the effect of decoherence
during storage due to subsequent entanglement generation attempts, which seems to be
the dominant source of noise in the NV based implementation.

On the other hand, quantum dots encapsulated in optical cavities seem to be another
promising candidate for the implementation of the single-photon scheme for QKD [8,
9]. While their coherence properties are rather limited, the single-photon scheme does
not require any quantum storage at all. In fact, as we have discussed in Appendix 7.8.9
in Chapter 7, it is possible to run a prepare-and-measure version of this scheme where
Alice and Bob are only required to prepare the desired superposition of the presence and
absence of a photon. It has been demonstrated in [10] that quantum dots can indeed act
as efficient sources of such single-rail encoded photonic qubits.

In Chapter 4 we have discussed multiplexed remote entanglement generation for ex-
perimental platforms utilising a single communication qubit acting as an optical inter-
face and multiple memory qubits used for storage. Although in that chapter we have per-
formed an explicit analysis for the NV platform, we have already noted that other plat-
forms such as trapped ions would also be suitable. However, we have already observed
that the duration of the swap gate between the communication and the memory qubit
in realistic scenarios provides a dominant limitation to the usability of those additional
quantum memories in such multiplexing schemes. In principle this problem could be
mitigated by coupling the communication and the memory qubits more strongly in or-
der to achieve faster gates and at the same time mitigating the resulting decoherence
on the memory by e.g. utilising encodings based on decoherence protected subspaces
of multiple such memories [11, 12]. Nevertheless, the number of multiplexed quantum
memories that will allow for deterministic transfer of the quantum state from a single
communication qubit realistically will not exceed more than a few storage qubits.

A much more unconstrained approach to multiplexing seems to be possible with
quantum memories based on atomic ensembles [13]. These platforms enable imple-
mentations of a multimode quantum memory. Multiplexing in multiple degrees of free-
dom, such as temporal [14, 15], spectral [16] or spatial [17], has already been demon-
strated in such ensemble based systems. Moreover, combination of all those multiplex-
ing strategies in a single setup has also been demonstrated [18]. Combining such dif-
ferent degrees of freedom could offer a highly multiplexed quantum memory with large
number of parallel storage modes enabling efficient remote entanglement generation. A
significant limitation of remote entanglement generation schemes using atomic ensem-
ble based memories in comparison to the schemes based on NV-centres or individual
ions is that many of them require use of sources of entangled photons. These sources
at the moment have very low efficiency and non-negligible probability of multi-photon
emission events introducing significant amount of noise [19, 20].
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Nevertheless, access to a large number of modes reaching orders of 105−106 together
with photon number resolving detectors [21, 22] or application of near-deterministic
sources of entangled photons, which could be achieved using e.g. quantum dots as
single-photon sources [23], could overcome this problem. However, such repeater schemes
suffer significantly from the necessity of implementing entanglement swapping in a prob-
abilistic way using optical Bell state measurement and the efficiency of such a measure-
ment is fundamentally restricted to 50% [24]. While adding additional photons as an-
cillary resources can increase that probability [25–27], the required number of such re-
sources does not make this method a realistic scheme for achieving a near deterministic
performance. Hence, investigating cross platform architectures that could benefit from
both multimode quantum memories and from the functionality of deterministic multi-
qubit gates could provide a feasible solution to the above discussed problems. In partic-
ular, possible techniques of overcoming the limitations of the linear-optics based Bell-
measurement would involve transferring quantum states from the multimode quantum
memories to either NV-centres or trapped ions/atoms where a deterministic entangle-
ment swapping operation could be performed. Another ambitious method would be to
use a deterministic Bell-state analyser [28]. Such cross-platform integration techniques
could allow for designing more efficient repeater schemes benefiting from the advan-
tages of all those physical systems at the same time.

9.2.2. ENTANGLEMENT DISTILLATION
In Chapter 5 we have developed a framework and methods for evaluating the trade-off
between fidelity and probability of success in entanglement distillation. We have also
applied this framework to examine the optimality of some existing distillation schemes,
mostly for the case when two input copies of a two-qubit state are distilled to such a
single copy.

It would be now interesting to investigate such trade-offs for the protocols that distil
from three to one copy using MX operations. One could then compare the performance
of such protocols to the upper bounds obtained using our numerical package. A simple
distillation protocol that makes use of such three copies has been analysed in [29].

In the larger context, the general framework for deriving distillation protocols that
operate on a larger number of copies of two-qubit states and consider operations that ef-
fectively permute Bell states was proposed in [30]. In [31], on the other hand, the authors
take a more "bottom-up" approach and construct optimised entanglement distillation
circuits from optimal subcircuits when operating on Bell-diagonal states.

For particular experimentally relevant scenarios one might want to follow more spe-
cific techniques. It would be particularly very useful to investigate generalisations of the
EPL scheme to a higher number of copies of a two-qubit state such that effectively all
of them are correlated in phase, analogously to the state in Eq. (5.46) in Chapter 5 for
two copies. One way of performing such a generalisation could possibly be achieved by
considering techniques based on hashing.

9.2.3. HIGHER GENERATION QUANTUM REPEATERS
We have already discussed in Section 3.2.3 in Chapter 3 the so-called third generation of
quantum repeaters where the requirement on the coherence time of quantum memo-
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ries becomes significantly reduced to just the local processing time. However, most of
the proposed codes such as parity codes require the ability to perform high-quality op-
erations on a very large number of memories at the same time [32, 33]. The possible
solution would be to remove the requirement on any quantum memories completely,
as has been proposed in [34, 35] where the only quantum systems used are large pho-
tonic claster states. Effectively, the quantum memories are then simulated using the
large photonic tree code encodings that protect the logical qubits against photon loss
during transmission and allow for loss-tolerant measurements on them. Generation of
such states in a near deterministic fashion is in principle feasible using e.g. quantum
dots in cavities as proposed in [36], however the needed sizes of such cluster states place
very high requirements on the number of such single photon sources that would need to
be used in a practical scenario.

Another possible third generation repeater could make use of the so-called bosonic
codes, where the quantum state is encoded in a subspace of a harmonic oscillator, specif-
ically in the Fock space of a photonic mode [37–39]. Multiple classes of such codes have
been proposed with superconducting circuits being the most promising platform for
generating such bosonic codes. However, this platform operates in the microwave do-
main so an efficient way of converting photons from microwave to optical domain would
be necessary in order to be able to use such generated encoded states for quantum com-
munication applications [40].

9.2.4. 2-D QUANTUM NETWORK

While a large number of proposals exist for an efficient repeater chain, not much in-
vestigation has been devoted to more complex networks which involve more than two
end-node parties. However, a practical quantum internet should allow a large number
of parties to perform various communication tasks across such a network at the same
time and often involving more than two parties in each of those individual tasks. In such
scenarios new questions arise that do not have a corresponding counterpart in a simple
repeater chain case. One of such issues is the fact that certain centrally localised nodes
and links will be in general used much more frequently than the end links connecting in-
dividual users to the network. This asymmetry suggests the possibility that the optimal
repeater architecture might make simultaneous use of multiple physical platforms, e.g.
faster remote entanglement generation schemes might need to be utilised between the
central nodes even at the expense of lower quality of the generated entanglement while
the links connecting the end users could make use of other platforms for which higher
quality entanglement is produced possibly at a much slower rate. In general, optimising
both the network topology and the network architecture connecting a fixed number of
users is a very challenging task.

Another important question in such a 2-D network relates to routing quantum en-
tanglement [41]. If the network offers a possibility of using multiple paths to generate
entanglement between two or more users, it is a big challenge to find an optimal way of
generating entanglement across those paths and connecting it in such a way as to allow
for efficient use of all the connections for multiple user pairs (or higher number of users
performing a joint task) at the same time. This question becomes even more challeng-
ing, when one considers the fact that most of the nodes in the network will in general
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only have access to a very limited amount of knowledge regarding the existing entangle-
ment connections across the network at any given moment. This is because updating all
the nodes about the status of the network takes time and the required amount of com-
munication could become overwhelming, even for the corresponding classical network.
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